xref: /freebsd/sys/dev/wpi/if_wpi.c (revision d1a0d267b78b542fbd7e6553af2493760f49bfa8)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*
23  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24  *
25  * The 3945ABG network adapter doesn't use traditional hardware as
26  * many other adaptors do. Instead at run time the eeprom is set into a known
27  * state and told to load boot firmware. The boot firmware loads an init and a
28  * main  binary firmware image into SRAM on the card via DMA.
29  * Once the firmware is loaded, the driver/hw then
30  * communicate by way of circular dma rings via the SRAM to the firmware.
31  *
32  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33  * The 4 tx data rings allow for prioritization QoS.
34  *
35  * The rx data ring consists of 32 dma buffers. Two registers are used to
36  * indicate where in the ring the driver and the firmware are up to. The
37  * driver sets the initial read index (reg1) and the initial write index (reg2),
38  * the firmware updates the read index (reg1) on rx of a packet and fires an
39  * interrupt. The driver then processes the buffers starting at reg1 indicating
40  * to the firmware which buffers have been accessed by updating reg2. At the
41  * same time allocating new memory for the processed buffer.
42  *
43  * A similar thing happens with the tx rings. The difference is the firmware
44  * stop processing buffers once the queue is full and until confirmation
45  * of a successful transmition (tx_done) has occurred.
46  *
47  * The command ring operates in the same manner as the tx queues.
48  *
49  * All communication direct to the card (ie eeprom) is classed as Stage1
50  * communication
51  *
52  * All communication via the firmware to the card is classed as State2.
53  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54  * firmware. The bootstrap firmware and runtime firmware are loaded
55  * from host memory via dma to the card then told to execute. From this point
56  * on the majority of communications between the driver and the card goes
57  * via the firmware.
58  */
59 
60 #include "opt_wlan.h"
61 #include "opt_wpi.h"
62 
63 #include <sys/param.h>
64 #include <sys/sysctl.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/systm.h>
70 #include <sys/malloc.h>
71 #include <sys/queue.h>
72 #include <sys/taskqueue.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/endian.h>
76 #include <sys/linker.h>
77 #include <sys/firmware.h>
78 
79 #include <machine/bus.h>
80 #include <machine/resource.h>
81 #include <sys/rman.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/if_ether.h>
99 #include <netinet/ip.h>
100 
101 #include <net80211/ieee80211_var.h>
102 #include <net80211/ieee80211_radiotap.h>
103 #include <net80211/ieee80211_regdomain.h>
104 #include <net80211/ieee80211_ratectl.h>
105 
106 #include <dev/wpi/if_wpireg.h>
107 #include <dev/wpi/if_wpivar.h>
108 #include <dev/wpi/if_wpi_debug.h>
109 
110 struct wpi_ident {
111 	uint16_t	vendor;
112 	uint16_t	device;
113 	uint16_t	subdevice;
114 	const char	*name;
115 };
116 
117 static const struct wpi_ident wpi_ident_table[] = {
118 	/* The below entries support ABG regardless of the subid */
119 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	/* The below entries only support BG */
122 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0, 0, 0, NULL }
127 };
128 
129 static int	wpi_probe(device_t);
130 static int	wpi_attach(device_t);
131 static void	wpi_radiotap_attach(struct wpi_softc *);
132 static void	wpi_sysctlattach(struct wpi_softc *);
133 static void	wpi_init_beacon(struct wpi_vap *);
134 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136 		    const uint8_t [IEEE80211_ADDR_LEN],
137 		    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void	wpi_vap_delete(struct ieee80211vap *);
139 static int	wpi_detach(device_t);
140 static int	wpi_shutdown(device_t);
141 static int	wpi_suspend(device_t);
142 static int	wpi_resume(device_t);
143 static int	wpi_nic_lock(struct wpi_softc *);
144 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147 		    void **, bus_size_t, bus_size_t);
148 static void	wpi_dma_contig_free(struct wpi_dma_info *);
149 static int	wpi_alloc_shared(struct wpi_softc *);
150 static void	wpi_free_shared(struct wpi_softc *);
151 static int	wpi_alloc_fwmem(struct wpi_softc *);
152 static void	wpi_free_fwmem(struct wpi_softc *);
153 static int	wpi_alloc_rx_ring(struct wpi_softc *);
154 static void	wpi_update_rx_ring(struct wpi_softc *);
155 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
156 static void	wpi_reset_rx_ring(struct wpi_softc *);
157 static void	wpi_free_rx_ring(struct wpi_softc *);
158 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
159 		    int);
160 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
162 		    struct wpi_tx_ring *);
163 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
164 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165 static int	wpi_read_eeprom(struct wpi_softc *,
166 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
167 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
168 static void	wpi_read_eeprom_band(struct wpi_softc *, int);
169 static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
170 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
171 		    struct ieee80211_channel *);
172 static int	wpi_setregdomain(struct ieee80211com *,
173 		    struct ieee80211_regdomain *, int,
174 		    struct ieee80211_channel[]);
175 static int	wpi_read_eeprom_group(struct wpi_softc *, int);
176 static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
177 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
178 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
179 static void	wpi_node_free(struct ieee80211_node *);
180 static void	wpi_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
181 		    const struct ieee80211_rx_stats *,
182 		    int, int);
183 static void	wpi_restore_node(void *, struct ieee80211_node *);
184 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
185 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
186 static void	wpi_calib_timeout(void *);
187 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
188 		    struct wpi_rx_data *);
189 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
190 		    struct wpi_rx_data *);
191 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
192 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
193 static void	wpi_notif_intr(struct wpi_softc *);
194 static void	wpi_wakeup_intr(struct wpi_softc *);
195 #ifdef WPI_DEBUG
196 static void	wpi_debug_registers(struct wpi_softc *);
197 #endif
198 static void	wpi_fatal_intr(struct wpi_softc *);
199 static void	wpi_intr(void *);
200 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
201 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
202 		    struct ieee80211_node *);
203 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
204 		    struct ieee80211_node *,
205 		    const struct ieee80211_bpf_params *);
206 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
207 		    const struct ieee80211_bpf_params *);
208 static void	wpi_start(struct ifnet *);
209 static void	wpi_start_task(void *, int);
210 static void	wpi_watchdog_rfkill(void *);
211 static void	wpi_scan_timeout(void *);
212 static void	wpi_tx_timeout(void *);
213 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
214 static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
215 static int	wpi_mrr_setup(struct wpi_softc *);
216 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
217 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
218 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
219 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
220 static int	wpi_updateedca(struct ieee80211com *);
221 static void	wpi_set_promisc(struct wpi_softc *);
222 static void	wpi_update_promisc(struct ieee80211com *);
223 static void	wpi_update_mcast(struct ieee80211com *);
224 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
225 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
226 static void	wpi_power_calibration(struct wpi_softc *);
227 static int	wpi_set_txpower(struct wpi_softc *, int);
228 static int	wpi_get_power_index(struct wpi_softc *,
229 		    struct wpi_power_group *, uint8_t, int, int);
230 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
231 static int	wpi_send_btcoex(struct wpi_softc *);
232 static int	wpi_send_rxon(struct wpi_softc *, int, int);
233 static int	wpi_config(struct wpi_softc *);
234 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
235 		    struct ieee80211_channel *, uint8_t);
236 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
237 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
238 		    struct ieee80211_channel *);
239 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
240 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
241 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
242 static int	wpi_config_beacon(struct wpi_vap *);
243 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
244 static void	wpi_update_beacon(struct ieee80211vap *, int);
245 static void	wpi_newassoc(struct ieee80211_node *, int);
246 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
247 static int	wpi_load_key(struct ieee80211_node *,
248 		    const struct ieee80211_key *);
249 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
250 static int	wpi_set_global_keys(struct ieee80211_node *);
251 static int	wpi_del_key(struct ieee80211_node *,
252 		    const struct ieee80211_key *);
253 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
254 static int	wpi_process_key(struct ieee80211vap *,
255 		    const struct ieee80211_key *, int);
256 static int	wpi_key_set(struct ieee80211vap *,
257 		    const struct ieee80211_key *,
258 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
259 static int	wpi_key_delete(struct ieee80211vap *,
260 		    const struct ieee80211_key *);
261 static int	wpi_post_alive(struct wpi_softc *);
262 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
263 static int	wpi_load_firmware(struct wpi_softc *);
264 static int	wpi_read_firmware(struct wpi_softc *);
265 static void	wpi_unload_firmware(struct wpi_softc *);
266 static int	wpi_clock_wait(struct wpi_softc *);
267 static int	wpi_apm_init(struct wpi_softc *);
268 static void	wpi_apm_stop_master(struct wpi_softc *);
269 static void	wpi_apm_stop(struct wpi_softc *);
270 static void	wpi_nic_config(struct wpi_softc *);
271 static int	wpi_hw_init(struct wpi_softc *);
272 static void	wpi_hw_stop(struct wpi_softc *);
273 static void	wpi_radio_on(void *, int);
274 static void	wpi_radio_off(void *, int);
275 static void	wpi_init(void *);
276 static void	wpi_stop_locked(struct wpi_softc *);
277 static void	wpi_stop(struct wpi_softc *);
278 static void	wpi_scan_start(struct ieee80211com *);
279 static void	wpi_scan_end(struct ieee80211com *);
280 static void	wpi_set_channel(struct ieee80211com *);
281 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
282 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
283 static void	wpi_hw_reset(void *, int);
284 
285 static device_method_t wpi_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		wpi_probe),
288 	DEVMETHOD(device_attach,	wpi_attach),
289 	DEVMETHOD(device_detach,	wpi_detach),
290 	DEVMETHOD(device_shutdown,	wpi_shutdown),
291 	DEVMETHOD(device_suspend,	wpi_suspend),
292 	DEVMETHOD(device_resume,	wpi_resume),
293 
294 	DEVMETHOD_END
295 };
296 
297 static driver_t wpi_driver = {
298 	"wpi",
299 	wpi_methods,
300 	sizeof (struct wpi_softc)
301 };
302 static devclass_t wpi_devclass;
303 
304 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
305 
306 MODULE_VERSION(wpi, 1);
307 
308 MODULE_DEPEND(wpi, pci,  1, 1, 1);
309 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
310 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
311 
312 static int
313 wpi_probe(device_t dev)
314 {
315 	const struct wpi_ident *ident;
316 
317 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
318 		if (pci_get_vendor(dev) == ident->vendor &&
319 		    pci_get_device(dev) == ident->device) {
320 			device_set_desc(dev, ident->name);
321 			return (BUS_PROBE_DEFAULT);
322 		}
323 	}
324 	return ENXIO;
325 }
326 
327 static int
328 wpi_attach(device_t dev)
329 {
330 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
331 	struct ieee80211com *ic;
332 	struct ifnet *ifp;
333 	int i, error, rid;
334 #ifdef WPI_DEBUG
335 	int supportsa = 1;
336 	const struct wpi_ident *ident;
337 #endif
338 	uint8_t macaddr[IEEE80211_ADDR_LEN];
339 
340 	sc->sc_dev = dev;
341 
342 #ifdef WPI_DEBUG
343 	error = resource_int_value(device_get_name(sc->sc_dev),
344 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
345 	if (error != 0)
346 		sc->sc_debug = 0;
347 #else
348 	sc->sc_debug = 0;
349 #endif
350 
351 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
352 
353 	/*
354 	 * Get the offset of the PCI Express Capability Structure in PCI
355 	 * Configuration Space.
356 	 */
357 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
358 	if (error != 0) {
359 		device_printf(dev, "PCIe capability structure not found!\n");
360 		return error;
361 	}
362 
363 	/*
364 	 * Some card's only support 802.11b/g not a, check to see if
365 	 * this is one such card. A 0x0 in the subdevice table indicates
366 	 * the entire subdevice range is to be ignored.
367 	 */
368 #ifdef WPI_DEBUG
369 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
370 		if (ident->subdevice &&
371 		    pci_get_subdevice(dev) == ident->subdevice) {
372 		    supportsa = 0;
373 		    break;
374 		}
375 	}
376 #endif
377 
378 	/* Clear device-specific "PCI retry timeout" register (41h). */
379 	pci_write_config(dev, 0x41, 0, 1);
380 
381 	/* Enable bus-mastering. */
382 	pci_enable_busmaster(dev);
383 
384 	rid = PCIR_BAR(0);
385 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
386 	    RF_ACTIVE);
387 	if (sc->mem == NULL) {
388 		device_printf(dev, "can't map mem space\n");
389 		return ENOMEM;
390 	}
391 	sc->sc_st = rman_get_bustag(sc->mem);
392 	sc->sc_sh = rman_get_bushandle(sc->mem);
393 
394 	i = 1;
395 	rid = 0;
396 	if (pci_alloc_msi(dev, &i) == 0)
397 		rid = 1;
398 	/* Install interrupt handler. */
399 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
400 	    (rid != 0 ? 0 : RF_SHAREABLE));
401 	if (sc->irq == NULL) {
402 		device_printf(dev, "can't map interrupt\n");
403 		error = ENOMEM;
404 		goto fail;
405 	}
406 
407 	WPI_LOCK_INIT(sc);
408 	WPI_TX_LOCK_INIT(sc);
409 	WPI_RXON_LOCK_INIT(sc);
410 	WPI_NT_LOCK_INIT(sc);
411 	WPI_TXQ_LOCK_INIT(sc);
412 	WPI_TXQ_STATE_LOCK_INIT(sc);
413 
414 	/* Allocate DMA memory for firmware transfers. */
415 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
416 		device_printf(dev,
417 		    "could not allocate memory for firmware, error %d\n",
418 		    error);
419 		goto fail;
420 	}
421 
422 	/* Allocate shared page. */
423 	if ((error = wpi_alloc_shared(sc)) != 0) {
424 		device_printf(dev, "could not allocate shared page\n");
425 		goto fail;
426 	}
427 
428 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
429 	for (i = 0; i < WPI_NTXQUEUES; i++) {
430 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
431 			device_printf(dev,
432 			    "could not allocate TX ring %d, error %d\n", i,
433 			    error);
434 			goto fail;
435 		}
436 	}
437 
438 	/* Allocate RX ring. */
439 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
440 		device_printf(dev, "could not allocate RX ring, error %d\n",
441 		    error);
442 		goto fail;
443 	}
444 
445 	/* Clear pending interrupts. */
446 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
447 
448 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
449 	if (ifp == NULL) {
450 		device_printf(dev, "can not allocate ifnet structure\n");
451 		goto fail;
452 	}
453 
454 	ic = ifp->if_l2com;
455 	ic->ic_ifp = ifp;
456 	ic->ic_softc = sc;
457 	ic->ic_name = device_get_nameunit(dev);
458 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
459 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
460 
461 	/* Set device capabilities. */
462 	ic->ic_caps =
463 		  IEEE80211_C_STA		/* station mode supported */
464 		| IEEE80211_C_IBSS		/* IBSS mode supported */
465 		| IEEE80211_C_HOSTAP		/* Host access point mode */
466 		| IEEE80211_C_MONITOR		/* monitor mode supported */
467 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
468 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
469 		| IEEE80211_C_TXPMGT		/* tx power management */
470 		| IEEE80211_C_SHSLOT		/* short slot time supported */
471 		| IEEE80211_C_WPA		/* 802.11i */
472 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
473 		| IEEE80211_C_WME		/* 802.11e */
474 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
475 		;
476 
477 	ic->ic_cryptocaps =
478 		  IEEE80211_CRYPTO_AES_CCM;
479 
480 	/*
481 	 * Read in the eeprom and also setup the channels for
482 	 * net80211. We don't set the rates as net80211 does this for us
483 	 */
484 	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
485 		device_printf(dev, "could not read EEPROM, error %d\n",
486 		    error);
487 		goto fail;
488 	}
489 
490 #ifdef WPI_DEBUG
491 	if (bootverbose) {
492 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
493 		    sc->domain);
494 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
495 		    sc->type > 1 ? 'B': '?');
496 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
497 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
498 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
499 		    supportsa ? "does" : "does not");
500 
501 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
502 		   check what sc->rev really represents - benjsc 20070615 */
503 	}
504 #endif
505 
506 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
507 	ifp->if_softc = sc;
508 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
509 	ifp->if_init = wpi_init;
510 	ifp->if_ioctl = wpi_ioctl;
511 	ifp->if_start = wpi_start;
512 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
513 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
514 	IFQ_SET_READY(&ifp->if_snd);
515 
516 	ieee80211_ifattach(ic, macaddr);
517 	ic->ic_vap_create = wpi_vap_create;
518 	ic->ic_vap_delete = wpi_vap_delete;
519 	ic->ic_raw_xmit = wpi_raw_xmit;
520 	ic->ic_node_alloc = wpi_node_alloc;
521 	sc->sc_node_free = ic->ic_node_free;
522 	ic->ic_node_free = wpi_node_free;
523 	ic->ic_wme.wme_update = wpi_updateedca;
524 	ic->ic_update_promisc = wpi_update_promisc;
525 	ic->ic_update_mcast = wpi_update_mcast;
526 	ic->ic_newassoc = wpi_newassoc;
527 	ic->ic_scan_start = wpi_scan_start;
528 	ic->ic_scan_end = wpi_scan_end;
529 	ic->ic_set_channel = wpi_set_channel;
530 	ic->ic_scan_curchan = wpi_scan_curchan;
531 	ic->ic_scan_mindwell = wpi_scan_mindwell;
532 	ic->ic_setregdomain = wpi_setregdomain;
533 
534 	sc->sc_update_rx_ring = wpi_update_rx_ring;
535 	sc->sc_update_tx_ring = wpi_update_tx_ring;
536 
537 	wpi_radiotap_attach(sc);
538 
539 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
540 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
541 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
542 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
543 	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
544 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
545 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
546 	TASK_INIT(&sc->sc_start_task, 0, wpi_start_task, sc);
547 
548 	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
549 	    taskqueue_thread_enqueue, &sc->sc_tq);
550 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
551 	if (error != 0) {
552 		device_printf(dev, "can't start threads, error %d\n", error);
553 		goto fail;
554 	}
555 
556 	wpi_sysctlattach(sc);
557 
558 	/*
559 	 * Hook our interrupt after all initialization is complete.
560 	 */
561 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
562 	    NULL, wpi_intr, sc, &sc->sc_ih);
563 	if (error != 0) {
564 		device_printf(dev, "can't establish interrupt, error %d\n",
565 		    error);
566 		goto fail;
567 	}
568 
569 	if (bootverbose)
570 		ieee80211_announce(ic);
571 
572 #ifdef WPI_DEBUG
573 	if (sc->sc_debug & WPI_DEBUG_HW)
574 		ieee80211_announce_channels(ic);
575 #endif
576 
577 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
578 	return 0;
579 
580 fail:	wpi_detach(dev);
581 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
582 	return error;
583 }
584 
585 /*
586  * Attach the interface to 802.11 radiotap.
