1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 * 26 * The 3945ABG network adapter doesn't use traditional hardware as 27 * many other adaptors do. Instead at run time the eeprom is set into a known 28 * state and told to load boot firmware. The boot firmware loads an init and a 29 * main binary firmware image into SRAM on the card via DMA. 30 * Once the firmware is loaded, the driver/hw then 31 * communicate by way of circular dma rings via the SRAM to the firmware. 32 * 33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 34 * The 4 tx data rings allow for prioritization QoS. 35 * 36 * The rx data ring consists of 32 dma buffers. Two registers are used to 37 * indicate where in the ring the driver and the firmware are up to. The 38 * driver sets the initial read index (reg1) and the initial write index (reg2), 39 * the firmware updates the read index (reg1) on rx of a packet and fires an 40 * interrupt. The driver then processes the buffers starting at reg1 indicating 41 * to the firmware which buffers have been accessed by updating reg2. At the 42 * same time allocating new memory for the processed buffer. 43 * 44 * A similar thing happens with the tx rings. The difference is the firmware 45 * stop processing buffers once the queue is full and until confirmation 46 * of a successful transmition (tx_done) has occurred. 47 * 48 * The command ring operates in the same manner as the tx queues. 49 * 50 * All communication direct to the card (ie eeprom) is classed as Stage1 51 * communication 52 * 53 * All communication via the firmware to the card is classed as State2. 54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 55 * firmware. The bootstrap firmware and runtime firmware are loaded 56 * from host memory via dma to the card then told to execute. From this point 57 * on the majority of communications between the driver and the card goes 58 * via the firmware. 59 */ 60 61 #include "opt_wlan.h" 62 #include "opt_wpi.h" 63 64 #include <sys/param.h> 65 #include <sys/sysctl.h> 66 #include <sys/sockio.h> 67 #include <sys/mbuf.h> 68 #include <sys/kernel.h> 69 #include <sys/socket.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/queue.h> 73 #include <sys/taskqueue.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/endian.h> 77 #include <sys/linker.h> 78 #include <sys/firmware.h> 79 80 #include <machine/bus.h> 81 #include <machine/resource.h> 82 #include <sys/rman.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 87 #include <net/bpf.h> 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/if_arp.h> 91 #include <net/ethernet.h> 92 #include <net/if_dl.h> 93 #include <net/if_media.h> 94 #include <net/if_types.h> 95 96 #include <netinet/in.h> 97 #include <netinet/in_systm.h> 98 #include <netinet/in_var.h> 99 #include <netinet/if_ether.h> 100 #include <netinet/ip.h> 101 102 #include <net80211/ieee80211_var.h> 103 #include <net80211/ieee80211_radiotap.h> 104 #include <net80211/ieee80211_regdomain.h> 105 #include <net80211/ieee80211_ratectl.h> 106 107 #include <dev/wpi/if_wpireg.h> 108 #include <dev/wpi/if_wpivar.h> 109 #include <dev/wpi/if_wpi_debug.h> 110 111 struct wpi_ident { 112 uint16_t vendor; 113 uint16_t device; 114 uint16_t subdevice; 115 const char *name; 116 }; 117 118 static const struct wpi_ident wpi_ident_table[] = { 119 /* The below entries support ABG regardless of the subid */ 120 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 121 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 122 /* The below entries only support BG */ 123 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 124 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 125 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 126 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 127 { 0, 0, 0, NULL } 128 }; 129 130 static int wpi_probe(device_t); 131 static int wpi_attach(device_t); 132 static void wpi_radiotap_attach(struct wpi_softc *); 133 static void wpi_sysctlattach(struct wpi_softc *); 134 static void wpi_init_beacon(struct wpi_vap *); 135 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 136 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 137 const uint8_t [IEEE80211_ADDR_LEN], 138 const uint8_t [IEEE80211_ADDR_LEN]); 139 static void wpi_vap_delete(struct ieee80211vap *); 140 static int wpi_detach(device_t); 141 static int wpi_shutdown(device_t); 142 static int wpi_suspend(device_t); 143 static int wpi_resume(device_t); 144 static int wpi_nic_lock(struct wpi_softc *); 145 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 146 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 147 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 148 void **, bus_size_t, bus_size_t); 149 static void wpi_dma_contig_free(struct wpi_dma_info *); 150 static int wpi_alloc_shared(struct wpi_softc *); 151 static void wpi_free_shared(struct wpi_softc *); 152 static int wpi_alloc_fwmem(struct wpi_softc *); 153 static void wpi_free_fwmem(struct wpi_softc *); 154 static int wpi_alloc_rx_ring(struct wpi_softc *); 155 static void wpi_update_rx_ring(struct wpi_softc *); 156 static void wpi_update_rx_ring_ps(struct wpi_softc *); 157 static void wpi_reset_rx_ring(struct wpi_softc *); 158 static void wpi_free_rx_ring(struct wpi_softc *); 159 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 160 uint8_t); 161 static void wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 162 static void wpi_update_tx_ring_ps(struct wpi_softc *, 163 struct wpi_tx_ring *); 164 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 165 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 166 static int wpi_read_eeprom(struct wpi_softc *, 167 uint8_t macaddr[IEEE80211_ADDR_LEN]); 168 static uint32_t wpi_eeprom_channel_flags(struct wpi_eeprom_chan *); 169 static void wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *, 170 struct ieee80211_channel[]); 171 static int wpi_read_eeprom_channels(struct wpi_softc *, uint8_t); 172 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *, 173 struct ieee80211_channel *); 174 static void wpi_getradiocaps(struct ieee80211com *, int, int *, 175 struct ieee80211_channel[]); 176 static int wpi_setregdomain(struct ieee80211com *, 177 struct ieee80211_regdomain *, int, 178 struct ieee80211_channel[]); 179 static int wpi_read_eeprom_group(struct wpi_softc *, uint8_t); 180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 181 const uint8_t mac[IEEE80211_ADDR_LEN]); 182 static void wpi_node_free(struct ieee80211_node *); 183 static void wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int, 184 const struct ieee80211_rx_stats *, 185 int, int); 186 static void wpi_restore_node(void *, struct ieee80211_node *); 187 static void wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *); 188 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 189 static void wpi_calib_timeout(void *); 190 static void wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *, 191 struct wpi_rx_data *); 192 static void wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *, 193 struct wpi_rx_data *); 194 static void wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *); 195 static void wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *); 196 static void wpi_notif_intr(struct wpi_softc *); 197 static void wpi_wakeup_intr(struct wpi_softc *); 198 #ifdef WPI_DEBUG 199 static void wpi_debug_registers(struct wpi_softc *); 200 #endif 201 static void wpi_fatal_intr(struct wpi_softc *); 202 static void wpi_intr(void *); 203 static void wpi_free_txfrags(struct wpi_softc *, uint16_t); 204 static int wpi_cmd2(struct wpi_softc *, struct wpi_buf *); 205 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 206 struct ieee80211_node *); 207 static int wpi_tx_data_raw(struct wpi_softc *, struct mbuf *, 208 struct ieee80211_node *, 209 const struct ieee80211_bpf_params *); 210 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 211 const struct ieee80211_bpf_params *); 212 static int wpi_transmit(struct ieee80211com *, struct mbuf *); 213 static void wpi_watchdog_rfkill(void *); 214 static void wpi_scan_timeout(void *); 215 static void wpi_tx_timeout(void *); 216 static void wpi_parent(struct ieee80211com *); 217 static int wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t, 218 int); 219 static int wpi_mrr_setup(struct wpi_softc *); 220 static int wpi_add_node(struct wpi_softc *, struct ieee80211_node *); 221 static int wpi_add_broadcast_node(struct wpi_softc *, int); 222 static int wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *); 223 static void wpi_del_node(struct wpi_softc *, struct ieee80211_node *); 224 static int wpi_updateedca(struct ieee80211com *); 225 static void wpi_set_promisc(struct wpi_softc *); 226 static void wpi_update_promisc(struct ieee80211com *); 227 static void wpi_update_mcast(struct ieee80211com *); 228 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 229 static int wpi_set_timing(struct wpi_softc *, struct ieee80211_node *); 230 static void wpi_power_calibration(struct wpi_softc *); 231 static int wpi_set_txpower(struct wpi_softc *, int); 232 static int wpi_get_power_index(struct wpi_softc *, 233 struct wpi_power_group *, uint8_t, int, int); 234 static int wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int); 235 static int wpi_send_btcoex(struct wpi_softc *); 236 static int wpi_send_rxon(struct wpi_softc *, int, int); 237 static int wpi_config(struct wpi_softc *); 238 static uint16_t wpi_get_active_dwell_time(struct wpi_softc *, 239 struct ieee80211_channel *, uint8_t); 240 static uint16_t wpi_limit_dwell(struct wpi_softc *, uint16_t); 241 static uint16_t wpi_get_passive_dwell_time(struct wpi_softc *, 242 struct ieee80211_channel *); 243 static uint32_t wpi_get_scan_pause_time(uint32_t, uint16_t); 244 static int wpi_scan(struct wpi_softc *, struct ieee80211_channel *); 245 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 246 static int wpi_config_beacon(struct wpi_vap *); 247 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 248 static void wpi_update_beacon(struct ieee80211vap *, int); 249 static void wpi_newassoc(struct ieee80211_node *, int); 250 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 251 static int wpi_load_key(struct ieee80211_node *, 252 const struct ieee80211_key *); 253 static void wpi_load_key_cb(void *, struct ieee80211_node *); 254 static int wpi_set_global_keys(struct ieee80211_node *); 255 static int wpi_del_key(struct ieee80211_node *, 256 const struct ieee80211_key *); 257 static void wpi_del_key_cb(void *, struct ieee80211_node *); 258 static int wpi_process_key(struct ieee80211vap *, 259 const struct ieee80211_key *, int); 260 static int wpi_key_set(struct ieee80211vap *, 261 const struct ieee80211_key *); 262 static int wpi_key_delete(struct ieee80211vap *, 263 const struct ieee80211_key *); 264 static int wpi_post_alive(struct wpi_softc *); 265 static int wpi_load_bootcode(struct wpi_softc *, const uint8_t *, 266 uint32_t); 267 static int wpi_load_firmware(struct wpi_softc *); 268 static int wpi_read_firmware(struct wpi_softc *); 269 static void wpi_unload_firmware(struct wpi_softc *); 270 static int wpi_clock_wait(struct wpi_softc *); 271 static int wpi_apm_init(struct wpi_softc *); 272 static void wpi_apm_stop_master(struct wpi_softc *); 273 static void wpi_apm_stop(struct wpi_softc *); 274 static void wpi_nic_config(struct wpi_softc *); 275 static int wpi_hw_init(struct wpi_softc *); 276 static void wpi_hw_stop(struct wpi_softc *); 277 static void wpi_radio_on(void *, int); 278 static void wpi_radio_off(void *, int); 279 static int wpi_init(struct wpi_softc *); 280 static void wpi_stop_locked(struct wpi_softc *); 281 static void wpi_stop(struct wpi_softc *); 282 static void wpi_scan_start(struct ieee80211com *); 283 static void wpi_scan_end(struct ieee80211com *); 284 static void wpi_set_channel(struct ieee80211com *); 285 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 286 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 287 288 static device_method_t wpi_methods[] = { 289 /* Device interface */ 290 DEVMETHOD(device_probe, wpi_probe), 291 DEVMETHOD(device_attach, wpi_attach), 292 DEVMETHOD(device_detach, wpi_detach), 293 DEVMETHOD(device_shutdown, wpi_shutdown), 294 DEVMETHOD(device_suspend, wpi_suspend), 295 DEVMETHOD(device_resume, wpi_resume), 296 297 DEVMETHOD_END 298 }; 299 300 static driver_t wpi_driver = { 301 "wpi", 302 wpi_methods, 303 sizeof (struct wpi_softc) 304 }; 305 306 DRIVER_MODULE(wpi, pci, wpi_driver, NULL, NULL); 307 308 MODULE_VERSION(wpi, 1); 309 310 MODULE_DEPEND(wpi, pci, 1, 1, 1); 311 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 312 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 313 314 static int 315 wpi_probe(device_t dev) 316 { 317 const struct wpi_ident *ident; 318 319 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 320 if (pci_get_vendor(dev) == ident->vendor && 321 pci_get_device(dev) == ident->device) { 322 device_set_desc(dev, ident->name); 323 return (BUS_PROBE_DEFAULT); 324 } 325 } 326 return ENXIO; 327 } 328 329 static int 330 wpi_attach(device_t dev) 331 { 332 struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev); 333 struct ieee80211com *ic; 334 uint8_t i; 335 int error, rid; 336 #ifdef WPI_DEBUG 337 int supportsa = 1; 338 const struct wpi_ident *ident; 339 #endif 340 341 sc->sc_dev = dev; 342 343 #ifdef WPI_DEBUG 344 error = resource_int_value(device_get_name(sc->sc_dev), 345 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); 346 if (error != 0) 347 sc->sc_debug = 0; 348 #else 349 sc->sc_debug = 0; 350 #endif 351 352 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 353 354 /* 355 * Get the offset of the PCI Express Capability Structure in PCI 356 * Configuration Space. 357 */ 358 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 359 if (error != 0) { 360 device_printf(dev, "PCIe capability structure not found!\n"); 361 return error; 362 } 363 364 /* 365 * Some card's only support 802.11b/g not a, check to see if 366 * this is one such card. A 0x0 in the subdevice table indicates 367 * the entire subdevice range is to be ignored. 368 */ 369 #ifdef WPI_DEBUG 370 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 371 if (ident->subdevice && 372 pci_get_subdevice(dev) == ident->subdevice) { 373 supportsa = 0; 374 break; 375 } 376 } 377 #endif 378 379 /* Clear device-specific "PCI retry timeout" register (41h). */ 380 pci_write_config(dev, 0x41, 0, 1); 381 382 /* Enable bus-mastering. */ 383 pci_enable_busmaster(dev); 384 385 rid = PCIR_BAR(0); 386 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 387 RF_ACTIVE); 388 if (sc->mem == NULL) { 389 device_printf(dev, "can't map mem space\n"); 390 return ENOMEM; 391 } 392 sc->sc_st = rman_get_bustag(sc->mem); 393 sc->sc_sh = rman_get_bushandle(sc->mem); 394 395 rid = 1; 396 if (pci_alloc_msi(dev, &rid) == 0) 397 rid = 1; 398 else 399 rid = 0; 400 /* Install interrupt handler. */ 401 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 402 (rid != 0 ? 