1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #include <machine/bus.h> 79 #include <machine/resource.h> 80 #include <sys/rman.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 85 #include <net/bpf.h> 86 #include <net/if.h> 87 #include <net/if_arp.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <net80211/ieee80211_var.h> 94 #include <net80211/ieee80211_radiotap.h> 95 #include <net80211/ieee80211_regdomain.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_systm.h> 99 #include <netinet/in_var.h> 100 #include <netinet/ip.h> 101 #include <netinet/if_ether.h> 102 103 #include <dev/wpi/if_wpireg.h> 104 #include <dev/wpi/if_wpivar.h> 105 106 #define WPI_DEBUG 107 108 #ifdef WPI_DEBUG 109 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 110 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 111 112 enum { 113 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 114 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 115 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 116 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 117 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 118 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 119 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 120 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 121 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 122 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 123 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 124 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 125 WPI_DEBUG_ANY = 0xffffffff 126 }; 127 128 int wpi_debug = 0; 129 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 130 131 #else 132 #define DPRINTF(x) 133 #define DPRINTFN(n, x) 134 #endif 135 136 struct wpi_ident { 137 uint16_t vendor; 138 uint16_t device; 139 uint16_t subdevice; 140 const char *name; 141 }; 142 143 static const struct wpi_ident wpi_ident_table[] = { 144 /* The below entries support ABG regardless of the subid */ 145 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 146 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 147 /* The below entries only support BG */ 148 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB" }, 149 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB" }, 150 { 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB" }, 151 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB" }, 152 { 0, 0, 0, NULL } 153 }; 154 155 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 156 const char name[IFNAMSIZ], int unit, int opmode, 157 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 158 const uint8_t mac[IEEE80211_ADDR_LEN]); 159 static void wpi_vap_delete(struct ieee80211vap *); 160 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 161 void **, bus_size_t, bus_size_t, int); 162 static void wpi_dma_contig_free(struct wpi_dma_info *); 163 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 164 static int wpi_alloc_shared(struct wpi_softc *); 165 static void wpi_free_shared(struct wpi_softc *); 166 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 167 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 168 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 169 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 170 int, int); 171 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 172 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 173 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 174 const uint8_t mac[IEEE80211_ADDR_LEN]); 175 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 176 static void wpi_mem_lock(struct wpi_softc *); 177 static void wpi_mem_unlock(struct wpi_softc *); 178 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 179 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 180 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 181 const uint32_t *, int); 182 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 183 static int wpi_alloc_fwmem(struct wpi_softc *); 184 static void wpi_free_fwmem(struct wpi_softc *); 185 static int wpi_load_firmware(struct wpi_softc *); 186 static void wpi_unload_firmware(struct wpi_softc *); 187 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 188 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 189 struct wpi_rx_data *); 190 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 191 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 192 static void wpi_bmiss(void *, int); 193 static void wpi_notif_intr(struct wpi_softc *); 194 static void wpi_intr(void *); 195 static void wpi_ops(void *, int); 196 static uint8_t wpi_plcp_signal(int); 197 static int wpi_queue_cmd(struct wpi_softc *, int, int, int); 198 static void wpi_watchdog(void *); 199 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 200 struct ieee80211_node *, int); 201 static void wpi_start(struct ifnet *); 202 static void wpi_start_locked(struct ifnet *); 203 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 204 const struct ieee80211_bpf_params *); 205 static void wpi_scan_start(struct ieee80211com *); 206 static void wpi_scan_end(struct ieee80211com *); 207 static void wpi_set_channel(struct ieee80211com *); 208 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 209 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 210 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 211 static void wpi_read_eeprom(struct wpi_softc *); 212 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 213 static void wpi_read_eeprom_group(struct wpi_softc *, int); 214 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 215 static int wpi_wme_update(struct ieee80211com *); 216 static int wpi_mrr_setup(struct wpi_softc *); 217 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 218 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 219 #if 0 220 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 221 #endif 222 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 223 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 224 static int wpi_scan(struct wpi_softc *); 225 static int wpi_config(struct wpi_softc *); 226 static void wpi_stop_master(struct wpi_softc *); 227 static int wpi_power_up(struct wpi_softc *); 228 static int wpi_reset(struct wpi_softc *); 229 static void wpi_hw_config(struct wpi_softc *); 230 static void wpi_init(void *); 231 static void wpi_init_locked(struct wpi_softc *, int); 232 static void wpi_stop(struct wpi_softc *); 233 static void wpi_stop_locked(struct wpi_softc *); 234 235 static void wpi_newassoc(struct ieee80211_node *, int); 236 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 237 int); 238 static void wpi_calib_timeout(void *); 239 static void wpi_power_calibration(struct wpi_softc *, int); 240 static int wpi_get_power_index(struct wpi_softc *, 241 struct wpi_power_group *, struct ieee80211_channel *, int); 242 static const char *wpi_cmd_str(int); 243 static int wpi_probe(device_t); 244 static int wpi_attach(device_t); 245 static int wpi_detach(device_t); 246 static int wpi_shutdown(device_t); 247 static int wpi_suspend(device_t); 248 static int wpi_resume(device_t); 249 250 251 static device_method_t wpi_methods[] = { 252 /* Device interface */ 253 DEVMETHOD(device_probe, wpi_probe), 254 DEVMETHOD(device_attach, wpi_attach), 255 DEVMETHOD(device_detach, wpi_detach), 256 DEVMETHOD(device_shutdown, wpi_shutdown), 257 DEVMETHOD(device_suspend, wpi_suspend), 258 DEVMETHOD(device_resume, wpi_resume), 259 260 { 0, 0 } 261 }; 262 263 static driver_t wpi_driver = { 264 "wpi", 265 wpi_methods, 266 sizeof (struct wpi_softc) 267 }; 268 269 static devclass_t wpi_devclass; 270 271 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 272 273 static const uint8_t wpi_ridx_to_plcp[] = { 274 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 275 /* R1-R4 (ral/ural is R4-R1) */ 276 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 277 /* CCK: device-dependent */ 278 10, 20, 55, 110 279 }; 280 static const uint8_t wpi_ridx_to_rate[] = { 281 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 282 2, 4, 11, 22 /*CCK */ 283 }; 284 285 286 static int 287 wpi_probe(device_t dev) 288 { 289 const struct wpi_ident *ident; 290 291 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 292 if (pci_get_vendor(dev) == ident->vendor && 293 pci_get_device(dev) == ident->device) { 294 device_set_desc(dev, ident->name); 295 return 0; 296 } 297 } 298 return ENXIO; 299 } 300 301 /** 302 * Load the firmare image from disk to the allocated dma buffer. 303 * we also maintain the reference to the firmware pointer as there 304 * is times where we may need to reload the firmware but we are not 305 * in a context that can access the filesystem (ie taskq cause by restart) 306 * 307 * @return 0 on success, an errno on failure 308 */ 309 static int 310 wpi_load_firmware(struct wpi_softc *sc) 311 { 312 const struct firmware *fp; 313 struct wpi_dma_info *dma = &sc->fw_dma; 314 const struct wpi_firmware_hdr *hdr; 315 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 316 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 317 int error; 318 319 DPRINTFN(WPI_DEBUG_FIRMWARE, 320 ("Attempting Loading Firmware from wpi_fw module\n")); 321 322 WPI_UNLOCK(sc); 323 324 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 325 device_printf(sc->sc_dev, 326 "could not load firmware image 'wpifw'\n"); 327 error = ENOENT; 328 WPI_LOCK(sc); 329 goto fail; 330 } 331 332 fp = sc->fw_fp; 333 334 WPI_LOCK(sc); 335 336 /* Validate the firmware is minimum a particular version */ 337 if (fp->version < WPI_FW_MINVERSION) { 338 device_printf(sc->sc_dev, 339 "firmware version is too old. Need %d, got %d\n", 340 WPI_FW_MINVERSION, 341 fp->version); 342 error = ENXIO; 343 goto fail; 344 } 345 346 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 347 device_printf(sc->sc_dev, 348 "firmware file too short: %zu bytes\n", fp->datasize); 349 error = ENXIO; 350 goto fail; 351 } 352 353 hdr = (const struct wpi_firmware_hdr *)fp->data; 354 355 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 356 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 357 358 rtextsz = le32toh(hdr->rtextsz); 359 rdatasz = le32toh(hdr->rdatasz); 360 itextsz = le32toh(hdr->itextsz); 361 idatasz = le32toh(hdr->idatasz); 362 btextsz = le32toh(hdr->btextsz); 363 364 /* check that all firmware segments are present */ 365 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 366 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 367 device_printf(sc->sc_dev, 368 "firmware file too short: %zu bytes\n", fp->datasize); 369 error = ENXIO; /* XXX appropriate error code? */ 370 goto fail; 371 } 372 373 /* get pointers to firmware segments */ 374 rtext = (const uint8_t *)(hdr + 1); 375 rdata = rtext + rtextsz; 376 itext = rdata + rdatasz; 377 idata = itext + itextsz; 378 btext = idata + idatasz; 379 380 DPRINTFN(WPI_DEBUG_FIRMWARE, 381 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 382 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 383 (le32toh(hdr->version) & 0xff000000) >> 24, 384 (le32toh(hdr->version) & 0x00ff0000) >> 16, 385 (le32toh(hdr->version) & 0x0000ffff), 386 rtextsz, rdatasz, 387 itextsz, idatasz, btextsz)); 388 389 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 390 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 391 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 392 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 393 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 394 395 /* sanity checks */ 396 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 397 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 398 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 399 idatasz > WPI_FW_INIT_DATA_MAXSZ || 400 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 401 (btextsz & 3) != 0) { 402 device_printf(sc->sc_dev, "firmware invalid\n"); 403 error = EINVAL; 404 goto fail; 405 } 406 407 /* copy initialization images into pre-allocated DMA-safe memory */ 408 memcpy(dma->vaddr, idata, idatasz); 409 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 410 411 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 412 413 /* tell adapter where to find initialization images */ 414 wpi_mem_lock(sc); 415 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 416 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 417 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 418 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 419 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 420 wpi_mem_unlock(sc); 421 422 /* load firmware boot code */ 423 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 424 device_printf(sc->sc_dev, "Failed to load microcode\n"); 425 goto fail; 426 } 427 428 /* now press "execute" */ 429 WPI_WRITE(sc, WPI_RESET, 0); 430 431 /* wait at most one second for the first alive notification */ 432 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 433 device_printf(sc->sc_dev, 434 "timeout waiting for adapter to initialize\n"); 435 goto fail; 436 } 437 438 /* copy runtime images into pre-allocated DMA-sage memory */ 439 memcpy(dma->vaddr, rdata, rdatasz); 440 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 441 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 442 443 /* tell adapter where to find runtime images */ 444 wpi_mem_lock(sc); 445 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 446 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 447 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 448 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 449 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 450 wpi_mem_unlock(sc); 451 452 /* wait at most one second for the first alive notification */ 453 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 454 device_printf(sc->sc_dev, 455 "timeout waiting for adapter to initialize2\n"); 456 goto fail; 457 } 458 459 DPRINTFN(WPI_DEBUG_FIRMWARE, 460 ("Firmware loaded to driver successfully\n")); 461 return error; 462 fail: 463 wpi_unload_firmware(sc); 464 return error; 465 } 466 467 /** 468 * Free the referenced firmware image 469 */ 470 static void 471 wpi_unload_firmware(struct wpi_softc *sc) 472 { 473 474 if (sc->fw_fp) { 475 WPI_UNLOCK(sc); 476 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 477 WPI_LOCK(sc); 478 sc->fw_fp = NULL; 479 } 480 } 481 482 static int 483 wpi_attach(device_t dev) 484 { 485 struct wpi_softc *sc = device_get_softc(dev); 486 struct ifnet *ifp; 487 struct ieee80211com *ic; 488 int ac, error, supportsa = 1; 489 uint32_t tmp; 490 const struct wpi_ident *ident; 491 492 sc->sc_dev = dev; 493 494 if (bootverbose || wpi_debug) 495 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 496 497 /* 498 * Some card's only support 802.11b/g not a, check to see if 499 * this is one such card. A 0x0 in the subdevice table indicates 500 * the entire subdevice range is to be ignored. 