xref: /freebsd/sys/dev/wpi/if_wpi.c (revision c0020399a650364d0134f79f3fa319f84064372d)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/if_ether.h>
102 
103 #include <dev/wpi/if_wpireg.h>
104 #include <dev/wpi/if_wpivar.h>
105 
106 #define WPI_DEBUG
107 
108 #ifdef WPI_DEBUG
109 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111 #define	WPI_DEBUG_SET	(wpi_debug != 0)
112 
113 enum {
114 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
115 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
116 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
117 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
118 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
119 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
120 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
121 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
122 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
123 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
124 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
125 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
126 	WPI_DEBUG_ANY		= 0xffffffff
127 };
128 
129 static int wpi_debug = 1;
130 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
131 TUNABLE_INT("debug.wpi", &wpi_debug);
132 
133 #else
134 #define DPRINTF(x)
135 #define DPRINTFN(n, x)
136 #define WPI_DEBUG_SET	0
137 #endif
138 
139 struct wpi_ident {
140 	uint16_t	vendor;
141 	uint16_t	device;
142 	uint16_t	subdevice;
143 	const char	*name;
144 };
145 
146 static const struct wpi_ident wpi_ident_table[] = {
147 	/* The below entries support ABG regardless of the subid */
148 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
149 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150 	/* The below entries only support BG */
151 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
152 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
153 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
154 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
155 	{ 0, 0, 0, NULL }
156 };
157 
158 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
159 		    const char name[IFNAMSIZ], int unit, int opmode,
160 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
161 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
162 static void	wpi_vap_delete(struct ieee80211vap *);
163 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
164 		    void **, bus_size_t, bus_size_t, int);
165 static void	wpi_dma_contig_free(struct wpi_dma_info *);
166 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
167 static int	wpi_alloc_shared(struct wpi_softc *);
168 static void	wpi_free_shared(struct wpi_softc *);
169 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
170 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
173 		    int, int);
174 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
175 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
178 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179 static void	wpi_mem_lock(struct wpi_softc *);
180 static void	wpi_mem_unlock(struct wpi_softc *);
181 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184 		    const uint32_t *, int);
185 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186 static int	wpi_alloc_fwmem(struct wpi_softc *);
187 static void	wpi_free_fwmem(struct wpi_softc *);
188 static int	wpi_load_firmware(struct wpi_softc *);
189 static void	wpi_unload_firmware(struct wpi_softc *);
190 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192 		    struct wpi_rx_data *);
193 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_bmiss(void *, int);
196 static void	wpi_notif_intr(struct wpi_softc *);
197 static void	wpi_intr(void *);
198 static void	wpi_ops(void *, int);
199 static uint8_t	wpi_plcp_signal(int);
200 static int	wpi_queue_cmd(struct wpi_softc *, int, int, int);
201 static void	wpi_watchdog(void *);
202 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
203 		    struct ieee80211_node *, int);
204 static void	wpi_start(struct ifnet *);
205 static void	wpi_start_locked(struct ifnet *);
206 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
207 		    const struct ieee80211_bpf_params *);
208 static void	wpi_scan_start(struct ieee80211com *);
209 static void	wpi_scan_end(struct ieee80211com *);
210 static void	wpi_set_channel(struct ieee80211com *);
211 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
212 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
213 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
214 static void	wpi_read_eeprom(struct wpi_softc *,
215 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
216 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
217 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
218 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
219 static int	wpi_wme_update(struct ieee80211com *);
220 static int	wpi_mrr_setup(struct wpi_softc *);
221 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
222 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
223 #if 0
224 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
225 #endif
226 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
227 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
228 static int	wpi_scan(struct wpi_softc *);
229 static int	wpi_config(struct wpi_softc *);
230 static void	wpi_stop_master(struct wpi_softc *);
231 static int	wpi_power_up(struct wpi_softc *);
232 static int	wpi_reset(struct wpi_softc *);
233 static void	wpi_hw_config(struct wpi_softc *);
234 static void	wpi_init(void *);
235 static void	wpi_init_locked(struct wpi_softc *, int);
236 static void	wpi_stop(struct wpi_softc *);
237 static void	wpi_stop_locked(struct wpi_softc *);
238 
239 static void	wpi_newassoc(struct ieee80211_node *, int);
240 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
241 		    int);
242 static void	wpi_calib_timeout(void *);
243 static void	wpi_power_calibration(struct wpi_softc *, int);
244 static int	wpi_get_power_index(struct wpi_softc *,
245 		    struct wpi_power_group *, struct ieee80211_channel *, int);
246 #ifdef WPI_DEBUG
247 static const char *wpi_cmd_str(int);
248 #endif
249 static int wpi_probe(device_t);
250 static int wpi_attach(device_t);
251 static int wpi_detach(device_t);
252 static int wpi_shutdown(device_t);
253 static int wpi_suspend(device_t);
254 static int wpi_resume(device_t);
255 
256 
257 static device_method_t wpi_methods[] = {
258 	/* Device interface */
259 	DEVMETHOD(device_probe,		wpi_probe),
260 	DEVMETHOD(device_attach,	wpi_attach),
261 	DEVMETHOD(device_detach,	wpi_detach),
262 	DEVMETHOD(device_shutdown,	wpi_shutdown),
263 	DEVMETHOD(device_suspend,	wpi_suspend),
264 	DEVMETHOD(device_resume,	wpi_resume),
265 
266 	{ 0, 0 }
267 };
268 
269 static driver_t wpi_driver = {
270 	"wpi",
271 	wpi_methods,
272 	sizeof (struct wpi_softc)
273 };
274 
275 static devclass_t wpi_devclass;
276 
277 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
278 
279 static const uint8_t wpi_ridx_to_plcp[] = {
280 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
281 	/* R1-R4 (ral/ural is R4-R1) */
282 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
283 	/* CCK: device-dependent */
284 	10, 20, 55, 110
285 };
286 static const uint8_t wpi_ridx_to_rate[] = {
287 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
288 	2, 4, 11, 22 /*CCK */
289 };
290 
291 
292 static int
293 wpi_probe(device_t dev)
294 {
295 	const struct wpi_ident *ident;
296 
297 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
298 		if (pci_get_vendor(dev) == ident->vendor &&
299 		    pci_get_device(dev) == ident->device) {
300 			device_set_desc(dev, ident->name);
301 			return 0;
302 		}
303 	}
304 	return ENXIO;
305 }
306 
307 /**
308  * Load the firmare image from disk to the allocated dma buffer.
309  * we also maintain the reference to the firmware pointer as there
310  * is times where we may need to reload the firmware but we are not
311  * in a context that can access the filesystem (ie taskq cause by restart)
312  *
313  * @return 0 on success, an errno on failure
314  */
315 static int
316 wpi_load_firmware(struct wpi_softc *sc)
317 {
318 	const struct firmware *fp;
319 	struct wpi_dma_info *dma = &sc->fw_dma;
320 	const struct wpi_firmware_hdr *hdr;
321 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
322 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
323 	int error;
324 
325 	DPRINTFN(WPI_DEBUG_FIRMWARE,
326 	    ("Attempting Loading Firmware from wpi_fw module\n"));
327 
328 	WPI_UNLOCK(sc);
329 
330 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
331 		device_printf(sc->sc_dev,
332 		    "could not load firmware image 'wpifw'\n");
333 		error = ENOENT;
334 		WPI_LOCK(sc);
335 		goto fail;
336 	}
337 
338 	fp = sc->fw_fp;
339 
340 	WPI_LOCK(sc);
341 
342 	/* Validate the firmware is minimum a particular version */
343 	if (fp->version < WPI_FW_MINVERSION) {
344 	    device_printf(sc->sc_dev,
345 			   "firmware version is too old. Need %d, got %d\n",
346 			   WPI_FW_MINVERSION,
347 			   fp->version);
348 	    error = ENXIO;
349 	    goto fail;
350 	}
351 
352 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
353 		device_printf(sc->sc_dev,
354 		    "firmware file too short: %zu bytes\n", fp->datasize);
355 		error = ENXIO;
356 		goto fail;
357 	}
358 
359 	hdr = (const struct wpi_firmware_hdr *)fp->data;
360 
361 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
362 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
363 
364 	rtextsz = le32toh(hdr->rtextsz);
365 	rdatasz = le32toh(hdr->rdatasz);
366 	itextsz = le32toh(hdr->itextsz);
367 	idatasz = le32toh(hdr->idatasz);
368 	btextsz = le32toh(hdr->btextsz);
369 
370 	/* check that all firmware segments are present */
371 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
372 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
373 		device_printf(sc->sc_dev,
374 		    "firmware file too short: %zu bytes\n", fp->datasize);
375 		error = ENXIO; /* XXX appropriate error code? */
376 		goto fail;
377 	}
378 
379 	/* get pointers to firmware segments */
380 	rtext = (const uint8_t *)(hdr + 1);
381 	rdata = rtext + rtextsz;
382 	itext = rdata + rdatasz;
383 	idata = itext + itextsz;
384 	btext = idata + idatasz;
385 
386 	DPRINTFN(WPI_DEBUG_FIRMWARE,
387 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
388 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
389 	     (le32toh(hdr->version) & 0xff000000) >> 24,
390 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
391 	     (le32toh(hdr->version) & 0x0000ffff),
392 	     rtextsz, rdatasz,
393 	     itextsz, idatasz, btextsz));
394 
395 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
396 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
397 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
398 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
399 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
400 
401 	/* sanity checks */
402 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
403 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
404 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
405 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
406 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
407 	    (btextsz & 3) != 0) {
408 		device_printf(sc->sc_dev, "firmware invalid\n");
409 		error = EINVAL;
410 		goto fail;
411 	}
412 
413 	/* copy initialization images into pre-allocated DMA-safe memory */
414 	memcpy(dma->vaddr, idata, idatasz);
415 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
416 
417 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
418 
419 	/* tell adapter where to find initialization images */
420 	wpi_mem_lock(sc);
421 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
422 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
423 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
424 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
425 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
426 	wpi_mem_unlock(sc);
427 
428 	/* load firmware boot code */
429 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
430 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
431 	    goto fail;
432 	}
433 
434 	/* now press "execute" */
435 	WPI_WRITE(sc, WPI_RESET, 0);
436 
437 	/* wait at most one second for the first alive notification */
438 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
439 		device_printf(sc->sc_dev,
440 		    "timeout waiting for adapter to initialize\n");
441 		goto fail;
442 	}
443 
444 	/* copy runtime images into pre-allocated DMA-sage memory */
445 	memcpy(dma->vaddr, rdata, rdatasz);
446 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
447 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
448 
449 	/* tell adapter where to find runtime images */
450 	wpi_mem_lock(sc);
451 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
452 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
453 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
454 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
455 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
456 	wpi_mem_unlock(sc);
457 
458 	/* wait at most one second for the first alive notification */
459 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
460 		device_printf(sc->sc_dev,
461 		    "timeout waiting for adapter to initialize2\n");
462 		goto fail;
463 	}
464 
465 	DPRINTFN(WPI_DEBUG_FIRMWARE,
466 	    ("Firmware loaded to driver successfully\n"));
467 	return error;
468 fail:
469 	wpi_unload_firmware(sc);
470 	return error;
471 }
472 
473 /**
474  * Free the referenced firmware image
475  */
476 static void
477 wpi_unload_firmware(struct wpi_softc *sc)
478 {
479 
480 	if (sc->fw_fp) {
481 		WPI_UNLOCK(sc);
482 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
483 		WPI_LOCK(sc);
484 		sc->fw_fp = NULL;
485 	}
486 }
487 
488 static int
489 wpi_attach(device_t dev)
490 {
491 	struct wpi_softc *sc = device_get_softc(dev);
492 	struct ifnet *ifp;
493 	struct ieee80211com *ic;
494 	int ac, error, supportsa = 1;
495 	uint32_t tmp;
496 	const struct wpi_ident *ident;
497 	uint8_t macaddr[IEEE80211_ADDR_LEN];
498 
499 	sc->sc_dev = dev;
500 
501 	if (bootverbose || WPI_DEBUG_SET)
502 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
503 
504 	/*
505 	 * Some card's only support 802.11b/g not a, check to see if
506 	 * this is one such card. A 0x0 in the subdevice table indicates
507 	 * the entire subdevice range is to be ignored.
508 	 */
509 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
510 		if (ident->subdevice &&
511 		    pci_get_subdevice(dev) == ident->subdevice) {
512 		    supportsa = 0;
513 		    break;
514 		}
515 	}
516 
517 	/*
518 	 * Create the taskqueues used by the driver. Primarily
519 	 * sc_tq handles most the task
520 	 */
521 	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
522 	    taskqueue_thread_enqueue, &sc->sc_tq);
523 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
524 	    device_get_nameunit(dev));
525 
526 	/* Create the tasks that can be queued */
527 	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
528 	TASK_INIT(&sc->sc_bmiss_task, 0, wpi_bmiss, sc);
529 
530 	WPI_LOCK_INIT(sc);
531 	WPI_CMD_LOCK_INIT(sc);
532 
533 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
534 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
535 
536 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
537 		device_printf(dev, "chip is in D%d power mode "
538 		    "-- setting to D0\n", pci_get_powerstate(dev));
539 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
540 	}
541 
542 	/* disable the retry timeout register */
543 	pci_write_config(dev, 0x41, 0, 1);
544 
545 	/* enable bus-mastering */
546 	pci_enable_busmaster(dev);
547 
548 	sc->mem_rid = PCIR_BAR(0);
549 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
550 	    RF_ACTIVE);
551 	if (sc->mem == NULL) {
552 		device_printf(dev, "could not allocate memory resource\n");
553 		error = ENOMEM;
554 		goto fail;
555 	}
556 
557 	sc->sc_st = rman_get_bustag(sc->mem);
558 	sc->sc_sh = rman_get_bushandle(sc->mem);
559 
560 	sc->irq_rid = 0;
561 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
562 	    RF_ACTIVE | RF_SHAREABLE);
563 	if (sc->irq == NULL) {
564 		device_printf(dev, "could not allocate interrupt resource\n");
565 		error = ENOMEM;
566 		goto fail;
567 	}
568 
569 	/*
570 	 * Allocate DMA memory for firmware transfers.
