1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #include <machine/bus.h> 79 #include <machine/resource.h> 80 #include <sys/rman.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 85 #include <net/bpf.h> 86 #include <net/if.h> 87 #include <net/if_arp.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <net80211/ieee80211_var.h> 94 #include <net80211/ieee80211_radiotap.h> 95 #include <net80211/ieee80211_regdomain.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_systm.h> 99 #include <netinet/in_var.h> 100 #include <netinet/ip.h> 101 #include <netinet/if_ether.h> 102 103 #include <dev/wpi/if_wpireg.h> 104 #include <dev/wpi/if_wpivar.h> 105 106 #define WPI_DEBUG 107 108 #ifdef WPI_DEBUG 109 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 110 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 111 #define WPI_DEBUG_SET (wpi_debug != 0) 112 113 enum { 114 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 115 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 116 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 117 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 118 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 119 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 120 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 121 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 122 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 123 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 124 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 125 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 126 WPI_DEBUG_ANY = 0xffffffff 127 }; 128 129 static int wpi_debug = 1; 130 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 131 TUNABLE_INT("debug.wpi", &wpi_debug); 132 133 #else 134 #define DPRINTF(x) 135 #define DPRINTFN(n, x) 136 #define WPI_DEBUG_SET 0 137 #endif 138 139 struct wpi_ident { 140 uint16_t vendor; 141 uint16_t device; 142 uint16_t subdevice; 143 const char *name; 144 }; 145 146 static const struct wpi_ident wpi_ident_table[] = { 147 /* The below entries support ABG regardless of the subid */ 148 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 149 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 150 /* The below entries only support BG */ 151 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 152 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 153 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 154 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 155 { 0, 0, 0, NULL } 156 }; 157 158 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 159 const char name[IFNAMSIZ], int unit, int opmode, 160 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 161 const uint8_t mac[IEEE80211_ADDR_LEN]); 162 static void wpi_vap_delete(struct ieee80211vap *); 163 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 164 void **, bus_size_t, bus_size_t, int); 165 static void wpi_dma_contig_free(struct wpi_dma_info *); 166 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 167 static int wpi_alloc_shared(struct wpi_softc *); 168 static void wpi_free_shared(struct wpi_softc *); 169 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 170 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 171 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 172 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 173 int, int); 174 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 175 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 176 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 177 const uint8_t mac[IEEE80211_ADDR_LEN]); 178 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 179 static void wpi_mem_lock(struct wpi_softc *); 180 static void wpi_mem_unlock(struct wpi_softc *); 181 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 182 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 183 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 184 const uint32_t *, int); 185 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 186 static int wpi_alloc_fwmem(struct wpi_softc *); 187 static void wpi_free_fwmem(struct wpi_softc *); 188 static int wpi_load_firmware(struct wpi_softc *); 189 static void wpi_unload_firmware(struct wpi_softc *); 190 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 191 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 192 struct wpi_rx_data *); 193 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 194 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 195 static void wpi_bmiss(void *, int); 196 static void wpi_notif_intr(struct wpi_softc *); 197 static void wpi_intr(void *); 198 static void wpi_ops(void *, int); 199 static uint8_t wpi_plcp_signal(int); 200 static int wpi_queue_cmd(struct wpi_softc *, int, int, int); 201 static void wpi_watchdog(void *); 202 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 203 struct ieee80211_node *, int); 204 static void wpi_start(struct ifnet *); 205 static void wpi_start_locked(struct ifnet *); 206 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 207 const struct ieee80211_bpf_params *); 208 static void wpi_scan_start(struct ieee80211com *); 209 static void wpi_scan_end(struct ieee80211com *); 210 static void wpi_set_channel(struct ieee80211com *); 211 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 212 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 213 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 214 static void wpi_read_eeprom(struct wpi_softc *, 215 uint8_t macaddr[IEEE80211_ADDR_LEN]); 216 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 217 static void wpi_read_eeprom_group(struct wpi_softc *, int); 218 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 219 static int wpi_wme_update(struct ieee80211com *); 220 static int wpi_mrr_setup(struct wpi_softc *); 221 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 222 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 223 #if 0 224 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 225 #endif 226 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 227 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 228 static int wpi_scan(struct wpi_softc *); 229 static int wpi_config(struct wpi_softc *); 230 static void wpi_stop_master(struct wpi_softc *); 231 static int wpi_power_up(struct wpi_softc *); 232 static int wpi_reset(struct wpi_softc *); 233 static void wpi_hw_config(struct wpi_softc *); 234 static void wpi_init(void *); 235 static void wpi_init_locked(struct wpi_softc *, int); 236 static void wpi_stop(struct wpi_softc *); 237 static void wpi_stop_locked(struct wpi_softc *); 238 239 static void wpi_newassoc(struct ieee80211_node *, int); 240 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 241 int); 242 static void wpi_calib_timeout(void *); 243 static void wpi_power_calibration(struct wpi_softc *, int); 244 static int wpi_get_power_index(struct wpi_softc *, 245 struct wpi_power_group *, struct ieee80211_channel *, int); 246 #ifdef WPI_DEBUG 247 static const char *wpi_cmd_str(int); 248 #endif 249 static int wpi_probe(device_t); 250 static int wpi_attach(device_t); 251 static int wpi_detach(device_t); 252 static int wpi_shutdown(device_t); 253 static int wpi_suspend(device_t); 254 static int wpi_resume(device_t); 255 256 257 static device_method_t wpi_methods[] = { 258 /* Device interface */ 259 DEVMETHOD(device_probe, wpi_probe), 260 DEVMETHOD(device_attach, wpi_attach), 261 DEVMETHOD(device_detach, wpi_detach), 262 DEVMETHOD(device_shutdown, wpi_shutdown), 263 DEVMETHOD(device_suspend, wpi_suspend), 264 DEVMETHOD(device_resume, wpi_resume), 265 266 { 0, 0 } 267 }; 268 269 static driver_t wpi_driver = { 270 "wpi", 271 wpi_methods, 272 sizeof (struct wpi_softc) 273 }; 274 275 static devclass_t wpi_devclass; 276 277 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 278 279 static const uint8_t wpi_ridx_to_plcp[] = { 280 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 281 /* R1-R4 (ral/ural is R4-R1) */ 282 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 283 /* CCK: device-dependent */ 284 10, 20, 55, 110 285 }; 286 static const uint8_t wpi_ridx_to_rate[] = { 287 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 288 2, 4, 11, 22 /*CCK */ 289 }; 290 291 292 static int 293 wpi_probe(device_t dev) 294 { 295 const struct wpi_ident *ident; 296 297 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 298 if (pci_get_vendor(dev) == ident->vendor && 299 pci_get_device(dev) == ident->device) { 300 device_set_desc(dev, ident->name); 301 return 0; 302 } 303 } 304 return ENXIO; 305 } 306 307 /** 308 * Load the firmare image from disk to the allocated dma buffer. 309 * we also maintain the reference to the firmware pointer as there 310 * is times where we may need to reload the firmware but we are not 311 * in a context that can access the filesystem (ie taskq cause by restart) 312 * 313 * @return 0 on success, an errno on failure 314 */ 315 static int 316 wpi_load_firmware(struct wpi_softc *sc) 317 { 318 const struct firmware *fp; 319 struct wpi_dma_info *dma = &sc->fw_dma; 320 const struct wpi_firmware_hdr *hdr; 321 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 322 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 323 int error; 324 325 DPRINTFN(WPI_DEBUG_FIRMWARE, 326 ("Attempting Loading Firmware from wpi_fw module\n")); 327 328 WPI_UNLOCK(sc); 329 330 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 331 device_printf(sc->sc_dev, 332 "could not load firmware image 'wpifw'\n"); 333 error = ENOENT; 334 WPI_LOCK(sc); 335 goto fail; 336 } 337 338 fp = sc->fw_fp; 339 340 WPI_LOCK(sc); 341 342 /* Validate the firmware is minimum a particular version */ 343 if (fp->version < WPI_FW_MINVERSION) { 344 device_printf(sc->sc_dev, 345 "firmware version is too old. Need %d, got %d\n", 346 WPI_FW_MINVERSION, 347 fp->version); 348 error = ENXIO; 349 goto fail; 350 } 351 352 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 353 device_printf(sc->sc_dev, 354 "firmware file too short: %zu bytes\n", fp->datasize); 355 error = ENXIO; 356 goto fail; 357 } 358 359 hdr = (const struct wpi_firmware_hdr *)fp->data; 360 361 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 362 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 363 364 rtextsz = le32toh(hdr->rtextsz); 365 rdatasz = le32toh(hdr->rdatasz); 366 itextsz = le32toh(hdr->itextsz); 367 idatasz = le32toh(hdr->idatasz); 368 btextsz = le32toh(hdr->btextsz); 369 370 /* check that all firmware segments are present */ 371 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 372 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 373 device_printf(sc->sc_dev, 374 "firmware file too short: %zu bytes\n", fp->datasize); 375 error = ENXIO; /* XXX appropriate error code? */ 376 goto fail; 377 } 378 379 /* get pointers to firmware segments */ 380 rtext = (const uint8_t *)(hdr + 1); 381 rdata = rtext + rtextsz; 382 itext = rdata + rdatasz; 383 idata = itext + itextsz; 384 btext = idata + idatasz; 385 386 DPRINTFN(WPI_DEBUG_FIRMWARE, 387 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 388 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 389 (le32toh(hdr->version) & 0xff000000) >> 24, 390 (le32toh(hdr->version) & 0x00ff0000) >> 16, 391 (le32toh(hdr->version) & 0x0000ffff), 392 rtextsz, rdatasz, 393 itextsz, idatasz, btextsz)); 394 395 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 396 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 397 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 398 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 399 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 400 401 /* sanity checks */ 402 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 403 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 404 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 405 idatasz > WPI_FW_INIT_DATA_MAXSZ || 406 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 407 (btextsz & 3) != 0) { 408 device_printf(sc->sc_dev, "firmware invalid\n"); 409 error = EINVAL; 410 goto fail; 411 } 412 413 /* copy initialization images into pre-allocated DMA-safe memory */ 414 memcpy(dma->vaddr, idata, idatasz); 415 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 416 417 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 418 419 /* tell adapter where to find initialization images */ 420 wpi_mem_lock(sc); 421 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 422 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 423 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 424 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 425 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 426 wpi_mem_unlock(sc); 427 428 /* load firmware boot code */ 429 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 430 device_printf(sc->sc_dev, "Failed to load microcode\n"); 431 goto fail; 432 } 433 434 /* now press "execute" */ 435 WPI_WRITE(sc, WPI_RESET, 0); 436 437 /* wait at most one second for the first alive notification */ 438 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 439 device_printf(sc->sc_dev, 440 "timeout waiting for adapter to initialize\n"); 441 goto fail; 442 } 443 444 /* copy runtime images into pre-allocated DMA-sage memory */ 445 memcpy(dma->vaddr, rdata, rdatasz); 446 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 447 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 448 449 /* tell adapter where to find runtime images */ 450 wpi_mem_lock(sc); 451 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 452 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 453 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 454 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 455 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 456 wpi_mem_unlock(sc); 457 458 /* wait at most one second for the first alive notification */ 459 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 460 device_printf(sc->sc_dev, 461 "timeout waiting for adapter to initialize2\n"); 462 goto fail; 463 } 464 465 DPRINTFN(WPI_DEBUG_FIRMWARE, 466 ("Firmware loaded to driver successfully\n")); 467 return error; 468 fail: 469 wpi_unload_firmware(sc); 470 return error; 471 } 472 473 /** 474 * Free the referenced firmware image 475 */ 476 static void 477 wpi_unload_firmware(struct wpi_softc *sc) 478 { 479 480 if (sc->fw_fp) { 481 WPI_UNLOCK(sc); 482 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 483 WPI_LOCK(sc); 484 sc->fw_fp = NULL; 485 } 486 } 487 488 static int 489 wpi_attach(device_t dev) 490 { 491 struct wpi_softc *sc = device_get_softc(dev); 492 struct ifnet *ifp; 493 struct ieee80211com *ic; 494 int ac, error, supportsa = 1; 495 uint32_t tmp; 496 const struct wpi_ident *ident; 497 uint8_t macaddr[IEEE80211_ADDR_LEN]; 498 499 sc->sc_dev = dev; 500 501 if (bootverbose || WPI_DEBUG_SET) 502 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 503 504 /* 505 * Some card's only support 802.11b/g not a, check to see if 506 * this is one such card. A 0x0 in the subdevice table indicates 507 * the entire subdevice range is to be ignored. 