587  */
588 static void
589 wpi_radiotap_attach(struct wpi_softc *sc)
590 {
591 	struct ifnet *ifp = sc->sc_ifp;
592 	struct ieee80211com *ic = ifp->if_l2com;
593 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
594 	ieee80211_radiotap_attach(ic,
595 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
596 		WPI_TX_RADIOTAP_PRESENT,
597 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
598 		WPI_RX_RADIOTAP_PRESENT);
599 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
600 }
601 
602 static void
603 wpi_sysctlattach(struct wpi_softc *sc)
604 {
605 #ifdef WPI_DEBUG
606 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
607 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
608 
609 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
610 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
611 		"control debugging printfs");
612 #endif
613 }
614 
615 static void
616 wpi_init_beacon(struct wpi_vap *wvp)
617 {
618 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
619 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
620 
621 	cmd->id = WPI_ID_BROADCAST;
622 	cmd->ofdm_mask = 0xff;
623 	cmd->cck_mask = 0x0f;
624 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
625 
626 	/*
627 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
628 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
629 	 */
630 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
631 
632 	bcn->code = WPI_CMD_SET_BEACON;
633 	bcn->ac = WPI_CMD_QUEUE_NUM;
634 	bcn->size = sizeof(struct wpi_cmd_beacon);
635 }
636 
637 static struct ieee80211vap *
638 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
639     enum ieee80211_opmode opmode, int flags,
640     const uint8_t bssid[IEEE80211_ADDR_LEN],
641     const uint8_t mac[IEEE80211_ADDR_LEN])
642 {
643 	struct wpi_vap *wvp;
644 	struct ieee80211vap *vap;
645 
646 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
647 		return NULL;
648 
649 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
650 	    M_80211_VAP, M_NOWAIT | M_ZERO);
651 	if (wvp == NULL)
652 		return NULL;
653 	vap = &wvp->wv_vap;
654 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
655 
656 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
657 		WPI_VAP_LOCK_INIT(wvp);
658 		wpi_init_beacon(wvp);
659 	}
660 
661 	/* Override with driver methods. */
662 	vap->iv_key_set = wpi_key_set;
663 	vap->iv_key_delete = wpi_key_delete;
664 	wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
665 	vap->iv_recv_mgmt = wpi_recv_mgmt;
666 	wvp->wv_newstate = vap->iv_newstate;
667 	vap->iv_newstate = wpi_newstate;
668 	vap->iv_update_beacon = wpi_update_beacon;
669 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
670 
671 	ieee80211_ratectl_init(vap);
672 	/* Complete setup. */
673 	ieee80211_vap_attach(vap, ieee80211_media_change,
674 	    ieee80211_media_status);
675 	ic->ic_opmode = opmode;
676 	return vap;
677 }
678 
679 static void
680 wpi_vap_delete(struct ieee80211vap *vap)
681 {
682 	struct wpi_vap *wvp = WPI_VAP(vap);
683 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
684 	enum ieee80211_opmode opmode = vap->iv_opmode;
685 
686 	ieee80211_ratectl_deinit(vap);
687 	ieee80211_vap_detach(vap);
688 
689 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
690 		if (bcn->m != NULL)
691 			m_freem(bcn->m);
692 
693 		WPI_VAP_LOCK_DESTROY(wvp);
694 	}
695 
696 	free(wvp, M_80211_VAP);
697 }
698 
699 static int
700 wpi_detach(device_t dev)
701 {
702 	struct wpi_softc *sc = device_get_softc(dev);
703 	struct ifnet *ifp = sc->sc_ifp;
704 	struct ieee80211com *ic;
705 	int qid;
706 
707 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
708 
709 	if (ifp != NULL) {
710 		ic = ifp->if_l2com;
711 
712 		ieee80211_draintask(ic, &sc->sc_radioon_task);
713 		ieee80211_draintask(ic, &sc->sc_start_task);
714 
715 		wpi_stop(sc);
716 
717 		taskqueue_drain_all(sc->sc_tq);
718 		taskqueue_free(sc->sc_tq);
719 
720 		callout_drain(&sc->watchdog_rfkill);
721 		callout_drain(&sc->tx_timeout);
722 		callout_drain(&sc->scan_timeout);
723 		callout_drain(&sc->calib_to);
724 		ieee80211_ifdetach(ic);
725 	}
726 
727 	/* Uninstall interrupt handler. */
728 	if (sc->irq != NULL) {
729 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
730 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
731 		    sc->irq);
732 		pci_release_msi(dev);
733 	}
734 
735 	if (sc->txq[0].data_dmat) {
736 		/* Free DMA resources. */
737 		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
738 			wpi_free_tx_ring(sc, &sc->txq[qid]);
739 
740 		wpi_free_rx_ring(sc);
741 		wpi_free_shared(sc);
742 	}
743 
744 	if (sc->fw_dma.tag)
745 		wpi_free_fwmem(sc);
746 
747 	if (sc->mem != NULL)
748 		bus_release_resource(dev, SYS_RES_MEMORY,
749 		    rman_get_rid(sc->mem), sc->mem);
750 
751 	if (ifp != NULL)
752 		if_free(ifp);
753 
754 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
755 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
756 	WPI_TXQ_LOCK_DESTROY(sc);
757 	WPI_NT_LOCK_DESTROY(sc);
758 	WPI_RXON_LOCK_DESTROY(sc);
759 	WPI_TX_LOCK_DESTROY(sc);
760 	WPI_LOCK_DESTROY(sc);
761 	return 0;
762 }
763 
764 static int
765 wpi_shutdown(device_t dev)
766 {
767 	struct wpi_softc *sc = device_get_softc(dev);
768 
769 	wpi_stop(sc);
770 	return 0;
771 }
772 
773 static int
774 wpi_suspend(device_t dev)
775 {
776 	struct wpi_softc *sc = device_get_softc(dev);
777 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
778 
779 	ieee80211_suspend_all(ic);
780 	return 0;
781 }
782 
783 static int
784 wpi_resume(device_t dev)
785 {
786 	struct wpi_softc *sc = device_get_softc(dev);
787 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
788 
789 	/* Clear device-specific "PCI retry timeout" register (41h). */
790 	pci_write_config(dev, 0x41, 0, 1);
791 
792 	ieee80211_resume_all(ic);
793 	return 0;
794 }
795 
796 /*
797  * Grab exclusive access to NIC memory.
798  */
799 static int
800 wpi_nic_lock(struct wpi_softc *sc)
801 {
802 	int ntries;
803 
804 	/* Request exclusive access to NIC. */
805 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
806 
807 	/* Spin until we actually get the lock. */
808 	for (ntries = 0; ntries < 1000; ntries++) {
809 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
810 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
811 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
812 			return 0;
813 		DELAY(10);
814 	}
815 
816 	device_printf(sc->sc_dev, "could not lock memory\n");
817 
818 	return ETIMEDOUT;
819 }
820 
821 /*
822  * Release lock on NIC memory.
823  */
824 static __inline void
825 wpi_nic_unlock(struct wpi_softc *sc)
826 {
827 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
828 }
829 
830 static __inline uint32_t
831 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
832 {
833 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
834 	WPI_BARRIER_READ_WRITE(sc);
835 	return WPI_READ(sc, WPI_PRPH_RDATA);
836 }
837 
838 static __inline void
839 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
840 {
841 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
842 	WPI_BARRIER_WRITE(sc);
843 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
844 }
845 
846 static __inline void
847 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
848 {
849 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
850 }
851 
852 static __inline void
853 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
854 {
855 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
856 }
857 
858 static __inline void
859 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
860     const uint32_t *data, int count)
861 {
862 	for (; count > 0; count--, data++, addr += 4)
863 		wpi_prph_write(sc, addr, *data);
864 }
865 
866 static __inline uint32_t
867 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
868 {
869 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
870 	WPI_BARRIER_READ_WRITE(sc);
871 	return WPI_READ(sc, WPI_MEM_RDATA);
872 }
873 
874 static __inline void
875 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
876     int count)
877 {
878 	for (; count > 0; count--, addr += 4)
879 		*data++ = wpi_mem_read(sc, addr);
880 }
881 
882 static int
883 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
884 {
885 	uint8_t *out = data;
886 	uint32_t val;
887 	int error, ntries;
888 
889 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
890 
891 	if ((error = wpi_nic_lock(sc)) != 0)
892 		return error;
893 
894 	for (; count > 0; count -= 2, addr++) {
895 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
896 		for (ntries = 0; ntries < 10; ntries++) {
897 			val = WPI_READ(sc, WPI_EEPROM);
898 			if (val & WPI_EEPROM_READ_VALID)
899 				break;
900 			DELAY(5);
901 		}
902 		if (ntries == 10) {
903 			device_printf(sc->sc_dev,
904 			    "timeout reading ROM at 0x%x\n", addr);
905 			return ETIMEDOUT;
906 		}
907 		*out++= val >> 16;
908 		if (count > 1)
909 			*out ++= val >> 24;
910 	}
911 
912 	wpi_nic_unlock(sc);
913 
914 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
915 
916 	return 0;
917 }
918 
919 static void
920 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
921 {
922 	if (error != 0)
923 		return;
924 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
925 	*(bus_addr_t *)arg = segs[0].ds_addr;
926 }
927 
928 /*
929  * Allocates a contiguous block of dma memory of the requested size and
930  * alignment.
931  */
932 static int
933 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
934     void **kvap, bus_size_t size, bus_size_t alignment)
935 {
936 	int error;
937 
938 	dma->tag = NULL;
939 	dma->size = size;
940 
941 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
942 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
943 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
944 	if (error != 0)
945 		goto fail;
946 
947 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
948 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
949 	if (error != 0)
950 		goto fail;
951 
952 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
953 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
954 	if (error != 0)
955 		goto fail;
956 
957 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
958 
959 	if (kvap != NULL)
960 		*kvap = dma->vaddr;
961 
962 	return 0;
963 
964 fail:	wpi_dma_contig_free(dma);
965 	return error;
966 }
967 
968 static void
969 wpi_dma_contig_free(struct wpi_dma_info *dma)
970 {
971 	if (dma->vaddr != NULL) {
972 		bus_dmamap_sync(dma->tag, dma->map,
973 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
974 		bus_dmamap_unload(dma->tag, dma->map);
975 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
976 		dma->vaddr = NULL;
977 	}
978 	if (dma->tag != NULL) {
979 		bus_dma_tag_destroy(dma->tag);
980 		dma->tag = NULL;
981 	}
982 }
983 
984 /*
985  * Allocate a shared page between host and NIC.
986  */
987 static int
988 wpi_alloc_shared(struct wpi_softc *sc)
989 {
990 	/* Shared buffer must be aligned on a 4KB boundary. */
991 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
992 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
993 }
994 
995 static void
996 wpi_free_shared(struct wpi_softc *sc)
997 {
998 	wpi_dma_contig_free(&sc->shared_dma);
999 }
1000 
1001 /*
1002  * Allocate DMA-safe memory for firmware transfer.
1003  */
1004 static int
1005 wpi_alloc_fwmem(struct wpi_softc *sc)
1006 {
1007 	/* Must be aligned on a 16-byte boundary. */
1008 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1009 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
1010 }
1011 
1012 static void
1013 wpi_free_fwmem(struct wpi_softc *sc)
1014 {
1015 	wpi_dma_contig_free(&sc->fw_dma);
1016 }
1017 
1018 static int
1019 wpi_alloc_rx_ring(struct wpi_softc *sc)
1020 {
1021 	struct wpi_rx_ring *ring = &sc->rxq;
1022 	bus_size_t size;
1023 	int i, error;
1024 
1025 	ring->cur = 0;
1026 	ring->update = 0;
1027 
1028 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1029 
1030 	/* Allocate RX descriptors (16KB aligned.) */
1031 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1032 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1033 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1034 	if (error != 0) {
1035 		device_printf(sc->sc_dev,
1036 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1037 		    __func__, error);
1038 		goto fail;
1039 	}
1040 
1041 	/* Create RX buffer DMA tag. */
1042 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1043 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1044 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1045 	    &ring->data_dmat);
1046 	if (error != 0) {
1047 		device_printf(sc->sc_dev,
1048 		    "%s: could not create RX buf DMA tag, error %d\n",
1049 		    __func__, error);
1050 		goto fail;
1051 	}
1052 
1053 	/*
1054 	 * Allocate and map RX buffers.
1055 	 */
1056 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1057 		struct wpi_rx_data *data = &ring->data[i];
1058 		bus_addr_t paddr;
1059 
1060 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1061 		if (error != 0) {
1062 			device_printf(sc->sc_dev,
1063 			    "%s: could not create RX buf DMA map, error %d\n",
1064 			    __func__, error);
1065 			goto fail;
1066 		}
1067 
1068 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1069 		if (data->m == NULL) {
1070 			device_printf(sc->sc_dev,
1071 			    "%s: could not allocate RX mbuf\n", __func__);
1072 			error = ENOBUFS;
1073 			goto fail;
1074 		}
1075 
1076 		error = bus_dmamap_load(ring->data_dmat, data->map,
1077 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1078 		    &paddr, BUS_DMA_NOWAIT);
1079 		if (error != 0 && error != EFBIG) {
1080 			device_printf(sc->sc_dev,
1081 			    "%s: can't map mbuf (error %d)\n", __func__,
1082 			    error);
1083 			goto fail;
1084 		}
1085 
1086 		/* Set physical address of RX buffer. */
1087 		ring->desc[i] = htole32(paddr);
1088 	}
1089 
1090 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1091 	    BUS_DMASYNC_PREWRITE);
1092 
1093 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1094 
1095 	return 0;
1096 
1097 fail:	wpi_free_rx_ring(sc);
1098 
1099 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1100 
1101 	return error;
1102 }
1103 
1104 static void
1105 wpi_update_rx_ring(struct wpi_softc *sc)
1106 {
1107 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1108 }
1109 
1110 static void
1111 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1112 {
1113 	struct wpi_rx_ring *ring = &sc->rxq;
1114 
1115 	if (ring->update != 0) {
1116 		/* Wait for INT_WAKEUP event. */
1117 		return;
1118 	}
1119 
1120 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1121 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1122 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1123 		    __func__);
1124 		ring->update = 1;
1125 	} else {
1126 		wpi_update_rx_ring(sc);
1127 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1128 	}
1129 }
1130 
1131 static void
1132 wpi_reset_rx_ring(struct wpi_softc *sc)
1133 {
1134 	struct wpi_rx_ring *ring = &sc->rxq;
1135 	int ntries;
1136 
1137 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1138 
1139 	if (wpi_nic_lock(sc) == 0) {
1140 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1141 		for (ntries = 0; ntries < 1000; ntries++) {
1142 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1143 			    WPI_FH_RX_STATUS_IDLE)
1144 				break;
1145 			DELAY(10);
1146 		}
1147 		wpi_nic_unlock(sc);
1148 	}
1149 
1150 	ring->cur = 0;
1151 	ring->update = 0;
1152 }
1153 
1154 static void
1155 wpi_free_rx_ring(struct wpi_softc *sc)
1156 {
1157 	struct wpi_rx_ring *ring = &sc->rxq;
1158 	int i;
1159 
1160 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1161 
1162 	wpi_dma_contig_free(&ring->desc_dma);
1163 
1164 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1165 		struct wpi_rx_data *data = &ring->data[i];
1166 
1167 		if (data->m != NULL) {
1168 			bus_dmamap_sync(ring->data_dmat, data->map,
1169 			    BUS_DMASYNC_POSTREAD);
1170 			bus_dmamap_unload(ring->data_dmat, data->map);
1171 			m_freem(data->m);
1172 			data->m = NULL;
1173 		}
1174 		if (data->map != NULL)
1175 			bus_dmamap_destroy(ring->data_dmat, data->map);
1176 	}
1177 	if (ring->data_dmat != NULL) {
1178 		bus_dma_tag_destroy(ring->data_dmat);
1179 		ring->data_dmat = NULL;
1180 	}
1181 }
1182 
1183 static int
1184 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1185 {
1186 	bus_addr_t paddr;
1187 	bus_size_t size;
1188 	int i, error;
1189 
1190 	ring->qid = qid;
1191 	ring->queued = 0;
1192 	ring->cur = 0;
1193 	ring->update = 0;
1194 
1195 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1196 
1197 	/* Allocate TX descriptors (16KB aligned.) */
1198 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1199 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1200 	    size, WPI_RING_DMA_ALIGN);
1201 	if (error != 0) {
1202 		device_printf(sc->sc_dev,
1203 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1204 		    __func__, error);
1205 		goto fail;
1206 	}
1207 
1208 	/* Update shared area with ring physical address. */
1209 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1210 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1211 	    BUS_DMASYNC_PREWRITE);
1212 
1213 	/*
1214 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1215 	 * to allocate commands space for other rings.
1216 	 * XXX Do we really need to allocate descriptors for other rings?
1217 	 */
1218 	if (qid > WPI_CMD_QUEUE_NUM) {
1219 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1220 		return 0;
1221 	}
1222 
1223 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1224 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1225 	    size, 4);
1226 	if (error != 0) {
1227 		device_printf(sc->sc_dev,
1228 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1229 		    __func__, error);
1230 		goto fail;
1231 	}
1232 
1233 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1234 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1235 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1236 	    &ring->data_dmat);
1237 	if (error != 0) {
1238 		device_printf(sc->sc_dev,
1239 		    "%s: could not create TX buf DMA tag, error %d\n",
1240 		    __func__, error);
1241 		goto fail;
1242 	}
1243 
1244 	paddr = ring->cmd_dma.paddr;
1245 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1246 		struct wpi_tx_data *data = &ring->data[i];
1247 
1248 		data->cmd_paddr = paddr;
1249 		paddr += sizeof (struct wpi_tx_cmd);
1250 
1251 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1252 		if (error != 0) {
1253 			device_printf(sc->sc_dev,
1254 			    "%s: could not create TX buf DMA map, error %d\n",
1255 			    __func__, error);
1256 			goto fail;
1257 		}
1258 	}
1259 
1260 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1261 
1262 	return 0;
1263 
1264 fail:	wpi_free_tx_ring(sc, ring);
1265 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1266 	return error;
1267 }
1268 
1269 static void
1270 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1271 {
1272 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1273 }
1274 
1275 static void
1276 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1277 {
1278 
1279 	if (ring->update != 0) {
1280 		/* Wait for INT_WAKEUP event. */
1281 		return;
1282 	}
1283 
1284 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1285 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1286 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1287 		    __func__, ring->qid);
1288 		ring->update = 1;
1289 	} else {
1290 		wpi_update_tx_ring(sc, ring);
1291 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1292 	}
1293 }
1294 
1295 static void
1296 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1297 {
1298 	int i;
1299 
1300 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1301 
1302 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1303 		struct wpi_tx_data *data = &ring->data[i];
1304 
1305 		if (data->m != NULL) {
1306 			bus_dmamap_sync(ring->data_dmat, data->map,
1307 			    BUS_DMASYNC_POSTWRITE);
1308 			bus_dmamap_unload(ring->data_dmat, data->map);
1309 			m_freem(data->m);
1310 			data->m = NULL;
1311 		}
1312 		if (data->ni != NULL) {
1313 			ieee80211_free_node(data->ni);
1314 			data->ni = NULL;
1315 		}
1316 	}
1317 	/* Clear TX descriptors. */
1318 	memset(ring->desc, 0, ring->desc_dma.size);
1319 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1320 	    BUS_DMASYNC_PREWRITE);
1321 	sc->qfullmsk &= ~(1 << ring->qid);
1322 	ring->queued = 0;
1323 	ring->cur = 0;
1324 	ring->update = 0;
1325 }
1326 
1327 static void
1328 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1329 {
1330 	int i;
1331 
1332 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1333 
1334 	wpi_dma_contig_free(&ring->desc_dma);
1335 	wpi_dma_contig_free(&ring->cmd_dma);
1336 
1337 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1338 		struct wpi_tx_data *data = &ring->data[i];
1339 
1340 		if (data->m != NULL) {
1341 			bus_dmamap_sync(ring->data_dmat, data->map,
1342 			    BUS_DMASYNC_POSTWRITE);
1343 			bus_dmamap_unload(ring->data_dmat, data->map);
1344 			m_freem(data->m);
1345 		}
1346 		if (data->map != NULL)
1347 			bus_dmamap_destroy(ring->data_dmat, data->map);
1348 	}
1349 	if (ring->data_dmat != NULL) {
1350 		bus_dma_tag_destroy(ring->data_dmat);
1351 		ring->data_dmat = NULL;
1352 	}
1353 }
1354 
1355 /*
1356  * Extract various information from EEPROM.
1357  */
1358 static int
1359 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1360 {
1361 #define WPI_CHK(res) do {		\
1362 	if ((error = res) != 0)		\
1363 		goto fail;		\
1364 } while (0)
1365 	int error, i;
1366 
1367 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1368 
1369 	/* Adapter has to be powered on for EEPROM access to work. */
1370 	if ((error = wpi_apm_init(sc)) != 0) {
1371 		device_printf(sc->sc_dev,
1372 		    "%s: could not power ON adapter, error %d\n", __func__,
1373 		    error);
1374 		return error;
1375 	}
1376 
1377 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1378 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1379 		error = EIO;
1380 		goto fail;
1381 	}
1382 	/* Clear HW ownership of EEPROM. */
1383 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1384 
1385 	/* Read the hardware capabilities, revision and SKU type. */
1386 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1387 	    sizeof(sc->cap)));
1388 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1389 	    sizeof(sc->rev)));
1390 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1391 	    sizeof(sc->type)));
1392 
1393 	sc->rev = le16toh(sc->rev);
1394 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1395 	    sc->rev, sc->type);
1396 
1397 	/* Read the regulatory domain (4 ASCII characters.) */
1398 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1399 	    sizeof(sc->domain)));
1400 
1401 	/* Read MAC address. */
1402 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1403 	    IEEE80211_ADDR_LEN));
1404 
1405 	/* Read the list of authorized channels. */
1406 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1407 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1408 
1409 	/* Read the list of TX power groups. */
1410 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1411 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1412 
1413 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1414 
1415 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1416 	    __func__);
1417 
1418 	return error;
1419 #undef WPI_CHK
1420 }
1421 
1422 /*
1423  * Translate EEPROM flags to net80211.