571 	 */
572 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
573 		printf(": could not allocate firmware memory\n");
574 		error = ENOMEM;
575 		goto fail;
576 	}
577 
578 	/*
579 	 * Put adapter into a known state.
580 	 */
581 	if ((error = wpi_reset(sc)) != 0) {
582 		device_printf(dev, "could not reset adapter\n");
583 		goto fail;
584 	}
585 
586 	wpi_mem_lock(sc);
587 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
588 	if (bootverbose || WPI_DEBUG_SET)
589 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
590 
591 	wpi_mem_unlock(sc);
592 
593 	/* Allocate shared page */
594 	if ((error = wpi_alloc_shared(sc)) != 0) {
595 		device_printf(dev, "could not allocate shared page\n");
596 		goto fail;
597 	}
598 
599 	/* tx data queues  - 4 for QoS purposes */
600 	for (ac = 0; ac < WME_NUM_AC; ac++) {
601 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
602 		if (error != 0) {
603 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
604 		    goto fail;
605 		}
606 	}
607 
608 	/* command queue to talk to the card's firmware */
609 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
610 	if (error != 0) {
611 		device_printf(dev, "could not allocate command ring\n");
612 		goto fail;
613 	}
614 
615 	/* receive data queue */
616 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
617 	if (error != 0) {
618 		device_printf(dev, "could not allocate Rx ring\n");
619 		goto fail;
620 	}
621 
622 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
623 	if (ifp == NULL) {
624 		device_printf(dev, "can not if_alloc()\n");
625 		error = ENOMEM;
626 		goto fail;
627 	}
628 	ic = ifp->if_l2com;
629 
630 	ic->ic_ifp = ifp;
631 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
632 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
633 
634 	/* set device capabilities */
635 	ic->ic_caps =
636 		  IEEE80211_C_STA		/* station mode supported */
637 		| IEEE80211_C_MONITOR		/* monitor mode supported */
638 		| IEEE80211_C_TXPMGT		/* tx power management */
639 		| IEEE80211_C_SHSLOT		/* short slot time supported */
640 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
641 		| IEEE80211_C_WPA		/* 802.11i */
642 /* XXX looks like WME is partly supported? */
643 #if 0
644 		| IEEE80211_C_IBSS		/* IBSS mode support */
645 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
646 		| IEEE80211_C_WME		/* 802.11e */
647 		| IEEE80211_C_HOSTAP		/* Host access point mode */
648 #endif
649 		;
650 
651 	/*
652 	 * Read in the eeprom and also setup the channels for
653 	 * net80211. We don't set the rates as net80211 does this for us
654 	 */
655 	wpi_read_eeprom(sc, macaddr);
656 
657 	if (bootverbose || WPI_DEBUG_SET) {
658 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
659 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
660 			  sc->type > 1 ? 'B': '?');
661 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
662 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
663 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
664 			  supportsa ? "does" : "does not");
665 
666 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
667 	       what sc->rev really represents - benjsc 20070615 */
668 	}
669 
670 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
671 	ifp->if_softc = sc;
672 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
673 	ifp->if_init = wpi_init;
674 	ifp->if_ioctl = wpi_ioctl;
675 	ifp->if_start = wpi_start;
676 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
677 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
678 	IFQ_SET_READY(&ifp->if_snd);
679 
680 	ieee80211_ifattach(ic, macaddr);
681 	/* override default methods */
682 	ic->ic_node_alloc = wpi_node_alloc;
683 	ic->ic_newassoc = wpi_newassoc;
684 	ic->ic_raw_xmit = wpi_raw_xmit;
685 	ic->ic_wme.wme_update = wpi_wme_update;
686 	ic->ic_scan_start = wpi_scan_start;
687 	ic->ic_scan_end = wpi_scan_end;
688 	ic->ic_set_channel = wpi_set_channel;
689 	ic->ic_scan_curchan = wpi_scan_curchan;
690 	ic->ic_scan_mindwell = wpi_scan_mindwell;
691 
692 	ic->ic_vap_create = wpi_vap_create;
693 	ic->ic_vap_delete = wpi_vap_delete;
694 
695 	bpfattach(ifp, DLT_IEEE802_11_RADIO,
696 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
697 
698 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
699 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
700 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
701 
702 	sc->sc_txtap_len = sizeof sc->sc_txtap;
703 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
704 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
705 
706 	/*
707 	 * Hook our interrupt after all initialization is complete.
708 	 */
709 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
710 	    NULL, wpi_intr, sc, &sc->sc_ih);
711 	if (error != 0) {
712 		device_printf(dev, "could not set up interrupt\n");
713 		goto fail;
714 	}
715 
716 	if (bootverbose)
717 		ieee80211_announce(ic);
718 #ifdef XXX_DEBUG
719 	ieee80211_announce_channels(ic);
720 #endif
721 	return 0;
722 
723 fail:	wpi_detach(dev);
724 	return ENXIO;
725 }
726 
727 static int
728 wpi_detach(device_t dev)
729 {
730 	struct wpi_softc *sc = device_get_softc(dev);
731 	struct ifnet *ifp = sc->sc_ifp;
732 	struct ieee80211com *ic = ifp->if_l2com;
733 	int ac;
734 
735 	if (ifp != NULL) {
736 		wpi_stop(sc);
737 		callout_drain(&sc->watchdog_to);
738 		callout_drain(&sc->calib_to);
739 		bpfdetach(ifp);
740 		ieee80211_ifdetach(ic);
741 	}
742 
743 	WPI_LOCK(sc);
744 	if (sc->txq[0].data_dmat) {
745 		for (ac = 0; ac < WME_NUM_AC; ac++)
746 			wpi_free_tx_ring(sc, &sc->txq[ac]);
747 
748 		wpi_free_tx_ring(sc, &sc->cmdq);
749 		wpi_free_rx_ring(sc, &sc->rxq);
750 		wpi_free_shared(sc);
751 	}
752 
753 	if (sc->fw_fp != NULL) {
754 		wpi_unload_firmware(sc);
755 	}
756 
757 	if (sc->fw_dma.tag)
758 		wpi_free_fwmem(sc);
759 	WPI_UNLOCK(sc);
760 
761 	if (sc->irq != NULL) {
762 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
763 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
764 	}
765 
766 	if (sc->mem != NULL)
767 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
768 
769 	if (ifp != NULL)
770 		if_free(ifp);
771 
772 	taskqueue_free(sc->sc_tq);
773 
774 	WPI_LOCK_DESTROY(sc);
775 	WPI_CMD_LOCK_DESTROY(sc);
776 
777 	return 0;
778 }
779 
780 static struct ieee80211vap *
781 wpi_vap_create(struct ieee80211com *ic,
782 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
783 	const uint8_t bssid[IEEE80211_ADDR_LEN],
784 	const uint8_t mac[IEEE80211_ADDR_LEN])
785 {
786 	struct wpi_vap *wvp;
787 	struct ieee80211vap *vap;
788 
789 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
790 		return NULL;
791 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
792 	    M_80211_VAP, M_NOWAIT | M_ZERO);
793 	if (wvp == NULL)
794 		return NULL;
795 	vap = &wvp->vap;
796 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
797 	/* override with driver methods */
798 	wvp->newstate = vap->iv_newstate;
799 	vap->iv_newstate = wpi_newstate;
800 
801 	ieee80211_amrr_init(&wvp->amrr, vap,
802 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
803 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
804 	    500 /*ms*/);
805 
806 	/* complete setup */
807 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
808 	ic->ic_opmode = opmode;
809 	return vap;
810 }
811 
812 static void
813 wpi_vap_delete(struct ieee80211vap *vap)
814 {
815 	struct wpi_vap *wvp = WPI_VAP(vap);
816 
817 	ieee80211_amrr_cleanup(&wvp->amrr);
818 	ieee80211_vap_detach(vap);
819 	free(wvp, M_80211_VAP);
820 }
821 
822 static void
823 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
824 {
825 	if (error != 0)
826 		return;
827 
828 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
829 
830 	*(bus_addr_t *)arg = segs[0].ds_addr;
831 }
832 
833 /*
834  * Allocates a contiguous block of dma memory of the requested size and
835  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
836  * allocations greater than 4096 may fail. Hence if the requested alignment is
837  * greater we allocate 'alignment' size extra memory and shift the vaddr and
838  * paddr after the dma load. This bypasses the problem at the cost of a little
839  * more memory.
840  */
841 static int
842 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
843     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
844 {
845 	int error;
846 	bus_size_t align;
847 	bus_size_t reqsize;
848 
849 	DPRINTFN(WPI_DEBUG_DMA,
850 	    ("Size: %zd - alignment %zd\n", size, alignment));
851 
852 	dma->size = size;
853 	dma->tag = NULL;
854 
855 	if (alignment > 4096) {
856 		align = PAGE_SIZE;
857 		reqsize = size + alignment;
858 	} else {
859 		align = alignment;
860 		reqsize = size;
861 	}
862 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
863 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
864 	    NULL, NULL, reqsize,
865 	    1, reqsize, flags,
866 	    NULL, NULL, &dma->tag);
867 	if (error != 0) {
868 		device_printf(sc->sc_dev,
869 		    "could not create shared page DMA tag\n");
870 		goto fail;
871 	}
872 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
873 	    flags | BUS_DMA_ZERO, &dma->map);
874 	if (error != 0) {
875 		device_printf(sc->sc_dev,
876 		    "could not allocate shared page DMA memory\n");
877 		goto fail;
878 	}
879 
880 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
881 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
882 
883 	/* Save the original pointers so we can free all the memory */
884 	dma->paddr = dma->paddr_start;
885 	dma->vaddr = dma->vaddr_start;
886 
887 	/*
888 	 * Check the alignment and increment by 4096 until we get the
889 	 * requested alignment. Fail if can't obtain the alignment
890 	 * we requested.
891 	 */
892 	if ((dma->paddr & (alignment -1 )) != 0) {
893 		int i;
894 
895 		for (i = 0; i < alignment / 4096; i++) {
896 			if ((dma->paddr & (alignment - 1 )) == 0)
897 				break;
898 			dma->paddr += 4096;
899 			dma->vaddr += 4096;
900 		}
901 		if (i == alignment / 4096) {
902 			device_printf(sc->sc_dev,
903 			    "alignment requirement was not satisfied\n");
904 			goto fail;
905 		}
906 	}
907 
908 	if (error != 0) {
909 		device_printf(sc->sc_dev,
910 		    "could not load shared page DMA map\n");
911 		goto fail;
912 	}
913 
914 	if (kvap != NULL)
915 		*kvap = dma->vaddr;
916 
917 	return 0;
918 
919 fail:
920 	wpi_dma_contig_free(dma);
921 	return error;
922 }
923 
924 static void
925 wpi_dma_contig_free(struct wpi_dma_info *dma)
926 {
927 	if (dma->tag) {
928 		if (dma->map != NULL) {
929 			if (dma->paddr_start != 0) {
930 				bus_dmamap_sync(dma->tag, dma->map,
931 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
932 				bus_dmamap_unload(dma->tag, dma->map);
933 			}
934 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
935 		}
936 		bus_dma_tag_destroy(dma->tag);
937 	}
938 }
939 
940 /*
941  * Allocate a shared page between host and NIC.
942  */
943 static int
944 wpi_alloc_shared(struct wpi_softc *sc)
945 {
946 	int error;
947 
948 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
949 	    (void **)&sc->shared, sizeof (struct wpi_shared),
950 	    PAGE_SIZE,
951 	    BUS_DMA_NOWAIT);
952 
953 	if (error != 0) {
954 		device_printf(sc->sc_dev,
955 		    "could not allocate shared area DMA memory\n");
956 	}
957 
958 	return error;
959 }
960 
961 static void
962 wpi_free_shared(struct wpi_softc *sc)
963 {
964 	wpi_dma_contig_free(&sc->shared_dma);
965 }
966 
967 static int
968 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
969 {
970 
971 	int i, error;
972 
973 	ring->cur = 0;
974 
975 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
976 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
977 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
978 
979 	if (error != 0) {
980 		device_printf(sc->sc_dev,
981 		    "%s: could not allocate rx ring DMA memory, error %d\n",
982 		    __func__, error);
983 		goto fail;
984 	}
985 
986         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
987 	    BUS_SPACE_MAXADDR_32BIT,
988             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
989             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
990         if (error != 0) {
991                 device_printf(sc->sc_dev,
992 		    "%s: bus_dma_tag_create_failed, error %d\n",
993 		    __func__, error);
994                 goto fail;
995         }
996 
997 	/*
998 	 * Setup Rx buffers.