0 : RF_SHAREABLE)); 403 if (sc->irq == NULL) { 404 device_printf(dev, "can't map interrupt\n"); 405 error = ENOMEM; 406 goto fail; 407 } 408 409 WPI_LOCK_INIT(sc); 410 WPI_TX_LOCK_INIT(sc); 411 WPI_RXON_LOCK_INIT(sc); 412 WPI_NT_LOCK_INIT(sc); 413 WPI_TXQ_LOCK_INIT(sc); 414 WPI_TXQ_STATE_LOCK_INIT(sc); 415 416 /* Allocate DMA memory for firmware transfers. */ 417 if ((error = wpi_alloc_fwmem(sc)) != 0) { 418 device_printf(dev, 419 "could not allocate memory for firmware, error %d\n", 420 error); 421 goto fail; 422 } 423 424 /* Allocate shared page. */ 425 if ((error = wpi_alloc_shared(sc)) != 0) { 426 device_printf(dev, "could not allocate shared page\n"); 427 goto fail; 428 } 429 430 /* Allocate TX rings - 4 for QoS purposes, 1 for commands. */ 431 for (i = 0; i < WPI_DRV_NTXQUEUES; i++) { 432 if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 433 device_printf(dev, 434 "could not allocate TX ring %d, error %d\n", i, 435 error); 436 goto fail; 437 } 438 } 439 440 /* Allocate RX ring. */ 441 if ((error = wpi_alloc_rx_ring(sc)) != 0) { 442 device_printf(dev, "could not allocate RX ring, error %d\n", 443 error); 444 goto fail; 445 } 446 447 /* Clear pending interrupts. */ 448 WPI_WRITE(sc, WPI_INT, 0xffffffff); 449 450 ic = &sc->sc_ic; 451 ic->ic_softc = sc; 452 ic->ic_name = device_get_nameunit(dev); 453 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 454 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 455 456 /* Set device capabilities. */ 457 ic->ic_caps = 458 IEEE80211_C_STA /* station mode supported */ 459 | IEEE80211_C_IBSS /* IBSS mode supported */ 460 | IEEE80211_C_HOSTAP /* Host access point mode */ 461 | IEEE80211_C_MONITOR /* monitor mode supported */ 462 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 463 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 464 | IEEE80211_C_TXFRAG /* handle tx frags */ 465 | IEEE80211_C_TXPMGT /* tx power management */ 466 | IEEE80211_C_SHSLOT /* short slot time supported */ 467 | IEEE80211_C_WPA /* 802.11i */ 468 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 469 | IEEE80211_C_WME /* 802.11e */ 470 | IEEE80211_C_PMGT /* Station-side power mgmt */ 471 ; 472 473 ic->ic_cryptocaps = 474 IEEE80211_CRYPTO_AES_CCM; 475 476 /* 477 * Read in the eeprom and also setup the channels for 478 * net80211. We don't set the rates as net80211 does this for us 479 */ 480 if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) { 481 device_printf(dev, "could not read EEPROM, error %d\n", 482 error); 483 goto fail; 484 } 485 486 #ifdef WPI_DEBUG 487 if (bootverbose) { 488 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", 489 sc->domain); 490 device_printf(sc->sc_dev, "Hardware Type: %c\n", 491 sc->type > 1 ? 'B': '?'); 492 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 493 ((sc->rev & 0xf0) == 0xd0) ? 'D': '?'); 494 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 495 supportsa ? "does" : "does not"); 496 497 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must 498 check what sc->rev really represents - benjsc 20070615 */ 499 } 500 #endif 501 502 ieee80211_ifattach(ic); 503 ic->ic_vap_create = wpi_vap_create; 504 ic->ic_vap_delete = wpi_vap_delete; 505 ic->ic_parent = wpi_parent; 506 ic->ic_raw_xmit = wpi_raw_xmit; 507 ic->ic_transmit = wpi_transmit; 508 ic->ic_node_alloc = wpi_node_alloc; 509 sc->sc_node_free = ic->ic_node_free; 510 ic->ic_node_free = wpi_node_free; 511 ic->ic_wme.wme_update = wpi_updateedca; 512 ic->ic_update_promisc = wpi_update_promisc; 513 ic->ic_update_mcast = wpi_update_mcast; 514 ic->ic_newassoc = wpi_newassoc; 515 ic->ic_scan_start = wpi_scan_start; 516 ic->ic_scan_end = wpi_scan_end; 517 ic->ic_set_channel = wpi_set_channel; 518 ic->ic_scan_curchan = wpi_scan_curchan; 519 ic->ic_scan_mindwell = wpi_scan_mindwell; 520 ic->ic_getradiocaps = wpi_getradiocaps; 521 ic->ic_setregdomain = wpi_setregdomain; 522 523 sc->sc_update_rx_ring = wpi_update_rx_ring; 524 sc->sc_update_tx_ring = wpi_update_tx_ring; 525 526 wpi_radiotap_attach(sc); 527 528 /* Setup Tx status flags (constant). */ 529 sc->sc_txs.flags = IEEE80211_RATECTL_STATUS_PKTLEN | 530 IEEE80211_RATECTL_STATUS_SHORT_RETRY | 531 IEEE80211_RATECTL_STATUS_LONG_RETRY; 532 533 callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0); 534 callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0); 535 callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0); 536 callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0); 537 TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc); 538 TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc); 539 540 wpi_sysctlattach(sc); 541 542 /* 543 * Hook our interrupt after all initialization is complete. 544 */ 545 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 546 NULL, wpi_intr, sc, &sc->sc_ih); 547 if (error != 0) { 548 device_printf(dev, "can't establish interrupt, error %d\n", 549 error); 550 goto fail; 551 } 552 553 if (bootverbose) 554 ieee80211_announce(ic); 555 556 #ifdef WPI_DEBUG 557 if (sc->sc_debug & WPI_DEBUG_HW) 558 ieee80211_announce_channels(ic); 559 #endif 560 561 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 562 return 0; 563 564 fail: wpi_detach(dev); 565 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 566 return error; 567 } 568 569 /* 570 * Attach the interface to 802.11 radiotap. 571 */ 572 static void 573 wpi_radiotap_attach(struct wpi_softc *sc) 574 { 575 struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap; 576 struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap; 577 578 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 579 ieee80211_radiotap_attach(&sc->sc_ic, 580 &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT, 581 &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT); 582 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 583 } 584 585 static void 586 wpi_sysctlattach(struct wpi_softc *sc) 587 { 588 #ifdef WPI_DEBUG 589 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 590 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 591 592 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 593 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, 594 "control debugging printfs"); 595 #endif 596 } 597 598 static void 599 wpi_init_beacon(struct wpi_vap *wvp) 600 { 601 struct wpi_buf *bcn = &wvp->wv_bcbuf; 602 struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data; 603 604 cmd->id = WPI_ID_BROADCAST; 605 cmd->ofdm_mask = 0xff; 606 cmd->cck_mask = 0x0f; 607 cmd->lifetime = htole32(WPI_LIFETIME_INFINITE); 608 609 /* 610 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue 611 * XXX by using WPI_TX_NEED_ACK instead (with some side effects). 612 */ 613 cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP); 614 615 bcn->code = WPI_CMD_SET_BEACON; 616 bcn->ac = WPI_CMD_QUEUE_NUM; 617 bcn->size = sizeof(struct wpi_cmd_beacon); 618 } 619 620 static struct ieee80211vap * 621 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 622 enum ieee80211_opmode opmode, int flags, 623 const uint8_t bssid[IEEE80211_ADDR_LEN], 624 const uint8_t mac[IEEE80211_ADDR_LEN]) 625 { 626 struct wpi_vap *wvp; 627 struct ieee80211vap *vap; 628 629 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 630 return NULL; 631 632 wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 633 vap = &wvp->wv_vap; 634 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 635 636 if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) { 637 WPI_VAP_LOCK_INIT(wvp); 638 wpi_init_beacon(wvp); 639 } 640 641 /* Override with driver methods. */ 642 vap->iv_key_set = wpi_key_set; 643 vap->iv_key_delete = wpi_key_delete; 644 if (opmode == IEEE80211_M_IBSS) { 645 wvp->wv_recv_mgmt = vap->iv_recv_mgmt; 646 vap->iv_recv_mgmt = wpi_ibss_recv_mgmt; 647 } 648 wvp->wv_newstate = vap->iv_newstate; 649 vap->iv_newstate = wpi_newstate; 650 vap->iv_update_beacon = wpi_update_beacon; 651 vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1; 652 653 ieee80211_ratectl_init(vap); 654 /* Complete setup. */ 655 ieee80211_vap_attach(vap, ieee80211_media_change, 656 ieee80211_media_status, mac); 657 ic->ic_opmode = opmode; 658 return vap; 659 } 660 661 static void 662 wpi_vap_delete(struct ieee80211vap *vap) 663 { 664 struct wpi_vap *wvp = WPI_VAP(vap); 665 struct wpi_buf *bcn = &wvp->wv_bcbuf; 666 enum ieee80211_opmode opmode = vap->iv_opmode; 667 668 ieee80211_ratectl_deinit(vap); 669 ieee80211_vap_detach(vap); 670 671 if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) { 672 if (bcn->m != NULL) 673 m_freem(bcn->m); 674 675 WPI_VAP_LOCK_DESTROY(wvp); 676 } 677 678 free(wvp, M_80211_VAP); 679 } 680 681 static int 682 wpi_detach(device_t dev) 683 { 684 struct wpi_softc *sc = device_get_softc(dev); 685 struct ieee80211com *ic = &sc->sc_ic; 686 uint8_t qid; 687 688 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 689 690 if (ic->ic_vap_create == wpi_vap_create) { 691 ieee80211_draintask(ic, &sc->sc_radioon_task); 692 ieee80211_draintask(ic, &sc->sc_radiooff_task); 693 694 wpi_stop(sc); 695 696 callout_drain(&sc->watchdog_rfkill); 697 callout_drain(&sc->tx_timeout); 698 callout_drain(&sc->scan_timeout); 699 callout_drain(&sc->calib_to); 700 ieee80211_ifdetach(ic); 701 } 702 703 /* Uninstall interrupt handler. */ 704 if (sc->irq != NULL) { 705 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 706 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), 707 sc->irq); 708 pci_release_msi(dev); 709 } 710 711 if (sc->txq[0].data_dmat) { 712 /* Free DMA resources. */ 713 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) 714 wpi_free_tx_ring(sc, &sc->txq[qid]); 715 716 wpi_free_rx_ring(sc); 717 wpi_free_shared(sc); 718 } 719 720 if (sc->fw_dma.tag) 721 wpi_free_fwmem(sc); 722 723 if (sc->mem != NULL) 724 bus_release_resource(dev, SYS_RES_MEMORY, 725 rman_get_rid(sc->mem), sc->mem); 726 727 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 728 WPI_TXQ_STATE_LOCK_DESTROY(sc); 729 WPI_TXQ_LOCK_DESTROY(sc); 730 WPI_NT_LOCK_DESTROY(sc); 731 WPI_RXON_LOCK_DESTROY(sc); 732 WPI_TX_LOCK_DESTROY(sc); 733 WPI_LOCK_DESTROY(sc); 734 return 0; 735 } 736 737 static int 738 wpi_shutdown(device_t dev) 739 { 740 struct wpi_softc *sc = device_get_softc(dev); 741 742 wpi_stop(sc); 743 return 0; 744 } 745 746 static int 747 wpi_suspend(device_t dev) 748 { 749 struct wpi_softc *sc = device_get_softc(dev); 750 struct ieee80211com *ic = &sc->sc_ic; 751 752 ieee80211_suspend_all(ic); 753 return 0; 754 } 755 756 static int 757 wpi_resume(device_t dev) 758 { 759 struct wpi_softc *sc = device_get_softc(dev); 760 struct ieee80211com *ic = &sc->sc_ic; 761 762 /* Clear device-specific "PCI retry timeout" register (41h). */ 763 pci_write_config(dev, 0x41, 0, 1); 764 765 ieee80211_resume_all(ic); 766 return 0; 767 } 768 769 /* 770 * Grab exclusive access to NIC memory. 771 */ 772 static int 773 wpi_nic_lock(struct wpi_softc *sc) 774 { 775 int ntries; 776 777 /* Request exclusive access to NIC. */ 778 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 779 780 /* Spin until we actually get the lock. */ 781 for (ntries = 0; ntries < 1000; ntries++) { 782 if ((WPI_READ(sc, WPI_GP_CNTRL) & 783 (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) == 784 WPI_GP_CNTRL_MAC_ACCESS_ENA) 785 return 0; 786 DELAY(10); 787 } 788 789 device_printf(sc->sc_dev, "could not lock memory\n"); 790 791 return ETIMEDOUT; 792 } 793 794 /* 795 * Release lock on NIC memory. 796 */ 797 static __inline void 798 wpi_nic_unlock(struct wpi_softc *sc) 799 { 800 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 801 } 802 803 static __inline uint32_t 804 wpi_prph_read(struct wpi_softc *sc, uint32_t addr) 805 { 806 WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr); 807 WPI_BARRIER_READ_WRITE(sc); 808 return WPI_READ(sc, WPI_PRPH_RDATA); 809 } 810 811 static __inline void 812 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data) 813 { 814 WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr); 815 WPI_BARRIER_WRITE(sc); 816 WPI_WRITE(sc, WPI_PRPH_WDATA, data); 817 } 818 819 static __inline void 820 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) 821 { 822 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask); 823 } 824 825 static __inline void 826 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) 827 { 828 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask); 829 } 830 831 static __inline void 832 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr, 833 const uint32_t *data, uint32_t count) 834 { 835 for (; count != 0; count--, data++, addr += 4) 836 wpi_prph_write(sc, addr, *data); 837 } 838 839 static __inline uint32_t 840 wpi_mem_read(struct wpi_softc *sc, uint32_t addr) 841 { 842 WPI_WRITE(sc, WPI_MEM_RADDR, addr); 843 WPI_BARRIER_READ_WRITE(sc); 844 return WPI_READ(sc, WPI_MEM_RDATA); 845 } 846 847 static __inline void 848 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data, 849 int count) 850 { 851 for (; count > 0; count--, addr += 4) 852 *data++ = wpi_mem_read(sc, addr); 853 } 854 855 static int 856 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count) 857 { 858 uint8_t *out = data; 859 uint32_t val; 860 int error, ntries; 861 862 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 863 864 if ((error = wpi_nic_lock(sc)) != 0) 865 return error; 866 867 for (; count > 0; count -= 2, addr++) { 868 WPI_WRITE(sc, WPI_EEPROM, addr << 2); 869 for (ntries = 0; ntries < 10; ntries++) { 870 val = WPI_READ(sc, WPI_EEPROM); 871 if (val & WPI_EEPROM_READ_VALID) 872 break; 873 DELAY(5); 874 } 875 if (ntries == 10) { 876 device_printf(sc->sc_dev, 877 "timeout reading ROM at 0x%x\n", addr); 878 return ETIMEDOUT; 879 } 880 *out++= val >> 16; 881 if (count > 1) 882 *out ++= val >> 24; 883 } 884 885 wpi_nic_unlock(sc); 886 887 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 888 889 return 0; 890 } 891 892 static void 893 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 894 { 895 if (error != 0) 896 return; 897 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 898 *(bus_addr_t *)arg = segs[0].ds_addr; 899 } 900 901 /* 902 * Allocates a contiguous block of dma memory of the requested size and 903 * alignment. 904 */ 905 static int 906 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 907 void **kvap, bus_size_t size, bus_size_t alignment) 908 { 909 int error; 910 911 dma->tag = NULL; 912 dma->size = size; 913 914 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 915 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 916 1, size, 0, NULL, NULL, &dma->tag); 917 if (error != 0) 918 goto fail; 919 920 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 921 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 922 if (error != 0) 923 goto fail; 924 925 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 926 wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 927 if (error != 0) 928 goto fail; 929 930 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 931 932 if (kvap != NULL) 933 *kvap = dma->vaddr; 934 935 return 0; 936 937 fail: wpi_dma_contig_free(dma); 938 return error; 939 } 940 941 static void 942 wpi_dma_contig_free(struct wpi_dma_info *dma) 943 { 944 if (dma->vaddr != NULL) { 945 bus_dmamap_sync(dma->tag, dma->map, 946 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 947 bus_dmamap_unload(dma->tag, dma->map); 948 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 949 dma->vaddr = NULL; 950 } 951 if (dma->tag != NULL) { 952 bus_dma_tag_destroy(dma->tag); 953 dma->tag = NULL; 954 } 955 } 956 957 /* 958 * Allocate a shared page between host and NIC. 959 */ 960 static int 961 wpi_alloc_shared(struct wpi_softc *sc) 962 { 963 /* Shared buffer must be aligned on a 4KB boundary. */ 964 return wpi_dma_contig_alloc(sc, &sc->shared_dma, 965 (void **)&sc->shared, sizeof (struct wpi_shared), 4096); 966 } 967 968 static void 969 wpi_free_shared(struct wpi_softc *sc) 970 { 971 wpi_dma_contig_free(&sc->shared_dma); 972 } 973 974 /* 975 * Allocate DMA-safe memory for firmware transfer. 976 */ 977 static int 978 wpi_alloc_fwmem(struct wpi_softc *sc) 979 { 980 /* Must be aligned on a 16-byte boundary. */ 981 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 982 WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16); 983 } 984 985 static void 986 wpi_free_fwmem(struct wpi_softc *sc) 987 { 988 wpi_dma_contig_free(&sc->fw_dma); 989 } 990 991 static int 992 wpi_alloc_rx_ring(struct wpi_softc *sc) 993 { 994 struct wpi_rx_ring *ring = &sc->rxq; 995 bus_size_t size; 996 int i, error; 997 998 ring->cur = 0; 999 ring->update = 0; 1000 1001 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1002 1003 /* Allocate RX descriptors (16KB aligned.) */ 1004 size = WPI_RX_RING_COUNT * sizeof (uint32_t); 1005 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1006 (void **)&ring->desc, size, WPI_RING_DMA_ALIGN); 1007 if (error != 0) { 1008 device_printf(sc->sc_dev, 1009 "%s: could not allocate RX ring DMA memory, error %d\n", 1010 __func__, error); 1011 goto fail; 1012 } 1013 1014 /* Create RX buffer DMA tag. */ 1015 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1016 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1017 MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat); 1018 if (error != 0) { 1019 device_printf(sc->sc_dev, 1020 "%s: could not create RX buf DMA tag, error %d\n", 1021 __func__, error); 1022 goto fail; 1023 } 1024 1025 /* 1026 * Allocate and map RX buffers. 