1424  */
1425 static uint32_t
1426 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1427 {
1428 	uint32_t nflags;
1429 
1430 	nflags = 0;
1431 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1432 		nflags |= IEEE80211_CHAN_PASSIVE;
1433 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1434 		nflags |= IEEE80211_CHAN_NOADHOC;
1435 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1436 		nflags |= IEEE80211_CHAN_DFS;
1437 		/* XXX apparently IBSS may still be marked */
1438 		nflags |= IEEE80211_CHAN_NOADHOC;
1439 	}
1440 
1441 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1442 	if (nflags & IEEE80211_CHAN_NOADHOC)
1443 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1444 
1445 	return nflags;
1446 }
1447 
1448 static void
1449 wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1450 {
1451 	struct ifnet *ifp = sc->sc_ifp;
1452 	struct ieee80211com *ic = ifp->if_l2com;
1453 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1454 	const struct wpi_chan_band *band = &wpi_bands[n];
1455 	struct ieee80211_channel *c;
1456 	uint8_t chan;
1457 	int i, nflags;
1458 
1459 	for (i = 0; i < band->nchan; i++) {
1460 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1461 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1462 			    "Channel Not Valid: %d, band %d\n",
1463 			     band->chan[i],n);
1464 			continue;
1465 		}
1466 
1467 		chan = band->chan[i];
1468 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1469 
1470 		c = &ic->ic_channels[ic->ic_nchans++];
1471 		c->ic_ieee = chan;
1472 		c->ic_maxregpower = channels[i].maxpwr;
1473 		c->ic_maxpower = 2*c->ic_maxregpower;
1474 
1475 		if (n == 0) {	/* 2GHz band */
1476 			c->ic_freq = ieee80211_ieee2mhz(chan,
1477 			    IEEE80211_CHAN_G);
1478 
1479 			/* G =>'s B is supported */
1480 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1481 			c = &ic->ic_channels[ic->ic_nchans++];
1482 			c[0] = c[-1];
1483 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1484 		} else {	/* 5GHz band */
1485 			c->ic_freq = ieee80211_ieee2mhz(chan,
1486 			    IEEE80211_CHAN_A);
1487 
1488 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1489 		}
1490 
1491 		/* Save maximum allowed TX power for this channel. */
1492 		sc->maxpwr[chan] = channels[i].maxpwr;
1493 
1494 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1495 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1496 		    " offset %d\n", chan, c->ic_freq,
1497 		    channels[i].flags, sc->maxpwr[chan],
1498 		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1499 	}
1500 }
1501 
1502 /**
1503  * Read the eeprom to find out what channels are valid for the given
1504  * band and update net80211 with what we find.
1505  */
1506 static int
1507 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1508 {
1509 	struct ifnet *ifp = sc->sc_ifp;
1510 	struct ieee80211com *ic = ifp->if_l2com;
1511 	const struct wpi_chan_band *band = &wpi_bands[n];
1512 	int error;
1513 
1514 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1515 
1516 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1517 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1518 	if (error != 0) {
1519 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1520 		return error;
1521 	}
1522 
1523 	wpi_read_eeprom_band(sc, n);
1524 
1525 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1526 
1527 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1528 
1529 	return 0;
1530 }
1531 
1532 static struct wpi_eeprom_chan *
1533 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1534 {
1535 	int i, j;
1536 
1537 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1538 		for (i = 0; i < wpi_bands[j].nchan; i++)
1539 			if (wpi_bands[j].chan[i] == c->ic_ieee)
1540 				return &sc->eeprom_channels[j][i];
1541 
1542 	return NULL;
1543 }
1544 
1545 /*
1546  * Enforce flags read from EEPROM.
1547  */
1548 static int
1549 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1550     int nchan, struct ieee80211_channel chans[])
1551 {
1552 	struct wpi_softc *sc = ic->ic_softc;
1553 	int i;
1554 
1555 	for (i = 0; i < nchan; i++) {
1556 		struct ieee80211_channel *c = &chans[i];
1557 		struct wpi_eeprom_chan *channel;
1558 
1559 		channel = wpi_find_eeprom_channel(sc, c);
1560 		if (channel == NULL) {
1561 			if_printf(ic->ic_ifp,
1562 			    "%s: invalid channel %u freq %u/0x%x\n",
1563 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1564 			return EINVAL;
1565 		}
1566 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static int
1573 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1574 {
1575 	struct wpi_power_group *group = &sc->groups[n];
1576 	struct wpi_eeprom_group rgroup;
1577 	int i, error;
1578 
1579 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1580 
1581 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1582 	    &rgroup, sizeof rgroup)) != 0) {
1583 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1584 		return error;
1585 	}
1586 
1587 	/* Save TX power group information. */
1588 	group->chan   = rgroup.chan;
1589 	group->maxpwr = rgroup.maxpwr;
1590 	/* Retrieve temperature at which the samples were taken. */
1591 	group->temp   = (int16_t)le16toh(rgroup.temp);
1592 
1593 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1594 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1595 	    group->maxpwr, group->temp);
1596 
1597 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1598 		group->samples[i].index = rgroup.samples[i].index;
1599 		group->samples[i].power = rgroup.samples[i].power;
1600 
1601 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1602 		    "\tsample %d: index=%d power=%d\n", i,
1603 		    group->samples[i].index, group->samples[i].power);
1604 	}
1605 
1606 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1607 
1608 	return 0;
1609 }
1610 
1611 static int
1612 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1613 {
1614 	int newid = WPI_ID_IBSS_MIN;
1615 
1616 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1617 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1618 			sc->nodesmsk |= 1 << newid;
1619 			return newid;
1620 		}
1621 	}
1622 
1623 	return WPI_ID_UNDEFINED;
1624 }
1625 
1626 static __inline int
1627 wpi_add_node_entry_sta(struct wpi_softc *sc)
1628 {
1629 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1630 
1631 	return WPI_ID_BSS;
1632 }
1633 
1634 static __inline int
1635 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1636 {
1637 	if (id == WPI_ID_UNDEFINED)
1638 		return 0;
1639 
1640 	return (sc->nodesmsk >> id) & 1;
1641 }
1642 
1643 static __inline void
1644 wpi_clear_node_table(struct wpi_softc *sc)
1645 {
1646 	sc->nodesmsk = 0;
1647 }
1648 
1649 static __inline void
1650 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1651 {
1652 	sc->nodesmsk &= ~(1 << id);
1653 }
1654 
1655 static struct ieee80211_node *
1656 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1657 {
1658 	struct wpi_node *wn;
1659 
1660 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1661 	    M_NOWAIT | M_ZERO);
1662 
1663 	if (wn == NULL)
1664 		return NULL;
1665 
1666 	wn->id = WPI_ID_UNDEFINED;
1667 
1668 	return &wn->ni;
1669 }
1670 
1671 static void
1672 wpi_node_free(struct ieee80211_node *ni)
1673 {
1674 	struct ieee80211com *ic = ni->ni_ic;
1675 	struct wpi_softc *sc = ic->ic_softc;
1676 	struct wpi_node *wn = WPI_NODE(ni);
1677 
1678 	if (wn->id != WPI_ID_UNDEFINED) {
1679 		WPI_NT_LOCK(sc);
1680 		if (wpi_check_node_entry(sc, wn->id)) {
1681 			wpi_del_node_entry(sc, wn->id);
1682 			wpi_del_node(sc, ni);
1683 		}
1684 		WPI_NT_UNLOCK(sc);
1685 	}
1686 
1687 	sc->sc_node_free(ni);
1688 }
1689 
1690 static __inline int
1691 wpi_check_bss_filter(struct wpi_softc *sc)
1692 {
1693 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1694 }
1695 
1696 static void
1697 wpi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1698     const struct ieee80211_rx_stats *rxs,
1699     int rssi, int nf)
1700 {
1701 	struct ieee80211vap *vap = ni->ni_vap;
1702 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1703 	struct wpi_vap *wvp = WPI_VAP(vap);
1704 	uint64_t ni_tstamp, rx_tstamp;
1705 
1706 	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1707 
1708 	if (vap->iv_opmode == IEEE80211_M_IBSS &&
1709 	    vap->iv_state == IEEE80211_S_RUN &&
1710 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1711 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1712 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1713 		rx_tstamp = le64toh(sc->rx_tstamp);
1714 
1715 		if (ni_tstamp >= rx_tstamp) {
1716 			DPRINTF(sc, WPI_DEBUG_STATE,
1717 			    "ibss merge, tsf %ju tstamp %ju\n",
1718 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1719 			(void) ieee80211_ibss_merge(ni);
1720 		}
1721 	}
1722 }
1723 
1724 static void
1725 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1726 {
1727 	struct wpi_softc *sc = arg;
1728 	struct wpi_node *wn = WPI_NODE(ni);
1729 	int error;
1730 
1731 	WPI_NT_LOCK(sc);
1732 	if (wn->id != WPI_ID_UNDEFINED) {
1733 		wn->id = WPI_ID_UNDEFINED;
1734 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1735 			device_printf(sc->sc_dev,
1736 			    "%s: could not add IBSS node, error %d\n",
1737 			    __func__, error);
1738 		}
1739 	}
1740 	WPI_NT_UNLOCK(sc);
1741 }
1742 
1743 static void
1744 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1745 {
1746 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1747 
1748 	/* Set group keys once. */
1749 	WPI_NT_LOCK(sc);
1750 	wvp->wv_gtk = 0;
1751 	WPI_NT_UNLOCK(sc);
1752 
1753 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1754 	ieee80211_crypto_reload_keys(ic);
1755 }
1756 
1757 /**
1758  * Called by net80211 when ever there is a change to 80211 state machine
1759  */
1760 static int
1761 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1762 {
1763 	struct wpi_vap *wvp = WPI_VAP(vap);
1764 	struct ieee80211com *ic = vap->iv_ic;
1765 	struct wpi_softc *sc = ic->ic_softc;
1766 	int error = 0;
1767 
1768 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1769 
1770 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1771 		ieee80211_state_name[vap->iv_state],
1772 		ieee80211_state_name[nstate]);
1773 
1774 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1775 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1776 			device_printf(sc->sc_dev,
1777 			    "%s: could not set power saving level\n",
1778 			    __func__);
1779 			return error;
1780 		}
1781 
1782 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1783 	}
1784 
1785 	switch (nstate) {
1786 	case IEEE80211_S_SCAN:
1787 		WPI_RXON_LOCK(sc);
1788 		if (wpi_check_bss_filter(sc) != 0) {
1789 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1790 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1791 				device_printf(sc->sc_dev,
1792 				    "%s: could not send RXON\n", __func__);
1793 			}
1794 		}
1795 		WPI_RXON_UNLOCK(sc);
1796 		break;
1797 
1798 	case IEEE80211_S_ASSOC:
1799 		if (vap->iv_state != IEEE80211_S_RUN)
1800 			break;
1801 		/* FALLTHROUGH */
1802 	case IEEE80211_S_AUTH:
1803 		/*
1804 		 * NB: do not optimize AUTH -> AUTH state transmission -
1805 		 * this will break powersave with non-QoS AP!
1806 		 */
1807 
1808 		/*
1809 		 * The node must be registered in the firmware before auth.
1810 		 * Also the associd must be cleared on RUN -> ASSOC
1811 		 * transitions.
1812 		 */
1813 		if ((error = wpi_auth(sc, vap)) != 0) {
1814 			device_printf(sc->sc_dev,
1815 			    "%s: could not move to AUTH state, error %d\n",
1816 			    __func__, error);
1817 		}
1818 		break;
1819 
1820 	case IEEE80211_S_RUN:
1821 		/*
1822 		 * RUN -> RUN transition:
1823 		 * STA mode: Just restart the timers.
1824 		 * IBSS mode: Process IBSS merge.
1825 		 */
1826 		if (vap->iv_state == IEEE80211_S_RUN) {
1827 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1828 				WPI_RXON_LOCK(sc);
1829 				wpi_calib_timeout(sc);
1830 				WPI_RXON_UNLOCK(sc);
1831 				break;
1832 			} else {
1833 				/*
1834 				 * Drop the BSS_FILTER bit
1835 				 * (there is no another way to change bssid).
1836 				 */
1837 				WPI_RXON_LOCK(sc);
1838 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1839 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1840 					device_printf(sc->sc_dev,
1841 					    "%s: could not send RXON\n",
1842 					    __func__);
1843 				}
1844 				WPI_RXON_UNLOCK(sc);
1845 
1846 				/* Restore all what was lost. */
1847 				wpi_restore_node_table(sc, wvp);
1848 
1849 				/* XXX set conditionally? */
1850 				wpi_updateedca(ic);
1851 			}
1852 		}
1853 
1854 		/*
1855 		 * !RUN -> RUN requires setting the association id
1856 		 * which is done with a firmware cmd.  We also defer
1857 		 * starting the timers until that work is done.
1858 		 */
1859 		if ((error = wpi_run(sc, vap)) != 0) {
1860 			device_printf(sc->sc_dev,
1861 			    "%s: could not move to RUN state\n", __func__);
1862 		}
1863 		break;
1864 
1865 	default:
1866 		break;
1867 	}
1868 	if (error != 0) {
1869 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1870 		return error;
1871 	}
1872 
1873 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1874 
1875 	return wvp->wv_newstate(vap, nstate, arg);
1876 }
1877 
1878 static void
1879 wpi_calib_timeout(void *arg)
1880 {
1881 	struct wpi_softc *sc = arg;
1882 
1883 	if (wpi_check_bss_filter(sc) == 0)
1884 		return;
1885 
1886 	wpi_power_calibration(sc);
1887 
1888 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1889 }
1890 
1891 static __inline uint8_t
1892 rate2plcp(const uint8_t rate)
1893 {
1894 	switch (rate) {
1895 	case 12:	return 0xd;
1896 	case 18:	return 0xf;
1897 	case 24:	return 0x5;
1898 	case 36:	return 0x7;
1899 	case 48:	return 0x9;
1900 	case 72:	return 0xb;
1901 	case 96:	return 0x1;
1902 	case 108:	return 0x3;
1903 	case 2:		return 10;
1904 	case 4:		return 20;
1905 	case 11:	return 55;
1906 	case 22:	return 110;
1907 	default:	return 0;
1908 	}
1909 }
1910 
1911 static __inline uint8_t
1912 plcp2rate(const uint8_t plcp)
1913 {
1914 	switch (plcp) {
1915 	case 0xd:	return 12;
1916 	case 0xf:	return 18;
1917 	case 0x5:	return 24;
1918 	case 0x7:	return 36;
1919 	case 0x9:	return 48;
1920 	case 0xb:	return 72;
1921 	case 0x1:	return 96;
1922 	case 0x3:	return 108;
1923 	case 10:	return 2;
1924 	case 20:	return 4;
1925 	case 55:	return 11;
1926 	case 110:	return 22;
1927 	default:	return 0;
1928 	}
1929 }
1930 
1931 /* Quickly determine if a given rate is CCK or OFDM. */
1932 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1933 
1934 static void
1935 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1936     struct wpi_rx_data *data)
1937 {
1938 	struct ifnet *ifp = sc->sc_ifp;
1939 	struct ieee80211com *ic = ifp->if_l2com;
1940 	struct wpi_rx_ring *ring = &sc->rxq;
1941 	struct wpi_rx_stat *stat;
1942 	struct wpi_rx_head *head;
1943 	struct wpi_rx_tail *tail;
1944 	struct ieee80211_frame *wh;
1945 	struct ieee80211_node *ni;
1946 	struct mbuf *m, *m1;
1947 	bus_addr_t paddr;
1948 	uint32_t flags;
1949 	uint16_t len;
1950 	int error;
1951 
1952 	stat = (struct wpi_rx_stat *)(desc + 1);
1953 
1954 	if (stat->len > WPI_STAT_MAXLEN) {
1955 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1956 		goto fail1;
1957 	}
1958 
1959 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1960 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1961 	len = le16toh(head->len);
1962 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1963 	flags = le32toh(tail->flags);
1964 
1965 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1966 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1967 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1968 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1969 
1970 	/* Discard frames with a bad FCS early. */
1971 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1972 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1973 		    __func__, flags);
1974 		goto fail1;
1975 	}
1976 	/* Discard frames that are too short. */
1977 	if (len < sizeof (struct ieee80211_frame_ack)) {
1978 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1979 		    __func__, len);
1980 		goto fail1;
1981 	}
1982 
1983 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1984 	if (m1 == NULL) {
1985 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1986 		    __func__);
1987 		goto fail1;
1988 	}
1989 	bus_dmamap_unload(ring->data_dmat, data->map);
1990 
1991 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1992 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1993 	if (error != 0 && error != EFBIG) {
1994 		device_printf(sc->sc_dev,
1995 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1996 		m_freem(m1);
1997 
1998 		/* Try to reload the old mbuf. */
1999 		error = bus_dmamap_load(ring->data_dmat, data->map,
2000 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
2001 		    &paddr, BUS_DMA_NOWAIT);
2002 		if (error != 0 && error != EFBIG) {
2003 			panic("%s: could not load old RX mbuf", __func__);
2004 		}
2005 		/* Physical address may have changed. */
2006 		ring->desc[ring->cur] = htole32(paddr);
2007 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2008 		    BUS_DMASYNC_PREWRITE);
2009 		goto fail1;
2010 	}
2011 
2012 	m = data->m;
2013 	data->m = m1;
2014 	/* Update RX descriptor. */
2015 	ring->desc[ring->cur] = htole32(paddr);
2016 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2017 	    BUS_DMASYNC_PREWRITE);
2018 
2019 	/* Finalize mbuf. */
2020 	m->m_pkthdr.rcvif = ifp;
2021 	m->m_data = (caddr_t)(head + 1);
2022 	m->m_pkthdr.len = m->m_len = len;
2023 
2024 	/* Grab a reference to the source node. */
2025 	wh = mtod(m, struct ieee80211_frame *);
2026 
2027 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2028 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2029 		/* Check whether decryption was successful or not. */
2030 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2031 			DPRINTF(sc, WPI_DEBUG_RECV,
2032 			    "CCMP decryption failed 0x%x\n", flags);
2033 			goto fail2;
2034 		}
2035 		m->m_flags |= M_WEP;
2036 	}
2037 
2038 	if (len >= sizeof(struct ieee80211_frame_min))
2039 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2040 	else
2041 		ni = NULL;
2042 
2043 	sc->rx_tstamp = tail->tstamp;
2044 
2045 	if (ieee80211_radiotap_active(ic)) {
2046 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2047 
2048 		tap->wr_flags = 0;
2049 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2050 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2051 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2052 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2053 		tap->wr_tsft = tail->tstamp;
2054 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2055 		tap->wr_rate = plcp2rate(head->plcp);
2056 	}
2057 
2058 	WPI_UNLOCK(sc);
2059 
2060 	/* Send the frame to the 802.11 layer. */
2061 	if (ni != NULL) {
2062 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2063 		/* Node is no longer needed. */
2064 		ieee80211_free_node(ni);
2065 	} else
2066 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2067 
2068 	WPI_LOCK(sc);
2069 
2070 	return;
2071 
2072 fail2:	m_freem(m);
2073 
2074 fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2075 }
2076 
2077 static void
2078 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2079     struct wpi_rx_data *data)
2080 {
2081 	/* Ignore */
2082 }
2083 
2084 static void
2085 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2086 {
2087 	struct ifnet *ifp = sc->sc_ifp;
2088 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2089 	struct wpi_tx_data *data = &ring->data[desc->idx];
2090 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2091 	struct mbuf *m;
2092 	struct ieee80211_node *ni;
2093 	struct ieee80211vap *vap;
2094 	struct ieee80211com *ic;
2095 	uint32_t status = le32toh(stat->status);
2096 	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2097 
2098 	KASSERT(data->ni != NULL, ("no node"));
2099 	KASSERT(data->m != NULL, ("no mbuf"));
2100 
2101 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2102 
2103 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2104 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2105 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2106 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2107 
2108 	/* Unmap and free mbuf. */
2109 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2110 	bus_dmamap_unload(ring->data_dmat, data->map);
2111 	m = data->m, data->m = NULL;
2112 	ni = data->ni, data->ni = NULL;
2113 	vap = ni->ni_vap;
2114 	ic = vap->iv_ic;
2115 
2116 	/*
2117 	 * Update rate control statistics for the node.