999 	 */
1000 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1001 		struct wpi_rx_data *data = &ring->data[i];
1002 		struct mbuf *m;
1003 		bus_addr_t paddr;
1004 
1005 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1006 		if (error != 0) {
1007 			device_printf(sc->sc_dev,
1008 			    "%s: bus_dmamap_create failed, error %d\n",
1009 			    __func__, error);
1010 			goto fail;
1011 		}
1012 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1013 		if (m == NULL) {
1014 			device_printf(sc->sc_dev,
1015 			   "%s: could not allocate rx mbuf\n", __func__);
1016 			error = ENOMEM;
1017 			goto fail;
1018 		}
1019 		/* map page */
1020 		error = bus_dmamap_load(ring->data_dmat, data->map,
1021 		    mtod(m, caddr_t), MJUMPAGESIZE,
1022 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1023 		if (error != 0 && error != EFBIG) {
1024 			device_printf(sc->sc_dev,
1025 			    "%s: bus_dmamap_load failed, error %d\n",
1026 			    __func__, error);
1027 			m_freem(m);
1028 			error = ENOMEM;	/* XXX unique code */
1029 			goto fail;
1030 		}
1031 		bus_dmamap_sync(ring->data_dmat, data->map,
1032 		    BUS_DMASYNC_PREWRITE);
1033 
1034 		data->m = m;
1035 		ring->desc[i] = htole32(paddr);
1036 	}
1037 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1038 	    BUS_DMASYNC_PREWRITE);
1039 	return 0;
1040 fail:
1041 	wpi_free_rx_ring(sc, ring);
1042 	return error;
1043 }
1044 
1045 static void
1046 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1047 {
1048 	int ntries;
1049 
1050 	wpi_mem_lock(sc);
1051 
1052 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1053 
1054 	for (ntries = 0; ntries < 100; ntries++) {
1055 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1056 			break;
1057 		DELAY(10);
1058 	}
1059 
1060 	wpi_mem_unlock(sc);
1061 
1062 #ifdef WPI_DEBUG
1063 	if (ntries == 100 && wpi_debug > 0)
1064 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1065 #endif
1066 
1067 	ring->cur = 0;
1068 }
1069 
1070 static void
1071 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1072 {
1073 	int i;
1074 
1075 	wpi_dma_contig_free(&ring->desc_dma);
1076 
1077 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1078 		if (ring->data[i].m != NULL)
1079 			m_freem(ring->data[i].m);
1080 }
1081 
1082 static int
1083 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1084 	int qid)
1085 {
1086 	struct wpi_tx_data *data;
1087 	int i, error;
1088 
1089 	ring->qid = qid;
1090 	ring->count = count;
1091 	ring->queued = 0;
1092 	ring->cur = 0;
1093 	ring->data = NULL;
1094 
1095 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1096 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1097 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1098 
1099 	if (error != 0) {
1100 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1101 	    goto fail;
1102 	}
1103 
1104 	/* update shared page with ring's base address */
1105 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1106 
1107 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1108 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1109 		BUS_DMA_NOWAIT);
1110 
1111 	if (error != 0) {
1112 		device_printf(sc->sc_dev,
1113 		    "could not allocate tx command DMA memory\n");
1114 		goto fail;
1115 	}
1116 
1117 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1118 	    M_NOWAIT | M_ZERO);
1119 	if (ring->data == NULL) {
1120 		device_printf(sc->sc_dev,
1121 		    "could not allocate tx data slots\n");
1122 		goto fail;
1123 	}
1124 
1125 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1126 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1127 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1128 	    &ring->data_dmat);
1129 	if (error != 0) {
1130 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1131 		goto fail;
1132 	}
1133 
1134 	for (i = 0; i < count; i++) {
1135 		data = &ring->data[i];
1136 
1137 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1138 		if (error != 0) {
1139 			device_printf(sc->sc_dev,
1140 			    "could not create tx buf DMA map\n");
1141 			goto fail;
1142 		}
1143 		bus_dmamap_sync(ring->data_dmat, data->map,
1144 		    BUS_DMASYNC_PREWRITE);
1145 	}
1146 
1147 	return 0;
1148 
1149 fail:
1150 	wpi_free_tx_ring(sc, ring);
1151 	return error;
1152 }
1153 
1154 static void
1155 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1156 {
1157 	struct wpi_tx_data *data;
1158 	int i, ntries;
1159 
1160 	wpi_mem_lock(sc);
1161 
1162 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1163 	for (ntries = 0; ntries < 100; ntries++) {
1164 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1165 			break;
1166 		DELAY(10);
1167 	}
1168 #ifdef WPI_DEBUG
1169 	if (ntries == 100 && wpi_debug > 0)
1170 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1171 		    ring->qid);
1172 #endif
1173 	wpi_mem_unlock(sc);
1174 
1175 	for (i = 0; i < ring->count; i++) {
1176 		data = &ring->data[i];
1177 
1178 		if (data->m != NULL) {
1179 			bus_dmamap_unload(ring->data_dmat, data->map);
1180 			m_freem(data->m);
1181 			data->m = NULL;
1182 		}
1183 	}
1184 
1185 	ring->queued = 0;
1186 	ring->cur = 0;
1187 }
1188 
1189 static void
1190 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1191 {
1192 	struct wpi_tx_data *data;
1193 	int i;
1194 
1195 	wpi_dma_contig_free(&ring->desc_dma);
1196 	wpi_dma_contig_free(&ring->cmd_dma);
1197 
1198 	if (ring->data != NULL) {
1199 		for (i = 0; i < ring->count; i++) {
1200 			data = &ring->data[i];
1201 
1202 			if (data->m != NULL) {
1203 				bus_dmamap_sync(ring->data_dmat, data->map,
1204 				    BUS_DMASYNC_POSTWRITE);
1205 				bus_dmamap_unload(ring->data_dmat, data->map);
1206 				m_freem(data->m);
1207 				data->m = NULL;
1208 			}
1209 		}
1210 		free(ring->data, M_DEVBUF);
1211 	}
1212 
1213 	if (ring->data_dmat != NULL)
1214 		bus_dma_tag_destroy(ring->data_dmat);
1215 }
1216 
1217 static int
1218 wpi_shutdown(device_t dev)
1219 {
1220 	struct wpi_softc *sc = device_get_softc(dev);
1221 
1222 	WPI_LOCK(sc);
1223 	wpi_stop_locked(sc);
1224 	wpi_unload_firmware(sc);
1225 	WPI_UNLOCK(sc);
1226 
1227 	return 0;
1228 }
1229 
1230 static int
1231 wpi_suspend(device_t dev)
1232 {
1233 	struct wpi_softc *sc = device_get_softc(dev);
1234 
1235 	wpi_stop(sc);
1236 	return 0;
1237 }
1238 
1239 static int
1240 wpi_resume(device_t dev)
1241 {
1242 	struct wpi_softc *sc = device_get_softc(dev);
1243 	struct ifnet *ifp = sc->sc_ifp;
1244 
1245 	pci_write_config(dev, 0x41, 0, 1);
1246 
1247 	if (ifp->if_flags & IFF_UP) {
1248 		wpi_init(ifp->if_softc);
1249 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1250 			wpi_start(ifp);
1251 	}
1252 	return 0;
1253 }
1254 
1255 /* ARGSUSED */
1256 static struct ieee80211_node *
1257 wpi_node_alloc(struct ieee80211vap *vap __unused,
1258 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1259 {
1260 	struct wpi_node *wn;
1261 
1262 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1263 
1264 	return &wn->ni;
1265 }
1266 
1267 /**
1268  * Called by net80211 when ever there is a change to 80211 state machine
1269  */
1270 static int
1271 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1272 {
1273 	struct wpi_vap *wvp = WPI_VAP(vap);
1274 	struct ieee80211com *ic = vap->iv_ic;
1275 	struct ifnet *ifp = ic->ic_ifp;
1276 	struct wpi_softc *sc = ifp->if_softc;
1277 	int error;
1278 
1279 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1280 		ieee80211_state_name[vap->iv_state],
1281 		ieee80211_state_name[nstate], sc->flags));
1282 
1283 	if (nstate == IEEE80211_S_AUTH) {
1284 		/* Delay the auth transition until we can update the firmware */
1285 		error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1286 		return (error != 0 ? error : EINPROGRESS);
1287 	}
1288 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1289 		/* set the association id first */
1290 		error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL);
1291 		return (error != 0 ? error : EINPROGRESS);
1292 	}
1293 	if (nstate == IEEE80211_S_RUN) {
1294 		/* RUN -> RUN transition; just restart the timers */
1295 		wpi_calib_timeout(sc);
1296 		/* XXX split out rate control timer */
1297 	}
1298 	return wvp->newstate(vap, nstate, arg);
1299 }
1300 
1301 /*
1302  * Grab exclusive access to NIC memory.
1303  */
1304 static void
1305 wpi_mem_lock(struct wpi_softc *sc)
1306 {
1307 	int ntries;
1308 	uint32_t tmp;
1309 
1310 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1311 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1312 
1313 	/* spin until we actually get the lock */
1314 	for (ntries = 0; ntries < 100; ntries++) {
1315 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1316 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1317 			break;
1318 		DELAY(10);
1319 	}
1320 	if (ntries == 100)
1321 		device_printf(sc->sc_dev, "could not lock memory\n");
1322 }
1323 
1324 /*
1325  * Release lock on NIC memory.
1326  */
1327 static void
1328 wpi_mem_unlock(struct wpi_softc *sc)
1329 {
1330 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1331 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1332 }
1333 
1334 static uint32_t
1335 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1336 {
1337 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1338 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1339 }
1340 
1341 static void
1342 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1343 {
1344 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1345 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1346 }
1347 
1348 static void
1349 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1350     const uint32_t *data, int wlen)
1351 {
1352 	for (; wlen > 0; wlen--, data++, addr+=4)
1353 		wpi_mem_write(sc, addr, *data);
1354 }
1355 
1356 /*
1357  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1358  * using the traditional bit-bang method. Data is read up until len bytes have
1359  * been obtained.
1360  */
1361 static uint16_t
1362 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1363 {
1364 	int ntries;
1365 	uint32_t val;
1366 	uint8_t *out = data;
1367 
1368 	wpi_mem_lock(sc);
1369 
1370 	for (; len > 0; len -= 2, addr++) {
1371 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1372 
1373 		for (ntries = 0; ntries < 10; ntries++) {
1374 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1375 				break;
1376 			DELAY(5);
1377 		}
1378 
1379 		if (ntries == 10) {
1380 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1381 			return ETIMEDOUT;
1382 		}
1383 
1384 		*out++= val >> 16;
1385 		if (len > 1)
1386 			*out ++= val >> 24;
1387 	}
1388 
1389 	wpi_mem_unlock(sc);
1390 
1391 	return 0;
1392 }
1393 
1394 /*
1395  * The firmware text and data segments are transferred to the NIC using DMA.
1396  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1397  * where to find it.  Once the NIC has copied the firmware into its internal
1398  * memory, we can free our local copy in the driver.
1399  */
1400 static int
1401 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1402 {
1403 	int error, ntries;
1404 
1405 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1406 
1407 	size /= sizeof(uint32_t);
1408 
1409 	wpi_mem_lock(sc);
1410 
1411 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1412 	    (const uint32_t *)fw, size);
1413 
1414 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1415 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1416 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1417 
1418 	/* run microcode */
1419 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1420 
1421 	/* wait while the adapter is busy copying the firmware */
1422 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1423 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1424 		DPRINTFN(WPI_DEBUG_HW,
1425 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1426 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1427 		if (status & WPI_TX_IDLE(6)) {
1428 			DPRINTFN(WPI_DEBUG_HW,
1429 			    ("Status Match! - ntries = %d\n", ntries));
1430 			break;
1431 		}
1432 		DELAY(10);
1433 	}
1434 	if (ntries == 1000) {
1435 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1436 		error = ETIMEDOUT;
1437 	}
1438 
1439 	/* start the microcode executing */
1440 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1441 
1442 	wpi_mem_unlock(sc);
1443 
1444 	return (error);
1445 }
1446 
1447 static void
1448 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1449 	struct wpi_rx_data *data)
1450 {
1451 	struct ifnet *ifp = sc->sc_ifp;
1452 	struct ieee80211com *ic = ifp->if_l2com;
1453 	struct wpi_rx_ring *ring = &sc->rxq;
1454 	struct wpi_rx_stat *stat;
1455 	struct wpi_rx_head *head;
1456 	struct wpi_rx_tail *tail;
1457 	struct ieee80211_node *ni;
1458 	struct mbuf *m, *mnew;
1459 	bus_addr_t paddr;
1460 	int error;
1461 
1462 	stat = (struct wpi_rx_stat *)(desc + 1);
1463 
1464 	if (stat->len > WPI_STAT_MAXLEN) {
1465 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1466 		ifp->if_ierrors++;
1467 		return;
1468 	}
1469 
1470 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1471 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1472 
1473 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1474 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1475 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1476 	    (uintmax_t)le64toh(tail->tstamp)));
1477 
1478 	/* discard Rx frames with bad CRC early */
1479 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1480 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1481 		    le32toh(tail->flags)));
1482 		ifp->if_ierrors++;
1483 		return;
1484 	}
1485 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1486 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1487 		    le16toh(head->len)));
1488 		ifp->if_ierrors++;
1489 		return;
1490 	}
1491 
1492 	/* XXX don't need mbuf, just dma buffer */
1493 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1494 	if (mnew == NULL) {
1495 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1496 		    __func__));
1497 		ifp->if_ierrors++;
1498 		return;
1499 	}
1500 	error = bus_dmamap_load(ring->data_dmat, data->map,
1501 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1502 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1503 	if (error != 0 && error != EFBIG) {
1504 		device_printf(sc->sc_dev,
1505 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1506 		m_freem(mnew);
1507 		ifp->if_ierrors++;
1508 		return;
1509 	}
1510 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1511 
1512 	/* finalize mbuf and swap in new one */
1513 	m = data->m;
1514 	m->m_pkthdr.rcvif = ifp;
1515 	m->m_data = (caddr_t)(head + 1);
1516 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1517 
1518 	data->m = mnew;
1519 	/* update Rx descriptor */
1520 	ring->desc[ring->cur] = htole32(paddr);
1521 
1522 	if (bpf_peers_present(ifp->if_bpf)) {
1523 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1524 
1525 		tap->wr_flags = 0;
1526 		tap->wr_chan_freq =
1527 			htole16(ic->ic_channels[head->chan].ic_freq);
1528 		tap->wr_chan_flags =
1529 			htole16(ic->ic_channels[head->chan].ic_flags);
1530 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1531 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1532 		tap->wr_tsft = tail->tstamp;
1533 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1534 		switch (head->rate) {
1535 		/* CCK rates */
1536 		case  10: tap->wr_rate =   2; break;
1537 		case  20: tap->wr_rate =   4; break;
1538 		case  55: tap->wr_rate =  11; break;
1539 		case 110: tap->wr_rate =  22; break;
1540 		/* OFDM rates */
1541 		case 0xd: tap->wr_rate =  12; break;
1542 		case 0xf: tap->wr_rate =  18; break;
1543 		case 0x5: tap->wr_rate =  24; break;
1544 		case 0x7: tap->wr_rate =  36; break;
1545 		case 0x9: tap->wr_rate =  48; break;
1546 		case 0xb: tap->wr_rate =  72; break;
1547 		case 0x1: tap->wr_rate =  96; break;
1548 		case 0x3: tap->wr_rate = 108; break;
1549 		/* unknown rate: should not happen */
1550 		default:  tap->wr_rate =   0;
1551 		}
1552 		if (le16toh(head->flags) & 0x4)
1553 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1554 
1555 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1556 	}
1557 
1558 	WPI_UNLOCK(sc);
1559 
1560 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1561 	if (ni != NULL) {
1562 		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1563 		ieee80211_free_node(ni);
1564 	} else
1565 		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1566 
1567 	WPI_LOCK(sc);
1568 }
1569 
1570 static void
1571 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1572 {
1573 	struct ifnet *ifp = sc->sc_ifp;
1574 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1575 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1576 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1577 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1578 
1579 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1580 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1581 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1582 	    le32toh(stat->status)));
1583 
1584 	/*
1585 	 * Update rate control statistics for the node.