501 */ 502 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 503 if (ident->subdevice && 504 pci_get_subdevice(dev) == ident->subdevice) { 505 supportsa = 0; 506 break; 507 } 508 } 509 510 /* 511 * Create the taskqueues used by the driver. Primarily 512 * sc_tq handles most the task 513 */ 514 sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO, 515 taskqueue_thread_enqueue, &sc->sc_tq); 516 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 517 device_get_nameunit(dev)); 518 519 /* Create the tasks that can be queued */ 520 TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc); 521 TASK_INIT(&sc->sc_bmiss_task, 0, wpi_bmiss, sc); 522 523 WPI_LOCK_INIT(sc); 524 WPI_CMD_LOCK_INIT(sc); 525 526 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 527 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 528 529 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 530 device_printf(dev, "chip is in D%d power mode " 531 "-- setting to D0\n", pci_get_powerstate(dev)); 532 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 533 } 534 535 /* disable the retry timeout register */ 536 pci_write_config(dev, 0x41, 0, 1); 537 538 /* enable bus-mastering */ 539 pci_enable_busmaster(dev); 540 541 sc->mem_rid = PCIR_BAR(0); 542 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 543 RF_ACTIVE); 544 if (sc->mem == NULL) { 545 device_printf(dev, "could not allocate memory resource\n"); 546 error = ENOMEM; 547 goto fail; 548 } 549 550 sc->sc_st = rman_get_bustag(sc->mem); 551 sc->sc_sh = rman_get_bushandle(sc->mem); 552 553 sc->irq_rid = 0; 554 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 555 RF_ACTIVE | RF_SHAREABLE); 556 if (sc->irq == NULL) { 557 device_printf(dev, "could not allocate interrupt resource\n"); 558 error = ENOMEM; 559 goto fail; 560 } 561 562 /* 563 * Allocate DMA memory for firmware transfers. 564 */ 565 if ((error = wpi_alloc_fwmem(sc)) != 0) { 566 printf(": could not allocate firmware memory\n"); 567 error = ENOMEM; 568 goto fail; 569 } 570 571 /* 572 * Put adapter into a known state. 573 */ 574 if ((error = wpi_reset(sc)) != 0) { 575 device_printf(dev, "could not reset adapter\n"); 576 goto fail; 577 } 578 579 wpi_mem_lock(sc); 580 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 581 if (bootverbose || wpi_debug) 582 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 583 584 wpi_mem_unlock(sc); 585 586 /* Allocate shared page */ 587 if ((error = wpi_alloc_shared(sc)) != 0) { 588 device_printf(dev, "could not allocate shared page\n"); 589 goto fail; 590 } 591 592 /* tx data queues - 4 for QoS purposes */ 593 for (ac = 0; ac < WME_NUM_AC; ac++) { 594 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 595 if (error != 0) { 596 device_printf(dev, "could not allocate Tx ring %d\n",ac); 597 goto fail; 598 } 599 } 600 601 /* command queue to talk to the card's firmware */ 602 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 603 if (error != 0) { 604 device_printf(dev, "could not allocate command ring\n"); 605 goto fail; 606 } 607 608 /* receive data queue */ 609 error = wpi_alloc_rx_ring(sc, &sc->rxq); 610 if (error != 0) { 611 device_printf(dev, "could not allocate Rx ring\n"); 612 goto fail; 613 } 614 615 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 616 if (ifp == NULL) { 617 device_printf(dev, "can not if_alloc()\n"); 618 error = ENOMEM; 619 goto fail; 620 } 621 ic = ifp->if_l2com; 622 623 ic->ic_ifp = ifp; 624 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 625 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 626 627 /* set device capabilities */ 628 ic->ic_caps = 629 IEEE80211_C_STA /* station mode supported */ 630 | IEEE80211_C_MONITOR /* monitor mode supported */ 631 | IEEE80211_C_TXPMGT /* tx power management */ 632 | IEEE80211_C_SHSLOT /* short slot time supported */ 633 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 634 | IEEE80211_C_WPA /* 802.11i */ 635 /* XXX looks like WME is partly supported? */ 636 #if 0 637 | IEEE80211_C_IBSS /* IBSS mode support */ 638 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 639 | IEEE80211_C_WME /* 802.11e */ 640 | IEEE80211_C_HOSTAP /* Host access point mode */ 641 #endif 642 ; 643 644 /* 645 * Read in the eeprom and also setup the channels for 646 * net80211. We don't set the rates as net80211 does this for us 647 */ 648 wpi_read_eeprom(sc); 649 650 if (bootverbose || wpi_debug) { 651 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 652 device_printf(sc->sc_dev, "Hardware Type: %c\n", 653 sc->type > 1 ? 'B': '?'); 654 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 655 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 656 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 657 supportsa ? "does" : "does not"); 658 659 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 660 what sc->rev really represents - benjsc 20070615 */ 661 } 662 663 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 664 ifp->if_softc = sc; 665 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 666 ifp->if_init = wpi_init; 667 ifp->if_ioctl = wpi_ioctl; 668 ifp->if_start = wpi_start; 669 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 670 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 671 IFQ_SET_READY(&ifp->if_snd); 672 673 ieee80211_ifattach(ic); 674 /* override default methods */ 675 ic->ic_node_alloc = wpi_node_alloc; 676 ic->ic_newassoc = wpi_newassoc; 677 ic->ic_raw_xmit = wpi_raw_xmit; 678 ic->ic_wme.wme_update = wpi_wme_update; 679 ic->ic_scan_start = wpi_scan_start; 680 ic->ic_scan_end = wpi_scan_end; 681 ic->ic_set_channel = wpi_set_channel; 682 ic->ic_scan_curchan = wpi_scan_curchan; 683 ic->ic_scan_mindwell = wpi_scan_mindwell; 684 685 ic->ic_vap_create = wpi_vap_create; 686 ic->ic_vap_delete = wpi_vap_delete; 687 688 bpfattach(ifp, DLT_IEEE802_11_RADIO, 689 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap)); 690 691 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 692 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 693 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 694 695 sc->sc_txtap_len = sizeof sc->sc_txtap; 696 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 697 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 698 699 /* 700 * Hook our interrupt after all initialization is complete. 701 */ 702 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 703 NULL, wpi_intr, sc, &sc->sc_ih); 704 if (error != 0) { 705 device_printf(dev, "could not set up interrupt\n"); 706 goto fail; 707 } 708 709 if (bootverbose) 710 ieee80211_announce(ic); 711 #ifdef XXX_DEBUG 712 ieee80211_announce_channels(ic); 713 #endif 714 return 0; 715 716 fail: wpi_detach(dev); 717 return ENXIO; 718 } 719 720 static int 721 wpi_detach(device_t dev) 722 { 723 struct wpi_softc *sc = device_get_softc(dev); 724 struct ifnet *ifp = sc->sc_ifp; 725 struct ieee80211com *ic = ifp->if_l2com; 726 int ac; 727 728 if (ifp != NULL) { 729 wpi_stop(sc); 730 callout_drain(&sc->watchdog_to); 731 callout_drain(&sc->calib_to); 732 bpfdetach(ifp); 733 ieee80211_ifdetach(ic); 734 } 735 736 WPI_LOCK(sc); 737 if (sc->txq[0].data_dmat) { 738 for (ac = 0; ac < WME_NUM_AC; ac++) 739 wpi_free_tx_ring(sc, &sc->txq[ac]); 740 741 wpi_free_tx_ring(sc, &sc->cmdq); 742 wpi_free_rx_ring(sc, &sc->rxq); 743 wpi_free_shared(sc); 744 } 745 746 if (sc->fw_fp != NULL) { 747 wpi_unload_firmware(sc); 748 } 749 750 if (sc->fw_dma.tag) 751 wpi_free_fwmem(sc); 752 WPI_UNLOCK(sc); 753 754 if (sc->irq != NULL) { 755 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 756 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 757 } 758 759 if (sc->mem != NULL) 760 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 761 762 if (ifp != NULL) 763 if_free(ifp); 764 765 taskqueue_free(sc->sc_tq); 766 767 WPI_LOCK_DESTROY(sc); 768 WPI_CMD_LOCK_DESTROY(sc); 769 770 return 0; 771 } 772 773 static struct ieee80211vap * 774 wpi_vap_create(struct ieee80211com *ic, 775 const char name[IFNAMSIZ], int unit, int opmode, int flags, 776 const uint8_t bssid[IEEE80211_ADDR_LEN], 777 const uint8_t mac[IEEE80211_ADDR_LEN]) 778 { 779 struct wpi_vap *wvp; 780 struct ieee80211vap *vap; 781 782 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 783 return NULL; 784 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 785 M_80211_VAP, M_NOWAIT | M_ZERO); 786 if (wvp == NULL) 787 return NULL; 788 vap = &wvp->vap; 789 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 790 /* override with driver methods */ 791 wvp->newstate = vap->iv_newstate; 792 vap->iv_newstate = wpi_newstate; 793 794 ieee80211_amrr_init(&wvp->amrr, vap, 795 IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, 796 IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD, 797 500 /*ms*/); 798 799 /* complete setup */ 800 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 801 ic->ic_opmode = opmode; 802 return vap; 803 } 804 805 static void 806 wpi_vap_delete(struct ieee80211vap *vap) 807 { 808 struct wpi_vap *wvp = WPI_VAP(vap); 809 810 ieee80211_amrr_cleanup(&wvp->amrr); 811 ieee80211_vap_detach(vap); 812 free(wvp, M_80211_VAP); 813 } 814 815 static void 816 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 817 { 818 if (error != 0) 819 return; 820 821 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 822 823 *(bus_addr_t *)arg = segs[0].ds_addr; 824 } 825 826 /* 827 * Allocates a contiguous block of dma memory of the requested size and 828 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 829 * allocations greater than 4096 may fail. Hence if the requested alignment is 830 * greater we allocate 'alignment' size extra memory and shift the vaddr and 831 * paddr after the dma load. This bypasses the problem at the cost of a little 832 * more memory. 833 */ 834 static int 835 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 836 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 837 { 838 int error; 839 bus_size_t align; 840 bus_size_t reqsize; 841 842 DPRINTFN(WPI_DEBUG_DMA, 843 ("Size: %zd - alignment %zd\n", size, alignment)); 844 845 dma->size = size; 846 dma->tag = NULL; 847 848 if (alignment > 4096) { 849 align = PAGE_SIZE; 850 reqsize = size + alignment; 851 } else { 852 align = alignment; 853 reqsize = size; 854 } 855 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 856 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 857 NULL, NULL, reqsize, 858 1, reqsize, flags, 859 NULL, NULL, &dma->tag); 860 if (error != 0) { 861 device_printf(sc->sc_dev, 862 "could not create shared page DMA tag\n"); 863 goto fail; 864 } 865 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 866 flags | BUS_DMA_ZERO, &dma->map); 867 if (error != 0) { 868 device_printf(sc->sc_dev, 869 "could not allocate shared page DMA memory\n"); 870 goto fail; 871 } 872 873 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 874 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 875 876 /* Save the original pointers so we can free all the memory */ 877 dma->paddr = dma->paddr_start; 878 dma->vaddr = dma->vaddr_start; 879 880 /* 881 * Check the alignment and increment by 4096 until we get the 882 * requested alignment. Fail if can't obtain the alignment 883 * we requested. 884 */ 885 if ((dma->paddr & (alignment -1 )) != 0) { 886 int i; 887 888 for (i = 0; i < alignment / 4096; i++) { 889 if ((dma->paddr & (alignment - 1 )) == 0) 890 break; 891 dma->paddr += 4096; 892 dma->vaddr += 4096; 893 } 894 if (i == alignment / 4096) { 895 device_printf(sc->sc_dev, 896 "alignment requirement was not satisfied\n"); 897 goto fail; 898 } 899 } 900 901 if (error != 0) { 902 device_printf(sc->sc_dev, 903 "could not load shared page DMA map\n"); 904 goto fail; 905 } 906 907 if (kvap != NULL) 908 *kvap = dma->vaddr; 909 910 return 0; 911 912 fail: 913 wpi_dma_contig_free(dma); 914 return error; 915 } 916 917 static void 918 wpi_dma_contig_free(struct wpi_dma_info *dma) 919 { 920 if (dma->tag) { 921 if (dma->map != NULL) { 922 if (dma->paddr_start != 0) { 923 bus_dmamap_sync(dma->tag, dma->map, 924 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 925 bus_dmamap_unload(dma->tag, dma->map); 926 } 927 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 928 } 929 bus_dma_tag_destroy(dma->tag); 930 } 931 } 932 933 /* 934 * Allocate a shared page between host and NIC. 935 */ 936 static int 937 wpi_alloc_shared(struct wpi_softc *sc) 938 { 939 int error; 940 941 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 942 (void **)&sc->shared, sizeof (struct wpi_shared), 943 PAGE_SIZE, 944 BUS_DMA_NOWAIT); 945 946 if (error != 0) { 947 device_printf(sc->sc_dev, 948 "could not allocate shared area DMA memory\n"); 949 } 950 951 return error; 952 } 953 954 static void 955 wpi_free_shared(struct wpi_softc *sc) 956 { 957 wpi_dma_contig_free(&sc->shared_dma); 958 } 959 960 static int 961 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 962 { 963 964 int i, error; 965 966 ring->cur = 0; 967 968 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 969 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 970 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 971 972 if (error != 0) { 973 device_printf(sc->sc_dev, 974 "%s: could not allocate rx ring DMA memory, error %d\n", 975 __func__, error); 976 goto fail; 977 } 978 979 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 980 BUS_SPACE_MAXADDR_32BIT, 981 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 982 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 983 if (error != 0) { 984 device_printf(sc->sc_dev, 985 "%s: bus_dma_tag_create_failed, error %d\n", 986 __func__, error); 987 goto fail; 988 } 989 990 /* 991 * Setup Rx buffers. 