1027 */ 1028 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1029 struct wpi_rx_data *data = &ring->data[i]; 1030 bus_addr_t paddr; 1031 1032 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1033 if (error != 0) { 1034 device_printf(sc->sc_dev, 1035 "%s: could not create RX buf DMA map, error %d\n", 1036 __func__, error); 1037 goto fail; 1038 } 1039 1040 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1041 if (data->m == NULL) { 1042 device_printf(sc->sc_dev, 1043 "%s: could not allocate RX mbuf\n", __func__); 1044 error = ENOBUFS; 1045 goto fail; 1046 } 1047 1048 error = bus_dmamap_load(ring->data_dmat, data->map, 1049 mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr, 1050 &paddr, BUS_DMA_NOWAIT); 1051 if (error != 0 && error != EFBIG) { 1052 device_printf(sc->sc_dev, 1053 "%s: can't map mbuf (error %d)\n", __func__, 1054 error); 1055 goto fail; 1056 } 1057 1058 /* Set physical address of RX buffer. */ 1059 ring->desc[i] = htole32(paddr); 1060 } 1061 1062 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1063 BUS_DMASYNC_PREWRITE); 1064 1065 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1066 1067 return 0; 1068 1069 fail: wpi_free_rx_ring(sc); 1070 1071 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1072 1073 return error; 1074 } 1075 1076 static void 1077 wpi_update_rx_ring(struct wpi_softc *sc) 1078 { 1079 WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7); 1080 } 1081 1082 static void 1083 wpi_update_rx_ring_ps(struct wpi_softc *sc) 1084 { 1085 struct wpi_rx_ring *ring = &sc->rxq; 1086 1087 if (ring->update != 0) { 1088 /* Wait for INT_WAKEUP event. */ 1089 return; 1090 } 1091 1092 WPI_TXQ_LOCK(sc); 1093 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1094 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) { 1095 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n", 1096 __func__); 1097 ring->update = 1; 1098 } else { 1099 wpi_update_rx_ring(sc); 1100 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1101 } 1102 WPI_TXQ_UNLOCK(sc); 1103 } 1104 1105 static void 1106 wpi_reset_rx_ring(struct wpi_softc *sc) 1107 { 1108 struct wpi_rx_ring *ring = &sc->rxq; 1109 int ntries; 1110 1111 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1112 1113 if (wpi_nic_lock(sc) == 0) { 1114 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0); 1115 for (ntries = 0; ntries < 1000; ntries++) { 1116 if (WPI_READ(sc, WPI_FH_RX_STATUS) & 1117 WPI_FH_RX_STATUS_IDLE) 1118 break; 1119 DELAY(10); 1120 } 1121 wpi_nic_unlock(sc); 1122 } 1123 1124 ring->cur = 0; 1125 ring->update = 0; 1126 } 1127 1128 static void 1129 wpi_free_rx_ring(struct wpi_softc *sc) 1130 { 1131 struct wpi_rx_ring *ring = &sc->rxq; 1132 int i; 1133 1134 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1135 1136 wpi_dma_contig_free(&ring->desc_dma); 1137 1138 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1139 struct wpi_rx_data *data = &ring->data[i]; 1140 1141 if (data->m != NULL) { 1142 bus_dmamap_sync(ring->data_dmat, data->map, 1143 BUS_DMASYNC_POSTREAD); 1144 bus_dmamap_unload(ring->data_dmat, data->map); 1145 m_freem(data->m); 1146 data->m = NULL; 1147 } 1148 if (data->map != NULL) 1149 bus_dmamap_destroy(ring->data_dmat, data->map); 1150 } 1151 if (ring->data_dmat != NULL) { 1152 bus_dma_tag_destroy(ring->data_dmat); 1153 ring->data_dmat = NULL; 1154 } 1155 } 1156 1157 static int 1158 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid) 1159 { 1160 bus_addr_t paddr; 1161 bus_size_t size; 1162 int i, error; 1163 1164 ring->qid = qid; 1165 ring->queued = 0; 1166 ring->cur = 0; 1167 ring->pending = 0; 1168 ring->update = 0; 1169 1170 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1171 1172 /* Allocate TX descriptors (16KB aligned.) */ 1173 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc); 1174 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1175 size, WPI_RING_DMA_ALIGN); 1176 if (error != 0) { 1177 device_printf(sc->sc_dev, 1178 "%s: could not allocate TX ring DMA memory, error %d\n", 1179 __func__, error); 1180 goto fail; 1181 } 1182 1183 /* Update shared area with ring physical address. */ 1184 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1185 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 1186 BUS_DMASYNC_PREWRITE); 1187 1188 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd); 1189 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1190 size, 4); 1191 if (error != 0) { 1192 device_printf(sc->sc_dev, 1193 "%s: could not allocate TX cmd DMA memory, error %d\n", 1194 __func__, error); 1195 goto fail; 1196 } 1197 1198 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1199 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1200 WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 1201 if (error != 0) { 1202 device_printf(sc->sc_dev, 1203 "%s: could not create TX buf DMA tag, error %d\n", 1204 __func__, error); 1205 goto fail; 1206 } 1207 1208 paddr = ring->cmd_dma.paddr; 1209 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 1210 struct wpi_tx_data *data = &ring->data[i]; 1211 1212 data->cmd_paddr = paddr; 1213 paddr += sizeof (struct wpi_tx_cmd); 1214 1215 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1216 if (error != 0) { 1217 device_printf(sc->sc_dev, 1218 "%s: could not create TX buf DMA map, error %d\n", 1219 __func__, error); 1220 goto fail; 1221 } 1222 } 1223 1224 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1225 1226 return 0; 1227 1228 fail: wpi_free_tx_ring(sc, ring); 1229 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1230 return error; 1231 } 1232 1233 static void 1234 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1235 { 1236 WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 1237 } 1238 1239 static void 1240 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1241 { 1242 1243 if (ring->update != 0) { 1244 /* Wait for INT_WAKEUP event. */ 1245 return; 1246 } 1247 1248 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1249 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) { 1250 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n", 1251 __func__, ring->qid); 1252 ring->update = 1; 1253 } else { 1254 wpi_update_tx_ring(sc, ring); 1255 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1256 } 1257 } 1258 1259 static void 1260 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1261 { 1262 int i; 1263 1264 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1265 1266 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 1267 struct wpi_tx_data *data = &ring->data[i]; 1268 1269 if (data->m != NULL) { 1270 bus_dmamap_sync(ring->data_dmat, data->map, 1271 BUS_DMASYNC_POSTWRITE); 1272 bus_dmamap_unload(ring->data_dmat, data->map); 1273 m_freem(data->m); 1274 data->m = NULL; 1275 } 1276 if (data->ni != NULL) { 1277 ieee80211_free_node(data->ni); 1278 data->ni = NULL; 1279 } 1280 } 1281 /* Clear TX descriptors. */ 1282 memset(ring->desc, 0, ring->desc_dma.size); 1283 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1284 BUS_DMASYNC_PREWRITE); 1285 ring->queued = 0; 1286 ring->cur = 0; 1287 ring->pending = 0; 1288 ring->update = 0; 1289 } 1290 1291 static void 1292 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1293 { 1294 int i; 1295 1296 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1297 1298 wpi_dma_contig_free(&ring->desc_dma); 1299 wpi_dma_contig_free(&ring->cmd_dma); 1300 1301 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 1302 struct wpi_tx_data *data = &ring->data[i]; 1303 1304 if (data->m != NULL) { 1305 bus_dmamap_sync(ring->data_dmat, data->map, 1306 BUS_DMASYNC_POSTWRITE); 1307 bus_dmamap_unload(ring->data_dmat, data->map); 1308 m_freem(data->m); 1309 } 1310 if (data->map != NULL) 1311 bus_dmamap_destroy(ring->data_dmat, data->map); 1312 } 1313 if (ring->data_dmat != NULL) { 1314 bus_dma_tag_destroy(ring->data_dmat); 1315 ring->data_dmat = NULL; 1316 } 1317 } 1318 1319 /* 1320 * Extract various information from EEPROM. 1321 */ 1322 static int 1323 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 1324 { 1325 #define WPI_CHK(res) do { \ 1326 if ((error = res) != 0) \ 1327 goto fail; \ 1328 } while (0) 1329 uint8_t i; 1330 int error; 1331 1332 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1333 1334 /* Adapter has to be powered on for EEPROM access to work. */ 1335 if ((error = wpi_apm_init(sc)) != 0) { 1336 device_printf(sc->sc_dev, 1337 "%s: could not power ON adapter, error %d\n", __func__, 1338 error); 1339 return error; 1340 } 1341 1342 if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) { 1343 device_printf(sc->sc_dev, "bad EEPROM signature\n"); 1344 error = EIO; 1345 goto fail; 1346 } 1347 /* Clear HW ownership of EEPROM. */ 1348 WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER); 1349 1350 /* Read the hardware capabilities, revision and SKU type. */ 1351 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap, 1352 sizeof(sc->cap))); 1353 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 1354 sizeof(sc->rev))); 1355 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1356 sizeof(sc->type))); 1357 1358 sc->rev = le16toh(sc->rev); 1359 DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, 1360 sc->rev, sc->type); 1361 1362 /* Read the regulatory domain (4 ASCII characters.) */ 1363 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 1364 sizeof(sc->domain))); 1365 1366 /* Read MAC address. */ 1367 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 1368 IEEE80211_ADDR_LEN)); 1369 1370 /* Read the list of authorized channels. */ 1371 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 1372 WPI_CHK(wpi_read_eeprom_channels(sc, i)); 1373 1374 /* Read the list of TX power groups. */ 1375 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 1376 WPI_CHK(wpi_read_eeprom_group(sc, i)); 1377 1378 fail: wpi_apm_stop(sc); /* Power OFF adapter. */ 1379 1380 DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END, 1381 __func__); 1382 1383 return error; 1384 #undef WPI_CHK 1385 } 1386 1387 /* 1388 * Translate EEPROM flags to net80211. 1389 */ 1390 static uint32_t 1391 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel) 1392 { 1393 uint32_t nflags; 1394 1395 nflags = 0; 1396 if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0) 1397 nflags |= IEEE80211_CHAN_PASSIVE; 1398 if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0) 1399 nflags |= IEEE80211_CHAN_NOADHOC; 1400 if (channel->flags & WPI_EEPROM_CHAN_RADAR) { 1401 nflags |= IEEE80211_CHAN_DFS; 1402 /* XXX apparently IBSS may still be marked */ 1403 nflags |= IEEE80211_CHAN_NOADHOC; 1404 } 1405 1406 /* XXX HOSTAP uses WPI_MODE_IBSS */ 1407 if (nflags & IEEE80211_CHAN_NOADHOC) 1408 nflags |= IEEE80211_CHAN_NOHOSTAP; 1409 1410 return nflags; 1411 } 1412 1413 static void 1414 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans, 1415 int *nchans, struct ieee80211_channel chans[]) 1416 { 1417 struct wpi_eeprom_chan *channels = sc->eeprom_channels[n]; 1418 const struct wpi_chan_band *band = &wpi_bands[n]; 1419 uint32_t nflags; 1420 uint8_t bands[IEEE80211_MODE_BYTES]; 1421 uint8_t chan, i; 1422 int error; 1423 1424 memset(bands, 0, sizeof(bands)); 1425 1426 if (n == 0) { 1427 setbit(bands, IEEE80211_MODE_11B); 1428 setbit(bands, IEEE80211_MODE_11G); 1429 } else 1430 setbit(bands, IEEE80211_MODE_11A); 1431 1432 for (i = 0; i < band->nchan; i++) { 1433 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 1434 DPRINTF(sc, WPI_DEBUG_EEPROM, 1435 "Channel Not Valid: %d, band %d\n", 1436 band->chan[i],n); 1437 continue; 1438 } 1439 1440 chan = band->chan[i]; 1441 nflags = wpi_eeprom_channel_flags(&channels[i]); 1442 error = ieee80211_add_channel(chans, maxchans, nchans, 1443 chan, 0, channels[i].maxpwr, nflags, bands); 1444 if (error != 0) 1445 break; 1446 1447 /* Save maximum allowed TX power for this channel. */ 1448 sc->maxpwr[chan] = channels[i].maxpwr; 1449 1450 DPRINTF(sc, WPI_DEBUG_EEPROM, 1451 "adding chan %d flags=0x%x maxpwr=%d, offset %d\n", 1452 chan, channels[i].flags, sc->maxpwr[chan], *nchans); 1453 } 1454 } 1455 1456 /** 1457 * Read the eeprom to find out what channels are valid for the given 1458 * band and update net80211 with what we find. 1459 */ 1460 static int 1461 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n) 1462 { 1463 struct ieee80211com *ic = &sc->sc_ic; 1464 const struct wpi_chan_band *band = &wpi_bands[n]; 1465 int error; 1466 1467 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1468 1469 error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n], 1470 band->nchan * sizeof (struct wpi_eeprom_chan)); 1471 if (error != 0) { 1472 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1473 return error; 1474 } 1475 1476 wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 1477 ic->ic_channels); 1478 1479 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 1480 1481 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1482 1483 return 0; 1484 } 1485 1486 static struct wpi_eeprom_chan * 1487 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c) 1488 { 1489 int i, j; 1490 1491 for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++) 1492 for (i = 0; i < wpi_bands[j].nchan; i++) 1493 if (wpi_bands[j].chan[i] == c->ic_ieee && 1494 ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1) 1495 return &sc->eeprom_channels[j][i]; 1496 1497 return NULL; 1498 } 1499 1500 static void 1501 wpi_getradiocaps(struct ieee80211com *ic, 1502 int maxchans, int *nchans, struct ieee80211_channel chans[]) 1503 { 1504 struct wpi_softc *sc = ic->ic_softc; 1505 int i; 1506 1507 /* Parse the list of authorized channels. */ 1508 for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++) 1509 wpi_read_eeprom_band(sc, i, maxchans, nchans, chans); 1510 } 1511 1512 /* 1513 * Enforce flags read from EEPROM. 1514 */ 1515 static int 1516 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 1517 int nchan, struct ieee80211_channel chans[]) 1518 { 1519 struct wpi_softc *sc = ic->ic_softc; 1520 int i; 1521 1522 for (i = 0; i < nchan; i++) { 1523 struct ieee80211_channel *c = &chans[i]; 1524 struct wpi_eeprom_chan *channel; 1525 1526 channel = wpi_find_eeprom_channel(sc, c); 1527 if (channel == NULL) { 1528 ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n", 1529 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 1530 return EINVAL; 1531 } 1532 c->ic_flags |= wpi_eeprom_channel_flags(channel); 1533 } 1534 1535 return 0; 1536 } 1537 1538 static int 1539 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n) 1540 { 1541 struct wpi_power_group *group = &sc->groups[n]; 1542 struct wpi_eeprom_group rgroup; 1543 int i, error; 1544 1545 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1546 1547 if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, 1548 &rgroup, sizeof rgroup)) != 0) { 1549 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1550 return error; 1551 } 1552 1553 /* Save TX power group information. */ 1554 group->chan = rgroup.chan; 1555 group->maxpwr = rgroup.maxpwr; 1556 /* Retrieve temperature at which the samples were taken. */ 1557 group->temp = (int16_t)le16toh(rgroup.temp); 1558 1559 DPRINTF(sc, WPI_DEBUG_EEPROM, 1560 "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan, 1561 group->maxpwr, group->temp); 1562 1563 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 1564 group->samples[i].index = rgroup.samples[i].index; 1565 group->samples[i].power = rgroup.samples[i].power; 1566 1567 DPRINTF(sc, WPI_DEBUG_EEPROM, 1568 "\tsample %d: index=%d power=%d\n", i, 1569 group->samples[i].index, group->samples[i].power); 1570 } 1571 1572 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1573 1574 return 0; 1575 } 1576 1577 static __inline uint8_t 1578 wpi_add_node_entry_adhoc(struct wpi_softc *sc) 1579 { 1580 uint8_t newid = WPI_ID_IBSS_MIN; 1581 1582 for (; newid <= WPI_ID_IBSS_MAX; newid++) { 1583 if ((sc->nodesmsk & (1 << newid)) == 0) { 1584 sc->nodesmsk |= 1 << newid; 1585 return newid; 1586 } 1587 } 1588 1589 return WPI_ID_UNDEFINED; 1590 } 1591 1592 static __inline uint8_t 1593 wpi_add_node_entry_sta(struct wpi_softc *sc) 1594 { 1595 sc->nodesmsk |= 1 << WPI_ID_BSS; 1596 1597 return WPI_ID_BSS; 1598 } 1599 1600 static __inline int 1601 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id) 1602 { 1603 if (id == WPI_ID_UNDEFINED) 1604 return 0; 1605 1606 return (sc->nodesmsk >> id) & 1; 1607 } 1608 1609 static __inline void 1610 wpi_clear_node_table(struct wpi_softc *sc) 1611 { 1612 sc->nodesmsk = 0; 1613 } 1614 1615 static __inline void 1616 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id) 1617 { 1618 sc->nodesmsk &= ~(1 << id); 1619 } 1620 1621 static struct ieee80211_node * 1622 