xref: /freebsd/sys/dev/wpi/if_wpi.c (revision c713eaa60353b6f1bc562075efcbe0720233249e)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/if_ether.h>
102 
103 #include <dev/wpi/if_wpireg.h>
104 #include <dev/wpi/if_wpivar.h>
105 
106 #define WPI_DEBUG
107 
108 #ifdef WPI_DEBUG
109 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111 
112 enum {
113 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
114 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
115 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
116 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
117 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
118 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
119 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
120 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
121 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
122 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
123 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
124 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
125 	WPI_DEBUG_ANY		= 0xffffffff
126 };
127 
128 int wpi_debug = 0;
129 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
130 
131 #else
132 #define DPRINTF(x)
133 #define DPRINTFN(n, x)
134 #endif
135 
136 struct wpi_ident {
137 	uint16_t	vendor;
138 	uint16_t	device;
139 	uint16_t	subdevice;
140 	const char	*name;
141 };
142 
143 static const struct wpi_ident wpi_ident_table[] = {
144 	/* The below entries support ABG regardless of the subid */
145 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
146 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
147 	/* The below entries only support BG */
148 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
149 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
150 	{ 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
151 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
152 	{ 0, 0, 0, NULL }
153 };
154 
155 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
156 		    const char name[IFNAMSIZ], int unit, int opmode,
157 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
158 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
159 static void	wpi_vap_delete(struct ieee80211vap *);
160 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
161 		    void **, bus_size_t, bus_size_t, int);
162 static void	wpi_dma_contig_free(struct wpi_dma_info *);
163 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
164 static int	wpi_alloc_shared(struct wpi_softc *);
165 static void	wpi_free_shared(struct wpi_softc *);
166 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
167 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
168 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
169 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
170 		    int, int);
171 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
172 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
173 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
174 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
175 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
176 static void	wpi_mem_lock(struct wpi_softc *);
177 static void	wpi_mem_unlock(struct wpi_softc *);
178 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
179 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
180 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
181 		    const uint32_t *, int);
182 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
183 static int	wpi_alloc_fwmem(struct wpi_softc *);
184 static void	wpi_free_fwmem(struct wpi_softc *);
185 static int	wpi_load_firmware(struct wpi_softc *);
186 static void	wpi_unload_firmware(struct wpi_softc *);
187 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
188 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
189 		    struct wpi_rx_data *);
190 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
191 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
192 static void	wpi_bmiss(void *, int);
193 static void	wpi_notif_intr(struct wpi_softc *);
194 static void	wpi_intr(void *);
195 static void	wpi_ops(void *, int);
196 static uint8_t	wpi_plcp_signal(int);
197 static int	wpi_queue_cmd(struct wpi_softc *, int, int, int);
198 static void	wpi_watchdog(void *);
199 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
200 		    struct ieee80211_node *, int);
201 static void	wpi_start(struct ifnet *);
202 static void	wpi_start_locked(struct ifnet *);
203 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204 		    const struct ieee80211_bpf_params *);
205 static void	wpi_scan_start(struct ieee80211com *);
206 static void	wpi_scan_end(struct ieee80211com *);
207 static void	wpi_set_channel(struct ieee80211com *);
208 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
210 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
211 static void	wpi_read_eeprom(struct wpi_softc *);
212 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
213 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
214 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
215 static int	wpi_wme_update(struct ieee80211com *);
216 static int	wpi_mrr_setup(struct wpi_softc *);
217 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
218 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
219 #if 0
220 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
221 #endif
222 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
223 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
224 static int	wpi_scan(struct wpi_softc *);
225 static int	wpi_config(struct wpi_softc *);
226 static void	wpi_stop_master(struct wpi_softc *);
227 static int	wpi_power_up(struct wpi_softc *);
228 static int	wpi_reset(struct wpi_softc *);
229 static void	wpi_hw_config(struct wpi_softc *);
230 static void	wpi_init(void *);
231 static void	wpi_init_locked(struct wpi_softc *, int);
232 static void	wpi_stop(struct wpi_softc *);
233 static void	wpi_stop_locked(struct wpi_softc *);
234 
235 static void	wpi_newassoc(struct ieee80211_node *, int);
236 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
237 		    int);
238 static void	wpi_calib_timeout(void *);
239 static void	wpi_power_calibration(struct wpi_softc *, int);
240 static int	wpi_get_power_index(struct wpi_softc *,
241 		    struct wpi_power_group *, struct ieee80211_channel *, int);
242 static const char *wpi_cmd_str(int);
243 static int wpi_probe(device_t);
244 static int wpi_attach(device_t);
245 static int wpi_detach(device_t);
246 static int wpi_shutdown(device_t);
247 static int wpi_suspend(device_t);
248 static int wpi_resume(device_t);
249 
250 
251 static device_method_t wpi_methods[] = {
252 	/* Device interface */
253 	DEVMETHOD(device_probe,		wpi_probe),
254 	DEVMETHOD(device_attach,	wpi_attach),
255 	DEVMETHOD(device_detach,	wpi_detach),
256 	DEVMETHOD(device_shutdown,	wpi_shutdown),
257 	DEVMETHOD(device_suspend,	wpi_suspend),
258 	DEVMETHOD(device_resume,	wpi_resume),
259 
260 	{ 0, 0 }
261 };
262 
263 static driver_t wpi_driver = {
264 	"wpi",
265 	wpi_methods,
266 	sizeof (struct wpi_softc)
267 };
268 
269 static devclass_t wpi_devclass;
270 
271 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
272 
273 static const uint8_t wpi_ridx_to_plcp[] = {
274 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
275 	/* R1-R4 (ral/ural is R4-R1) */
276 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
277 	/* CCK: device-dependent */
278 	10, 20, 55, 110
279 };
280 static const uint8_t wpi_ridx_to_rate[] = {
281 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
282 	2, 4, 11, 22 /*CCK */
283 };
284 
285 
286 static int
287 wpi_probe(device_t dev)
288 {
289 	const struct wpi_ident *ident;
290 
291 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
292 		if (pci_get_vendor(dev) == ident->vendor &&
293 		    pci_get_device(dev) == ident->device) {
294 			device_set_desc(dev, ident->name);
295 			return 0;
296 		}
297 	}
298 	return ENXIO;
299 }
300 
301 /**
302  * Load the firmare image from disk to the allocated dma buffer.
303  * we also maintain the reference to the firmware pointer as there
304  * is times where we may need to reload the firmware but we are not
305  * in a context that can access the filesystem (ie taskq cause by restart)
306  *
307  * @return 0 on success, an errno on failure
308  */
309 static int
310 wpi_load_firmware(struct wpi_softc *sc)
311 {
312 	const struct firmware *fp;
313 	struct wpi_dma_info *dma = &sc->fw_dma;
314 	const struct wpi_firmware_hdr *hdr;
315 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
316 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
317 	int error;
318 
319 	DPRINTFN(WPI_DEBUG_FIRMWARE,
320 	    ("Attempting Loading Firmware from wpi_fw module\n"));
321 
322 	WPI_UNLOCK(sc);
323 
324 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
325 		device_printf(sc->sc_dev,
326 		    "could not load firmware image 'wpifw'\n");
327 		error = ENOENT;
328 		WPI_LOCK(sc);
329 		goto fail;
330 	}
331 
332 	fp = sc->fw_fp;
333 
334 	WPI_LOCK(sc);
335 
336 	/* Validate the firmware is minimum a particular version */
337 	if (fp->version < WPI_FW_MINVERSION) {
338 	    device_printf(sc->sc_dev,
339 			   "firmware version is too old. Need %d, got %d\n",
340 			   WPI_FW_MINVERSION,
341 			   fp->version);
342 	    error = ENXIO;
343 	    goto fail;
344 	}
345 
346 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
347 		device_printf(sc->sc_dev,
348 		    "firmware file too short: %zu bytes\n", fp->datasize);
349 		error = ENXIO;
350 		goto fail;
351 	}
352 
353 	hdr = (const struct wpi_firmware_hdr *)fp->data;
354 
355 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
356 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
357 
358 	rtextsz = le32toh(hdr->rtextsz);
359 	rdatasz = le32toh(hdr->rdatasz);
360 	itextsz = le32toh(hdr->itextsz);
361 	idatasz = le32toh(hdr->idatasz);
362 	btextsz = le32toh(hdr->btextsz);
363 
364 	/* check that all firmware segments are present */
365 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
366 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
367 		device_printf(sc->sc_dev,
368 		    "firmware file too short: %zu bytes\n", fp->datasize);
369 		error = ENXIO; /* XXX appropriate error code? */
370 		goto fail;
371 	}
372 
373 	/* get pointers to firmware segments */
374 	rtext = (const uint8_t *)(hdr + 1);
375 	rdata = rtext + rtextsz;
376 	itext = rdata + rdatasz;
377 	idata = itext + itextsz;
378 	btext = idata + idatasz;
379 
380 	DPRINTFN(WPI_DEBUG_FIRMWARE,
381 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
382 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
383 	     (le32toh(hdr->version) & 0xff000000) >> 24,
384 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
385 	     (le32toh(hdr->version) & 0x0000ffff),
386 	     rtextsz, rdatasz,
387 	     itextsz, idatasz, btextsz));
388 
389 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
390 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
391 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
392 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
393 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
394 
395 	/* sanity checks */
396 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
397 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
398 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
399 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
400 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
401 	    (btextsz & 3) != 0) {
402 		device_printf(sc->sc_dev, "firmware invalid\n");
403 		error = EINVAL;
404 		goto fail;
405 	}
406 
407 	/* copy initialization images into pre-allocated DMA-safe memory */
408 	memcpy(dma->vaddr, idata, idatasz);
409 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
410 
411 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
412 
413 	/* tell adapter where to find initialization images */
414 	wpi_mem_lock(sc);
415 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
416 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
417 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
418 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
419 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
420 	wpi_mem_unlock(sc);
421 
422 	/* load firmware boot code */
423 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
424 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
425 	    goto fail;
426 	}
427 
428 	/* now press "execute" */
429 	WPI_WRITE(sc, WPI_RESET, 0);
430 
431 	/* wait at most one second for the first alive notification */
432 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
433 		device_printf(sc->sc_dev,
434 		    "timeout waiting for adapter to initialize\n");
435 		goto fail;
436 	}
437 
438 	/* copy runtime images into pre-allocated DMA-sage memory */
439 	memcpy(dma->vaddr, rdata, rdatasz);
440 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
441 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
442 
443 	/* tell adapter where to find runtime images */
444 	wpi_mem_lock(sc);
445 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
446 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
447 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
448 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
449 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
450 	wpi_mem_unlock(sc);
451 
452 	/* wait at most one second for the first alive notification */
453 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
454 		device_printf(sc->sc_dev,
455 		    "timeout waiting for adapter to initialize2\n");
456 		goto fail;
457 	}
458 
459 	DPRINTFN(WPI_DEBUG_FIRMWARE,
460 	    ("Firmware loaded to driver successfully\n"));
461 	return error;
462 fail:
463 	wpi_unload_firmware(sc);
464 	return error;
465 }
466 
467 /**
468  * Free the referenced firmware image
469  */
470 static void
471 wpi_unload_firmware(struct wpi_softc *sc)
472 {
473 
474 	if (sc->fw_fp) {
475 		WPI_UNLOCK(sc);
476 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
477 		WPI_LOCK(sc);
478 		sc->fw_fp = NULL;
479 	}
480 }
481 
482 static int
483 wpi_attach(device_t dev)
484 {
485 	struct wpi_softc *sc = device_get_softc(dev);
486 	struct ifnet *ifp;
487 	struct ieee80211com *ic;
488 	int ac, error, supportsa = 1;
489 	uint32_t tmp;
490 	const struct wpi_ident *ident;
491 
492 	sc->sc_dev = dev;
493 
494 	if (bootverbose || wpi_debug)
495 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
496 
497 	/*
498 	 * Some card's only support 802.11b/g not a, check to see if
499 	 * this is one such card. A 0x0 in the subdevice table indicates
500 	 * the entire subdevice range is to be ignored.
501 	 */
502 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
503 		if (ident->subdevice &&
504 		    pci_get_subdevice(dev) == ident->subdevice) {
505 		    supportsa = 0;
506 		    break;
507 		}
508 	}
509 
510 	/*
511 	 * Create the taskqueues used by the driver. Primarily
512 	 * sc_tq handles most the task
513 	 */
514 	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
515 	    taskqueue_thread_enqueue, &sc->sc_tq);
516 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
517 	    device_get_nameunit(dev));
518 
519 	/* Create the tasks that can be queued */
520 	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
521 	TASK_INIT(&sc->sc_bmiss_task, 0, wpi_bmiss, sc);
522 
523 	WPI_LOCK_INIT(sc);
524 	WPI_CMD_LOCK_INIT(sc);
525 
526 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
527 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
528 
529 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
530 		device_printf(dev, "chip is in D%d power mode "
531 		    "-- setting to D0\n", pci_get_powerstate(dev));
532 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
533 	}
534 
535 	/* disable the retry timeout register */
536 	pci_write_config(dev, 0x41, 0, 1);
537 
538 	/* enable bus-mastering */
539 	pci_enable_busmaster(dev);
540 
541 	sc->mem_rid = PCIR_BAR(0);
542 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
543 	    RF_ACTIVE);
544 	if (sc->mem == NULL) {
545 		device_printf(dev, "could not allocate memory resource\n");
546 		error = ENOMEM;
547 		goto fail;
548 	}
549 
550 	sc->sc_st = rman_get_bustag(sc->mem);
551 	sc->sc_sh = rman_get_bushandle(sc->mem);
552 
553 	sc->irq_rid = 0;
554 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
555 	    RF_ACTIVE | RF_SHAREABLE);
556 	if (sc->irq == NULL) {
557 		device_printf(dev, "could not allocate interrupt resource\n");
558 		error = ENOMEM;
559 		goto fail;
560 	}
561 
562 	/*
563 	 * Allocate DMA memory for firmware transfers.