992 */ 993 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 994 struct wpi_rx_data *data = &ring->data[i]; 995 struct mbuf *m; 996 bus_addr_t paddr; 997 998 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 999 if (error != 0) { 1000 device_printf(sc->sc_dev, 1001 "%s: bus_dmamap_create failed, error %d\n", 1002 __func__, error); 1003 goto fail; 1004 } 1005 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1006 if (m == NULL) { 1007 device_printf(sc->sc_dev, 1008 "%s: could not allocate rx mbuf\n", __func__); 1009 error = ENOMEM; 1010 goto fail; 1011 } 1012 /* map page */ 1013 error = bus_dmamap_load(ring->data_dmat, data->map, 1014 mtod(m, caddr_t), MJUMPAGESIZE, 1015 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1016 if (error != 0 && error != EFBIG) { 1017 device_printf(sc->sc_dev, 1018 "%s: bus_dmamap_load failed, error %d\n", 1019 __func__, error); 1020 m_freem(m); 1021 error = ENOMEM; /* XXX unique code */ 1022 goto fail; 1023 } 1024 bus_dmamap_sync(ring->data_dmat, data->map, 1025 BUS_DMASYNC_PREWRITE); 1026 1027 data->m = m; 1028 ring->desc[i] = htole32(paddr); 1029 } 1030 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1031 BUS_DMASYNC_PREWRITE); 1032 return 0; 1033 fail: 1034 wpi_free_rx_ring(sc, ring); 1035 return error; 1036 } 1037 1038 static void 1039 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1040 { 1041 int ntries; 1042 1043 wpi_mem_lock(sc); 1044 1045 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1046 1047 for (ntries = 0; ntries < 100; ntries++) { 1048 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1049 break; 1050 DELAY(10); 1051 } 1052 1053 wpi_mem_unlock(sc); 1054 1055 #ifdef WPI_DEBUG 1056 if (ntries == 100) 1057 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1058 #endif 1059 1060 ring->cur = 0; 1061 } 1062 1063 static void 1064 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1065 { 1066 int i; 1067 1068 wpi_dma_contig_free(&ring->desc_dma); 1069 1070 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1071 if (ring->data[i].m != NULL) 1072 m_freem(ring->data[i].m); 1073 } 1074 1075 static int 1076 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1077 int qid) 1078 { 1079 struct wpi_tx_data *data; 1080 int i, error; 1081 1082 ring->qid = qid; 1083 ring->count = count; 1084 ring->queued = 0; 1085 ring->cur = 0; 1086 ring->data = NULL; 1087 1088 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1089 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1090 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1091 1092 if (error != 0) { 1093 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1094 goto fail; 1095 } 1096 1097 /* update shared page with ring's base address */ 1098 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1099 1100 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1101 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1102 BUS_DMA_NOWAIT); 1103 1104 if (error != 0) { 1105 device_printf(sc->sc_dev, 1106 "could not allocate tx command DMA memory\n"); 1107 goto fail; 1108 } 1109 1110 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1111 M_NOWAIT | M_ZERO); 1112 if (ring->data == NULL) { 1113 device_printf(sc->sc_dev, 1114 "could not allocate tx data slots\n"); 1115 goto fail; 1116 } 1117 1118 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1119 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1120 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1121 &ring->data_dmat); 1122 if (error != 0) { 1123 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1124 goto fail; 1125 } 1126 1127 for (i = 0; i < count; i++) { 1128 data = &ring->data[i]; 1129 1130 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1131 if (error != 0) { 1132 device_printf(sc->sc_dev, 1133 "could not create tx buf DMA map\n"); 1134 goto fail; 1135 } 1136 bus_dmamap_sync(ring->data_dmat, data->map, 1137 BUS_DMASYNC_PREWRITE); 1138 } 1139 1140 return 0; 1141 1142 fail: 1143 wpi_free_tx_ring(sc, ring); 1144 return error; 1145 } 1146 1147 static void 1148 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1149 { 1150 struct wpi_tx_data *data; 1151 int i, ntries; 1152 1153 wpi_mem_lock(sc); 1154 1155 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1156 for (ntries = 0; ntries < 100; ntries++) { 1157 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1158 break; 1159 DELAY(10); 1160 } 1161 #ifdef WPI_DEBUG 1162 if (ntries == 100) 1163 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1164 ring->qid); 1165 #endif 1166 wpi_mem_unlock(sc); 1167 1168 for (i = 0; i < ring->count; i++) { 1169 data = &ring->data[i]; 1170 1171 if (data->m != NULL) { 1172 bus_dmamap_unload(ring->data_dmat, data->map); 1173 m_freem(data->m); 1174 data->m = NULL; 1175 } 1176 } 1177 1178 ring->queued = 0; 1179 ring->cur = 0; 1180 } 1181 1182 static void 1183 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1184 { 1185 struct wpi_tx_data *data; 1186 int i; 1187 1188 wpi_dma_contig_free(&ring->desc_dma); 1189 wpi_dma_contig_free(&ring->cmd_dma); 1190 1191 if (ring->data != NULL) { 1192 for (i = 0; i < ring->count; i++) { 1193 data = &ring->data[i]; 1194 1195 if (data->m != NULL) { 1196 bus_dmamap_sync(ring->data_dmat, data->map, 1197 BUS_DMASYNC_POSTWRITE); 1198 bus_dmamap_unload(ring->data_dmat, data->map); 1199 m_freem(data->m); 1200 data->m = NULL; 1201 } 1202 } 1203 free(ring->data, M_DEVBUF); 1204 } 1205 1206 if (ring->data_dmat != NULL) 1207 bus_dma_tag_destroy(ring->data_dmat); 1208 } 1209 1210 static int 1211 wpi_shutdown(device_t dev) 1212 { 1213 struct wpi_softc *sc = device_get_softc(dev); 1214 1215 WPI_LOCK(sc); 1216 wpi_stop_locked(sc); 1217 wpi_unload_firmware(sc); 1218 WPI_UNLOCK(sc); 1219 1220 return 0; 1221 } 1222 1223 static int 1224 wpi_suspend(device_t dev) 1225 { 1226 struct wpi_softc *sc = device_get_softc(dev); 1227 1228 wpi_stop(sc); 1229 return 0; 1230 } 1231 1232 static int 1233 wpi_resume(device_t dev) 1234 { 1235 struct wpi_softc *sc = device_get_softc(dev); 1236 struct ifnet *ifp = sc->sc_ifp; 1237 1238 pci_write_config(dev, 0x41, 0, 1); 1239 1240 if (ifp->if_flags & IFF_UP) { 1241 wpi_init(ifp->if_softc); 1242 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1243 wpi_start(ifp); 1244 } 1245 return 0; 1246 } 1247 1248 /* ARGSUSED */ 1249 static struct ieee80211_node * 1250 wpi_node_alloc(struct ieee80211vap *vap __unused, 1251 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 1252 { 1253 struct wpi_node *wn; 1254 1255 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1256 1257 return &wn->ni; 1258 } 1259 1260 /** 1261 * Called by net80211 when ever there is a change to 80211 state machine 1262 */ 1263 static int 1264 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1265 { 1266 struct wpi_vap *wvp = WPI_VAP(vap); 1267 struct ieee80211com *ic = vap->iv_ic; 1268 struct ifnet *ifp = ic->ic_ifp; 1269 struct wpi_softc *sc = ifp->if_softc; 1270 int error; 1271 1272 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1273 ieee80211_state_name[vap->iv_state], 1274 ieee80211_state_name[nstate], sc->flags)); 1275 1276 if (nstate == IEEE80211_S_AUTH) { 1277 /* Delay the auth transition until we can update the firmware */ 1278 error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL); 1279 return (error != 0 ? error : EINPROGRESS); 1280 } 1281 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1282 /* set the association id first */ 1283 error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL); 1284 return (error != 0 ? error : EINPROGRESS); 1285 } 1286 if (nstate == IEEE80211_S_RUN) { 1287 /* RUN -> RUN transition; just restart the timers */ 1288 wpi_calib_timeout(sc); 1289 /* XXX split out rate control timer */ 1290 } 1291 return wvp->newstate(vap, nstate, arg); 1292 } 1293 1294 /* 1295 * Grab exclusive access to NIC memory. 1296 */ 1297 static void 1298 wpi_mem_lock(struct wpi_softc *sc) 1299 { 1300 int ntries; 1301 uint32_t tmp; 1302 1303 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1304 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1305 1306 /* spin until we actually get the lock */ 1307 for (ntries = 0; ntries < 100; ntries++) { 1308 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1309 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1310 break; 1311 DELAY(10); 1312 } 1313 if (ntries == 100) 1314 device_printf(sc->sc_dev, "could not lock memory\n"); 1315 } 1316 1317 /* 1318 * Release lock on NIC memory. 1319 */ 1320 static void 1321 wpi_mem_unlock(struct wpi_softc *sc) 1322 { 1323 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1324 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1325 } 1326 1327 static uint32_t 1328 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1329 { 1330 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1331 return WPI_READ(sc, WPI_READ_MEM_DATA); 1332 } 1333 1334 static void 1335 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1336 { 1337 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1338 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1339 } 1340 1341 static void 1342 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1343 const uint32_t *data, int wlen) 1344 { 1345 for (; wlen > 0; wlen--, data++, addr+=4) 1346 wpi_mem_write(sc, addr, *data); 1347 } 1348 1349 /* 1350 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1351 * using the traditional bit-bang method. Data is read up until len bytes have 1352 * been obtained. 1353 */ 1354 static uint16_t 1355 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1356 { 1357 int ntries; 1358 uint32_t val; 1359 uint8_t *out = data; 1360 1361 wpi_mem_lock(sc); 1362 1363 for (; len > 0; len -= 2, addr++) { 1364 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1365 1366 for (ntries = 0; ntries < 10; ntries++) { 1367 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1368 break; 1369 DELAY(5); 1370 } 1371 1372 if (ntries == 10) { 1373 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1374 return ETIMEDOUT; 1375 } 1376 1377 *out++= val >> 16; 1378 if (len > 1) 1379 *out ++= val >> 24; 1380 } 1381 1382 wpi_mem_unlock(sc); 1383 1384 return 0; 1385 } 1386 1387 /* 1388 * The firmware text and data segments are transferred to the NIC using DMA. 1389 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1390 * where to find it. Once the NIC has copied the firmware into its internal 1391 * memory, we can free our local copy in the driver. 1392 */ 1393 static int 1394 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1395 { 1396 int error, ntries; 1397 1398 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1399 1400 size /= sizeof(uint32_t); 1401 1402 wpi_mem_lock(sc); 1403 1404 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1405 (const uint32_t *)fw, size); 1406 1407 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1408 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1409 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1410 1411 /* run microcode */ 1412 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1413 1414 /* wait while the adapter is busy copying the firmware */ 1415 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1416 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1417 DPRINTFN(WPI_DEBUG_HW, 1418 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1419 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1420 if (status & WPI_TX_IDLE(6)) { 1421 DPRINTFN(WPI_DEBUG_HW, 1422 ("Status Match! - ntries = %d\n", ntries)); 1423 break; 1424 } 1425 DELAY(10); 1426 } 1427 if (ntries == 1000) { 1428 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1429 error = ETIMEDOUT; 1430 } 1431 1432 /* start the microcode executing */ 1433 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1434 1435 wpi_mem_unlock(sc); 1436 1437 return (error); 1438 } 1439 1440 static void 1441 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1442 struct wpi_rx_data *data) 1443 { 1444 struct ifnet *ifp = sc->sc_ifp; 1445 struct ieee80211com *ic = ifp->if_l2com; 1446 struct wpi_rx_ring *ring = &sc->rxq; 1447 struct wpi_rx_stat *stat; 1448 struct wpi_rx_head *head; 1449 struct wpi_rx_tail *tail; 1450 struct ieee80211_node *ni; 1451 struct mbuf *m, *mnew; 1452 bus_addr_t paddr; 1453 int error; 1454 1455 stat = (struct wpi_rx_stat *)(desc + 1); 1456 1457 if (stat->len > WPI_STAT_MAXLEN) { 1458 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1459 ifp->if_ierrors++; 1460 return; 1461 } 1462 1463 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1464 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1465 1466 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1467 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1468 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1469 (uintmax_t)le64toh(tail->tstamp))); 1470 1471 /* XXX don't need mbuf, just dma buffer */ 1472 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1473 if (mnew == NULL) { 1474 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1475 __func__)); 1476 ic->ic_stats.is_rx_nobuf++; 1477 ifp->if_ierrors++; 1478 return; 1479 } 1480 error = bus_dmamap_load(ring->data_dmat, data->map, 1481 mtod(mnew, caddr_t), MJUMPAGESIZE, 1482 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1483 if (error != 0 && error != EFBIG) { 1484 device_printf(sc->sc_dev, 1485 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1486 m_freem(mnew); 1487 ic->ic_stats.is_rx_nobuf++; /* XXX need stat */ 1488 ifp->if_ierrors++; 1489 return; 1490 } 1491 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1492 1493 /* finalize mbuf and swap in new one */ 1494 m = data->m; 1495 m->m_pkthdr.rcvif = ifp; 1496 m->m_data = (caddr_t)(head + 1); 1497 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1498 1499 data->m = mnew; 1500 /* update Rx descriptor */ 1501 ring->desc[ring->cur] = htole32(paddr); 1502 1503 if (bpf_peers_present(ifp->if_bpf)) { 1504 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1505 1506 tap->wr_flags = 0; 1507 tap->wr_chan_freq = 1508 htole16(ic->ic_channels[head->chan].ic_freq); 1509 tap->wr_chan_flags = 1510 htole16(ic->ic_channels[head->chan].ic_flags); 1511 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1512 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1513 tap->wr_tsft = tail->tstamp; 1514 