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 1623 { 1624 struct wpi_node *wn; 1625 1626 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, 1627 M_NOWAIT | M_ZERO); 1628 1629 if (wn == NULL) 1630 return NULL; 1631 1632 wn->id = WPI_ID_UNDEFINED; 1633 1634 return &wn->ni; 1635 } 1636 1637 static void 1638 wpi_node_free(struct ieee80211_node *ni) 1639 { 1640 struct wpi_softc *sc = ni->ni_ic->ic_softc; 1641 struct wpi_node *wn = WPI_NODE(ni); 1642 1643 if (wn->id != WPI_ID_UNDEFINED) { 1644 WPI_NT_LOCK(sc); 1645 if (wpi_check_node_entry(sc, wn->id)) { 1646 wpi_del_node_entry(sc, wn->id); 1647 wpi_del_node(sc, ni); 1648 } 1649 WPI_NT_UNLOCK(sc); 1650 } 1651 1652 sc->sc_node_free(ni); 1653 } 1654 1655 static __inline int 1656 wpi_check_bss_filter(struct wpi_softc *sc) 1657 { 1658 return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0; 1659 } 1660 1661 static void 1662 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, 1663 const struct ieee80211_rx_stats *rxs, 1664 int rssi, int nf) 1665 { 1666 struct ieee80211vap *vap = ni->ni_vap; 1667 struct wpi_softc *sc = vap->iv_ic->ic_softc; 1668 struct wpi_vap *wvp = WPI_VAP(vap); 1669 uint64_t ni_tstamp, rx_tstamp; 1670 1671 wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf); 1672 1673 if (vap->iv_state == IEEE80211_S_RUN && 1674 (subtype == IEEE80211_FC0_SUBTYPE_BEACON || 1675 subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) { 1676 ni_tstamp = le64toh(ni->ni_tstamp.tsf); 1677 rx_tstamp = le64toh(sc->rx_tstamp); 1678 1679 if (ni_tstamp >= rx_tstamp) { 1680 DPRINTF(sc, WPI_DEBUG_STATE, 1681 "ibss merge, tsf %ju tstamp %ju\n", 1682 (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp); 1683 (void) ieee80211_ibss_merge(ni); 1684 } 1685 } 1686 } 1687 1688 static void 1689 wpi_restore_node(void *arg, struct ieee80211_node *ni) 1690 { 1691 struct wpi_softc *sc = arg; 1692 struct wpi_node *wn = WPI_NODE(ni); 1693 int error; 1694 1695 WPI_NT_LOCK(sc); 1696 if (wn->id != WPI_ID_UNDEFINED) { 1697 wn->id = WPI_ID_UNDEFINED; 1698 if ((error = wpi_add_ibss_node(sc, ni)) != 0) { 1699 device_printf(sc->sc_dev, 1700 "%s: could not add IBSS node, error %d\n", 1701 __func__, error); 1702 } 1703 } 1704 WPI_NT_UNLOCK(sc); 1705 } 1706 1707 static void 1708 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp) 1709 { 1710 struct ieee80211com *ic = &sc->sc_ic; 1711 1712 /* Set group keys once. */ 1713 WPI_NT_LOCK(sc); 1714 wvp->wv_gtk = 0; 1715 WPI_NT_UNLOCK(sc); 1716 1717 ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc); 1718 ieee80211_crypto_reload_keys(ic); 1719 } 1720 1721 /** 1722 * Called by net80211 when ever there is a change to 80211 state machine 1723 */ 1724 static int 1725 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1726 { 1727 struct wpi_vap *wvp = WPI_VAP(vap); 1728 struct ieee80211com *ic = vap->iv_ic; 1729 struct wpi_softc *sc = ic->ic_softc; 1730 int error = 0; 1731 1732 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1733 1734 WPI_TXQ_LOCK(sc); 1735 if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) { 1736 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1737 WPI_TXQ_UNLOCK(sc); 1738 1739 return ENXIO; 1740 } 1741 WPI_TXQ_UNLOCK(sc); 1742 1743 DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__, 1744 ieee80211_state_name[vap->iv_state], 1745 ieee80211_state_name[nstate]); 1746 1747 if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) { 1748 if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) { 1749 device_printf(sc->sc_dev, 1750 "%s: could not set power saving level\n", 1751 __func__); 1752 return error; 1753 } 1754 1755 wpi_set_led(sc, WPI_LED_LINK, 1, 0); 1756 } 1757 1758 switch (nstate) { 1759 case IEEE80211_S_SCAN: 1760 WPI_RXON_LOCK(sc); 1761 if (wpi_check_bss_filter(sc) != 0) { 1762 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 1763 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 1764 device_printf(sc->sc_dev, 1765 "%s: could not send RXON\n", __func__); 1766 } 1767 } 1768 WPI_RXON_UNLOCK(sc); 1769 break; 1770 1771 case IEEE80211_S_ASSOC: 1772 if (vap->iv_state != IEEE80211_S_RUN) 1773 break; 1774 /* FALLTHROUGH */ 1775 case IEEE80211_S_AUTH: 1776 /* 1777 * NB: do not optimize AUTH -> AUTH state transmission - 1778 * this will break powersave with non-QoS AP! 1779 */ 1780 1781 /* 1782 * The node must be registered in the firmware before auth. 1783 * Also the associd must be cleared on RUN -> ASSOC 1784 * transitions. 1785 */ 1786 if ((error = wpi_auth(sc, vap)) != 0) { 1787 device_printf(sc->sc_dev, 1788 "%s: could not move to AUTH state, error %d\n", 1789 __func__, error); 1790 } 1791 break; 1792 1793 case IEEE80211_S_RUN: 1794 /* 1795 * RUN -> RUN transition: 1796 * STA mode: Just restart the timers. 1797 * IBSS mode: Process IBSS merge. 1798 */ 1799 if (vap->iv_state == IEEE80211_S_RUN) { 1800 if (vap->iv_opmode != IEEE80211_M_IBSS) { 1801 WPI_RXON_LOCK(sc); 1802 wpi_calib_timeout(sc); 1803 WPI_RXON_UNLOCK(sc); 1804 break; 1805 } else { 1806 /* 1807 * Drop the BSS_FILTER bit 1808 * (there is no another way to change bssid). 1809 */ 1810 WPI_RXON_LOCK(sc); 1811 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 1812 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 1813 device_printf(sc->sc_dev, 1814 "%s: could not send RXON\n", 1815 __func__); 1816 } 1817 WPI_RXON_UNLOCK(sc); 1818 1819 /* Restore all what was lost. */ 1820 wpi_restore_node_table(sc, wvp); 1821 1822 /* XXX set conditionally? */ 1823 wpi_updateedca(ic); 1824 } 1825 } 1826 1827 /* 1828 * !RUN -> RUN requires setting the association id 1829 * which is done with a firmware cmd. We also defer 1830 * starting the timers until that work is done. 1831 */ 1832 if ((error = wpi_run(sc, vap)) != 0) { 1833 device_printf(sc->sc_dev, 1834 "%s: could not move to RUN state\n", __func__); 1835 } 1836 break; 1837 1838 default: 1839 break; 1840 } 1841 if (error != 0) { 1842 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1843 return error; 1844 } 1845 1846 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1847 1848 return wvp->wv_newstate(vap, nstate, arg); 1849 } 1850 1851 static void 1852 wpi_calib_timeout(void *arg) 1853 { 1854 struct wpi_softc *sc = arg; 1855 1856 if (wpi_check_bss_filter(sc) == 0) 1857 return; 1858 1859 wpi_power_calibration(sc); 1860 1861 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 1862 } 1863 1864 static __inline uint8_t 1865 rate2plcp(const uint8_t rate) 1866 { 1867 switch (rate) { 1868 case 12: return 0xd; 1869 case 18: return 0xf; 1870 case 24: return 0x5; 1871 case 36: return 0x7; 1872 case 48: return 0x9; 1873 case 72: return 0xb; 1874 case 96: return 0x1; 1875 case 108: return 0x3; 1876 case 2: return 10; 1877 case 4: return 20; 1878 case 11: return 55; 1879 case 22: return 110; 1880 default: return 0; 1881 } 1882 } 1883 1884 static __inline uint8_t 1885 plcp2rate(const uint8_t plcp) 1886 { 1887 switch (plcp) { 1888 case 0xd: return 12; 1889 case 0xf: return 18; 1890 case 0x5: return 24; 1891 case 0x7: return 36; 1892 case 0x9: return 48; 1893 case 0xb: return 72; 1894 case 0x1: return 96; 1895 case 0x3: return 108; 1896 case 10: return 2; 1897 case 20: return 4; 1898 case 55: return 11; 1899 case 110: return 22; 1900 default: return 0; 1901 } 1902 } 1903 1904 /* Quickly determine if a given rate is CCK or OFDM. */ 1905 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1906 1907 static void 1908 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1909 struct wpi_rx_data *data) 1910 { 1911 struct epoch_tracker et; 1912 struct ieee80211com *ic = &sc->sc_ic; 1913 struct wpi_rx_ring *ring = &sc->rxq; 1914 struct wpi_rx_stat *stat; 1915 struct wpi_rx_head *head; 1916 struct wpi_rx_tail *tail; 1917 struct ieee80211_frame *wh; 1918 struct ieee80211_node *ni; 1919 struct mbuf *m, *m1; 1920 bus_addr_t paddr; 1921 uint32_t flags; 1922 uint16_t len; 1923 int error; 1924 1925 stat = (struct wpi_rx_stat *)(desc + 1); 1926 1927 if (__predict_false(stat->len > WPI_STAT_MAXLEN)) { 1928 device_printf(sc->sc_dev, "invalid RX statistic header\n"); 1929 goto fail1; 1930 } 1931 1932 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 1933 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1934 len = le16toh(head->len); 1935 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len); 1936 flags = le32toh(tail->flags); 1937 1938 DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d" 1939 " rate %x chan %d tstamp %ju\n", __func__, ring->cur, 1940 le32toh(desc->len), len, (int8_t)stat->rssi, 1941 head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp)); 1942 1943 /* Discard frames with a bad FCS early. */ 1944 if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1945 DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n", 1946 __func__, flags); 1947 goto fail1; 1948 } 1949 /* Discard frames that are too short. */ 1950 if (len < sizeof (struct ieee80211_frame_ack)) { 1951 DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n", 1952 __func__, len); 1953 goto fail1; 1954 } 1955 1956 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1957 if (__predict_false(m1 == NULL)) { 1958 DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n", 1959 __func__); 1960 goto fail1; 1961 } 1962 bus_dmamap_unload(ring->data_dmat, data->map); 1963 1964 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), 1965 MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1966 if (__predict_false(error != 0 && error != EFBIG)) { 1967 device_printf(sc->sc_dev, 1968 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1969 m_freem(m1); 1970 1971 /* Try to reload the old mbuf. */ 1972 error = bus_dmamap_load(ring->data_dmat, data->map, 1973 mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr, 1974 &paddr, BUS_DMA_NOWAIT); 1975 if (error != 0 && error != EFBIG) { 1976 panic("%s: could not load old RX mbuf", __func__); 1977 } 1978 /* Physical address may have changed. */ 1979 ring->desc[ring->cur] = htole32(paddr); 1980 bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map, 1981 BUS_DMASYNC_PREWRITE); 1982 goto fail1; 1983 } 1984 1985 m = data->m; 1986 data->m = m1; 1987 /* Update RX descriptor. */ 1988 ring->desc[ring->cur] = htole32(paddr); 1989 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1990 BUS_DMASYNC_PREWRITE); 1991 1992 /* Finalize mbuf. */ 1993 m->m_data = (caddr_t)(head + 1); 1994 m->m_pkthdr.len = m->m_len = len; 1995 1996 /* Grab a reference to the source node. */ 1997 wh = mtod(m, struct ieee80211_frame *); 1998 1999 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 2000 (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) { 2001 /* Check whether decryption was successful or not. */ 2002 if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) { 2003 DPRINTF(sc, WPI_DEBUG_RECV, 2004 "CCMP decryption failed 0x%x\n", flags); 2005 goto fail2; 2006 } 2007 m->m_flags |= M_WEP; 2008 } 2009 2010 if (len >= sizeof(struct ieee80211_frame_min)) 2011 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2012 else 2013 ni = NULL; 2014 2015 sc->rx_tstamp = tail->tstamp; 2016 2017 if (ieee80211_radiotap_active(ic)) { 2018 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 2019 2020 tap->wr_flags = 0; 2021 if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE)) 2022 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2023 tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET); 2024 tap->wr_dbm_antnoise = WPI_RSSI_OFFSET; 2025 tap->wr_tsft = tail->tstamp; 2026 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 2027 tap->wr_rate = plcp2rate(head->plcp); 2028 } 2029 2030 WPI_UNLOCK(sc); 2031 NET_EPOCH_ENTER(et); 2032 2033 /* Send the frame to the 802.11 layer. */ 2034 if (ni != NULL) { 2035 (void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET); 2036 /* Node is no longer needed. */ 2037 ieee80211_free_node(ni); 2038 } else 2039 (void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET); 2040 2041 NET_EPOCH_EXIT(et); 2042 WPI_LOCK(sc); 2043 2044 return; 2045 2046 fail2: m_freem(m); 2047 2048 fail1: counter_u64_add(ic->ic_ierrors, 1); 2049 } 2050 2051 static void 2052 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc, 2053 struct wpi_rx_data *data) 2054 { 2055 /* Ignore */ 2056 } 2057 2058 static void 2059 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) 2060 { 2061 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; 2062 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 2063 struct wpi_tx_data *data = &ring->data[desc->idx]; 2064 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 2065 struct mbuf *m; 2066 struct ieee80211_node *ni; 2067 uint32_t status = le32toh(stat->status); 2068 2069 KASSERT(data->ni != NULL, ("no node")); 2070 KASSERT(data->m != NULL, ("no mbuf")); 2071 2072 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 2073 2074 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: " 2075 "qid %d idx %d retries %d btkillcnt %d rate %x duration %d " 2076 "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt, 2077 stat->btkillcnt, stat->rate, le32toh(stat->duration), status); 2078 2079 /* Unmap and free mbuf. */ 2080 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 2081 bus_dmamap_unload(ring->data_dmat, data->map); 2082 m = data->m, data->m = NULL; 2083 ni = data->ni, data->ni = NULL; 2084 2085 /* Restore frame header. */ 2086 KASSERT(M_LEADINGSPACE(m) >= data->hdrlen, ("no frame header!")); 2087 M_PREPEND(m, data->hdrlen, M_NOWAIT); 2088 KASSERT(m != NULL, ("%s: m is NULL\n", __func__)); 2089 2090 /* 2091 * Update rate control statistics for the node. 2092 */ 2093 txs->pktlen = m->m_pkthdr.len; 2094 txs->short_retries = stat->rtsfailcnt; 2095 txs->long_retries = stat->ackfailcnt / WPI_NTRIES_DEFAULT; 2096 if (!(status & WPI_TX_STATUS_FAIL)) 2097 txs->status = IEEE80211_RATECTL_TX_SUCCESS; 2098 else { 2099 switch (status & 0xff) { 2100 case WPI_TX_STATUS_FAIL_SHORT_LIMIT: 2101 txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT; 2102 break; 2103 case WPI_TX_STATUS_FAIL_LONG_LIMIT: 2104 txs->status = IEEE80211_RATECTL_TX_FAIL_LONG; 2105 break; 2106 case WPI_TX_STATUS_FAIL_LIFE_EXPIRE: 2107 txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED; 2108 break; 2109 default: 2110 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 2111 break; 2112 } 2113 } 2114 2115 ieee80211_ratectl_tx_complete(ni, txs); 2116 ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0); 2117 2118 WPI_TXQ_STATE_LOCK(sc); 2119 if (--ring->queued > 0) 2120 callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc); 2121 else 2122 callout_stop(&sc->tx_timeout); 2123 WPI_TXQ_STATE_UNLOCK(sc); 2124 2125 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 2126 } 2127 2128 /* 2129 * Process a "command done" firmware notification. This is where we wakeup 2130 * processes waiting for a synchronous command completion. 