564 	 */
565 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
566 		printf(": could not allocate firmware memory\n");
567 		error = ENOMEM;
568 		goto fail;
569 	}
570 
571 	/*
572 	 * Put adapter into a known state.
573 	 */
574 	if ((error = wpi_reset(sc)) != 0) {
575 		device_printf(dev, "could not reset adapter\n");
576 		goto fail;
577 	}
578 
579 	wpi_mem_lock(sc);
580 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
581 	if (bootverbose || wpi_debug)
582 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
583 
584 	wpi_mem_unlock(sc);
585 
586 	/* Allocate shared page */
587 	if ((error = wpi_alloc_shared(sc)) != 0) {
588 		device_printf(dev, "could not allocate shared page\n");
589 		goto fail;
590 	}
591 
592 	/* tx data queues  - 4 for QoS purposes */
593 	for (ac = 0; ac < WME_NUM_AC; ac++) {
594 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
595 		if (error != 0) {
596 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
597 		    goto fail;
598 		}
599 	}
600 
601 	/* command queue to talk to the card's firmware */
602 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
603 	if (error != 0) {
604 		device_printf(dev, "could not allocate command ring\n");
605 		goto fail;
606 	}
607 
608 	/* receive data queue */
609 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
610 	if (error != 0) {
611 		device_printf(dev, "could not allocate Rx ring\n");
612 		goto fail;
613 	}
614 
615 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
616 	if (ifp == NULL) {
617 		device_printf(dev, "can not if_alloc()\n");
618 		error = ENOMEM;
619 		goto fail;
620 	}
621 	ic = ifp->if_l2com;
622 
623 	ic->ic_ifp = ifp;
624 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
625 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
626 
627 	/* set device capabilities */
628 	ic->ic_caps =
629 		  IEEE80211_C_STA		/* station mode supported */
630 		| IEEE80211_C_MONITOR		/* monitor mode supported */
631 		| IEEE80211_C_TXPMGT		/* tx power management */
632 		| IEEE80211_C_SHSLOT		/* short slot time supported */
633 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
634 		| IEEE80211_C_WPA		/* 802.11i */
635 /* XXX looks like WME is partly supported? */
636 #if 0
637 		| IEEE80211_C_IBSS		/* IBSS mode support */
638 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
639 		| IEEE80211_C_WME		/* 802.11e */
640 		| IEEE80211_C_HOSTAP		/* Host access point mode */
641 #endif
642 		;
643 
644 	/*
645 	 * Read in the eeprom and also setup the channels for
646 	 * net80211. We don't set the rates as net80211 does this for us
647 	 */
648 	wpi_read_eeprom(sc);
649 
650 	if (bootverbose || wpi_debug) {
651 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
652 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
653 			  sc->type > 1 ? 'B': '?');
654 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
655 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
656 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
657 			  supportsa ? "does" : "does not");
658 
659 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
660 	       what sc->rev really represents - benjsc 20070615 */
661 	}
662 
663 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
664 	ifp->if_softc = sc;
665 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
666 	ifp->if_init = wpi_init;
667 	ifp->if_ioctl = wpi_ioctl;
668 	ifp->if_start = wpi_start;
669 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
670 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
671 	IFQ_SET_READY(&ifp->if_snd);
672 
673 	ieee80211_ifattach(ic);
674 	/* override default methods */
675 	ic->ic_node_alloc = wpi_node_alloc;
676 	ic->ic_newassoc = wpi_newassoc;
677 	ic->ic_raw_xmit = wpi_raw_xmit;
678 	ic->ic_wme.wme_update = wpi_wme_update;
679 	ic->ic_scan_start = wpi_scan_start;
680 	ic->ic_scan_end = wpi_scan_end;
681 	ic->ic_set_channel = wpi_set_channel;
682 	ic->ic_scan_curchan = wpi_scan_curchan;
683 	ic->ic_scan_mindwell = wpi_scan_mindwell;
684 
685 	ic->ic_vap_create = wpi_vap_create;
686 	ic->ic_vap_delete = wpi_vap_delete;
687 
688 	bpfattach(ifp, DLT_IEEE802_11_RADIO,
689 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
690 
691 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
692 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
693 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
694 
695 	sc->sc_txtap_len = sizeof sc->sc_txtap;
696 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
697 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
698 
699 	/*
700 	 * Hook our interrupt after all initialization is complete.
701 	 */
702 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
703 	    NULL, wpi_intr, sc, &sc->sc_ih);
704 	if (error != 0) {
705 		device_printf(dev, "could not set up interrupt\n");
706 		goto fail;
707 	}
708 
709 	if (bootverbose)
710 		ieee80211_announce(ic);
711 #ifdef XXX_DEBUG
712 	ieee80211_announce_channels(ic);
713 #endif
714 	return 0;
715 
716 fail:	wpi_detach(dev);
717 	return ENXIO;
718 }
719 
720 static int
721 wpi_detach(device_t dev)
722 {
723 	struct wpi_softc *sc = device_get_softc(dev);
724 	struct ifnet *ifp = sc->sc_ifp;
725 	struct ieee80211com *ic = ifp->if_l2com;
726 	int ac;
727 
728 	if (ifp != NULL) {
729 		wpi_stop(sc);
730 		callout_drain(&sc->watchdog_to);
731 		callout_drain(&sc->calib_to);
732 		bpfdetach(ifp);
733 		ieee80211_ifdetach(ic);
734 	}
735 
736 	WPI_LOCK(sc);
737 	if (sc->txq[0].data_dmat) {
738 		for (ac = 0; ac < WME_NUM_AC; ac++)
739 			wpi_free_tx_ring(sc, &sc->txq[ac]);
740 
741 		wpi_free_tx_ring(sc, &sc->cmdq);
742 		wpi_free_rx_ring(sc, &sc->rxq);
743 		wpi_free_shared(sc);
744 	}
745 
746 	if (sc->fw_fp != NULL) {
747 		wpi_unload_firmware(sc);
748 	}
749 
750 	if (sc->fw_dma.tag)
751 		wpi_free_fwmem(sc);
752 	WPI_UNLOCK(sc);
753 
754 	if (sc->irq != NULL) {
755 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
756 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
757 	}
758 
759 	if (sc->mem != NULL)
760 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
761 
762 	if (ifp != NULL)
763 		if_free(ifp);
764 
765 	taskqueue_free(sc->sc_tq);
766 
767 	WPI_LOCK_DESTROY(sc);
768 	WPI_CMD_LOCK_DESTROY(sc);
769 
770 	return 0;
771 }
772 
773 static struct ieee80211vap *
774 wpi_vap_create(struct ieee80211com *ic,
775 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
776 	const uint8_t bssid[IEEE80211_ADDR_LEN],
777 	const uint8_t mac[IEEE80211_ADDR_LEN])
778 {
779 	struct wpi_vap *wvp;
780 	struct ieee80211vap *vap;
781 
782 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
783 		return NULL;
784 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
785 	    M_80211_VAP, M_NOWAIT | M_ZERO);
786 	if (wvp == NULL)
787 		return NULL;
788 	vap = &wvp->vap;
789 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
790 	/* override with driver methods */
791 	wvp->newstate = vap->iv_newstate;
792 	vap->iv_newstate = wpi_newstate;
793 
794 	ieee80211_amrr_init(&wvp->amrr, vap,
795 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
796 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
797 	    500 /*ms*/);
798 
799 	/* complete setup */
800 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
801 	ic->ic_opmode = opmode;
802 	return vap;
803 }
804 
805 static void
806 wpi_vap_delete(struct ieee80211vap *vap)
807 {
808 	struct wpi_vap *wvp = WPI_VAP(vap);
809 
810 	ieee80211_amrr_cleanup(&wvp->amrr);
811 	ieee80211_vap_detach(vap);
812 	free(wvp, M_80211_VAP);
813 }
814 
815 static void
816 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
817 {
818 	if (error != 0)
819 		return;
820 
821 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
822 
823 	*(bus_addr_t *)arg = segs[0].ds_addr;
824 }
825 
826 /*
827  * Allocates a contiguous block of dma memory of the requested size and
828  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
829  * allocations greater than 4096 may fail. Hence if the requested alignment is
830  * greater we allocate 'alignment' size extra memory and shift the vaddr and
831  * paddr after the dma load. This bypasses the problem at the cost of a little
832  * more memory.
833  */
834 static int
835 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
836     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
837 {
838 	int error;
839 	bus_size_t align;
840 	bus_size_t reqsize;
841 
842 	DPRINTFN(WPI_DEBUG_DMA,
843 	    ("Size: %zd - alignment %zd\n", size, alignment));
844 
845 	dma->size = size;
846 	dma->tag = NULL;
847 
848 	if (alignment > 4096) {
849 		align = PAGE_SIZE;
850 		reqsize = size + alignment;
851 	} else {
852 		align = alignment;
853 		reqsize = size;
854 	}
855 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
856 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
857 	    NULL, NULL, reqsize,
858 	    1, reqsize, flags,
859 	    NULL, NULL, &dma->tag);
860 	if (error != 0) {
861 		device_printf(sc->sc_dev,
862 		    "could not create shared page DMA tag\n");
863 		goto fail;
864 	}
865 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
866 	    flags | BUS_DMA_ZERO, &dma->map);
867 	if (error != 0) {
868 		device_printf(sc->sc_dev,
869 		    "could not allocate shared page DMA memory\n");
870 		goto fail;
871 	}
872 
873 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
874 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
875 
876 	/* Save the original pointers so we can free all the memory */
877 	dma->paddr = dma->paddr_start;
878 	dma->vaddr = dma->vaddr_start;
879 
880 	/*
881 	 * Check the alignment and increment by 4096 until we get the
882 	 * requested alignment. Fail if can't obtain the alignment
883 	 * we requested.
884 	 */
885 	if ((dma->paddr & (alignment -1 )) != 0) {
886 		int i;
887 
888 		for (i = 0; i < alignment / 4096; i++) {
889 			if ((dma->paddr & (alignment - 1 )) == 0)
890 				break;
891 			dma->paddr += 4096;
892 			dma->vaddr += 4096;
893 		}
894 		if (i == alignment / 4096) {
895 			device_printf(sc->sc_dev,
896 			    "alignment requirement was not satisfied\n");
897 			goto fail;
898 		}
899 	}
900 
901 	if (error != 0) {
902 		device_printf(sc->sc_dev,
903 		    "could not load shared page DMA map\n");
904 		goto fail;
905 	}
906 
907 	if (kvap != NULL)
908 		*kvap = dma->vaddr;
909 
910 	return 0;
911 
912 fail:
913 	wpi_dma_contig_free(dma);
914 	return error;
915 }
916 
917 static void
918 wpi_dma_contig_free(struct wpi_dma_info *dma)
919 {
920 	if (dma->tag) {
921 		if (dma->map != NULL) {
922 			if (dma->paddr_start != 0) {
923 				bus_dmamap_sync(dma->tag, dma->map,
924 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
925 				bus_dmamap_unload(dma->tag, dma->map);
926 			}
927 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
928 		}
929 		bus_dma_tag_destroy(dma->tag);
930 	}
931 }
932 
933 /*
934  * Allocate a shared page between host and NIC.
935  */
936 static int
937 wpi_alloc_shared(struct wpi_softc *sc)
938 {
939 	int error;
940 
941 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
942 	    (void **)&sc->shared, sizeof (struct wpi_shared),
943 	    PAGE_SIZE,
944 	    BUS_DMA_NOWAIT);
945 
946 	if (error != 0) {
947 		device_printf(sc->sc_dev,
948 		    "could not allocate shared area DMA memory\n");
949 	}
950 
951 	return error;
952 }
953 
954 static void
955 wpi_free_shared(struct wpi_softc *sc)
956 {
957 	wpi_dma_contig_free(&sc->shared_dma);
958 }
959 
960 static int
961 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
962 {
963 
964 	int i, error;
965 
966 	ring->cur = 0;
967 
968 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
969 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
970 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
971 
972 	if (error != 0) {
973 		device_printf(sc->sc_dev,
974 		    "%s: could not allocate rx ring DMA memory, error %d\n",
975 		    __func__, error);
976 		goto fail;
977 	}
978 
979         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
980 	    BUS_SPACE_MAXADDR_32BIT,
981             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
982             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
983         if (error != 0) {
984                 device_printf(sc->sc_dev,
985 		    "%s: bus_dma_tag_create_failed, error %d\n",
986 		    __func__, error);
987                 goto fail;
988         }
989 
990 	/*
991 	 * Setup Rx buffers.