508 */ 509 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 510 if (ident->subdevice && 511 pci_get_subdevice(dev) == ident->subdevice) { 512 supportsa = 0; 513 break; 514 } 515 } 516 517 /* 518 * Create the taskqueues used by the driver. Primarily 519 * sc_tq handles most the task 520 */ 521 sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO, 522 taskqueue_thread_enqueue, &sc->sc_tq); 523 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 524 device_get_nameunit(dev)); 525 526 /* Create the tasks that can be queued */ 527 TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc); 528 TASK_INIT(&sc->sc_bmiss_task, 0, wpi_bmiss, sc); 529 530 WPI_LOCK_INIT(sc); 531 WPI_CMD_LOCK_INIT(sc); 532 533 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 534 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 535 536 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 537 device_printf(dev, "chip is in D%d power mode " 538 "-- setting to D0\n", pci_get_powerstate(dev)); 539 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 540 } 541 542 /* disable the retry timeout register */ 543 pci_write_config(dev, 0x41, 0, 1); 544 545 /* enable bus-mastering */ 546 pci_enable_busmaster(dev); 547 548 sc->mem_rid = PCIR_BAR(0); 549 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 550 RF_ACTIVE); 551 if (sc->mem == NULL) { 552 device_printf(dev, "could not allocate memory resource\n"); 553 error = ENOMEM; 554 goto fail; 555 } 556 557 sc->sc_st = rman_get_bustag(sc->mem); 558 sc->sc_sh = rman_get_bushandle(sc->mem); 559 560 sc->irq_rid = 0; 561 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 562 RF_ACTIVE | RF_SHAREABLE); 563 if (sc->irq == NULL) { 564 device_printf(dev, "could not allocate interrupt resource\n"); 565 error = ENOMEM; 566 goto fail; 567 } 568 569 /* 570 * Allocate DMA memory for firmware transfers. 571 */ 572 if ((error = wpi_alloc_fwmem(sc)) != 0) { 573 printf(": could not allocate firmware memory\n"); 574 error = ENOMEM; 575 goto fail; 576 } 577 578 /* 579 * Put adapter into a known state. 580 */ 581 if ((error = wpi_reset(sc)) != 0) { 582 device_printf(dev, "could not reset adapter\n"); 583 goto fail; 584 } 585 586 wpi_mem_lock(sc); 587 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 588 if (bootverbose || WPI_DEBUG_SET) 589 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 590 591 wpi_mem_unlock(sc); 592 593 /* Allocate shared page */ 594 if ((error = wpi_alloc_shared(sc)) != 0) { 595 device_printf(dev, "could not allocate shared page\n"); 596 goto fail; 597 } 598 599 /* tx data queues - 4 for QoS purposes */ 600 for (ac = 0; ac < WME_NUM_AC; ac++) { 601 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 602 if (error != 0) { 603 device_printf(dev, "could not allocate Tx ring %d\n",ac); 604 goto fail; 605 } 606 } 607 608 /* command queue to talk to the card's firmware */ 609 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 610 if (error != 0) { 611 device_printf(dev, "could not allocate command ring\n"); 612 goto fail; 613 } 614 615 /* receive data queue */ 616 error = wpi_alloc_rx_ring(sc, &sc->rxq); 617 if (error != 0) { 618 device_printf(dev, "could not allocate Rx ring\n"); 619 goto fail; 620 } 621 622 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 623 if (ifp == NULL) { 624 device_printf(dev, "can not if_alloc()\n"); 625 error = ENOMEM; 626 goto fail; 627 } 628 ic = ifp->if_l2com; 629 630 ic->ic_ifp = ifp; 631 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 632 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 633 634 /* set device capabilities */ 635 ic->ic_caps = 636 IEEE80211_C_STA /* station mode supported */ 637 | IEEE80211_C_MONITOR /* monitor mode supported */ 638 | IEEE80211_C_TXPMGT /* tx power management */ 639 | IEEE80211_C_SHSLOT /* short slot time supported */ 640 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 641 | IEEE80211_C_WPA /* 802.11i */ 642 /* XXX looks like WME is partly supported? */ 643 #if 0 644 | IEEE80211_C_IBSS /* IBSS mode support */ 645 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 646 | IEEE80211_C_WME /* 802.11e */ 647 | IEEE80211_C_HOSTAP /* Host access point mode */ 648 #endif 649 ; 650 651 /* 652 * Read in the eeprom and also setup the channels for 653 * net80211. We don't set the rates as net80211 does this for us 654 */ 655 wpi_read_eeprom(sc, macaddr); 656 657 if (bootverbose || WPI_DEBUG_SET) { 658 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 659 device_printf(sc->sc_dev, "Hardware Type: %c\n", 660 sc->type > 1 ? 'B': '?'); 661 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 662 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 663 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 664 supportsa ? "does" : "does not"); 665 666 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 667 what sc->rev really represents - benjsc 20070615 */ 668 } 669 670 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 671 ifp->if_softc = sc; 672 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 673 ifp->if_init = wpi_init; 674 ifp->if_ioctl = wpi_ioctl; 675 ifp->if_start = wpi_start; 676 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 677 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 678 IFQ_SET_READY(&ifp->if_snd); 679 680 ieee80211_ifattach(ic, macaddr); 681 /* override default methods */ 682 ic->ic_node_alloc = wpi_node_alloc; 683 ic->ic_newassoc = wpi_newassoc; 684 ic->ic_raw_xmit = wpi_raw_xmit; 685 ic->ic_wme.wme_update = wpi_wme_update; 686 ic->ic_scan_start = wpi_scan_start; 687 ic->ic_scan_end = wpi_scan_end; 688 ic->ic_set_channel = wpi_set_channel; 689 ic->ic_scan_curchan = wpi_scan_curchan; 690 ic->ic_scan_mindwell = wpi_scan_mindwell; 691 692 ic->ic_vap_create = wpi_vap_create; 693 ic->ic_vap_delete = wpi_vap_delete; 694 695 bpfattach(ifp, DLT_IEEE802_11_RADIO, 696 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap)); 697 698 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 699 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 700 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 701 702 sc->sc_txtap_len = sizeof sc->sc_txtap; 703 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 704 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 705 706 /* 707 * Hook our interrupt after all initialization is complete. 708 */ 709 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 710 NULL, wpi_intr, sc, &sc->sc_ih); 711 if (error != 0) { 712 device_printf(dev, "could not set up interrupt\n"); 713 goto fail; 714 } 715 716 if (bootverbose) 717 ieee80211_announce(ic); 718 #ifdef XXX_DEBUG 719 ieee80211_announce_channels(ic); 720 #endif 721 return 0; 722 723 fail: wpi_detach(dev); 724 return ENXIO; 725 } 726 727 static int 728 wpi_detach(device_t dev) 729 { 730 struct wpi_softc *sc = device_get_softc(dev); 731 struct ifnet *ifp = sc->sc_ifp; 732 struct ieee80211com *ic = ifp->if_l2com; 733 int ac; 734 735 if (ifp != NULL) { 736 wpi_stop(sc); 737 callout_drain(&sc->watchdog_to); 738 callout_drain(&sc->calib_to); 739 bpfdetach(ifp); 740 ieee80211_ifdetach(ic); 741 } 742 743 WPI_LOCK(sc); 744 if (sc->txq[0].data_dmat) { 745 for (ac = 0; ac < WME_NUM_AC; ac++) 746 wpi_free_tx_ring(sc, &sc->txq[ac]); 747 748 wpi_free_tx_ring(sc, &sc->cmdq); 749 wpi_free_rx_ring(sc, &sc->rxq); 750 wpi_free_shared(sc); 751 } 752 753 if (sc->fw_fp != NULL) { 754 wpi_unload_firmware(sc); 755 } 756 757 if (sc->fw_dma.tag) 758 wpi_free_fwmem(sc); 759 WPI_UNLOCK(sc); 760 761 if (sc->irq != NULL) { 762 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 763 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 764 } 765 766 if (sc->mem != NULL) 767 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 768 769 if (ifp != NULL) 770 if_free(ifp); 771 772 taskqueue_free(sc->sc_tq); 773 774 WPI_LOCK_DESTROY(sc); 775 WPI_CMD_LOCK_DESTROY(sc); 776 777 return 0; 778 } 779 780 static struct ieee80211vap * 781 wpi_vap_create(struct ieee80211com *ic, 782 const char name[IFNAMSIZ], int unit, int opmode, int flags, 783 const uint8_t bssid[IEEE80211_ADDR_LEN], 784 const uint8_t mac[IEEE80211_ADDR_LEN]) 785 { 786 struct wpi_vap *wvp; 787 struct ieee80211vap *vap; 788 789 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 790 return NULL; 791 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 792 M_80211_VAP, M_NOWAIT | M_ZERO); 793 if (wvp == NULL) 794 return NULL; 795 vap = &wvp->vap; 796 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 797 /* override with driver methods */ 798 wvp->newstate = vap->iv_newstate; 799 vap->iv_newstate = wpi_newstate; 800 801 ieee80211_amrr_init(&wvp->amrr, vap, 802 IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, 803 IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD, 804 500 /*ms*/); 805 806 /* complete setup */ 807 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 808 ic->ic_opmode = opmode; 809 return vap; 810 } 811 812 static void 813 wpi_vap_delete(struct ieee80211vap *vap) 814 { 815 struct wpi_vap *wvp = WPI_VAP(vap); 816 817 ieee80211_amrr_cleanup(&wvp->amrr); 818 ieee80211_vap_detach(vap); 819 free(wvp, M_80211_VAP); 820 } 821 822 static void 823 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 824 { 825 if (error != 0) 826 return; 827 828 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 829 830 *(bus_addr_t *)arg = segs[0].ds_addr; 831 } 832 833 /* 834 * Allocates a contiguous block of dma memory of the requested size and 835 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 836 * allocations greater than 4096 may fail. Hence if the requested alignment is 837 * greater we allocate 'alignment' size extra memory and shift the vaddr and 838 * paddr after the dma load. This bypasses the problem at the cost of a little 839 * more memory. 840 */ 841 static int 842 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 843 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 844 { 845 int error; 846 bus_size_t align; 847 bus_size_t reqsize; 848 849 DPRINTFN(WPI_DEBUG_DMA, 850 ("Size: %zd - alignment %zd\n", size, alignment)); 851 852 dma->size = size; 853 dma->tag = NULL; 854 855 if (alignment > 4096) { 856 align = PAGE_SIZE; 857 reqsize = size + alignment; 858 } else { 859 align = alignment; 860 reqsize = size; 861 } 862 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 863 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 864 NULL, NULL, reqsize, 865 1, reqsize, flags, 866 NULL, NULL, &dma->tag); 867 if (error != 0) { 868 device_printf(sc->sc_dev, 869 "could not create shared page DMA tag\n"); 870 goto fail; 871 } 872 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 873 flags | BUS_DMA_ZERO, &dma->map); 874 if (error != 0) { 875 device_printf(sc->sc_dev, 876 "could not allocate shared page DMA memory\n"); 877 goto fail; 878 } 879 880 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 881 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 882 883 /* Save the original pointers so we can free all the memory */ 884 dma->paddr = dma->paddr_start; 885 dma->vaddr = dma->vaddr_start; 886 887 /* 888 * Check the alignment and increment by 4096 until we get the 889 * requested alignment. Fail if can't obtain the alignment 890 * we requested. 891 */ 892 if ((dma->paddr & (alignment -1 )) != 0) { 893 int i; 894 895 for (i = 0; i < alignment / 4096; i++) { 896 if ((dma->paddr & (alignment - 1 )) == 0) 897 break; 898 dma->paddr += 4096; 899 dma->vaddr += 4096; 900 } 901 if (i == alignment / 4096) { 902 device_printf(sc->sc_dev, 903 "alignment requirement was not satisfied\n"); 904 goto fail; 905 } 906 } 907 908 if (error != 0) { 909 device_printf(sc->sc_dev, 910 "could not load shared page DMA map\n"); 911 goto fail; 912 } 913 914 if (kvap != NULL) 915 *kvap = dma->vaddr; 916 917 return 0; 918 919 fail: 920 wpi_dma_contig_free(dma); 921 return error; 922 } 923 924 static void 925 wpi_dma_contig_free(struct wpi_dma_info *dma) 926 { 927 if (dma->tag) { 928 if (dma->map != NULL) { 929 if (dma->paddr_start != 0) { 930 bus_dmamap_sync(dma->tag, dma->map, 931 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 932 bus_dmamap_unload(dma->tag, dma->map); 933 } 934 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 935 } 936 bus_dma_tag_destroy(dma->tag); 937 } 938 } 939 940 /* 941 * Allocate a shared page between host and NIC. 942 */ 943 static int 944 wpi_alloc_shared(struct wpi_softc *sc) 945 { 946 int error; 947 948 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 949 (void **)&sc->shared, sizeof (struct wpi_shared), 950 PAGE_SIZE, 951 BUS_DMA_NOWAIT); 952 953 if (error != 0) { 954 device_printf(sc->sc_dev, 955 "could not allocate shared area DMA memory\n"); 956 } 957 958 return error; 959 } 960 961 static void 962 wpi_free_shared(struct wpi_softc *sc) 963 { 964 wpi_dma_contig_free(&sc->shared_dma); 965 } 966 967 static int 968 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 969 { 970 971 int i, error; 972 973 ring->cur = 0; 974 975 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 976 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 977 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 978 979 if (error != 0) { 980 device_printf(sc->sc_dev, 981 "%s: could not allocate rx ring DMA memory, error %d\n", 982 __func__, error); 983 goto fail; 984 } 985 986 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 987 BUS_SPACE_MAXADDR_32BIT, 988 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 989 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 990 if (error != 0) { 991 device_printf(sc->sc_dev, 992 "%s: bus_dma_tag_create_failed, error %d\n", 993 __func__, error); 994 goto fail; 995 } 996 997 /* 998 * Setup Rx buffers. 