2118 	 */
2119 	if (status & WPI_TX_STATUS_FAIL) {
2120 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2121 		ieee80211_ratectl_tx_complete(vap, ni,
2122 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2123 	} else {
2124 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2125 		ieee80211_ratectl_tx_complete(vap, ni,
2126 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2127 	}
2128 
2129 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2130 
2131 	WPI_TXQ_STATE_LOCK(sc);
2132 	ring->queued -= 1;
2133 	if (ring->queued > 0) {
2134 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2135 
2136 		if (sc->qfullmsk != 0 &&
2137 		    ring->queued < WPI_TX_RING_LOMARK) {
2138 			sc->qfullmsk &= ~(1 << ring->qid);
2139 			IF_LOCK(&ifp->if_snd);
2140 			if (sc->qfullmsk == 0 &&
2141 			    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2142 				ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2143 				IF_UNLOCK(&ifp->if_snd);
2144 				ieee80211_runtask(ic, &sc->sc_start_task);
2145 			} else
2146 				IF_UNLOCK(&ifp->if_snd);
2147 		}
2148 	} else
2149 		callout_stop(&sc->tx_timeout);
2150 	WPI_TXQ_STATE_UNLOCK(sc);
2151 
2152 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2153 }
2154 
2155 /*
2156  * Process a "command done" firmware notification.  This is where we wakeup
2157  * processes waiting for a synchronous command completion.
2158  */
2159 static void
2160 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2161 {
2162 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2163 	struct wpi_tx_data *data;
2164 
2165 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2166 				   "type %s len %d\n", desc->qid, desc->idx,
2167 				   desc->flags, wpi_cmd_str(desc->type),
2168 				   le32toh(desc->len));
2169 
2170 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2171 		return;	/* Not a command ack. */
2172 
2173 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2174 
2175 	data = &ring->data[desc->idx];
2176 
2177 	/* If the command was mapped in an mbuf, free it. */
2178 	if (data->m != NULL) {
2179 		bus_dmamap_sync(ring->data_dmat, data->map,
2180 		    BUS_DMASYNC_POSTWRITE);
2181 		bus_dmamap_unload(ring->data_dmat, data->map);
2182 		m_freem(data->m);
2183 		data->m = NULL;
2184 	}
2185 
2186 	wakeup(&ring->cmd[desc->idx]);
2187 
2188 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2189 		WPI_TXQ_LOCK(sc);
2190 		if (sc->sc_flags & WPI_PS_PATH) {
2191 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2192 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2193 		} else {
2194 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2195 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2196 		}
2197 		WPI_TXQ_UNLOCK(sc);
2198 	}
2199 }
2200 
2201 static void
2202 wpi_notif_intr(struct wpi_softc *sc)
2203 {
2204 	struct ifnet *ifp = sc->sc_ifp;
2205 	struct ieee80211com *ic = ifp->if_l2com;
2206 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2207 	uint32_t hw;
2208 
2209 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2210 	    BUS_DMASYNC_POSTREAD);
2211 
2212 	hw = le32toh(sc->shared->next) & 0xfff;
2213 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2214 
2215 	while (sc->rxq.cur != hw) {
2216 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2217 
2218 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2219 		struct wpi_rx_desc *desc;
2220 
2221 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2222 		    BUS_DMASYNC_POSTREAD);
2223 		desc = mtod(data->m, struct wpi_rx_desc *);
2224 
2225 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2226 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2227 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2228 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2229 
2230 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2231 			/* Reply to a command. */
2232 			wpi_cmd_done(sc, desc);
2233 		}
2234 
2235 		switch (desc->type) {
2236 		case WPI_RX_DONE:
2237 			/* An 802.11 frame has been received. */
2238 			wpi_rx_done(sc, desc, data);
2239 
2240 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2241 				/* wpi_stop() was called. */
2242 				return;
2243 			}
2244 
2245 			break;
2246 
2247 		case WPI_TX_DONE:
2248 			/* An 802.11 frame has been transmitted. */
2249 			wpi_tx_done(sc, desc);
2250 			break;
2251 
2252 		case WPI_RX_STATISTICS:
2253 		case WPI_BEACON_STATISTICS:
2254 			wpi_rx_statistics(sc, desc, data);
2255 			break;
2256 
2257 		case WPI_BEACON_MISSED:
2258 		{
2259 			struct wpi_beacon_missed *miss =
2260 			    (struct wpi_beacon_missed *)(desc + 1);
2261 			uint32_t expected, misses, received, threshold;
2262 
2263 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2264 			    BUS_DMASYNC_POSTREAD);
2265 
2266 			misses = le32toh(miss->consecutive);
2267 			expected = le32toh(miss->expected);
2268 			received = le32toh(miss->received);
2269 			threshold = MAX(2, vap->iv_bmissthreshold);
2270 
2271 			DPRINTF(sc, WPI_DEBUG_BMISS,
2272 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2273 			    __func__, misses, le32toh(miss->total), received,
2274 			    expected);
2275 
2276 			if (misses >= threshold ||
2277 			    (received == 0 && expected >= threshold)) {
2278 				WPI_RXON_LOCK(sc);
2279 				if (callout_pending(&sc->scan_timeout)) {
2280 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2281 					    0, 1);
2282 				}
2283 				WPI_RXON_UNLOCK(sc);
2284 				if (vap->iv_state == IEEE80211_S_RUN &&
2285 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2286 					ieee80211_beacon_miss(ic);
2287 			}
2288 
2289 			break;
2290 		}
2291 #ifdef WPI_DEBUG
2292 		case WPI_BEACON_SENT:
2293 		{
2294 			struct wpi_tx_stat *stat =
2295 			    (struct wpi_tx_stat *)(desc + 1);
2296 			uint64_t *tsf = (uint64_t *)(stat + 1);
2297 			uint32_t *mode = (uint32_t *)(tsf + 1);
2298 
2299 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2300 			    BUS_DMASYNC_POSTREAD);
2301 
2302 			DPRINTF(sc, WPI_DEBUG_BEACON,
2303 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2304 			    "duration %u, status %x, tsf %ju, mode %x\n",
2305 			    stat->rtsfailcnt, stat->ackfailcnt,
2306 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2307 			    le32toh(stat->status), *tsf, *mode);
2308 
2309 			break;
2310 		}
2311 #endif
2312 		case WPI_UC_READY:
2313 		{
2314 			struct wpi_ucode_info *uc =
2315 			    (struct wpi_ucode_info *)(desc + 1);
2316 
2317 			/* The microcontroller is ready. */
2318 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2319 			    BUS_DMASYNC_POSTREAD);
2320 			DPRINTF(sc, WPI_DEBUG_RESET,
2321 			    "microcode alive notification version=%d.%d "
2322 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2323 			    uc->subtype, le32toh(uc->valid));
2324 
2325 			if (le32toh(uc->valid) != 1) {
2326 				device_printf(sc->sc_dev,
2327 				    "microcontroller initialization failed\n");
2328 				wpi_stop_locked(sc);
2329 			}
2330 			/* Save the address of the error log in SRAM. */
2331 			sc->errptr = le32toh(uc->errptr);
2332 			break;
2333 		}
2334 		case WPI_STATE_CHANGED:
2335 		{
2336 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2337 			    BUS_DMASYNC_POSTREAD);
2338 
2339 			uint32_t *status = (uint32_t *)(desc + 1);
2340 
2341 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2342 			    le32toh(*status));
2343 
2344 			if (le32toh(*status) & 1) {
2345 				WPI_NT_LOCK(sc);
2346 				wpi_clear_node_table(sc);
2347 				WPI_NT_UNLOCK(sc);
2348 				taskqueue_enqueue(sc->sc_tq,
2349 				    &sc->sc_radiooff_task);
2350 				return;
2351 			}
2352 			break;
2353 		}
2354 #ifdef WPI_DEBUG
2355 		case WPI_START_SCAN:
2356 		{
2357 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2358 			    BUS_DMASYNC_POSTREAD);
2359 
2360 			struct wpi_start_scan *scan =
2361 			    (struct wpi_start_scan *)(desc + 1);
2362 			DPRINTF(sc, WPI_DEBUG_SCAN,
2363 			    "%s: scanning channel %d status %x\n",
2364 			    __func__, scan->chan, le32toh(scan->status));
2365 
2366 			break;
2367 		}
2368 #endif
2369 		case WPI_STOP_SCAN:
2370 		{
2371 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2372 			    BUS_DMASYNC_POSTREAD);
2373 
2374 			struct wpi_stop_scan *scan =
2375 			    (struct wpi_stop_scan *)(desc + 1);
2376 
2377 			DPRINTF(sc, WPI_DEBUG_SCAN,
2378 			    "scan finished nchan=%d status=%d chan=%d\n",
2379 			    scan->nchan, scan->status, scan->chan);
2380 
2381 			WPI_RXON_LOCK(sc);
2382 			callout_stop(&sc->scan_timeout);
2383 			WPI_RXON_UNLOCK(sc);
2384 			if (scan->status == WPI_SCAN_ABORTED)
2385 				ieee80211_cancel_scan(vap);
2386 			else
2387 				ieee80211_scan_next(vap);
2388 			break;
2389 		}
2390 		}
2391 
2392 		if (sc->rxq.cur % 8 == 0) {
2393 			/* Tell the firmware what we have processed. */
2394 			sc->sc_update_rx_ring(sc);
2395 		}
2396 	}
2397 }
2398 
2399 /*
2400  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2401  * from power-down sleep mode.
2402  */
2403 static void
2404 wpi_wakeup_intr(struct wpi_softc *sc)
2405 {
2406 	int qid;
2407 
2408 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2409 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2410 
2411 	/* Wakeup RX and TX rings. */
2412 	if (sc->rxq.update) {
2413 		sc->rxq.update = 0;
2414 		wpi_update_rx_ring(sc);
2415 	}
2416 	WPI_TXQ_LOCK(sc);
2417 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2418 		struct wpi_tx_ring *ring = &sc->txq[qid];
2419 
2420 		if (ring->update) {
2421 			ring->update = 0;
2422 			wpi_update_tx_ring(sc, ring);
2423 		}
2424 	}
2425 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2426 	WPI_TXQ_UNLOCK(sc);
2427 }
2428 
2429 /*
2430  * This function prints firmware registers
2431  */
2432 #ifdef WPI_DEBUG
2433 static void
2434 wpi_debug_registers(struct wpi_softc *sc)
2435 {
2436 	size_t i;
2437 	static const uint32_t csr_tbl[] = {
2438 		WPI_HW_IF_CONFIG,
2439 		WPI_INT,
2440 		WPI_INT_MASK,
2441 		WPI_FH_INT,
2442 		WPI_GPIO_IN,
2443 		WPI_RESET,
2444 		WPI_GP_CNTRL,
2445 		WPI_EEPROM,
2446 		WPI_EEPROM_GP,
2447 		WPI_GIO,
2448 		WPI_UCODE_GP1,
2449 		WPI_UCODE_GP2,
2450 		WPI_GIO_CHICKEN,
2451 		WPI_ANA_PLL,
2452 		WPI_DBG_HPET_MEM,
2453 	};
2454 	static const uint32_t prph_tbl[] = {
2455 		WPI_APMG_CLK_CTRL,
2456 		WPI_APMG_PS,
2457 		WPI_APMG_PCI_STT,
2458 		WPI_APMG_RFKILL,
2459 	};
2460 
2461 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2462 
2463 	for (i = 0; i < nitems(csr_tbl); i++) {
2464 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2465 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2466 
2467 		if ((i + 1) % 2 == 0)
2468 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2469 	}
2470 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2471 
2472 	if (wpi_nic_lock(sc) == 0) {
2473 		for (i = 0; i < nitems(prph_tbl); i++) {
2474 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2475 			    wpi_get_prph_string(prph_tbl[i]),
2476 			    wpi_prph_read(sc, prph_tbl[i]));
2477 
2478 			if ((i + 1) % 2 == 0)
2479 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2480 		}
2481 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2482 		wpi_nic_unlock(sc);
2483 	} else {
2484 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2485 		    "Cannot access internal registers.\n");
2486 	}
2487 }
2488 #endif
2489 
2490 /*
2491  * Dump the error log of the firmware when a firmware panic occurs.  Although
2492  * we can't debug the firmware because it is neither open source nor free, it
2493  * can help us to identify certain classes of problems.
2494  */
2495 static void
2496 wpi_fatal_intr(struct wpi_softc *sc)
2497 {
2498 	struct wpi_fw_dump dump;
2499 	uint32_t i, offset, count;
2500 
2501 	/* Check that the error log address is valid. */
2502 	if (sc->errptr < WPI_FW_DATA_BASE ||
2503 	    sc->errptr + sizeof (dump) >
2504 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2505 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2506 		    sc->errptr);
2507 		return;
2508 	}
2509 	if (wpi_nic_lock(sc) != 0) {
2510 		printf("%s: could not read firmware error log\n", __func__);
2511 		return;
2512 	}
2513 	/* Read number of entries in the log. */
2514 	count = wpi_mem_read(sc, sc->errptr);
2515 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2516 		printf("%s: invalid count field (count = %u)\n", __func__,
2517 		    count);
2518 		wpi_nic_unlock(sc);
2519 		return;
2520 	}
2521 	/* Skip "count" field. */
2522 	offset = sc->errptr + sizeof (uint32_t);
2523 	printf("firmware error log (count = %u):\n", count);
2524 	for (i = 0; i < count; i++) {
2525 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2526 		    sizeof (dump) / sizeof (uint32_t));
2527 
2528 		printf("  error type = \"%s\" (0x%08X)\n",
2529 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2530 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2531 		    dump.desc);
2532 		printf("  error data      = 0x%08X\n",
2533 		    dump.data);
2534 		printf("  branch link     = 0x%08X%08X\n",
2535 		    dump.blink[0], dump.blink[1]);
2536 		printf("  interrupt link  = 0x%08X%08X\n",
2537 		    dump.ilink[0], dump.ilink[1]);
2538 		printf("  time            = %u\n", dump.time);
2539 
2540 		offset += sizeof (dump);
2541 	}
2542 	wpi_nic_unlock(sc);
2543 	/* Dump driver status (TX and RX rings) while we're here. */
2544 	printf("driver status:\n");
2545 	WPI_TXQ_LOCK(sc);
2546 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2547 		struct wpi_tx_ring *ring = &sc->txq[i];
2548 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2549 		    i, ring->qid, ring->cur, ring->queued);
2550 	}
2551 	WPI_TXQ_UNLOCK(sc);
2552 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2553 }
2554 
2555 static void
2556 wpi_intr(void *arg)
2557 {
2558 	struct wpi_softc *sc = arg;
2559 	struct ifnet *ifp = sc->sc_ifp;
2560 	uint32_t r1, r2;
2561 
2562 	WPI_LOCK(sc);
2563 
2564 	/* Disable interrupts. */
2565 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2566 
2567 	r1 = WPI_READ(sc, WPI_INT);
2568 
2569 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2570 		goto end;	/* Hardware gone! */
2571 
2572 	r2 = WPI_READ(sc, WPI_FH_INT);
2573 
2574 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2575 	    r1, r2);
2576 
2577 	if (r1 == 0 && r2 == 0)
2578 		goto done;	/* Interrupt not for us. */
2579 
2580 	/* Acknowledge interrupts. */
2581 	WPI_WRITE(sc, WPI_INT, r1);
2582 	WPI_WRITE(sc, WPI_FH_INT, r2);
2583 
2584 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2585 		device_printf(sc->sc_dev, "fatal firmware error\n");
2586 #ifdef WPI_DEBUG
2587 		wpi_debug_registers(sc);
2588 #endif
2589 		wpi_fatal_intr(sc);
2590 		DPRINTF(sc, WPI_DEBUG_HW,
2591 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2592 		    "(Hardware Error)");
2593 		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2594 		goto end;
2595 	}
2596 
2597 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2598 	    (r2 & WPI_FH_INT_RX))
2599 		wpi_notif_intr(sc);
2600 
2601 	if (r1 & WPI_INT_ALIVE)
2602 		wakeup(sc);	/* Firmware is alive. */
2603 
2604 	if (r1 & WPI_INT_WAKEUP)
2605 		wpi_wakeup_intr(sc);
2606 
2607 done:
2608 	/* Re-enable interrupts. */
2609 	if (ifp->if_flags & IFF_UP)
2610 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2611 
2612 end:	WPI_UNLOCK(sc);
2613 }
2614 
2615 static int
2616 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2617 {
2618 	struct ifnet *ifp = sc->sc_ifp;
2619 	struct ieee80211_frame *wh;
2620 	struct wpi_tx_cmd *cmd;
2621 	struct wpi_tx_data *data;
2622 	struct wpi_tx_desc *desc;
2623 	struct wpi_tx_ring *ring;
2624 	struct mbuf *m1;
2625 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2626 	int error, i, hdrlen, nsegs, totlen, pad;
2627 
2628 	WPI_TXQ_LOCK(sc);
2629 
2630 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2631 
2632 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2633 
2634 	if (sc->txq_active == 0) {
2635 		/* wpi_stop() was called */
2636 		error = ENETDOWN;
2637 		goto fail;
2638 	}
2639 
2640 	wh = mtod(buf->m, struct ieee80211_frame *);
2641 	hdrlen = ieee80211_anyhdrsize(wh);
2642 	totlen = buf->m->m_pkthdr.len;
2643 
2644 	if (hdrlen & 3) {
2645 		/* First segment length must be a multiple of 4. */
2646 		pad = 4 - (hdrlen & 3);
2647 	} else
2648 		pad = 0;
2649 
2650 	ring = &sc->txq[buf->ac];
2651 	desc = &ring->desc[ring->cur];
2652 	data = &ring->data[ring->cur];
2653 
2654 	/* Prepare TX firmware command. */
2655 	cmd = &ring->cmd[ring->cur];
2656 	cmd->code = buf->code;
2657 	cmd->flags = 0;
2658 	cmd->qid = ring->qid;
2659 	cmd->idx = ring->cur;
2660 
2661 	memcpy(cmd->data, buf->data, buf->size);
2662 
2663 	/* Save and trim IEEE802.11 header. */
2664 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2665 	m_adj(buf->m, hdrlen);
2666 
2667 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2668 	    segs, &nsegs, BUS_DMA_NOWAIT);
2669 	if (error != 0 && error != EFBIG) {
2670 		device_printf(sc->sc_dev,
2671 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2672 		goto fail;
2673 	}
2674 	if (error != 0) {
2675 		/* Too many DMA segments, linearize mbuf. */
2676 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2677 		if (m1 == NULL) {
2678 			device_printf(sc->sc_dev,
2679 			    "%s: could not defrag mbuf\n", __func__);
2680 			error = ENOBUFS;
2681 			goto fail;
2682 		}
2683 		buf->m = m1;
2684 
2685 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2686 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2687 		if (error != 0) {
2688 			device_printf(sc->sc_dev,
2689 			    "%s: can't map mbuf (error %d)\n", __func__,
2690 			    error);
2691 			goto fail;
2692 		}
2693 	}
2694 
2695 	KASSERT(nsegs < WPI_MAX_SCATTER,
2696 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2697 	     nsegs, WPI_MAX_SCATTER));
2698 
2699 	data->m = buf->m;
2700 	data->ni = buf->ni;
2701 
2702 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2703 	    __func__, ring->qid, ring->cur, totlen, nsegs);
2704 
2705 	/* Fill TX descriptor. */
2706 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2707 	/* First DMA segment is used by the TX command. */
2708 	desc->segs[0].addr = htole32(data->cmd_paddr);
2709 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2710 	/* Other DMA segments are for data payload. */
2711 	seg = &segs[0];
2712 	for (i = 1; i <= nsegs; i++) {
2713 		desc->segs[i].addr = htole32(seg->ds_addr);
2714 		desc->segs[i].len  = htole32(seg->ds_len);
2715 		seg++;
2716 	}
2717 
2718 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2719 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2720 	    BUS_DMASYNC_PREWRITE);
2721 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2722 	    BUS_DMASYNC_PREWRITE);
2723 
2724 	/* Kick TX ring. */
2725 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2726 	sc->sc_update_tx_ring(sc, ring);
2727 
2728 	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2729 		/* Mark TX ring as full if we reach a certain threshold. */
2730 		WPI_TXQ_STATE_LOCK(sc);
2731 		if (++ring->queued > WPI_TX_RING_HIMARK) {
2732 			sc->qfullmsk |= 1 << ring->qid;
2733 
2734 			IF_LOCK(&ifp->if_snd);
2735 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2736 			IF_UNLOCK(&ifp->if_snd);
2737 		}
2738 
2739 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2740 		WPI_TXQ_STATE_UNLOCK(sc);
2741 	}
2742 
2743 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2744 
2745 	WPI_TXQ_UNLOCK(sc);
2746 
2747 	return 0;
2748 
2749 fail:	m_freem(buf->m);
2750 
2751 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2752 
2753 	WPI_TXQ_UNLOCK(sc);
2754 
2755 	return error;
2756 }
2757 
2758 /*
2759  * Construct the data packet for a transmit buffer.