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1515 switch (head->rate) { 1516 /* CCK rates */ 1517 case 10: tap->wr_rate = 2; break; 1518 case 20: tap->wr_rate = 4; break; 1519 case 55: tap->wr_rate = 11; break; 1520 case 110: tap->wr_rate = 22; break; 1521 /* OFDM rates */ 1522 case 0xd: tap->wr_rate = 12; break; 1523 case 0xf: tap->wr_rate = 18; break; 1524 case 0x5: tap->wr_rate = 24; break; 1525 case 0x7: tap->wr_rate = 36; break; 1526 case 0x9: tap->wr_rate = 48; break; 1527 case 0xb: tap->wr_rate = 72; break; 1528 case 0x1: tap->wr_rate = 96; break; 1529 case 0x3: tap->wr_rate = 108; break; 1530 /* unknown rate: should not happen */ 1531 default: tap->wr_rate = 0; 1532 } 1533 if (le16toh(head->flags) & 0x4) 1534 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1535 1536 bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m); 1537 } 1538 1539 WPI_UNLOCK(sc); 1540 1541 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1542 if (ni != NULL) { 1543 (void) ieee80211_input(ni, m, stat->rssi, 0, 0); 1544 ieee80211_free_node(ni); 1545 } else 1546 (void) ieee80211_input_all(ic, m, stat->rssi, 0, 0); 1547 1548 WPI_LOCK(sc); 1549 } 1550 1551 static void 1552 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1553 { 1554 struct ifnet *ifp = sc->sc_ifp; 1555 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1556 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1557 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1558 struct wpi_node *wn = (struct wpi_node *)txdata->ni; 1559 1560 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1561 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1562 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1563 le32toh(stat->status))); 1564 1565 /* 1566 * Update rate control statistics for the node. 1567 * XXX we should not count mgmt frames since they're always sent at 1568 * the lowest available bit-rate. 1569 * XXX frames w/o ACK shouldn't be used either 1570 */ 1571 wn->amn.amn_txcnt++; 1572 if (stat->ntries > 0) { 1573 DPRINTFN(3, ("%d retries\n", stat->ntries)); 1574 wn->amn.amn_retrycnt++; 1575 } 1576 1577 /* XXX oerrors should only count errors !maxtries */ 1578 if ((le32toh(stat->status) & 0xff) != 1) 1579 ifp->if_oerrors++; 1580 else 1581 ifp->if_opackets++; 1582 1583 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1584 bus_dmamap_unload(ring->data_dmat, txdata->map); 1585 /* XXX handle M_TXCB? */ 1586 m_freem(txdata->m); 1587 txdata->m = NULL; 1588 ieee80211_free_node(txdata->ni); 1589 txdata->ni = NULL; 1590 1591 ring->queued--; 1592 1593 sc->sc_tx_timer = 0; 1594 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1595 wpi_start_locked(ifp); 1596 } 1597 1598 static void 1599 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1600 { 1601 struct wpi_tx_ring *ring = &sc->cmdq; 1602 struct wpi_tx_data *data; 1603 1604 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1605 "type=%s len=%d\n", desc->qid, desc->idx, 1606 desc->flags, wpi_cmd_str(desc->type), 1607 le32toh(desc->len))); 1608 1609 if ((desc->qid & 7) != 4) 1610 return; /* not a command ack */ 1611 1612 data = &ring->data[desc->idx]; 1613 1614 /* if the command was mapped in a mbuf, free it */ 1615 if (data->m != NULL) { 1616 bus_dmamap_unload(ring->data_dmat, data->map); 1617 m_freem(data->m); 1618 data->m = NULL; 1619 } 1620 1621 sc->flags &= ~WPI_FLAG_BUSY; 1622 wakeup(&ring->cmd[desc->idx]); 1623 } 1624 1625 static void 1626 wpi_bmiss(void *arg, int npending) 1627 { 1628 struct wpi_softc *sc = arg; 1629 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1630 1631 ieee80211_beacon_miss(ic); 1632 } 1633 1634 static void 1635 wpi_notif_intr(struct wpi_softc *sc) 1636 { 1637 struct ifnet *ifp = sc->sc_ifp; 1638 struct ieee80211com *ic = ifp->if_l2com; 1639 struct wpi_rx_desc *desc; 1640 struct wpi_rx_data *data; 1641 uint32_t hw; 1642 1643 hw = le32toh(sc->shared->next); 1644 while (sc->rxq.cur != hw) { 1645 data = &sc->rxq.data[sc->rxq.cur]; 1646 desc = (void *)data->m->m_ext.ext_buf; 1647 1648 DPRINTFN(WPI_DEBUG_NOTIFY, 1649 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1650 desc->qid, 1651 desc->idx, 1652 desc->flags, 1653 desc->type, 1654 le32toh(desc->len))); 1655 1656 if (!(desc->qid & 0x80)) /* reply to a command */ 1657 wpi_cmd_intr(sc, desc); 1658 1659 switch (desc->type) { 1660 case WPI_RX_DONE: 1661 /* a 802.11 frame was received */ 1662 wpi_rx_intr(sc, desc, data); 1663 break; 1664 1665 case WPI_TX_DONE: 1666 /* a 802.11 frame has been transmitted */ 1667 wpi_tx_intr(sc, desc); 1668 break; 1669 1670 case WPI_UC_READY: 1671 { 1672 struct wpi_ucode_info *uc = 1673 (struct wpi_ucode_info *)(desc + 1); 1674 1675 /* the microcontroller is ready */ 1676 DPRINTF(("microcode alive notification version %x " 1677 "alive %x\n", le32toh(uc->version), 1678 le32toh(uc->valid))); 1679 1680 if (le32toh(uc->valid) != 1) { 1681 device_printf(sc->sc_dev, 1682 "microcontroller initialization failed\n"); 1683 wpi_stop_locked(sc); 1684 } 1685 break; 1686 } 1687 case WPI_STATE_CHANGED: 1688 { 1689 uint32_t *status = (uint32_t *)(desc + 1); 1690 1691 /* enabled/disabled notification */ 1692 DPRINTF(("state changed to %x\n", le32toh(*status))); 1693 1694 if (le32toh(*status) & 1) { 1695 device_printf(sc->sc_dev, 1696 "Radio transmitter is switched off\n"); 1697 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1698 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1699 /* Disable firmware commands */ 1700 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1701 } 1702 break; 1703 } 1704 case WPI_START_SCAN: 1705 { 1706 struct wpi_start_scan *scan = 1707 (struct wpi_start_scan *)(desc + 1); 1708 1709 DPRINTFN(WPI_DEBUG_SCANNING, 1710 ("scanning channel %d status %x\n", 1711 scan->chan, le32toh(scan->status))); 1712 break; 1713 } 1714 case WPI_STOP_SCAN: 1715 { 1716 struct wpi_stop_scan *scan = 1717 (struct wpi_stop_scan *)(desc + 1); 1718 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1719 1720 DPRINTFN(WPI_DEBUG_SCANNING, 1721 ("scan finished nchan=%d status=%d chan=%d\n", 1722 scan->nchan, scan->status, scan->chan)); 1723 1724 sc->sc_scan_timer = 0; 1725 ieee80211_scan_next(vap); 1726 break; 1727 } 1728 case WPI_MISSED_BEACON: 1729 { 1730 struct wpi_missed_beacon *beacon = 1731 (struct wpi_missed_beacon *)(desc + 1); 1732 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1733 1734 if (le32toh(beacon->consecutive) >= 1735 vap->iv_bmissthreshold) { 1736 DPRINTF(("Beacon miss: %u >= %u\n", 1737 le32toh(beacon->consecutive), 1738 vap->iv_bmissthreshold)); 1739 taskqueue_enqueue(taskqueue_swi, 1740 &sc->sc_bmiss_task); 1741 } 1742 break; 1743 } 1744 } 1745 1746 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1747 } 1748 1749 /* tell the firmware what we have processed */ 1750 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1751 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1752 } 1753 1754 static void 1755 wpi_intr(void *arg) 1756 { 1757 struct wpi_softc *sc = arg; 1758 uint32_t r; 1759 1760 WPI_LOCK(sc); 1761 1762 r = WPI_READ(sc, WPI_INTR); 1763 if (r == 0 || r == 0xffffffff) { 1764 WPI_UNLOCK(sc); 1765 return; 1766 } 1767 1768 /* disable interrupts */ 1769 WPI_WRITE(sc, WPI_MASK, 0); 1770 /* ack interrupts */ 1771 WPI_WRITE(sc, WPI_INTR, r); 1772 1773 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1774 device_printf(sc->sc_dev, "fatal firmware error\n"); 1775 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1776 "(Hardware Error)")); 1777 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 1778 sc->flags &= ~WPI_FLAG_BUSY; 1779 WPI_UNLOCK(sc); 1780 return; 1781 } 1782 1783 if (r & WPI_RX_INTR) 1784 wpi_notif_intr(sc); 1785 1786 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1787 wakeup(sc); 1788 1789 /* re-enable interrupts */ 1790 if (sc->sc_ifp->if_flags & IFF_UP) 1791 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1792 1793 WPI_UNLOCK(sc); 1794 } 1795 1796 static uint8_t 1797 wpi_plcp_signal(int rate) 1798 { 1799 switch (rate) { 1800 /* CCK rates (returned values are device-dependent) */ 1801 case 2: return 10; 1802 case 4: return 20; 1803 case 11: return 55; 1804 case 22: return 110; 1805 1806 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1807 /* R1-R4 (ral/ural is R4-R1) */ 1808 case 12: return 0xd; 1809 case 18: return 0xf; 1810 case 24: return 0x5; 1811 case 36: return 0x7; 1812 case 48: return 0x9; 1813 case 72: return 0xb; 1814 case 96: return 0x1; 1815 case 108: return 0x3; 1816 1817 /* unsupported rates (should not get there) */ 1818 default: return 0; 1819 } 1820 } 1821 1822 /* quickly determine if a given rate is CCK or OFDM */ 1823 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1824 1825 /* 1826 * Construct the data packet for a transmit buffer and acutally put 1827 * the buffer onto the transmit ring, kicking the card to process the 1828 * the buffer. 1829 */ 1830 static int 1831 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1832 int ac) 1833 { 1834 struct ieee80211vap *vap = ni->ni_vap; 1835 struct ifnet *ifp = sc->sc_ifp; 1836 struct ieee80211com *ic = ifp->if_l2com; 1837 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1838 struct wpi_tx_ring *ring = &sc->txq[ac]; 1839 struct wpi_tx_desc *desc; 1840 struct wpi_tx_data *data; 1841 struct wpi_tx_cmd *cmd; 1842 struct wpi_cmd_data *tx; 1843 struct ieee80211_frame *wh; 1844 const struct ieee80211_txparam *tp; 1845 struct ieee80211_key *k; 1846 struct mbuf *mnew; 1847 int i, error, nsegs, rate, hdrlen, ismcast; 1848 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1849 1850 desc = &ring->desc[ring->cur]; 1851 data = &ring->data[ring->cur]; 1852 1853 wh = mtod(m0, struct ieee80211_frame *); 1854 1855 hdrlen = ieee80211_hdrsize(wh); 1856 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1857 1858 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1859 k = ieee80211_crypto_encap(ni, m0); 1860 if (k == NULL) { 1861 m_freem(m0); 1862 return ENOBUFS; 1863 } 1864 /* packet header may have moved, reset our local pointer */ 1865 wh = mtod(m0, struct ieee80211_frame *); 1866 } 1867 1868 cmd = &ring->cmd[ring->cur]; 1869 cmd->code = WPI_CMD_TX_DATA; 1870 cmd->flags = 0; 1871 cmd->qid = ring->qid; 1872 cmd->idx = ring->cur; 1873 1874 tx = (struct wpi_cmd_data *)cmd->data; 1875 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1876 tx->timeout = htole16(0); 1877 tx->ofdm_mask = 0xff; 1878 tx->cck_mask = 0x0f; 1879 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1880 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1881 tx->len = htole16(m0->m_pkthdr.len); 1882 1883 if (!ismcast) { 1884 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1885 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1886 tx->flags |= htole32(WPI_TX_NEED_ACK); 1887 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1888 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1889 tx->rts_ntries = 7; 1890 } 1891 } 1892 /* pick a rate */ 1893 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1894 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1895 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1896 /* tell h/w to set timestamp in probe responses */ 1897 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1898 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1899 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1900 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1901 tx->timeout = htole16(3); 1902 else 1903 tx->timeout = htole16(2); 1904 rate = tp->mgmtrate; 1905 } else if (ismcast) { 1906 rate = tp->mcastrate; 1907 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1908 rate = tp->ucastrate; 1909 } else { 1910 (void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn); 1911 rate = ni->ni_txrate; 1912 } 1913 tx->rate = wpi_plcp_signal(rate); 1914 1915 /* be very persistant at sending frames out */ 1916 #if 0 1917 tx->data_ntries = tp->maxretry; 1918 #else 1919 tx->data_ntries = 15; /* XXX way too high */ 1920 #endif 1921 1922 if (bpf_peers_present(ifp->if_bpf)) { 1923 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1924 tap->wt_flags = 0; 1925 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1926 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1927 tap->wt_rate = rate; 1928 tap->wt_hwqueue = ac; 1929 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1930 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1931 1932 bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0); 1933 } 1934 1935 /* save and trim IEEE802.11 header */ 1936 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1937 m_adj(m0, hdrlen); 1938 1939 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1940 &nsegs, BUS_DMA_NOWAIT); 1941 if (error != 0 && error != EFBIG) { 1942 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1943 error); 1944 m_freem(m0); 1945 return error; 1946 } 1947 if (error != 0) { 1948 /* XXX use m_collapse */ 1949 mnew = m_defrag(m0, M_DONTWAIT); 1950 if (mnew == NULL) { 1951 device_printf(sc->sc_dev, 1952 "could not defragment mbuf\n"); 1953 m_freem(m0); 1954 return ENOBUFS; 1955 } 1956 m0 = mnew; 1957 1958 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1959 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1960 if (error != 0) { 1961 device_printf(sc->sc_dev, 1962 "could not map mbuf (error %d)\n", error); 1963 m_freem(m0); 1964 return error; 1965 } 1966 } 1967 1968 data->m = m0; 1969 data->ni = ni; 1970 1971 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1972 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1973 1974 /* first scatter/gather segment is used by the tx data command */ 1975 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1976 (1 + nsegs) << 24); 1977 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1978 ring->cur * sizeof (struct wpi_tx_cmd)); 1979 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 1980 for (i = 1; i <= nsegs; i++) { 1981 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 1982 desc->segs[i].len = htole32(segs[i - 1].ds_len); 1983 } 1984 1985 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1986 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1987 BUS_DMASYNC_PREWRITE); 1988 1989 ring->queued++; 1990 1991 /* kick ring */ 1992 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 