992 	 */
993 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
994 		struct wpi_rx_data *data = &ring->data[i];
995 		struct mbuf *m;
996 		bus_addr_t paddr;
997 
998 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
999 		if (error != 0) {
1000 			device_printf(sc->sc_dev,
1001 			    "%s: bus_dmamap_create failed, error %d\n",
1002 			    __func__, error);
1003 			goto fail;
1004 		}
1005 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1006 		if (m == NULL) {
1007 			device_printf(sc->sc_dev,
1008 			   "%s: could not allocate rx mbuf\n", __func__);
1009 			error = ENOMEM;
1010 			goto fail;
1011 		}
1012 		/* map page */
1013 		error = bus_dmamap_load(ring->data_dmat, data->map,
1014 		    mtod(m, caddr_t), MJUMPAGESIZE,
1015 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1016 		if (error != 0 && error != EFBIG) {
1017 			device_printf(sc->sc_dev,
1018 			    "%s: bus_dmamap_load failed, error %d\n",
1019 			    __func__, error);
1020 			m_freem(m);
1021 			error = ENOMEM;	/* XXX unique code */
1022 			goto fail;
1023 		}
1024 		bus_dmamap_sync(ring->data_dmat, data->map,
1025 		    BUS_DMASYNC_PREWRITE);
1026 
1027 		data->m = m;
1028 		ring->desc[i] = htole32(paddr);
1029 	}
1030 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1031 	    BUS_DMASYNC_PREWRITE);
1032 	return 0;
1033 fail:
1034 	wpi_free_rx_ring(sc, ring);
1035 	return error;
1036 }
1037 
1038 static void
1039 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1040 {
1041 	int ntries;
1042 
1043 	wpi_mem_lock(sc);
1044 
1045 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1046 
1047 	for (ntries = 0; ntries < 100; ntries++) {
1048 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1049 			break;
1050 		DELAY(10);
1051 	}
1052 
1053 	wpi_mem_unlock(sc);
1054 
1055 #ifdef WPI_DEBUG
1056 	if (ntries == 100)
1057 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1058 #endif
1059 
1060 	ring->cur = 0;
1061 }
1062 
1063 static void
1064 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1065 {
1066 	int i;
1067 
1068 	wpi_dma_contig_free(&ring->desc_dma);
1069 
1070 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1071 		if (ring->data[i].m != NULL)
1072 			m_freem(ring->data[i].m);
1073 }
1074 
1075 static int
1076 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1077 	int qid)
1078 {
1079 	struct wpi_tx_data *data;
1080 	int i, error;
1081 
1082 	ring->qid = qid;
1083 	ring->count = count;
1084 	ring->queued = 0;
1085 	ring->cur = 0;
1086 	ring->data = NULL;
1087 
1088 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1089 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1090 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1091 
1092 	if (error != 0) {
1093 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1094 	    goto fail;
1095 	}
1096 
1097 	/* update shared page with ring's base address */
1098 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1099 
1100 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1101 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1102 		BUS_DMA_NOWAIT);
1103 
1104 	if (error != 0) {
1105 		device_printf(sc->sc_dev,
1106 		    "could not allocate tx command DMA memory\n");
1107 		goto fail;
1108 	}
1109 
1110 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1111 	    M_NOWAIT | M_ZERO);
1112 	if (ring->data == NULL) {
1113 		device_printf(sc->sc_dev,
1114 		    "could not allocate tx data slots\n");
1115 		goto fail;
1116 	}
1117 
1118 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1119 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1120 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1121 	    &ring->data_dmat);
1122 	if (error != 0) {
1123 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1124 		goto fail;
1125 	}
1126 
1127 	for (i = 0; i < count; i++) {
1128 		data = &ring->data[i];
1129 
1130 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1131 		if (error != 0) {
1132 			device_printf(sc->sc_dev,
1133 			    "could not create tx buf DMA map\n");
1134 			goto fail;
1135 		}
1136 		bus_dmamap_sync(ring->data_dmat, data->map,
1137 		    BUS_DMASYNC_PREWRITE);
1138 	}
1139 
1140 	return 0;
1141 
1142 fail:
1143 	wpi_free_tx_ring(sc, ring);
1144 	return error;
1145 }
1146 
1147 static void
1148 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1149 {
1150 	struct wpi_tx_data *data;
1151 	int i, ntries;
1152 
1153 	wpi_mem_lock(sc);
1154 
1155 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1156 	for (ntries = 0; ntries < 100; ntries++) {
1157 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1158 			break;
1159 		DELAY(10);
1160 	}
1161 #ifdef WPI_DEBUG
1162 	if (ntries == 100)
1163 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1164 		    ring->qid);
1165 #endif
1166 	wpi_mem_unlock(sc);
1167 
1168 	for (i = 0; i < ring->count; i++) {
1169 		data = &ring->data[i];
1170 
1171 		if (data->m != NULL) {
1172 			bus_dmamap_unload(ring->data_dmat, data->map);
1173 			m_freem(data->m);
1174 			data->m = NULL;
1175 		}
1176 	}
1177 
1178 	ring->queued = 0;
1179 	ring->cur = 0;
1180 }
1181 
1182 static void
1183 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1184 {
1185 	struct wpi_tx_data *data;
1186 	int i;
1187 
1188 	wpi_dma_contig_free(&ring->desc_dma);
1189 	wpi_dma_contig_free(&ring->cmd_dma);
1190 
1191 	if (ring->data != NULL) {
1192 		for (i = 0; i < ring->count; i++) {
1193 			data = &ring->data[i];
1194 
1195 			if (data->m != NULL) {
1196 				bus_dmamap_sync(ring->data_dmat, data->map,
1197 				    BUS_DMASYNC_POSTWRITE);
1198 				bus_dmamap_unload(ring->data_dmat, data->map);
1199 				m_freem(data->m);
1200 				data->m = NULL;
1201 			}
1202 		}
1203 		free(ring->data, M_DEVBUF);
1204 	}
1205 
1206 	if (ring->data_dmat != NULL)
1207 		bus_dma_tag_destroy(ring->data_dmat);
1208 }
1209 
1210 static int
1211 wpi_shutdown(device_t dev)
1212 {
1213 	struct wpi_softc *sc = device_get_softc(dev);
1214 
1215 	WPI_LOCK(sc);
1216 	wpi_stop_locked(sc);
1217 	wpi_unload_firmware(sc);
1218 	WPI_UNLOCK(sc);
1219 
1220 	return 0;
1221 }
1222 
1223 static int
1224 wpi_suspend(device_t dev)
1225 {
1226 	struct wpi_softc *sc = device_get_softc(dev);
1227 
1228 	wpi_stop(sc);
1229 	return 0;
1230 }
1231 
1232 static int
1233 wpi_resume(device_t dev)
1234 {
1235 	struct wpi_softc *sc = device_get_softc(dev);
1236 	struct ifnet *ifp = sc->sc_ifp;
1237 
1238 	pci_write_config(dev, 0x41, 0, 1);
1239 
1240 	if (ifp->if_flags & IFF_UP) {
1241 		wpi_init(ifp->if_softc);
1242 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1243 			wpi_start(ifp);
1244 	}
1245 	return 0;
1246 }
1247 
1248 /* ARGSUSED */
1249 static struct ieee80211_node *
1250 wpi_node_alloc(struct ieee80211vap *vap __unused,
1251 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1252 {
1253 	struct wpi_node *wn;
1254 
1255 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1256 
1257 	return &wn->ni;
1258 }
1259 
1260 /**
1261  * Called by net80211 when ever there is a change to 80211 state machine
1262  */
1263 static int
1264 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1265 {
1266 	struct wpi_vap *wvp = WPI_VAP(vap);
1267 	struct ieee80211com *ic = vap->iv_ic;
1268 	struct ifnet *ifp = ic->ic_ifp;
1269 	struct wpi_softc *sc = ifp->if_softc;
1270 	int error;
1271 
1272 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1273 		ieee80211_state_name[vap->iv_state],
1274 		ieee80211_state_name[nstate], sc->flags));
1275 
1276 	if (nstate == IEEE80211_S_AUTH) {
1277 		/* Delay the auth transition until we can update the firmware */
1278 		error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1279 		return (error != 0 ? error : EINPROGRESS);
1280 	}
1281 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1282 		/* set the association id first */
1283 		error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL);
1284 		return (error != 0 ? error : EINPROGRESS);
1285 	}
1286 	if (nstate == IEEE80211_S_RUN) {
1287 		/* RUN -> RUN transition; just restart the timers */
1288 		wpi_calib_timeout(sc);
1289 		/* XXX split out rate control timer */
1290 	}
1291 	return wvp->newstate(vap, nstate, arg);
1292 }
1293 
1294 /*
1295  * Grab exclusive access to NIC memory.
1296  */
1297 static void
1298 wpi_mem_lock(struct wpi_softc *sc)
1299 {
1300 	int ntries;
1301 	uint32_t tmp;
1302 
1303 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1304 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1305 
1306 	/* spin until we actually get the lock */
1307 	for (ntries = 0; ntries < 100; ntries++) {
1308 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1309 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1310 			break;
1311 		DELAY(10);
1312 	}
1313 	if (ntries == 100)
1314 		device_printf(sc->sc_dev, "could not lock memory\n");
1315 }
1316 
1317 /*
1318  * Release lock on NIC memory.
1319  */
1320 static void
1321 wpi_mem_unlock(struct wpi_softc *sc)
1322 {
1323 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1324 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1325 }
1326 
1327 static uint32_t
1328 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1329 {
1330 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1331 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1332 }
1333 
1334 static void
1335 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1336 {
1337 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1338 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1339 }
1340 
1341 static void
1342 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1343     const uint32_t *data, int wlen)
1344 {
1345 	for (; wlen > 0; wlen--, data++, addr+=4)
1346 		wpi_mem_write(sc, addr, *data);
1347 }
1348 
1349 /*
1350  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1351  * using the traditional bit-bang method. Data is read up until len bytes have
1352  * been obtained.
1353  */
1354 static uint16_t
1355 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1356 {
1357 	int ntries;
1358 	uint32_t val;
1359 	uint8_t *out = data;
1360 
1361 	wpi_mem_lock(sc);
1362 
1363 	for (; len > 0; len -= 2, addr++) {
1364 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1365 
1366 		for (ntries = 0; ntries < 10; ntries++) {
1367 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1368 				break;
1369 			DELAY(5);
1370 		}
1371 
1372 		if (ntries == 10) {
1373 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1374 			return ETIMEDOUT;
1375 		}
1376 
1377 		*out++= val >> 16;
1378 		if (len > 1)
1379 			*out ++= val >> 24;
1380 	}
1381 
1382 	wpi_mem_unlock(sc);
1383 
1384 	return 0;
1385 }
1386 
1387 /*
1388  * The firmware text and data segments are transferred to the NIC using DMA.
1389  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1390  * where to find it.  Once the NIC has copied the firmware into its internal
1391  * memory, we can free our local copy in the driver.
1392  */
1393 static int
1394 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1395 {
1396 	int error, ntries;
1397 
1398 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1399 
1400 	size /= sizeof(uint32_t);
1401 
1402 	wpi_mem_lock(sc);
1403 
1404 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1405 	    (const uint32_t *)fw, size);
1406 
1407 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1408 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1409 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1410 
1411 	/* run microcode */
1412 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1413 
1414 	/* wait while the adapter is busy copying the firmware */
1415 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1416 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1417 		DPRINTFN(WPI_DEBUG_HW,
1418 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1419 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1420 		if (status & WPI_TX_IDLE(6)) {
1421 			DPRINTFN(WPI_DEBUG_HW,
1422 			    ("Status Match! - ntries = %d\n", ntries));
1423 			break;
1424 		}
1425 		DELAY(10);
1426 	}
1427 	if (ntries == 1000) {
1428 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1429 		error = ETIMEDOUT;
1430 	}
1431 
1432 	/* start the microcode executing */
1433 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1434 
1435 	wpi_mem_unlock(sc);
1436 
1437 	return (error);
1438 }
1439 
1440 static void
1441 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1442 	struct wpi_rx_data *data)
1443 {
1444 	struct ifnet *ifp = sc->sc_ifp;
1445 	struct ieee80211com *ic = ifp->if_l2com;
1446 	struct wpi_rx_ring *ring = &sc->rxq;
1447 	struct wpi_rx_stat *stat;
1448 	struct wpi_rx_head *head;
1449 	struct wpi_rx_tail *tail;
1450 	struct ieee80211_node *ni;
1451 	struct mbuf *m, *mnew;
1452 	bus_addr_t paddr;
1453 	int error;
1454 
1455 	stat = (struct wpi_rx_stat *)(desc + 1);
1456 
1457 	if (stat->len > WPI_STAT_MAXLEN) {
1458 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1459 		ifp->if_ierrors++;
1460 		return;
1461 	}
1462 
1463 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1464 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1465 
1466 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1467 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1468 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1469 	    (uintmax_t)le64toh(tail->tstamp)));
1470 
1471 	/* XXX don't need mbuf, just dma buffer */
1472 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1473 	if (mnew == NULL) {
1474 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1475 		    __func__));
1476 		ic->ic_stats.is_rx_nobuf++;
1477 		ifp->if_ierrors++;
1478 		return;
1479 	}
1480 	error = bus_dmamap_load(ring->data_dmat, data->map,
1481 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1482 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1483 	if (error != 0 && error != EFBIG) {
1484 		device_printf(sc->sc_dev,
1485 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1486 		m_freem(mnew);
1487 		ic->ic_stats.is_rx_nobuf++;	/* XXX need stat */
1488 		ifp->if_ierrors++;
1489 		return;
1490 	}
1491 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1492 
1493 	/* finalize mbuf and swap in new one */
1494 	m = data->m;
1495 	m->m_pkthdr.rcvif = ifp;
1496 	m->m_data = (caddr_t)(head + 1);
1497 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1498 
1499 	data->m = mnew;
1500 	/* update Rx descriptor */
1501 	ring->desc[ring->cur] = htole32(paddr);
1502 
1503 	if (bpf_peers_present(ifp->if_bpf)) {
1504 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1505 
1506 		tap->wr_flags = 0;
1507 		tap->wr_chan_freq =
1508 			htole16(ic->ic_channels[head->chan].ic_freq);
1509 		tap->wr_chan_flags =
1510 			htole16(ic->ic_channels[head->chan].ic_flags);
1511 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1512 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1513 		tap->wr_tsft = tail->tstamp;
1514 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1515 		switch (head->rate) {
1516 		/* CCK rates */
1517 		case  10: tap->wr_rate =   2; break;
1518 		case  20: tap->wr_rate =   4; break;
1519 		case  55: tap->wr_rate =  11; break;
1520 		case 110: tap->wr_rate =  22; break;
1521 		/* OFDM rates */
1522 		case 0xd: tap->wr_rate =  12; break;
1523 		case 0xf: tap->wr_rate =  18; break;
1524 		case 0x5: tap->wr_rate =  24; break;
1525 		case 0x7: tap->wr_rate =  36; break;
1526 		case 0x9: tap->wr_rate =  48; break;
1527 		case 0xb: tap->wr_rate =  72; break;
1528 		case 0x1: tap->wr_rate =  96; break;
1529 		case 0x3: tap->wr_rate = 108; break;
1530 		/* unknown rate: should not happen */
1531 		default:  tap->wr_rate =   0;
1532 		}
1533 		if (le16toh(head->flags) & 0x4)
1534 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1535 
1536 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1537 	}
1538 
1539 	WPI_UNLOCK(sc);
1540 
1541 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1542 	if (ni != NULL) {
1543 		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1544 		ieee80211_free_node(ni);
1545 	} else
1546 		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1547 
1548 	WPI_LOCK(sc);
1549 }
1550 
1551 static void
1552 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1553 {
1554 	struct ifnet *ifp = sc->sc_ifp;
1555 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1556 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1557 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1558 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1559 
1560 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1561 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1562 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1563 	    le32toh(stat->status)));
1564 
1565 	/*
1566 	 * Update rate control statistics for the node.