2131 */ 2132 static void 2133 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) 2134 { 2135 struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM]; 2136 struct wpi_tx_data *data; 2137 struct wpi_tx_cmd *cmd; 2138 2139 DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x " 2140 "type %s len %d\n", desc->qid, desc->idx, 2141 desc->flags, wpi_cmd_str(desc->type), 2142 le32toh(desc->len)); 2143 2144 if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM) 2145 return; /* Not a command ack. */ 2146 2147 KASSERT(ring->queued == 0, ("ring->queued must be 0")); 2148 2149 data = &ring->data[desc->idx]; 2150 cmd = &ring->cmd[desc->idx]; 2151 2152 /* If the command was mapped in an mbuf, free it. */ 2153 if (data->m != NULL) { 2154 bus_dmamap_sync(ring->data_dmat, data->map, 2155 BUS_DMASYNC_POSTWRITE); 2156 bus_dmamap_unload(ring->data_dmat, data->map); 2157 m_freem(data->m); 2158 data->m = NULL; 2159 } 2160 2161 wakeup(cmd); 2162 2163 if (desc->type == WPI_CMD_SET_POWER_MODE) { 2164 struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data; 2165 2166 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 2167 BUS_DMASYNC_POSTREAD); 2168 2169 WPI_TXQ_LOCK(sc); 2170 if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) { 2171 sc->sc_update_rx_ring = wpi_update_rx_ring_ps; 2172 sc->sc_update_tx_ring = wpi_update_tx_ring_ps; 2173 } else { 2174 sc->sc_update_rx_ring = wpi_update_rx_ring; 2175 sc->sc_update_tx_ring = wpi_update_tx_ring; 2176 } 2177 WPI_TXQ_UNLOCK(sc); 2178 } 2179 } 2180 2181 static void 2182 wpi_notif_intr(struct wpi_softc *sc) 2183 { 2184 struct ieee80211com *ic = &sc->sc_ic; 2185 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2186 uint32_t hw; 2187 2188 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 2189 BUS_DMASYNC_POSTREAD); 2190 2191 hw = le32toh(sc->shared->next) & 0xfff; 2192 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 2193 2194 while (sc->rxq.cur != hw) { 2195 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 2196 2197 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2198 struct wpi_rx_desc *desc; 2199 2200 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2201 BUS_DMASYNC_POSTREAD); 2202 desc = mtod(data->m, struct wpi_rx_desc *); 2203 2204 DPRINTF(sc, WPI_DEBUG_NOTIFY, 2205 "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n", 2206 __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags, 2207 desc->type, wpi_cmd_str(desc->type), le32toh(desc->len)); 2208 2209 if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) { 2210 /* Reply to a command. */ 2211 wpi_cmd_done(sc, desc); 2212 } 2213 2214 switch (desc->type) { 2215 case WPI_RX_DONE: 2216 /* An 802.11 frame has been received. */ 2217 wpi_rx_done(sc, desc, data); 2218 2219 if (__predict_false(sc->sc_running == 0)) { 2220 /* wpi_stop() was called. */ 2221 return; 2222 } 2223 2224 break; 2225 2226 case WPI_TX_DONE: 2227 /* An 802.11 frame has been transmitted. */ 2228 wpi_tx_done(sc, desc); 2229 break; 2230 2231 case WPI_RX_STATISTICS: 2232 case WPI_BEACON_STATISTICS: 2233 wpi_rx_statistics(sc, desc, data); 2234 break; 2235 2236 case WPI_BEACON_MISSED: 2237 { 2238 struct wpi_beacon_missed *miss = 2239 (struct wpi_beacon_missed *)(desc + 1); 2240 uint32_t expected, misses, received, threshold; 2241 2242 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2243 BUS_DMASYNC_POSTREAD); 2244 2245 misses = le32toh(miss->consecutive); 2246 expected = le32toh(miss->expected); 2247 received = le32toh(miss->received); 2248 threshold = MAX(2, vap->iv_bmissthreshold); 2249 2250 DPRINTF(sc, WPI_DEBUG_BMISS, 2251 "%s: beacons missed %u(%u) (received %u/%u)\n", 2252 __func__, misses, le32toh(miss->total), received, 2253 expected); 2254 2255 if (misses >= threshold || 2256 (received == 0 && expected >= threshold)) { 2257 WPI_RXON_LOCK(sc); 2258 if (callout_pending(&sc->scan_timeout)) { 2259 wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL, 2260 0, 1); 2261 } 2262 WPI_RXON_UNLOCK(sc); 2263 if (vap->iv_state == IEEE80211_S_RUN && 2264 (ic->ic_flags & IEEE80211_F_SCAN) == 0) 2265 ieee80211_beacon_miss(ic); 2266 } 2267 2268 break; 2269 } 2270 #ifdef WPI_DEBUG 2271 case WPI_BEACON_SENT: 2272 { 2273 struct wpi_tx_stat *stat = 2274 (struct wpi_tx_stat *)(desc + 1); 2275 uint64_t *tsf = (uint64_t *)(stat + 1); 2276 uint32_t *mode = (uint32_t *)(tsf + 1); 2277 2278 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2279 BUS_DMASYNC_POSTREAD); 2280 2281 DPRINTF(sc, WPI_DEBUG_BEACON, 2282 "beacon sent: rts %u, ack %u, btkill %u, rate %u, " 2283 "duration %u, status %x, tsf %ju, mode %x\n", 2284 stat->rtsfailcnt, stat->ackfailcnt, 2285 stat->btkillcnt, stat->rate, le32toh(stat->duration), 2286 le32toh(stat->status), le64toh(*tsf), 2287 le32toh(*mode)); 2288 2289 break; 2290 } 2291 #endif 2292 case WPI_UC_READY: 2293 { 2294 struct wpi_ucode_info *uc = 2295 (struct wpi_ucode_info *)(desc + 1); 2296 2297 /* The microcontroller is ready. */ 2298 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2299 BUS_DMASYNC_POSTREAD); 2300 DPRINTF(sc, WPI_DEBUG_RESET, 2301 "microcode alive notification version=%d.%d " 2302 "subtype=%x alive=%x\n", uc->major, uc->minor, 2303 uc->subtype, le32toh(uc->valid)); 2304 2305 if (le32toh(uc->valid) != 1) { 2306 device_printf(sc->sc_dev, 2307 "microcontroller initialization failed\n"); 2308 wpi_stop_locked(sc); 2309 return; 2310 } 2311 /* Save the address of the error log in SRAM. */ 2312 sc->errptr = le32toh(uc->errptr); 2313 break; 2314 } 2315 case WPI_STATE_CHANGED: 2316 { 2317 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2318 BUS_DMASYNC_POSTREAD); 2319 2320 uint32_t *status = (uint32_t *)(desc + 1); 2321 2322 DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n", 2323 le32toh(*status)); 2324 2325 if (le32toh(*status) & 1) { 2326 WPI_NT_LOCK(sc); 2327 wpi_clear_node_table(sc); 2328 WPI_NT_UNLOCK(sc); 2329 ieee80211_runtask(ic, 2330 &sc->sc_radiooff_task); 2331 return; 2332 } 2333 break; 2334 } 2335 #ifdef WPI_DEBUG 2336 case WPI_START_SCAN: 2337 { 2338 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2339 BUS_DMASYNC_POSTREAD); 2340 2341 struct wpi_start_scan *scan = 2342 (struct wpi_start_scan *)(desc + 1); 2343 DPRINTF(sc, WPI_DEBUG_SCAN, 2344 "%s: scanning channel %d status %x\n", 2345 __func__, scan->chan, le32toh(scan->status)); 2346 2347 break; 2348 } 2349 #endif 2350 case WPI_STOP_SCAN: 2351 { 2352 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2353 BUS_DMASYNC_POSTREAD); 2354 2355 struct wpi_stop_scan *scan = 2356 (struct wpi_stop_scan *)(desc + 1); 2357 2358 DPRINTF(sc, WPI_DEBUG_SCAN, 2359 "scan finished nchan=%d status=%d chan=%d\n", 2360 scan->nchan, scan->status, scan->chan); 2361 2362 WPI_RXON_LOCK(sc); 2363 callout_stop(&sc->scan_timeout); 2364 WPI_RXON_UNLOCK(sc); 2365 if (scan->status == WPI_SCAN_ABORTED) 2366 ieee80211_cancel_scan(vap); 2367 else 2368 ieee80211_scan_next(vap); 2369 break; 2370 } 2371 } 2372 2373 if (sc->rxq.cur % 8 == 0) { 2374 /* Tell the firmware what we have processed. */ 2375 sc->sc_update_rx_ring(sc); 2376 } 2377 } 2378 } 2379 2380 /* 2381 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2382 * from power-down sleep mode. 2383 */ 2384 static void 2385 wpi_wakeup_intr(struct wpi_softc *sc) 2386 { 2387 int qid; 2388 2389 DPRINTF(sc, WPI_DEBUG_PWRSAVE, 2390 "%s: ucode wakeup from power-down sleep\n", __func__); 2391 2392 /* Wakeup RX and TX rings. */ 2393 if (sc->rxq.update) { 2394 sc->rxq.update = 0; 2395 wpi_update_rx_ring(sc); 2396 } 2397 WPI_TXQ_LOCK(sc); 2398 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) { 2399 struct wpi_tx_ring *ring = &sc->txq[qid]; 2400 2401 if (ring->update) { 2402 ring->update = 0; 2403 wpi_update_tx_ring(sc, ring); 2404 } 2405 } 2406 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 2407 WPI_TXQ_UNLOCK(sc); 2408 } 2409 2410 /* 2411 * This function prints firmware registers 2412 */ 2413 #ifdef WPI_DEBUG 2414 static void 2415 wpi_debug_registers(struct wpi_softc *sc) 2416 { 2417 size_t i; 2418 static const uint32_t csr_tbl[] = { 2419 WPI_HW_IF_CONFIG, 2420 WPI_INT, 2421 WPI_INT_MASK, 2422 WPI_FH_INT, 2423 WPI_GPIO_IN, 2424 WPI_RESET, 2425 WPI_GP_CNTRL, 2426 WPI_EEPROM, 2427 WPI_EEPROM_GP, 2428 WPI_GIO, 2429 WPI_UCODE_GP1, 2430 WPI_UCODE_GP2, 2431 WPI_GIO_CHICKEN, 2432 WPI_ANA_PLL, 2433 WPI_DBG_HPET_MEM, 2434 }; 2435 static const uint32_t prph_tbl[] = { 2436 WPI_APMG_CLK_CTRL, 2437 WPI_APMG_PS, 2438 WPI_APMG_PCI_STT, 2439 WPI_APMG_RFKILL, 2440 }; 2441 2442 DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n"); 2443 2444 for (i = 0; i < nitems(csr_tbl); i++) { 2445 DPRINTF(sc, WPI_DEBUG_REGISTER, " %-18s: 0x%08x ", 2446 wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i])); 2447 2448 if ((i + 1) % 2 == 0) 2449 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); 2450 } 2451 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n"); 2452 2453 if (wpi_nic_lock(sc) == 0) { 2454 for (i = 0; i < nitems(prph_tbl); i++) { 2455 DPRINTF(sc, WPI_DEBUG_REGISTER, " %-18s: 0x%08x ", 2456 wpi_get_prph_string(prph_tbl[i]), 2457 wpi_prph_read(sc, prph_tbl[i])); 2458 2459 if ((i + 1) % 2 == 0) 2460 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); 2461 } 2462 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); 2463 wpi_nic_unlock(sc); 2464 } else { 2465 DPRINTF(sc, WPI_DEBUG_REGISTER, 2466 "Cannot access internal registers.\n"); 2467 } 2468 } 2469 #endif 2470 2471 /* 2472 * Dump the error log of the firmware when a firmware panic occurs. Although 2473 * we can't debug the firmware because it is neither open source nor free, it 2474 * can help us to identify certain classes of problems. 2475 */ 2476 static void 2477 wpi_fatal_intr(struct wpi_softc *sc) 2478 { 2479 struct wpi_fw_dump dump; 2480 uint32_t i, offset, count; 2481 2482 /* Check that the error log address is valid. */ 2483 if (sc->errptr < WPI_FW_DATA_BASE || 2484 sc->errptr + sizeof (dump) > 2485 WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) { 2486 printf("%s: bad firmware error log address 0x%08x\n", __func__, 2487 sc->errptr); 2488 return; 2489 } 2490 if (wpi_nic_lock(sc) != 0) { 2491 printf("%s: could not read firmware error log\n", __func__); 2492 return; 2493 } 2494 /* Read number of entries in the log. */ 2495 count = wpi_mem_read(sc, sc->errptr); 2496 if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) { 2497 printf("%s: invalid count field (count = %u)\n", __func__, 2498 count); 2499 wpi_nic_unlock(sc); 2500 return; 2501 } 2502 /* Skip "count" field. */ 2503 offset = sc->errptr + sizeof (uint32_t); 2504 printf("firmware error log (count = %u):\n", count); 2505 for (i = 0; i < count; i++) { 2506 wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump, 2507 sizeof (dump) / sizeof (uint32_t)); 2508 2509 printf(" error type = \"%s\" (0x%08X)\n", 2510 (dump.desc < nitems(wpi_fw_errmsg)) ? 2511 wpi_fw_errmsg[dump.desc] : "UNKNOWN", 2512 dump.desc); 2513 printf(" error data = 0x%08X\n", 2514 dump.data); 2515 printf(" branch link = 0x%08X%08X\n", 2516 dump.blink[0], dump.blink[1]); 2517 printf(" interrupt link = 0x%08X%08X\n", 2518 dump.ilink[0], dump.ilink[1]); 2519 printf(" time = %u\n", dump.time); 2520 2521 offset += sizeof (dump); 2522 } 2523 wpi_nic_unlock(sc); 2524 /* Dump driver status (TX and RX rings) while we're here. */ 2525 printf("driver status:\n"); 2526 WPI_TXQ_LOCK(sc); 2527 for (i = 0; i < WPI_DRV_NTXQUEUES; i++) { 2528 struct wpi_tx_ring *ring = &sc->txq[i]; 2529 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2530 i, ring->qid, ring->cur, ring->queued); 2531 } 2532 WPI_TXQ_UNLOCK(sc); 2533 printf(" rx ring: cur=%d\n", sc->rxq.cur); 2534 } 2535 2536 static void 2537 wpi_intr(void *arg) 2538 { 2539 struct wpi_softc *sc = arg; 2540 uint32_t r1, r2; 2541 2542 WPI_LOCK(sc); 2543 2544 /* Disable interrupts. */ 2545 WPI_WRITE(sc, WPI_INT_MASK, 0); 2546 2547 r1 = WPI_READ(sc, WPI_INT); 2548 2549 if (__predict_false(r1 == 0xffffffff || 2550 (r1 & 0xfffffff0) == 0xa5a5a5a0)) 2551 goto end; /* Hardware gone! */ 2552 2553 r2 = WPI_READ(sc, WPI_FH_INT); 2554 2555 DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__, 2556 r1, r2); 2557 2558 if (r1 == 0 && r2 == 0) 2559 goto done; /* Interrupt not for us. */ 2560 2561 /* Acknowledge interrupts. */ 2562 WPI_WRITE(sc, WPI_INT, r1); 2563 WPI_WRITE(sc, WPI_FH_INT, r2); 2564 2565 if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) { 2566 struct ieee80211com *ic = &sc->sc_ic; 2567 2568 device_printf(sc->sc_dev, "fatal firmware error\n"); 2569 #ifdef WPI_DEBUG 2570 wpi_debug_registers(sc); 2571 #endif 2572 wpi_fatal_intr(sc); 2573 DPRINTF(sc, WPI_DEBUG_HW, 2574 "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" : 2575 "(Hardware Error)"); 2576 ieee80211_restart_all(ic); 2577 goto end; 2578 } 2579 2580 if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) || 2581 (r2 & WPI_FH_INT_RX)) 2582 wpi_notif_intr(sc); 2583 2584 if (r1 & WPI_INT_ALIVE) 2585 wakeup(sc); /* Firmware is alive. */ 2586 2587 if (r1 & WPI_INT_WAKEUP) 2588 wpi_wakeup_intr(sc); 2589 2590 done: 2591 /* Re-enable interrupts. */ 2592 if (__predict_true(sc->sc_running)) 2593 WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF); 2594 2595 end: WPI_UNLOCK(sc); 2596 } 2597 2598 static void 2599 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac) 2600 { 2601 struct wpi_tx_ring *ring; 2602 struct wpi_tx_data *data; 2603 uint8_t cur; 2604 2605 WPI_TXQ_LOCK(sc); 2606 ring = &sc->txq[ac]; 2607 2608 while (ring->pending != 0) { 2609 ring->pending--; 2610 cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; 2611 data = &ring->data[cur]; 2612 2613 bus_dmamap_sync(ring->data_dmat, data->map, 2614 BUS_DMASYNC_POSTWRITE); 2615 bus_dmamap_unload(ring->data_dmat, data->map); 2616 m_freem(data->m); 2617 data->m = NULL; 2618 2619 ieee80211_node_decref(data->ni); 2620 data->ni = NULL; 2621 } 2622 2623 WPI_TXQ_UNLOCK(sc); 2624 } 2625 2626 static int 2627 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf) 2628 { 2629 struct ieee80211_frame *wh; 2630 struct wpi_tx_cmd *cmd; 2631 struct wpi_tx_data *data; 2632 struct wpi_tx_desc *desc; 2633 struct wpi_tx_ring *ring; 2634 struct mbuf *m1; 2635 bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER]; 2636 uint8_t cur, pad; 2637 uint16_t hdrlen; 2638 int error, i, nsegs, totlen, frag; 2639 2640 WPI_TXQ_LOCK(sc); 2641 2642 KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow")); 2643 2644 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 2645 2646 if (__predict_false(sc->sc_running == 0)) { 2647 /* wpi_stop() was called */ 2648 error = ENETDOWN; 2649 goto end; 2650 } 2651 2652 wh = mtod(buf->m, struct ieee80211_frame *); 2653 hdrlen = ieee80211_anyhdrsize(wh); 2654 totlen = buf->m->m_pkthdr.len; 2655 frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG); 2656 2657 if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) { 2658 error = EINVAL; 2659 goto end; 2660 } 2661 2662 if (hdrlen & 3) { 2663 /* First segment length must be a multiple of 4. */ 2664 pad = 4 - (hdrlen & 3); 2665 } else 2666 pad = 0; 2667 2668 ring = &sc->txq[buf->ac]; 2669 cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; 2670 desc = &ring->desc[cur]; 2671 data = &ring->data[cur]; 2672 2673 /* Prepare TX firmware command. */ 2674 cmd = &ring->cmd[cur]; 2675 cmd->code = buf->code; 2676 cmd->flags = 0; 2677 cmd->qid = ring->qid; 2678 cmd->idx = cur; 2679 2680 memcpy(cmd->data, buf->data, buf->size); 2681 2682 /* Save and trim IEEE802.11 header. */ 2683 memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen); 2684 m_adj(buf->m, hdrlen); 2685 2686 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m, 2687 segs, &nsegs, BUS_DMA_NOWAIT); 2688 if (error != 0 && error != EFBIG) { 2689 device_printf(sc->sc_dev, 2690 "%s: can't map mbuf (error %d)\n", __func__, error); 2691 goto end; 2692 } 2693 if (error != 0) { 2694 /* Too many DMA segments, linearize mbuf. */ 2695 m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1); 2696 if (m1 == NULL) { 2697 device_printf(sc->sc_dev, 2698 "%s: could not defrag mbuf\n", __func__); 2699 error = ENOBUFS; 2700 goto end; 2701 } 2702 buf->m = m1; 2703 2704 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 2705 buf->m, segs, &nsegs, BUS_DMA_NOWAIT); 2706 if (__predict_false(error != 0)) { 2707 /* XXX fix this (applicable to the iwn(4) too) */ 2708 /* 2709 * NB: Do not return error; 2710 * original mbuf does not exist anymore. 2711 */ 2712 device_printf(sc->sc_dev, 2713 "%s: can't map mbuf (error %d)\n", __func__, 2714 error); 2715 if (ring->qid < WPI_CMD_QUEUE_NUM) { 2716 if_inc_counter(buf->ni->ni_vap->iv_ifp, 2717 IFCOUNTER_OERRORS, 1); 2718 if (!frag) 2719 ieee80211_free_node(buf->ni); 2720 } 2721 m_freem(buf->m); 2722 error = 0; 2723 goto end; 2724 } 2725 } 2726 2727 KASSERT(nsegs < WPI_MAX_SCATTER, 2728 ("too many DMA segments, nsegs (%d) should be less than %d", 2729 nsegs, WPI_MAX_SCATTER)); 2730 2731 data->m = buf->m; 2732 data->ni = buf->ni; 2733 data->hdrlen = hdrlen; 2734 2735 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 2736 __func__, ring->qid, cur, totlen, nsegs); 2737 2738 /* Fill TX descriptor. */ 2739 desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs); 2740 /* First DMA segment is used by the TX command. */ 2741 desc->segs[0].addr = htole32(data->cmd_paddr); 2742 desc->segs[0].len = htole32(4 + buf->size + hdrlen + pad); 2743 /* Other DMA segments are for data payload. */ 2744 seg = &segs[0]; 2745 for (i = 1; i <= nsegs; i++) { 2746 desc->segs[i].addr = htole32(seg->ds_addr); 2747 desc->segs[i].len = htole32(seg->ds_len); 2748 seg++; 2749 } 2750 2751 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2752 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 2753 BUS_DMASYNC_PREWRITE); 2754 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2755 BUS_DMASYNC_PREWRITE); 2756 2757 ring->pending += 1; 2758 2759 if (!frag) { 2760 if (ring->qid < WPI_CMD_QUEUE_NUM) { 2761 WPI_TXQ_STATE_LOCK(sc); 2762 ring->queued += ring->pending; 2763 callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, 2764 sc); 2765 WPI_TXQ_STATE_UNLOCK(sc); 2766 } 2767 2768 /* Kick TX ring. */ 2769 ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; 2770 ring->pending = 0; 2771 sc->sc_update_tx_ring(sc, ring); 2772 } else 2773 ieee80211_node_incref(data->ni); 2774 2775 end: DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END, 2776 __func__); 2777 2778 WPI_TXQ_UNLOCK(sc); 2779 2780 return (error); 2781 } 2782 2783 /* 2784 * Construct the data packet for a transmit buffer. 