999 */ 1000 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1001 struct wpi_rx_data *data = &ring->data[i]; 1002 struct mbuf *m; 1003 bus_addr_t paddr; 1004 1005 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1006 if (error != 0) { 1007 device_printf(sc->sc_dev, 1008 "%s: bus_dmamap_create failed, error %d\n", 1009 __func__, error); 1010 goto fail; 1011 } 1012 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1013 if (m == NULL) { 1014 device_printf(sc->sc_dev, 1015 "%s: could not allocate rx mbuf\n", __func__); 1016 error = ENOMEM; 1017 goto fail; 1018 } 1019 /* map page */ 1020 error = bus_dmamap_load(ring->data_dmat, data->map, 1021 mtod(m, caddr_t), MJUMPAGESIZE, 1022 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1023 if (error != 0 && error != EFBIG) { 1024 device_printf(sc->sc_dev, 1025 "%s: bus_dmamap_load failed, error %d\n", 1026 __func__, error); 1027 m_freem(m); 1028 error = ENOMEM; /* XXX unique code */ 1029 goto fail; 1030 } 1031 bus_dmamap_sync(ring->data_dmat, data->map, 1032 BUS_DMASYNC_PREWRITE); 1033 1034 data->m = m; 1035 ring->desc[i] = htole32(paddr); 1036 } 1037 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1038 BUS_DMASYNC_PREWRITE); 1039 return 0; 1040 fail: 1041 wpi_free_rx_ring(sc, ring); 1042 return error; 1043 } 1044 1045 static void 1046 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1047 { 1048 int ntries; 1049 1050 wpi_mem_lock(sc); 1051 1052 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1053 1054 for (ntries = 0; ntries < 100; ntries++) { 1055 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1056 break; 1057 DELAY(10); 1058 } 1059 1060 wpi_mem_unlock(sc); 1061 1062 #ifdef WPI_DEBUG 1063 if (ntries == 100 && wpi_debug > 0) 1064 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1065 #endif 1066 1067 ring->cur = 0; 1068 } 1069 1070 static void 1071 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1072 { 1073 int i; 1074 1075 wpi_dma_contig_free(&ring->desc_dma); 1076 1077 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1078 if (ring->data[i].m != NULL) 1079 m_freem(ring->data[i].m); 1080 } 1081 1082 static int 1083 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1084 int qid) 1085 { 1086 struct wpi_tx_data *data; 1087 int i, error; 1088 1089 ring->qid = qid; 1090 ring->count = count; 1091 ring->queued = 0; 1092 ring->cur = 0; 1093 ring->data = NULL; 1094 1095 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1096 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1097 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1098 1099 if (error != 0) { 1100 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1101 goto fail; 1102 } 1103 1104 /* update shared page with ring's base address */ 1105 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1106 1107 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1108 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1109 BUS_DMA_NOWAIT); 1110 1111 if (error != 0) { 1112 device_printf(sc->sc_dev, 1113 "could not allocate tx command DMA memory\n"); 1114 goto fail; 1115 } 1116 1117 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1118 M_NOWAIT | M_ZERO); 1119 if (ring->data == NULL) { 1120 device_printf(sc->sc_dev, 1121 "could not allocate tx data slots\n"); 1122 goto fail; 1123 } 1124 1125 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1126 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1127 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1128 &ring->data_dmat); 1129 if (error != 0) { 1130 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1131 goto fail; 1132 } 1133 1134 for (i = 0; i < count; i++) { 1135 data = &ring->data[i]; 1136 1137 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1138 if (error != 0) { 1139 device_printf(sc->sc_dev, 1140 "could not create tx buf DMA map\n"); 1141 goto fail; 1142 } 1143 bus_dmamap_sync(ring->data_dmat, data->map, 1144 BUS_DMASYNC_PREWRITE); 1145 } 1146 1147 return 0; 1148 1149 fail: 1150 wpi_free_tx_ring(sc, ring); 1151 return error; 1152 } 1153 1154 static void 1155 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1156 { 1157 struct wpi_tx_data *data; 1158 int i, ntries; 1159 1160 wpi_mem_lock(sc); 1161 1162 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1163 for (ntries = 0; ntries < 100; ntries++) { 1164 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1165 break; 1166 DELAY(10); 1167 } 1168 #ifdef WPI_DEBUG 1169 if (ntries == 100 && wpi_debug > 0) 1170 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1171 ring->qid); 1172 #endif 1173 wpi_mem_unlock(sc); 1174 1175 for (i = 0; i < ring->count; i++) { 1176 data = &ring->data[i]; 1177 1178 if (data->m != NULL) { 1179 bus_dmamap_unload(ring->data_dmat, data->map); 1180 m_freem(data->m); 1181 data->m = NULL; 1182 } 1183 } 1184 1185 ring->queued = 0; 1186 ring->cur = 0; 1187 } 1188 1189 static void 1190 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1191 { 1192 struct wpi_tx_data *data; 1193 int i; 1194 1195 wpi_dma_contig_free(&ring->desc_dma); 1196 wpi_dma_contig_free(&ring->cmd_dma); 1197 1198 if (ring->data != NULL) { 1199 for (i = 0; i < ring->count; i++) { 1200 data = &ring->data[i]; 1201 1202 if (data->m != NULL) { 1203 bus_dmamap_sync(ring->data_dmat, data->map, 1204 BUS_DMASYNC_POSTWRITE); 1205 bus_dmamap_unload(ring->data_dmat, data->map); 1206 m_freem(data->m); 1207 data->m = NULL; 1208 } 1209 } 1210 free(ring->data, M_DEVBUF); 1211 } 1212 1213 if (ring->data_dmat != NULL) 1214 bus_dma_tag_destroy(ring->data_dmat); 1215 } 1216 1217 static int 1218 wpi_shutdown(device_t dev) 1219 { 1220 struct wpi_softc *sc = device_get_softc(dev); 1221 1222 WPI_LOCK(sc); 1223 wpi_stop_locked(sc); 1224 wpi_unload_firmware(sc); 1225 WPI_UNLOCK(sc); 1226 1227 return 0; 1228 } 1229 1230 static int 1231 wpi_suspend(device_t dev) 1232 { 1233 struct wpi_softc *sc = device_get_softc(dev); 1234 1235 wpi_stop(sc); 1236 return 0; 1237 } 1238 1239 static int 1240 wpi_resume(device_t dev) 1241 { 1242 struct wpi_softc *sc = device_get_softc(dev); 1243 struct ifnet *ifp = sc->sc_ifp; 1244 1245 pci_write_config(dev, 0x41, 0, 1); 1246 1247 if (ifp->if_flags & IFF_UP) { 1248 wpi_init(ifp->if_softc); 1249 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1250 wpi_start(ifp); 1251 } 1252 return 0; 1253 } 1254 1255 /* ARGSUSED */ 1256 static struct ieee80211_node * 1257 wpi_node_alloc(struct ieee80211vap *vap __unused, 1258 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 1259 { 1260 struct wpi_node *wn; 1261 1262 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1263 1264 return &wn->ni; 1265 } 1266 1267 /** 1268 * Called by net80211 when ever there is a change to 80211 state machine 1269 */ 1270 static int 1271 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1272 { 1273 struct wpi_vap *wvp = WPI_VAP(vap); 1274 struct ieee80211com *ic = vap->iv_ic; 1275 struct ifnet *ifp = ic->ic_ifp; 1276 struct wpi_softc *sc = ifp->if_softc; 1277 int error; 1278 1279 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1280 ieee80211_state_name[vap->iv_state], 1281 ieee80211_state_name[nstate], sc->flags)); 1282 1283 if (nstate == IEEE80211_S_AUTH) { 1284 /* Delay the auth transition until we can update the firmware */ 1285 error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL); 1286 return (error != 0 ? error : EINPROGRESS); 1287 } 1288 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1289 /* set the association id first */ 1290 error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL); 1291 return (error != 0 ? error : EINPROGRESS); 1292 } 1293 if (nstate == IEEE80211_S_RUN) { 1294 /* RUN -> RUN transition; just restart the timers */ 1295 wpi_calib_timeout(sc); 1296 /* XXX split out rate control timer */ 1297 } 1298 return wvp->newstate(vap, nstate, arg); 1299 } 1300 1301 /* 1302 * Grab exclusive access to NIC memory. 1303 */ 1304 static void 1305 wpi_mem_lock(struct wpi_softc *sc) 1306 { 1307 int ntries; 1308 uint32_t tmp; 1309 1310 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1311 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1312 1313 /* spin until we actually get the lock */ 1314 for (ntries = 0; ntries < 100; ntries++) { 1315 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1316 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1317 break; 1318 DELAY(10); 1319 } 1320 if (ntries == 100) 1321 device_printf(sc->sc_dev, "could not lock memory\n"); 1322 } 1323 1324 /* 1325 * Release lock on NIC memory. 1326 */ 1327 static void 1328 wpi_mem_unlock(struct wpi_softc *sc) 1329 { 1330 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1331 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1332 } 1333 1334 static uint32_t 1335 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1336 { 1337 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1338 return WPI_READ(sc, WPI_READ_MEM_DATA); 1339 } 1340 1341 static void 1342 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1343 { 1344 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1345 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1346 } 1347 1348 static void 1349 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1350 const uint32_t *data, int wlen) 1351 { 1352 for (; wlen > 0; wlen--, data++, addr+=4) 1353 wpi_mem_write(sc, addr, *data); 1354 } 1355 1356 /* 1357 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1358 * using the traditional bit-bang method. Data is read up until len bytes have 1359 * been obtained. 1360 */ 1361 static uint16_t 1362 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1363 { 1364 int ntries; 1365 uint32_t val; 1366 uint8_t *out = data; 1367 1368 wpi_mem_lock(sc); 1369 1370 for (; len > 0; len -= 2, addr++) { 1371 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1372 1373 for (ntries = 0; ntries < 10; ntries++) { 1374 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1375 break; 1376 DELAY(5); 1377 } 1378 1379 if (ntries == 10) { 1380 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1381 return ETIMEDOUT; 1382 } 1383 1384 *out++= val >> 16; 1385 if (len > 1) 1386 *out ++= val >> 24; 1387 } 1388 1389 wpi_mem_unlock(sc); 1390 1391 return 0; 1392 } 1393 1394 /* 1395 * The firmware text and data segments are transferred to the NIC using DMA. 1396 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1397 * where to find it. Once the NIC has copied the firmware into its internal 1398 * memory, we can free our local copy in the driver. 1399 */ 1400 static int 1401 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1402 { 1403 int error, ntries; 1404 1405 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1406 1407 size /= sizeof(uint32_t); 1408 1409 wpi_mem_lock(sc); 1410 1411 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1412 (const uint32_t *)fw, size); 1413 1414 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1415 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1416 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1417 1418 /* run microcode */ 1419 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1420 1421 /* wait while the adapter is busy copying the firmware */ 1422 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1423 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1424 DPRINTFN(WPI_DEBUG_HW, 1425 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1426 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1427 if (status & WPI_TX_IDLE(6)) { 1428 DPRINTFN(WPI_DEBUG_HW, 1429 ("Status Match! - ntries = %d\n", ntries)); 1430 break; 1431 } 1432 DELAY(10); 1433 } 1434 if (ntries == 1000) { 1435 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1436 error = ETIMEDOUT; 1437 } 1438 1439 /* start the microcode executing */ 1440 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1441 1442 wpi_mem_unlock(sc); 1443 1444 return (error); 1445 } 1446 1447 static void 1448 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1449 struct wpi_rx_data *data) 1450 { 1451 struct ifnet *ifp = sc->sc_ifp; 1452 struct ieee80211com *ic = ifp->if_l2com; 1453 struct wpi_rx_ring *ring = &sc->rxq; 1454 struct wpi_rx_stat *stat; 1455 struct wpi_rx_head *head; 1456 struct wpi_rx_tail *tail; 1457 struct ieee80211_node *ni; 1458 struct mbuf *m, *mnew; 1459 bus_addr_t paddr; 1460 int error; 1461 1462 stat = (struct wpi_rx_stat *)(desc + 1); 1463 1464 if (stat->len > WPI_STAT_MAXLEN) { 1465 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1466 ifp->if_ierrors++; 1467 return; 1468 } 1469 1470 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1471 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1472 1473 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1474 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1475 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1476 (uintmax_t)le64toh(tail->tstamp))); 1477 1478 /* discard Rx frames with bad CRC early */ 1479 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1480 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1481 le32toh(tail->flags))); 1482 ifp->if_ierrors++; 1483 return; 1484 } 1485 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1486 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1487 le16toh(head->len))); 1488 ifp->if_ierrors++; 1489 return; 1490 } 1491 1492 /* XXX don't need mbuf, just dma buffer */ 1493 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1494 if (mnew == NULL) { 1495 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1496 __func__)); 1497 ifp->if_ierrors++; 1498 return; 1499 } 1500 error = bus_dmamap_load(ring->data_dmat, data->map, 1501 mtod(mnew, caddr_t), MJUMPAGESIZE, 1502 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1503 if (error != 0 && error != EFBIG) { 1504 device_printf(sc->sc_dev, 1505 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1506 m_freem(mnew); 1507 ifp->if_ierrors++; 1508 return; 1509 } 1510 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1511 1512 /* finalize mbuf and swap in new one */ 1513 m = data->m; 1514 m->m_pkthdr.rcvif = ifp; 1515 m->m_data = (caddr_t)(head + 1); 1516 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1517 1518 data->m = mnew; 1519 /* update Rx descriptor */ 1520 ring->desc[ring->cur] = htole32(paddr); 1521 1522 if (bpf_peers_present(ifp->if_bpf)) { 1523 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1524 1525 tap->wr_flags = 0; 1526 tap->wr_chan_freq = 1527 htole16(ic->ic_channels[head->chan].ic_freq); 1528 tap->wr_chan_flags = 1529 htole16(ic->ic_channels[head->chan].ic_flags); 1530 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1531 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1532 tap->wr_tsft = tail->tstamp; 1533 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1534 switch (head->rate) { 1535 /* CCK rates */ 1536 case 10: tap->wr_rate = 2; break; 1537 case 20: tap->wr_rate = 4; break; 1538 case 55: tap->wr_rate = 11; break; 1539 case 110: tap->wr_rate = 22; break; 1540 /* OFDM rates */ 1541 case 0xd: tap->wr_rate = 12; break; 1542 case 0xf: tap->wr_rate = 18; break; 1543 case 0x5: tap->wr_rate = 24; break; 1544 case 0x7: tap->wr_rate = 36; break; 1545 case 0x9: tap->wr_rate = 48; break; 1546 case 0xb: tap->wr_rate = 72; break; 1547 case 0x1: tap->wr_rate = 96; break; 1548 case 0x3: tap->wr_rate = 108; break; 1549 /* unknown rate: should not happen */ 1550 default: tap->wr_rate = 0; 1551 } 1552 if (le16toh(head->flags) & 0x4) 1553 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1554 1555 bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m); 1556 } 1557 1558 WPI_UNLOCK(sc); 1559 1560 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1561 if (ni != NULL) { 1562 (void) ieee80211_input(ni, m, stat->rssi, 0, 0); 1563 ieee80211_free_node(ni); 1564 } else 1565 (void) ieee80211_input_all(ic, m, stat->rssi, 0, 0); 1566 1567 WPI_LOCK(sc); 1568 } 1569 1570 static void 1571 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1572 { 1573 struct ifnet *ifp = sc->sc_ifp; 1574 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1575 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1576 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1577 struct wpi_node *wn = (struct wpi_node *)txdata->ni; 1578 1579 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1580 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1581 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1582 le32toh(stat->status))); 1583 1584 /* 1585 * Update rate control statistics for the node. 1586 * XXX we should not count mgmt frames since they're always sent at 1587 * the lowest available bit-rate. 1588 * XXX frames w/o ACK shouldn't be used either 1589 */ 1590 wn->amn.amn_txcnt++; 1591 if (stat->ntries > 0) { 1592 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1593 wn->amn.amn_retrycnt++; 1594 } 1595 1596 /* XXX oerrors should only count errors !maxtries */ 1597 if ((le32toh(stat->status) & 0xff) != 1) 1598 ifp->if_oerrors++; 1599 else 1600 ifp->if_opackets++; 1601 1602 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1603 bus_dmamap_unload(ring->data_dmat, txdata->map); 1604 /* XXX handle M_TXCB? */ 1605 m_freem(txdata->m); 1606 txdata->m = NULL; 1607 ieee80211_free_node(txdata->ni); 1608 txdata->ni = NULL; 1609 1610 ring->queued--; 1611 1612 sc->sc_tx_timer = 0; 1613 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1614 wpi_start_locked(ifp); 1615 } 1616 1617 static void 1618 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1619 { 1620 struct wpi_tx_ring *ring = &sc->cmdq; 1621 struct wpi_tx_data *data; 1622 1623 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1624 "type=%s len=%d\n", desc->qid, desc->idx, 1625 desc->flags, wpi_cmd_str(desc->type), 1626 le32toh(desc->len))); 1627 1628 if ((desc->qid & 7) != 4) 1629 return; /* not a command ack */ 1630 1631 data = &ring->data[desc->idx]; 1632 1633 /* if the command was mapped in a mbuf, free it */ 1634 if (data->m != NULL) { 1635 bus_dmamap_unload(ring->data_dmat, data->map); 1636 m_freem(data->m); 1637 data->m = NULL; 1638 } 1639 1640 sc->flags &= ~WPI_FLAG_BUSY; 1641 wakeup(&ring->cmd[desc->idx]); 1642 } 1643 1644 static void 1645 wpi_bmiss(void *arg, int npending) 1646 { 1647 struct wpi_softc *sc = arg; 1648 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1649 1650 ieee80211_beacon_miss(ic); 1651 } 1652 1653 static void 1654 wpi_notif_intr(struct wpi_softc *sc) 1655 { 1656 struct ifnet *ifp = sc->sc_ifp; 1657 struct ieee80211com *ic = ifp->if_l2com; 1658 struct wpi_rx_desc *desc; 1659 struct wpi_rx_data *data; 1660 uint32_t hw; 1661 1662 hw = le32toh(sc->shared->next); 1663 while (sc->rxq.cur != hw) { 1664 data = &sc->rxq.data[sc->rxq.cur]; 1665 desc = (void *)data->m->m_ext.ext_buf; 1666 1667 DPRINTFN(WPI_DEBUG_NOTIFY, 1668 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1669 desc->qid, 1670 desc->idx, 1671 desc->flags, 1672 desc->type, 1673 le32toh(desc->len))); 1674 1675 if (!(desc->qid & 0x80)) /* reply to a command */ 1676 wpi_cmd_intr(sc, desc); 1677 1678 switch (desc->type) { 1679 case WPI_RX_DONE: 1680 /* a 802.11 frame was received */ 1681 wpi_rx_intr(sc, desc, data); 1682 break; 1683 1684 case WPI_TX_DONE: 1685 /* a 802.11 frame has been transmitted */ 1686 wpi_tx_intr(sc, desc); 1687 break; 1688 1689 case WPI_UC_READY: 1690 { 1691 struct wpi_ucode_info *uc = 1692 (struct wpi_ucode_info *)(desc + 1); 1693 1694 /* the microcontroller is ready */ 1695 DPRINTF(("microcode alive notification version %x " 1696 "alive %x\n", le32toh(uc->version), 1697 le32toh(uc->valid))); 1698 1699 if (le32toh(uc->valid) != 1) { 1700 device_printf(sc->sc_dev, 1701 "microcontroller initialization failed\n"); 1702 wpi_stop_locked(sc); 1703 } 1704 break; 1705 } 1706 case WPI_STATE_CHANGED: 1707 { 1708 uint32_t *status = (uint32_t *)(desc + 1); 1709 1710 /* enabled/disabled notification */ 1711 DPRINTF(("state changed to %x\n", le32toh(*status))); 1712 1713 if (le32toh(*status) & 1) { 1714 device_printf(sc->sc_dev, 1715 "Radio transmitter is switched off\n"); 1716 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1717 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1718 /* Disable firmware commands */ 1719 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1720 } 1721 break; 1722 } 1723 case WPI_START_SCAN: 1724 { 1725 #ifdef WPI_DEBUG 1726 struct wpi_start_scan *scan = 1727 (struct wpi_start_scan *)(desc + 1); 1728 #endif 1729 1730 DPRINTFN(WPI_DEBUG_SCANNING, 1731 ("scanning channel %d status %x\n", 1732 scan->chan, le32toh(scan->status))); 1733 break; 1734 } 1735 case WPI_STOP_SCAN: 1736 { 1737 #ifdef WPI_DEBUG 1738 struct wpi_stop_scan *scan = 1739 (struct wpi_stop_scan *)(desc + 1); 1740 #endif 1741 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1742 1743 DPRINTFN(WPI_DEBUG_SCANNING, 1744 ("scan finished nchan=%d status=%d chan=%d\n", 1745 scan->nchan, scan->status, scan->chan)); 1746 1747 sc->sc_scan_timer = 0; 1748 ieee80211_scan_next(vap); 1749 break; 1750 } 1751 case WPI_MISSED_BEACON: 1752 { 1753 struct wpi_missed_beacon *beacon = 1754 (struct wpi_missed_beacon *)(desc + 1); 1755 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1756 1757 if (le32toh(beacon->consecutive) >= 1758 vap->iv_bmissthreshold) { 1759 DPRINTF(("Beacon miss: %u >= %u\n", 1760 le32toh(beacon->consecutive), 1761 vap->iv_bmissthreshold)); 1762 taskqueue_enqueue(taskqueue_swi, 1763 &sc->sc_bmiss_task); 1764 } 1765 break; 1766 } 1767 } 1768 1769 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1770 } 1771 1772 /* tell the firmware what we have processed */ 1773 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1774 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1775 } 1776 1777 static void 1778 wpi_intr(void *arg) 1779 { 1780 struct wpi_softc *sc = arg; 1781 uint32_t r; 1782 1783 WPI_LOCK(sc); 1784 1785 r = WPI_READ(sc, WPI_INTR); 1786 if (r == 0 || r == 0xffffffff) { 1787 WPI_UNLOCK(sc); 1788 return; 1789 } 1790 1791 /* disable interrupts */ 1792 WPI_WRITE(sc, WPI_MASK, 0); 1793 /* ack interrupts */ 1794 WPI_WRITE(sc, WPI_INTR, r); 1795 1796 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1797 device_printf(sc->sc_dev, "fatal firmware error\n"); 1798 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1799 "(Hardware Error)")); 1800 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 1801 sc->flags &= ~WPI_FLAG_BUSY; 1802 WPI_UNLOCK(sc); 1803 return; 1804 } 1805 1806 if (r & WPI_RX_INTR) 1807 wpi_notif_intr(sc); 1808 1809 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1810 wakeup(sc); 1811 1812 /* re-enable interrupts */ 1813 if (sc->sc_ifp->if_flags & IFF_UP) 1814 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1815 1816 WPI_UNLOCK(sc); 1817 } 1818 1819 static uint8_t 1820 wpi_plcp_signal(int rate) 1821 { 1822 switch (rate) { 1823 /* CCK rates (returned values are device-dependent) */ 1824 case 2: return 10; 1825 case 4: return 20; 1826 case 11: return 55; 1827 case 22: return 110; 1828 1829 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1830 /* R1-R4 (ral/ural is R4-R1) */ 1831 case 12: return 0xd; 1832 case 18: return 0xf; 1833 case 24: return 0x5; 1834 case 36: return 0x7; 1835 case 48: return 0x9; 1836 case 72: return 0xb; 1837 case 96: return 0x1; 1838 case 108: return 0x3; 1839 1840 /* unsupported rates (should not get there) */ 1841 default: return 0; 1842 } 1843 } 1844 1845 /* quickly determine if a given rate is CCK or OFDM */ 1846 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1847 1848 /* 1849 * Construct the data packet for a transmit buffer and acutally put 1850 * the buffer onto the transmit ring, kicking the card to process the 1851 * the buffer. 1852 */ 1853 static int 1854 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1855 int ac) 1856 { 1857 struct ieee80211vap *vap = ni->ni_vap; 1858 struct ifnet *ifp = sc->sc_ifp; 1859 struct ieee80211com *ic = ifp->if_l2com; 1860 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1861 struct wpi_tx_ring *ring = &sc->txq[ac]; 1862 struct wpi_tx_desc *desc; 1863 struct wpi_tx_data *data; 1864 struct wpi_tx_cmd *cmd; 1865 struct wpi_cmd_data *tx; 1866 struct ieee80211_frame *wh; 1867 const struct ieee80211_txparam *tp; 1868 struct ieee80211_key *k; 1869 struct mbuf *mnew; 1870 int i, error, nsegs, rate, hdrlen, ismcast; 1871 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1872 1873 desc = &ring->desc[ring->cur]; 1874 data = &ring->data[ring->cur]; 1875 1876 wh = mtod(m0, struct ieee80211_frame *); 1877 1878 hdrlen = ieee80211_hdrsize(wh); 1879 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1880 1881 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1882 k = ieee80211_crypto_encap(ni, m0); 1883 if (k == NULL) { 1884 m_freem(m0); 1885 return ENOBUFS; 1886 } 1887 /* packet header may have moved, reset our local pointer */ 1888 wh = mtod(m0, struct ieee80211_frame *); 1889 } 1890 1891 cmd = &ring->cmd[ring->cur]; 1892 cmd->code = WPI_CMD_TX_DATA; 1893 cmd->flags = 0; 1894 cmd->qid = ring->qid; 1895 cmd->idx = ring->cur; 1896 1897 tx = (struct wpi_cmd_data *)cmd->data; 1898 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1899 tx->timeout = htole16(0); 1900 tx->ofdm_mask = 0xff; 1901 tx->cck_mask = 0x0f; 1902 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1903 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1904 tx->len = htole16(m0->m_pkthdr.len); 1905 1906 if (!ismcast) { 1907 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1908 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1909 tx->flags |= htole32(WPI_TX_NEED_ACK); 1910 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1911 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1912 tx->rts_ntries = 7; 1913 } 1914 } 1915 /* pick a rate */ 1916 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1917 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1918 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1919 /* tell h/w to set timestamp in probe responses */ 1920 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1921 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1922 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1923 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1924 tx->timeout = htole16(3); 1925 else 1926 tx->timeout = htole16(2); 1927 rate = tp->mgmtrate; 1928 } else if (ismcast) { 1929 rate = tp->mcastrate; 1930 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1931 rate = tp->ucastrate; 1932 } else { 1933 (void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn); 1934 rate = ni->ni_txrate; 1935 } 1936 tx->rate = wpi_plcp_signal(rate); 1937 1938 /* be very persistant at sending frames out */ 1939 #if 0 1940 tx->data_ntries = tp->maxretry; 1941 #else 1942 tx->data_ntries = 15; /* XXX way too high */ 1943 #endif 1944 1945 if (bpf_peers_present(ifp->if_bpf)) { 1946 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1947 tap->wt_flags = 0; 1948 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1949 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1950 tap->wt_rate = rate; 1951 tap->wt_hwqueue = ac; 1952 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1953 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1954 1955 bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0); 1956 } 1957 1958 /* save and trim IEEE802.11 header */ 1959 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1960 m_adj(m0, hdrlen); 1961 1962 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1963 &nsegs, BUS_DMA_NOWAIT); 1964 if (error != 0 && error != EFBIG) { 1965 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1966 error); 1967 m_freem(m0); 1968 return error; 1969 } 1970 if (error != 0) { 1971 /* XXX use m_collapse */ 1972 mnew = m_defrag(m0, M_DONTWAIT); 1973 if (mnew == NULL) { 1974 device_printf(sc->sc_dev, 1975 "could not defragment mbuf\n"); 1976 m_freem(m0); 1977 return ENOBUFS; 1978 } 1979 m0 = mnew; 1980 1981 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1982 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1983 if (error != 0) { 1984 device_printf(sc->sc_dev, 1985 "could not map mbuf (error %d)\n", error); 1986 m_freem(m0); 1987 return error; 1988 } 1989 } 1990 1991 data->m = m0; 1992 data->ni = ni; 1993 1994 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1995 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1996 1997 /* first scatter/gather segment is used by the tx data command */ 1998 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1999 (1 + nsegs) << 24); 2000 