1567 	 * XXX we should not count mgmt frames since they're always sent at
1568 	 * the lowest available bit-rate.
1569 	 * XXX frames w/o ACK shouldn't be used either
1570 	 */
1571 	wn->amn.amn_txcnt++;
1572 	if (stat->ntries > 0) {
1573 		DPRINTFN(3, ("%d retries\n", stat->ntries));
1574 		wn->amn.amn_retrycnt++;
1575 	}
1576 
1577 	/* XXX oerrors should only count errors !maxtries */
1578 	if ((le32toh(stat->status) & 0xff) != 1)
1579 		ifp->if_oerrors++;
1580 	else
1581 		ifp->if_opackets++;
1582 
1583 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1584 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1585 	/* XXX handle M_TXCB? */
1586 	m_freem(txdata->m);
1587 	txdata->m = NULL;
1588 	ieee80211_free_node(txdata->ni);
1589 	txdata->ni = NULL;
1590 
1591 	ring->queued--;
1592 
1593 	sc->sc_tx_timer = 0;
1594 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1595 	wpi_start_locked(ifp);
1596 }
1597 
1598 static void
1599 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1600 {
1601 	struct wpi_tx_ring *ring = &sc->cmdq;
1602 	struct wpi_tx_data *data;
1603 
1604 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1605 				 "type=%s len=%d\n", desc->qid, desc->idx,
1606 				 desc->flags, wpi_cmd_str(desc->type),
1607 				 le32toh(desc->len)));
1608 
1609 	if ((desc->qid & 7) != 4)
1610 		return;	/* not a command ack */
1611 
1612 	data = &ring->data[desc->idx];
1613 
1614 	/* if the command was mapped in a mbuf, free it */
1615 	if (data->m != NULL) {
1616 		bus_dmamap_unload(ring->data_dmat, data->map);
1617 		m_freem(data->m);
1618 		data->m = NULL;
1619 	}
1620 
1621 	sc->flags &= ~WPI_FLAG_BUSY;
1622 	wakeup(&ring->cmd[desc->idx]);
1623 }
1624 
1625 static void
1626 wpi_bmiss(void *arg, int npending)
1627 {
1628 	struct wpi_softc *sc = arg;
1629 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1630 
1631 	ieee80211_beacon_miss(ic);
1632 }
1633 
1634 static void
1635 wpi_notif_intr(struct wpi_softc *sc)
1636 {
1637 	struct ifnet *ifp = sc->sc_ifp;
1638 	struct ieee80211com *ic = ifp->if_l2com;
1639 	struct wpi_rx_desc *desc;
1640 	struct wpi_rx_data *data;
1641 	uint32_t hw;
1642 
1643 	hw = le32toh(sc->shared->next);
1644 	while (sc->rxq.cur != hw) {
1645 		data = &sc->rxq.data[sc->rxq.cur];
1646 		desc = (void *)data->m->m_ext.ext_buf;
1647 
1648 		DPRINTFN(WPI_DEBUG_NOTIFY,
1649 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1650 			  desc->qid,
1651 			  desc->idx,
1652 			  desc->flags,
1653 			  desc->type,
1654 			  le32toh(desc->len)));
1655 
1656 		if (!(desc->qid & 0x80))	/* reply to a command */
1657 			wpi_cmd_intr(sc, desc);
1658 
1659 		switch (desc->type) {
1660 		case WPI_RX_DONE:
1661 			/* a 802.11 frame was received */
1662 			wpi_rx_intr(sc, desc, data);
1663 			break;
1664 
1665 		case WPI_TX_DONE:
1666 			/* a 802.11 frame has been transmitted */
1667 			wpi_tx_intr(sc, desc);
1668 			break;
1669 
1670 		case WPI_UC_READY:
1671 		{
1672 			struct wpi_ucode_info *uc =
1673 				(struct wpi_ucode_info *)(desc + 1);
1674 
1675 			/* the microcontroller is ready */
1676 			DPRINTF(("microcode alive notification version %x "
1677 				"alive %x\n", le32toh(uc->version),
1678 				le32toh(uc->valid)));
1679 
1680 			if (le32toh(uc->valid) != 1) {
1681 				device_printf(sc->sc_dev,
1682 				    "microcontroller initialization failed\n");
1683 				wpi_stop_locked(sc);
1684 			}
1685 			break;
1686 		}
1687 		case WPI_STATE_CHANGED:
1688 		{
1689 			uint32_t *status = (uint32_t *)(desc + 1);
1690 
1691 			/* enabled/disabled notification */
1692 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1693 
1694 			if (le32toh(*status) & 1) {
1695 				device_printf(sc->sc_dev,
1696 				    "Radio transmitter is switched off\n");
1697 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1698 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1699 				/* Disable firmware commands */
1700 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1701 			}
1702 			break;
1703 		}
1704 		case WPI_START_SCAN:
1705 		{
1706 			struct wpi_start_scan *scan =
1707 				(struct wpi_start_scan *)(desc + 1);
1708 
1709 			DPRINTFN(WPI_DEBUG_SCANNING,
1710 				 ("scanning channel %d status %x\n",
1711 			    scan->chan, le32toh(scan->status)));
1712 			break;
1713 		}
1714 		case WPI_STOP_SCAN:
1715 		{
1716 			struct wpi_stop_scan *scan =
1717 				(struct wpi_stop_scan *)(desc + 1);
1718 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1719 
1720 			DPRINTFN(WPI_DEBUG_SCANNING,
1721 			    ("scan finished nchan=%d status=%d chan=%d\n",
1722 			     scan->nchan, scan->status, scan->chan));
1723 
1724 			sc->sc_scan_timer = 0;
1725 			ieee80211_scan_next(vap);
1726 			break;
1727 		}
1728 		case WPI_MISSED_BEACON:
1729 		{
1730 			struct wpi_missed_beacon *beacon =
1731 				(struct wpi_missed_beacon *)(desc + 1);
1732 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1733 
1734 			if (le32toh(beacon->consecutive) >=
1735 			    vap->iv_bmissthreshold) {
1736 				DPRINTF(("Beacon miss: %u >= %u\n",
1737 					 le32toh(beacon->consecutive),
1738 					 vap->iv_bmissthreshold));
1739 				taskqueue_enqueue(taskqueue_swi,
1740 				    &sc->sc_bmiss_task);
1741 			}
1742 			break;
1743 		}
1744 		}
1745 
1746 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1747 	}
1748 
1749 	/* tell the firmware what we have processed */
1750 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1751 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1752 }
1753 
1754 static void
1755 wpi_intr(void *arg)
1756 {
1757 	struct wpi_softc *sc = arg;
1758 	uint32_t r;
1759 
1760 	WPI_LOCK(sc);
1761 
1762 	r = WPI_READ(sc, WPI_INTR);
1763 	if (r == 0 || r == 0xffffffff) {
1764 		WPI_UNLOCK(sc);
1765 		return;
1766 	}
1767 
1768 	/* disable interrupts */
1769 	WPI_WRITE(sc, WPI_MASK, 0);
1770 	/* ack interrupts */
1771 	WPI_WRITE(sc, WPI_INTR, r);
1772 
1773 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1774 		device_printf(sc->sc_dev, "fatal firmware error\n");
1775 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1776 				"(Hardware Error)"));
1777 		wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1778 		sc->flags &= ~WPI_FLAG_BUSY;
1779 		WPI_UNLOCK(sc);
1780 		return;
1781 	}
1782 
1783 	if (r & WPI_RX_INTR)
1784 		wpi_notif_intr(sc);
1785 
1786 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1787 		wakeup(sc);
1788 
1789 	/* re-enable interrupts */
1790 	if (sc->sc_ifp->if_flags & IFF_UP)
1791 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1792 
1793 	WPI_UNLOCK(sc);
1794 }
1795 
1796 static uint8_t
1797 wpi_plcp_signal(int rate)
1798 {
1799 	switch (rate) {
1800 	/* CCK rates (returned values are device-dependent) */
1801 	case 2:		return 10;
1802 	case 4:		return 20;
1803 	case 11:	return 55;
1804 	case 22:	return 110;
1805 
1806 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1807 	/* R1-R4 (ral/ural is R4-R1) */
1808 	case 12:	return 0xd;
1809 	case 18:	return 0xf;
1810 	case 24:	return 0x5;
1811 	case 36:	return 0x7;
1812 	case 48:	return 0x9;
1813 	case 72:	return 0xb;
1814 	case 96:	return 0x1;
1815 	case 108:	return 0x3;
1816 
1817 	/* unsupported rates (should not get there) */
1818 	default:	return 0;
1819 	}
1820 }
1821 
1822 /* quickly determine if a given rate is CCK or OFDM */
1823 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1824 
1825 /*
1826  * Construct the data packet for a transmit buffer and acutally put
1827  * the buffer onto the transmit ring, kicking the card to process the
1828  * the buffer.