2785 */ 2786 static int 2787 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 2788 { 2789 const struct ieee80211_txparam *tp = ni->ni_txparms; 2790 struct ieee80211vap *vap = ni->ni_vap; 2791 struct ieee80211com *ic = ni->ni_ic; 2792 struct wpi_node *wn = WPI_NODE(ni); 2793 struct ieee80211_frame *wh; 2794 struct ieee80211_key *k = NULL; 2795 struct wpi_buf tx_data; 2796 struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data; 2797 uint32_t flags; 2798 uint16_t ac, qos; 2799 uint8_t tid, type, rate; 2800 int swcrypt, ismcast, totlen; 2801 2802 wh = mtod(m, struct ieee80211_frame *); 2803 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2804 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2805 swcrypt = 1; 2806 2807 /* Select EDCA Access Category and TX ring for this frame. */ 2808 if (IEEE80211_QOS_HAS_SEQ(wh)) { 2809 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 2810 tid = qos & IEEE80211_QOS_TID; 2811 } else { 2812 qos = 0; 2813 tid = 0; 2814 } 2815 ac = M_WME_GETAC(m); 2816 2817 /* Choose a TX rate index. */ 2818 if (type == IEEE80211_FC0_TYPE_MGT || 2819 type == IEEE80211_FC0_TYPE_CTL || 2820 (m->m_flags & M_EAPOL) != 0) 2821 rate = tp->mgmtrate; 2822 else if (ismcast) 2823 rate = tp->mcastrate; 2824 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2825 rate = tp->ucastrate; 2826 else { 2827 /* XXX pass pktlen */ 2828 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2829 rate = ni->ni_txrate; 2830 } 2831 2832 /* Encrypt the frame if need be. */ 2833 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2834 /* Retrieve key for TX. */ 2835 k = ieee80211_crypto_encap(ni, m); 2836 if (k == NULL) 2837 return (ENOBUFS); 2838 2839 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT; 2840 2841 /* 802.11 header may have moved. */ 2842 wh = mtod(m, struct ieee80211_frame *); 2843 } 2844 totlen = m->m_pkthdr.len; 2845 2846 if (ieee80211_radiotap_active_vap(vap)) { 2847 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 2848 2849 tap->wt_flags = 0; 2850 tap->wt_rate = rate; 2851 if (k != NULL) 2852 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2853 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2854 tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 2855 2856 ieee80211_radiotap_tx(vap, m); 2857 } 2858 2859 flags = 0; 2860 if (!ismcast) { 2861 /* Unicast frame, check if an ACK is expected. */ 2862 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 2863 IEEE80211_QOS_ACKPOLICY_NOACK) 2864 flags |= WPI_TX_NEED_ACK; 2865 } 2866 2867 if (!IEEE80211_QOS_HAS_SEQ(wh)) 2868 flags |= WPI_TX_AUTO_SEQ; 2869 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2870 flags |= WPI_TX_MORE_FRAG; 2871 2872 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 2873 if (!ismcast) { 2874 /* NB: Group frames are sent using CCK in 802.11b/g. */ 2875 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 2876 flags |= WPI_TX_NEED_RTS; 2877 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 2878 WPI_RATE_IS_OFDM(rate)) { 2879 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2880 flags |= WPI_TX_NEED_CTS; 2881 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2882 flags |= WPI_TX_NEED_RTS; 2883 } 2884 2885 if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS)) 2886 flags |= WPI_TX_FULL_TXOP; 2887 } 2888 2889 memset(tx, 0, sizeof (struct wpi_cmd_data)); 2890 if (type == IEEE80211_FC0_TYPE_MGT) { 2891 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2892 2893 /* Tell HW to set timestamp in probe responses. */ 2894 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2895 flags |= WPI_TX_INSERT_TSTAMP; 2896 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2897 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2898 tx->timeout = htole16(3); 2899 else 2900 tx->timeout = htole16(2); 2901 } 2902 2903 if (ismcast || type != IEEE80211_FC0_TYPE_DATA) 2904 tx->id = WPI_ID_BROADCAST; 2905 else { 2906 if (wn->id == WPI_ID_UNDEFINED) { 2907 device_printf(sc->sc_dev, 2908 "%s: undefined node id\n", __func__); 2909 return (EINVAL); 2910 } 2911 2912 tx->id = wn->id; 2913 } 2914 2915 if (!swcrypt) { 2916 switch (k->wk_cipher->ic_cipher) { 2917 case IEEE80211_CIPHER_AES_CCM: 2918 tx->security = WPI_CIPHER_CCMP; 2919 break; 2920 2921 default: 2922 break; 2923 } 2924 2925 memcpy(tx->key, k->wk_key, k->wk_keylen); 2926 } 2927 2928 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 2929 struct mbuf *next = m->m_nextpkt; 2930 2931 tx->lnext = htole16(next->m_pkthdr.len); 2932 tx->fnext = htole32(tx->security | 2933 (flags & WPI_TX_NEED_ACK) | 2934 WPI_NEXT_STA_ID(tx->id)); 2935 } 2936 2937 tx->len = htole16(totlen); 2938 tx->flags = htole32(flags); 2939 tx->plcp = rate2plcp(rate); 2940 tx->tid = tid; 2941 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 2942 tx->ofdm_mask = 0xff; 2943 tx->cck_mask = 0x0f; 2944 tx->rts_ntries = 7; 2945 tx->data_ntries = tp->maxretry; 2946 2947 tx_data.ni = ni; 2948 tx_data.m = m; 2949 tx_data.size = sizeof(struct wpi_cmd_data); 2950 tx_data.code = WPI_CMD_TX_DATA; 2951 tx_data.ac = ac; 2952 2953 return wpi_cmd2(sc, &tx_data); 2954 } 2955 2956 static int 2957 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, 2958 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 2959 { 2960 struct ieee80211vap *vap = ni->ni_vap; 2961 struct ieee80211_key *k = NULL; 2962 struct ieee80211_frame *wh; 2963 struct wpi_buf tx_data; 2964 struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data; 2965 uint32_t flags; 2966 uint8_t ac, type, rate; 2967 int swcrypt, totlen; 2968 2969 wh = mtod(m, struct ieee80211_frame *); 2970 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2971 swcrypt = 1; 2972 2973 ac = params->ibp_pri & 3; 2974 2975 /* Choose a TX rate index. */ 2976 rate = params->ibp_rate0; 2977 2978 flags = 0; 2979 if (!IEEE80211_QOS_HAS_SEQ(wh)) 2980 flags |= WPI_TX_AUTO_SEQ; 2981 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 2982 flags |= WPI_TX_NEED_ACK; 2983 if (params->ibp_flags & IEEE80211_BPF_RTS) 2984 flags |= WPI_TX_NEED_RTS; 2985 if (params->ibp_flags & IEEE80211_BPF_CTS) 2986 flags |= WPI_TX_NEED_CTS; 2987 if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS)) 2988 flags |= WPI_TX_FULL_TXOP; 2989 2990 /* Encrypt the frame if need be. */ 2991 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 2992 /* Retrieve key for TX. */ 2993 k = ieee80211_crypto_encap(ni, m); 2994 if (k == NULL) 2995 return (ENOBUFS); 2996 2997 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT; 2998 2999 /* 802.11 header may have moved. */ 3000 wh = mtod(m, struct ieee80211_frame *); 3001 } 3002 totlen = m->m_pkthdr.len; 3003 3004 if (ieee80211_radiotap_active_vap(vap)) { 3005 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 3006 3007 tap->wt_flags = 0; 3008 tap->wt_rate = rate; 3009 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) 3010 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3011 3012 ieee80211_radiotap_tx(vap, m); 3013 } 3014 3015 memset(tx, 0, sizeof (struct wpi_cmd_data)); 3016 if (type == IEEE80211_FC0_TYPE_MGT) { 3017 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3018 3019 /* Tell HW to set timestamp in probe responses. */ 3020 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3021 flags |= WPI_TX_INSERT_TSTAMP; 3022 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3023 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3024 tx->timeout = htole16(3); 3025 else 3026 tx->timeout = htole16(2); 3027 } 3028 3029 if (!swcrypt) { 3030 switch (k->wk_cipher->ic_cipher) { 3031 case IEEE80211_CIPHER_AES_CCM: 3032 tx->security = WPI_CIPHER_CCMP; 3033 break; 3034 3035 default: 3036 break; 3037 } 3038 3039 memcpy(tx->key, k->wk_key, k->wk_keylen); 3040 } 3041 3042 tx->len = htole16(totlen); 3043 tx->flags = htole32(flags); 3044 tx->plcp = rate2plcp(rate); 3045 tx->id = WPI_ID_BROADCAST; 3046 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 3047 tx->rts_ntries = params->ibp_try1; 3048 tx->data_ntries = params->ibp_try0; 3049 3050 tx_data.ni = ni; 3051 tx_data.m = m; 3052 tx_data.size = sizeof(struct wpi_cmd_data); 3053 tx_data.code = WPI_CMD_TX_DATA; 3054 tx_data.ac = ac; 3055 3056 return wpi_cmd2(sc, &tx_data); 3057 } 3058 3059 static __inline int 3060 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac) 3061 { 3062 struct wpi_tx_ring *ring = &sc->txq[ac]; 3063 int retval; 3064 3065 WPI_TXQ_STATE_LOCK(sc); 3066 retval = WPI_TX_RING_HIMARK - ring->queued; 3067 WPI_TXQ_STATE_UNLOCK(sc); 3068 3069 return retval; 3070 } 3071 3072 static int 3073 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3074 const struct ieee80211_bpf_params *params) 3075 { 3076 struct ieee80211com *ic = ni->ni_ic; 3077 struct wpi_softc *sc = ic->ic_softc; 3078 uint16_t ac; 3079 int error = 0; 3080 3081 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3082 3083 ac = M_WME_GETAC(m); 3084 3085 WPI_TX_LOCK(sc); 3086 3087 /* NB: no fragments here */ 3088 if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) { 3089 error = sc->sc_running ? ENOBUFS : ENETDOWN; 3090 goto unlock; 3091 } 3092 3093 if (params == NULL) { 3094 /* 3095 * Legacy path; interpret frame contents to decide 3096 * precisely how to send the frame. 3097 */ 3098 error = wpi_tx_data(sc, m, ni); 3099 } else { 3100 /* 3101 * Caller supplied explicit parameters to use in 3102 * sending the frame. 3103 */ 3104 error = wpi_tx_data_raw(sc, m, ni, params); 3105 } 3106 3107 unlock: WPI_TX_UNLOCK(sc); 3108 3109 if (error != 0) { 3110 m_freem(m); 3111 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 3112 3113 return error; 3114 } 3115 3116 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 3117 3118 return 0; 3119 } 3120 3121 static int 3122 wpi_transmit(struct ieee80211com *ic, struct mbuf *m) 3123 { 3124 struct wpi_softc *sc = ic->ic_softc; 3125 struct ieee80211_node *ni; 3126 struct mbuf *mnext; 3127 uint16_t ac; 3128 int error, nmbufs; 3129 3130 WPI_TX_LOCK(sc); 3131 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__); 3132 3133 /* Check if interface is up & running. */ 3134 if (__predict_false(sc->sc_running == 0)) { 3135 error = ENXIO; 3136 goto unlock; 3137 } 3138 3139 nmbufs = 1; 3140 for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt) 3141 nmbufs++; 3142 3143 /* Check for available space. */ 3144 ac = M_WME_GETAC(m); 3145 if (wpi_tx_ring_free_space(sc, ac) < nmbufs) { 3146 error = ENOBUFS; 3147 goto unlock; 3148 } 3149 3150 error = 0; 3151 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 3152 do { 3153 mnext = m->m_nextpkt; 3154 if (wpi_tx_data(sc, m, ni) != 0) { 3155 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 3156 nmbufs); 3157 wpi_free_txfrags(sc, ac); 3158 ieee80211_free_mbuf(m); 3159 ieee80211_free_node(ni); 3160 break; 3161 } 3162 } while((m = mnext) != NULL); 3163 3164 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__); 3165 3166 unlock: WPI_TX_UNLOCK(sc); 3167 3168 return (error); 3169 } 3170 3171 static void 3172 wpi_watchdog_rfkill(void *arg) 3173 { 3174 struct wpi_softc *sc = arg; 3175 struct ieee80211com *ic = &sc->sc_ic; 3176 3177 DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n"); 3178 3179 /* No need to lock firmware memory. */ 3180 if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) { 3181 /* Radio kill switch is still off. */ 3182 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, 3183 sc); 3184 } else 3185 ieee80211_runtask(ic, &sc->sc_radioon_task); 3186 } 3187 3188 static void 3189 wpi_scan_timeout(void *arg) 3190 { 3191 struct wpi_softc *sc = arg; 3192 struct ieee80211com *ic = &sc->sc_ic; 3193 3194 ic_printf(ic, "scan timeout\n"); 3195 ieee80211_restart_all(ic); 3196 } 3197 3198 static void 3199 wpi_tx_timeout(void *arg) 3200 { 3201 struct wpi_softc *sc = arg; 3202 struct ieee80211com *ic = &sc->sc_ic; 3203 3204 ic_printf(ic, "device timeout\n"); 3205 ieee80211_restart_all(ic); 3206 } 3207 3208 static void 3209 wpi_parent(struct ieee80211com *ic) 3210 { 3211 struct wpi_softc *sc = ic->ic_softc; 3212 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3213 3214 if (ic->ic_nrunning > 0) { 3215 if (wpi_init(sc) == 0) { 3216 ieee80211_notify_radio(ic, 1); 3217 ieee80211_start_all(ic); 3218 } else { 3219 ieee80211_notify_radio(ic, 0); 3220 ieee80211_stop(vap); 3221 } 3222 } else { 3223 ieee80211_notify_radio(ic, 0); 3224 wpi_stop(sc); 3225 } 3226 } 3227 3228 /* 3229 * Send a command to the firmware. 3230 */ 3231 static int 3232 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size, 3233 int async) 3234 { 3235 struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM]; 3236 struct wpi_tx_desc *desc; 3237 struct wpi_tx_data *data; 3238 struct wpi_tx_cmd *cmd; 3239 struct mbuf *m; 3240 bus_addr_t paddr; 3241 uint16_t totlen; 3242 int error; 3243 3244 WPI_TXQ_LOCK(sc); 3245 3246 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3247 3248 if (__predict_false(sc->sc_running == 0)) { 3249 /* wpi_stop() was called */ 3250 if (code == WPI_CMD_SCAN) 3251 error = ENETDOWN; 3252 else 3253 error = 0; 3254 3255 goto fail; 3256 } 3257 3258 if (async == 0) 3259 WPI_LOCK_ASSERT(sc); 3260 3261 DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n", 3262 __func__, wpi_cmd_str(code), size, async); 3263 3264 desc = &ring->desc[ring->cur]; 3265 data = &ring->data[ring->cur]; 3266 totlen = 4 + size; 3267 3268 if (size > sizeof cmd->data) { 3269 /* Command is too large to fit in a descriptor. */ 3270 if (totlen > MCLBYTES) { 3271 error = EINVAL; 3272 goto fail; 3273 } 3274 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 3275 if (m == NULL) { 3276 error = ENOMEM; 3277 goto fail; 3278 } 3279 cmd = mtod(m, struct wpi_tx_cmd *); 3280 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 3281 totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 3282 if (error != 0) { 3283 m_freem(m); 3284 goto fail; 3285 } 3286 data->m = m; 3287 } else { 3288 cmd = &ring->cmd[ring->cur]; 3289 paddr = data->cmd_paddr; 3290 } 3291 3292 cmd->code = code; 3293 cmd->flags = 0; 3294 cmd->qid = ring->qid; 3295 cmd->idx = ring->cur; 3296 memcpy(cmd->data, buf, size); 3297 3298 desc->nsegs = 1 + (WPI_PAD32(size) << 4); 3299 desc->segs[0].addr = htole32(paddr); 3300 desc->segs[0].len = htole32(totlen); 3301 3302 if (size > sizeof cmd->data) { 3303 bus_dmamap_sync(ring->data_dmat, data->map, 3304 BUS_DMASYNC_PREWRITE); 3305 } else { 3306 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 3307 BUS_DMASYNC_PREWRITE); 3308 } 3309 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3310 BUS_DMASYNC_PREWRITE); 3311 3312 /* Kick command ring. */ 3313 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 3314 sc->sc_update_tx_ring(sc, ring); 3315 3316 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 3317 3318 WPI_TXQ_UNLOCK(sc); 3319 3320 return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 3321 3322 fail: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 3323 3324 WPI_TXQ_UNLOCK(sc); 3325 3326 return error; 3327 } 3328 3329 /* 3330 * Configure HW multi-rate retries. 3331 */ 3332 static int 3333 wpi_mrr_setup(struct wpi_softc *sc) 3334 { 3335 struct ieee80211com *ic = &sc->sc_ic; 3336 struct wpi_mrr_setup mrr; 3337 uint8_t i; 3338 int error; 3339 3340 /* CCK rates (not used with 802.11a). */ 3341 for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) { 3342 mrr.rates[i].flags = 0; 3343 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 3344 /* Fallback to the immediate lower CCK rate (if any.) */ 3345 mrr.rates[i].next = 3346 (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1; 3347 /* Try twice at this rate before falling back to "next". */ 3348 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT; 3349 } 3350 /* OFDM rates (not used with 802.11b). */ 3351 for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) { 3352 mrr.rates[i].flags = 0; 3353 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 3354 /* Fallback to the immediate lower rate (if any.) */ 3355 /* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */ 3356 mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ? 