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2001 ring->cur * sizeof (struct wpi_tx_cmd)); 2002 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 2003 for (i = 1; i <= nsegs; i++) { 2004 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 2005 desc->segs[i].len = htole32(segs[i - 1].ds_len); 2006 } 2007 2008 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2009 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2010 BUS_DMASYNC_PREWRITE); 2011 2012 ring->queued++; 2013 2014 /* kick ring */ 2015 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2016 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2017 2018 return 0; 2019 } 2020 2021 /** 2022 * Process data waiting to be sent on the IFNET output queue 2023 */ 2024 static void 2025 wpi_start(struct ifnet *ifp) 2026 { 2027 struct wpi_softc *sc = ifp->if_softc; 2028 2029 WPI_LOCK(sc); 2030 wpi_start_locked(ifp); 2031 WPI_UNLOCK(sc); 2032 } 2033 2034 static void 2035 wpi_start_locked(struct ifnet *ifp) 2036 { 2037 struct wpi_softc *sc = ifp->if_softc; 2038 struct ieee80211_node *ni; 2039 struct mbuf *m; 2040 int ac; 2041 2042 WPI_LOCK_ASSERT(sc); 2043 2044 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2045 return; 2046 2047 for (;;) { 2048 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2049 if (m == NULL) 2050 break; 2051 ac = M_WME_GETAC(m); 2052 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2053 /* there is no place left in this ring */ 2054 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2055 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2056 break; 2057 } 2058 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2059 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2060 ieee80211_free_node(ni); 2061 ifp->if_oerrors++; 2062 break; 2063 } 2064 sc->sc_tx_timer = 5; 2065 } 2066 } 2067 2068 static int 2069 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2070 const struct ieee80211_bpf_params *params) 2071 { 2072 struct ieee80211com *ic = ni->ni_ic; 2073 struct ifnet *ifp = ic->ic_ifp; 2074 struct wpi_softc *sc = ifp->if_softc; 2075 2076 /* prevent management frames from being sent if we're not ready */ 2077 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2078 m_freem(m); 2079 ieee80211_free_node(ni); 2080 return ENETDOWN; 2081 } 2082 WPI_LOCK(sc); 2083 2084 /* management frames go into ring 0 */ 2085 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2086 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2087 m_freem(m); 2088 WPI_UNLOCK(sc); 2089 ieee80211_free_node(ni); 2090 return ENOBUFS; /* XXX */ 2091 } 2092 2093 ifp->if_opackets++; 2094 if (wpi_tx_data(sc, m, ni, 0) != 0) 2095 goto bad; 2096 sc->sc_tx_timer = 5; 2097 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2098 2099 WPI_UNLOCK(sc); 2100 return 0; 2101 bad: 2102 ifp->if_oerrors++; 2103 WPI_UNLOCK(sc); 2104 ieee80211_free_node(ni); 2105 return EIO; /* XXX */ 2106 } 2107 2108 static int 2109 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2110 { 2111 struct wpi_softc *sc = ifp->if_softc; 2112 struct ieee80211com *ic = ifp->if_l2com; 2113 struct ifreq *ifr = (struct ifreq *) data; 2114 int error = 0, startall = 0; 2115 2116 switch (cmd) { 2117 case SIOCSIFFLAGS: 2118 WPI_LOCK(sc); 2119 if ((ifp->if_flags & IFF_UP)) { 2120 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2121 wpi_init_locked(sc, 0); 2122 startall = 1; 2123 } 2124 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2125 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2126 wpi_stop_locked(sc); 2127 WPI_UNLOCK(sc); 2128 if (startall) 2129 ieee80211_start_all(ic); 2130 break; 2131 case SIOCGIFMEDIA: 2132 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2133 break; 2134 case SIOCGIFADDR: 2135 error = ether_ioctl(ifp, cmd, data); 2136 break; 2137 default: 2138 error = EINVAL; 2139 break; 2140 } 2141 return error; 2142 } 2143 2144 /* 2145 * Extract various information from EEPROM. 2146 */ 2147 static void 2148 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2149 { 2150 int i; 2151 2152 /* read the hardware capabilities, revision and SKU type */ 2153 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2154 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2155 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2156 2157 /* read the regulatory domain */ 2158 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2159 2160 /* read in the hw MAC address */ 2161 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2162 2163 /* read the list of authorized channels */ 2164 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2165 wpi_read_eeprom_channels(sc,i); 2166 2167 /* read the power level calibration info for each group */ 2168 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2169 wpi_read_eeprom_group(sc,i); 2170 } 2171 2172 /* 2173 * Send a command to the firmware. 2174 */ 2175 static int 2176 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2177 { 2178 struct wpi_tx_ring *ring = &sc->cmdq; 2179 struct wpi_tx_desc *desc; 2180 struct wpi_tx_cmd *cmd; 2181 2182 #ifdef WPI_DEBUG 2183 if (!async) { 2184 WPI_LOCK_ASSERT(sc); 2185 } 2186 #endif 2187 2188 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2189 async)); 2190 2191 if (sc->flags & WPI_FLAG_BUSY) { 2192 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2193 __func__, code); 2194 return EAGAIN; 2195 } 2196 sc->flags|= WPI_FLAG_BUSY; 2197 2198 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2199 code, size)); 2200 2201 desc = &ring->desc[ring->cur]; 2202 cmd = &ring->cmd[ring->cur]; 2203 2204 cmd->code = code; 2205 cmd->flags = 0; 2206 cmd->qid = ring->qid; 2207 cmd->idx = ring->cur; 2208 memcpy(cmd->data, buf, size); 2209 2210 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2211 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2212 ring->cur * sizeof (struct wpi_tx_cmd)); 2213 desc->segs[0].len = htole32(4 + size); 2214 2215 /* kick cmd ring */ 2216 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2217 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2218 2219 if (async) { 2220 sc->flags &= ~ WPI_FLAG_BUSY; 2221 return 0; 2222 } 2223 2224 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2225 } 2226 2227 static int 2228 wpi_wme_update(struct ieee80211com *ic) 2229 { 2230 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2231 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2232 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2233 const struct wmeParams *wmep; 2234 struct wpi_wme_setup wme; 2235 int ac; 2236 2237 /* don't override default WME values if WME is not actually enabled */ 2238 if (!(ic->ic_flags & IEEE80211_F_WME)) 2239 return 0; 2240 2241 wme.flags = 0; 2242 for (ac = 0; ac < WME_NUM_AC; ac++) { 2243 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2244 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2245 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2246 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2247 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2248 2249 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2250 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2251 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2252 } 2253 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2254 #undef WPI_USEC 2255 #undef WPI_EXP2 2256 } 2257 2258 /* 2259 * Configure h/w multi-rate retries. 2260 */ 2261 static int 2262 wpi_mrr_setup(struct wpi_softc *sc) 2263 { 2264 struct ifnet *ifp = sc->sc_ifp; 2265 struct ieee80211com *ic = ifp->if_l2com; 2266 struct wpi_mrr_setup mrr; 2267 int i, error; 2268 2269 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2270 2271 /* CCK rates (not used with 802.11a) */ 2272 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2273 mrr.rates[i].flags = 0; 2274 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2275 /* fallback to the immediate lower CCK rate (if any) */ 2276 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2277 /* try one time at this rate before falling back to "next" */ 2278 mrr.rates[i].ntries = 1; 2279 } 2280 2281 /* OFDM rates (not used with 802.11b) */ 2282 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2283 mrr.rates[i].flags = 0; 2284 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2285 /* fallback to the immediate lower OFDM rate (if any) */ 2286 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2287 mrr.rates[i].next = (i == WPI_OFDM6) ? 2288 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2289 WPI_OFDM6 : WPI_CCK2) : 2290 i - 1; 2291 /* try one time at this rate before falling back to "next" */ 2292 mrr.rates[i].ntries = 1; 2293 } 2294 2295 /* setup MRR for control frames */ 2296 mrr.which = htole32(WPI_MRR_CTL); 2297 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2298 if (error != 0) { 2299 device_printf(sc->sc_dev, 2300 "could not setup MRR for control frames\n"); 2301 return error; 2302 } 2303 2304 /* setup MRR for data frames */ 2305 mrr.which = htole32(WPI_MRR_DATA); 2306 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2307 if (error != 0) { 2308 device_printf(sc->sc_dev, 2309 "could not setup MRR for data frames\n"); 2310 return error; 2311 } 2312 2313 return 0; 2314 } 2315 2316 static void 2317 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2318 { 2319 struct wpi_cmd_led led; 2320 2321 led.which = which; 2322 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2323 led.off = off; 2324 led.on = on; 2325 2326 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2327 } 2328 2329 static void 2330 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2331 { 2332 struct wpi_cmd_tsf tsf; 2333 uint64_t val, mod; 2334 2335 memset(&tsf, 0, sizeof tsf); 2336 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2337 tsf.bintval = htole16(ni->ni_intval); 2338 tsf.lintval = htole16(10); 2339 2340 /* compute remaining time until next beacon */ 2341 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2342 mod = le64toh(tsf.tstamp) % val; 2343 tsf.binitval = htole32((uint32_t)(val - mod)); 2344 2345 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2346 device_printf(sc->sc_dev, "could not enable TSF\n"); 2347 } 2348 2349 #if 0 2350 /* 2351 * Build a beacon frame that the firmware will broadcast periodically in 2352 * IBSS or HostAP modes. 2353 */ 2354 static int 2355 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2356 { 2357 struct ifnet *ifp = sc->sc_ifp; 2358 struct ieee80211com *ic = ifp->if_l2com; 2359 struct wpi_tx_ring *ring = &sc->cmdq; 2360 struct wpi_tx_desc *desc; 2361 struct wpi_tx_data *data; 2362 struct wpi_tx_cmd *cmd; 2363 struct wpi_cmd_beacon *bcn; 2364 struct ieee80211_beacon_offsets bo; 2365 struct mbuf *m0; 2366 bus_addr_t physaddr; 2367 int error; 2368 2369 desc = &ring->desc[ring->cur]; 2370 data = &ring->data[ring->cur]; 2371 2372 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2373 if (m0 == NULL) { 2374 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2375 return ENOMEM; 2376 } 2377 2378 cmd = &ring->cmd[ring->cur]; 2379 cmd->code = WPI_CMD_SET_BEACON; 2380 cmd->flags = 0; 2381 cmd->qid = ring->qid; 2382 cmd->idx = ring->cur; 2383 2384 bcn = (struct wpi_cmd_beacon *)cmd->data; 2385 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2386 bcn->id = WPI_ID_BROADCAST; 2387 bcn->ofdm_mask = 0xff; 2388 bcn->cck_mask = 0x0f; 2389 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2390 bcn->len = htole16(m0->m_pkthdr.len); 2391 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2392 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2393 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2394 2395 /* save and trim IEEE802.11 header */ 2396 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2397 m_adj(m0, sizeof (struct ieee80211_frame)); 2398 2399 /* assume beacon frame is contiguous */ 2400 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2401 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2402 if (error != 0) { 2403 device_printf(sc->sc_dev, "could not map beacon\n"); 2404 m_freem(m0); 2405 return error; 2406 } 2407 2408 data->m = m0; 2409 2410 /* first scatter/gather segment is used by the beacon command */ 2411 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2412 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2413 ring->cur * sizeof (struct wpi_tx_cmd)); 2414 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2415 desc->segs[1].addr = htole32(physaddr); 2416 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2417 2418 /* kick cmd ring */ 2419 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2420 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2421 2422 return 0; 2423 } 2424 #endif 2425 2426 static int 2427 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2428 { 2429 struct ieee80211com *ic = vap->iv_ic; 2430 struct ieee80211_node *ni = vap->iv_bss; 2431 struct wpi_node_info node; 2432 int error; 2433 2434 2435 /* update adapter's configuration */ 2436 sc->config.associd = 0; 2437 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2438 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2439 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2440 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2441 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2442 WPI_CONFIG_24GHZ); 2443 } 2444 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2445 sc->config.cck_mask = 0; 2446 sc->config.ofdm_mask = 0x15; 2447 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2448 sc->config.cck_mask = 0x03; 2449 sc->config.ofdm_mask = 0; 2450 } else { 2451 /* XXX assume 802.11b/g */ 2452 sc->config.cck_mask = 0x0f; 2453 sc->config.ofdm_mask = 0x15; 2454 } 2455 2456 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2457 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2458 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2459 sizeof (struct wpi_config), 1); 2460 if (error != 0) { 2461 device_printf(sc->sc_dev, "could not configure\n"); 2462 return error; 2463 } 2464 2465 /* configuration has changed, set Tx power accordingly */ 2466 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2467 device_printf(sc->sc_dev, "could not set Tx power\n"); 2468 return error; 2469 } 2470 2471 /* add default node */ 2472 memset(&node, 0, sizeof node); 2473 