1829  */
1830 static int
1831 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1832 	int ac)
1833 {
1834 	struct ieee80211vap *vap = ni->ni_vap;
1835 	struct ifnet *ifp = sc->sc_ifp;
1836 	struct ieee80211com *ic = ifp->if_l2com;
1837 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1838 	struct wpi_tx_ring *ring = &sc->txq[ac];
1839 	struct wpi_tx_desc *desc;
1840 	struct wpi_tx_data *data;
1841 	struct wpi_tx_cmd *cmd;
1842 	struct wpi_cmd_data *tx;
1843 	struct ieee80211_frame *wh;
1844 	const struct ieee80211_txparam *tp;
1845 	struct ieee80211_key *k;
1846 	struct mbuf *mnew;
1847 	int i, error, nsegs, rate, hdrlen, ismcast;
1848 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1849 
1850 	desc = &ring->desc[ring->cur];
1851 	data = &ring->data[ring->cur];
1852 
1853 	wh = mtod(m0, struct ieee80211_frame *);
1854 
1855 	hdrlen = ieee80211_hdrsize(wh);
1856 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1857 
1858 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1859 		k = ieee80211_crypto_encap(ni, m0);
1860 		if (k == NULL) {
1861 			m_freem(m0);
1862 			return ENOBUFS;
1863 		}
1864 		/* packet header may have moved, reset our local pointer */
1865 		wh = mtod(m0, struct ieee80211_frame *);
1866 	}
1867 
1868 	cmd = &ring->cmd[ring->cur];
1869 	cmd->code = WPI_CMD_TX_DATA;
1870 	cmd->flags = 0;
1871 	cmd->qid = ring->qid;
1872 	cmd->idx = ring->cur;
1873 
1874 	tx = (struct wpi_cmd_data *)cmd->data;
1875 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1876 	tx->timeout = htole16(0);
1877 	tx->ofdm_mask = 0xff;
1878 	tx->cck_mask = 0x0f;
1879 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1880 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1881 	tx->len = htole16(m0->m_pkthdr.len);
1882 
1883 	if (!ismcast) {
1884 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1885 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1886 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1887 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1888 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1889 			tx->rts_ntries = 7;
1890 		}
1891 	}
1892 	/* pick a rate */
1893 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1894 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1895 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1896 		/* tell h/w to set timestamp in probe responses */
1897 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1898 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1899 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1900 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1901 			tx->timeout = htole16(3);
1902 		else
1903 			tx->timeout = htole16(2);
1904 		rate = tp->mgmtrate;
1905 	} else if (ismcast) {
1906 		rate = tp->mcastrate;
1907 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1908 		rate = tp->ucastrate;
1909 	} else {
1910 		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1911 		rate = ni->ni_txrate;
1912 	}
1913 	tx->rate = wpi_plcp_signal(rate);
1914 
1915 	/* be very persistant at sending frames out */
1916 #if 0
1917 	tx->data_ntries = tp->maxretry;
1918 #else
1919 	tx->data_ntries = 15;		/* XXX way too high */
1920 #endif
1921 
1922 	if (bpf_peers_present(ifp->if_bpf)) {
1923 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1924 		tap->wt_flags = 0;
1925 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1926 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1927 		tap->wt_rate = rate;
1928 		tap->wt_hwqueue = ac;
1929 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1930 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1931 
1932 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1933 	}
1934 
1935 	/* save and trim IEEE802.11 header */
1936 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1937 	m_adj(m0, hdrlen);
1938 
1939 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1940 	    &nsegs, BUS_DMA_NOWAIT);
1941 	if (error != 0 && error != EFBIG) {
1942 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1943 		    error);
1944 		m_freem(m0);
1945 		return error;
1946 	}
1947 	if (error != 0) {
1948 		/* XXX use m_collapse */
1949 		mnew = m_defrag(m0, M_DONTWAIT);
1950 		if (mnew == NULL) {
1951 			device_printf(sc->sc_dev,
1952 			    "could not defragment mbuf\n");
1953 			m_freem(m0);
1954 			return ENOBUFS;
1955 		}
1956 		m0 = mnew;
1957 
1958 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1959 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1960 		if (error != 0) {
1961 			device_printf(sc->sc_dev,
1962 			    "could not map mbuf (error %d)\n", error);
1963 			m_freem(m0);
1964 			return error;
1965 		}
1966 	}
1967 
1968 	data->m = m0;
1969 	data->ni = ni;
1970 
1971 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1972 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1973 
1974 	/* first scatter/gather segment is used by the tx data command */
1975 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1976 	    (1 + nsegs) << 24);
1977 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1978 	    ring->cur * sizeof (struct wpi_tx_cmd));
1979 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1980 	for (i = 1; i <= nsegs; i++) {
1981 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1982 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1983 	}
1984 
1985 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1986 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1987 	    BUS_DMASYNC_PREWRITE);
1988 
1989 	ring->queued++;
1990 
1991 	/* kick ring */
1992 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1993 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1994 
1995 	return 0;
1996 }
1997 
1998 /**
1999  * Process data waiting to be sent on the IFNET output queue
2000  */
2001 static void
2002 wpi_start(struct ifnet *ifp)
2003 {
2004 	struct wpi_softc *sc = ifp->if_softc;
2005 
2006 	WPI_LOCK(sc);
2007 	wpi_start_locked(ifp);
2008 	WPI_UNLOCK(sc);
2009 }
2010 
2011 static void
2012 wpi_start_locked(struct ifnet *ifp)
2013 {
2014 	struct wpi_softc *sc = ifp->if_softc;
2015 	struct ieee80211_node *ni;
2016 	struct mbuf *m;
2017 	int ac;
2018 
2019 	WPI_LOCK_ASSERT(sc);
2020 
2021 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2022 		return;
2023 
2024 	for (;;) {
2025 		IFQ_POLL(&ifp->if_snd, m);
2026 		if (m == NULL)
2027 			break;
2028 		/* no QoS encapsulation for EAPOL frames */
2029 		ac = M_WME_GETAC(m);
2030 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2031 			/* there is no place left in this ring */
2032 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2033 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2034 			break;
2035 		}
2036 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2037 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2038 		m = ieee80211_encap(ni, m);
2039 		if (m == NULL) {
2040 			ieee80211_free_node(ni);
2041 			ifp->if_oerrors++;
2042 			continue;
2043 		}
2044 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2045 			ieee80211_free_node(ni);
2046 			ifp->if_oerrors++;
2047 			break;
2048 		}
2049 		sc->sc_tx_timer = 5;
2050 	}
2051 }
2052 
2053 static int
2054 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2055 	const struct ieee80211_bpf_params *params)
2056 {
2057 	struct ieee80211com *ic = ni->ni_ic;
2058 	struct ifnet *ifp = ic->ic_ifp;
2059 	struct wpi_softc *sc = ifp->if_softc;
2060 
2061 	/* prevent management frames from being sent if we're not ready */
2062 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2063 		m_freem(m);
2064 		ieee80211_free_node(ni);
2065 		return ENETDOWN;
2066 	}
2067 	WPI_LOCK(sc);
2068 
2069 	/* management frames go into ring 0 */
2070 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2071 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2072 		m_freem(m);
2073 		WPI_UNLOCK(sc);
2074 		ieee80211_free_node(ni);
2075 		return ENOBUFS;		/* XXX */
2076 	}
2077 
2078 	ifp->if_opackets++;
2079 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2080 		goto bad;
2081 	sc->sc_tx_timer = 5;
2082 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2083 
2084 	WPI_UNLOCK(sc);
2085 	return 0;
2086 bad:
2087 	ifp->if_oerrors++;
2088 	WPI_UNLOCK(sc);
2089 	ieee80211_free_node(ni);
2090 	return EIO;		/* XXX */
2091 }
2092 
2093 static int
2094 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2095 {
2096 	struct wpi_softc *sc = ifp->if_softc;
2097 	struct ieee80211com *ic = ifp->if_l2com;
2098 	struct ifreq *ifr = (struct ifreq *) data;
2099 	int error = 0, startall = 0;
2100 
2101 	switch (cmd) {
2102 	case SIOCSIFFLAGS:
2103 		WPI_LOCK(sc);
2104 		if ((ifp->if_flags & IFF_UP)) {
2105 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2106 				wpi_init_locked(sc, 0);
2107 				startall = 1;
2108 			}
2109 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2110 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2111 			wpi_stop_locked(sc);
2112 		WPI_UNLOCK(sc);
2113 		if (startall)
2114 			ieee80211_start_all(ic);
2115 		break;
2116 	case SIOCGIFMEDIA:
2117 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2118 		break;
2119 	case SIOCGIFADDR:
2120 		error = ether_ioctl(ifp, cmd, data);
2121 		break;
2122 	default:
2123 		error = EINVAL;
2124 		break;
2125 	}
2126 	return error;
2127 }
2128 
2129 /*
2130  * Extract various information from EEPROM.
2131  */
2132 static void
2133 wpi_read_eeprom(struct wpi_softc *sc)
2134 {
2135 	struct ifnet *ifp = sc->sc_ifp;
2136 	struct ieee80211com *ic = ifp->if_l2com;
2137 	int i;
2138 
2139 	/* read the hardware capabilities, revision and SKU type */
2140 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2141 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2142 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2143 
2144 	/* read the regulatory domain */
2145 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2146 
2147 	/* read in the hw MAC address */
2148 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2149 
2150 	/* read the list of authorized channels */
2151 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2152 		wpi_read_eeprom_channels(sc,i);
2153 
2154 	/* read the power level calibration info for each group */
2155 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2156 		wpi_read_eeprom_group(sc,i);
2157 }
2158 
2159 /*
2160  * Send a command to the firmware.
2161  */
2162 static int
2163 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2164 {
2165 	struct wpi_tx_ring *ring = &sc->cmdq;
2166 	struct wpi_tx_desc *desc;
2167 	struct wpi_tx_cmd *cmd;
2168 
2169 #ifdef WPI_DEBUG
2170 	if (!async) {
2171 		WPI_LOCK_ASSERT(sc);
2172 	}
2173 #endif
2174 
2175 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2176 		    async));
2177 
2178 	if (sc->flags & WPI_FLAG_BUSY) {
2179 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2180 		    __func__, code);
2181 		return EAGAIN;
2182 	}
2183 	sc->flags|= WPI_FLAG_BUSY;
2184 
2185 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2186 	    code, size));
2187 
2188 	desc = &ring->desc[ring->cur];
2189 	cmd = &ring->cmd[ring->cur];
2190 
2191 	cmd->code = code;
2192 	cmd->flags = 0;
2193 	cmd->qid = ring->qid;
2194 	cmd->idx = ring->cur;
2195 	memcpy(cmd->data, buf, size);
2196 
2197 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2198 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2199 		ring->cur * sizeof (struct wpi_tx_cmd));
2200 	desc->segs[0].len  = htole32(4 + size);
2201 
2202 	/* kick cmd ring */
2203 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2204 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2205 
2206 	if (async) {
2207 		sc->flags &= ~ WPI_FLAG_BUSY;
2208 		return 0;
2209 	}
2210 
2211 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2212 }
2213 
2214 static int
2215 wpi_wme_update(struct ieee80211com *ic)
2216 {
2217 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2218 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2219 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2220 	const struct wmeParams *wmep;
2221 	struct wpi_wme_setup wme;
2222 	int ac;
2223 
2224 	/* don't override default WME values if WME is not actually enabled */
2225 	if (!(ic->ic_flags & IEEE80211_F_WME))
2226 		return 0;
2227 
2228 	wme.flags = 0;
2229 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2230 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2231 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2232 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2233 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2234 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2235 
2236 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2237 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2238 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2239 	}
2240 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2241 #undef WPI_USEC
2242 #undef WPI_EXP2
2243 }
2244 
2245 /*
2246  * Configure h/w multi-rate retries.
2247  */
2248 static int
2249 wpi_mrr_setup(struct wpi_softc *sc)
2250 {
2251 	struct ifnet *ifp = sc->sc_ifp;
2252 	struct ieee80211com *ic = ifp->if_l2com;
2253 	struct wpi_mrr_setup mrr;
2254 	int i, error;
2255 
2256 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2257 
2258 	/* CCK rates (not used with 802.11a) */
2259 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2260 		mrr.rates[i].flags = 0;
2261 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2262 		/* fallback to the immediate lower CCK rate (if any) */
2263 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2264 		/* try one time at this rate before falling back to "next" */
2265 		mrr.rates[i].ntries = 1;
2266 	}
2267 
2268 	/* OFDM rates (not used with 802.11b) */
2269 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2270 		mrr.rates[i].flags = 0;
2271 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2272 		/* fallback to the immediate lower OFDM rate (if any) */
2273 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2274 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2275 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2276 			WPI_OFDM6 : WPI_CCK2) :
2277 		    i - 1;
2278 		/* try one time at this rate before falling back to "next" */
2279 		mrr.rates[i].ntries = 1;
2280 	}
2281 
2282 	/* setup MRR for control frames */
2283 	mrr.which = htole32(WPI_MRR_CTL);
2284 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2285 	if (error != 0) {
2286 		device_printf(sc->sc_dev,
2287 		    "could not setup MRR for control frames\n");
2288 		return error;
2289 	}
2290 
2291 	/* setup MRR for data frames */
2292 	mrr.which = htole32(WPI_MRR_DATA);
2293 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2294 	if (error != 0) {
2295 		device_printf(sc->sc_dev,
2296 		    "could not setup MRR for data frames\n");
2297 		return error;
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 static void
2304 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2305 {
2306 	struct wpi_cmd_led led;
2307 
2308 	led.which = which;
2309 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2310 	led.off = off;
2311 	led.on = on;
2312 
2313 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2314 }
2315 
2316 static void
2317 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2318 {
2319 	struct wpi_cmd_tsf tsf;
2320 	uint64_t val, mod;
2321 
2322 	memset(&tsf, 0, sizeof tsf);
2323 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2324 	tsf.bintval = htole16(ni->ni_intval);
2325 	tsf.lintval = htole16(10);
2326 
2327 	/* compute remaining time until next beacon */
2328 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2329 	mod = le64toh(tsf.tstamp) % val;
2330 	tsf.binitval = htole32((uint32_t)(val - mod));
2331 
2332 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2333 		device_printf(sc->sc_dev, "could not enable TSF\n");
2334 }
2335 
2336 #if 0
2337 /*
2338  * Build a beacon frame that the firmware will broadcast periodically in
2339  * IBSS or HostAP modes.
2340  */
2341 static int
2342 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2343 {
2344 	struct ifnet *ifp = sc->sc_ifp;
2345 	struct ieee80211com *ic = ifp->if_l2com;
2346 	struct wpi_tx_ring *ring = &sc->cmdq;
2347 	struct wpi_tx_desc *desc;
2348 	struct wpi_tx_data *data;
2349 	struct wpi_tx_cmd *cmd;
2350 	struct wpi_cmd_beacon *bcn;
2351 	struct ieee80211_beacon_offsets bo;
2352 	struct mbuf *m0;
2353 	bus_addr_t physaddr;
2354 	int error;
2355 
2356 	desc = &ring->desc[ring->cur];
2357 	data = &ring->data[ring->cur];
2358 
2359 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2360 	if (m0 == NULL) {
2361 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2362 		return ENOMEM;
2363 	}
2364 
2365 	cmd = &ring->cmd[ring->cur];
2366 	cmd->code = WPI_CMD_SET_BEACON;
2367 	cmd->flags = 0;
2368 	cmd->qid = ring->qid;
2369 	cmd->idx = ring->cur;
2370 
2371 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2372 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2373 	bcn->id = WPI_ID_BROADCAST;
2374 	bcn->ofdm_mask = 0xff;
2375 	bcn->cck_mask = 0x0f;
2376 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2377 	bcn->len = htole16(m0->m_pkthdr.len);
2378 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2379 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2380 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2381 
2382 	/* save and trim IEEE802.11 header */
2383 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2384 	m_adj(m0, sizeof (struct ieee80211_frame));
2385 
2386 	/* assume beacon frame is contiguous */
2387 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2388 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2389 	if (error != 0) {
2390 		device_printf(sc->sc_dev, "could not map beacon\n");
2391 		m_freem(m0);
2392 		return error;
2393 	}
2394 
2395 	data->m = m0;
2396 
2397 	/* first scatter/gather segment is used by the beacon command */
2398 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2399 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2400 		ring->cur * sizeof (struct wpi_tx_cmd));
2401 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2402 	desc->segs[1].addr = htole32(physaddr);
2403 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2404 
2405 	/* kick cmd ring */
2406 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2407 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2408 
2409 	return 0;
2410 }
2411 #endif
2412 
2413 static int
2414 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2415 {
2416 	struct ieee80211com *ic = vap->iv_ic;
2417 	struct ieee80211_node *ni = vap->iv_bss;
2418 	struct wpi_node_info node;
2419 	int error;
2420 
2421 
2422 	/* update adapter's configuration */
2423 	sc->config.associd = 0;
2424 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2425 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2426 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2427 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2428 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2429 		    WPI_CONFIG_24GHZ);
2430 	}
2431 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2432 		sc->config.cck_mask  = 0;
2433 		sc->config.ofdm_mask = 0x15;
2434 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2435 		sc->config.cck_mask  = 0x03;
2436 		sc->config.ofdm_mask = 0;
2437 	} else {
2438 		/* XXX assume 802.11b/g */
2439 		sc->config.cck_mask  = 0x0f;
2440 		sc->config.ofdm_mask = 0x15;
2441 	}
2442 
2443 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2444 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2445 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2446 		sizeof (struct wpi_config), 1);
2447 	if (error != 0) {
2448 		device_printf(sc->sc_dev, "could not configure\n");
2449 		return error;
2450 	}
2451 
2452 	/* configuration has changed, set Tx power accordingly */
2453 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2454 		device_printf(sc->sc_dev, "could not set Tx power\n");
2455 		return error;
2456 	}
2457 
2458 	/* add default node */
2459 	memset(&node, 0, sizeof node);
2460 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2461 	node.id = WPI_ID_BSS;
2462 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2463 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2464 	node.action = htole32(WPI_ACTION_SET_RATE);
2465 	node.antenna = WPI_ANTENNA_BOTH;
2466 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2467 	if (error != 0)
2468 		device_printf(sc->sc_dev, "could not add BSS node\n");
2469 
2470 	return (error);
2471 }
2472 
2473 static int
2474 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2475 {
2476 	struct ieee80211com *ic = vap->iv_ic;
2477 	struct ieee80211_node *ni = vap->iv_bss;
2478 	int error;
2479 
2480 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2481 		/* link LED blinks while monitoring */
2482 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2483 		return 0;
2484 	}
2485 
2486 	wpi_enable_tsf(sc, ni);
2487 
2488 	/* update adapter's configuration */
2489 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2490 	/* short preamble/slot time are negotiated when associating */
2491 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2492 	    WPI_CONFIG_SHSLOT);
2493 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2494 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2495 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2496 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2497 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2498 
2499 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2500 
2501 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2502 		    sc->config.flags));
2503 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2504 		    wpi_config), 1);
2505 	if (error != 0) {
2506 		device_printf(sc->sc_dev, "could not update configuration\n");
2507 		return error;
2508 	}
2509 
2510 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2511 	if (error != 0) {
2512 		device_printf(sc->sc_dev, "could set txpower\n");
2513 		return error;
2514 	}
2515 
2516 	if (vap->iv_opmode == IEEE80211_M_STA) {
2517 		/* fake a join to init the tx rate */
2518 		wpi_newassoc(ni, 1);
2519 	}
2520 
2521 	/* link LED always on while associated */
2522 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2523 
2524 	/* start automatic rate control timer */
2525 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2526 
2527 	return (error);
2528 }
2529 
2530 /*
2531  * Send a scan request to the firmware.  Since this command is huge, we map it
2532  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2533  * much of this code is similar to that in wpi_cmd but because we must manually
2534  * construct the probe & channels, we duplicate what's needed here. XXX In the
2535  * future, this function should be modified to use wpi_cmd to help cleanup the
2536  * code base.