3357 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 3358 WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) : 3359 i - 1; 3360 /* Try twice at this rate before falling back to "next". */ 3361 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT; 3362 } 3363 /* Setup MRR for control frames. */ 3364 mrr.which = htole32(WPI_MRR_CTL); 3365 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 3366 if (error != 0) { 3367 device_printf(sc->sc_dev, 3368 "could not setup MRR for control frames\n"); 3369 return error; 3370 } 3371 /* Setup MRR for data frames. */ 3372 mrr.which = htole32(WPI_MRR_DATA); 3373 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 3374 if (error != 0) { 3375 device_printf(sc->sc_dev, 3376 "could not setup MRR for data frames\n"); 3377 return error; 3378 } 3379 return 0; 3380 } 3381 3382 static int 3383 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3384 { 3385 struct ieee80211com *ic = ni->ni_ic; 3386 struct wpi_vap *wvp = WPI_VAP(ni->ni_vap); 3387 struct wpi_node *wn = WPI_NODE(ni); 3388 struct wpi_node_info node; 3389 int error; 3390 3391 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3392 3393 if (wn->id == WPI_ID_UNDEFINED) 3394 return EINVAL; 3395 3396 memset(&node, 0, sizeof node); 3397 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 3398 node.id = wn->id; 3399 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3400 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 3401 node.action = htole32(WPI_ACTION_SET_RATE); 3402 node.antenna = WPI_ANTENNA_BOTH; 3403 3404 DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__, 3405 wn->id, ether_sprintf(ni->ni_macaddr)); 3406 3407 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 3408 if (error != 0) { 3409 device_printf(sc->sc_dev, 3410 "%s: wpi_cmd() call failed with error code %d\n", __func__, 3411 error); 3412 return error; 3413 } 3414 3415 if (wvp->wv_gtk != 0) { 3416 error = wpi_set_global_keys(ni); 3417 if (error != 0) { 3418 device_printf(sc->sc_dev, 3419 "%s: error while setting global keys\n", __func__); 3420 return ENXIO; 3421 } 3422 } 3423 3424 return 0; 3425 } 3426 3427 /* 3428 * Broadcast node is used to send group-addressed and management frames. 3429 */ 3430 static int 3431 wpi_add_broadcast_node(struct wpi_softc *sc, int async) 3432 { 3433 struct ieee80211com *ic = &sc->sc_ic; 3434 struct wpi_node_info node; 3435 3436 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3437 3438 memset(&node, 0, sizeof node); 3439 IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr); 3440 node.id = WPI_ID_BROADCAST; 3441 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3442 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 3443 node.action = htole32(WPI_ACTION_SET_RATE); 3444 node.antenna = WPI_ANTENNA_BOTH; 3445 3446 DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__); 3447 3448 return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async); 3449 } 3450 3451 static int 3452 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3453 { 3454 struct wpi_node *wn = WPI_NODE(ni); 3455 int error; 3456 3457 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3458 3459 wn->id = wpi_add_node_entry_sta(sc); 3460 3461 if ((error = wpi_add_node(sc, ni)) != 0) { 3462 wpi_del_node_entry(sc, wn->id); 3463 wn->id = WPI_ID_UNDEFINED; 3464 return error; 3465 } 3466 3467 return 0; 3468 } 3469 3470 static int 3471 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3472 { 3473 struct wpi_node *wn = WPI_NODE(ni); 3474 int error; 3475 3476 KASSERT(wn->id == WPI_ID_UNDEFINED, 3477 ("the node %d was added before", wn->id)); 3478 3479 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3480 3481 if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) { 3482 device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__); 3483 return ENOMEM; 3484 } 3485 3486 if ((error = wpi_add_node(sc, ni)) != 0) { 3487 wpi_del_node_entry(sc, wn->id); 3488 wn->id = WPI_ID_UNDEFINED; 3489 return error; 3490 } 3491 3492 return 0; 3493 } 3494 3495 static void 3496 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3497 { 3498 struct wpi_node *wn = WPI_NODE(ni); 3499 struct wpi_cmd_del_node node; 3500 int error; 3501 3502 KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed")); 3503 3504 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3505 3506 memset(&node, 0, sizeof node); 3507 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 3508 node.count = 1; 3509 3510 DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__, 3511 wn->id, ether_sprintf(ni->ni_macaddr)); 3512 3513 error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1); 3514 if (error != 0) { 3515 device_printf(sc->sc_dev, 3516 "%s: could not delete node %u, error %d\n", __func__, 3517 wn->id, error); 3518 } 3519 } 3520 3521 static int 3522 wpi_updateedca(struct ieee80211com *ic) 3523 { 3524 #define WPI_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 3525 struct wpi_softc *sc = ic->ic_softc; 3526 struct chanAccParams chp; 3527 struct wpi_edca_params cmd; 3528 int aci, error; 3529 3530 ieee80211_wme_ic_getparams(ic, &chp); 3531 3532 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3533 3534 memset(&cmd, 0, sizeof cmd); 3535 cmd.flags = htole32(WPI_EDCA_UPDATE); 3536 for (aci = 0; aci < WME_NUM_AC; aci++) { 3537 const struct wmeParams *ac = &chp.cap_wmeParams[aci]; 3538 cmd.ac[aci].aifsn = ac->wmep_aifsn; 3539 cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin)); 3540 cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax)); 3541 cmd.ac[aci].txoplimit = 3542 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); 3543 3544 DPRINTF(sc, WPI_DEBUG_EDCA, 3545 "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 3546 "txoplimit=%d\n", aci, cmd.ac[aci].aifsn, 3547 cmd.ac[aci].cwmin, cmd.ac[aci].cwmax, 3548 cmd.ac[aci].txoplimit); 3549 } 3550 error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 3551 3552 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 3553 3554 return error; 3555 #undef WPI_EXP2 3556 } 3557 3558 static void 3559 wpi_set_promisc(struct wpi_softc *sc) 3560 { 3561 struct ieee80211com *ic = &sc->sc_ic; 3562 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3563 uint32_t promisc_filter; 3564 3565 promisc_filter = WPI_FILTER_CTL; 3566 if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP) 3567 promisc_filter |= WPI_FILTER_PROMISC; 3568 3569 if (ic->ic_promisc > 0) 3570 sc->rxon.filter |= htole32(promisc_filter); 3571 else 3572 sc->rxon.filter &= ~htole32(promisc_filter); 3573 } 3574 3575 static void 3576 wpi_update_promisc(struct ieee80211com *ic) 3577 { 3578 struct wpi_softc *sc = ic->ic_softc; 3579 3580 WPI_LOCK(sc); 3581 if (sc->sc_running == 0) { 3582 WPI_UNLOCK(sc); 3583 return; 3584 } 3585 WPI_UNLOCK(sc); 3586 3587 WPI_RXON_LOCK(sc); 3588 wpi_set_promisc(sc); 3589 3590 if (wpi_send_rxon(sc, 1, 1) != 0) { 3591 device_printf(sc->sc_dev, "%s: could not send RXON\n", 3592 __func__); 3593 } 3594 WPI_RXON_UNLOCK(sc); 3595 } 3596 3597 static void 3598 wpi_update_mcast(struct ieee80211com *ic) 3599 { 3600 /* Ignore */ 3601 } 3602 3603 static void 3604 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3605 { 3606 struct wpi_cmd_led led; 3607 3608 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3609 3610 led.which = which; 3611 led.unit = htole32(100000); /* on/off in unit of 100ms */ 3612 led.off = off; 3613 led.on = on; 3614 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 3615 } 3616 3617 static int 3618 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni) 3619 { 3620 struct wpi_cmd_timing cmd; 3621 uint64_t val, mod; 3622 3623 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3624 3625 memset(&cmd, 0, sizeof cmd); 3626 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3627 cmd.bintval = htole16(ni->ni_intval); 3628 cmd.lintval = htole16(10); 3629 3630 /* Compute remaining time until next beacon. */ 3631 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 3632 mod = le64toh(cmd.tstamp) % val; 3633 cmd.binitval = htole32((uint32_t)(val - mod)); 3634 3635 DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 3636 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 3637 3638 return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1); 3639 } 3640 3641 /* 3642 * This function is called periodically (every 60 seconds) to adjust output 3643 * power to temperature changes. 3644 */ 3645 static void 3646 wpi_power_calibration(struct wpi_softc *sc) 3647 { 3648 int temp; 3649 3650 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3651 3652 /* Update sensor data. */ 3653 temp = (int)WPI_READ(sc, WPI_UCODE_GP2); 3654 DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp); 3655 3656 /* Sanity-check read value. */ 3657 if (temp < -260 || temp > 25) { 3658 /* This can't be correct, ignore. */ 3659 DPRINTF(sc, WPI_DEBUG_TEMP, 3660 "out-of-range temperature reported: %d\n", temp); 3661 return; 3662 } 3663 3664 DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp); 3665 3666 /* Adjust Tx power if need be. */ 3667 if (abs(temp - sc->temp) <= 6) 3668 return; 3669 3670 sc->temp = temp; 3671 3672 if (wpi_set_txpower(sc, 1) != 0) { 3673 /* just warn, too bad for the automatic calibration... */ 3674 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3675 } 3676 } 3677 3678 /* 3679 * Set TX power for current channel. 3680 */ 3681 static int 3682 wpi_set_txpower(struct wpi_softc *sc, int async) 3683 { 3684 struct wpi_power_group *group; 3685 struct wpi_cmd_txpower cmd; 3686 uint8_t chan; 3687 int idx, is_chan_5ghz, i; 3688 3689 /* Retrieve current channel from last RXON. */ 3690 chan = sc->rxon.chan; 3691 is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0; 3692 3693 /* Find the TX power group to which this channel belongs. */ 3694 if (is_chan_5ghz) { 3695 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3696 if (chan <= group->chan) 3697 break; 3698 } else 3699 group = &sc->groups[0]; 3700 3701 memset(&cmd, 0, sizeof cmd); 3702 cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ; 3703 cmd.chan = htole16(chan); 3704 3705 /* Set TX power for all OFDM and CCK rates. */ 3706 for (i = 0; i <= WPI_RIDX_MAX ; i++) { 3707 /* Retrieve TX power for this channel/rate. */ 3708 idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i); 3709 3710 cmd.rates[i].plcp = wpi_ridx_to_plcp[i]; 3711 3712 if (is_chan_5ghz) { 3713 cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; 3714 cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; 3715 } else { 3716 cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; 3717 cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; 3718 } 3719 DPRINTF(sc, WPI_DEBUG_TEMP, 3720 "chan %d/ridx %d: power index %d\n", chan, i, idx); 3721 } 3722 3723 return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async); 3724 } 3725 3726 /* 3727 * Determine Tx power index for a given channel/rate combination. 3728 * This takes into account the regulatory information from EEPROM and the 3729 * current temperature. 3730 */ 3731 static int 3732 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3733 uint8_t chan, int is_chan_5ghz, int ridx) 3734 { 3735 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3736 #define fdivround(a, b, n) \ 3737 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3738 3739 /* Linear interpolation. */ 3740 #define interpolate(x, x1, y1, x2, y2, n) \ 3741 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3742 3743 struct wpi_power_sample *sample; 3744 int pwr, idx; 3745 3746 /* Default TX power is group maximum TX power minus 3dB. */ 3747 pwr = group->maxpwr / 2; 3748 3749 /* Decrease TX power for highest OFDM rates to reduce distortion. */ 3750 switch (ridx) { 3751 case WPI_RIDX_OFDM36: 3752 pwr -= is_chan_5ghz ? 5 : 0; 3753 break; 3754 case WPI_RIDX_OFDM48: 3755 pwr -= is_chan_5ghz ? 10 : 7; 3756 break; 3757 case WPI_RIDX_OFDM54: 3758 pwr -= is_chan_5ghz ? 12 : 9; 3759 break; 3760 } 3761 3762 /* Never exceed the channel maximum allowed TX power. */ 3763 pwr = min(pwr, sc->maxpwr[chan]); 3764 3765 /* Retrieve TX power index into gain tables from samples. */ 3766 for (sample = group->samples; sample < &group->samples[3]; sample++) 3767 if (pwr > sample[1].power) 3768 break; 3769 /* Fixed-point linear interpolation using a 19-bit fractional part. */ 3770 idx = interpolate(pwr, sample[0].power, sample[0].index, 3771 sample[1].power, sample[1].index, 19); 3772 3773 /*- 3774 * Adjust power index based on current temperature: 3775 * - if cooler than factory-calibrated: decrease output power 3776 * - if warmer than factory-calibrated: increase output power 3777 */ 3778 idx -= (sc->temp - group->temp) * 11 / 100; 3779 3780 /* Decrease TX power for CCK rates (-5dB). */ 3781 if (ridx >= WPI_RIDX_CCK1) 3782 idx += 10; 3783 3784 /* Make sure idx stays in a valid range. */ 3785 if (idx < 0) 3786 return 0; 3787 if (idx > WPI_MAX_PWR_INDEX) 3788 return WPI_MAX_PWR_INDEX; 3789 return idx; 3790 3791 #undef interpolate 3792 #undef fdivround 3793 } 3794 3795 /* 3796 * Set STA mode power saving level (between 0 and 5). 3797 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 3798 */ 3799 static int 3800 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async) 3801 { 3802 struct wpi_pmgt_cmd cmd; 3803 const struct wpi_pmgt *pmgt; 3804 uint32_t max, reg; 3805 uint8_t skip_dtim; 3806 int i; 3807 3808 DPRINTF(sc, WPI_DEBUG_PWRSAVE, 3809 "%s: dtim=%d, level=%d, async=%d\n", 3810 __func__, dtim, level, async); 3811 3812 /* Select which PS parameters to use. */ 3813 if (dtim <= 10) 3814 pmgt = &wpi_pmgt[0][level]; 3815 else 3816 pmgt = &wpi_pmgt[1][level]; 3817 3818 memset(&cmd, 0, sizeof cmd); 3819 if (level != 0) /* not CAM */ 3820 cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP); 3821 /* Retrieve PCIe Active State Power Management (ASPM). */ 3822 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1); 3823 if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */ 3824 cmd.flags |= htole16(WPI_PS_PCI_PMGT); 3825 3826 cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU); 3827 cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU); 3828 3829 if (dtim == 0) { 3830 dtim = 1; 3831 skip_dtim = 0; 3832 } else 3833 skip_dtim = pmgt->skip_dtim; 3834 3835 if (skip_dtim != 0) { 3836 cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM); 3837 max = pmgt->intval[4]; 3838 if (max == (uint32_t)-1) 3839 max = dtim * (skip_dtim + 1); 3840 else if (max > dtim) 3841 max = rounddown(max, dtim); 3842 } else 3843 max = dtim; 3844 3845 for (i = 0; i < 5; i++) 3846 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 3847 3848 return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 3849 } 3850 3851 static int 3852 wpi_send_btcoex(struct wpi_softc *sc) 3853 { 3854 struct wpi_bluetooth cmd; 3855 3856 memset(&cmd, 0, sizeof cmd); 3857 cmd.flags = WPI_BT_COEX_MODE_4WIRE; 3858 cmd.lead_time = WPI_BT_LEAD_TIME_DEF; 3859 cmd.max_kill = WPI_BT_MAX_KILL_DEF; 3860 DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", 3861 __func__); 3862 return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 3863 } 3864 3865 static int 3866 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async) 3867 { 3868 int error; 3869 3870 if (async) 3871 WPI_RXON_LOCK_ASSERT(sc); 3872 3873 if (assoc && wpi_check_bss_filter(sc) != 0) { 3874 struct wpi_assoc rxon_assoc; 3875 3876 rxon_assoc.flags = sc->rxon.flags; 3877 rxon_assoc.filter = sc->rxon.filter; 3878 rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask; 3879 rxon_assoc.cck_mask = sc->rxon.cck_mask; 3880 rxon_assoc.reserved = 0; 3881 3882 error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc, 3883 sizeof (struct wpi_assoc), async); 3884 if (error != 0) { 3885 device_printf(sc->sc_dev, 3886 "RXON_ASSOC command failed, error %d\n", error); 3887 return error; 3888 } 3889 } else { 3890 if (async) { 3891 WPI_NT_LOCK(sc); 3892 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, 3893 sizeof (struct wpi_rxon), async); 3894 if (error == 0) 3895 wpi_clear_node_table(sc); 3896 WPI_NT_UNLOCK(sc); 3897 } else { 3898 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, 3899 sizeof (struct wpi_rxon), async); 3900 if (error == 0) 3901 wpi_clear_node_table(sc); 3902 } 3903 3904 if (error != 0) { 3905 device_printf(sc->sc_dev, 3906 "RXON command failed, error %d\n", error); 3907 return error; 3908 } 3909 3910 /* Add broadcast node. */ 3911 error = wpi_add_broadcast_node(sc, async); 3912 if (error != 0) { 3913 device_printf(sc->sc_dev, 3914 "could not add broadcast node, error %d\n", error); 3915 return error; 3916 } 3917 } 3918 3919 /* Configuration has changed, set Tx power accordingly. */ 3920 if ((error = wpi_set_txpower(sc, async)) != 0) { 3921 device_printf(sc->sc_dev, 3922 "%s: could not set TX power, error %d\n", __func__, error); 3923 return error; 3924 } 3925 3926 return 0; 3927 } 3928 3929 /** 3930 * Configure the card to listen to a particular channel, this transisions the 3931 * card in to being able to receive frames from remote devices. 