1586 	 * XXX we should not count mgmt frames since they're always sent at
1587 	 * the lowest available bit-rate.
1588 	 * XXX frames w/o ACK shouldn't be used either
1589 	 */
1590 	wn->amn.amn_txcnt++;
1591 	if (stat->ntries > 0) {
1592 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1593 		wn->amn.amn_retrycnt++;
1594 	}
1595 
1596 	/* XXX oerrors should only count errors !maxtries */
1597 	if ((le32toh(stat->status) & 0xff) != 1)
1598 		ifp->if_oerrors++;
1599 	else
1600 		ifp->if_opackets++;
1601 
1602 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1603 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1604 	/* XXX handle M_TXCB? */
1605 	m_freem(txdata->m);
1606 	txdata->m = NULL;
1607 	ieee80211_free_node(txdata->ni);
1608 	txdata->ni = NULL;
1609 
1610 	ring->queued--;
1611 
1612 	sc->sc_tx_timer = 0;
1613 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1614 	wpi_start_locked(ifp);
1615 }
1616 
1617 static void
1618 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1619 {
1620 	struct wpi_tx_ring *ring = &sc->cmdq;
1621 	struct wpi_tx_data *data;
1622 
1623 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1624 				 "type=%s len=%d\n", desc->qid, desc->idx,
1625 				 desc->flags, wpi_cmd_str(desc->type),
1626 				 le32toh(desc->len)));
1627 
1628 	if ((desc->qid & 7) != 4)
1629 		return;	/* not a command ack */
1630 
1631 	data = &ring->data[desc->idx];
1632 
1633 	/* if the command was mapped in a mbuf, free it */
1634 	if (data->m != NULL) {
1635 		bus_dmamap_unload(ring->data_dmat, data->map);
1636 		m_freem(data->m);
1637 		data->m = NULL;
1638 	}
1639 
1640 	sc->flags &= ~WPI_FLAG_BUSY;
1641 	wakeup(&ring->cmd[desc->idx]);
1642 }
1643 
1644 static void
1645 wpi_bmiss(void *arg, int npending)
1646 {
1647 	struct wpi_softc *sc = arg;
1648 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1649 
1650 	ieee80211_beacon_miss(ic);
1651 }
1652 
1653 static void
1654 wpi_notif_intr(struct wpi_softc *sc)
1655 {
1656 	struct ifnet *ifp = sc->sc_ifp;
1657 	struct ieee80211com *ic = ifp->if_l2com;
1658 	struct wpi_rx_desc *desc;
1659 	struct wpi_rx_data *data;
1660 	uint32_t hw;
1661 
1662 	hw = le32toh(sc->shared->next);
1663 	while (sc->rxq.cur != hw) {
1664 		data = &sc->rxq.data[sc->rxq.cur];
1665 		desc = (void *)data->m->m_ext.ext_buf;
1666 
1667 		DPRINTFN(WPI_DEBUG_NOTIFY,
1668 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1669 			  desc->qid,
1670 			  desc->idx,
1671 			  desc->flags,
1672 			  desc->type,
1673 			  le32toh(desc->len)));
1674 
1675 		if (!(desc->qid & 0x80))	/* reply to a command */
1676 			wpi_cmd_intr(sc, desc);
1677 
1678 		switch (desc->type) {
1679 		case WPI_RX_DONE:
1680 			/* a 802.11 frame was received */
1681 			wpi_rx_intr(sc, desc, data);
1682 			break;
1683 
1684 		case WPI_TX_DONE:
1685 			/* a 802.11 frame has been transmitted */
1686 			wpi_tx_intr(sc, desc);
1687 			break;
1688 
1689 		case WPI_UC_READY:
1690 		{
1691 			struct wpi_ucode_info *uc =
1692 				(struct wpi_ucode_info *)(desc + 1);
1693 
1694 			/* the microcontroller is ready */
1695 			DPRINTF(("microcode alive notification version %x "
1696 				"alive %x\n", le32toh(uc->version),
1697 				le32toh(uc->valid)));
1698 
1699 			if (le32toh(uc->valid) != 1) {
1700 				device_printf(sc->sc_dev,
1701 				    "microcontroller initialization failed\n");
1702 				wpi_stop_locked(sc);
1703 			}
1704 			break;
1705 		}
1706 		case WPI_STATE_CHANGED:
1707 		{
1708 			uint32_t *status = (uint32_t *)(desc + 1);
1709 
1710 			/* enabled/disabled notification */
1711 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1712 
1713 			if (le32toh(*status) & 1) {
1714 				device_printf(sc->sc_dev,
1715 				    "Radio transmitter is switched off\n");
1716 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1717 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1718 				/* Disable firmware commands */
1719 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1720 			}
1721 			break;
1722 		}
1723 		case WPI_START_SCAN:
1724 		{
1725 #ifdef WPI_DEBUG
1726 			struct wpi_start_scan *scan =
1727 				(struct wpi_start_scan *)(desc + 1);
1728 #endif
1729 
1730 			DPRINTFN(WPI_DEBUG_SCANNING,
1731 				 ("scanning channel %d status %x\n",
1732 			    scan->chan, le32toh(scan->status)));
1733 			break;
1734 		}
1735 		case WPI_STOP_SCAN:
1736 		{
1737 #ifdef WPI_DEBUG
1738 			struct wpi_stop_scan *scan =
1739 				(struct wpi_stop_scan *)(desc + 1);
1740 #endif
1741 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1742 
1743 			DPRINTFN(WPI_DEBUG_SCANNING,
1744 			    ("scan finished nchan=%d status=%d chan=%d\n",
1745 			     scan->nchan, scan->status, scan->chan));
1746 
1747 			sc->sc_scan_timer = 0;
1748 			ieee80211_scan_next(vap);
1749 			break;
1750 		}
1751 		case WPI_MISSED_BEACON:
1752 		{
1753 			struct wpi_missed_beacon *beacon =
1754 				(struct wpi_missed_beacon *)(desc + 1);
1755 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1756 
1757 			if (le32toh(beacon->consecutive) >=
1758 			    vap->iv_bmissthreshold) {
1759 				DPRINTF(("Beacon miss: %u >= %u\n",
1760 					 le32toh(beacon->consecutive),
1761 					 vap->iv_bmissthreshold));
1762 				taskqueue_enqueue(taskqueue_swi,
1763 				    &sc->sc_bmiss_task);
1764 			}
1765 			break;
1766 		}
1767 		}
1768 
1769 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1770 	}
1771 
1772 	/* tell the firmware what we have processed */
1773 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1774 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1775 }
1776 
1777 static void
1778 wpi_intr(void *arg)
1779 {
1780 	struct wpi_softc *sc = arg;
1781 	uint32_t r;
1782 
1783 	WPI_LOCK(sc);
1784 
1785 	r = WPI_READ(sc, WPI_INTR);
1786 	if (r == 0 || r == 0xffffffff) {
1787 		WPI_UNLOCK(sc);
1788 		return;
1789 	}
1790 
1791 	/* disable interrupts */
1792 	WPI_WRITE(sc, WPI_MASK, 0);
1793 	/* ack interrupts */
1794 	WPI_WRITE(sc, WPI_INTR, r);
1795 
1796 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1797 		device_printf(sc->sc_dev, "fatal firmware error\n");
1798 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1799 				"(Hardware Error)"));
1800 		wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1801 		sc->flags &= ~WPI_FLAG_BUSY;
1802 		WPI_UNLOCK(sc);
1803 		return;
1804 	}
1805 
1806 	if (r & WPI_RX_INTR)
1807 		wpi_notif_intr(sc);
1808 
1809 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1810 		wakeup(sc);
1811 
1812 	/* re-enable interrupts */
1813 	if (sc->sc_ifp->if_flags & IFF_UP)
1814 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1815 
1816 	WPI_UNLOCK(sc);
1817 }
1818 
1819 static uint8_t
1820 wpi_plcp_signal(int rate)
1821 {
1822 	switch (rate) {
1823 	/* CCK rates (returned values are device-dependent) */
1824 	case 2:		return 10;
1825 	case 4:		return 20;
1826 	case 11:	return 55;
1827 	case 22:	return 110;
1828 
1829 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1830 	/* R1-R4 (ral/ural is R4-R1) */
1831 	case 12:	return 0xd;
1832 	case 18:	return 0xf;
1833 	case 24:	return 0x5;
1834 	case 36:	return 0x7;
1835 	case 48:	return 0x9;
1836 	case 72:	return 0xb;
1837 	case 96:	return 0x1;
1838 	case 108:	return 0x3;
1839 
1840 	/* unsupported rates (should not get there) */
1841 	default:	return 0;
1842 	}
1843 }
1844 
1845 /* quickly determine if a given rate is CCK or OFDM */
1846 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1847 
1848 /*
1849  * Construct the data packet for a transmit buffer and acutally put
1850  * the buffer onto the transmit ring, kicking the card to process the
1851  * the buffer.