2537  */
2538 static int
2539 wpi_scan(struct wpi_softc *sc)
2540 {
2541 	struct ifnet *ifp = sc->sc_ifp;
2542 	struct ieee80211com *ic = ifp->if_l2com;
2543 	struct ieee80211_scan_state *ss = ic->ic_scan;
2544 	struct wpi_tx_ring *ring = &sc->cmdq;
2545 	struct wpi_tx_desc *desc;
2546 	struct wpi_tx_data *data;
2547 	struct wpi_tx_cmd *cmd;
2548 	struct wpi_scan_hdr *hdr;
2549 	struct wpi_scan_chan *chan;
2550 	struct ieee80211_frame *wh;
2551 	struct ieee80211_rateset *rs;
2552 	struct ieee80211_channel *c;
2553 	enum ieee80211_phymode mode;
2554 	uint8_t *frm;
2555 	int nrates, pktlen, error, i, nssid;
2556 	bus_addr_t physaddr;
2557 
2558 	desc = &ring->desc[ring->cur];
2559 	data = &ring->data[ring->cur];
2560 
2561 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2562 	if (data->m == NULL) {
2563 		device_printf(sc->sc_dev,
2564 		    "could not allocate mbuf for scan command\n");
2565 		return ENOMEM;
2566 	}
2567 
2568 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2569 	cmd->code = WPI_CMD_SCAN;
2570 	cmd->flags = 0;
2571 	cmd->qid = ring->qid;
2572 	cmd->idx = ring->cur;
2573 
2574 	hdr = (struct wpi_scan_hdr *)cmd->data;
2575 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2576 
2577 	/*
2578 	 * Move to the next channel if no packets are received within 5 msecs
2579 	 * after sending the probe request (this helps to reduce the duration
2580 	 * of active scans).
2581 	 */
2582 	hdr->quiet = htole16(5);
2583 	hdr->threshold = htole16(1);
2584 
2585 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2586 		/* send probe requests at 6Mbps */
2587 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2588 
2589 		/* Enable crc checking */
2590 		hdr->promotion = htole16(1);
2591 	} else {
2592 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2593 		/* send probe requests at 1Mbps */
2594 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2595 	}
2596 	hdr->tx.id = WPI_ID_BROADCAST;
2597 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2598 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2599 
2600 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2601 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2602 	for (i = 0; i < nssid; i++) {
2603 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2604 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2605 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2606 		    hdr->scan_essids[i].esslen);
2607 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2608 			printf("Scanning Essid: ");
2609 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2610 			    hdr->scan_essids[i].esslen);
2611 			printf("\n");
2612 		}
2613 	}
2614 
2615 	/*
2616 	 * Build a probe request frame.  Most of the following code is a
2617 	 * copy & paste of what is done in net80211.
2618 	 */
2619 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2620 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2621 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2622 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2623 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2624 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2625 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2626 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2627 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2628 
2629 	frm = (uint8_t *)(wh + 1);
2630 
2631 	/* add essid IE, the hardware will fill this in for us */
2632 	*frm++ = IEEE80211_ELEMID_SSID;
2633 	*frm++ = 0;
2634 
2635 	mode = ieee80211_chan2mode(ic->ic_curchan);
2636 	rs = &ic->ic_sup_rates[mode];
2637 
2638 	/* add supported rates IE */
2639 	*frm++ = IEEE80211_ELEMID_RATES;
2640 	nrates = rs->rs_nrates;
2641 	if (nrates > IEEE80211_RATE_SIZE)
2642 		nrates = IEEE80211_RATE_SIZE;
2643 	*frm++ = nrates;
2644 	memcpy(frm, rs->rs_rates, nrates);
2645 	frm += nrates;
2646 
2647 	/* add supported xrates IE */
2648 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2649 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2650 		*frm++ = IEEE80211_ELEMID_XRATES;
2651 		*frm++ = nrates;
2652 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2653 		frm += nrates;
2654 	}
2655 
2656 	/* setup length of probe request */
2657 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2658 
2659 	/*
2660 	 * Construct information about the channel that we
2661 	 * want to scan. The firmware expects this to be directly
2662 	 * after the scan probe request
2663 	 */
2664 	c = ic->ic_curchan;
2665 	chan = (struct wpi_scan_chan *)frm;
2666 	chan->chan = ieee80211_chan2ieee(ic, c);
2667 	chan->flags = 0;
2668 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2669 		chan->flags |= WPI_CHAN_ACTIVE;
2670 		if (nssid != 0)
2671 			chan->flags |= WPI_CHAN_DIRECT;
2672 	}
2673 	chan->gain_dsp = 0x6e; /* Default level */
2674 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2675 		chan->active = htole16(10);
2676 		chan->passive = htole16(ss->ss_maxdwell);
2677 		chan->gain_radio = 0x3b;
2678 	} else {
2679 		chan->active = htole16(20);
2680 		chan->passive = htole16(ss->ss_maxdwell);
2681 		chan->gain_radio = 0x28;
2682 	}
2683 
2684 	DPRINTFN(WPI_DEBUG_SCANNING,
2685 	    ("Scanning %u Passive: %d\n",
2686 	     chan->chan,
2687 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2688 
2689 	hdr->nchan++;
2690 	chan++;
2691 
2692 	frm += sizeof (struct wpi_scan_chan);
2693 #if 0
2694 	// XXX All Channels....
2695 	for (c  = &ic->ic_channels[1];
2696 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2697 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2698 			continue;
2699 
2700 		chan->chan = ieee80211_chan2ieee(ic, c);
2701 		chan->flags = 0;
2702 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2703 		    chan->flags |= WPI_CHAN_ACTIVE;
2704 		    if (ic->ic_des_ssid[0].len != 0)
2705 			chan->flags |= WPI_CHAN_DIRECT;
2706 		}
2707 		chan->gain_dsp = 0x6e; /* Default level */
2708 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2709 			chan->active = htole16(10);
2710 			chan->passive = htole16(110);
2711 			chan->gain_radio = 0x3b;
2712 		} else {
2713 			chan->active = htole16(20);
2714 			chan->passive = htole16(120);
2715 			chan->gain_radio = 0x28;
2716 		}
2717 
2718 		DPRINTFN(WPI_DEBUG_SCANNING,
2719 			 ("Scanning %u Passive: %d\n",
2720 			  chan->chan,
2721 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2722 
2723 		hdr->nchan++;
2724 		chan++;
2725 
2726 		frm += sizeof (struct wpi_scan_chan);
2727 	}
2728 #endif
2729 
2730 	hdr->len = htole16(frm - (uint8_t *)hdr);
2731 	pktlen = frm - (uint8_t *)cmd;
2732 
2733 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2734 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2735 	if (error != 0) {
2736 		device_printf(sc->sc_dev, "could not map scan command\n");
2737 		m_freem(data->m);
2738 		data->m = NULL;
2739 		return error;
2740 	}
2741 
2742 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2743 	desc->segs[0].addr = htole32(physaddr);
2744 	desc->segs[0].len  = htole32(pktlen);
2745 
2746 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2747 	    BUS_DMASYNC_PREWRITE);
2748 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2749 
2750 	/* kick cmd ring */
2751 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2752 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2753 
2754 	sc->sc_scan_timer = 5;
2755 	return 0;	/* will be notified async. of failure/success */
2756 }
2757 
2758 /**
2759  * Configure the card to listen to a particular channel, this transisions the
2760  * card in to being able to receive frames from remote devices.