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2474 node.id = WPI_ID_BSS; 2475 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2476 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2477 node.action = htole32(WPI_ACTION_SET_RATE); 2478 node.antenna = WPI_ANTENNA_BOTH; 2479 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2480 if (error != 0) 2481 device_printf(sc->sc_dev, "could not add BSS node\n"); 2482 2483 return (error); 2484 } 2485 2486 static int 2487 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2488 { 2489 struct ieee80211com *ic = vap->iv_ic; 2490 struct ieee80211_node *ni = vap->iv_bss; 2491 int error; 2492 2493 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2494 /* link LED blinks while monitoring */ 2495 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2496 return 0; 2497 } 2498 2499 wpi_enable_tsf(sc, ni); 2500 2501 /* update adapter's configuration */ 2502 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2503 /* short preamble/slot time are negotiated when associating */ 2504 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2505 WPI_CONFIG_SHSLOT); 2506 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2507 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2508 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2509 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2510 sc->config.filter |= htole32(WPI_FILTER_BSS); 2511 2512 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2513 2514 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2515 sc->config.flags)); 2516 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2517 wpi_config), 1); 2518 if (error != 0) { 2519 device_printf(sc->sc_dev, "could not update configuration\n"); 2520 return error; 2521 } 2522 2523 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2524 if (error != 0) { 2525 device_printf(sc->sc_dev, "could set txpower\n"); 2526 return error; 2527 } 2528 2529 /* link LED always on while associated */ 2530 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2531 2532 /* start automatic rate control timer */ 2533 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2534 2535 return (error); 2536 } 2537 2538 /* 2539 * Send a scan request to the firmware. Since this command is huge, we map it 2540 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2541 * much of this code is similar to that in wpi_cmd but because we must manually 2542 * construct the probe & channels, we duplicate what's needed here. XXX In the 2543 * future, this function should be modified to use wpi_cmd to help cleanup the 2544 * code base. 2545 */ 2546 static int 2547 wpi_scan(struct wpi_softc *sc) 2548 { 2549 struct ifnet *ifp = sc->sc_ifp; 2550 struct ieee80211com *ic = ifp->if_l2com; 2551 struct ieee80211_scan_state *ss = ic->ic_scan; 2552 struct wpi_tx_ring *ring = &sc->cmdq; 2553 struct wpi_tx_desc *desc; 2554 struct wpi_tx_data *data; 2555 struct wpi_tx_cmd *cmd; 2556 struct wpi_scan_hdr *hdr; 2557 struct wpi_scan_chan *chan; 2558 struct ieee80211_frame *wh; 2559 struct ieee80211_rateset *rs; 2560 struct ieee80211_channel *c; 2561 enum ieee80211_phymode mode; 2562 uint8_t *frm; 2563 int nrates, pktlen, error, i, nssid; 2564 bus_addr_t physaddr; 2565 2566 desc = &ring->desc[ring->cur]; 2567 data = &ring->data[ring->cur]; 2568 2569 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2570 if (data->m == NULL) { 2571 device_printf(sc->sc_dev, 2572 "could not allocate mbuf for scan command\n"); 2573 return ENOMEM; 2574 } 2575 2576 cmd = mtod(data->m, struct wpi_tx_cmd *); 2577 cmd->code = WPI_CMD_SCAN; 2578 cmd->flags = 0; 2579 cmd->qid = ring->qid; 2580 cmd->idx = ring->cur; 2581 2582 hdr = (struct wpi_scan_hdr *)cmd->data; 2583 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2584 2585 /* 2586 * Move to the next channel if no packets are received within 5 msecs 2587 * after sending the probe request (this helps to reduce the duration 2588 * of active scans). 2589 */ 2590 hdr->quiet = htole16(5); 2591 hdr->threshold = htole16(1); 2592 2593 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2594 /* send probe requests at 6Mbps */ 2595 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2596 2597 /* Enable crc checking */ 2598 hdr->promotion = htole16(1); 2599 } else { 2600 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2601 /* send probe requests at 1Mbps */ 2602 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2603 } 2604 hdr->tx.id = WPI_ID_BROADCAST; 2605 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2606 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2607 2608 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2609 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2610 for (i = 0; i < nssid; i++) { 2611 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2612 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2613 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2614 hdr->scan_essids[i].esslen); 2615 #ifdef WPI_DEBUG 2616 if (wpi_debug & WPI_DEBUG_SCANNING) { 2617 printf("Scanning Essid: "); 2618 ieee80211_print_essid(hdr->scan_essids[i].essid, 2619 hdr->scan_essids[i].esslen); 2620 printf("\n"); 2621 } 2622 #endif 2623 } 2624 2625 /* 2626 * Build a probe request frame. Most of the following code is a 2627 * copy & paste of what is done in net80211. 2628 */ 2629 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2630 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2631 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2632 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2633 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2634 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2635 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2636 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2637 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2638 2639 frm = (uint8_t *)(wh + 1); 2640 2641 /* add essid IE, the hardware will fill this in for us */ 2642 *frm++ = IEEE80211_ELEMID_SSID; 2643 *frm++ = 0; 2644 2645 mode = ieee80211_chan2mode(ic->ic_curchan); 2646 rs = &ic->ic_sup_rates[mode]; 2647 2648 /* add supported rates IE */ 2649 *frm++ = IEEE80211_ELEMID_RATES; 2650 nrates = rs->rs_nrates; 2651 if (nrates > IEEE80211_RATE_SIZE) 2652 nrates = IEEE80211_RATE_SIZE; 2653 *frm++ = nrates; 2654 memcpy(frm, rs->rs_rates, nrates); 2655 frm += nrates; 2656 2657 /* add supported xrates IE */ 2658 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2659 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2660 *frm++ = IEEE80211_ELEMID_XRATES; 2661 *frm++ = nrates; 2662 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2663 frm += nrates; 2664 } 2665 2666 /* setup length of probe request */ 2667 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2668 2669 /* 2670 * Construct information about the channel that we 2671 * want to scan. The firmware expects this to be directly 2672 * after the scan probe request 2673 */ 2674 c = ic->ic_curchan; 2675 chan = (struct wpi_scan_chan *)frm; 2676 chan->chan = ieee80211_chan2ieee(ic, c); 2677 chan->flags = 0; 2678 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2679 chan->flags |= WPI_CHAN_ACTIVE; 2680 if (nssid != 0) 2681 chan->flags |= WPI_CHAN_DIRECT; 2682 } 2683 chan->gain_dsp = 0x6e; /* Default level */ 2684 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2685 chan->active = htole16(10); 2686 chan->passive = htole16(ss->ss_maxdwell); 2687 chan->gain_radio = 0x3b; 2688 } else { 2689 chan->active = htole16(20); 2690 chan->passive = htole16(ss->ss_maxdwell); 2691 chan->gain_radio = 0x28; 2692 } 2693 2694 DPRINTFN(WPI_DEBUG_SCANNING, 2695 ("Scanning %u Passive: %d\n", 2696 chan->chan, 2697 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2698 2699 hdr->nchan++; 2700 chan++; 2701 2702 frm += sizeof (struct wpi_scan_chan); 2703 #if 0 2704 // XXX All Channels.... 2705 for (c = &ic->ic_channels[1]; 2706 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2707 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2708 continue; 2709 2710 chan->chan = ieee80211_chan2ieee(ic, c); 2711 chan->flags = 0; 2712 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2713 chan->flags |= WPI_CHAN_ACTIVE; 2714 if (ic->ic_des_ssid[0].len != 0) 2715 chan->flags |= WPI_CHAN_DIRECT; 2716 } 2717 chan->gain_dsp = 0x6e; /* Default level */ 2718 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2719 chan->active = htole16(10); 2720 chan->passive = htole16(110); 2721 chan->gain_radio = 0x3b; 2722 } else { 2723 chan->active = htole16(20); 2724 chan->passive = htole16(120); 2725 chan->gain_radio = 0x28; 2726 } 2727 2728 DPRINTFN(WPI_DEBUG_SCANNING, 2729 ("Scanning %u Passive: %d\n", 2730 chan->chan, 2731 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2732 2733 hdr->nchan++; 2734 chan++; 2735 2736 frm += sizeof (struct wpi_scan_chan); 2737 } 2738 #endif 2739 2740 hdr->len = htole16(frm - (uint8_t *)hdr); 2741 pktlen = frm - (uint8_t *)cmd; 2742 2743 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2744 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2745 if (error != 0) { 2746 device_printf(sc->sc_dev, "could not map scan command\n"); 2747 m_freem(data->m); 2748 data->m = NULL; 2749 return error; 2750 } 2751 2752 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2753 desc->segs[0].addr = htole32(physaddr); 2754 desc->segs[0].len = htole32(pktlen); 2755 2756 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2757 BUS_DMASYNC_PREWRITE); 2758 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2759 2760 /* kick cmd ring */ 2761 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2762 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2763 2764 sc->sc_scan_timer = 5; 2765 return 0; /* will be notified async. of failure/success */ 2766 } 2767 2768 /** 2769 * Configure the card to listen to a particular channel, this transisions the 2770 * card in to being able to receive frames from remote devices. 2771 */ 2772 static int 2773 wpi_config(struct wpi_softc *sc) 2774 { 2775 struct ifnet *ifp = sc->sc_ifp; 2776 struct ieee80211com *ic = ifp->if_l2com; 2777 struct wpi_power power; 2778 struct wpi_bluetooth bluetooth; 2779 struct wpi_node_info node; 2780 int error; 2781 2782 /* set power mode */ 2783 memset(&power, 0, sizeof power); 2784 power.flags = htole32(WPI_POWER_CAM|0x8); 2785 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2786 if (error != 0) { 2787 device_printf(sc->sc_dev, "could not set power mode\n"); 2788 return error; 2789 } 2790 2791 /* configure bluetooth coexistence */ 2792 memset(&bluetooth, 0, sizeof bluetooth); 2793 bluetooth.flags = 3; 2794 bluetooth.lead = 0xaa; 2795 bluetooth.kill = 1; 2796 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2797 0); 2798 if (error != 0) { 2799 device_printf(sc->sc_dev, 2800 "could not configure bluetooth coexistence\n"); 2801 return error; 2802 } 2803 2804 /* configure adapter */ 2805 memset(&sc->config, 0, sizeof (struct wpi_config)); 2806 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2807 /*set default channel*/ 2808 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2809 sc->config.flags = htole32(WPI_CONFIG_TSF); 2810 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2811 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2812 WPI_CONFIG_24GHZ); 2813 } 2814 sc->config.filter = 0; 2815 switch (ic->ic_opmode) { 2816 case IEEE80211_M_STA: 2817 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2818 sc->config.mode = WPI_MODE_STA; 2819 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2820 break; 2821 case IEEE80211_M_IBSS: 2822 case IEEE80211_M_AHDEMO: 2823 sc->config.mode = WPI_MODE_IBSS; 2824 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2825 WPI_FILTER_MULTICAST); 2826 break; 2827 case IEEE80211_M_HOSTAP: 2828 sc->config.mode = WPI_MODE_HOSTAP; 2829 break; 2830 case IEEE80211_M_MONITOR: 2831 sc->config.mode = WPI_MODE_MONITOR; 2832 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2833 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2834 break; 2835 } 2836 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2837 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2838 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2839 sizeof (struct wpi_config), 0); 2840 if (error != 0) { 2841 device_printf(sc->sc_dev, "configure command failed\n"); 2842 return error; 2843 } 2844 2845 /* configuration has changed, set Tx power accordingly */ 2846 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2847 device_printf(sc->sc_dev, "could not set Tx power\n"); 2848 return error; 2849 } 2850 2851 /* add broadcast node */ 2852 memset(&node, 0, sizeof node); 2853 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2854 node.id = WPI_ID_BROADCAST; 2855 node.rate = wpi_plcp_signal(2); 2856 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2857 if (error != 0) { 2858 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2859 return error; 2860 } 2861 2862 /* Setup rate scalling */ 2863 error = wpi_mrr_setup(sc); 2864 if (error != 0) { 2865 device_printf(sc->sc_dev, "could not setup MRR\n"); 2866 return error; 2867 } 2868 2869 return 0; 2870 } 2871 2872 static void 2873 wpi_stop_master(struct wpi_softc *sc) 2874 { 2875 uint32_t tmp; 2876 int ntries; 2877 2878 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2879 2880 tmp = WPI_READ(sc, WPI_RESET); 2881 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2882 2883 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2884 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2885 return; /* already asleep */ 2886 2887 for (ntries = 0; ntries < 100; ntries++) { 2888 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2889 break; 2890 DELAY(10); 2891 } 2892 if (ntries == 100) { 2893 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2894 } 2895 } 2896 2897 static int 2898 wpi_power_up(struct wpi_softc *sc) 2899 { 2900 uint32_t tmp; 2901 int ntries; 2902 2903 wpi_mem_lock(sc); 2904 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2905 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2906 wpi_mem_unlock(sc); 2907 2908 for (ntries = 0; ntries < 5000; ntries++) { 2909 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2910 break; 2911 DELAY(10); 2912 } 2913 if (ntries == 5000) { 2914 device_printf(sc->sc_dev, 2915 "timeout waiting for NIC to power up\n"); 2916 return ETIMEDOUT; 2917 } 2918 return 0; 2919 } 2920 2921 static int 2922 wpi_reset(struct wpi_softc *sc) 2923 { 2924 uint32_t tmp; 2925 int ntries; 2926 2927 DPRINTFN(WPI_DEBUG_HW, 2928 ("Resetting the card - clearing any uploaded firmware\n")); 2929 2930 /* clear any pending interrupts */ 2931 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2932 2933 tmp = WPI_READ(sc, WPI_PLL_CTL); 2934 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2935 2936 tmp = WPI_READ(sc, WPI_CHICKEN); 2937 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2938 2939 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2940 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2941 2942 /* wait for clock stabilization */ 2943 for (ntries = 0; ntries < 25000; ntries++) { 2944 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2945 break; 2946 DELAY(10); 2947 } 2948 if (ntries == 25000) { 2949 device_printf(sc->sc_dev, 2950 "timeout waiting for clock stabilization\n"); 2951 return ETIMEDOUT; 2952 } 2953 2954 /* initialize EEPROM */ 2955 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2956 2957 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2958 device_printf(sc->sc_dev, "EEPROM not found\n"); 2959 return EIO; 2960 } 2961 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2962 2963 return 0; 2964 } 2965 2966 static void 2967 wpi_hw_config(struct wpi_softc *sc) 2968 { 2969 uint32_t rev, hw; 2970 2971 /* voodoo from the Linux "driver".. */ 2972 hw = WPI_READ(sc, WPI_HWCONFIG); 2973 2974 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2975 if ((rev & 0xc0) == 0x40) 2976 hw |= WPI_HW_ALM_MB; 2977 else if (!