1852  */
1853 static int
1854 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1855 	int ac)
1856 {
1857 	struct ieee80211vap *vap = ni->ni_vap;
1858 	struct ifnet *ifp = sc->sc_ifp;
1859 	struct ieee80211com *ic = ifp->if_l2com;
1860 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1861 	struct wpi_tx_ring *ring = &sc->txq[ac];
1862 	struct wpi_tx_desc *desc;
1863 	struct wpi_tx_data *data;
1864 	struct wpi_tx_cmd *cmd;
1865 	struct wpi_cmd_data *tx;
1866 	struct ieee80211_frame *wh;
1867 	const struct ieee80211_txparam *tp;
1868 	struct ieee80211_key *k;
1869 	struct mbuf *mnew;
1870 	int i, error, nsegs, rate, hdrlen, ismcast;
1871 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1872 
1873 	desc = &ring->desc[ring->cur];
1874 	data = &ring->data[ring->cur];
1875 
1876 	wh = mtod(m0, struct ieee80211_frame *);
1877 
1878 	hdrlen = ieee80211_hdrsize(wh);
1879 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1880 
1881 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1882 		k = ieee80211_crypto_encap(ni, m0);
1883 		if (k == NULL) {
1884 			m_freem(m0);
1885 			return ENOBUFS;
1886 		}
1887 		/* packet header may have moved, reset our local pointer */
1888 		wh = mtod(m0, struct ieee80211_frame *);
1889 	}
1890 
1891 	cmd = &ring->cmd[ring->cur];
1892 	cmd->code = WPI_CMD_TX_DATA;
1893 	cmd->flags = 0;
1894 	cmd->qid = ring->qid;
1895 	cmd->idx = ring->cur;
1896 
1897 	tx = (struct wpi_cmd_data *)cmd->data;
1898 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1899 	tx->timeout = htole16(0);
1900 	tx->ofdm_mask = 0xff;
1901 	tx->cck_mask = 0x0f;
1902 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1903 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1904 	tx->len = htole16(m0->m_pkthdr.len);
1905 
1906 	if (!ismcast) {
1907 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1908 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1909 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1910 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1911 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1912 			tx->rts_ntries = 7;
1913 		}
1914 	}
1915 	/* pick a rate */
1916 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1917 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1918 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1919 		/* tell h/w to set timestamp in probe responses */
1920 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1921 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1922 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1923 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1924 			tx->timeout = htole16(3);
1925 		else
1926 			tx->timeout = htole16(2);
1927 		rate = tp->mgmtrate;
1928 	} else if (ismcast) {
1929 		rate = tp->mcastrate;
1930 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1931 		rate = tp->ucastrate;
1932 	} else {
1933 		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1934 		rate = ni->ni_txrate;
1935 	}
1936 	tx->rate = wpi_plcp_signal(rate);
1937 
1938 	/* be very persistant at sending frames out */
1939 #if 0
1940 	tx->data_ntries = tp->maxretry;
1941 #else
1942 	tx->data_ntries = 15;		/* XXX way too high */
1943 #endif
1944 
1945 	if (bpf_peers_present(ifp->if_bpf)) {
1946 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1947 		tap->wt_flags = 0;
1948 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1949 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1950 		tap->wt_rate = rate;
1951 		tap->wt_hwqueue = ac;
1952 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1953 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1954 
1955 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1956 	}
1957 
1958 	/* save and trim IEEE802.11 header */
1959 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1960 	m_adj(m0, hdrlen);
1961 
1962 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1963 	    &nsegs, BUS_DMA_NOWAIT);
1964 	if (error != 0 && error != EFBIG) {
1965 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1966 		    error);
1967 		m_freem(m0);
1968 		return error;
1969 	}
1970 	if (error != 0) {
1971 		/* XXX use m_collapse */
1972 		mnew = m_defrag(m0, M_DONTWAIT);
1973 		if (mnew == NULL) {
1974 			device_printf(sc->sc_dev,
1975 			    "could not defragment mbuf\n");
1976 			m_freem(m0);
1977 			return ENOBUFS;
1978 		}
1979 		m0 = mnew;
1980 
1981 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1982 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1983 		if (error != 0) {
1984 			device_printf(sc->sc_dev,
1985 			    "could not map mbuf (error %d)\n", error);
1986 			m_freem(m0);
1987 			return error;
1988 		}
1989 	}
1990 
1991 	data->m = m0;
1992 	data->ni = ni;
1993 
1994 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1995 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1996 
1997 	/* first scatter/gather segment is used by the tx data command */
1998 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1999 	    (1 + nsegs) << 24);
2000 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2001 	    ring->cur * sizeof (struct wpi_tx_cmd));
2002 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2003 	for (i = 1; i <= nsegs; i++) {
2004 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2005 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2006 	}
2007 
2008 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2009 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2010 	    BUS_DMASYNC_PREWRITE);
2011 
2012 	ring->queued++;
2013 
2014 	/* kick ring */
2015 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2016 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2017 
2018 	return 0;
2019 }
2020 
2021 /**
2022  * Process data waiting to be sent on the IFNET output queue
2023  */
2024 static void
2025 wpi_start(struct ifnet *ifp)
2026 {
2027 	struct wpi_softc *sc = ifp->if_softc;
2028 
2029 	WPI_LOCK(sc);
2030 	wpi_start_locked(ifp);
2031 	WPI_UNLOCK(sc);
2032 }
2033 
2034 static void
2035 wpi_start_locked(struct ifnet *ifp)
2036 {
2037 	struct wpi_softc *sc = ifp->if_softc;
2038 	struct ieee80211_node *ni;
2039 	struct mbuf *m;
2040 	int ac;
2041 
2042 	WPI_LOCK_ASSERT(sc);
2043 
2044 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2045 		return;
2046 
2047 	for (;;) {
2048 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2049 		if (m == NULL)
2050 			break;
2051 		ac = M_WME_GETAC(m);
2052 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2053 			/* there is no place left in this ring */
2054 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2055 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2056 			break;
2057 		}
2058 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2059 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2060 			ieee80211_free_node(ni);
2061 			ifp->if_oerrors++;
2062 			break;
2063 		}
2064 		sc->sc_tx_timer = 5;
2065 	}
2066 }
2067 
2068 static int
2069 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2070 	const struct ieee80211_bpf_params *params)
2071 {
2072 	struct ieee80211com *ic = ni->ni_ic;
2073 	struct ifnet *ifp = ic->ic_ifp;
2074 	struct wpi_softc *sc = ifp->if_softc;
2075 
2076 	/* prevent management frames from being sent if we're not ready */
2077 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2078 		m_freem(m);
2079 		ieee80211_free_node(ni);
2080 		return ENETDOWN;
2081 	}
2082 	WPI_LOCK(sc);
2083 
2084 	/* management frames go into ring 0 */
2085 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2086 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2087 		m_freem(m);
2088 		WPI_UNLOCK(sc);
2089 		ieee80211_free_node(ni);
2090 		return ENOBUFS;		/* XXX */
2091 	}
2092 
2093 	ifp->if_opackets++;
2094 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2095 		goto bad;
2096 	sc->sc_tx_timer = 5;
2097 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2098 
2099 	WPI_UNLOCK(sc);
2100 	return 0;
2101 bad:
2102 	ifp->if_oerrors++;
2103 	WPI_UNLOCK(sc);
2104 	ieee80211_free_node(ni);
2105 	return EIO;		/* XXX */
2106 }
2107 
2108 static int
2109 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2110 {
2111 	struct wpi_softc *sc = ifp->if_softc;
2112 	struct ieee80211com *ic = ifp->if_l2com;
2113 	struct ifreq *ifr = (struct ifreq *) data;
2114 	int error = 0, startall = 0;
2115 
2116 	switch (cmd) {
2117 	case SIOCSIFFLAGS:
2118 		WPI_LOCK(sc);
2119 		if ((ifp->if_flags & IFF_UP)) {
2120 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2121 				wpi_init_locked(sc, 0);
2122 				startall = 1;
2123 			}
2124 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2125 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2126 			wpi_stop_locked(sc);
2127 		WPI_UNLOCK(sc);
2128 		if (startall)
2129 			ieee80211_start_all(ic);
2130 		break;
2131 	case SIOCGIFMEDIA:
2132 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2133 		break;
2134 	case SIOCGIFADDR:
2135 		error = ether_ioctl(ifp, cmd, data);
2136 		break;
2137 	default:
2138 		error = EINVAL;
2139 		break;
2140 	}
2141 	return error;
2142 }
2143 
2144 /*
2145  * Extract various information from EEPROM.
2146  */
2147 static void
2148 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2149 {
2150 	int i;
2151 
2152 	/* read the hardware capabilities, revision and SKU type */
2153 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2154 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2155 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2156 
2157 	/* read the regulatory domain */
2158 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2159 
2160 	/* read in the hw MAC address */
2161 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2162 
2163 	/* read the list of authorized channels */
2164 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2165 		wpi_read_eeprom_channels(sc,i);
2166 
2167 	/* read the power level calibration info for each group */
2168 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2169 		wpi_read_eeprom_group(sc,i);
2170 }
2171 
2172 /*
2173  * Send a command to the firmware.
2174  */
2175 static int
2176 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2177 {
2178 	struct wpi_tx_ring *ring = &sc->cmdq;
2179 	struct wpi_tx_desc *desc;
2180 	struct wpi_tx_cmd *cmd;
2181 
2182 #ifdef WPI_DEBUG
2183 	if (!async) {
2184 		WPI_LOCK_ASSERT(sc);
2185 	}
2186 #endif
2187 
2188 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2189 		    async));
2190 
2191 	if (sc->flags & WPI_FLAG_BUSY) {
2192 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2193 		    __func__, code);
2194 		return EAGAIN;
2195 	}
2196 	sc->flags|= WPI_FLAG_BUSY;
2197 
2198 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2199 	    code, size));
2200 
2201 	desc = &ring->desc[ring->cur];
2202 	cmd = &ring->cmd[ring->cur];
2203 
2204 	cmd->code = code;
2205 	cmd->flags = 0;
2206 	cmd->qid = ring->qid;
2207 	cmd->idx = ring->cur;
2208 	memcpy(cmd->data, buf, size);
2209 
2210 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2211 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2212 		ring->cur * sizeof (struct wpi_tx_cmd));
2213 	desc->segs[0].len  = htole32(4 + size);
2214 
2215 	/* kick cmd ring */
2216 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2217 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2218 
2219 	if (async) {
2220 		sc->flags &= ~ WPI_FLAG_BUSY;
2221 		return 0;
2222 	}
2223 
2224 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2225 }
2226 
2227 static int
2228 wpi_wme_update(struct ieee80211com *ic)
2229 {
2230 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2231 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2232 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2233 	const struct wmeParams *wmep;
2234 	struct wpi_wme_setup wme;
2235 	int ac;
2236 
2237 	/* don't override default WME values if WME is not actually enabled */
2238 	if (!(ic->ic_flags & IEEE80211_F_WME))
2239 		return 0;
2240 
2241 	wme.flags = 0;
2242 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2243 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2244 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2245 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2246 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2247 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2248 
2249 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2250 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2251 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2252 	}
2253 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2254 #undef WPI_USEC
2255 #undef WPI_EXP2
2256 }
2257 
2258 /*
2259  * Configure h/w multi-rate retries.
2260  */
2261 static int
2262 wpi_mrr_setup(struct wpi_softc *sc)
2263 {
2264 	struct ifnet *ifp = sc->sc_ifp;
2265 	struct ieee80211com *ic = ifp->if_l2com;
2266 	struct wpi_mrr_setup mrr;
2267 	int i, error;
2268 
2269 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2270 
2271 	/* CCK rates (not used with 802.11a) */
2272 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2273 		mrr.rates[i].flags = 0;
2274 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2275 		/* fallback to the immediate lower CCK rate (if any) */
2276 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2277 		/* try one time at this rate before falling back to "next" */
2278 		mrr.rates[i].ntries = 1;
2279 	}
2280 
2281 	/* OFDM rates (not used with 802.11b) */
2282 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2283 		mrr.rates[i].flags = 0;
2284 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2285 		/* fallback to the immediate lower OFDM rate (if any) */
2286 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2287 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2288 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2289 			WPI_OFDM6 : WPI_CCK2) :
2290 		    i - 1;
2291 		/* try one time at this rate before falling back to "next" */
2292 		mrr.rates[i].ntries = 1;
2293 	}
2294 
2295 	/* setup MRR for control frames */
2296 	mrr.which = htole32(WPI_MRR_CTL);
2297 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2298 	if (error != 0) {
2299 		device_printf(sc->sc_dev,
2300 		    "could not setup MRR for control frames\n");
2301 		return error;
2302 	}
2303 
2304 	/* setup MRR for data frames */
2305 	mrr.which = htole32(WPI_MRR_DATA);
2306 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2307 	if (error != 0) {
2308 		device_printf(sc->sc_dev,
2309 		    "could not setup MRR for data frames\n");
2310 		return error;
2311 	}
2312 
2313 	return 0;
2314 }
2315 
2316 static void
2317 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2318 {
2319 	struct wpi_cmd_led led;
2320 
2321 	led.which = which;
2322 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2323 	led.off = off;
2324 	led.on = on;
2325 
2326 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2327 }
2328 
2329 static void
2330 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2331 {
2332 	struct wpi_cmd_tsf tsf;
2333 	uint64_t val, mod;
2334 
2335 	memset(&tsf, 0, sizeof tsf);
2336 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2337 	tsf.bintval = htole16(ni->ni_intval);
2338 	tsf.lintval = htole16(10);
2339 
2340 	/* compute remaining time until next beacon */
2341 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2342 	mod = le64toh(tsf.tstamp) % val;
2343 	tsf.binitval = htole32((uint32_t)(val - mod));
2344 
2345 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2346 		device_printf(sc->sc_dev, "could not enable TSF\n");
2347 }
2348 
2349 #if 0
2350 /*
2351  * Build a beacon frame that the firmware will broadcast periodically in
2352  * IBSS or HostAP modes.
2353  */
2354 static int
2355 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2356 {
2357 	struct ifnet *ifp = sc->sc_ifp;
2358 	struct ieee80211com *ic = ifp->if_l2com;
2359 	struct wpi_tx_ring *ring = &sc->cmdq;
2360 	struct wpi_tx_desc *desc;
2361 	struct wpi_tx_data *data;
2362 	struct wpi_tx_cmd *cmd;
2363 	struct wpi_cmd_beacon *bcn;
2364 	struct ieee80211_beacon_offsets bo;
2365 	struct mbuf *m0;
2366 	bus_addr_t physaddr;
2367 	int error;
2368 
2369 	desc = &ring->desc[ring->cur];
2370 	data = &ring->data[ring->cur];
2371 
2372 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2373 	if (m0 == NULL) {
2374 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2375 		return ENOMEM;
2376 	}
2377 
2378 	cmd = &ring->cmd[ring->cur];
2379 	cmd->code = WPI_CMD_SET_BEACON;
2380 	cmd->flags = 0;
2381 	cmd->qid = ring->qid;
2382 	cmd->idx = ring->cur;
2383 
2384 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2385 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2386 	bcn->id = WPI_ID_BROADCAST;
2387 	bcn->ofdm_mask = 0xff;
2388 	bcn->cck_mask = 0x0f;
2389 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2390 	bcn->len = htole16(m0->m_pkthdr.len);
2391 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2392 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2393 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2394 
2395 	/* save and trim IEEE802.11 header */
2396 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2397 	m_adj(m0, sizeof (struct ieee80211_frame));
2398 
2399 	/* assume beacon frame is contiguous */
2400 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2401 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2402 	if (error != 0) {
2403 		device_printf(sc->sc_dev, "could not map beacon\n");
2404 		m_freem(m0);
2405 		return error;
2406 	}
2407 
2408 	data->m = m0;
2409 
2410 	/* first scatter/gather segment is used by the beacon command */
2411 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2412 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2413 		ring->cur * sizeof (struct wpi_tx_cmd));
2414 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2415 	desc->segs[1].addr = htole32(physaddr);
2416 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2417 
2418 	/* kick cmd ring */
2419 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2420 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2421 
2422 	return 0;
2423 }
2424 #endif
2425 
2426 static int
2427 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2428 {
2429 	struct ieee80211com *ic = vap->iv_ic;
2430 	struct ieee80211_node *ni = vap->iv_bss;
2431 	struct wpi_node_info node;
2432 	int error;
2433 
2434 
2435 	/* update adapter's configuration */
2436 	sc->config.associd = 0;
2437 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2438 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2439 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2440 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2441 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2442 		    WPI_CONFIG_24GHZ);
2443 	}
2444 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2445 		sc->config.cck_mask  = 0;
2446 		sc->config.ofdm_mask = 0x15;
2447 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2448 		sc->config.cck_mask  = 0x03;
2449 		sc->config.ofdm_mask = 0;
2450 	} else {
2451 		/* XXX assume 802.11b/g */
2452 		sc->config.cck_mask  = 0x0f;
2453 		sc->config.ofdm_mask = 0x15;
2454 	}
2455 
2456 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2457 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2458 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2459 		sizeof (struct wpi_config), 1);
2460 	if (error != 0) {
2461 		device_printf(sc->sc_dev, "could not configure\n");
2462 		return error;
2463 	}
2464 
2465 	/* configuration has changed, set Tx power accordingly */
2466 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2467 		device_printf(sc->sc_dev, "could not set Tx power\n");
2468 		return error;
2469 	}
2470 
2471 	/* add default node */
2472 	memset(&node, 0, sizeof node);
2473 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2474 	node.id = WPI_ID_BSS;
2475 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2476 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2477 	node.action = htole32(WPI_ACTION_SET_RATE);
2478 	node.antenna = WPI_ANTENNA_BOTH;
2479 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2480 	if (error != 0)
2481 		device_printf(sc->sc_dev, "could not add BSS node\n");
2482 
2483 	return (error);
2484 }
2485 
2486 static int
2487 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2488 {
2489 	struct ieee80211com *ic = vap->iv_ic;
2490 	struct ieee80211_node *ni = vap->iv_bss;
2491 	int error;
2492 
2493 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2494 		/* link LED blinks while monitoring */
2495 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2496 		return 0;
2497 	}
2498 
2499 	wpi_enable_tsf(sc, ni);
2500 
2501 	/* update adapter's configuration */
2502 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2503 	/* short preamble/slot time are negotiated when associating */
2504 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2505 	    WPI_CONFIG_SHSLOT);
2506 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2507 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2508 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2509 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2510 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2511 
2512 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2513 
2514 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2515 		    sc->config.flags));
2516 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2517 		    wpi_config), 1);
2518 	if (error != 0) {
2519 		device_printf(sc->sc_dev, "could not update configuration\n");
2520 		return error;
2521 	}
2522 
2523 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2524 	if (error != 0) {
2525 		device_printf(sc->sc_dev, "could set txpower\n");
2526 		return error;
2527 	}
2528 
2529 	/* link LED always on while associated */
2530 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2531 
2532 	/* start automatic rate control timer */
2533 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2534 
2535 	return (error);
2536 }
2537 
2538 /*
2539  * Send a scan request to the firmware.  Since this command is huge, we map it
2540  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2541  * much of this code is similar to that in wpi_cmd but because we must manually
2542  * construct the probe & channels, we duplicate what's needed here. XXX In the
2543  * future, this function should be modified to use wpi_cmd to help cleanup the
2544  * code base.