2760  */
2761 static int
2762 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2763 {
2764 	const struct ieee80211_txparam *tp;
2765 	struct ieee80211vap *vap = ni->ni_vap;
2766 	struct ieee80211com *ic = ni->ni_ic;
2767 	struct wpi_node *wn = WPI_NODE(ni);
2768 	struct ieee80211_channel *chan;
2769 	struct ieee80211_frame *wh;
2770 	struct ieee80211_key *k = NULL;
2771 	struct wpi_buf tx_data;
2772 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2773 	uint32_t flags;
2774 	uint16_t qos;
2775 	uint8_t tid, type;
2776 	int ac, error, swcrypt, rate, ismcast, totlen;
2777 
2778 	wh = mtod(m, struct ieee80211_frame *);
2779 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2780 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2781 
2782 	/* Select EDCA Access Category and TX ring for this frame. */
2783 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2784 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2785 		tid = qos & IEEE80211_QOS_TID;
2786 	} else {
2787 		qos = 0;
2788 		tid = 0;
2789 	}
2790 	ac = M_WME_GETAC(m);
2791 
2792 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2793 		ni->ni_chan : ic->ic_curchan;
2794 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2795 
2796 	/* Choose a TX rate index. */
2797 	if (type == IEEE80211_FC0_TYPE_MGT)
2798 		rate = tp->mgmtrate;
2799 	else if (ismcast)
2800 		rate = tp->mcastrate;
2801 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2802 		rate = tp->ucastrate;
2803 	else if (m->m_flags & M_EAPOL)
2804 		rate = tp->mgmtrate;
2805 	else {
2806 		/* XXX pass pktlen */
2807 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2808 		rate = ni->ni_txrate;
2809 	}
2810 
2811 	/* Encrypt the frame if need be. */
2812 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2813 		/* Retrieve key for TX. */
2814 		k = ieee80211_crypto_encap(ni, m);
2815 		if (k == NULL) {
2816 			error = ENOBUFS;
2817 			goto fail;
2818 		}
2819 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2820 
2821 		/* 802.11 header may have moved. */
2822 		wh = mtod(m, struct ieee80211_frame *);
2823 	}
2824 	totlen = m->m_pkthdr.len;
2825 
2826 	if (ieee80211_radiotap_active_vap(vap)) {
2827 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2828 
2829 		tap->wt_flags = 0;
2830 		tap->wt_rate = rate;
2831 		if (k != NULL)
2832 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2833 
2834 		ieee80211_radiotap_tx(vap, m);
2835 	}
2836 
2837 	flags = 0;
2838 	if (!ismcast) {
2839 		/* Unicast frame, check if an ACK is expected. */
2840 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2841 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2842 			flags |= WPI_TX_NEED_ACK;
2843 	}
2844 
2845 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2846 		flags |= WPI_TX_AUTO_SEQ;
2847 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2848 		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2849 
2850 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2851 	if (!ismcast) {
2852 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2853 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2854 			flags |= WPI_TX_NEED_RTS;
2855 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2856 		    WPI_RATE_IS_OFDM(rate)) {
2857 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2858 				flags |= WPI_TX_NEED_CTS;
2859 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2860 				flags |= WPI_TX_NEED_RTS;
2861 		}
2862 
2863 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2864 			flags |= WPI_TX_FULL_TXOP;
2865 	}
2866 
2867 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2868 	if (type == IEEE80211_FC0_TYPE_MGT) {
2869 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2870 
2871 		/* Tell HW to set timestamp in probe responses. */
2872 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2873 			flags |= WPI_TX_INSERT_TSTAMP;
2874 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2875 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2876 			tx->timeout = htole16(3);
2877 		else
2878 			tx->timeout = htole16(2);
2879 	}
2880 
2881 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2882 		tx->id = WPI_ID_BROADCAST;
2883 	else {
2884 		if (wn->id == WPI_ID_UNDEFINED) {
2885 			device_printf(sc->sc_dev,
2886 			    "%s: undefined node id\n", __func__);
2887 			error = EINVAL;
2888 			goto fail;
2889 		}
2890 
2891 		tx->id = wn->id;
2892 	}
2893 
2894 	if (k != NULL && !swcrypt) {
2895 		switch (k->wk_cipher->ic_cipher) {
2896 		case IEEE80211_CIPHER_AES_CCM:
2897 			tx->security = WPI_CIPHER_CCMP;
2898 			break;
2899 
2900 		default:
2901 			break;
2902 		}
2903 
2904 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2905 	}
2906 
2907 	tx->len = htole16(totlen);
2908 	tx->flags = htole32(flags);
2909 	tx->plcp = rate2plcp(rate);
2910 	tx->tid = tid;
2911 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2912 	tx->ofdm_mask = 0xff;
2913 	tx->cck_mask = 0x0f;
2914 	tx->rts_ntries = 7;
2915 	tx->data_ntries = tp->maxretry;
2916 
2917 	tx_data.ni = ni;
2918 	tx_data.m = m;
2919 	tx_data.size = sizeof(struct wpi_cmd_data);
2920 	tx_data.code = WPI_CMD_TX_DATA;
2921 	tx_data.ac = ac;
2922 
2923 	return wpi_cmd2(sc, &tx_data);
2924 
2925 fail:	m_freem(m);
2926 	return error;
2927 }
2928 
2929 static int
2930 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2931     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2932 {
2933 	struct ieee80211vap *vap = ni->ni_vap;
2934 	struct ieee80211_key *k = NULL;
2935 	struct ieee80211_frame *wh;
2936 	struct wpi_buf tx_data;
2937 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2938 	uint32_t flags;
2939 	uint8_t type;
2940 	int ac, rate, swcrypt, totlen;
2941 
2942 	wh = mtod(m, struct ieee80211_frame *);
2943 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2944 
2945 	ac = params->ibp_pri & 3;
2946 
2947 	/* Choose a TX rate index. */
2948 	rate = params->ibp_rate0;
2949 
2950 	flags = 0;
2951 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2952 		flags |= WPI_TX_AUTO_SEQ;
2953 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2954 		flags |= WPI_TX_NEED_ACK;
2955 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2956 		flags |= WPI_TX_NEED_RTS;
2957 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2958 		flags |= WPI_TX_NEED_CTS;
2959 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2960 		flags |= WPI_TX_FULL_TXOP;
2961 
2962 	/* Encrypt the frame if need be. */
2963 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2964 		/* Retrieve key for TX. */
2965 		k = ieee80211_crypto_encap(ni, m);
2966 		if (k == NULL) {
2967 			m_freem(m);
2968 			return ENOBUFS;
2969 		}
2970 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2971 
2972 		/* 802.11 header may have moved. */
2973 		wh = mtod(m, struct ieee80211_frame *);
2974 	}
2975 	totlen = m->m_pkthdr.len;
2976 
2977 	if (ieee80211_radiotap_active_vap(vap)) {
2978 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2979 
2980 		tap->wt_flags = 0;
2981 		tap->wt_rate = rate;
2982 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2983 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2984 
2985 		ieee80211_radiotap_tx(vap, m);
2986 	}
2987 
2988 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2989 	if (type == IEEE80211_FC0_TYPE_MGT) {
2990 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2991 
2992 		/* Tell HW to set timestamp in probe responses. */
2993 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2994 			flags |= WPI_TX_INSERT_TSTAMP;
2995 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2996 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2997 			tx->timeout = htole16(3);
2998 		else
2999 			tx->timeout = htole16(2);
3000 	}
3001 
3002 	if (k != NULL && !swcrypt) {
3003 		switch (k->wk_cipher->ic_cipher) {
3004 		case IEEE80211_CIPHER_AES_CCM:
3005 			tx->security = WPI_CIPHER_CCMP;
3006 			break;
3007 
3008 		default:
3009 			break;
3010 		}
3011 
3012 		memcpy(tx->key, k->wk_key, k->wk_keylen);
3013 	}
3014 
3015 	tx->len = htole16(totlen);
3016 	tx->flags = htole32(flags);
3017 	tx->plcp = rate2plcp(rate);
3018 	tx->id = WPI_ID_BROADCAST;
3019 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3020 	tx->rts_ntries = params->ibp_try1;
3021 	tx->data_ntries = params->ibp_try0;
3022 
3023 	tx_data.ni = ni;
3024 	tx_data.m = m;
3025 	tx_data.size = sizeof(struct wpi_cmd_data);
3026 	tx_data.code = WPI_CMD_TX_DATA;
3027 	tx_data.ac = ac;
3028 
3029 	return wpi_cmd2(sc, &tx_data);
3030 }
3031 
3032 static int
3033 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3034     const struct ieee80211_bpf_params *params)
3035 {
3036 	struct ieee80211com *ic = ni->ni_ic;
3037 	struct ifnet *ifp = ic->ic_ifp;
3038 	struct wpi_softc *sc = ic->ic_softc;
3039 	int error = 0;
3040 
3041 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3042 
3043 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3044 		ieee80211_free_node(ni);
3045 		m_freem(m);
3046 		return ENETDOWN;
3047 	}
3048 
3049 	WPI_TX_LOCK(sc);
3050 	if (params == NULL) {
3051 		/*
3052 		 * Legacy path; interpret frame contents to decide
3053 		 * precisely how to send the frame.
3054 		 */
3055 		error = wpi_tx_data(sc, m, ni);
3056 	} else {
3057 		/*
3058 		 * Caller supplied explicit parameters to use in
3059 		 * sending the frame.
3060 		 */
3061 		error = wpi_tx_data_raw(sc, m, ni, params);
3062 	}
3063 	WPI_TX_UNLOCK(sc);
3064 
3065 	if (error != 0) {
3066 		/* NB: m is reclaimed on tx failure */
3067 		ieee80211_free_node(ni);
3068 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3069 
3070 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3071 
3072 		return error;
3073 	}
3074 
3075 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3076 
3077 	return 0;
3078 }
3079 
3080 /**
3081  * Process data waiting to be sent on the IFNET output queue
3082  */
3083 static void
3084 wpi_start(struct ifnet *ifp)
3085 {
3086 	struct wpi_softc *sc = ifp->if_softc;
3087 	struct ieee80211_node *ni;
3088 	struct mbuf *m;
3089 
3090 	WPI_TX_LOCK(sc);
3091 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3092 
3093 	for (;;) {
3094 		IF_LOCK(&ifp->if_snd);
3095 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
3096 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3097 			IF_UNLOCK(&ifp->if_snd);
3098 			break;
3099 		}
3100 		IF_UNLOCK(&ifp->if_snd);
3101 
3102 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3103 		if (m == NULL)
3104 			break;
3105 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3106 		if (wpi_tx_data(sc, m, ni) != 0) {
3107 			ieee80211_free_node(ni);
3108 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3109 		}
3110 	}
3111 
3112 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3113 	WPI_TX_UNLOCK(sc);
3114 }
3115 
3116 static void
3117 wpi_start_task(void *arg0, int pending)
3118 {
3119 	struct wpi_softc *sc = arg0;
3120 	struct ifnet *ifp = sc->sc_ifp;
3121 
3122 	wpi_start(ifp);
3123 }
3124 
3125 static void
3126 wpi_watchdog_rfkill(void *arg)
3127 {
3128 	struct wpi_softc *sc = arg;
3129 	struct ifnet *ifp = sc->sc_ifp;
3130 	struct ieee80211com *ic = ifp->if_l2com;
3131 
3132 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3133 
3134 	/* No need to lock firmware memory. */
3135 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3136 		/* Radio kill switch is still off. */
3137 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3138 		    sc);
3139 	} else
3140 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3141 }
3142 
3143 static void
3144 wpi_scan_timeout(void *arg)
3145 {
3146 	struct wpi_softc *sc = arg;
3147 	struct ifnet *ifp = sc->sc_ifp;
3148 
3149 	if_printf(ifp, "scan timeout\n");
3150 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3151 }
3152 
3153 static void
3154 wpi_tx_timeout(void *arg)
3155 {
3156 	struct wpi_softc *sc = arg;
3157 	struct ifnet *ifp = sc->sc_ifp;
3158 
3159 	if_printf(ifp, "device timeout\n");
3160 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3161 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3162 }
3163 
3164 static int
3165 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3166 {
3167 	struct wpi_softc *sc = ifp->if_softc;
3168 	struct ieee80211com *ic = ifp->if_l2com;
3169 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3170 	struct ifreq *ifr = (struct ifreq *) data;
3171 	int error = 0;
3172 
3173 	switch (cmd) {
3174 	case SIOCGIFADDR:
3175 		error = ether_ioctl(ifp, cmd, data);
3176 		break;
3177 	case SIOCSIFFLAGS:
3178 		if (ifp->if_flags & IFF_UP) {
3179 			wpi_init(sc);
3180 
3181 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
3182 			    vap != NULL)
3183 				ieee80211_stop(vap);
3184 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3185 			wpi_stop(sc);
3186 		break;
3187 	case SIOCGIFMEDIA:
3188 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3189 		break;
3190 	default:
3191 		error = EINVAL;
3192 		break;
3193 	}
3194 	return error;
3195 }
3196 
3197 /*
3198  * Send a command to the firmware.
3199  */
3200 static int
3201 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
3202     int async)
3203 {
3204 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3205 	struct wpi_tx_desc *desc;
3206 	struct wpi_tx_data *data;
3207 	struct wpi_tx_cmd *cmd;
3208 	struct mbuf *m;
3209 	bus_addr_t paddr;
3210 	int totlen, error;
3211 
3212 	WPI_TXQ_LOCK(sc);
3213 
3214 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3215 
3216 	if (sc->txq_active == 0) {
3217 		/* wpi_stop() was called */
3218 		error = 0;
3219 		goto fail;
3220 	}
3221 
3222 	if (async == 0)
3223 		WPI_LOCK_ASSERT(sc);
3224 
3225 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %zu async %d\n",
3226 	    __func__, wpi_cmd_str(code), size, async);
3227 
3228 	desc = &ring->desc[ring->cur];
3229 	data = &ring->data[ring->cur];
3230 	totlen = 4 + size;
3231 
3232 	if (size > sizeof cmd->data) {
3233 		/* Command is too large to fit in a descriptor. */
3234 		if (totlen > MCLBYTES) {
3235 			error = EINVAL;
3236 			goto fail;
3237 		}
3238 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3239 		if (m == NULL) {
3240 			error = ENOMEM;
3241 			goto fail;
3242 		}
3243 		cmd = mtod(m, struct wpi_tx_cmd *);
3244 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3245 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3246 		if (error != 0) {
3247 			m_freem(m);
3248 			goto fail;
3249 		}
3250 		data->m = m;
3251 	} else {
3252 		cmd = &ring->cmd[ring->cur];
3253 		paddr = data->cmd_paddr;
3254 	}
3255 
3256 	cmd->code = code;
3257 	cmd->flags = 0;
3258 	cmd->qid = ring->qid;
3259 	cmd->idx = ring->cur;
3260 	memcpy(cmd->data, buf, size);
3261 
3262 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3263 	desc->segs[0].addr = htole32(paddr);
3264 	desc->segs[0].len  = htole32(totlen);
3265 
3266 	if (size > sizeof cmd->data) {
3267 		bus_dmamap_sync(ring->data_dmat, data->map,
3268 		    BUS_DMASYNC_PREWRITE);
3269 	} else {
3270 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3271 		    BUS_DMASYNC_PREWRITE);
3272 	}
3273 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3274 	    BUS_DMASYNC_PREWRITE);
3275 
3276 	/* Kick command ring. */
3277 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3278 	sc->sc_update_tx_ring(sc, ring);
3279 
3280 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3281 
3282 	WPI_TXQ_UNLOCK(sc);
3283 
3284 	if (async)
3285 		return 0;
3286 
3287 	return mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3288 
3289 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3290 
3291 	WPI_TXQ_UNLOCK(sc);
3292 
3293 	return error;
3294 }
3295 
3296 /*
3297  * Configure HW multi-rate retries.
3298  */
3299 static int
3300 wpi_mrr_setup(struct wpi_softc *sc)
3301 {
3302 	struct ifnet *ifp = sc->sc_ifp;
3303 	struct ieee80211com *ic = ifp->if_l2com;
3304 	struct wpi_mrr_setup mrr;
3305 	int i, error;
3306 
3307 	/* CCK rates (not used with 802.11a). */
3308 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3309 		mrr.rates[i].flags = 0;
3310 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3311 		/* Fallback to the immediate lower CCK rate (if any.) */
3312 		mrr.rates[i].next =
3313 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3314 		/* Try twice at this rate before falling back to "next". */
3315 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3316 	}
3317 	/* OFDM rates (not used with 802.11b). */
3318 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3319 		mrr.rates[i].flags = 0;
3320 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3321 		/* Fallback to the immediate lower rate (if any.) */
3322 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3323 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3324 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3325 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3326 		    i - 1;
3327 		/* Try twice at this rate before falling back to "next". */
3328 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3329 	}
3330 	/* Setup MRR for control frames. */
3331 	mrr.which = htole32(WPI_MRR_CTL);
3332 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3333 	if (error != 0) {
3334 		device_printf(sc->sc_dev,
3335 		    "could not setup MRR for control frames\n");
3336 		return error;
3337 	}
3338 	/* Setup MRR for data frames. */
3339 	mrr.which = htole32(WPI_MRR_DATA);
3340 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3341 	if (error != 0) {
3342 		device_printf(sc->sc_dev,
3343 		    "could not setup MRR for data frames\n");
3344 		return error;
3345 	}
3346 	return 0;
3347 }
3348 
3349 static int
3350 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3351 {
3352 	struct ieee80211com *ic = ni->ni_ic;
3353 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3354 	struct wpi_node *wn = WPI_NODE(ni);
3355 	struct wpi_node_info node;
3356 	int error;
3357 
3358 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3359 
3360 	if (wn->id == WPI_ID_UNDEFINED)
3361 		return EINVAL;
3362 
3363 	memset(&node, 0, sizeof node);
3364 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3365 	node.id = wn->id;
3366 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3367 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3368 	node.action = htole32(WPI_ACTION_SET_RATE);
3369 	node.antenna = WPI_ANTENNA_BOTH;
3370 
3371 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3372 	    wn->id, ether_sprintf(ni->ni_macaddr));
3373 
3374 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3375 	if (error != 0) {
3376 		device_printf(sc->sc_dev,
3377 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3378 		    error);
3379 		return error;
3380 	}
3381 
3382 	if (wvp->wv_gtk != 0) {
3383 		error = wpi_set_global_keys(ni);
3384 		if (error != 0) {
3385 			device_printf(sc->sc_dev,
3386 			    "%s: error while setting global keys\n", __func__);
3387 			return ENXIO;
3388 		}
3389 	}
3390 
3391 	return 0;
3392 }
3393 
3394 /*
3395  * Broadcast node is used to send group-addressed and management frames.