(rev & 0x80)) 2978 hw |= WPI_HW_ALM_MM; 2979 2980 if (sc->cap == 0x80) 2981 hw |= WPI_HW_SKU_MRC; 2982 2983 hw &= ~WPI_HW_REV_D; 2984 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2985 hw |= WPI_HW_REV_D; 2986 2987 if (sc->type > 1) 2988 hw |= WPI_HW_TYPE_B; 2989 2990 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2991 } 2992 2993 static void 2994 wpi_rfkill_resume(struct wpi_softc *sc) 2995 { 2996 struct ifnet *ifp = sc->sc_ifp; 2997 struct ieee80211com *ic = ifp->if_l2com; 2998 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2999 int ntries; 3000 3001 /* enable firmware again */ 3002 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3003 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3004 3005 /* wait for thermal sensors to calibrate */ 3006 for (ntries = 0; ntries < 1000; ntries++) { 3007 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3008 break; 3009 DELAY(10); 3010 } 3011 3012 if (ntries == 1000) { 3013 device_printf(sc->sc_dev, 3014 "timeout waiting for thermal calibration\n"); 3015 WPI_UNLOCK(sc); 3016 return; 3017 } 3018 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3019 3020 if (wpi_config(sc) != 0) { 3021 device_printf(sc->sc_dev, "device config failed\n"); 3022 WPI_UNLOCK(sc); 3023 return; 3024 } 3025 3026 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3027 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3028 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3029 3030 if (vap != NULL) { 3031 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3032 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3033 taskqueue_enqueue(taskqueue_swi, 3034 &sc->sc_bmiss_task); 3035 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3036 } else 3037 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3038 } else { 3039 ieee80211_scan_next(vap); 3040 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3041 } 3042 } 3043 3044 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3045 } 3046 3047 static void 3048 wpi_init_locked(struct wpi_softc *sc, int force) 3049 { 3050 struct ifnet *ifp = sc->sc_ifp; 3051 uint32_t tmp; 3052 int ntries, qid; 3053 3054 wpi_stop_locked(sc); 3055 (void)wpi_reset(sc); 3056 3057 wpi_mem_lock(sc); 3058 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3059 DELAY(20); 3060 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3061 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3062 wpi_mem_unlock(sc); 3063 3064 (void)wpi_power_up(sc); 3065 wpi_hw_config(sc); 3066 3067 /* init Rx ring */ 3068 wpi_mem_lock(sc); 3069 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3070 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3071 offsetof(struct wpi_shared, next)); 3072 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3073 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3074 wpi_mem_unlock(sc); 3075 3076 /* init Tx rings */ 3077 wpi_mem_lock(sc); 3078 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3079 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3080 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3081 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3082 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3083 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3084 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3085 3086 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3087 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3088 3089 for (qid = 0; qid < 6; qid++) { 3090 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3091 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3092 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3093 } 3094 wpi_mem_unlock(sc); 3095 3096 /* clear "radio off" and "disable command" bits (reversed logic) */ 3097 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3098 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3099 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3100 3101 /* clear any pending interrupts */ 3102 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3103 3104 /* enable interrupts */ 3105 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3106 3107 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3108 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3109 3110 if ((wpi_load_firmware(sc)) != 0) { 3111 device_printf(sc->sc_dev, 3112 "A problem occurred loading the firmware to the driver\n"); 3113 return; 3114 } 3115 3116 /* At this point the firmware is up and running. If the hardware 3117 * RF switch is turned off thermal calibration will fail, though 3118 * the card is still happy to continue to accept commands, catch 3119 * this case and schedule a task to watch for it to be turned on. 3120 */ 3121 wpi_mem_lock(sc); 3122 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3123 wpi_mem_unlock(sc); 3124 3125 if (!(tmp & 0x1)) { 3126 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3127 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3128 goto out; 3129 } 3130 3131 /* wait for thermal sensors to calibrate */ 3132 for (ntries = 0; ntries < 1000; ntries++) { 3133 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3134 break; 3135 DELAY(10); 3136 } 3137 3138 if (ntries == 1000) { 3139 device_printf(sc->sc_dev, 3140 "timeout waiting for thermal sensors calibration\n"); 3141 return; 3142 } 3143 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3144 3145 if (wpi_config(sc) != 0) { 3146 device_printf(sc->sc_dev, "device config failed\n"); 3147 return; 3148 } 3149 3150 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3151 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3152 out: 3153 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3154 } 3155 3156 static void 3157 wpi_init(void *arg) 3158 { 3159 struct wpi_softc *sc = arg; 3160 struct ifnet *ifp = sc->sc_ifp; 3161 struct ieee80211com *ic = ifp->if_l2com; 3162 3163 WPI_LOCK(sc); 3164 wpi_init_locked(sc, 0); 3165 WPI_UNLOCK(sc); 3166 3167 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3168 ieee80211_start_all(ic); /* start all vaps */ 3169 } 3170 3171 static void 3172 wpi_stop_locked(struct wpi_softc *sc) 3173 { 3174 struct ifnet *ifp = sc->sc_ifp; 3175 uint32_t tmp; 3176 int ac; 3177 3178 sc->sc_tx_timer = 0; 3179 sc->sc_scan_timer = 0; 3180 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3181 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3182 callout_stop(&sc->watchdog_to); 3183 callout_stop(&sc->calib_to); 3184 3185 3186 /* disable interrupts */ 3187 WPI_WRITE(sc, WPI_MASK, 0); 3188 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3189 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3190 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3191 3192 /* Clear any commands left in the command buffer */ 3193 memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd)); 3194 memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg)); 3195 sc->sc_cmd_cur = 0; 3196 sc->sc_cmd_next = 0; 3197 3198 wpi_mem_lock(sc); 3199 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3200 wpi_mem_unlock(sc); 3201 3202 /* reset all Tx rings */ 3203 for (ac = 0; ac < 4; ac++) 3204 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3205 wpi_reset_tx_ring(sc, &sc->cmdq); 3206 3207 /* reset Rx ring */ 3208 wpi_reset_rx_ring(sc, &sc->rxq); 3209 3210 wpi_mem_lock(sc); 3211 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3212 wpi_mem_unlock(sc); 3213 3214 DELAY(5); 3215 3216 wpi_stop_master(sc); 3217 3218 tmp = WPI_READ(sc, WPI_RESET); 3219 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3220 sc->flags &= ~WPI_FLAG_BUSY; 3221 } 3222 3223 static void 3224 wpi_stop(struct wpi_softc *sc) 3225 { 3226 WPI_LOCK(sc); 3227 wpi_stop_locked(sc); 3228 WPI_UNLOCK(sc); 3229 } 3230 3231 static void 3232 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3233 { 3234 struct ieee80211vap *vap = ni->ni_vap; 3235 struct wpi_vap *wvp = WPI_VAP(vap); 3236 3237 ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni); 3238 } 3239 3240 static void 3241 wpi_calib_timeout(void *arg) 3242 { 3243 struct wpi_softc *sc = arg; 3244 struct ifnet *ifp = sc->sc_ifp; 3245 struct ieee80211com *ic = ifp->if_l2com; 3246 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3247 int temp; 3248 3249 if (vap->iv_state != IEEE80211_S_RUN) 3250 return; 3251 3252 /* update sensor data */ 3253 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3254 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3255 3256 wpi_power_calibration(sc, temp); 3257 3258 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3259 } 3260 3261 /* 3262 * This function is called periodically (every 60 seconds) to adjust output 3263 * power to temperature changes. 3264 */ 3265 static void 3266 wpi_power_calibration(struct wpi_softc *sc, int temp) 3267 { 3268 struct ifnet *ifp = sc->sc_ifp; 3269 struct ieee80211com *ic = ifp->if_l2com; 3270 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3271 3272 /* sanity-check read value */ 3273 if (temp < -260 || temp > 25) { 3274 /* this can't be correct, ignore */ 3275 DPRINTFN(WPI_DEBUG_TEMP, 3276 ("out-of-range temperature reported: %d\n", temp)); 3277 return; 3278 } 3279 3280 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3281 3282 /* adjust Tx power if need be */ 3283 if (abs(temp - sc->temp) <= 6) 3284 return; 3285 3286 sc->temp = temp; 3287 3288 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3289 /* just warn, too bad for the automatic calibration... */ 3290 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3291 } 3292 } 3293 3294 /** 3295 * Read the eeprom to find out what channels are valid for the given 3296 * band and update net80211 with what we find. 3297 */ 3298 static void 3299 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3300 { 3301 struct ifnet *ifp = sc->sc_ifp; 3302 struct ieee80211com *ic = ifp->if_l2com; 3303 const struct wpi_chan_band *band = &wpi_bands[n]; 3304 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3305 struct ieee80211_channel *c; 3306 int chan, i, passive; 3307 3308 wpi_read_prom_data(sc, band->addr, channels, 3309 band->nchan * sizeof (struct wpi_eeprom_chan)); 3310 3311 for (i = 0; i < band->nchan; i++) { 3312 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3313 DPRINTFN(WPI_DEBUG_HW, 3314 ("Channel Not Valid: %d, band %d\n", 3315 band->chan[i],n)); 3316 continue; 3317 } 3318 3319 passive = 0; 3320 chan = band->chan[i]; 3321 c = &ic->ic_channels[ic->ic_nchans++]; 3322 3323 /* is active scan allowed on this channel? */ 3324 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3325 passive = IEEE80211_CHAN_PASSIVE; 3326 } 3327 3328 if (n == 0) { /* 2GHz band */ 3329 c->ic_ieee = chan; 3330 c->ic_freq = ieee80211_ieee2mhz(chan, 3331 IEEE80211_CHAN_2GHZ); 3332 c->ic_flags = IEEE80211_CHAN_B | passive; 3333 3334 c = &ic->ic_channels[ic->ic_nchans++]; 3335 c->ic_ieee = chan; 3336 c->ic_freq = ieee80211_ieee2mhz(chan, 3337 IEEE80211_CHAN_2GHZ); 3338 c->ic_flags = IEEE80211_CHAN_G | passive; 3339 3340 } else { /* 5GHz band */ 3341 /* 3342 * Some 3945ABG adapters support channels 7, 8, 11 3343 * and 12 in the 2GHz *and* 5GHz bands. 3344 * Because of limitations in our net80211(9) stack, 3345 * we can't support these channels in 5GHz band. 3346 * XXX not true; just need to map to proper frequency 3347 */ 3348 if (chan <= 14) 3349 continue; 3350 3351 c->ic_ieee = chan; 3352 c->ic_freq = ieee80211_ieee2mhz(chan, 3353 IEEE80211_CHAN_5GHZ); 3354 c->ic_flags = IEEE80211_CHAN_A | passive; 3355 } 3356 3357 /* save maximum allowed power for this channel */ 3358 sc->maxpwr[chan] = channels[i].maxpwr; 3359 3360 #if 0 3361 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3362 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3363 //ic->ic_channels[chan].ic_minpower... 3364 //ic->ic_channels[chan].ic_maxregtxpower... 3365 #endif 3366 3367 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3368 " passive=%d, offset %d\n", chan, c->ic_freq, 3369 channels[i].flags, sc->maxpwr[chan], 3370 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3371 ic->ic_nchans)); 3372 } 3373 } 3374 3375 static void 3376 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3377 { 3378 struct wpi_power_group *group = &sc->groups[n]; 3379 struct wpi_eeprom_group rgroup; 3380 int i; 3381 3382 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3383 sizeof rgroup); 3384 3385 /* save power group information */ 3386 group->chan = rgroup.chan; 3387 group->maxpwr = rgroup.maxpwr; 3388 /* temperature at which the samples were taken */ 3389 group->temp = (int16_t)le16toh(rgroup.temp); 3390 3391 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3392 group->chan, group->maxpwr, group->temp)); 3393 3394 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3395 group->samples[i].index = rgroup.samples[i].index; 3396 group->samples[i].power = rgroup.samples[i].power; 3397 3398 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3399 group->samples[i].index, group->samples[i].power)); 3400 } 3401 } 3402 3403 /* 3404 * Update Tx power to match what is defined for channel `c'. 