1993 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 1994 1995 return 0; 1996 } 1997 1998 /** 1999 * Process data waiting to be sent on the IFNET output queue 2000 */ 2001 static void 2002 wpi_start(struct ifnet *ifp) 2003 { 2004 struct wpi_softc *sc = ifp->if_softc; 2005 2006 WPI_LOCK(sc); 2007 wpi_start_locked(ifp); 2008 WPI_UNLOCK(sc); 2009 } 2010 2011 static void 2012 wpi_start_locked(struct ifnet *ifp) 2013 { 2014 struct wpi_softc *sc = ifp->if_softc; 2015 struct ieee80211_node *ni; 2016 struct mbuf *m; 2017 int ac; 2018 2019 WPI_LOCK_ASSERT(sc); 2020 2021 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2022 return; 2023 2024 for (;;) { 2025 IFQ_POLL(&ifp->if_snd, m); 2026 if (m == NULL) 2027 break; 2028 /* no QoS encapsulation for EAPOL frames */ 2029 ac = M_WME_GETAC(m); 2030 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2031 /* there is no place left in this ring */ 2032 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2033 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2034 break; 2035 } 2036 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2037 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2038 m = ieee80211_encap(ni, m); 2039 if (m == NULL) { 2040 ieee80211_free_node(ni); 2041 ifp->if_oerrors++; 2042 continue; 2043 } 2044 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2045 ieee80211_free_node(ni); 2046 ifp->if_oerrors++; 2047 break; 2048 } 2049 sc->sc_tx_timer = 5; 2050 } 2051 } 2052 2053 static int 2054 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2055 const struct ieee80211_bpf_params *params) 2056 { 2057 struct ieee80211com *ic = ni->ni_ic; 2058 struct ifnet *ifp = ic->ic_ifp; 2059 struct wpi_softc *sc = ifp->if_softc; 2060 2061 /* prevent management frames from being sent if we're not ready */ 2062 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2063 m_freem(m); 2064 ieee80211_free_node(ni); 2065 return ENETDOWN; 2066 } 2067 WPI_LOCK(sc); 2068 2069 /* management frames go into ring 0 */ 2070 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2071 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2072 m_freem(m); 2073 WPI_UNLOCK(sc); 2074 ieee80211_free_node(ni); 2075 return ENOBUFS; /* XXX */ 2076 } 2077 2078 ifp->if_opackets++; 2079 if (wpi_tx_data(sc, m, ni, 0) != 0) 2080 goto bad; 2081 sc->sc_tx_timer = 5; 2082 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2083 2084 WPI_UNLOCK(sc); 2085 return 0; 2086 bad: 2087 ifp->if_oerrors++; 2088 WPI_UNLOCK(sc); 2089 ieee80211_free_node(ni); 2090 return EIO; /* XXX */ 2091 } 2092 2093 static int 2094 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2095 { 2096 struct wpi_softc *sc = ifp->if_softc; 2097 struct ieee80211com *ic = ifp->if_l2com; 2098 struct ifreq *ifr = (struct ifreq *) data; 2099 int error = 0, startall = 0; 2100 2101 switch (cmd) { 2102 case SIOCSIFFLAGS: 2103 WPI_LOCK(sc); 2104 if ((ifp->if_flags & IFF_UP)) { 2105 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2106 wpi_init_locked(sc, 0); 2107 startall = 1; 2108 } 2109 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2110 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2111 wpi_stop_locked(sc); 2112 WPI_UNLOCK(sc); 2113 if (startall) 2114 ieee80211_start_all(ic); 2115 break; 2116 case SIOCGIFMEDIA: 2117 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2118 break; 2119 case SIOCGIFADDR: 2120 error = ether_ioctl(ifp, cmd, data); 2121 break; 2122 default: 2123 error = EINVAL; 2124 break; 2125 } 2126 return error; 2127 } 2128 2129 /* 2130 * Extract various information from EEPROM. 2131 */ 2132 static void 2133 wpi_read_eeprom(struct wpi_softc *sc) 2134 { 2135 struct ifnet *ifp = sc->sc_ifp; 2136 struct ieee80211com *ic = ifp->if_l2com; 2137 int i; 2138 2139 /* read the hardware capabilities, revision and SKU type */ 2140 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2141 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2142 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2143 2144 /* read the regulatory domain */ 2145 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2146 2147 /* read in the hw MAC address */ 2148 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 2149 2150 /* read the list of authorized channels */ 2151 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2152 wpi_read_eeprom_channels(sc,i); 2153 2154 /* read the power level calibration info for each group */ 2155 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2156 wpi_read_eeprom_group(sc,i); 2157 } 2158 2159 /* 2160 * Send a command to the firmware. 2161 */ 2162 static int 2163 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2164 { 2165 struct wpi_tx_ring *ring = &sc->cmdq; 2166 struct wpi_tx_desc *desc; 2167 struct wpi_tx_cmd *cmd; 2168 2169 #ifdef WPI_DEBUG 2170 if (!async) { 2171 WPI_LOCK_ASSERT(sc); 2172 } 2173 #endif 2174 2175 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2176 async)); 2177 2178 if (sc->flags & WPI_FLAG_BUSY) { 2179 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2180 __func__, code); 2181 return EAGAIN; 2182 } 2183 sc->flags|= WPI_FLAG_BUSY; 2184 2185 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2186 code, size)); 2187 2188 desc = &ring->desc[ring->cur]; 2189 cmd = &ring->cmd[ring->cur]; 2190 2191 cmd->code = code; 2192 cmd->flags = 0; 2193 cmd->qid = ring->qid; 2194 cmd->idx = ring->cur; 2195 memcpy(cmd->data, buf, size); 2196 2197 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2198 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2199 ring->cur * sizeof (struct wpi_tx_cmd)); 2200 desc->segs[0].len = htole32(4 + size); 2201 2202 /* kick cmd ring */ 2203 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2204 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2205 2206 if (async) { 2207 sc->flags &= ~ WPI_FLAG_BUSY; 2208 return 0; 2209 } 2210 2211 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2212 } 2213 2214 static int 2215 wpi_wme_update(struct ieee80211com *ic) 2216 { 2217 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2218 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2219 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2220 const struct wmeParams *wmep; 2221 struct wpi_wme_setup wme; 2222 int ac; 2223 2224 /* don't override default WME values if WME is not actually enabled */ 2225 if (!(ic->ic_flags & IEEE80211_F_WME)) 2226 return 0; 2227 2228 wme.flags = 0; 2229 for (ac = 0; ac < WME_NUM_AC; ac++) { 2230 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2231 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2232 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2233 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2234 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2235 2236 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2237 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2238 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2239 } 2240 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2241 #undef WPI_USEC 2242 #undef WPI_EXP2 2243 } 2244 2245 /* 2246 * Configure h/w multi-rate retries. 2247 */ 2248 static int 2249 wpi_mrr_setup(struct wpi_softc *sc) 2250 { 2251 struct ifnet *ifp = sc->sc_ifp; 2252 struct ieee80211com *ic = ifp->if_l2com; 2253 struct wpi_mrr_setup mrr; 2254 int i, error; 2255 2256 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2257 2258 /* CCK rates (not used with 802.11a) */ 2259 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2260 mrr.rates[i].flags = 0; 2261 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2262 /* fallback to the immediate lower CCK rate (if any) */ 2263 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2264 /* try one time at this rate before falling back to "next" */ 2265 mrr.rates[i].ntries = 1; 2266 } 2267 2268 /* OFDM rates (not used with 802.11b) */ 2269 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2270 mrr.rates[i].flags = 0; 2271 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2272 /* fallback to the immediate lower OFDM rate (if any) */ 2273 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2274 mrr.rates[i].next = (i == WPI_OFDM6) ? 2275 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2276 WPI_OFDM6 : WPI_CCK2) : 2277 i - 1; 2278 /* try one time at this rate before falling back to "next" */ 2279 mrr.rates[i].ntries = 1; 2280 } 2281 2282 /* setup MRR for control frames */ 2283 mrr.which = htole32(WPI_MRR_CTL); 2284 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2285 if (error != 0) { 2286 device_printf(sc->sc_dev, 2287 "could not setup MRR for control frames\n"); 2288 return error; 2289 } 2290 2291 /* setup MRR for data frames */ 2292 mrr.which = htole32(WPI_MRR_DATA); 2293 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2294 if (error != 0) { 2295 device_printf(sc->sc_dev, 2296 "could not setup MRR for data frames\n"); 2297 return error; 2298 } 2299 2300 return 0; 2301 } 2302 2303 static void 2304 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2305 { 2306 struct wpi_cmd_led led; 2307 2308 led.which = which; 2309 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2310 led.off = off; 2311 led.on = on; 2312 2313 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2314 } 2315 2316 static void 2317 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2318 { 2319 struct wpi_cmd_tsf tsf; 2320 uint64_t val, mod; 2321 2322 memset(&tsf, 0, sizeof tsf); 2323 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2324 tsf.bintval = htole16(ni->ni_intval); 2325 tsf.lintval = htole16(10); 2326 2327 /* compute remaining time until next beacon */ 2328 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2329 mod = le64toh(tsf.tstamp) % val; 2330 tsf.binitval = htole32((uint32_t)(val - mod)); 2331 2332 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2333 device_printf(sc->sc_dev, "could not enable TSF\n"); 2334 } 2335 2336 #if 0 2337 /* 2338 * Build a beacon frame that the firmware will broadcast periodically in 2339 * IBSS or HostAP modes. 2340 */ 2341 static int 2342 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2343 { 2344 struct ifnet *ifp = sc->sc_ifp; 2345 struct ieee80211com *ic = ifp->if_l2com; 2346 struct wpi_tx_ring *ring = &sc->cmdq; 2347 struct wpi_tx_desc *desc; 2348 struct wpi_tx_data *data; 2349 struct wpi_tx_cmd *cmd; 2350 struct wpi_cmd_beacon *bcn; 2351 struct ieee80211_beacon_offsets bo; 2352 struct mbuf *m0; 2353 bus_addr_t physaddr; 2354 int error; 2355 2356 desc = &ring->desc[ring->cur]; 2357 data = &ring->data[ring->cur]; 2358 2359 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2360 if (m0 == NULL) { 2361 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2362 return ENOMEM; 2363 } 2364 2365 cmd = &ring->cmd[ring->cur]; 2366 cmd->code = WPI_CMD_SET_BEACON; 2367 cmd->flags = 0; 2368 cmd->qid = ring->qid; 2369 cmd->idx = ring->cur; 2370 2371 bcn = (struct wpi_cmd_beacon *)cmd->data; 2372 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2373 bcn->id = WPI_ID_BROADCAST; 2374 bcn->ofdm_mask = 0xff; 2375 bcn->cck_mask = 0x0f; 2376 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2377 bcn->len = htole16(m0->m_pkthdr.len); 2378 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2379 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2380 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2381 2382 /* save and trim IEEE802.11 header */ 2383 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2384 m_adj(m0, sizeof (struct ieee80211_frame)); 2385 2386 /* assume beacon frame is contiguous */ 2387 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2388 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2389 if (error != 0) { 2390 device_printf(sc->sc_dev, "could not map beacon\n"); 2391 m_freem(m0); 2392 return error; 2393 } 2394 2395 data->m = m0; 2396 2397 /* first scatter/gather segment is used by the beacon command */ 2398 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2399 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2400 ring->cur * sizeof (struct wpi_tx_cmd)); 2401 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2402 desc->segs[1].addr = htole32(physaddr); 2403 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2404 2405 /* kick cmd ring */ 2406 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2407 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2408 2409 return 0; 2410 } 2411 #endif 2412 2413 static int 2414 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2415 { 2416 struct ieee80211com *ic = vap->iv_ic; 2417 struct ieee80211_node *ni = vap->iv_bss; 2418 struct wpi_node_info node; 2419 int error; 2420 2421 2422 /* update adapter's configuration */ 2423 sc->config.associd = 0; 2424 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2425 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2426 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2427 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2428 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2429 WPI_CONFIG_24GHZ); 2430 } 2431 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2432 sc->config.cck_mask = 0; 2433 sc->config.ofdm_mask = 0x15; 2434 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2435 sc->config.cck_mask = 0x03; 2436 sc->config.ofdm_mask = 0; 2437 } else { 2438 /* XXX assume 802.11b/g */ 2439 sc->config.cck_mask = 0x0f; 2440 sc->config.ofdm_mask = 0x15; 2441 } 2442 2443 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2444 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2445 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2446 sizeof (struct wpi_config), 1); 2447 if (error != 0) { 2448 device_printf(sc->sc_dev, "could not configure\n"); 2449 return error; 2450 } 2451 2452 /* configuration has changed, set Tx power accordingly */ 2453 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2454 device_printf(sc->sc_dev, "could not set Tx power\n"); 2455 return error; 2456 } 2457 2458 /* add default node */ 2459 memset(&node, 0, sizeof node); 2460 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2461 node.id = WPI_ID_BSS; 2462 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2463 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2464 node.action = htole32(WPI_ACTION_SET_RATE); 2465 node.antenna = WPI_ANTENNA_BOTH; 2466 