2545  */
2546 static int
2547 wpi_scan(struct wpi_softc *sc)
2548 {
2549 	struct ifnet *ifp = sc->sc_ifp;
2550 	struct ieee80211com *ic = ifp->if_l2com;
2551 	struct ieee80211_scan_state *ss = ic->ic_scan;
2552 	struct wpi_tx_ring *ring = &sc->cmdq;
2553 	struct wpi_tx_desc *desc;
2554 	struct wpi_tx_data *data;
2555 	struct wpi_tx_cmd *cmd;
2556 	struct wpi_scan_hdr *hdr;
2557 	struct wpi_scan_chan *chan;
2558 	struct ieee80211_frame *wh;
2559 	struct ieee80211_rateset *rs;
2560 	struct ieee80211_channel *c;
2561 	enum ieee80211_phymode mode;
2562 	uint8_t *frm;
2563 	int nrates, pktlen, error, i, nssid;
2564 	bus_addr_t physaddr;
2565 
2566 	desc = &ring->desc[ring->cur];
2567 	data = &ring->data[ring->cur];
2568 
2569 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2570 	if (data->m == NULL) {
2571 		device_printf(sc->sc_dev,
2572 		    "could not allocate mbuf for scan command\n");
2573 		return ENOMEM;
2574 	}
2575 
2576 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2577 	cmd->code = WPI_CMD_SCAN;
2578 	cmd->flags = 0;
2579 	cmd->qid = ring->qid;
2580 	cmd->idx = ring->cur;
2581 
2582 	hdr = (struct wpi_scan_hdr *)cmd->data;
2583 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2584 
2585 	/*
2586 	 * Move to the next channel if no packets are received within 5 msecs
2587 	 * after sending the probe request (this helps to reduce the duration
2588 	 * of active scans).
2589 	 */
2590 	hdr->quiet = htole16(5);
2591 	hdr->threshold = htole16(1);
2592 
2593 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2594 		/* send probe requests at 6Mbps */
2595 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2596 
2597 		/* Enable crc checking */
2598 		hdr->promotion = htole16(1);
2599 	} else {
2600 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2601 		/* send probe requests at 1Mbps */
2602 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2603 	}
2604 	hdr->tx.id = WPI_ID_BROADCAST;
2605 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2606 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2607 
2608 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2609 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2610 	for (i = 0; i < nssid; i++) {
2611 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2612 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2613 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2614 		    hdr->scan_essids[i].esslen);
2615 #ifdef WPI_DEBUG
2616 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2617 			printf("Scanning Essid: ");
2618 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2619 			    hdr->scan_essids[i].esslen);
2620 			printf("\n");
2621 		}
2622 #endif
2623 	}
2624 
2625 	/*
2626 	 * Build a probe request frame.  Most of the following code is a
2627 	 * copy & paste of what is done in net80211.
2628 	 */
2629 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2630 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2631 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2632 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2633 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2634 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2635 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2636 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2637 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2638 
2639 	frm = (uint8_t *)(wh + 1);
2640 
2641 	/* add essid IE, the hardware will fill this in for us */
2642 	*frm++ = IEEE80211_ELEMID_SSID;
2643 	*frm++ = 0;
2644 
2645 	mode = ieee80211_chan2mode(ic->ic_curchan);
2646 	rs = &ic->ic_sup_rates[mode];
2647 
2648 	/* add supported rates IE */
2649 	*frm++ = IEEE80211_ELEMID_RATES;
2650 	nrates = rs->rs_nrates;
2651 	if (nrates > IEEE80211_RATE_SIZE)
2652 		nrates = IEEE80211_RATE_SIZE;
2653 	*frm++ = nrates;
2654 	memcpy(frm, rs->rs_rates, nrates);
2655 	frm += nrates;
2656 
2657 	/* add supported xrates IE */
2658 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2659 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2660 		*frm++ = IEEE80211_ELEMID_XRATES;
2661 		*frm++ = nrates;
2662 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2663 		frm += nrates;
2664 	}
2665 
2666 	/* setup length of probe request */
2667 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2668 
2669 	/*
2670 	 * Construct information about the channel that we
2671 	 * want to scan. The firmware expects this to be directly
2672 	 * after the scan probe request
2673 	 */
2674 	c = ic->ic_curchan;
2675 	chan = (struct wpi_scan_chan *)frm;
2676 	chan->chan = ieee80211_chan2ieee(ic, c);
2677 	chan->flags = 0;
2678 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2679 		chan->flags |= WPI_CHAN_ACTIVE;
2680 		if (nssid != 0)
2681 			chan->flags |= WPI_CHAN_DIRECT;
2682 	}
2683 	chan->gain_dsp = 0x6e; /* Default level */
2684 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2685 		chan->active = htole16(10);
2686 		chan->passive = htole16(ss->ss_maxdwell);
2687 		chan->gain_radio = 0x3b;
2688 	} else {
2689 		chan->active = htole16(20);
2690 		chan->passive = htole16(ss->ss_maxdwell);
2691 		chan->gain_radio = 0x28;
2692 	}
2693 
2694 	DPRINTFN(WPI_DEBUG_SCANNING,
2695 	    ("Scanning %u Passive: %d\n",
2696 	     chan->chan,
2697 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2698 
2699 	hdr->nchan++;
2700 	chan++;
2701 
2702 	frm += sizeof (struct wpi_scan_chan);
2703 #if 0
2704 	// XXX All Channels....
2705 	for (c  = &ic->ic_channels[1];
2706 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2707 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2708 			continue;
2709 
2710 		chan->chan = ieee80211_chan2ieee(ic, c);
2711 		chan->flags = 0;
2712 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2713 		    chan->flags |= WPI_CHAN_ACTIVE;
2714 		    if (ic->ic_des_ssid[0].len != 0)
2715 			chan->flags |= WPI_CHAN_DIRECT;
2716 		}
2717 		chan->gain_dsp = 0x6e; /* Default level */
2718 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2719 			chan->active = htole16(10);
2720 			chan->passive = htole16(110);
2721 			chan->gain_radio = 0x3b;
2722 		} else {
2723 			chan->active = htole16(20);
2724 			chan->passive = htole16(120);
2725 			chan->gain_radio = 0x28;
2726 		}
2727 
2728 		DPRINTFN(WPI_DEBUG_SCANNING,
2729 			 ("Scanning %u Passive: %d\n",
2730 			  chan->chan,
2731 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2732 
2733 		hdr->nchan++;
2734 		chan++;
2735 
2736 		frm += sizeof (struct wpi_scan_chan);
2737 	}
2738 #endif
2739 
2740 	hdr->len = htole16(frm - (uint8_t *)hdr);
2741 	pktlen = frm - (uint8_t *)cmd;
2742 
2743 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2744 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2745 	if (error != 0) {
2746 		device_printf(sc->sc_dev, "could not map scan command\n");
2747 		m_freem(data->m);
2748 		data->m = NULL;
2749 		return error;
2750 	}
2751 
2752 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2753 	desc->segs[0].addr = htole32(physaddr);
2754 	desc->segs[0].len  = htole32(pktlen);
2755 
2756 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2757 	    BUS_DMASYNC_PREWRITE);
2758 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2759 
2760 	/* kick cmd ring */
2761 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2762 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2763 
2764 	sc->sc_scan_timer = 5;
2765 	return 0;	/* will be notified async. of failure/success */
2766 }
2767 
2768 /**
2769  * Configure the card to listen to a particular channel, this transisions the
2770  * card in to being able to receive frames from remote devices.