3396  */
3397 static int
3398 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3399 {
3400 	struct ifnet *ifp = sc->sc_ifp;
3401 	struct ieee80211com *ic = ifp->if_l2com;
3402 	struct wpi_node_info node;
3403 
3404 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3405 
3406 	memset(&node, 0, sizeof node);
3407 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3408 	node.id = WPI_ID_BROADCAST;
3409 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3410 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3411 	node.action = htole32(WPI_ACTION_SET_RATE);
3412 	node.antenna = WPI_ANTENNA_BOTH;
3413 
3414 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3415 
3416 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3417 }
3418 
3419 static int
3420 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3421 {
3422 	struct wpi_node *wn = WPI_NODE(ni);
3423 	int error;
3424 
3425 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3426 
3427 	wn->id = wpi_add_node_entry_sta(sc);
3428 
3429 	if ((error = wpi_add_node(sc, ni)) != 0) {
3430 		wpi_del_node_entry(sc, wn->id);
3431 		wn->id = WPI_ID_UNDEFINED;
3432 		return error;
3433 	}
3434 
3435 	return 0;
3436 }
3437 
3438 static int
3439 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3440 {
3441 	struct wpi_node *wn = WPI_NODE(ni);
3442 	int error;
3443 
3444 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3445 	    ("the node %d was added before", wn->id));
3446 
3447 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3448 
3449 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3450 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3451 		return ENOMEM;
3452 	}
3453 
3454 	if ((error = wpi_add_node(sc, ni)) != 0) {
3455 		wpi_del_node_entry(sc, wn->id);
3456 		wn->id = WPI_ID_UNDEFINED;
3457 		return error;
3458 	}
3459 
3460 	return 0;
3461 }
3462 
3463 static void
3464 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3465 {
3466 	struct wpi_node *wn = WPI_NODE(ni);
3467 	struct wpi_cmd_del_node node;
3468 	int error;
3469 
3470 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3471 
3472 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3473 
3474 	memset(&node, 0, sizeof node);
3475 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3476 	node.count = 1;
3477 
3478 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3479 	    wn->id, ether_sprintf(ni->ni_macaddr));
3480 
3481 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3482 	if (error != 0) {
3483 		device_printf(sc->sc_dev,
3484 		    "%s: could not delete node %u, error %d\n", __func__,
3485 		    wn->id, error);
3486 	}
3487 }
3488 
3489 static int
3490 wpi_updateedca(struct ieee80211com *ic)
3491 {
3492 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3493 	struct wpi_softc *sc = ic->ic_softc;
3494 	struct wpi_edca_params cmd;
3495 	int aci, error;
3496 
3497 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3498 
3499 	memset(&cmd, 0, sizeof cmd);
3500 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3501 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3502 		const struct wmeParams *ac =
3503 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3504 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3505 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3506 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3507 		cmd.ac[aci].txoplimit =
3508 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3509 
3510 		DPRINTF(sc, WPI_DEBUG_EDCA,
3511 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3512 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3513 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3514 		    cmd.ac[aci].txoplimit);
3515 	}
3516 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3517 
3518 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3519 
3520 	return error;
3521 #undef WPI_EXP2
3522 }
3523 
3524 static void
3525 wpi_set_promisc(struct wpi_softc *sc)
3526 {
3527 	struct ifnet *ifp = sc->sc_ifp;
3528 	struct ieee80211com *ic = ifp->if_l2com;
3529 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3530 	uint32_t promisc_filter;
3531 
3532 	promisc_filter = WPI_FILTER_CTL;
3533 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3534 		promisc_filter |= WPI_FILTER_PROMISC;
3535 
3536 	if (ifp->if_flags & IFF_PROMISC)
3537 		sc->rxon.filter |= htole32(promisc_filter);
3538 	else
3539 		sc->rxon.filter &= ~htole32(promisc_filter);
3540 }
3541 
3542 static void
3543 wpi_update_promisc(struct ieee80211com *ic)
3544 {
3545 	struct wpi_softc *sc = ic->ic_softc;
3546 
3547 	WPI_RXON_LOCK(sc);
3548 	wpi_set_promisc(sc);
3549 
3550 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3551 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3552 		    __func__);
3553 	}
3554 	WPI_RXON_UNLOCK(sc);
3555 }
3556 
3557 static void
3558 wpi_update_mcast(struct ieee80211com *ic)
3559 {
3560 	/* Ignore */
3561 }
3562 
3563 static void
3564 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3565 {
3566 	struct wpi_cmd_led led;
3567 
3568 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3569 
3570 	led.which = which;
3571 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3572 	led.off = off;
3573 	led.on = on;
3574 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3575 }
3576 
3577 static int
3578 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3579 {
3580 	struct wpi_cmd_timing cmd;
3581 	uint64_t val, mod;
3582 
3583 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3584 
3585 	memset(&cmd, 0, sizeof cmd);
3586 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3587 	cmd.bintval = htole16(ni->ni_intval);
3588 	cmd.lintval = htole16(10);
3589 
3590 	/* Compute remaining time until next beacon. */
3591 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3592 	mod = le64toh(cmd.tstamp) % val;
3593 	cmd.binitval = htole32((uint32_t)(val - mod));
3594 
3595 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3596 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3597 
3598 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3599 }
3600 
3601 /*
3602  * This function is called periodically (every 60 seconds) to adjust output
3603  * power to temperature changes.
3604  */
3605 static void
3606 wpi_power_calibration(struct wpi_softc *sc)
3607 {
3608 	int temp;
3609 
3610 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3611 
3612 	/* Update sensor data. */
3613 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3614 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3615 
3616 	/* Sanity-check read value. */
3617 	if (temp < -260 || temp > 25) {
3618 		/* This can't be correct, ignore. */
3619 		DPRINTF(sc, WPI_DEBUG_TEMP,
3620 		    "out-of-range temperature reported: %d\n", temp);
3621 		return;
3622 	}
3623 
3624 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3625 
3626 	/* Adjust Tx power if need be. */
3627 	if (abs(temp - sc->temp) <= 6)
3628 		return;
3629 
3630 	sc->temp = temp;
3631 
3632 	if (wpi_set_txpower(sc, 1) != 0) {
3633 		/* just warn, too bad for the automatic calibration... */
3634 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3635 	}
3636 }
3637 
3638 /*
3639  * Set TX power for current channel.
3640  */
3641 static int
3642 wpi_set_txpower(struct wpi_softc *sc, int async)
3643 {
3644 	struct wpi_power_group *group;
3645 	struct wpi_cmd_txpower cmd;
3646 	uint8_t chan;
3647 	int idx, is_chan_5ghz, i;
3648 
3649 	/* Retrieve current channel from last RXON. */
3650 	chan = sc->rxon.chan;
3651 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3652 
3653 	/* Find the TX power group to which this channel belongs. */
3654 	if (is_chan_5ghz) {
3655 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3656 			if (chan <= group->chan)
3657 				break;
3658 	} else
3659 		group = &sc->groups[0];
3660 
3661 	memset(&cmd, 0, sizeof cmd);
3662 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3663 	cmd.chan = htole16(chan);
3664 
3665 	/* Set TX power for all OFDM and CCK rates. */
3666 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3667 		/* Retrieve TX power for this channel/rate. */
3668 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3669 
3670 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3671 
3672 		if (is_chan_5ghz) {
3673 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3674 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3675 		} else {
3676 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3677 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3678 		}
3679 		DPRINTF(sc, WPI_DEBUG_TEMP,
3680 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3681 	}
3682 
3683 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3684 }
3685 
3686 /*
3687  * Determine Tx power index for a given channel/rate combination.
3688  * This takes into account the regulatory information from EEPROM and the
3689  * current temperature.
3690  */
3691 static int
3692 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3693     uint8_t chan, int is_chan_5ghz, int ridx)
3694 {
3695 /* Fixed-point arithmetic division using a n-bit fractional part. */
3696 #define fdivround(a, b, n)	\
3697 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3698 
3699 /* Linear interpolation. */
3700 #define interpolate(x, x1, y1, x2, y2, n)	\
3701 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3702 
3703 	struct wpi_power_sample *sample;
3704 	int pwr, idx;
3705 
3706 	/* Default TX power is group maximum TX power minus 3dB. */
3707 	pwr = group->maxpwr / 2;
3708 
3709 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3710 	switch (ridx) {
3711 	case WPI_RIDX_OFDM36:
3712 		pwr -= is_chan_5ghz ?  5 : 0;
3713 		break;
3714 	case WPI_RIDX_OFDM48:
3715 		pwr -= is_chan_5ghz ? 10 : 7;
3716 		break;
3717 	case WPI_RIDX_OFDM54:
3718 		pwr -= is_chan_5ghz ? 12 : 9;
3719 		break;
3720 	}
3721 
3722 	/* Never exceed the channel maximum allowed TX power. */
3723 	pwr = min(pwr, sc->maxpwr[chan]);
3724 
3725 	/* Retrieve TX power index into gain tables from samples. */
3726 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3727 		if (pwr > sample[1].power)
3728 			break;
3729 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3730 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3731 	    sample[1].power, sample[1].index, 19);
3732 
3733 	/*-
3734 	 * Adjust power index based on current temperature:
3735 	 * - if cooler than factory-calibrated: decrease output power
3736 	 * - if warmer than factory-calibrated: increase output power
3737 	 */
3738 	idx -= (sc->temp - group->temp) * 11 / 100;
3739 
3740 	/* Decrease TX power for CCK rates (-5dB). */
3741 	if (ridx >= WPI_RIDX_CCK1)
3742 		idx += 10;
3743 
3744 	/* Make sure idx stays in a valid range. */
3745 	if (idx < 0)
3746 		return 0;
3747 	if (idx > WPI_MAX_PWR_INDEX)
3748 		return WPI_MAX_PWR_INDEX;
3749 	return idx;
3750 
3751 #undef interpolate
3752 #undef fdivround
3753 }
3754 
3755 /*
3756  * Set STA mode power saving level (between 0 and 5).
3757  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3758  */
3759 static int
3760 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3761 {
3762 	struct wpi_pmgt_cmd cmd;
3763 	const struct wpi_pmgt *pmgt;
3764 	uint32_t max, skip_dtim;
3765 	uint32_t reg;
3766 	int i;
3767 
3768 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3769 	    "%s: dtim=%d, level=%d, async=%d\n",
3770 	    __func__, dtim, level, async);
3771 
3772 	/* Select which PS parameters to use. */
3773 	if (dtim <= 10)
3774 		pmgt = &wpi_pmgt[0][level];
3775 	else
3776 		pmgt = &wpi_pmgt[1][level];
3777 
3778 	memset(&cmd, 0, sizeof cmd);
3779 	WPI_TXQ_LOCK(sc);
3780 	if (level != 0)	{	/* not CAM */
3781 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3782 		sc->sc_flags |= WPI_PS_PATH;
3783 	} else
3784 		sc->sc_flags &= ~WPI_PS_PATH;
3785 	WPI_TXQ_UNLOCK(sc);
3786 	/* Retrieve PCIe Active State Power Management (ASPM). */
3787 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3788 	if (!(reg & 0x1))	/* L0s Entry disabled. */
3789 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3790 
3791 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3792 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3793 
3794 	if (dtim == 0) {
3795 		dtim = 1;
3796 		skip_dtim = 0;
3797 	} else
3798 		skip_dtim = pmgt->skip_dtim;
3799 
3800 	if (skip_dtim != 0) {
3801 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3802 		max = pmgt->intval[4];
3803 		if (max == (uint32_t)-1)
3804 			max = dtim * (skip_dtim + 1);
3805 		else if (max > dtim)
3806 			max = (max / dtim) * dtim;
3807 	} else
3808 		max = dtim;
3809 
3810 	for (i = 0; i < 5; i++)
3811 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3812 
3813 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3814 }
3815 
3816 static int
3817 wpi_send_btcoex(struct wpi_softc *sc)
3818 {
3819 	struct wpi_bluetooth cmd;
3820 
3821 	memset(&cmd, 0, sizeof cmd);
3822 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3823 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3824 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3825 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3826 	    __func__);
3827 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3828 }
3829 
3830 static int
3831 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3832 {
3833 	int error;
3834 
3835 	if (async)
3836 		WPI_RXON_LOCK_ASSERT(sc);
3837 
3838 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3839 		struct wpi_assoc rxon_assoc;
3840 
3841 		rxon_assoc.flags = sc->rxon.flags;
3842 		rxon_assoc.filter = sc->rxon.filter;
3843 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3844 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3845 		rxon_assoc.reserved = 0;
3846 
3847 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3848 		    sizeof (struct wpi_assoc), async);
3849 		if (error != 0) {
3850 			device_printf(sc->sc_dev,
3851 			    "RXON_ASSOC command failed, error %d\n", error);
3852 			return error;
3853 		}
3854 	} else {
3855 		if (async) {
3856 			WPI_NT_LOCK(sc);
3857 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3858 			    sizeof (struct wpi_rxon), async);
3859 			if (error == 0)
3860 				wpi_clear_node_table(sc);
3861 			WPI_NT_UNLOCK(sc);
3862 		} else {
3863 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3864 			    sizeof (struct wpi_rxon), async);
3865 			if (error == 0)
3866 				wpi_clear_node_table(sc);
3867 		}
3868 
3869 		if (error != 0) {
3870 			device_printf(sc->sc_dev,
3871 			    "RXON command failed, error %d\n", error);
3872 			return error;
3873 		}
3874 
3875 		/* Add broadcast node. */
3876 		error = wpi_add_broadcast_node(sc, async);
3877 		if (error != 0) {
3878 			device_printf(sc->sc_dev,
3879 			    "could not add broadcast node, error %d\n", error);
3880 			return error;
3881 		}
3882 	}
3883 
3884 	/* Configuration has changed, set Tx power accordingly. */
3885 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3886 		device_printf(sc->sc_dev,
3887 		    "%s: could not set TX power, error %d\n", __func__, error);
3888 		return error;
3889 	}
3890 
3891 	return 0;
3892 }
3893 
3894 /**
3895  * Configure the card to listen to a particular channel, this transisions the
3896  * card in to being able to receive frames from remote devices.
3897  */
3898 static int
3899 wpi_config(struct wpi_softc *sc)
3900 {
3901 	struct ifnet *ifp = sc->sc_ifp;
3902 	struct ieee80211com *ic = ifp->if_l2com;
3903 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3904 	struct ieee80211_channel *c = ic->ic_curchan;
3905 	int error;
3906 
3907 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3908 
3909 	/* Set power saving level to CAM during initialization. */
3910 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3911 		device_printf(sc->sc_dev,
3912 		    "%s: could not set power saving level\n", __func__);
3913 		return error;
3914 	}
3915 
3916 	/* Configure bluetooth coexistence. */
3917 	if ((error = wpi_send_btcoex(sc)) != 0) {
3918 		device_printf(sc->sc_dev,
3919 		    "could not configure bluetooth coexistence\n");
3920 		return error;
3921 	}
3922 
3923 	/* Configure adapter. */
3924 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3925 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3926 
3927 	/* Set default channel. */
3928 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3929 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3930 	if (IEEE80211_IS_CHAN_2GHZ(c))
3931 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3932 
3933 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3934 	switch (ic->ic_opmode) {
3935 	case IEEE80211_M_STA:
3936 		sc->rxon.mode = WPI_MODE_STA;
3937 		break;
3938 	case IEEE80211_M_IBSS:
3939 		sc->rxon.mode = WPI_MODE_IBSS;
3940 		sc->rxon.filter |= WPI_FILTER_BEACON;
3941 		break;
3942 	case IEEE80211_M_HOSTAP:
3943 		/* XXX workaround for beaconing */
3944 		sc->rxon.mode = WPI_MODE_IBSS;
3945 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3946 		break;
3947 	case IEEE80211_M_AHDEMO:
3948 		sc->rxon.mode = WPI_MODE_HOSTAP;
3949 		break;
3950 	case IEEE80211_M_MONITOR:
3951 		sc->rxon.mode = WPI_MODE_MONITOR;
3952 		break;
3953 	default:
3954 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3955 		    ic->ic_opmode);
3956 		return EINVAL;
3957 	}
3958 	sc->rxon.filter = htole32(sc->rxon.filter);
3959 	wpi_set_promisc(sc);
3960 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3961 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3962 
3963 	/* XXX Current configuration may be unusable. */
3964 	if (IEEE80211_IS_CHAN_NOADHOC(c) && sc->rxon.mode == WPI_MODE_IBSS) {
3965 		device_printf(sc->sc_dev,
3966 		    "%s: invalid channel (%d) selected for IBSS mode\n",
3967 		    __func__, ieee80211_chan2ieee(ic, c));
3968 		return EINVAL;
3969 	}
3970 
3971 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3972 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3973 		    __func__);
3974 		return error;
3975 	}
3976 
3977 	/* Setup rate scalling. */
3978 	if ((error = wpi_mrr_setup(sc)) != 0) {
3979 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3980 		    error);
3981 		return error;
3982 	}
3983 
3984 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3985 
3986 	return 0;
3987 }
3988 
3989 static uint16_t
3990 wpi_get_active_dwell_time(struct wpi_softc *sc,
3991     struct ieee80211_channel *c, uint8_t n_probes)
3992 {
3993 	/* No channel? Default to 2GHz settings. */
3994 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3995 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3996 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3997 	}
3998 
3999 	/* 5GHz dwell time. */
4000 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4001 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4002 }
4003 
4004 /*
4005  * Limit the total dwell time.
4006  *
4007  * Returns the dwell time in milliseconds.
4008  */
4009 static uint16_t
4010 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4011 {
4012 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4013 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4014 	int bintval = 0;
4015 
4016 	/* bintval is in TU (1.024mS) */
4017 	if (vap != NULL)
4018 		bintval = vap->iv_bss->ni_intval;
4019 
4020 	/*
4021 	 * If it's non-zero, we should calculate the minimum of
4022 	 * it and the DWELL_BASE.
4023 	 *
4024 	 * XXX Yes, the math should take into account that bintval
4025 	 * is 1.024mS, not 1mS..
4026 	 */
4027 	if (bintval > 0) {
4028 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4029 		    bintval);
4030 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4031 	}
4032 
4033 	/* No association context? Default. */
4034 	return dwell_time;
4035 }
4036 
4037 static uint16_t
4038 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4039 {
4040 	uint16_t passive;
4041 
4042 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4043 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4044 	else
4045 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4046 
4047 	/* Clamp to the beacon interval if we're associated. */
4048 	return (wpi_limit_dwell(sc, passive));
4049 }
4050 
4051 static uint32_t
4052 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4053 {
4054 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4055 	uint32_t nbeacons = time / bintval;
4056 
4057 	if (mod > WPI_PAUSE_MAX_TIME)
4058 		mod = WPI_PAUSE_MAX_TIME;
4059 
4060 	return WPI_PAUSE_SCAN(nbeacons, mod);
4061 }
4062 
4063 /*
4064  * Send a scan request to the firmware.
4065  */
4066 static int
4067 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4068 {
4069 	struct ifnet *ifp = sc->sc_ifp;
4070 	struct ieee80211com *ic = ifp->if_l2com;
4071 	struct ieee80211_scan_state *ss = ic->ic_scan;
4072 	struct ieee80211vap *vap = ss->ss_vap;
4073 	struct wpi_scan_hdr *hdr;
4074 	struct wpi_cmd_data *tx;
4075 	struct wpi_scan_essid *essids;
4076 	struct wpi_scan_chan *chan;
4077 	struct ieee80211_frame *wh;
4078 	struct ieee80211_rateset *rs;
4079 	uint16_t dwell_active, dwell_passive;
4080 	uint8_t *buf, *frm;
4081 	int bgscan, bintval, buflen, error, i, nssid;
4082 
4083 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4084 
4085 	/*
4086 	 * We are absolutely not allowed to send a scan command when another
4087 	 * scan command is pending.
4088 	 */
4089 	if (callout_pending(&sc->scan_timeout)) {
4090 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4091 		    __func__);
4092 		error = EAGAIN;
4093 		goto fail;
4094 	}
4095 
4096 	bgscan = wpi_check_bss_filter(sc);
4097 	bintval = vap->iv_bss->ni_intval;
4098 	if (bgscan != 0 &&
4099 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4100 		error = EOPNOTSUPP;
4101 		goto fail;
4102 	}
4103 
4104 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4105 	if (buf == NULL) {
4106 		device_printf(sc->sc_dev,
4107 		    "%s: could not allocate buffer for scan command\n",
4108 		    __func__);
4109 		error = ENOMEM;
4110 		goto fail;
4111 	}
4112 	hdr = (struct wpi_scan_hdr *)buf;
4113 
4114 	/*
4115 	 * Move to the next channel if no packets are received within 10 msecs
4116 	 * after sending the probe request.
4117 	 */
4118 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4119 	hdr->quiet_threshold = htole16(1);
4120 
4121 	if (bgscan != 0) {
4122 		/*
4123 		 * Max needs to be greater than active and passive and quiet!
4124 		 * It's also in microseconds!
4125 		 */
4126 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4127 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4128 		    bintval));
4129 	}
4130 
4131 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4132 
4133 	tx = (struct wpi_cmd_data *)(hdr + 1);
4134 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4135 	tx->id = WPI_ID_BROADCAST;
4136 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4137 
4138 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4139 		/* Send probe requests at 6Mbps. */
4140 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4141 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4142 	} else {
4143 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4144 		/* Send probe requests at 1Mbps. */
4145 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4146 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4147 	}
4148 
4149 	essids = (struct wpi_scan_essid *)(tx + 1);
4150 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4151 	for (i = 0; i < nssid; i++) {
4152 		essids[i].id = IEEE80211_ELEMID_SSID;
4153 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4154 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4155 #ifdef WPI_DEBUG
4156 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4157 			printf("Scanning Essid: ");
4158 			ieee80211_print_essid(essids[i].data, essids[i].len);
4159 			printf("\n");
4160 		}
4161 #endif
4162 	}
4163 
4164 	/*
4165 	 * Build a probe request frame.  Most of the following code is a
4166 	 * copy & paste of what is done in net80211.