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2467 if (error != 0) 2468 device_printf(sc->sc_dev, "could not add BSS node\n"); 2469 2470 return (error); 2471 } 2472 2473 static int 2474 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2475 { 2476 struct ieee80211com *ic = vap->iv_ic; 2477 struct ieee80211_node *ni = vap->iv_bss; 2478 int error; 2479 2480 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2481 /* link LED blinks while monitoring */ 2482 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2483 return 0; 2484 } 2485 2486 wpi_enable_tsf(sc, ni); 2487 2488 /* update adapter's configuration */ 2489 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2490 /* short preamble/slot time are negotiated when associating */ 2491 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2492 WPI_CONFIG_SHSLOT); 2493 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2494 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2495 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2496 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2497 sc->config.filter |= htole32(WPI_FILTER_BSS); 2498 2499 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2500 2501 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2502 sc->config.flags)); 2503 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2504 wpi_config), 1); 2505 if (error != 0) { 2506 device_printf(sc->sc_dev, "could not update configuration\n"); 2507 return error; 2508 } 2509 2510 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2511 if (error != 0) { 2512 device_printf(sc->sc_dev, "could set txpower\n"); 2513 return error; 2514 } 2515 2516 if (vap->iv_opmode == IEEE80211_M_STA) { 2517 /* fake a join to init the tx rate */ 2518 wpi_newassoc(ni, 1); 2519 } 2520 2521 /* link LED always on while associated */ 2522 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2523 2524 /* start automatic rate control timer */ 2525 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2526 2527 return (error); 2528 } 2529 2530 /* 2531 * Send a scan request to the firmware. Since this command is huge, we map it 2532 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2533 * much of this code is similar to that in wpi_cmd but because we must manually 2534 * construct the probe & channels, we duplicate what's needed here. XXX In the 2535 * future, this function should be modified to use wpi_cmd to help cleanup the 2536 * code base. 2537 */ 2538 static int 2539 wpi_scan(struct wpi_softc *sc) 2540 { 2541 struct ifnet *ifp = sc->sc_ifp; 2542 struct ieee80211com *ic = ifp->if_l2com; 2543 struct ieee80211_scan_state *ss = ic->ic_scan; 2544 struct wpi_tx_ring *ring = &sc->cmdq; 2545 struct wpi_tx_desc *desc; 2546 struct wpi_tx_data *data; 2547 struct wpi_tx_cmd *cmd; 2548 struct wpi_scan_hdr *hdr; 2549 struct wpi_scan_chan *chan; 2550 struct ieee80211_frame *wh; 2551 struct ieee80211_rateset *rs; 2552 struct ieee80211_channel *c; 2553 enum ieee80211_phymode mode; 2554 uint8_t *frm; 2555 int nrates, pktlen, error, i, nssid; 2556 bus_addr_t physaddr; 2557 2558 desc = &ring->desc[ring->cur]; 2559 data = &ring->data[ring->cur]; 2560 2561 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2562 if (data->m == NULL) { 2563 device_printf(sc->sc_dev, 2564 "could not allocate mbuf for scan command\n"); 2565 return ENOMEM; 2566 } 2567 2568 cmd = mtod(data->m, struct wpi_tx_cmd *); 2569 cmd->code = WPI_CMD_SCAN; 2570 cmd->flags = 0; 2571 cmd->qid = ring->qid; 2572 cmd->idx = ring->cur; 2573 2574 hdr = (struct wpi_scan_hdr *)cmd->data; 2575 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2576 2577 /* 2578 * Move to the next channel if no packets are received within 5 msecs 2579 * after sending the probe request (this helps to reduce the duration 2580 * of active scans). 2581 */ 2582 hdr->quiet = htole16(5); 2583 hdr->threshold = htole16(1); 2584 2585 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2586 /* send probe requests at 6Mbps */ 2587 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2588 2589 /* Enable crc checking */ 2590 hdr->promotion = htole16(1); 2591 } else { 2592 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2593 /* send probe requests at 1Mbps */ 2594 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2595 } 2596 hdr->tx.id = WPI_ID_BROADCAST; 2597 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2598 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2599 2600 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2601 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2602 for (i = 0; i < nssid; i++) { 2603 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2604 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2605 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2606 hdr->scan_essids[i].esslen); 2607 if (wpi_debug & WPI_DEBUG_SCANNING) { 2608 printf("Scanning Essid: "); 2609 ieee80211_print_essid(hdr->scan_essids[i].essid, 2610 hdr->scan_essids[i].esslen); 2611 printf("\n"); 2612 } 2613 } 2614 2615 /* 2616 * Build a probe request frame. Most of the following code is a 2617 * copy & paste of what is done in net80211. 2618 */ 2619 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2620 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2621 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2622 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2623 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2624 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2625 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2626 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2627 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2628 2629 frm = (uint8_t *)(wh + 1); 2630 2631 /* add essid IE, the hardware will fill this in for us */ 2632 *frm++ = IEEE80211_ELEMID_SSID; 2633 *frm++ = 0; 2634 2635 mode = ieee80211_chan2mode(ic->ic_curchan); 2636 rs = &ic->ic_sup_rates[mode]; 2637 2638 /* add supported rates IE */ 2639 *frm++ = IEEE80211_ELEMID_RATES; 2640 nrates = rs->rs_nrates; 2641 if (nrates > IEEE80211_RATE_SIZE) 2642 nrates = IEEE80211_RATE_SIZE; 2643 *frm++ = nrates; 2644 memcpy(frm, rs->rs_rates, nrates); 2645 frm += nrates; 2646 2647 /* add supported xrates IE */ 2648 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2649 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2650 *frm++ = IEEE80211_ELEMID_XRATES; 2651 *frm++ = nrates; 2652 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2653 frm += nrates; 2654 } 2655 2656 /* setup length of probe request */ 2657 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2658 2659 /* 2660 * Construct information about the channel that we 2661 * want to scan. The firmware expects this to be directly 2662 * after the scan probe request 2663 */ 2664 c = ic->ic_curchan; 2665 chan = (struct wpi_scan_chan *)frm; 2666 chan->chan = ieee80211_chan2ieee(ic, c); 2667 chan->flags = 0; 2668 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2669 chan->flags |= WPI_CHAN_ACTIVE; 2670 if (nssid != 0) 2671 chan->flags |= WPI_CHAN_DIRECT; 2672 } 2673 chan->gain_dsp = 0x6e; /* Default level */ 2674 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2675 chan->active = htole16(10); 2676 chan->passive = htole16(ss->ss_maxdwell); 2677 chan->gain_radio = 0x3b; 2678 } else { 2679 chan->active = htole16(20); 2680 chan->passive = htole16(ss->ss_maxdwell); 2681 chan->gain_radio = 0x28; 2682 } 2683 2684 DPRINTFN(WPI_DEBUG_SCANNING, 2685 ("Scanning %u Passive: %d\n", 2686 chan->chan, 2687 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2688 2689 hdr->nchan++; 2690 chan++; 2691 2692 frm += sizeof (struct wpi_scan_chan); 2693 #if 0 2694 // XXX All Channels.... 2695 for (c = &ic->ic_channels[1]; 2696 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2697 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2698 continue; 2699 2700 chan->chan = ieee80211_chan2ieee(ic, c); 2701 chan->flags = 0; 2702 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2703 chan->flags |= WPI_CHAN_ACTIVE; 2704 if (ic->ic_des_ssid[0].len != 0) 2705 chan->flags |= WPI_CHAN_DIRECT; 2706 } 2707 chan->gain_dsp = 0x6e; /* Default level */ 2708 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2709 chan->active = htole16(10); 2710 chan->passive = htole16(110); 2711 chan->gain_radio = 0x3b; 2712 } else { 2713 chan->active = htole16(20); 2714 chan->passive = htole16(120); 2715 chan->gain_radio = 0x28; 2716 } 2717 2718 DPRINTFN(WPI_DEBUG_SCANNING, 2719 ("Scanning %u Passive: %d\n", 2720 chan->chan, 2721 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2722 2723 hdr->nchan++; 2724 chan++; 2725 2726 frm += sizeof (struct wpi_scan_chan); 2727 } 2728 #endif 2729 2730 hdr->len = htole16(frm - (uint8_t *)hdr); 2731 pktlen = frm - (uint8_t *)cmd; 2732 2733 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2734 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2735 if (error != 0) { 2736 device_printf(sc->sc_dev, "could not map scan command\n"); 2737 m_freem(data->m); 2738 data->m = NULL; 2739 return error; 2740 } 2741 2742 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2743 desc->segs[0].addr = htole32(physaddr); 2744 desc->segs[0].len = htole32(pktlen); 2745 2746 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2747 BUS_DMASYNC_PREWRITE); 2748 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2749 2750 /* kick cmd ring */ 2751 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2752 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2753 2754 sc->sc_scan_timer = 5; 2755 return 0; /* will be notified async. of failure/success */ 2756 } 2757 2758 /** 2759 * Configure the card to listen to a particular channel, this transisions the 2760 * card in to being able to receive frames from remote devices. 2761 */ 2762 static int 2763 wpi_config(struct wpi_softc *sc) 2764 { 2765 struct ifnet *ifp = sc->sc_ifp; 2766 struct ieee80211com *ic = ifp->if_l2com; 2767 struct wpi_power power; 2768 struct wpi_bluetooth bluetooth; 2769 struct wpi_node_info node; 2770 int error; 2771 2772 /* set power mode */ 2773 memset(&power, 0, sizeof power); 2774 power.flags = htole32(WPI_POWER_CAM|0x8); 2775 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2776 if (error != 0) { 2777 device_printf(sc->sc_dev, "could not set power mode\n"); 2778 return error; 2779 } 2780 2781 /* configure bluetooth coexistence */ 2782 memset(&bluetooth, 0, sizeof bluetooth); 2783 bluetooth.flags = 3; 2784 bluetooth.lead = 0xaa; 2785 bluetooth.kill = 1; 2786 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2787 0); 2788 if (error != 0) { 2789 device_printf(sc->sc_dev, 2790 "could not configure bluetooth coexistence\n"); 2791 return error; 2792 } 2793 2794 /* configure adapter */ 2795 memset(&sc->config, 0, sizeof (struct wpi_config)); 2796 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); 2797 /*set default channel*/ 2798 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2799 sc->config.flags = htole32(WPI_CONFIG_TSF); 2800 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2801 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2802 WPI_CONFIG_24GHZ); 2803 } 2804 sc->config.filter = 0; 2805 switch (ic->ic_opmode) { 2806 case IEEE80211_M_STA: 2807 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2808 sc->config.mode = WPI_MODE_STA; 2809 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2810 break; 2811 case IEEE80211_M_IBSS: 2812 case IEEE80211_M_AHDEMO: 2813 sc->config.mode = WPI_MODE_IBSS; 2814 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2815 WPI_FILTER_MULTICAST); 2816 break; 2817 case IEEE80211_M_HOSTAP: 2818 sc->config.mode = WPI_MODE_HOSTAP; 2819 break; 2820 case IEEE80211_M_MONITOR: 2821 sc->config.mode = WPI_MODE_MONITOR; 2822 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2823 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2824 break; 2825 } 2826 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2827 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2828 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2829 sizeof (struct wpi_config), 0); 2830 if (error != 0) { 2831 device_printf(sc->sc_dev, "configure command failed\n"); 2832 return error; 2833 } 2834 2835 /* configuration has changed, set Tx power accordingly */ 2836 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2837 device_printf(sc->sc_dev, "could not set Tx power\n"); 2838 return error; 2839 } 2840 2841 /* add broadcast node */ 2842 memset(&node, 0, sizeof node); 2843 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2844 node.id = WPI_ID_BROADCAST; 2845 node.rate = wpi_plcp_signal(2); 2846 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2847 if (error != 0) { 2848 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2849 return error; 2850 } 2851 2852 /* Setup rate scalling */ 2853 error = wpi_mrr_setup(sc); 2854 if (error != 0) { 2855 device_printf(sc->sc_dev, "could not setup MRR\n"); 2856 return error; 2857 } 2858 2859 return 0; 2860 } 2861 2862 static void 2863 wpi_stop_master(struct wpi_softc *sc) 2864 { 2865 uint32_t tmp; 2866 int ntries; 2867 2868 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2869 2870 tmp = WPI_READ(sc, WPI_RESET); 2871 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2872 2873 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2874 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2875 return; /* already asleep */ 2876 2877 for (ntries = 0; ntries < 100; ntries++) { 2878 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2879 break; 2880 DELAY(10); 2881 } 2882 if (ntries == 100) { 2883 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2884 } 2885 } 2886 2887 static int 2888 wpi_power_up(struct wpi_softc *sc) 2889 { 2890 uint32_t tmp; 2891 int ntries; 2892 2893 wpi_mem_lock(sc); 2894 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2895 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2896 wpi_mem_unlock(sc); 2897 2898 for (ntries = 0; ntries < 5000; ntries++) { 2899 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2900 break; 2901 DELAY(10); 2902 } 2903 if (ntries == 5000) { 2904 device_printf(sc->sc_dev, 2905 "timeout waiting for NIC to power up\n"); 2906 return ETIMEDOUT; 2907 } 2908 return 0; 2909 } 2910 2911 static int 2912 wpi_reset(struct wpi_softc *sc) 2913 { 2914 uint32_t tmp; 2915 int ntries; 2916 2917 DPRINTFN(WPI_DEBUG_HW, 2918 ("Resetting the card - clearing any uploaded firmware\n")); 2919 2920 /* clear any pending interrupts */ 2921 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2922 2923 tmp = WPI_READ(sc, WPI_PLL_CTL); 2924 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2925 2926 tmp = WPI_READ(sc, WPI_CHICKEN); 2927 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2928 2929 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2930 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2931 2932 /* wait for clock stabilization */ 2933 for (ntries = 0; ntries < 25000; ntries++) { 2934 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2935 break; 2936 DELAY(10); 2937 } 2938 if (ntries == 25000) { 2939 device_printf(sc->sc_dev, 2940 "timeout waiting for clock stabilization\n"); 2941 return ETIMEDOUT; 2942 } 2943 2944 /* initialize EEPROM */ 2945 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2946 2947 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2948 device_printf(sc->sc_dev, "EEPROM not found\n"); 2949 return EIO; 2950 } 2951 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2952 2953 return 0; 2954 } 2955 2956 static void 2957 wpi_hw_config(struct wpi_softc *sc) 2958 { 2959 uint32_t rev, hw; 2960 2961 /* voodoo from the Linux "driver".. */ 2962 hw = WPI_READ(sc, WPI_HWCONFIG); 2963 2964 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2965 if ((rev & 0xc0) == 0x40) 2966 hw |= WPI_HW_ALM_MB; 2967 else if (!