2771  */
2772 static int
2773 wpi_config(struct wpi_softc *sc)
2774 {
2775 	struct ifnet *ifp = sc->sc_ifp;
2776 	struct ieee80211com *ic = ifp->if_l2com;
2777 	struct wpi_power power;
2778 	struct wpi_bluetooth bluetooth;
2779 	struct wpi_node_info node;
2780 	int error;
2781 
2782 	/* set power mode */
2783 	memset(&power, 0, sizeof power);
2784 	power.flags = htole32(WPI_POWER_CAM|0x8);
2785 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2786 	if (error != 0) {
2787 		device_printf(sc->sc_dev, "could not set power mode\n");
2788 		return error;
2789 	}
2790 
2791 	/* configure bluetooth coexistence */
2792 	memset(&bluetooth, 0, sizeof bluetooth);
2793 	bluetooth.flags = 3;
2794 	bluetooth.lead = 0xaa;
2795 	bluetooth.kill = 1;
2796 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2797 	    0);
2798 	if (error != 0) {
2799 		device_printf(sc->sc_dev,
2800 		    "could not configure bluetooth coexistence\n");
2801 		return error;
2802 	}
2803 
2804 	/* configure adapter */
2805 	memset(&sc->config, 0, sizeof (struct wpi_config));
2806 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2807 	/*set default channel*/
2808 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2809 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2810 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2811 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2812 		    WPI_CONFIG_24GHZ);
2813 	}
2814 	sc->config.filter = 0;
2815 	switch (ic->ic_opmode) {
2816 	case IEEE80211_M_STA:
2817 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2818 		sc->config.mode = WPI_MODE_STA;
2819 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2820 		break;
2821 	case IEEE80211_M_IBSS:
2822 	case IEEE80211_M_AHDEMO:
2823 		sc->config.mode = WPI_MODE_IBSS;
2824 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2825 					     WPI_FILTER_MULTICAST);
2826 		break;
2827 	case IEEE80211_M_HOSTAP:
2828 		sc->config.mode = WPI_MODE_HOSTAP;
2829 		break;
2830 	case IEEE80211_M_MONITOR:
2831 		sc->config.mode = WPI_MODE_MONITOR;
2832 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2833 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2834 		break;
2835 	}
2836 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2837 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2838 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2839 		sizeof (struct wpi_config), 0);
2840 	if (error != 0) {
2841 		device_printf(sc->sc_dev, "configure command failed\n");
2842 		return error;
2843 	}
2844 
2845 	/* configuration has changed, set Tx power accordingly */
2846 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2847 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2848 	    return error;
2849 	}
2850 
2851 	/* add broadcast node */
2852 	memset(&node, 0, sizeof node);
2853 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2854 	node.id = WPI_ID_BROADCAST;
2855 	node.rate = wpi_plcp_signal(2);
2856 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2857 	if (error != 0) {
2858 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2859 		return error;
2860 	}
2861 
2862 	/* Setup rate scalling */
2863 	error = wpi_mrr_setup(sc);
2864 	if (error != 0) {
2865 		device_printf(sc->sc_dev, "could not setup MRR\n");
2866 		return error;
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 static void
2873 wpi_stop_master(struct wpi_softc *sc)
2874 {
2875 	uint32_t tmp;
2876 	int ntries;
2877 
2878 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2879 
2880 	tmp = WPI_READ(sc, WPI_RESET);
2881 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2882 
2883 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2884 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2885 		return;	/* already asleep */
2886 
2887 	for (ntries = 0; ntries < 100; ntries++) {
2888 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2889 			break;
2890 		DELAY(10);
2891 	}
2892 	if (ntries == 100) {
2893 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2894 	}
2895 }
2896 
2897 static int
2898 wpi_power_up(struct wpi_softc *sc)
2899 {
2900 	uint32_t tmp;
2901 	int ntries;
2902 
2903 	wpi_mem_lock(sc);
2904 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2905 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2906 	wpi_mem_unlock(sc);
2907 
2908 	for (ntries = 0; ntries < 5000; ntries++) {
2909 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2910 			break;
2911 		DELAY(10);
2912 	}
2913 	if (ntries == 5000) {
2914 		device_printf(sc->sc_dev,
2915 		    "timeout waiting for NIC to power up\n");
2916 		return ETIMEDOUT;
2917 	}
2918 	return 0;
2919 }
2920 
2921 static int
2922 wpi_reset(struct wpi_softc *sc)
2923 {
2924 	uint32_t tmp;
2925 	int ntries;
2926 
2927 	DPRINTFN(WPI_DEBUG_HW,
2928 	    ("Resetting the card - clearing any uploaded firmware\n"));
2929 
2930 	/* clear any pending interrupts */
2931 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2932 
2933 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2934 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2935 
2936 	tmp = WPI_READ(sc, WPI_CHICKEN);
2937 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2938 
2939 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2940 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2941 
2942 	/* wait for clock stabilization */
2943 	for (ntries = 0; ntries < 25000; ntries++) {
2944 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2945 			break;
2946 		DELAY(10);
2947 	}
2948 	if (ntries == 25000) {
2949 		device_printf(sc->sc_dev,
2950 		    "timeout waiting for clock stabilization\n");
2951 		return ETIMEDOUT;
2952 	}
2953 
2954 	/* initialize EEPROM */
2955 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2956 
2957 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2958 		device_printf(sc->sc_dev, "EEPROM not found\n");
2959 		return EIO;
2960 	}
2961 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2962 
2963 	return 0;
2964 }
2965 
2966 static void
2967 wpi_hw_config(struct wpi_softc *sc)
2968 {
2969 	uint32_t rev, hw;
2970 
2971 	/* voodoo from the Linux "driver".. */
2972 	hw = WPI_READ(sc, WPI_HWCONFIG);
2973 
2974 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2975 	if ((rev & 0xc0) == 0x40)
2976 		hw |= WPI_HW_ALM_MB;
2977 	else if (!(rev & 0x80))
2978 		hw |= WPI_HW_ALM_MM;
2979 
2980 	if (sc->cap == 0x80)
2981 		hw |= WPI_HW_SKU_MRC;
2982 
2983 	hw &= ~WPI_HW_REV_D;
2984 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2985 		hw |= WPI_HW_REV_D;
2986 
2987 	if (sc->type > 1)
2988 		hw |= WPI_HW_TYPE_B;
2989 
2990 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2991 }
2992 
2993 static void
2994 wpi_rfkill_resume(struct wpi_softc *sc)
2995 {
2996 	struct ifnet *ifp = sc->sc_ifp;
2997 	struct ieee80211com *ic = ifp->if_l2com;
2998 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2999 	int ntries;
3000 
3001 	/* enable firmware again */
3002 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3003 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3004 
3005 	/* wait for thermal sensors to calibrate */
3006 	for (ntries = 0; ntries < 1000; ntries++) {
3007 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3008 			break;
3009 		DELAY(10);
3010 	}
3011 
3012 	if (ntries == 1000) {
3013 		device_printf(sc->sc_dev,
3014 		    "timeout waiting for thermal calibration\n");
3015 		WPI_UNLOCK(sc);
3016 		return;
3017 	}
3018 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3019 
3020 	if (wpi_config(sc) != 0) {
3021 		device_printf(sc->sc_dev, "device config failed\n");
3022 		WPI_UNLOCK(sc);
3023 		return;
3024 	}
3025 
3026 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3027 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3028 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3029 
3030 	if (vap != NULL) {
3031 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3032 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3033 				taskqueue_enqueue(taskqueue_swi,
3034 				    &sc->sc_bmiss_task);
3035 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3036 			} else
3037 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3038 		} else {
3039 			ieee80211_scan_next(vap);
3040 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3041 		}
3042 	}
3043 
3044 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3045 }
3046 
3047 static void
3048 wpi_init_locked(struct wpi_softc *sc, int force)
3049 {
3050 	struct ifnet *ifp = sc->sc_ifp;
3051 	uint32_t tmp;
3052 	int ntries, qid;
3053 
3054 	wpi_stop_locked(sc);
3055 	(void)wpi_reset(sc);
3056 
3057 	wpi_mem_lock(sc);
3058 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3059 	DELAY(20);
3060 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3061 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3062 	wpi_mem_unlock(sc);
3063 
3064 	(void)wpi_power_up(sc);
3065 	wpi_hw_config(sc);
3066 
3067 	/* init Rx ring */
3068 	wpi_mem_lock(sc);
3069 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3070 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3071 	    offsetof(struct wpi_shared, next));
3072 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3073 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3074 	wpi_mem_unlock(sc);
3075 
3076 	/* init Tx rings */
3077 	wpi_mem_lock(sc);
3078 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3079 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3080 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3081 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3082 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3083 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3084 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3085 
3086 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3087 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3088 
3089 	for (qid = 0; qid < 6; qid++) {
3090 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3091 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3092 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3093 	}
3094 	wpi_mem_unlock(sc);
3095 
3096 	/* clear "radio off" and "disable command" bits (reversed logic) */
3097 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3098 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3099 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3100 
3101 	/* clear any pending interrupts */
3102 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3103 
3104 	/* enable interrupts */
3105 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3106 
3107 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3108 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3109 
3110 	if ((wpi_load_firmware(sc)) != 0) {
3111 	    device_printf(sc->sc_dev,
3112 		"A problem occurred loading the firmware to the driver\n");
3113 	    return;
3114 	}
3115 
3116 	/* At this point the firmware is up and running. If the hardware
3117 	 * RF switch is turned off thermal calibration will fail, though
3118 	 * the card is still happy to continue to accept commands, catch
3119 	 * this case and schedule a task to watch for it to be turned on.
3120 	 */
3121 	wpi_mem_lock(sc);
3122 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3123 	wpi_mem_unlock(sc);
3124 
3125 	if (!(tmp & 0x1)) {
3126 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3127 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3128 		goto out;
3129 	}
3130 
3131 	/* wait for thermal sensors to calibrate */
3132 	for (ntries = 0; ntries < 1000; ntries++) {
3133 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3134 			break;
3135 		DELAY(10);
3136 	}
3137 
3138 	if (ntries == 1000) {
3139 		device_printf(sc->sc_dev,
3140 		    "timeout waiting for thermal sensors calibration\n");
3141 		return;
3142 	}
3143 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3144 
3145 	if (wpi_config(sc) != 0) {
3146 		device_printf(sc->sc_dev, "device config failed\n");
3147 		return;
3148 	}
3149 
3150 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3151 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3152 out:
3153 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3154 }
3155 
3156 static void
3157 wpi_init(void *arg)
3158 {
3159 	struct wpi_softc *sc = arg;
3160 	struct ifnet *ifp = sc->sc_ifp;
3161 	struct ieee80211com *ic = ifp->if_l2com;
3162 
3163 	WPI_LOCK(sc);
3164 	wpi_init_locked(sc, 0);
3165 	WPI_UNLOCK(sc);
3166 
3167 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3168 		ieee80211_start_all(ic);		/* start all vaps */
3169 }
3170 
3171 static void
3172 wpi_stop_locked(struct wpi_softc *sc)
3173 {
3174 	struct ifnet *ifp = sc->sc_ifp;
3175 	uint32_t tmp;
3176 	int ac;
3177 
3178 	sc->sc_tx_timer = 0;
3179 	sc->sc_scan_timer = 0;
3180 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3181 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3182 	callout_stop(&sc->watchdog_to);
3183 	callout_stop(&sc->calib_to);
3184 
3185 
3186 	/* disable interrupts */
3187 	WPI_WRITE(sc, WPI_MASK, 0);
3188 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3189 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3190 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3191 
3192 	/* Clear any commands left in the command buffer */
3193 	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3194 	memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3195 	sc->sc_cmd_cur = 0;
3196 	sc->sc_cmd_next = 0;
3197 
3198 	wpi_mem_lock(sc);
3199 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3200 	wpi_mem_unlock(sc);
3201 
3202 	/* reset all Tx rings */
3203 	for (ac = 0; ac < 4; ac++)
3204 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3205 	wpi_reset_tx_ring(sc, &sc->cmdq);
3206 
3207 	/* reset Rx ring */
3208 	wpi_reset_rx_ring(sc, &sc->rxq);
3209 
3210 	wpi_mem_lock(sc);
3211 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3212 	wpi_mem_unlock(sc);
3213 
3214 	DELAY(5);
3215 
3216 	wpi_stop_master(sc);
3217 
3218 	tmp = WPI_READ(sc, WPI_RESET);
3219 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3220 	sc->flags &= ~WPI_FLAG_BUSY;
3221 }
3222 
3223 static void
3224 wpi_stop(struct wpi_softc *sc)
3225 {
3226 	WPI_LOCK(sc);
3227 	wpi_stop_locked(sc);
3228 	WPI_UNLOCK(sc);
3229 }
3230 
3231 static void
3232 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3233 {
3234 	struct ieee80211vap *vap = ni->ni_vap;
3235 	struct wpi_vap *wvp = WPI_VAP(vap);
3236 
3237 	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3238 }
3239 
3240 static void
3241 wpi_calib_timeout(void *arg)
3242 {
3243 	struct wpi_softc *sc = arg;
3244 	struct ifnet *ifp = sc->sc_ifp;
3245 	struct ieee80211com *ic = ifp->if_l2com;
3246 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3247 	int temp;
3248 
3249 	if (vap->iv_state != IEEE80211_S_RUN)
3250 		return;
3251 
3252 	/* update sensor data */
3253 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3254 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3255 
3256 	wpi_power_calibration(sc, temp);
3257 
3258 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3259 }
3260 
3261 /*
3262  * This function is called periodically (every 60 seconds) to adjust output
3263  * power to temperature changes.
3264  */
3265 static void
3266 wpi_power_calibration(struct wpi_softc *sc, int temp)
3267 {
3268 	struct ifnet *ifp = sc->sc_ifp;
3269 	struct ieee80211com *ic = ifp->if_l2com;
3270 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3271 
3272 	/* sanity-check read value */
3273 	if (temp < -260 || temp > 25) {
3274 		/* this can't be correct, ignore */
3275 		DPRINTFN(WPI_DEBUG_TEMP,
3276 		    ("out-of-range temperature reported: %d\n", temp));
3277 		return;
3278 	}
3279 
3280 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3281 
3282 	/* adjust Tx power if need be */
3283 	if (abs(temp - sc->temp) <= 6)
3284 		return;
3285 
3286 	sc->temp = temp;
3287 
3288 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3289 		/* just warn, too bad for the automatic calibration... */
3290 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3291 	}
3292 }
3293 
3294 /**
3295  * Read the eeprom to find out what channels are valid for the given
3296  * band and update net80211 with what we find.
3297  */
3298 static void
3299 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3300 {
3301 	struct ifnet *ifp = sc->sc_ifp;
3302 	struct ieee80211com *ic = ifp->if_l2com;
3303 	const struct wpi_chan_band *band = &wpi_bands[n];
3304 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3305 	struct ieee80211_channel *c;
3306 	int chan, i, passive;
3307 
3308 	wpi_read_prom_data(sc, band->addr, channels,
3309 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3310 
3311 	for (i = 0; i < band->nchan; i++) {
3312 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3313 			DPRINTFN(WPI_DEBUG_HW,
3314 			    ("Channel Not Valid: %d, band %d\n",
3315 			     band->chan[i],n));
3316 			continue;
3317 		}
3318 
3319 		passive = 0;
3320 		chan = band->chan[i];
3321 		c = &ic->ic_channels[ic->ic_nchans++];
3322 
3323 		/* is active scan allowed on this channel? */
3324 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3325 			passive = IEEE80211_CHAN_PASSIVE;
3326 		}
3327 
3328 		if (n == 0) {	/* 2GHz band */
3329 			c->ic_ieee = chan;
3330 			c->ic_freq = ieee80211_ieee2mhz(chan,
3331 			    IEEE80211_CHAN_2GHZ);
3332 			c->ic_flags = IEEE80211_CHAN_B | passive;
3333 
3334 			c = &ic->ic_channels[ic->ic_nchans++];
3335 			c->ic_ieee = chan;
3336 			c->ic_freq = ieee80211_ieee2mhz(chan,
3337 			    IEEE80211_CHAN_2GHZ);
3338 			c->ic_flags = IEEE80211_CHAN_G | passive;
3339 
3340 		} else {	/* 5GHz band */
3341 			/*
3342 			 * Some 3945ABG adapters support channels 7, 8, 11
3343 			 * and 12 in the 2GHz *and* 5GHz bands.
3344 			 * Because of limitations in our net80211(9) stack,
3345 			 * we can't support these channels in 5GHz band.
3346 			 * XXX not true; just need to map to proper frequency
3347 			 */
3348 			if (chan <= 14)
3349 				continue;
3350 
3351 			c->ic_ieee = chan;
3352 			c->ic_freq = ieee80211_ieee2mhz(chan,
3353 			    IEEE80211_CHAN_5GHZ);
3354 			c->ic_flags = IEEE80211_CHAN_A | passive;
3355 		}
3356 
3357 		/* save maximum allowed power for this channel */
3358 		sc->maxpwr[chan] = channels[i].maxpwr;
3359 
3360 #if 0
3361 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3362 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3363 		//ic->ic_channels[chan].ic_minpower...
3364 		//ic->ic_channels[chan].ic_maxregtxpower...