2761  */
2762 static int
2763 wpi_config(struct wpi_softc *sc)
2764 {
2765 	struct ifnet *ifp = sc->sc_ifp;
2766 	struct ieee80211com *ic = ifp->if_l2com;
2767 	struct wpi_power power;
2768 	struct wpi_bluetooth bluetooth;
2769 	struct wpi_node_info node;
2770 	int error;
2771 
2772 	/* set power mode */
2773 	memset(&power, 0, sizeof power);
2774 	power.flags = htole32(WPI_POWER_CAM|0x8);
2775 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2776 	if (error != 0) {
2777 		device_printf(sc->sc_dev, "could not set power mode\n");
2778 		return error;
2779 	}
2780 
2781 	/* configure bluetooth coexistence */
2782 	memset(&bluetooth, 0, sizeof bluetooth);
2783 	bluetooth.flags = 3;
2784 	bluetooth.lead = 0xaa;
2785 	bluetooth.kill = 1;
2786 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2787 	    0);
2788 	if (error != 0) {
2789 		device_printf(sc->sc_dev,
2790 		    "could not configure bluetooth coexistence\n");
2791 		return error;
2792 	}
2793 
2794 	/* configure adapter */
2795 	memset(&sc->config, 0, sizeof (struct wpi_config));
2796 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2797 	/*set default channel*/
2798 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2799 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2800 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2801 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2802 		    WPI_CONFIG_24GHZ);
2803 	}
2804 	sc->config.filter = 0;
2805 	switch (ic->ic_opmode) {
2806 	case IEEE80211_M_STA:
2807 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2808 		sc->config.mode = WPI_MODE_STA;
2809 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2810 		break;
2811 	case IEEE80211_M_IBSS:
2812 	case IEEE80211_M_AHDEMO:
2813 		sc->config.mode = WPI_MODE_IBSS;
2814 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2815 					     WPI_FILTER_MULTICAST);
2816 		break;
2817 	case IEEE80211_M_HOSTAP:
2818 		sc->config.mode = WPI_MODE_HOSTAP;
2819 		break;
2820 	case IEEE80211_M_MONITOR:
2821 		sc->config.mode = WPI_MODE_MONITOR;
2822 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2823 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2824 		break;
2825 	}
2826 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2827 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2828 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2829 		sizeof (struct wpi_config), 0);
2830 	if (error != 0) {
2831 		device_printf(sc->sc_dev, "configure command failed\n");
2832 		return error;
2833 	}
2834 
2835 	/* configuration has changed, set Tx power accordingly */
2836 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2837 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2838 	    return error;
2839 	}
2840 
2841 	/* add broadcast node */
2842 	memset(&node, 0, sizeof node);
2843 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2844 	node.id = WPI_ID_BROADCAST;
2845 	node.rate = wpi_plcp_signal(2);
2846 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2847 	if (error != 0) {
2848 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2849 		return error;
2850 	}
2851 
2852 	/* Setup rate scalling */
2853 	error = wpi_mrr_setup(sc);
2854 	if (error != 0) {
2855 		device_printf(sc->sc_dev, "could not setup MRR\n");
2856 		return error;
2857 	}
2858 
2859 	return 0;
2860 }
2861 
2862 static void
2863 wpi_stop_master(struct wpi_softc *sc)
2864 {
2865 	uint32_t tmp;
2866 	int ntries;
2867 
2868 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2869 
2870 	tmp = WPI_READ(sc, WPI_RESET);
2871 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2872 
2873 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2874 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2875 		return;	/* already asleep */
2876 
2877 	for (ntries = 0; ntries < 100; ntries++) {
2878 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2879 			break;
2880 		DELAY(10);
2881 	}
2882 	if (ntries == 100) {
2883 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2884 	}
2885 }
2886 
2887 static int
2888 wpi_power_up(struct wpi_softc *sc)
2889 {
2890 	uint32_t tmp;
2891 	int ntries;
2892 
2893 	wpi_mem_lock(sc);
2894 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2895 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2896 	wpi_mem_unlock(sc);
2897 
2898 	for (ntries = 0; ntries < 5000; ntries++) {
2899 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2900 			break;
2901 		DELAY(10);
2902 	}
2903 	if (ntries == 5000) {
2904 		device_printf(sc->sc_dev,
2905 		    "timeout waiting for NIC to power up\n");
2906 		return ETIMEDOUT;
2907 	}
2908 	return 0;
2909 }
2910 
2911 static int
2912 wpi_reset(struct wpi_softc *sc)
2913 {
2914 	uint32_t tmp;
2915 	int ntries;
2916 
2917 	DPRINTFN(WPI_DEBUG_HW,
2918 	    ("Resetting the card - clearing any uploaded firmware\n"));
2919 
2920 	/* clear any pending interrupts */
2921 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2922 
2923 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2924 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2925 
2926 	tmp = WPI_READ(sc, WPI_CHICKEN);
2927 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2928 
2929 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2930 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2931 
2932 	/* wait for clock stabilization */
2933 	for (ntries = 0; ntries < 25000; ntries++) {
2934 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2935 			break;
2936 		DELAY(10);
2937 	}
2938 	if (ntries == 25000) {
2939 		device_printf(sc->sc_dev,
2940 		    "timeout waiting for clock stabilization\n");
2941 		return ETIMEDOUT;
2942 	}
2943 
2944 	/* initialize EEPROM */
2945 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2946 
2947 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2948 		device_printf(sc->sc_dev, "EEPROM not found\n");
2949 		return EIO;
2950 	}
2951 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2952 
2953 	return 0;
2954 }
2955 
2956 static void
2957 wpi_hw_config(struct wpi_softc *sc)
2958 {
2959 	uint32_t rev, hw;
2960 
2961 	/* voodoo from the Linux "driver".. */
2962 	hw = WPI_READ(sc, WPI_HWCONFIG);
2963 
2964 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2965 	if ((rev & 0xc0) == 0x40)
2966 		hw |= WPI_HW_ALM_MB;
2967 	else if (!(rev & 0x80))
2968 		hw |= WPI_HW_ALM_MM;
2969 
2970 	if (sc->cap == 0x80)
2971 		hw |= WPI_HW_SKU_MRC;
2972 
2973 	hw &= ~WPI_HW_REV_D;
2974 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2975 		hw |= WPI_HW_REV_D;
2976 
2977 	if (sc->type > 1)
2978 		hw |= WPI_HW_TYPE_B;
2979 
2980 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2981 }
2982 
2983 static void
2984 wpi_rfkill_resume(struct wpi_softc *sc)
2985 {
2986 	struct ifnet *ifp = sc->sc_ifp;
2987 	struct ieee80211com *ic = ifp->if_l2com;
2988 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2989 	int ntries;
2990 
2991 	/* enable firmware again */
2992 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2993 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2994 
2995 	/* wait for thermal sensors to calibrate */
2996 	for (ntries = 0; ntries < 1000; ntries++) {
2997 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2998 			break;
2999 		DELAY(10);
3000 	}
3001 
3002 	if (ntries == 1000) {
3003 		device_printf(sc->sc_dev,
3004 		    "timeout waiting for thermal calibration\n");
3005 		WPI_UNLOCK(sc);
3006 		return;
3007 	}
3008 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3009 
3010 	if (wpi_config(sc) != 0) {
3011 		device_printf(sc->sc_dev, "device config failed\n");
3012 		WPI_UNLOCK(sc);
3013 		return;
3014 	}
3015 
3016 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3017 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3018 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3019 
3020 	if (vap != NULL) {
3021 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3022 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3023 				taskqueue_enqueue(taskqueue_swi,
3024 				    &sc->sc_bmiss_task);
3025 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3026 			} else
3027 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3028 		} else {
3029 			ieee80211_scan_next(vap);
3030 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3031 		}
3032 	}
3033 
3034 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3035 }
3036 
3037 static void
3038 wpi_init_locked(struct wpi_softc *sc, int force)
3039 {
3040 	struct ifnet *ifp = sc->sc_ifp;
3041 	uint32_t tmp;
3042 	int ntries, qid;
3043 
3044 	wpi_stop_locked(sc);
3045 	(void)wpi_reset(sc);
3046 
3047 	wpi_mem_lock(sc);
3048 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3049 	DELAY(20);
3050 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3051 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3052 	wpi_mem_unlock(sc);
3053 
3054 	(void)wpi_power_up(sc);
3055 	wpi_hw_config(sc);
3056 
3057 	/* init Rx ring */
3058 	wpi_mem_lock(sc);
3059 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3060 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3061 	    offsetof(struct wpi_shared, next));
3062 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3063 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3064 	wpi_mem_unlock(sc);
3065 
3066 	/* init Tx rings */
3067 	wpi_mem_lock(sc);
3068 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3069 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3070 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3071 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3072 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3073 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3074 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3075 
3076 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3077 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3078 
3079 	for (qid = 0; qid < 6; qid++) {
3080 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3081 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3082 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3083 	}
3084 	wpi_mem_unlock(sc);
3085 
3086 	/* clear "radio off" and "disable command" bits (reversed logic) */
3087 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3088 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3089 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3090 
3091 	/* clear any pending interrupts */
3092 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3093 
3094 	/* enable interrupts */
3095 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3096 
3097 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3098 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3099 
3100 	if ((wpi_load_firmware(sc)) != 0) {
3101 	    device_printf(sc->sc_dev,
3102 		"A problem occurred loading the firmware to the driver\n");
3103 	    return;
3104 	}
3105 
3106 	/* At this point the firmware is up and running. If the hardware
3107 	 * RF switch is turned off thermal calibration will fail, though
3108 	 * the card is still happy to continue to accept commands, catch
3109 	 * this case and schedule a task to watch for it to be turned on.
3110 	 */
3111 	wpi_mem_lock(sc);
3112 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3113 	wpi_mem_unlock(sc);
3114 
3115 	if (!(tmp & 0x1)) {
3116 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3117 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3118 		goto out;
3119 	}
3120 
3121 	/* wait for thermal sensors to calibrate */
3122 	for (ntries = 0; ntries < 1000; ntries++) {
3123 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3124 			break;
3125 		DELAY(10);
3126 	}
3127 
3128 	if (ntries == 1000) {
3129 		device_printf(sc->sc_dev,
3130 		    "timeout waiting for thermal sensors calibration\n");
3131 		return;
3132 	}
3133 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3134 
3135 	if (wpi_config(sc) != 0) {
3136 		device_printf(sc->sc_dev, "device config failed\n");
3137 		return;
3138 	}
3139 
3140 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3141 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3142 out:
3143 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3144 }
3145 
3146 static void
3147 wpi_init(void *arg)
3148 {
3149 	struct wpi_softc *sc = arg;
3150 	struct ifnet *ifp = sc->sc_ifp;
3151 	struct ieee80211com *ic = ifp->if_l2com;
3152 
3153 	WPI_LOCK(sc);
3154 	wpi_init_locked(sc, 0);
3155 	WPI_UNLOCK(sc);
3156 
3157 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3158 		ieee80211_start_all(ic);		/* start all vaps */
3159 }
3160 
3161 static void
3162 wpi_stop_locked(struct wpi_softc *sc)
3163 {
3164 	struct ifnet *ifp = sc->sc_ifp;
3165 	uint32_t tmp;
3166 	int ac;
3167 
3168 	sc->sc_tx_timer = 0;
3169 	sc->sc_scan_timer = 0;
3170 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3171 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3172 	callout_stop(&sc->watchdog_to);
3173 	callout_stop(&sc->calib_to);
3174 
3175 
3176 	/* disable interrupts */
3177 	WPI_WRITE(sc, WPI_MASK, 0);
3178 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3179 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3180 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3181 
3182 	/* Clear any commands left in the command buffer */
3183 	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3184 	memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3185 	sc->sc_cmd_cur = 0;
3186 	sc->sc_cmd_next = 0;
3187 
3188 	wpi_mem_lock(sc);
3189 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3190 	wpi_mem_unlock(sc);
3191 
3192 	/* reset all Tx rings */
3193 	for (ac = 0; ac < 4; ac++)
3194 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3195 	wpi_reset_tx_ring(sc, &sc->cmdq);
3196 
3197 	/* reset Rx ring */
3198 	wpi_reset_rx_ring(sc, &sc->rxq);
3199 
3200 	wpi_mem_lock(sc);
3201 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3202 	wpi_mem_unlock(sc);
3203 
3204 	DELAY(5);
3205 
3206 	wpi_stop_master(sc);
3207 
3208 	tmp = WPI_READ(sc, WPI_RESET);
3209 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3210 	sc->flags &= ~WPI_FLAG_BUSY;
3211 }
3212 
3213 static void
3214 wpi_stop(struct wpi_softc *sc)
3215 {
3216 	WPI_LOCK(sc);
3217 	wpi_stop_locked(sc);
3218 	WPI_UNLOCK(sc);
3219 }
3220 
3221 static void
3222 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3223 {
3224 	struct ieee80211vap *vap = ni->ni_vap;
3225 	struct wpi_vap *wvp = WPI_VAP(vap);
3226 
3227 	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3228 }
3229 
3230 static void
3231 wpi_calib_timeout(void *arg)
3232 {
3233 	struct wpi_softc *sc = arg;
3234 	struct ifnet *ifp = sc->sc_ifp;
3235 	struct ieee80211com *ic = ifp->if_l2com;
3236 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3237 	int temp;
3238 
3239 	if (vap->iv_state != IEEE80211_S_RUN)
3240 		return;
3241 
3242 	/* update sensor data */
3243 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3244 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3245 
3246 	wpi_power_calibration(sc, temp);
3247 
3248 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3249 }
3250 
3251 /*
3252  * This function is called periodically (every 60 seconds) to adjust output
3253  * power to temperature changes.
3254  */
3255 static void
3256 wpi_power_calibration(struct wpi_softc *sc, int temp)
3257 {
3258 	struct ifnet *ifp = sc->sc_ifp;
3259 	struct ieee80211com *ic = ifp->if_l2com;
3260 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3261 
3262 	/* sanity-check read value */
3263 	if (temp < -260 || temp > 25) {
3264 		/* this can't be correct, ignore */
3265 		DPRINTFN(WPI_DEBUG_TEMP,
3266 		    ("out-of-range temperature reported: %d\n", temp));
3267 		return;
3268 	}
3269 
3270 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3271 
3272 	/* adjust Tx power if need be */
3273 	if (abs(temp - sc->temp) <= 6)
3274 		return;
3275 
3276 	sc->temp = temp;
3277 
3278 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3279 		/* just warn, too bad for the automatic calibration... */
3280 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3281 	}
3282 }
3283 
3284 /**
3285  * Read the eeprom to find out what channels are valid for the given
3286  * band and update net80211 with what we find.
3287  */
3288 static void
3289 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3290 {
3291 	struct ifnet *ifp = sc->sc_ifp;
3292 	struct ieee80211com *ic = ifp->if_l2com;
3293 	const struct wpi_chan_band *band = &wpi_bands[n];
3294 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3295 	int chan, i, offset, passive;
3296 
3297 	wpi_read_prom_data(sc, band->addr, channels,
3298 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3299 
3300 	for (i = 0; i < band->nchan; i++) {
3301 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3302 			DPRINTFN(WPI_DEBUG_HW,
3303 			    ("Channel Not Valid: %d, band %d\n",
3304 			     band->chan[i],n));
3305 			continue;
3306 		}
3307 
3308 		passive = 0;
3309 		chan = band->chan[i];
3310 		offset = ic->ic_nchans;
3311 
3312 		/* is active scan allowed on this channel? */
3313 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3314 			passive = IEEE80211_CHAN_PASSIVE;
3315 		}
3316 
3317 		if (n == 0) {	/* 2GHz band */
3318 			ic->ic_channels[offset].ic_ieee = chan;
3319 			ic->ic_channels[offset].ic_freq =
3320 			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3321 			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
3322 			offset++;
3323 			ic->ic_channels[offset].ic_ieee = chan;
3324 			ic->ic_channels[offset].ic_freq =
3325 			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3326 			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
3327 			offset++;
3328 
3329 		} else {	/* 5GHz band */
3330 			/*
3331 			 * Some 3945ABG adapters support channels 7, 8, 11
3332 			 * and 12 in the 2GHz *and* 5GHz bands.
3333 			 * Because of limitations in our net80211(9) stack,
3334 			 * we can't support these channels in 5GHz band.
3335 			 * XXX not true; just need to map to proper frequency
3336 			 */
3337 			if (chan <= 14)
3338 				continue;
3339 
3340 			ic->ic_channels[offset].ic_ieee = chan;
3341 			ic->ic_channels[offset].ic_freq =
3342 			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
3343 			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
3344 			offset++;
3345 		}
3346 
3347 		/* save maximum allowed power for this channel */
3348 		sc->maxpwr[chan] = channels[i].maxpwr;
3349 
3350 		ic->ic_nchans = offset;
3351 
3352 #if 0
3353 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3354 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3355 		//ic->ic_channels[chan].ic_minpower...
3356 		//ic->ic_channels[chan].ic_maxregtxpower...