3405 */ 3406 static int 3407 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3408 { 3409 struct ifnet *ifp = sc->sc_ifp; 3410 struct ieee80211com *ic = ifp->if_l2com; 3411 struct wpi_power_group *group; 3412 struct wpi_cmd_txpower txpower; 3413 u_int chan; 3414 int i; 3415 3416 /* get channel number */ 3417 chan = ieee80211_chan2ieee(ic, c); 3418 3419 /* find the power group to which this channel belongs */ 3420 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3421 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3422 if (chan <= group->chan) 3423 break; 3424 } else 3425 group = &sc->groups[0]; 3426 3427 memset(&txpower, 0, sizeof txpower); 3428 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3429 txpower.channel = htole16(chan); 3430 3431 /* set Tx power for all OFDM and CCK rates */ 3432 for (i = 0; i <= 11 ; i++) { 3433 /* retrieve Tx power for this channel/rate combination */ 3434 int idx = wpi_get_power_index(sc, group, c, 3435 wpi_ridx_to_rate[i]); 3436 3437 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3438 3439 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3440 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3441 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3442 } else { 3443 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3444 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3445 } 3446 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3447 chan, wpi_ridx_to_rate[i], idx)); 3448 } 3449 3450 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3451 } 3452 3453 /* 3454 * Determine Tx power index for a given channel/rate combination. 3455 * This takes into account the regulatory information from EEPROM and the 3456 * current temperature. 3457 */ 3458 static int 3459 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3460 struct ieee80211_channel *c, int rate) 3461 { 3462 /* fixed-point arithmetic division using a n-bit fractional part */ 3463 #define fdivround(a, b, n) \ 3464 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3465 3466 /* linear interpolation */ 3467 #define interpolate(x, x1, y1, x2, y2, n) \ 3468 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3469 3470 struct ifnet *ifp = sc->sc_ifp; 3471 struct ieee80211com *ic = ifp->if_l2com; 3472 struct wpi_power_sample *sample; 3473 int pwr, idx; 3474 u_int chan; 3475 3476 /* get channel number */ 3477 chan = ieee80211_chan2ieee(ic, c); 3478 3479 /* default power is group's maximum power - 3dB */ 3480 pwr = group->maxpwr / 2; 3481 3482 /* decrease power for highest OFDM rates to reduce distortion */ 3483 switch (rate) { 3484 case 72: /* 36Mb/s */ 3485 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3486 break; 3487 case 96: /* 48Mb/s */ 3488 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3489 break; 3490 case 108: /* 54Mb/s */ 3491 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3492 break; 3493 } 3494 3495 /* never exceed channel's maximum allowed Tx power */ 3496 pwr = min(pwr, sc->maxpwr[chan]); 3497 3498 /* retrieve power index into gain tables from samples */ 3499 for (sample = group->samples; sample < &group->samples[3]; sample++) 3500 if (pwr > sample[1].power) 3501 break; 3502 /* fixed-point linear interpolation using a 19-bit fractional part */ 3503 idx = interpolate(pwr, sample[0].power, sample[0].index, 3504 sample[1].power, sample[1].index, 19); 3505 3506 /* 3507 * Adjust power index based on current temperature 3508 * - if colder than factory-calibrated: decreate output power 3509 * - if warmer than factory-calibrated: increase output power 3510 */ 3511 idx -= (sc->temp - group->temp) * 11 / 100; 3512 3513 /* decrease power for CCK rates (-5dB) */ 3514 if (!WPI_RATE_IS_OFDM(rate)) 3515 idx += 10; 3516 3517 /* keep power index in a valid range */ 3518 if (idx < 0) 3519 return 0; 3520 if (idx > WPI_MAX_PWR_INDEX) 3521 return WPI_MAX_PWR_INDEX; 3522 return idx; 3523 3524 #undef interpolate 3525 #undef fdivround 3526 } 3527 3528 /** 3529 * Called by net80211 framework to indicate that a scan 3530 * is starting. This function doesn't actually do the scan, 3531 * wpi_scan_curchan starts things off. This function is more 3532 * of an early warning from the framework we should get ready 3533 * for the scan. 3534 */ 3535 static void 3536 wpi_scan_start(struct ieee80211com *ic) 3537 { 3538 struct ifnet *ifp = ic->ic_ifp; 3539 struct wpi_softc *sc = ifp->if_softc; 3540 3541 wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL); 3542 } 3543 3544 /** 3545 * Called by the net80211 framework, indicates that the 3546 * scan has ended. If there is a scan in progress on the card 3547 * then it should be aborted. 3548 */ 3549 static void 3550 wpi_scan_end(struct ieee80211com *ic) 3551 { 3552 struct ifnet *ifp = ic->ic_ifp; 3553 struct wpi_softc *sc = ifp->if_softc; 3554 3555 wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL); 3556 } 3557 3558 /** 3559 * Called by the net80211 framework to indicate to the driver 3560 * that the channel should be changed 3561 */ 3562 static void 3563 wpi_set_channel(struct ieee80211com *ic) 3564 { 3565 struct ifnet *ifp = ic->ic_ifp; 3566 struct wpi_softc *sc = ifp->if_softc; 3567 3568 /* 3569 * Only need to set the channel in Monitor mode. AP scanning and auth 3570 * are already taken care of by their respective firmware commands. 3571 */ 3572 if (ic->ic_opmode == IEEE80211_M_MONITOR) 3573 wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL); 3574 } 3575 3576 /** 3577 * Called by net80211 to indicate that we need to scan the current 3578 * channel. The channel is previously be set via the wpi_set_channel 3579 * callback. 3580 */ 3581 static void 3582 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3583 { 3584 struct ieee80211vap *vap = ss->ss_vap; 3585 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3586 struct wpi_softc *sc = ifp->if_softc; 3587 3588 wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL); 3589 } 3590 3591 /** 3592 * Called by the net80211 framework to indicate 3593 * the minimum dwell time has been met, terminate the scan. 3594 * We don't actually terminate the scan as the firmware will notify 3595 * us when it's finished and we have no way to interrupt it. 3596 */ 3597 static void 3598 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3599 { 3600 /* NB: don't try to abort scan; wait for firmware to finish */ 3601 } 3602 3603 /** 3604 * The ops function is called to perform some actual work. 3605 * because we can't sleep from any of the ic callbacks, we queue an 3606 * op task with wpi_queue_cmd and have the taskqueue process that task. 3607 * The task that gets cued is a op task, which ends up calling this function. 3608 */ 3609 static void 3610 wpi_ops(void *arg0, int pending) 3611 { 3612 struct wpi_softc *sc = arg0; 3613 struct ifnet *ifp = sc->sc_ifp; 3614 struct ieee80211com *ic = ifp->if_l2com; 3615 int cmd, arg, error; 3616 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3617 3618 again: 3619 WPI_CMD_LOCK(sc); 3620 cmd = sc->sc_cmd[sc->sc_cmd_cur]; 3621 arg = sc->sc_cmd_arg[sc->sc_cmd_cur]; 3622 3623 if (cmd == 0) { 3624 /* No more commands to process */ 3625 WPI_CMD_UNLOCK(sc); 3626 return; 3627 } 3628 sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */ 3629 sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */ 3630 sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS; 3631 WPI_CMD_UNLOCK(sc); 3632 WPI_LOCK(sc); 3633 3634 DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd)); 3635 3636 switch (cmd) { 3637 case WPI_RESTART: 3638 wpi_init_locked(sc, 0); 3639 WPI_UNLOCK(sc); 3640 return; 3641 3642 case WPI_RF_RESTART: 3643 wpi_rfkill_resume(sc); 3644 WPI_UNLOCK(sc); 3645 return; 3646 } 3647 3648 if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3649 WPI_UNLOCK(sc); 3650 return; 3651 } 3652 3653 switch (cmd) { 3654 case WPI_SCAN_START: 3655 /* make the link LED blink while we're scanning */ 3656 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3657 sc->flags |= WPI_FLAG_SCANNING; 3658 break; 3659 3660 case WPI_SCAN_STOP: 3661 sc->flags &= ~WPI_FLAG_SCANNING; 3662 break; 3663 3664 case WPI_SCAN_CURCHAN: 3665 if (wpi_scan(sc)) 3666 ieee80211_cancel_scan(vap); 3667 break; 3668 3669 case WPI_SET_CHAN: 3670 error = wpi_config(sc); 3671 if (error != 0) 3672 device_printf(sc->sc_dev, 3673 "error %d settting channel\n", error); 3674 break; 3675 3676 case WPI_AUTH: 3677 /* The node must be registered in the firmware before auth */ 3678 error = wpi_auth(sc, vap); 3679 WPI_UNLOCK(sc); 3680 if (error != 0) { 3681 device_printf(sc->sc_dev, 3682 "%s: could not move to auth state, error %d\n", 3683 __func__, error); 3684 return; 3685 } 3686 IEEE80211_LOCK(ic); 3687 WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg); 3688 if (vap->iv_newstate_cb != NULL) 3689 vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg); 3690 IEEE80211_UNLOCK(ic); 3691 goto again; 3692 3693 case WPI_RUN: 3694 error = wpi_run(sc, vap); 3695 WPI_UNLOCK(sc); 3696 if (error != 0) { 3697 device_printf(sc->sc_dev, 3698 "%s: could not move to run state, error %d\n", 3699 __func__, error); 3700 return; 3701 } 3702 IEEE80211_LOCK(ic); 3703 WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg); 3704 if (vap->iv_newstate_cb != NULL) 3705 vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg); 3706 IEEE80211_UNLOCK(ic); 3707 goto again; 3708 } 3709 WPI_UNLOCK(sc); 3710 3711 /* Take another pass */ 3712 goto again; 3713 } 3714 3715 /** 3716 * queue a command for later execution in a different thread. 3717 * This is needed as the net80211 callbacks do not allow 3718 * sleeping, since we need to sleep to confirm commands have 3719 * been processed by the firmware, we must defer execution to 3720 * a sleep enabled thread. 3721 */ 3722 static int 3723 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush) 3724 { 3725 WPI_CMD_LOCK(sc); 3726 3727 if (flush) { 3728 memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd)); 3729 memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg)); 3730 sc->sc_cmd_cur = 0; 3731 sc->sc_cmd_next = 0; 3732 } 3733 3734 if (sc->sc_cmd[sc->sc_cmd_next] != 0) { 3735 WPI_CMD_UNLOCK(sc); 3736 DPRINTF(("%s: command %d dropped\n", __func__, cmd)); 3737 return (EBUSY); 3738 } 3739 3740 sc->sc_cmd[sc->sc_cmd_next] = cmd; 3741 sc->sc_cmd_arg[sc->sc_cmd_next] = arg; 3742 sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS; 3743 3744 taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask); 3745 3746 WPI_CMD_UNLOCK(sc); 3747 3748 return 0; 3749 } 3750 3751 /* 3752 * Allocate DMA-safe memory for firmware transfer. 3753 */ 3754 static int 3755 wpi_alloc_fwmem(struct wpi_softc *sc) 3756 { 3757 /* allocate enough contiguous space to store text and data */ 3758 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3759 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3760 BUS_DMA_NOWAIT); 3761 } 3762 3763 static void 3764 wpi_free_fwmem(struct wpi_softc *sc) 3765 { 3766 wpi_dma_contig_free(&sc->fw_dma); 3767 } 3768 3769 /** 3770 * Called every second, wpi_watchdog used by the watch dog timer 3771 * to check that the card is still alive 3772 */ 3773 static void 3774 wpi_watchdog(void *arg) 3775 { 3776 struct wpi_softc *sc = arg; 3777 struct ifnet *ifp = sc->sc_ifp; 3778 uint32_t tmp; 3779 3780 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3781 3782 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3783 /* No need to lock firmware memory */ 3784 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3785 3786 if ((tmp & 0x1) == 0) { 3787 /* Radio kill switch is still off */ 3788 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3789 return; 3790 } 3791 3792 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3793 wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR); 3794 return; 3795 } 3796 3797 if (sc->sc_tx_timer > 0) { 3798 if (--sc->sc_tx_timer == 0) { 3799 device_printf(sc->sc_dev,"device timeout\n"); 3800 ifp->if_oerrors++; 3801 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 3802 } 3803 } 3804 if (sc->sc_scan_timer > 0) { 3805 struct ifnet *ifp = sc->sc_ifp; 3806 struct ieee80211com *ic = ifp->if_l2com; 3807 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3808 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3809 device_printf(sc->sc_dev,"scan timeout\n"); 3810 ieee80211_cancel_scan(vap); 3811 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 3812 } 3813 } 3814 3815 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3816 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3817 } 3818 3819 #ifdef WPI_DEBUG 3820 static const char *wpi_cmd_str(int cmd) 3821 { 3822 switch (cmd) { 3823 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3824 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3825 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3826 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3827 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3828 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3829 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3830 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3831 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3832 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3833 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3834 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3835 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3836 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3837 3838 default: 3839 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3840 return "UNKNOWN CMD"; /* Make the compiler happy */ 3841 } 3842 } 3843 #endif 3844 3845 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3846 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3847 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3848 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3849