(rev & 0x80)) 2968 hw |= WPI_HW_ALM_MM; 2969 2970 if (sc->cap == 0x80) 2971 hw |= WPI_HW_SKU_MRC; 2972 2973 hw &= ~WPI_HW_REV_D; 2974 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2975 hw |= WPI_HW_REV_D; 2976 2977 if (sc->type > 1) 2978 hw |= WPI_HW_TYPE_B; 2979 2980 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2981 } 2982 2983 static void 2984 wpi_rfkill_resume(struct wpi_softc *sc) 2985 { 2986 struct ifnet *ifp = sc->sc_ifp; 2987 struct ieee80211com *ic = ifp->if_l2com; 2988 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2989 int ntries; 2990 2991 /* enable firmware again */ 2992 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 2993 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 2994 2995 /* wait for thermal sensors to calibrate */ 2996 for (ntries = 0; ntries < 1000; ntries++) { 2997 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 2998 break; 2999 DELAY(10); 3000 } 3001 3002 if (ntries == 1000) { 3003 device_printf(sc->sc_dev, 3004 "timeout waiting for thermal calibration\n"); 3005 WPI_UNLOCK(sc); 3006 return; 3007 } 3008 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3009 3010 if (wpi_config(sc) != 0) { 3011 device_printf(sc->sc_dev, "device config failed\n"); 3012 WPI_UNLOCK(sc); 3013 return; 3014 } 3015 3016 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3017 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3018 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3019 3020 if (vap != NULL) { 3021 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3022 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3023 taskqueue_enqueue(taskqueue_swi, 3024 &sc->sc_bmiss_task); 3025 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3026 } else 3027 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3028 } else { 3029 ieee80211_scan_next(vap); 3030 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3031 } 3032 } 3033 3034 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3035 } 3036 3037 static void 3038 wpi_init_locked(struct wpi_softc *sc, int force) 3039 { 3040 struct ifnet *ifp = sc->sc_ifp; 3041 uint32_t tmp; 3042 int ntries, qid; 3043 3044 wpi_stop_locked(sc); 3045 (void)wpi_reset(sc); 3046 3047 wpi_mem_lock(sc); 3048 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3049 DELAY(20); 3050 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3051 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3052 wpi_mem_unlock(sc); 3053 3054 (void)wpi_power_up(sc); 3055 wpi_hw_config(sc); 3056 3057 /* init Rx ring */ 3058 wpi_mem_lock(sc); 3059 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3060 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3061 offsetof(struct wpi_shared, next)); 3062 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3063 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3064 wpi_mem_unlock(sc); 3065 3066 /* init Tx rings */ 3067 wpi_mem_lock(sc); 3068 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3069 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3070 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3071 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3072 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3073 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3074 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3075 3076 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3077 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3078 3079 for (qid = 0; qid < 6; qid++) { 3080 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3081 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3082 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3083 } 3084 wpi_mem_unlock(sc); 3085 3086 /* clear "radio off" and "disable command" bits (reversed logic) */ 3087 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3088 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3089 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3090 3091 /* clear any pending interrupts */ 3092 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3093 3094 /* enable interrupts */ 3095 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3096 3097 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3098 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3099 3100 if ((wpi_load_firmware(sc)) != 0) { 3101 device_printf(sc->sc_dev, 3102 "A problem occurred loading the firmware to the driver\n"); 3103 return; 3104 } 3105 3106 /* At this point the firmware is up and running. If the hardware 3107 * RF switch is turned off thermal calibration will fail, though 3108 * the card is still happy to continue to accept commands, catch 3109 * this case and schedule a task to watch for it to be turned on. 3110 */ 3111 wpi_mem_lock(sc); 3112 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3113 wpi_mem_unlock(sc); 3114 3115 if (!(tmp & 0x1)) { 3116 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3117 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3118 goto out; 3119 } 3120 3121 /* wait for thermal sensors to calibrate */ 3122 for (ntries = 0; ntries < 1000; ntries++) { 3123 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3124 break; 3125 DELAY(10); 3126 } 3127 3128 if (ntries == 1000) { 3129 device_printf(sc->sc_dev, 3130 "timeout waiting for thermal sensors calibration\n"); 3131 return; 3132 } 3133 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3134 3135 if (wpi_config(sc) != 0) { 3136 device_printf(sc->sc_dev, "device config failed\n"); 3137 return; 3138 } 3139 3140 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3141 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3142 out: 3143 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3144 } 3145 3146 static void 3147 wpi_init(void *arg) 3148 { 3149 struct wpi_softc *sc = arg; 3150 struct ifnet *ifp = sc->sc_ifp; 3151 struct ieee80211com *ic = ifp->if_l2com; 3152 3153 WPI_LOCK(sc); 3154 wpi_init_locked(sc, 0); 3155 WPI_UNLOCK(sc); 3156 3157 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3158 ieee80211_start_all(ic); /* start all vaps */ 3159 } 3160 3161 static void 3162 wpi_stop_locked(struct wpi_softc *sc) 3163 { 3164 struct ifnet *ifp = sc->sc_ifp; 3165 uint32_t tmp; 3166 int ac; 3167 3168 sc->sc_tx_timer = 0; 3169 sc->sc_scan_timer = 0; 3170 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3171 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3172 callout_stop(&sc->watchdog_to); 3173 callout_stop(&sc->calib_to); 3174 3175 3176 /* disable interrupts */ 3177 WPI_WRITE(sc, WPI_MASK, 0); 3178 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3179 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3180 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3181 3182 /* Clear any commands left in the command buffer */ 3183 memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd)); 3184 memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg)); 3185 sc->sc_cmd_cur = 0; 3186 sc->sc_cmd_next = 0; 3187 3188 wpi_mem_lock(sc); 3189 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3190 wpi_mem_unlock(sc); 3191 3192 /* reset all Tx rings */ 3193 for (ac = 0; ac < 4; ac++) 3194 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3195 wpi_reset_tx_ring(sc, &sc->cmdq); 3196 3197 /* reset Rx ring */ 3198 wpi_reset_rx_ring(sc, &sc->rxq); 3199 3200 wpi_mem_lock(sc); 3201 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3202 wpi_mem_unlock(sc); 3203 3204 DELAY(5); 3205 3206 wpi_stop_master(sc); 3207 3208 tmp = WPI_READ(sc, WPI_RESET); 3209 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3210 sc->flags &= ~WPI_FLAG_BUSY; 3211 } 3212 3213 static void 3214 wpi_stop(struct wpi_softc *sc) 3215 { 3216 WPI_LOCK(sc); 3217 wpi_stop_locked(sc); 3218 WPI_UNLOCK(sc); 3219 } 3220 3221 static void 3222 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3223 { 3224 struct ieee80211vap *vap = ni->ni_vap; 3225 struct wpi_vap *wvp = WPI_VAP(vap); 3226 3227 ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni); 3228 } 3229 3230 static void 3231 wpi_calib_timeout(void *arg) 3232 { 3233 struct wpi_softc *sc = arg; 3234 struct ifnet *ifp = sc->sc_ifp; 3235 struct ieee80211com *ic = ifp->if_l2com; 3236 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3237 int temp; 3238 3239 if (vap->iv_state != IEEE80211_S_RUN) 3240 return; 3241 3242 /* update sensor data */ 3243 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3244 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3245 3246 wpi_power_calibration(sc, temp); 3247 3248 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3249 } 3250 3251 /* 3252 * This function is called periodically (every 60 seconds) to adjust output 3253 * power to temperature changes. 3254 */ 3255 static void 3256 wpi_power_calibration(struct wpi_softc *sc, int temp) 3257 { 3258 struct ifnet *ifp = sc->sc_ifp; 3259 struct ieee80211com *ic = ifp->if_l2com; 3260 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3261 3262 /* sanity-check read value */ 3263 if (temp < -260 || temp > 25) { 3264 /* this can't be correct, ignore */ 3265 DPRINTFN(WPI_DEBUG_TEMP, 3266 ("out-of-range temperature reported: %d\n", temp)); 3267 return; 3268 } 3269 3270 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3271 3272 /* adjust Tx power if need be */ 3273 if (abs(temp - sc->temp) <= 6) 3274 return; 3275 3276 sc->temp = temp; 3277 3278 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3279 /* just warn, too bad for the automatic calibration... */ 3280 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3281 } 3282 } 3283 3284 /** 3285 * Read the eeprom to find out what channels are valid for the given 3286 * band and update net80211 with what we find. 3287 */ 3288 static void 3289 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3290 { 3291 struct ifnet *ifp = sc->sc_ifp; 3292 struct ieee80211com *ic = ifp->if_l2com; 3293 const struct wpi_chan_band *band = &wpi_bands[n]; 3294 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3295 int chan, i, offset, passive; 3296 3297 wpi_read_prom_data(sc, band->addr, channels, 3298 band->nchan * sizeof (struct wpi_eeprom_chan)); 3299 3300 for (i = 0; i < band->nchan; i++) { 3301 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3302 DPRINTFN(WPI_DEBUG_HW, 3303 ("Channel Not Valid: %d, band %d\n", 3304 band->chan[i],n)); 3305 continue; 3306 } 3307 3308 passive = 0; 3309 chan = band->chan[i]; 3310 offset = ic->ic_nchans; 3311 3312 /* is active scan allowed on this channel? */ 3313 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3314 passive = IEEE80211_CHAN_PASSIVE; 3315 } 3316 3317 if (n == 0) { /* 2GHz band */ 3318 ic->ic_channels[offset].ic_ieee = chan; 3319 ic->ic_channels[offset].ic_freq = 3320 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 3321 ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive; 3322 offset++; 3323 ic->ic_channels[offset].ic_ieee = chan; 3324 ic->ic_channels[offset].ic_freq = 3325 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 3326 ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive; 3327 offset++; 3328 3329 } else { /* 5GHz band */ 3330 /* 3331 * Some 3945ABG adapters support channels 7, 8, 11 3332 * and 12 in the 2GHz *and* 5GHz bands. 3333 * Because of limitations in our net80211(9) stack, 3334 * we can't support these channels in 5GHz band. 3335 * XXX not true; just need to map to proper frequency 3336 */ 3337 if (chan <= 14) 3338 continue; 3339 3340 ic->ic_channels[offset].ic_ieee = chan; 3341 ic->ic_channels[offset].ic_freq = 3342 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 3343 ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive; 3344 offset++; 3345 } 3346 3347 /* save maximum allowed power for this channel */ 3348 sc->maxpwr[chan] = channels[i].maxpwr; 3349 3350 ic->ic_nchans = offset; 3351 3352 #if 0 3353 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3354 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3355 //ic->ic_channels[chan].ic_minpower... 3356 //ic->ic_channels[chan].ic_maxregtxpower... 3357 #endif 3358 3359 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n", 3360 chan, channels[i].flags, sc->maxpwr[chan], offset)); 3361 } 3362 } 3363 3364 static void 3365 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3366 { 3367 struct wpi_power_group *group = &sc->groups[n]; 3368 struct wpi_eeprom_group rgroup; 3369 int i; 3370 3371 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3372 sizeof rgroup); 3373 3374 /* save power group information */ 3375 group->chan = rgroup.chan; 3376 group->maxpwr = rgroup.maxpwr; 3377 /* temperature at which the samples were taken */ 3378 group->temp = (int16_t)le16toh(rgroup.temp); 3379 3380 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3381 group->chan, group->maxpwr, group->temp)); 3382 3383 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3384 group->samples[i].index = rgroup.samples[i].index; 3385 group->samples[i].power = rgroup.samples[i].power; 3386 3387 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3388 group->samples[i].index, group->samples[i].power)); 3389 } 3390 } 3391 3392 /* 3393 * Update Tx power to match what is defined for channel `c'. 