4167 	 */
4168 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4169 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4170 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4171 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4172 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4173 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4174 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4175 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
4176 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
4177 
4178 	frm = (uint8_t *)(wh + 1);
4179 	frm = ieee80211_add_ssid(frm, NULL, 0);
4180 	frm = ieee80211_add_rates(frm, rs);
4181 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4182 		frm = ieee80211_add_xrates(frm, rs);
4183 
4184 	/* Set length of probe request. */
4185 	tx->len = htole16(frm - (uint8_t *)wh);
4186 
4187 	/*
4188 	 * Construct information about the channel that we
4189 	 * want to scan. The firmware expects this to be directly
4190 	 * after the scan probe request
4191 	 */
4192 	chan = (struct wpi_scan_chan *)frm;
4193 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4194 	chan->flags = 0;
4195 	if (nssid) {
4196 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4197 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4198 	} else
4199 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4200 
4201 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4202 		chan->flags |= WPI_CHAN_ACTIVE;
4203 
4204 	/*
4205 	 * Calculate the active/passive dwell times.
4206 	 */
4207 
4208 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4209 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4210 
4211 	/* Make sure they're valid. */
4212 	if (dwell_active > dwell_passive)
4213 		dwell_active = dwell_passive;
4214 
4215 	chan->active = htole16(dwell_active);
4216 	chan->passive = htole16(dwell_passive);
4217 
4218 	chan->dsp_gain = 0x6e;  /* Default level */
4219 
4220 	if (IEEE80211_IS_CHAN_5GHZ(c))
4221 		chan->rf_gain = 0x3b;
4222 	else
4223 		chan->rf_gain = 0x28;
4224 
4225 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4226 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4227 
4228 	hdr->nchan++;
4229 
4230 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4231 		/* XXX Force probe request transmission. */
4232 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4233 
4234 		chan++;
4235 
4236 		/* Reduce unnecessary delay. */
4237 		chan->flags = 0;
4238 		chan->passive = chan->active = hdr->quiet_time;
4239 
4240 		hdr->nchan++;
4241 	}
4242 
4243 	chan++;
4244 
4245 	buflen = (uint8_t *)chan - buf;
4246 	hdr->len = htole16(buflen);
4247 
4248 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4249 	    hdr->nchan);
4250 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4251 	free(buf, M_DEVBUF);
4252 
4253 	if (error != 0)
4254 		goto fail;
4255 
4256 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4257 
4258 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4259 
4260 	return 0;
4261 
4262 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4263 
4264 	return error;
4265 }
4266 
4267 static int
4268 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4269 {
4270 	struct ieee80211com *ic = vap->iv_ic;
4271 	struct ieee80211_node *ni = vap->iv_bss;
4272 	struct ieee80211_channel *c = ni->ni_chan;
4273 	int error;
4274 
4275 	WPI_RXON_LOCK(sc);
4276 
4277 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4278 
4279 	/* Update adapter configuration. */
4280 	sc->rxon.associd = 0;
4281 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4282 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4283 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4284 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4285 	if (IEEE80211_IS_CHAN_2GHZ(c))
4286 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4287 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4288 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4289 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4290 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4291 	if (IEEE80211_IS_CHAN_A(c)) {
4292 		sc->rxon.cck_mask  = 0;
4293 		sc->rxon.ofdm_mask = 0x15;
4294 	} else if (IEEE80211_IS_CHAN_B(c)) {
4295 		sc->rxon.cck_mask  = 0x03;
4296 		sc->rxon.ofdm_mask = 0;
4297 	} else {
4298 		/* Assume 802.11b/g. */
4299 		sc->rxon.cck_mask  = 0x0f;
4300 		sc->rxon.ofdm_mask = 0x15;
4301 	}
4302 
4303 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4304 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4305 	    sc->rxon.ofdm_mask);
4306 
4307 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4308 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4309 		    __func__);
4310 	}
4311 
4312 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4313 
4314 	WPI_RXON_UNLOCK(sc);
4315 
4316 	return error;
4317 }
4318 
4319 static int
4320 wpi_config_beacon(struct wpi_vap *wvp)
4321 {
4322 	struct ieee80211com *ic = wvp->wv_vap.iv_ic;
4323 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4324 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4325 	struct wpi_softc *sc = ic->ic_softc;
4326 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4327 	struct ieee80211_tim_ie *tie;
4328 	struct mbuf *m;
4329 	uint8_t *ptr;
4330 	int error;
4331 
4332 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4333 
4334 	WPI_VAP_LOCK_ASSERT(wvp);
4335 
4336 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4337 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4338 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4339 
4340 	/* XXX seems to be unused */
4341 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4342 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4343 		ptr = mtod(bcn->m, uint8_t *);
4344 
4345 		cmd->tim = htole16(bo->bo_tim - ptr);
4346 		cmd->timsz = tie->tim_len;
4347 	}
4348 
4349 	/* Necessary for recursion in ieee80211_beacon_update(). */
4350 	m = bcn->m;
4351 	bcn->m = m_dup(m, M_NOWAIT);
4352 	if (bcn->m == NULL) {
4353 		device_printf(sc->sc_dev,
4354 		    "%s: could not copy beacon frame\n", __func__);
4355 		error = ENOMEM;
4356 		goto end;
4357 	}
4358 
4359 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4360 		device_printf(sc->sc_dev,
4361 		    "%s: could not update beacon frame, error %d", __func__,
4362 		    error);
4363 	}
4364 
4365 	/* Restore mbuf. */
4366 end:	bcn->m = m;
4367 
4368 	return error;
4369 }
4370 
4371 static int
4372 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4373 {
4374 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
4375 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4376 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4377 	struct mbuf *m;
4378 	int error;
4379 
4380 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4381 
4382 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4383 		return EINVAL;
4384 
4385 	m = ieee80211_beacon_alloc(ni, bo);
4386 	if (m == NULL) {
4387 		device_printf(sc->sc_dev,
4388 		    "%s: could not allocate beacon frame\n", __func__);
4389 		return ENOMEM;
4390 	}
4391 
4392 	WPI_VAP_LOCK(wvp);
4393 	if (bcn->m != NULL)
4394 		m_freem(bcn->m);
4395 
4396 	bcn->m = m;
4397 
4398 	error = wpi_config_beacon(wvp);
4399 	WPI_VAP_UNLOCK(wvp);
4400 
4401 	return error;
4402 }
4403 
4404 static void
4405 wpi_update_beacon(struct ieee80211vap *vap, int item)
4406 {
4407 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4408 	struct wpi_vap *wvp = WPI_VAP(vap);
4409 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4410 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4411 	struct ieee80211_node *ni = vap->iv_bss;
4412 	int mcast = 0;
4413 
4414 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4415 
4416 	WPI_VAP_LOCK(wvp);
4417 	if (bcn->m == NULL) {
4418 		bcn->m = ieee80211_beacon_alloc(ni, bo);
4419 		if (bcn->m == NULL) {
4420 			device_printf(sc->sc_dev,
4421 			    "%s: could not allocate beacon frame\n", __func__);
4422 
4423 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4424 			    __func__);
4425 
4426 			WPI_VAP_UNLOCK(wvp);
4427 			return;
4428 		}
4429 	}
4430 	WPI_VAP_UNLOCK(wvp);
4431 
4432 	if (item == IEEE80211_BEACON_TIM)
4433 		mcast = 1;	/* TODO */
4434 
4435 	setbit(bo->bo_flags, item);
4436 	ieee80211_beacon_update(ni, bo, bcn->m, mcast);
4437 
4438 	WPI_VAP_LOCK(wvp);
4439 	wpi_config_beacon(wvp);
4440 	WPI_VAP_UNLOCK(wvp);
4441 
4442 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4443 }
4444 
4445 static void
4446 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4447 {
4448 	struct ieee80211vap *vap = ni->ni_vap;
4449 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4450 	struct wpi_node *wn = WPI_NODE(ni);
4451 	int error;
4452 
4453 	WPI_NT_LOCK(sc);
4454 
4455 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4456 
4457 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4458 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4459 			device_printf(sc->sc_dev,
4460 			    "%s: could not add IBSS node, error %d\n",
4461 			    __func__, error);
4462 		}
4463 	}
4464 	WPI_NT_UNLOCK(sc);
4465 }
4466 
4467 static int
4468 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4469 {
4470 	struct ieee80211com *ic = vap->iv_ic;
4471 	struct ieee80211_node *ni = vap->iv_bss;
4472 	struct ieee80211_channel *c = ni->ni_chan;
4473 	int error;
4474 
4475 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4476 
4477 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4478 		/* Link LED blinks while monitoring. */
4479 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4480 		return 0;
4481 	}
4482 
4483 	/* XXX kernel panic workaround */
4484 	if (c == IEEE80211_CHAN_ANYC) {
4485 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4486 		    __func__);
4487 		return EINVAL;
4488 	}
4489 
4490 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4491 		device_printf(sc->sc_dev,
4492 		    "%s: could not set timing, error %d\n", __func__, error);
4493 		return error;
4494 	}
4495 
4496 	/* Update adapter configuration. */
4497 	WPI_RXON_LOCK(sc);
4498 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4499 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4500 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4501 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4502 	if (IEEE80211_IS_CHAN_2GHZ(c))
4503 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4504 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4505 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4506 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4507 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4508 	if (IEEE80211_IS_CHAN_A(c)) {
4509 		sc->rxon.cck_mask  = 0;
4510 		sc->rxon.ofdm_mask = 0x15;
4511 	} else if (IEEE80211_IS_CHAN_B(c)) {
4512 		sc->rxon.cck_mask  = 0x03;
4513 		sc->rxon.ofdm_mask = 0;
4514 	} else {
4515 		/* Assume 802.11b/g. */
4516 		sc->rxon.cck_mask  = 0x0f;
4517 		sc->rxon.ofdm_mask = 0x15;
4518 	}
4519 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4520 
4521 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4522 	    sc->rxon.chan, sc->rxon.flags);
4523 
4524 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4525 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4526 		    __func__);
4527 		return error;
4528 	}
4529 
4530 	/* Start periodic calibration timer. */
4531 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4532 
4533 	WPI_RXON_UNLOCK(sc);
4534 
4535 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4536 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4537 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4538 			device_printf(sc->sc_dev,
4539 			    "%s: could not setup beacon, error %d\n", __func__,
4540 			    error);
4541 			return error;
4542 		}
4543 	}
4544 
4545 	if (vap->iv_opmode == IEEE80211_M_STA) {
4546 		/* Add BSS node. */
4547 		WPI_NT_LOCK(sc);
4548 		error = wpi_add_sta_node(sc, ni);
4549 		WPI_NT_UNLOCK(sc);
4550 		if (error != 0) {
4551 			device_printf(sc->sc_dev,
4552 			    "%s: could not add BSS node, error %d\n", __func__,
4553 			    error);
4554 			return error;
4555 		}
4556 	}
4557 
4558 	/* Link LED always on while associated. */
4559 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4560 
4561 	/* Enable power-saving mode if requested by user. */
4562 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4563 	    vap->iv_opmode != IEEE80211_M_IBSS)
4564 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4565 
4566 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4567 
4568 	return 0;
4569 }
4570 
4571 static int
4572 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4573 {
4574 	const struct ieee80211_cipher *cip = k->wk_cipher;
4575 	struct ieee80211vap *vap = ni->ni_vap;
4576 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4577 	struct wpi_node *wn = WPI_NODE(ni);
4578 	struct wpi_node_info node;
4579 	uint16_t kflags;
4580 	int error;
4581 
4582 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4583 
4584 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4585 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4586 		    __func__);
4587 		return 0;
4588 	}
4589 
4590 	switch (cip->ic_cipher) {
4591 	case IEEE80211_CIPHER_AES_CCM:
4592 		kflags = WPI_KFLAG_CCMP;
4593 		break;
4594 
4595 	default:
4596 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4597 		    cip->ic_cipher);
4598 		return 0;
4599 	}
4600 
4601 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4602 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4603 		kflags |= WPI_KFLAG_MULTICAST;
4604 
4605 	memset(&node, 0, sizeof node);
4606 	node.id = wn->id;
4607 	node.control = WPI_NODE_UPDATE;
4608 	node.flags = WPI_FLAG_KEY_SET;
4609 	node.kflags = htole16(kflags);
4610 	memcpy(node.key, k->wk_key, k->wk_keylen);
4611 again:
4612 	DPRINTF(sc, WPI_DEBUG_KEY,
4613 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4614 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4615 	    node.id, ether_sprintf(ni->ni_macaddr));
4616 
4617 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4618 	if (error != 0) {
4619 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4620 		    error);
4621 		return !error;
4622 	}
4623 
4624 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4625 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4626 		kflags |= WPI_KFLAG_MULTICAST;
4627 		node.kflags = htole16(kflags);
4628 
4629 		goto again;
4630 	}
4631 
4632 	return 1;
4633 }
4634 
4635 static void
4636 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4637 {
4638 	const struct ieee80211_key *k = arg;
4639 	struct ieee80211vap *vap = ni->ni_vap;
4640 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4641 	struct wpi_node *wn = WPI_NODE(ni);
4642 	int error;
4643 
4644 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4645 		return;
4646 
4647 	WPI_NT_LOCK(sc);
4648 	error = wpi_load_key(ni, k);
4649 	WPI_NT_UNLOCK(sc);
4650 
4651 	if (error == 0) {
4652 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4653 		    __func__);
4654 	}
4655 }
4656 
4657 static int
4658 wpi_set_global_keys(struct ieee80211_node *ni)
4659 {
4660 	struct ieee80211vap *vap = ni->ni_vap;
4661 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4662 	int error = 1;
4663 
4664 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4665 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4666 			error = wpi_load_key(ni, wk);
4667 
4668 	return !error;
4669 }
4670 
4671 static int
4672 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4673 {
4674 	struct ieee80211vap *vap = ni->ni_vap;
4675 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4676 	struct wpi_node *wn = WPI_NODE(ni);
4677 	struct wpi_node_info node;
4678 	uint16_t kflags;
4679 	int error;
4680 
4681 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4682 
4683 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4684 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4685 		return 1;	/* Nothing to do. */
4686 	}
4687 
4688 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4689 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4690 		kflags |= WPI_KFLAG_MULTICAST;
4691 
4692 	memset(&node, 0, sizeof node);
4693 	node.id = wn->id;
4694 	node.control = WPI_NODE_UPDATE;
4695 	node.flags = WPI_FLAG_KEY_SET;
4696 	node.kflags = htole16(kflags);
4697 again:
4698 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4699 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4700 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4701 
4702 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4703 	if (error != 0) {
4704 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4705 		    error);
4706 		return !error;
4707 	}
4708 
4709 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4710 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4711 		kflags |= WPI_KFLAG_MULTICAST;
4712 		node.kflags = htole16(kflags);
4713 
4714 		goto again;
4715 	}
4716 
4717 	return 1;
4718 }
4719 
4720 static void
4721 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4722 {
4723 	const struct ieee80211_key *k = arg;
4724 	struct ieee80211vap *vap = ni->ni_vap;
4725 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4726 	struct wpi_node *wn = WPI_NODE(ni);
4727 	int error;
4728 
4729 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4730 		return;
4731 
4732 	WPI_NT_LOCK(sc);
4733 	error = wpi_del_key(ni, k);
4734 	WPI_NT_UNLOCK(sc);
4735 
4736 	if (error == 0) {
4737 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4738 		    __func__);
4739 	}
4740 }
4741 
4742 static int
4743 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4744     int set)
4745 {
4746 	struct ieee80211com *ic = vap->iv_ic;
4747 	struct wpi_softc *sc = ic->ic_softc;
4748 	struct wpi_vap *wvp = WPI_VAP(vap);
4749 	struct ieee80211_node *ni;
4750 	int error, ni_ref = 0;
4751 
4752 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4753 
4754 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4755 		/* Not for us. */
4756 		return 1;
4757 	}
4758 
4759 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4760 		/* XMIT keys are handled in wpi_tx_data(). */
4761 		return 1;
4762 	}
4763 
4764 	/* Handle group keys. */
4765 	if (&vap->iv_nw_keys[0] <= k &&
4766 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4767 		WPI_NT_LOCK(sc);
4768 		if (set)
4769 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4770 		else
4771 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4772 		WPI_NT_UNLOCK(sc);
4773 
4774 		if (vap->iv_state == IEEE80211_S_RUN) {
4775 			ieee80211_iterate_nodes(&ic->ic_sta,
4776 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4777 			    __DECONST(void *, k));
4778 		}
4779 
4780 		return 1;
4781 	}
4782 
4783 	switch (vap->iv_opmode) {
4784 	case IEEE80211_M_STA:
4785 		ni = vap->iv_bss;
4786 		break;
4787 
4788 	case IEEE80211_M_IBSS:
4789 	case IEEE80211_M_AHDEMO:
4790 	case IEEE80211_M_HOSTAP:
4791 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4792 		if (ni == NULL)
4793 			return 0;	/* should not happen */
4794 
4795 		ni_ref = 1;
4796 		break;
4797 
4798 	default:
4799 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4800 		    vap->iv_opmode);
4801 		return 0;
4802 	}
4803 
4804 	WPI_NT_LOCK(sc);
4805 	if (set)
4806 		error = wpi_load_key(ni, k);
4807 	else
4808 		error = wpi_del_key(ni, k);
4809 	WPI_NT_UNLOCK(sc);
4810 
4811 	if (ni_ref)
4812 		ieee80211_node_decref(ni);
4813 
4814 	return error;
4815 }
4816 
4817 static int
4818 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4819     const uint8_t mac[IEEE80211_ADDR_LEN])
4820 {
4821 	return wpi_process_key(vap, k, 1);
4822 }
4823 
4824 static int
4825 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4826 {
4827 	return wpi_process_key(vap, k, 0);
4828 }
4829 
4830 /*
4831  * This function is called after the runtime firmware notifies us of its
4832  * readiness (called in a process context).
4833  */
4834 static int
4835 wpi_post_alive(struct wpi_softc *sc)
4836 {
4837 	int ntries, error;
4838 
4839 	/* Check (again) that the radio is not disabled. */
4840 	if ((error = wpi_nic_lock(sc)) != 0)
4841 		return error;
4842 
4843 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4844 
4845 	/* NB: Runtime firmware must be up and running. */
4846 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4847 		device_printf(sc->sc_dev,
4848 		    "RF switch: radio disabled (%s)\n", __func__);
4849 		wpi_nic_unlock(sc);
4850 		return EPERM;   /* :-) */
4851 	}
4852 	wpi_nic_unlock(sc);
4853 
4854 	/* Wait for thermal sensor to calibrate. */
4855 	for (ntries = 0; ntries < 1000; ntries++) {
4856 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4857 			break;
4858 		DELAY(10);
4859 	}
4860 
4861 	if (ntries == 1000) {
4862 		device_printf(sc->sc_dev,
4863 		    "timeout waiting for thermal sensor calibration\n");
4864 		return ETIMEDOUT;
4865 	}
4866 
4867 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4868 	return 0;
4869 }
4870 
4871 /*
4872  * The firmware boot code is small and is intended to be copied directly into
4873  * the NIC internal memory (no DMA transfer).