3365 #endif
3366 
3367 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3368 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3369 		    channels[i].flags, sc->maxpwr[chan],
3370 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3371 		    ic->ic_nchans));
3372 	}
3373 }
3374 
3375 static void
3376 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3377 {
3378 	struct wpi_power_group *group = &sc->groups[n];
3379 	struct wpi_eeprom_group rgroup;
3380 	int i;
3381 
3382 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3383 	    sizeof rgroup);
3384 
3385 	/* save power group information */
3386 	group->chan   = rgroup.chan;
3387 	group->maxpwr = rgroup.maxpwr;
3388 	/* temperature at which the samples were taken */
3389 	group->temp   = (int16_t)le16toh(rgroup.temp);
3390 
3391 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3392 		    group->chan, group->maxpwr, group->temp));
3393 
3394 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3395 		group->samples[i].index = rgroup.samples[i].index;
3396 		group->samples[i].power = rgroup.samples[i].power;
3397 
3398 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3399 			    group->samples[i].index, group->samples[i].power));
3400 	}
3401 }
3402 
3403 /*
3404  * Update Tx power to match what is defined for channel `c'.
3405  */
3406 static int
3407 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3408 {
3409 	struct ifnet *ifp = sc->sc_ifp;
3410 	struct ieee80211com *ic = ifp->if_l2com;
3411 	struct wpi_power_group *group;
3412 	struct wpi_cmd_txpower txpower;
3413 	u_int chan;
3414 	int i;
3415 
3416 	/* get channel number */
3417 	chan = ieee80211_chan2ieee(ic, c);
3418 
3419 	/* find the power group to which this channel belongs */
3420 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3421 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3422 			if (chan <= group->chan)
3423 				break;
3424 	} else
3425 		group = &sc->groups[0];
3426 
3427 	memset(&txpower, 0, sizeof txpower);
3428 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3429 	txpower.channel = htole16(chan);
3430 
3431 	/* set Tx power for all OFDM and CCK rates */
3432 	for (i = 0; i <= 11 ; i++) {
3433 		/* retrieve Tx power for this channel/rate combination */
3434 		int idx = wpi_get_power_index(sc, group, c,
3435 		    wpi_ridx_to_rate[i]);
3436 
3437 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3438 
3439 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3440 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3441 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3442 		} else {
3443 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3444 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3445 		}
3446 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3447 			    chan, wpi_ridx_to_rate[i], idx));
3448 	}
3449 
3450 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3451 }
3452 
3453 /*
3454  * Determine Tx power index for a given channel/rate combination.
3455  * This takes into account the regulatory information from EEPROM and the
3456  * current temperature.
3457  */
3458 static int
3459 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3460     struct ieee80211_channel *c, int rate)
3461 {
3462 /* fixed-point arithmetic division using a n-bit fractional part */
3463 #define fdivround(a, b, n)      \
3464 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3465 
3466 /* linear interpolation */
3467 #define interpolate(x, x1, y1, x2, y2, n)       \
3468 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3469 
3470 	struct ifnet *ifp = sc->sc_ifp;
3471 	struct ieee80211com *ic = ifp->if_l2com;
3472 	struct wpi_power_sample *sample;
3473 	int pwr, idx;
3474 	u_int chan;
3475 
3476 	/* get channel number */
3477 	chan = ieee80211_chan2ieee(ic, c);
3478 
3479 	/* default power is group's maximum power - 3dB */
3480 	pwr = group->maxpwr / 2;
3481 
3482 	/* decrease power for highest OFDM rates to reduce distortion */
3483 	switch (rate) {
3484 		case 72:	/* 36Mb/s */
3485 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3486 			break;
3487 		case 96:	/* 48Mb/s */
3488 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3489 			break;
3490 		case 108:	/* 54Mb/s */
3491 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3492 			break;
3493 	}
3494 
3495 	/* never exceed channel's maximum allowed Tx power */
3496 	pwr = min(pwr, sc->maxpwr[chan]);
3497 
3498 	/* retrieve power index into gain tables from samples */
3499 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3500 		if (pwr > sample[1].power)
3501 			break;
3502 	/* fixed-point linear interpolation using a 19-bit fractional part */
3503 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3504 	    sample[1].power, sample[1].index, 19);
3505 
3506 	/*
3507 	 *  Adjust power index based on current temperature
3508 	 *	- if colder than factory-calibrated: decreate output power
3509 	 *	- if warmer than factory-calibrated: increase output power
3510 	 */
3511 	idx -= (sc->temp - group->temp) * 11 / 100;
3512 
3513 	/* decrease power for CCK rates (-5dB) */
3514 	if (!WPI_RATE_IS_OFDM(rate))
3515 		idx += 10;
3516 
3517 	/* keep power index in a valid range */
3518 	if (idx < 0)
3519 		return 0;
3520 	if (idx > WPI_MAX_PWR_INDEX)
3521 		return WPI_MAX_PWR_INDEX;
3522 	return idx;
3523 
3524 #undef interpolate
3525 #undef fdivround
3526 }
3527 
3528 /**
3529  * Called by net80211 framework to indicate that a scan
3530  * is starting. This function doesn't actually do the scan,
3531  * wpi_scan_curchan starts things off. This function is more
3532  * of an early warning from the framework we should get ready
3533  * for the scan.
3534  */
3535 static void
3536 wpi_scan_start(struct ieee80211com *ic)
3537 {
3538 	struct ifnet *ifp = ic->ic_ifp;
3539 	struct wpi_softc *sc = ifp->if_softc;
3540 
3541 	wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3542 }
3543 
3544 /**
3545  * Called by the net80211 framework, indicates that the
3546  * scan has ended. If there is a scan in progress on the card
3547  * then it should be aborted.
3548  */
3549 static void
3550 wpi_scan_end(struct ieee80211com *ic)
3551 {
3552 	struct ifnet *ifp = ic->ic_ifp;
3553 	struct wpi_softc *sc = ifp->if_softc;
3554 
3555 	wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3556 }
3557 
3558 /**
3559  * Called by the net80211 framework to indicate to the driver
3560  * that the channel should be changed
3561  */
3562 static void
3563 wpi_set_channel(struct ieee80211com *ic)
3564 {
3565 	struct ifnet *ifp = ic->ic_ifp;
3566 	struct wpi_softc *sc = ifp->if_softc;
3567 
3568 	/*
3569 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3570 	 * are already taken care of by their respective firmware commands.
3571 	 */
3572 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3573 		wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3574 }
3575 
3576 /**
3577  * Called by net80211 to indicate that we need to scan the current
3578  * channel. The channel is previously be set via the wpi_set_channel
3579  * callback.
3580  */
3581 static void
3582 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3583 {
3584 	struct ieee80211vap *vap = ss->ss_vap;
3585 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3586 	struct wpi_softc *sc = ifp->if_softc;
3587 
3588 	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3589 }
3590 
3591 /**
3592  * Called by the net80211 framework to indicate
3593  * the minimum dwell time has been met, terminate the scan.
3594  * We don't actually terminate the scan as the firmware will notify
3595  * us when it's finished and we have no way to interrupt it.
3596  */
3597 static void
3598 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3599 {
3600 	/* NB: don't try to abort scan; wait for firmware to finish */
3601 }
3602 
3603 /**
3604  * The ops function is called to perform some actual work.
3605  * because we can't sleep from any of the ic callbacks, we queue an
3606  * op task with wpi_queue_cmd and have the taskqueue process that task.
3607  * The task that gets cued is a op task, which ends up calling this function.
3608  */
3609 static void
3610 wpi_ops(void *arg0, int pending)
3611 {
3612 	struct wpi_softc *sc = arg0;
3613 	struct ifnet *ifp = sc->sc_ifp;
3614 	struct ieee80211com *ic = ifp->if_l2com;
3615 	int cmd, arg, error;
3616 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3617 
3618 again:
3619 	WPI_CMD_LOCK(sc);
3620 	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3621 	arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3622 
3623 	if (cmd == 0) {
3624 		/* No more commands to process */
3625 		WPI_CMD_UNLOCK(sc);
3626 		return;
3627 	}
3628 	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3629 	sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3630 	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3631 	WPI_CMD_UNLOCK(sc);
3632 	WPI_LOCK(sc);
3633 
3634 	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3635 
3636 	switch (cmd) {
3637 	case WPI_RESTART:
3638 		wpi_init_locked(sc, 0);
3639 		WPI_UNLOCK(sc);
3640 		return;
3641 
3642 	case WPI_RF_RESTART:
3643 		wpi_rfkill_resume(sc);
3644 		WPI_UNLOCK(sc);
3645 		return;
3646 	}
3647 
3648 	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3649 		WPI_UNLOCK(sc);
3650 		return;
3651 	}
3652 
3653 	switch (cmd) {
3654 	case WPI_SCAN_START:
3655 		/* make the link LED blink while we're scanning */
3656 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3657 		sc->flags |= WPI_FLAG_SCANNING;
3658 		break;
3659 
3660 	case WPI_SCAN_STOP:
3661 		sc->flags &= ~WPI_FLAG_SCANNING;
3662 		break;
3663 
3664 	case WPI_SCAN_CURCHAN:
3665 		if (wpi_scan(sc))
3666 			ieee80211_cancel_scan(vap);
3667 		break;
3668 
3669 	case WPI_SET_CHAN:
3670 		error = wpi_config(sc);
3671 		if (error != 0)
3672 			device_printf(sc->sc_dev,
3673 			    "error %d settting channel\n", error);
3674 		break;
3675 
3676 	case WPI_AUTH:
3677 		/* The node must be registered in the firmware before auth */
3678 		error = wpi_auth(sc, vap);
3679 		WPI_UNLOCK(sc);
3680 		if (error != 0) {
3681 			device_printf(sc->sc_dev,
3682 			    "%s: could not move to auth state, error %d\n",
3683 			    __func__, error);
3684 			return;
3685 		}
3686 		IEEE80211_LOCK(ic);
3687 		WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg);
3688 		if (vap->iv_newstate_cb != NULL)
3689 			vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg);
3690 		IEEE80211_UNLOCK(ic);
3691 		goto again;
3692 
3693 	case WPI_RUN:
3694 		error = wpi_run(sc, vap);
3695 		WPI_UNLOCK(sc);
3696 		if (error != 0) {
3697 			device_printf(sc->sc_dev,
3698 			    "%s: could not move to run state, error %d\n",
3699 			    __func__, error);
3700 			return;
3701 		}
3702 		IEEE80211_LOCK(ic);
3703 		WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg);
3704 		if (vap->iv_newstate_cb != NULL)
3705 			vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg);
3706 		IEEE80211_UNLOCK(ic);
3707 		goto again;
3708 	}
3709 	WPI_UNLOCK(sc);
3710 
3711 	/* Take another pass */
3712 	goto again;
3713 }
3714 
3715 /**
3716  * queue a command for later execution in a different thread.
3717  * This is needed as the net80211 callbacks do not allow
3718  * sleeping, since we need to sleep to confirm commands have
3719  * been processed by the firmware, we must defer execution to
3720  * a sleep enabled thread.
3721  */
3722 static int
3723 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3724 {
3725 	WPI_CMD_LOCK(sc);
3726 
3727 	if (flush) {
3728 		memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3729 		memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3730 		sc->sc_cmd_cur = 0;
3731 		sc->sc_cmd_next = 0;
3732 	}
3733 
3734 	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3735 		WPI_CMD_UNLOCK(sc);
3736 		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3737 		return (EBUSY);
3738 	}
3739 
3740 	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3741 	sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3742 	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3743 
3744 	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3745 
3746 	WPI_CMD_UNLOCK(sc);
3747 
3748 	return 0;
3749 }
3750 
3751 /*
3752  * Allocate DMA-safe memory for firmware transfer.
3753  */
3754 static int
3755 wpi_alloc_fwmem(struct wpi_softc *sc)
3756 {
3757 	/* allocate enough contiguous space to store text and data */
3758 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3759 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3760 	    BUS_DMA_NOWAIT);
3761 }
3762 
3763 static void
3764 wpi_free_fwmem(struct wpi_softc *sc)
3765 {
3766 	wpi_dma_contig_free(&sc->fw_dma);
3767 }
3768 
3769 /**
3770  * Called every second, wpi_watchdog used by the watch dog timer
3771  * to check that the card is still alive
3772  */
3773 static void
3774 wpi_watchdog(void *arg)
3775 {
3776 	struct wpi_softc *sc = arg;
3777 	struct ifnet *ifp = sc->sc_ifp;
3778 	uint32_t tmp;
3779 
3780 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3781 
3782 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3783 		/* No need to lock firmware memory */
3784 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3785 
3786 		if ((tmp & 0x1) == 0) {
3787 			/* Radio kill switch is still off */
3788 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3789 			return;
3790 		}
3791 
3792 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3793 		wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3794 		return;
3795 	}
3796 
3797 	if (sc->sc_tx_timer > 0) {
3798 		if (--sc->sc_tx_timer == 0) {
3799 			device_printf(sc->sc_dev,"device timeout\n");
3800 			ifp->if_oerrors++;
3801 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3802 		}
3803 	}
3804 	if (sc->sc_scan_timer > 0) {
3805 		struct ifnet *ifp = sc->sc_ifp;
3806 		struct ieee80211com *ic = ifp->if_l2com;
3807 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3808 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3809 			device_printf(sc->sc_dev,"scan timeout\n");
3810 			ieee80211_cancel_scan(vap);
3811 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3812 		}
3813 	}
3814 
3815 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3816 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3817 }
3818 
3819 #ifdef WPI_DEBUG
3820 static const char *wpi_cmd_str(int cmd)
3821 {
3822 	switch (cmd) {
3823 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3824 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3825 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3826 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3827 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3828 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3829 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3830 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3831 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3832 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3833 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3834 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3835 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3836 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3837 
3838 	default:
3839 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3840 		return "UNKNOWN CMD";	/* Make the compiler happy */
3841 	}
3842 }
3843 #endif
3844 
3845 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3846 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3847 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3848 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3849