3394 */ 3395 static int 3396 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3397 { 3398 struct ifnet *ifp = sc->sc_ifp; 3399 struct ieee80211com *ic = ifp->if_l2com; 3400 struct wpi_power_group *group; 3401 struct wpi_cmd_txpower txpower; 3402 u_int chan; 3403 int i; 3404 3405 /* get channel number */ 3406 chan = ieee80211_chan2ieee(ic, c); 3407 3408 /* find the power group to which this channel belongs */ 3409 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3410 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3411 if (chan <= group->chan) 3412 break; 3413 } else 3414 group = &sc->groups[0]; 3415 3416 memset(&txpower, 0, sizeof txpower); 3417 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3418 txpower.channel = htole16(chan); 3419 3420 /* set Tx power for all OFDM and CCK rates */ 3421 for (i = 0; i <= 11 ; i++) { 3422 /* retrieve Tx power for this channel/rate combination */ 3423 int idx = wpi_get_power_index(sc, group, c, 3424 wpi_ridx_to_rate[i]); 3425 3426 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3427 3428 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3429 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3430 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3431 } else { 3432 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3433 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3434 } 3435 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3436 chan, wpi_ridx_to_rate[i], idx)); 3437 } 3438 3439 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3440 } 3441 3442 /* 3443 * Determine Tx power index for a given channel/rate combination. 3444 * This takes into account the regulatory information from EEPROM and the 3445 * current temperature. 3446 */ 3447 static int 3448 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3449 struct ieee80211_channel *c, int rate) 3450 { 3451 /* fixed-point arithmetic division using a n-bit fractional part */ 3452 #define fdivround(a, b, n) \ 3453 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3454 3455 /* linear interpolation */ 3456 #define interpolate(x, x1, y1, x2, y2, n) \ 3457 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3458 3459 struct ifnet *ifp = sc->sc_ifp; 3460 struct ieee80211com *ic = ifp->if_l2com; 3461 struct wpi_power_sample *sample; 3462 int pwr, idx; 3463 u_int chan; 3464 3465 /* get channel number */ 3466 chan = ieee80211_chan2ieee(ic, c); 3467 3468 /* default power is group's maximum power - 3dB */ 3469 pwr = group->maxpwr / 2; 3470 3471 /* decrease power for highest OFDM rates to reduce distortion */ 3472 switch (rate) { 3473 case 72: /* 36Mb/s */ 3474 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3475 break; 3476 case 96: /* 48Mb/s */ 3477 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3478 break; 3479 case 108: /* 54Mb/s */ 3480 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3481 break; 3482 } 3483 3484 /* never exceed channel's maximum allowed Tx power */ 3485 pwr = min(pwr, sc->maxpwr[chan]); 3486 3487 /* retrieve power index into gain tables from samples */ 3488 for (sample = group->samples; sample < &group->samples[3]; sample++) 3489 if (pwr > sample[1].power) 3490 break; 3491 /* fixed-point linear interpolation using a 19-bit fractional part */ 3492 idx = interpolate(pwr, sample[0].power, sample[0].index, 3493 sample[1].power, sample[1].index, 19); 3494 3495 /* 3496 * Adjust power index based on current temperature 3497 * - if colder than factory-calibrated: decreate output power 3498 * - if warmer than factory-calibrated: increase output power 3499 */ 3500 idx -= (sc->temp - group->temp) * 11 / 100; 3501 3502 /* decrease power for CCK rates (-5dB) */ 3503 if (!WPI_RATE_IS_OFDM(rate)) 3504 idx += 10; 3505 3506 /* keep power index in a valid range */ 3507 if (idx < 0) 3508 return 0; 3509 if (idx > WPI_MAX_PWR_INDEX) 3510 return WPI_MAX_PWR_INDEX; 3511 return idx; 3512 3513 #undef interpolate 3514 #undef fdivround 3515 } 3516 3517 /** 3518 * Called by net80211 framework to indicate that a scan 3519 * is starting. This function doesn't actually do the scan, 3520 * wpi_scan_curchan starts things off. This function is more 3521 * of an early warning from the framework we should get ready 3522 * for the scan. 3523 */ 3524 static void 3525 wpi_scan_start(struct ieee80211com *ic) 3526 { 3527 struct ifnet *ifp = ic->ic_ifp; 3528 struct wpi_softc *sc = ifp->if_softc; 3529 3530 wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL); 3531 } 3532 3533 /** 3534 * Called by the net80211 framework, indicates that the 3535 * scan has ended. If there is a scan in progress on the card 3536 * then it should be aborted. 3537 */ 3538 static void 3539 wpi_scan_end(struct ieee80211com *ic) 3540 { 3541 struct ifnet *ifp = ic->ic_ifp; 3542 struct wpi_softc *sc = ifp->if_softc; 3543 3544 wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL); 3545 } 3546 3547 /** 3548 * Called by the net80211 framework to indicate to the driver 3549 * that the channel should be changed 3550 */ 3551 static void 3552 wpi_set_channel(struct ieee80211com *ic) 3553 { 3554 struct ifnet *ifp = ic->ic_ifp; 3555 struct wpi_softc *sc = ifp->if_softc; 3556 3557 /* 3558 * Only need to set the channel in Monitor mode. AP scanning and auth 3559 * are already taken care of by their respective firmware commands. 3560 */ 3561 if (ic->ic_opmode == IEEE80211_M_MONITOR) 3562 wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL); 3563 } 3564 3565 /** 3566 * Called by net80211 to indicate that we need to scan the current 3567 * channel. The channel is previously be set via the wpi_set_channel 3568 * callback. 3569 */ 3570 static void 3571 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3572 { 3573 struct ieee80211vap *vap = ss->ss_vap; 3574 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3575 struct wpi_softc *sc = ifp->if_softc; 3576 3577 wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL); 3578 } 3579 3580 /** 3581 * Called by the net80211 framework to indicate 3582 * the minimum dwell time has been met, terminate the scan. 3583 * We don't actually terminate the scan as the firmware will notify 3584 * us when it's finished and we have no way to interrupt it. 3585 */ 3586 static void 3587 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3588 { 3589 /* NB: don't try to abort scan; wait for firmware to finish */ 3590 } 3591 3592 /** 3593 * The ops function is called to perform some actual work. 3594 * because we can't sleep from any of the ic callbacks, we queue an 3595 * op task with wpi_queue_cmd and have the taskqueue process that task. 3596 * The task that gets cued is a op task, which ends up calling this function. 3597 */ 3598 static void 3599 wpi_ops(void *arg0, int pending) 3600 { 3601 struct wpi_softc *sc = arg0; 3602 struct ifnet *ifp = sc->sc_ifp; 3603 struct ieee80211com *ic = ifp->if_l2com; 3604 int cmd, arg, error; 3605 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3606 3607 again: 3608 WPI_CMD_LOCK(sc); 3609 cmd = sc->sc_cmd[sc->sc_cmd_cur]; 3610 arg = sc->sc_cmd_arg[sc->sc_cmd_cur]; 3611 3612 if (cmd == 0) { 3613 /* No more commands to process */ 3614 WPI_CMD_UNLOCK(sc); 3615 return; 3616 } 3617 sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */ 3618 sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */ 3619 sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS; 3620 WPI_CMD_UNLOCK(sc); 3621 WPI_LOCK(sc); 3622 3623 DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd)); 3624 3625 switch (cmd) { 3626 case WPI_RESTART: 3627 wpi_init_locked(sc, 0); 3628 WPI_UNLOCK(sc); 3629 return; 3630 3631 case WPI_RF_RESTART: 3632 wpi_rfkill_resume(sc); 3633 WPI_UNLOCK(sc); 3634 return; 3635 } 3636 3637 if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3638 WPI_UNLOCK(sc); 3639 return; 3640 } 3641 3642 switch (cmd) { 3643 case WPI_SCAN_START: 3644 /* make the link LED blink while we're scanning */ 3645 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3646 sc->flags |= WPI_FLAG_SCANNING; 3647 break; 3648 3649 case WPI_SCAN_STOP: 3650 sc->flags &= ~WPI_FLAG_SCANNING; 3651 break; 3652 3653 case WPI_SCAN_CURCHAN: 3654 if (wpi_scan(sc)) 3655 ieee80211_cancel_scan(vap); 3656 break; 3657 3658 case WPI_SET_CHAN: 3659 error = wpi_config(sc); 3660 if (error != 0) 3661 device_printf(sc->sc_dev, 3662 "error %d settting channel\n", error); 3663 break; 3664 3665 case WPI_AUTH: 3666 /* The node must be registered in the firmware before auth */ 3667 error = wpi_auth(sc, vap); 3668 WPI_UNLOCK(sc); 3669 if (error != 0) { 3670 device_printf(sc->sc_dev, 3671 "%s: could not move to auth state, error %d\n", 3672 __func__, error); 3673 return; 3674 } 3675 IEEE80211_LOCK(ic); 3676 WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg); 3677 if (vap->iv_newstate_cb != NULL) 3678 vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg); 3679 IEEE80211_UNLOCK(ic); 3680 goto again; 3681 3682 case WPI_RUN: 3683 error = wpi_run(sc, vap); 3684 WPI_UNLOCK(sc); 3685 if (error != 0) { 3686 device_printf(sc->sc_dev, 3687 "%s: could not move to run state, error %d\n", 3688 __func__, error); 3689 return; 3690 } 3691 IEEE80211_LOCK(ic); 3692 WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg); 3693 if (vap->iv_newstate_cb != NULL) 3694 vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg); 3695 IEEE80211_UNLOCK(ic); 3696 goto again; 3697 } 3698 WPI_UNLOCK(sc); 3699 3700 /* Take another pass */ 3701 goto again; 3702 } 3703 3704 /** 3705 * queue a command for later execution in a different thread. 3706 * This is needed as the net80211 callbacks do not allow 3707 * sleeping, since we need to sleep to confirm commands have 3708 * been processed by the firmware, we must defer execution to 3709 * a sleep enabled thread. 3710 */ 3711 static int 3712 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush) 3713 { 3714 WPI_CMD_LOCK(sc); 3715 3716 if (flush) { 3717 memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd)); 3718 memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg)); 3719 sc->sc_cmd_cur = 0; 3720 sc->sc_cmd_next = 0; 3721 } 3722 3723 if (sc->sc_cmd[sc->sc_cmd_next] != 0) { 3724 WPI_CMD_UNLOCK(sc); 3725 DPRINTF(("%s: command %d dropped\n", __func__, cmd)); 3726 return (EBUSY); 3727 } 3728 3729 sc->sc_cmd[sc->sc_cmd_next] = cmd; 3730 sc->sc_cmd_arg[sc->sc_cmd_next] = arg; 3731 sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS; 3732 3733 taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask); 3734 3735 WPI_CMD_UNLOCK(sc); 3736 3737 return 0; 3738 } 3739 3740 /* 3741 * Allocate DMA-safe memory for firmware transfer. 3742 */ 3743 static int 3744 wpi_alloc_fwmem(struct wpi_softc *sc) 3745 { 3746 /* allocate enough contiguous space to store text and data */ 3747 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3748 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3749 BUS_DMA_NOWAIT); 3750 } 3751 3752 static void 3753 wpi_free_fwmem(struct wpi_softc *sc) 3754 { 3755 wpi_dma_contig_free(&sc->fw_dma); 3756 } 3757 3758 /** 3759 * Called every second, wpi_watchdog used by the watch dog timer 3760 * to check that the card is still alive 3761 */ 3762 static void 3763 wpi_watchdog(void *arg) 3764 { 3765 struct wpi_softc *sc = arg; 3766 struct ifnet *ifp = sc->sc_ifp; 3767 uint32_t tmp; 3768 3769 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3770 3771 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3772 /* No need to lock firmware memory */ 3773 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3774 3775 if ((tmp & 0x1) == 0) { 3776 /* Radio kill switch is still off */ 3777 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3778 return; 3779 } 3780 3781 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3782 wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR); 3783 return; 3784 } 3785 3786 if (sc->sc_tx_timer > 0) { 3787 if (--sc->sc_tx_timer == 0) { 3788 device_printf(sc->sc_dev,"device timeout\n"); 3789 ifp->if_oerrors++; 3790 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 3791 } 3792 } 3793 if (sc->sc_scan_timer > 0) { 3794 struct ifnet *ifp = sc->sc_ifp; 3795 struct ieee80211com *ic = ifp->if_l2com; 3796 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3797 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3798 device_printf(sc->sc_dev,"scan timeout\n"); 3799 ieee80211_cancel_scan(vap); 3800 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 3801 } 3802 } 3803 3804 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3805 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3806 } 3807 3808 #ifdef WPI_DEBUG 3809 static const char *wpi_cmd_str(int cmd) 3810 { 3811 switch (cmd) { 3812 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3813 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3814 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3815 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3816 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3817 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3818 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3819 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3820 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3821 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3822 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3823 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3824 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3825 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3826 3827 default: 3828 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3829 return "UNKNOWN CMD"; /* Make the compiler happy */ 3830 } 3831 } 3832 #endif 3833 3834 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3835 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3836 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3837 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3838