4874  */
4875 static int
4876 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4877 {
4878 	int error, ntries;
4879 
4880 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4881 
4882 	size /= sizeof (uint32_t);
4883 
4884 	if ((error = wpi_nic_lock(sc)) != 0)
4885 		return error;
4886 
4887 	/* Copy microcode image into NIC memory. */
4888 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4889 	    (const uint32_t *)ucode, size);
4890 
4891 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4892 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4893 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4894 
4895 	/* Start boot load now. */
4896 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4897 
4898 	/* Wait for transfer to complete. */
4899 	for (ntries = 0; ntries < 1000; ntries++) {
4900 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4901 		DPRINTF(sc, WPI_DEBUG_HW,
4902 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4903 		    WPI_FH_TX_STATUS_IDLE(6),
4904 		    status & WPI_FH_TX_STATUS_IDLE(6));
4905 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4906 			DPRINTF(sc, WPI_DEBUG_HW,
4907 			    "Status Match! - ntries = %d\n", ntries);
4908 			break;
4909 		}
4910 		DELAY(10);
4911 	}
4912 	if (ntries == 1000) {
4913 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4914 		    __func__);
4915 		wpi_nic_unlock(sc);
4916 		return ETIMEDOUT;
4917 	}
4918 
4919 	/* Enable boot after power up. */
4920 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4921 
4922 	wpi_nic_unlock(sc);
4923 	return 0;
4924 }
4925 
4926 static int
4927 wpi_load_firmware(struct wpi_softc *sc)
4928 {
4929 	struct wpi_fw_info *fw = &sc->fw;
4930 	struct wpi_dma_info *dma = &sc->fw_dma;
4931 	int error;
4932 
4933 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4934 
4935 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4936 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4937 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4938 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4939 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4940 
4941 	/* Tell adapter where to find initialization sections. */
4942 	if ((error = wpi_nic_lock(sc)) != 0)
4943 		return error;
4944 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4945 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4946 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4947 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4948 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4949 	wpi_nic_unlock(sc);
4950 
4951 	/* Load firmware boot code. */
4952 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4953 	if (error != 0) {
4954 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4955 		    __func__);
4956 		return error;
4957 	}
4958 
4959 	/* Now press "execute". */
4960 	WPI_WRITE(sc, WPI_RESET, 0);
4961 
4962 	/* Wait at most one second for first alive notification. */
4963 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4964 		device_printf(sc->sc_dev,
4965 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4966 		    __func__, error);
4967 		return error;
4968 	}
4969 
4970 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4971 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4972 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4973 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4974 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4975 
4976 	/* Tell adapter where to find runtime sections. */
4977 	if ((error = wpi_nic_lock(sc)) != 0)
4978 		return error;
4979 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4980 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4981 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4982 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4983 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4984 	    WPI_FW_UPDATED | fw->main.textsz);
4985 	wpi_nic_unlock(sc);
4986 
4987 	return 0;
4988 }
4989 
4990 static int
4991 wpi_read_firmware(struct wpi_softc *sc)
4992 {
4993 	const struct firmware *fp;
4994 	struct wpi_fw_info *fw = &sc->fw;
4995 	const struct wpi_firmware_hdr *hdr;
4996 	int error;
4997 
4998 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4999 
5000 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5001 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5002 
5003 	WPI_UNLOCK(sc);
5004 	fp = firmware_get(WPI_FW_NAME);
5005 	WPI_LOCK(sc);
5006 
5007 	if (fp == NULL) {
5008 		device_printf(sc->sc_dev,
5009 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5010 		return EINVAL;
5011 	}
5012 
5013 	sc->fw_fp = fp;
5014 
5015 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5016 		device_printf(sc->sc_dev,
5017 		    "firmware file too short: %zu bytes\n", fp->datasize);
5018 		error = EINVAL;
5019 		goto fail;
5020 	}
5021 
5022 	fw->size = fp->datasize;
5023 	fw->data = (const uint8_t *)fp->data;
5024 
5025 	/* Extract firmware header information. */
5026 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5027 
5028 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5029 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5030 
5031 	fw->main.textsz = le32toh(hdr->rtextsz);
5032 	fw->main.datasz = le32toh(hdr->rdatasz);
5033 	fw->init.textsz = le32toh(hdr->itextsz);
5034 	fw->init.datasz = le32toh(hdr->idatasz);
5035 	fw->boot.textsz = le32toh(hdr->btextsz);
5036 	fw->boot.datasz = 0;
5037 
5038 	/* Sanity-check firmware header. */
5039 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5040 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5041 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5042 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5043 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5044 	    (fw->boot.textsz & 3) != 0) {
5045 		device_printf(sc->sc_dev, "invalid firmware header\n");
5046 		error = EINVAL;
5047 		goto fail;
5048 	}
5049 
5050 	/* Check that all firmware sections fit. */
5051 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5052 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5053 		device_printf(sc->sc_dev,
5054 		    "firmware file too short: %zu bytes\n", fw->size);
5055 		error = EINVAL;
5056 		goto fail;
5057 	}
5058 
5059 	/* Get pointers to firmware sections. */
5060 	fw->main.text = (const uint8_t *)(hdr + 1);
5061 	fw->main.data = fw->main.text + fw->main.textsz;
5062 	fw->init.text = fw->main.data + fw->main.datasz;
5063 	fw->init.data = fw->init.text + fw->init.textsz;
5064 	fw->boot.text = fw->init.data + fw->init.datasz;
5065 
5066 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5067 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5068 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5069 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5070 	    fw->main.textsz, fw->main.datasz,
5071 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5072 
5073 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5074 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5075 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5076 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5077 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5078 
5079 	return 0;
5080 
5081 fail:	wpi_unload_firmware(sc);
5082 	return error;
5083 }
5084 
5085 /**
5086  * Free the referenced firmware image
5087  */
5088 static void
5089 wpi_unload_firmware(struct wpi_softc *sc)
5090 {
5091 	if (sc->fw_fp != NULL) {
5092 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5093 		sc->fw_fp = NULL;
5094 	}
5095 }
5096 
5097 static int
5098 wpi_clock_wait(struct wpi_softc *sc)
5099 {
5100 	int ntries;
5101 
5102 	/* Set "initialization complete" bit. */
5103 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5104 
5105 	/* Wait for clock stabilization. */
5106 	for (ntries = 0; ntries < 2500; ntries++) {
5107 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5108 			return 0;
5109 		DELAY(100);
5110 	}
5111 	device_printf(sc->sc_dev,
5112 	    "%s: timeout waiting for clock stabilization\n", __func__);
5113 
5114 	return ETIMEDOUT;
5115 }
5116 
5117 static int
5118 wpi_apm_init(struct wpi_softc *sc)
5119 {
5120 	uint32_t reg;
5121 	int error;
5122 
5123 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5124 
5125 	/* Disable L0s exit timer (NMI bug workaround). */
5126 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5127 	/* Don't wait for ICH L0s (ICH bug workaround). */
5128 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5129 
5130 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5131 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5132 
5133 	/* Retrieve PCIe Active State Power Management (ASPM). */
5134 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5135 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5136 	if (reg & 0x02)	/* L1 Entry enabled. */
5137 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5138 	else
5139 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5140 
5141 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5142 
5143 	/* Wait for clock stabilization before accessing prph. */
5144 	if ((error = wpi_clock_wait(sc)) != 0)
5145 		return error;
5146 
5147 	if ((error = wpi_nic_lock(sc)) != 0)
5148 		return error;
5149 	/* Cleanup. */
5150 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5151 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5152 
5153 	/* Enable DMA and BSM (Bootstrap State Machine). */
5154 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5155 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5156 	DELAY(20);
5157 	/* Disable L1-Active. */
5158 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5159 	wpi_nic_unlock(sc);
5160 
5161 	return 0;
5162 }
5163 
5164 static void
5165 wpi_apm_stop_master(struct wpi_softc *sc)
5166 {
5167 	int ntries;
5168 
5169 	/* Stop busmaster DMA activity. */
5170 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5171 
5172 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5173 	    WPI_GP_CNTRL_MAC_PS)
5174 		return; /* Already asleep. */
5175 
5176 	for (ntries = 0; ntries < 100; ntries++) {
5177 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5178 			return;
5179 		DELAY(10);
5180 	}
5181 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5182 	    __func__);
5183 }
5184 
5185 static void
5186 wpi_apm_stop(struct wpi_softc *sc)
5187 {
5188 	wpi_apm_stop_master(sc);
5189 
5190 	/* Reset the entire device. */
5191 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5192 	DELAY(10);
5193 	/* Clear "initialization complete" bit. */
5194 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5195 }
5196 
5197 static void
5198 wpi_nic_config(struct wpi_softc *sc)
5199 {
5200 	uint32_t rev;
5201 
5202 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5203 
5204 	/* voodoo from the Linux "driver".. */
5205 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5206 	if ((rev & 0xc0) == 0x40)
5207 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5208 	else if (!(rev & 0x80))
5209 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5210 
5211 	if (sc->cap == 0x80)
5212 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5213 
5214 	if ((sc->rev & 0xf0) == 0xd0)
5215 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5216 	else
5217 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5218 
5219 	if (sc->type > 1)
5220 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5221 }
5222 
5223 static int
5224 wpi_hw_init(struct wpi_softc *sc)
5225 {
5226 	int chnl, ntries, error;
5227 
5228 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5229 
5230 	/* Clear pending interrupts. */
5231 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5232 
5233 	if ((error = wpi_apm_init(sc)) != 0) {
5234 		device_printf(sc->sc_dev,
5235 		    "%s: could not power ON adapter, error %d\n", __func__,
5236 		    error);
5237 		return error;
5238 	}
5239 
5240 	/* Select VMAIN power source. */
5241 	if ((error = wpi_nic_lock(sc)) != 0)
5242 		return error;
5243 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5244 	wpi_nic_unlock(sc);
5245 	/* Spin until VMAIN gets selected. */
5246 	for (ntries = 0; ntries < 5000; ntries++) {
5247 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5248 			break;
5249 		DELAY(10);
5250 	}
5251 	if (ntries == 5000) {
5252 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5253 		return ETIMEDOUT;
5254 	}
5255 
5256 	/* Perform adapter initialization. */
5257 	wpi_nic_config(sc);
5258 
5259 	/* Initialize RX ring. */
5260 	if ((error = wpi_nic_lock(sc)) != 0)
5261 		return error;
5262 	/* Set physical address of RX ring. */
5263 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5264 	/* Set physical address of RX read pointer. */
5265 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5266 	    offsetof(struct wpi_shared, next));
5267 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5268 	/* Enable RX. */
5269 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5270 	    WPI_FH_RX_CONFIG_DMA_ENA |
5271 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5272 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5273 	    WPI_FH_RX_CONFIG_MAXFRAG |
5274 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5275 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5276 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5277 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5278 	wpi_nic_unlock(sc);
5279 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5280 
5281 	/* Initialize TX rings. */
5282 	if ((error = wpi_nic_lock(sc)) != 0)
5283 		return error;
5284 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5285 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5286 	/* Enable all 6 TX rings. */
5287 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5288 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5289 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5290 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5291 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5292 	/* Set physical address of TX rings. */
5293 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5294 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5295 
5296 	/* Enable all DMA channels. */
5297 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5298 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5299 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5300 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5301 	}
5302 	wpi_nic_unlock(sc);
5303 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5304 
5305 	/* Clear "radio off" and "commands blocked" bits. */
5306 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5307 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5308 
5309 	/* Clear pending interrupts. */
5310 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5311 	/* Enable interrupts. */
5312 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5313 
5314 	/* _Really_ make sure "radio off" bit is cleared! */
5315 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5316 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5317 
5318 	if ((error = wpi_load_firmware(sc)) != 0) {
5319 		device_printf(sc->sc_dev,
5320 		    "%s: could not load firmware, error %d\n", __func__,
5321 		    error);
5322 		return error;
5323 	}
5324 	/* Wait at most one second for firmware alive notification. */
5325 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5326 		device_printf(sc->sc_dev,
5327 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5328 		    __func__, error);
5329 		return error;
5330 	}
5331 
5332 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5333 
5334 	/* Do post-firmware initialization. */
5335 	return wpi_post_alive(sc);
5336 }
5337 
5338 static void
5339 wpi_hw_stop(struct wpi_softc *sc)
5340 {
5341 	int chnl, qid, ntries;
5342 
5343 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5344 
5345 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5346 		wpi_nic_lock(sc);
5347 
5348 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5349 
5350 	/* Disable interrupts. */
5351 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5352 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5353 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5354 
5355 	/* Make sure we no longer hold the NIC lock. */
5356 	wpi_nic_unlock(sc);
5357 
5358 	if (wpi_nic_lock(sc) == 0) {
5359 		/* Stop TX scheduler. */
5360 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5361 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5362 
5363 		/* Stop all DMA channels. */
5364 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5365 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5366 			for (ntries = 0; ntries < 200; ntries++) {
5367 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5368 				    WPI_FH_TX_STATUS_IDLE(chnl))
5369 					break;
5370 				DELAY(10);
5371 			}
5372 		}
5373 		wpi_nic_unlock(sc);
5374 	}
5375 
5376 	/* Stop RX ring. */
5377 	wpi_reset_rx_ring(sc);
5378 
5379 	/* Reset all TX rings. */
5380 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
5381 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5382 
5383 	if (wpi_nic_lock(sc) == 0) {
5384 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5385 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5386 		wpi_nic_unlock(sc);
5387 	}
5388 	DELAY(5);
5389 	/* Power OFF adapter. */
5390 	wpi_apm_stop(sc);
5391 }
5392 
5393 static void
5394 wpi_radio_on(void *arg0, int pending)
5395 {
5396 	struct wpi_softc *sc = arg0;
5397 	struct ifnet *ifp = sc->sc_ifp;
5398 	struct ieee80211com *ic = ifp->if_l2com;
5399 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5400 
5401 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5402 
5403 	if (vap != NULL) {
5404 		wpi_init(sc);
5405 		ieee80211_init(vap);
5406 	}
5407 
5408 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
5409 		WPI_LOCK(sc);
5410 		callout_stop(&sc->watchdog_rfkill);
5411 		WPI_UNLOCK(sc);
5412 	}
5413 }
5414 
5415 static void
5416 wpi_radio_off(void *arg0, int pending)
5417 {
5418 	struct wpi_softc *sc = arg0;
5419 	struct ifnet *ifp = sc->sc_ifp;
5420 	struct ieee80211com *ic = ifp->if_l2com;
5421 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5422 
5423 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5424 
5425 	wpi_stop(sc);
5426 	if (vap != NULL)
5427 		ieee80211_stop(vap);
5428 
5429 	WPI_LOCK(sc);
5430 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5431 	WPI_UNLOCK(sc);
5432 }
5433 
5434 static void
5435 wpi_init(void *arg)
5436 {
5437 	struct wpi_softc *sc = arg;
5438 	struct ifnet *ifp = sc->sc_ifp;
5439 	struct ieee80211com *ic = ifp->if_l2com;
5440 	int error;
5441 
5442 	WPI_LOCK(sc);
5443 
5444 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5445 
5446 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
5447 		goto end;
5448 
5449 	/* Check that the radio is not disabled by hardware switch. */
5450 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5451 		device_printf(sc->sc_dev,
5452 		    "RF switch: radio disabled (%s)\n", __func__);
5453 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5454 		    sc);
5455 		goto end;
5456 	}
5457 
5458 	/* Read firmware images from the filesystem. */
5459 	if ((error = wpi_read_firmware(sc)) != 0) {
5460 		device_printf(sc->sc_dev,
5461 		    "%s: could not read firmware, error %d\n", __func__,
5462 		    error);
5463 		goto fail;
5464 	}
5465 
5466 	/* Initialize hardware and upload firmware. */
5467 	error = wpi_hw_init(sc);
5468 	wpi_unload_firmware(sc);
5469 	if (error != 0) {
5470 		device_printf(sc->sc_dev,
5471 		    "%s: could not initialize hardware, error %d\n", __func__,
5472 		    error);
5473 		goto fail;
5474 	}
5475 
5476 	/* Configure adapter now that it is ready. */
5477 	sc->txq_active = 1;
5478 	if ((error = wpi_config(sc)) != 0) {
5479 		device_printf(sc->sc_dev,
5480 		    "%s: could not configure device, error %d\n", __func__,
5481 		    error);
5482 		goto fail;
5483 	}
5484 
5485 	IF_LOCK(&ifp->if_snd);
5486 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5487 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5488 	IF_UNLOCK(&ifp->if_snd);
5489 
5490 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5491 
5492 	WPI_UNLOCK(sc);
5493 
5494 	ieee80211_start_all(ic);
5495 
5496 	return;
5497 
5498 fail:	wpi_stop_locked(sc);
5499 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5500 	WPI_UNLOCK(sc);
5501 }
5502 
5503 static void
5504 wpi_stop_locked(struct wpi_softc *sc)
5505 {
5506 	struct ifnet *ifp = sc->sc_ifp;
5507 
5508 	WPI_LOCK_ASSERT(sc);
5509 
5510 	WPI_TXQ_LOCK(sc);
5511 	sc->txq_active = 0;
5512 	WPI_TXQ_UNLOCK(sc);
5513 
5514 	WPI_TXQ_STATE_LOCK(sc);
5515 	callout_stop(&sc->tx_timeout);
5516 	WPI_TXQ_STATE_UNLOCK(sc);
5517 
5518 	WPI_RXON_LOCK(sc);
5519 	callout_stop(&sc->scan_timeout);
5520 	callout_stop(&sc->calib_to);
5521 	WPI_RXON_UNLOCK(sc);
5522 
5523 	IF_LOCK(&ifp->if_snd);
5524 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5525 	IF_UNLOCK(&ifp->if_snd);
5526 
5527 	/* Power OFF hardware. */
5528 	wpi_hw_stop(sc);
5529 }
5530 
5531 static void
5532 wpi_stop(struct wpi_softc *sc)
5533 {
5534 	WPI_LOCK(sc);
5535 	wpi_stop_locked(sc);
5536 	WPI_UNLOCK(sc);
5537 }
5538 
5539 /*
5540  * Callback from net80211 to start a scan.
5541  */
5542 static void
5543 wpi_scan_start(struct ieee80211com *ic)
5544 {
5545 	struct wpi_softc *sc = ic->ic_softc;
5546 
5547 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5548 }
5549 
5550 /*
5551  * Callback from net80211 to terminate a scan.
5552  */
5553 static void
5554 wpi_scan_end(struct ieee80211com *ic)
5555 {
5556 	struct wpi_softc *sc = ic->ic_softc;
5557 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5558 
5559 	if (vap->iv_state == IEEE80211_S_RUN)
5560 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5561 }
5562 
5563 /**
5564  * Called by the net80211 framework to indicate to the driver
5565  * that the channel should be changed
5566  */
5567 static void
5568 wpi_set_channel(struct ieee80211com *ic)
5569 {
5570 	const struct ieee80211_channel *c = ic->ic_curchan;
5571 	struct wpi_softc *sc = ic->ic_softc;
5572 	int error;
5573 
5574 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5575 
5576 	WPI_LOCK(sc);
5577 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5578 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5579 	WPI_UNLOCK(sc);
5580 	WPI_TX_LOCK(sc);
5581 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5582 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5583 	WPI_TX_UNLOCK(sc);
5584 
5585 	/*
5586 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5587 	 * are already taken care of by their respective firmware commands.
5588 	 */
5589 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5590 		WPI_RXON_LOCK(sc);
5591 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5592 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5593 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5594 			    WPI_RXON_24GHZ);
5595 		} else {
5596 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5597 			    WPI_RXON_24GHZ);
5598 		}
5599 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5600 			device_printf(sc->sc_dev,
5601 			    "%s: error %d setting channel\n", __func__,
5602 			    error);
5603 		WPI_RXON_UNLOCK(sc);
5604 	}
5605 }
5606 
5607 /**
5608  * Called by net80211 to indicate that we need to scan the current
5609  * channel. The channel is previously be set via the wpi_set_channel
5610  * callback.
5611  */
5612 static void
5613 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5614 {
5615 	struct ieee80211vap *vap = ss->ss_vap;
5616 	struct ieee80211com *ic = vap->iv_ic;
5617 	struct wpi_softc *sc = ic->ic_softc;
5618 	int error;
5619 
5620 	WPI_RXON_LOCK(sc);
5621 	error = wpi_scan(sc, ic->ic_curchan);
5622 	WPI_RXON_UNLOCK(sc);
5623 	if (error != 0)
5624 		ieee80211_cancel_scan(vap);
5625 }
5626 
5627 /**
5628  * Called by the net80211 framework to indicate
5629  * the minimum dwell time has been met, terminate the scan.
5630  * We don't actually terminate the scan as the firmware will notify
5631  * us when it's finished and we have no way to interrupt it.
5632  */
5633 static void
5634 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5635 {
5636 	/* NB: don't try to abort scan; wait for firmware to finish */
5637 }
5638 
5639 static void
5640 wpi_hw_reset(void *arg, int pending)
5641 {
5642 	struct wpi_softc *sc = arg;
5643 	struct ifnet *ifp = sc->sc_ifp;
5644 	struct ieee80211com *ic = ifp->if_l2com;
5645 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5646 
5647 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5648 
5649 	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5650 		ieee80211_cancel_scan(vap);
5651 
5652 	wpi_stop(sc);
5653 	if (vap != NULL)
5654 		ieee80211_stop(vap);
5655 	wpi_init(sc);
5656 	if (vap != NULL)
5657 		ieee80211_init(vap);
5658 }
5659