3357 #endif
3358 
3359 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
3360 			    chan, channels[i].flags, sc->maxpwr[chan], offset));
3361 	}
3362 }
3363 
3364 static void
3365 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3366 {
3367 	struct wpi_power_group *group = &sc->groups[n];
3368 	struct wpi_eeprom_group rgroup;
3369 	int i;
3370 
3371 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3372 	    sizeof rgroup);
3373 
3374 	/* save power group information */
3375 	group->chan   = rgroup.chan;
3376 	group->maxpwr = rgroup.maxpwr;
3377 	/* temperature at which the samples were taken */
3378 	group->temp   = (int16_t)le16toh(rgroup.temp);
3379 
3380 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3381 		    group->chan, group->maxpwr, group->temp));
3382 
3383 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3384 		group->samples[i].index = rgroup.samples[i].index;
3385 		group->samples[i].power = rgroup.samples[i].power;
3386 
3387 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3388 			    group->samples[i].index, group->samples[i].power));
3389 	}
3390 }
3391 
3392 /*
3393  * Update Tx power to match what is defined for channel `c'.
3394  */
3395 static int
3396 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3397 {
3398 	struct ifnet *ifp = sc->sc_ifp;
3399 	struct ieee80211com *ic = ifp->if_l2com;
3400 	struct wpi_power_group *group;
3401 	struct wpi_cmd_txpower txpower;
3402 	u_int chan;
3403 	int i;
3404 
3405 	/* get channel number */
3406 	chan = ieee80211_chan2ieee(ic, c);
3407 
3408 	/* find the power group to which this channel belongs */
3409 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3410 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3411 			if (chan <= group->chan)
3412 				break;
3413 	} else
3414 		group = &sc->groups[0];
3415 
3416 	memset(&txpower, 0, sizeof txpower);
3417 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3418 	txpower.channel = htole16(chan);
3419 
3420 	/* set Tx power for all OFDM and CCK rates */
3421 	for (i = 0; i <= 11 ; i++) {
3422 		/* retrieve Tx power for this channel/rate combination */
3423 		int idx = wpi_get_power_index(sc, group, c,
3424 		    wpi_ridx_to_rate[i]);
3425 
3426 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3427 
3428 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3429 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3430 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3431 		} else {
3432 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3433 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3434 		}
3435 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3436 			    chan, wpi_ridx_to_rate[i], idx));
3437 	}
3438 
3439 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3440 }
3441 
3442 /*
3443  * Determine Tx power index for a given channel/rate combination.
3444  * This takes into account the regulatory information from EEPROM and the
3445  * current temperature.
3446  */
3447 static int
3448 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3449     struct ieee80211_channel *c, int rate)
3450 {
3451 /* fixed-point arithmetic division using a n-bit fractional part */
3452 #define fdivround(a, b, n)      \
3453 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3454 
3455 /* linear interpolation */
3456 #define interpolate(x, x1, y1, x2, y2, n)       \
3457 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3458 
3459 	struct ifnet *ifp = sc->sc_ifp;
3460 	struct ieee80211com *ic = ifp->if_l2com;
3461 	struct wpi_power_sample *sample;
3462 	int pwr, idx;
3463 	u_int chan;
3464 
3465 	/* get channel number */
3466 	chan = ieee80211_chan2ieee(ic, c);
3467 
3468 	/* default power is group's maximum power - 3dB */
3469 	pwr = group->maxpwr / 2;
3470 
3471 	/* decrease power for highest OFDM rates to reduce distortion */
3472 	switch (rate) {
3473 		case 72:	/* 36Mb/s */
3474 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3475 			break;
3476 		case 96:	/* 48Mb/s */
3477 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3478 			break;
3479 		case 108:	/* 54Mb/s */
3480 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3481 			break;
3482 	}
3483 
3484 	/* never exceed channel's maximum allowed Tx power */
3485 	pwr = min(pwr, sc->maxpwr[chan]);
3486 
3487 	/* retrieve power index into gain tables from samples */
3488 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3489 		if (pwr > sample[1].power)
3490 			break;
3491 	/* fixed-point linear interpolation using a 19-bit fractional part */
3492 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3493 	    sample[1].power, sample[1].index, 19);
3494 
3495 	/*
3496 	 *  Adjust power index based on current temperature
3497 	 *	- if colder than factory-calibrated: decreate output power
3498 	 *	- if warmer than factory-calibrated: increase output power
3499 	 */
3500 	idx -= (sc->temp - group->temp) * 11 / 100;
3501 
3502 	/* decrease power for CCK rates (-5dB) */
3503 	if (!WPI_RATE_IS_OFDM(rate))
3504 		idx += 10;
3505 
3506 	/* keep power index in a valid range */
3507 	if (idx < 0)
3508 		return 0;
3509 	if (idx > WPI_MAX_PWR_INDEX)
3510 		return WPI_MAX_PWR_INDEX;
3511 	return idx;
3512 
3513 #undef interpolate
3514 #undef fdivround
3515 }
3516 
3517 /**
3518  * Called by net80211 framework to indicate that a scan
3519  * is starting. This function doesn't actually do the scan,
3520  * wpi_scan_curchan starts things off. This function is more
3521  * of an early warning from the framework we should get ready
3522  * for the scan.
3523  */
3524 static void
3525 wpi_scan_start(struct ieee80211com *ic)
3526 {
3527 	struct ifnet *ifp = ic->ic_ifp;
3528 	struct wpi_softc *sc = ifp->if_softc;
3529 
3530 	wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3531 }
3532 
3533 /**
3534  * Called by the net80211 framework, indicates that the
3535  * scan has ended. If there is a scan in progress on the card
3536  * then it should be aborted.
3537  */
3538 static void
3539 wpi_scan_end(struct ieee80211com *ic)
3540 {
3541 	struct ifnet *ifp = ic->ic_ifp;
3542 	struct wpi_softc *sc = ifp->if_softc;
3543 
3544 	wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3545 }
3546 
3547 /**
3548  * Called by the net80211 framework to indicate to the driver
3549  * that the channel should be changed
3550  */
3551 static void
3552 wpi_set_channel(struct ieee80211com *ic)
3553 {
3554 	struct ifnet *ifp = ic->ic_ifp;
3555 	struct wpi_softc *sc = ifp->if_softc;
3556 
3557 	/*
3558 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3559 	 * are already taken care of by their respective firmware commands.
3560 	 */
3561 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3562 		wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3563 }
3564 
3565 /**
3566  * Called by net80211 to indicate that we need to scan the current
3567  * channel. The channel is previously be set via the wpi_set_channel
3568  * callback.
3569  */
3570 static void
3571 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3572 {
3573 	struct ieee80211vap *vap = ss->ss_vap;
3574 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3575 	struct wpi_softc *sc = ifp->if_softc;
3576 
3577 	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3578 }
3579 
3580 /**
3581  * Called by the net80211 framework to indicate
3582  * the minimum dwell time has been met, terminate the scan.
3583  * We don't actually terminate the scan as the firmware will notify
3584  * us when it's finished and we have no way to interrupt it.
3585  */
3586 static void
3587 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3588 {
3589 	/* NB: don't try to abort scan; wait for firmware to finish */
3590 }
3591 
3592 /**
3593  * The ops function is called to perform some actual work.
3594  * because we can't sleep from any of the ic callbacks, we queue an
3595  * op task with wpi_queue_cmd and have the taskqueue process that task.
3596  * The task that gets cued is a op task, which ends up calling this function.
3597  */
3598 static void
3599 wpi_ops(void *arg0, int pending)
3600 {
3601 	struct wpi_softc *sc = arg0;
3602 	struct ifnet *ifp = sc->sc_ifp;
3603 	struct ieee80211com *ic = ifp->if_l2com;
3604 	int cmd, arg, error;
3605 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3606 
3607 again:
3608 	WPI_CMD_LOCK(sc);
3609 	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3610 	arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3611 
3612 	if (cmd == 0) {
3613 		/* No more commands to process */
3614 		WPI_CMD_UNLOCK(sc);
3615 		return;
3616 	}
3617 	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3618 	sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3619 	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3620 	WPI_CMD_UNLOCK(sc);
3621 	WPI_LOCK(sc);
3622 
3623 	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3624 
3625 	switch (cmd) {
3626 	case WPI_RESTART:
3627 		wpi_init_locked(sc, 0);
3628 		WPI_UNLOCK(sc);
3629 		return;
3630 
3631 	case WPI_RF_RESTART:
3632 		wpi_rfkill_resume(sc);
3633 		WPI_UNLOCK(sc);
3634 		return;
3635 	}
3636 
3637 	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3638 		WPI_UNLOCK(sc);
3639 		return;
3640 	}
3641 
3642 	switch (cmd) {
3643 	case WPI_SCAN_START:
3644 		/* make the link LED blink while we're scanning */
3645 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3646 		sc->flags |= WPI_FLAG_SCANNING;
3647 		break;
3648 
3649 	case WPI_SCAN_STOP:
3650 		sc->flags &= ~WPI_FLAG_SCANNING;
3651 		break;
3652 
3653 	case WPI_SCAN_CURCHAN:
3654 		if (wpi_scan(sc))
3655 			ieee80211_cancel_scan(vap);
3656 		break;
3657 
3658 	case WPI_SET_CHAN:
3659 		error = wpi_config(sc);
3660 		if (error != 0)
3661 			device_printf(sc->sc_dev,
3662 			    "error %d settting channel\n", error);
3663 		break;
3664 
3665 	case WPI_AUTH:
3666 		/* The node must be registered in the firmware before auth */
3667 		error = wpi_auth(sc, vap);
3668 		WPI_UNLOCK(sc);
3669 		if (error != 0) {
3670 			device_printf(sc->sc_dev,
3671 			    "%s: could not move to auth state, error %d\n",
3672 			    __func__, error);
3673 			return;
3674 		}
3675 		IEEE80211_LOCK(ic);
3676 		WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg);
3677 		if (vap->iv_newstate_cb != NULL)
3678 			vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg);
3679 		IEEE80211_UNLOCK(ic);
3680 		goto again;
3681 
3682 	case WPI_RUN:
3683 		error = wpi_run(sc, vap);
3684 		WPI_UNLOCK(sc);
3685 		if (error != 0) {
3686 			device_printf(sc->sc_dev,
3687 			    "%s: could not move to run state, error %d\n",
3688 			    __func__, error);
3689 			return;
3690 		}
3691 		IEEE80211_LOCK(ic);
3692 		WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg);
3693 		if (vap->iv_newstate_cb != NULL)
3694 			vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg);
3695 		IEEE80211_UNLOCK(ic);
3696 		goto again;
3697 	}
3698 	WPI_UNLOCK(sc);
3699 
3700 	/* Take another pass */
3701 	goto again;
3702 }
3703 
3704 /**
3705  * queue a command for later execution in a different thread.
3706  * This is needed as the net80211 callbacks do not allow
3707  * sleeping, since we need to sleep to confirm commands have
3708  * been processed by the firmware, we must defer execution to
3709  * a sleep enabled thread.
3710  */
3711 static int
3712 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3713 {
3714 	WPI_CMD_LOCK(sc);
3715 
3716 	if (flush) {
3717 		memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3718 		memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3719 		sc->sc_cmd_cur = 0;
3720 		sc->sc_cmd_next = 0;
3721 	}
3722 
3723 	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3724 		WPI_CMD_UNLOCK(sc);
3725 		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3726 		return (EBUSY);
3727 	}
3728 
3729 	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3730 	sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3731 	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3732 
3733 	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3734 
3735 	WPI_CMD_UNLOCK(sc);
3736 
3737 	return 0;
3738 }
3739 
3740 /*
3741  * Allocate DMA-safe memory for firmware transfer.
3742  */
3743 static int
3744 wpi_alloc_fwmem(struct wpi_softc *sc)
3745 {
3746 	/* allocate enough contiguous space to store text and data */
3747 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3748 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3749 	    BUS_DMA_NOWAIT);
3750 }
3751 
3752 static void
3753 wpi_free_fwmem(struct wpi_softc *sc)
3754 {
3755 	wpi_dma_contig_free(&sc->fw_dma);
3756 }
3757 
3758 /**
3759  * Called every second, wpi_watchdog used by the watch dog timer
3760  * to check that the card is still alive
3761  */
3762 static void
3763 wpi_watchdog(void *arg)
3764 {
3765 	struct wpi_softc *sc = arg;
3766 	struct ifnet *ifp = sc->sc_ifp;
3767 	uint32_t tmp;
3768 
3769 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3770 
3771 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3772 		/* No need to lock firmware memory */
3773 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3774 
3775 		if ((tmp & 0x1) == 0) {
3776 			/* Radio kill switch is still off */
3777 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3778 			return;
3779 		}
3780 
3781 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3782 		wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3783 		return;
3784 	}
3785 
3786 	if (sc->sc_tx_timer > 0) {
3787 		if (--sc->sc_tx_timer == 0) {
3788 			device_printf(sc->sc_dev,"device timeout\n");
3789 			ifp->if_oerrors++;
3790 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3791 		}
3792 	}
3793 	if (sc->sc_scan_timer > 0) {
3794 		struct ifnet *ifp = sc->sc_ifp;
3795 		struct ieee80211com *ic = ifp->if_l2com;
3796 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3797 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3798 			device_printf(sc->sc_dev,"scan timeout\n");
3799 			ieee80211_cancel_scan(vap);
3800 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3801 		}
3802 	}
3803 
3804 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3805 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3806 }
3807 
3808 #ifdef WPI_DEBUG
3809 static const char *wpi_cmd_str(int cmd)
3810 {
3811 	switch (cmd) {
3812 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3813 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3814 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3815 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3816 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3817 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3818 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3819 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3820 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3821 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3822 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3823 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3824 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3825 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3826 
3827 	default:
3828 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3829 		return "UNKNOWN CMD";	/* Make the compiler happy */
3830 	}
3831 }
3832 #endif
3833 
3834 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3835 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3836 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3837 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3838