3932 */ 3933 static int 3934 wpi_config(struct wpi_softc *sc) 3935 { 3936 struct ieee80211com *ic = &sc->sc_ic; 3937 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3938 struct ieee80211_channel *c = ic->ic_curchan; 3939 int error; 3940 3941 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3942 3943 /* Set power saving level to CAM during initialization. */ 3944 if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) { 3945 device_printf(sc->sc_dev, 3946 "%s: could not set power saving level\n", __func__); 3947 return error; 3948 } 3949 3950 /* Configure bluetooth coexistence. */ 3951 if ((error = wpi_send_btcoex(sc)) != 0) { 3952 device_printf(sc->sc_dev, 3953 "could not configure bluetooth coexistence\n"); 3954 return error; 3955 } 3956 3957 /* Configure adapter. */ 3958 memset(&sc->rxon, 0, sizeof (struct wpi_rxon)); 3959 IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr); 3960 3961 /* Set default channel. */ 3962 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 3963 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); 3964 if (IEEE80211_IS_CHAN_2GHZ(c)) 3965 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 3966 3967 sc->rxon.filter = WPI_FILTER_MULTICAST; 3968 switch (ic->ic_opmode) { 3969 case IEEE80211_M_STA: 3970 sc->rxon.mode = WPI_MODE_STA; 3971 break; 3972 case IEEE80211_M_IBSS: 3973 sc->rxon.mode = WPI_MODE_IBSS; 3974 sc->rxon.filter |= WPI_FILTER_BEACON; 3975 break; 3976 case IEEE80211_M_HOSTAP: 3977 /* XXX workaround for beaconing */ 3978 sc->rxon.mode = WPI_MODE_IBSS; 3979 sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC; 3980 break; 3981 case IEEE80211_M_AHDEMO: 3982 sc->rxon.mode = WPI_MODE_HOSTAP; 3983 break; 3984 case IEEE80211_M_MONITOR: 3985 sc->rxon.mode = WPI_MODE_MONITOR; 3986 break; 3987 default: 3988 device_printf(sc->sc_dev, "unknown opmode %d\n", 3989 ic->ic_opmode); 3990 return EINVAL; 3991 } 3992 sc->rxon.filter = htole32(sc->rxon.filter); 3993 wpi_set_promisc(sc); 3994 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 3995 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 3996 3997 if ((error = wpi_send_rxon(sc, 0, 0)) != 0) { 3998 device_printf(sc->sc_dev, "%s: could not send RXON\n", 3999 __func__); 4000 return error; 4001 } 4002 4003 /* Setup rate scalling. */ 4004 if ((error = wpi_mrr_setup(sc)) != 0) { 4005 device_printf(sc->sc_dev, "could not setup MRR, error %d\n", 4006 error); 4007 return error; 4008 } 4009 4010 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4011 4012 return 0; 4013 } 4014 4015 static uint16_t 4016 wpi_get_active_dwell_time(struct wpi_softc *sc, 4017 struct ieee80211_channel *c, uint8_t n_probes) 4018 { 4019 /* No channel? Default to 2GHz settings. */ 4020 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 4021 return (WPI_ACTIVE_DWELL_TIME_2GHZ + 4022 WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); 4023 } 4024 4025 /* 5GHz dwell time. */ 4026 return (WPI_ACTIVE_DWELL_TIME_5GHZ + 4027 WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); 4028 } 4029 4030 /* 4031 * Limit the total dwell time. 4032 * 4033 * Returns the dwell time in milliseconds. 4034 */ 4035 static uint16_t 4036 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time) 4037 { 4038 struct ieee80211com *ic = &sc->sc_ic; 4039 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 4040 uint16_t bintval = 0; 4041 4042 /* bintval is in TU (1.024mS) */ 4043 if (vap != NULL) 4044 bintval = vap->iv_bss->ni_intval; 4045 4046 /* 4047 * If it's non-zero, we should calculate the minimum of 4048 * it and the DWELL_BASE. 4049 * 4050 * XXX Yes, the math should take into account that bintval 4051 * is 1.024mS, not 1mS.. 4052 */ 4053 if (bintval > 0) { 4054 DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__, 4055 bintval); 4056 return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2)); 4057 } 4058 4059 /* No association context? Default. */ 4060 return dwell_time; 4061 } 4062 4063 static uint16_t 4064 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c) 4065 { 4066 uint16_t passive; 4067 4068 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) 4069 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ; 4070 else 4071 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ; 4072 4073 /* Clamp to the beacon interval if we're associated. */ 4074 return (wpi_limit_dwell(sc, passive)); 4075 } 4076 4077 static uint32_t 4078 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval) 4079 { 4080 uint32_t mod = (time % bintval) * IEEE80211_DUR_TU; 4081 uint32_t nbeacons = time / bintval; 4082 4083 if (mod > WPI_PAUSE_MAX_TIME) 4084 mod = WPI_PAUSE_MAX_TIME; 4085 4086 return WPI_PAUSE_SCAN(nbeacons, mod); 4087 } 4088 4089 /* 4090 * Send a scan request to the firmware. 4091 */ 4092 static int 4093 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c) 4094 { 4095 struct ieee80211com *ic = &sc->sc_ic; 4096 struct ieee80211_scan_state *ss = ic->ic_scan; 4097 struct ieee80211vap *vap = ss->ss_vap; 4098 struct wpi_scan_hdr *hdr; 4099 struct wpi_cmd_data *tx; 4100 struct wpi_scan_essid *essids; 4101 struct wpi_scan_chan *chan; 4102 struct ieee80211_frame *wh; 4103 struct ieee80211_rateset *rs; 4104 uint16_t bintval, buflen, dwell_active, dwell_passive; 4105 uint8_t *buf, *frm, i, nssid; 4106 int bgscan, error; 4107 4108 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4109 4110 /* 4111 * We are absolutely not allowed to send a scan command when another 4112 * scan command is pending. 4113 */ 4114 if (callout_pending(&sc->scan_timeout)) { 4115 device_printf(sc->sc_dev, "%s: called whilst scanning!\n", 4116 __func__); 4117 error = EAGAIN; 4118 goto fail; 4119 } 4120 4121 bgscan = wpi_check_bss_filter(sc); 4122 bintval = vap->iv_bss->ni_intval; 4123 if (bgscan != 0 && 4124 bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) { 4125 error = EOPNOTSUPP; 4126 goto fail; 4127 } 4128 4129 buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4130 if (buf == NULL) { 4131 device_printf(sc->sc_dev, 4132 "%s: could not allocate buffer for scan command\n", 4133 __func__); 4134 error = ENOMEM; 4135 goto fail; 4136 } 4137 hdr = (struct wpi_scan_hdr *)buf; 4138 4139 /* 4140 * Move to the next channel if no packets are received within 10 msecs 4141 * after sending the probe request. 4142 */ 4143 hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT); 4144 hdr->quiet_threshold = htole16(1); 4145 4146 if (bgscan != 0) { 4147 /* 4148 * Max needs to be greater than active and passive and quiet! 4149 * It's also in microseconds! 4150 */ 4151 hdr->max_svc = htole32(250 * IEEE80211_DUR_TU); 4152 hdr->pause_svc = htole32(wpi_get_scan_pause_time(100, 4153 bintval)); 4154 } 4155 4156 hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON); 4157 4158 tx = (struct wpi_cmd_data *)(hdr + 1); 4159 tx->flags = htole32(WPI_TX_AUTO_SEQ); 4160 tx->id = WPI_ID_BROADCAST; 4161 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 4162 4163 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4164 /* Send probe requests at 6Mbps. */ 4165 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6]; 4166 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4167 } else { 4168 hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO); 4169 /* Send probe requests at 1Mbps. */ 4170 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 4171 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4172 } 4173 4174 essids = (struct wpi_scan_essid *)(tx + 1); 4175 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 4176 for (i = 0; i < nssid; i++) { 4177 essids[i].id = IEEE80211_ELEMID_SSID; 4178 essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN); 4179 memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len); 4180 #ifdef WPI_DEBUG 4181 if (sc->sc_debug & WPI_DEBUG_SCAN) { 4182 printf("Scanning Essid: "); 4183 ieee80211_print_essid(essids[i].data, essids[i].len); 4184 printf("\n"); 4185 } 4186 #endif 4187 } 4188 4189 /* 4190 * Build a probe request frame. Most of the following code is a 4191 * copy & paste of what is done in net80211. 4192 */ 4193 wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS); 4194 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4195 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4196 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4197 IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr); 4198 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 4199 IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr); 4200 4201 frm = (uint8_t *)(wh + 1); 4202 frm = ieee80211_add_ssid(frm, NULL, 0); 4203 frm = ieee80211_add_rates(frm, rs); 4204 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4205 frm = ieee80211_add_xrates(frm, rs); 4206 4207 /* Set length of probe request. */ 4208 tx->len = htole16(frm - (uint8_t *)wh); 4209 4210 /* 4211 * Construct information about the channel that we 4212 * want to scan. The firmware expects this to be directly 4213 * after the scan probe request 4214 */ 4215 chan = (struct wpi_scan_chan *)frm; 4216 chan->chan = ieee80211_chan2ieee(ic, c); 4217 chan->flags = 0; 4218 if (nssid) { 4219 hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT; 4220 chan->flags |= WPI_CHAN_NPBREQS(nssid); 4221 } else 4222 hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER; 4223 4224 if (!IEEE80211_IS_CHAN_PASSIVE(c)) 4225 chan->flags |= WPI_CHAN_ACTIVE; 4226 4227 /* 4228 * Calculate the active/passive dwell times. 4229 */ 4230 dwell_active = wpi_get_active_dwell_time(sc, c, nssid); 4231 dwell_passive = wpi_get_passive_dwell_time(sc, c); 4232 4233 /* Make sure they're valid. */ 4234 if (dwell_active > dwell_passive) 4235 dwell_active = dwell_passive; 4236 4237 chan->active = htole16(dwell_active); 4238 chan->passive = htole16(dwell_passive); 4239 4240 chan->dsp_gain = 0x6e; /* Default level */ 4241 4242 if (IEEE80211_IS_CHAN_5GHZ(c)) 4243 chan->rf_gain = 0x3b; 4244 else 4245 chan->rf_gain = 0x28; 4246 4247 DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n", 4248 chan->chan, IEEE80211_IS_CHAN_PASSIVE(c)); 4249 4250 hdr->nchan++; 4251 4252 if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) { 4253 /* XXX Force probe request transmission. */ 4254 memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan)); 4255 4256 chan++; 4257 4258 /* Reduce unnecessary delay. */ 4259 chan->flags = 0; 4260 chan->passive = chan->active = hdr->quiet_time; 4261 4262 hdr->nchan++; 4263 } 4264 4265 chan++; 4266 4267 buflen = (uint8_t *)chan - buf; 4268 hdr->len = htole16(buflen); 4269 4270 DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n", 4271 hdr->nchan); 4272 error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1); 4273 free(buf, M_DEVBUF); 4274 4275 if (error != 0) 4276 goto fail; 4277 4278 callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc); 4279 4280 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4281 4282 return 0; 4283 4284 fail: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 4285 4286 return error; 4287 } 4288 4289 static int 4290 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 4291 { 4292 struct ieee80211com *ic = vap->iv_ic; 4293 struct ieee80211_node *ni = vap->iv_bss; 4294 struct ieee80211_channel *c = ni->ni_chan; 4295 int error; 4296 4297 WPI_RXON_LOCK(sc); 4298 4299 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4300 4301 /* Update adapter configuration. */ 4302 sc->rxon.associd = 0; 4303 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 4304 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4305 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 4306 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); 4307 if (IEEE80211_IS_CHAN_2GHZ(c)) 4308 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 4309 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4310 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); 4311 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4312 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); 4313 if (IEEE80211_IS_CHAN_A(c)) { 4314 sc->rxon.cck_mask = 0; 4315 sc->rxon.ofdm_mask = 0x15; 4316 } else if (IEEE80211_IS_CHAN_B(c)) { 4317 sc->rxon.cck_mask = 0x03; 4318 sc->rxon.ofdm_mask = 0; 4319 } else { 4320 /* Assume 802.11b/g. */ 4321 sc->rxon.cck_mask = 0x0f; 4322 sc->rxon.ofdm_mask = 0x15; 4323 } 4324 4325 DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", 4326 sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask, 4327 sc->rxon.ofdm_mask); 4328 4329 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 4330 device_printf(sc->sc_dev, "%s: could not send RXON\n", 4331 __func__); 4332 } 4333 4334 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4335 4336 WPI_RXON_UNLOCK(sc); 4337 4338 return error; 4339 } 4340 4341 static int 4342 wpi_config_beacon(struct wpi_vap *wvp) 4343 { 4344 struct ieee80211vap *vap = &wvp->wv_vap; 4345 struct ieee80211com *ic = vap->iv_ic; 4346 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 4347 struct wpi_buf *bcn = &wvp->wv_bcbuf; 4348 struct wpi_softc *sc = ic->ic_softc; 4349 struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data; 4350 struct ieee80211_tim_ie *tie; 4351 struct mbuf *m; 4352 uint8_t *ptr; 4353 int error; 4354 4355 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4356 4357 WPI_VAP_LOCK_ASSERT(wvp); 4358 4359 cmd->len = htole16(bcn->m->m_pkthdr.len); 4360 cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 4361 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 4362 4363 /* XXX seems to be unused */ 4364 if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) { 4365 tie = (struct ieee80211_tim_ie *) bo->bo_tim; 4366 ptr = mtod(bcn->m, uint8_t *); 4367 4368 cmd->tim = htole16(bo->bo_tim - ptr); 4369 cmd->timsz = tie->tim_len; 4370 } 4371 4372 /* Necessary for recursion in ieee80211_beacon_update(). */ 4373 m = bcn->m; 4374 bcn->m = m_dup(m, M_NOWAIT); 4375 if (bcn->m == NULL) { 4376 device_printf(sc->sc_dev, 4377 "%s: could not copy beacon frame\n", __func__); 4378 error = ENOMEM; 4379 goto end; 4380 } 4381 4382 if ((error = wpi_cmd2(sc, bcn)) != 0) { 4383 device_printf(sc->sc_dev, 4384 "%s: could not update beacon frame, error %d", __func__, 4385 error); 4386 m_freem(bcn->m); 4387 } 4388 4389 /* Restore mbuf. */ 4390 end: bcn->m = m; 4391 4392 return error; 4393 } 4394 4395 static int 4396 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 4397 { 4398 struct ieee80211vap *vap = ni->ni_vap; 4399 struct wpi_vap *wvp = WPI_VAP(vap); 4400 struct wpi_buf *bcn = &wvp->wv_bcbuf; 4401 struct mbuf *m; 4402 int error; 4403 4404 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4405 4406 if (ni->ni_chan == IEEE80211_CHAN_ANYC) 4407 return EINVAL; 4408 4409 m = ieee80211_beacon_alloc(ni); 4410 if (m == NULL) { 4411 device_printf(sc->sc_dev, 4412 "%s: could not allocate beacon frame\n", __func__); 4413 return ENOMEM; 4414 } 4415 4416 WPI_VAP_LOCK(wvp); 4417 if (bcn->m != NULL) 4418 m_freem(bcn->m); 4419 4420 bcn->m = m; 4421 4422 error = wpi_config_beacon(wvp); 4423 WPI_VAP_UNLOCK(wvp); 4424 4425 return error; 4426 } 4427 4428 static void 4429 wpi_update_beacon(struct ieee80211vap *vap, int item) 4430 { 4431 struct wpi_softc *sc = vap->iv_ic->ic_softc; 4432 struct wpi_vap *wvp = WPI_VAP(vap); 4433 struct wpi_buf *bcn = &wvp->wv_bcbuf; 4434 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 4435 struct ieee80211_node *ni = vap->iv_bss; 4436 int mcast = 0; 4437 4438 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4439 4440 WPI_VAP_LOCK(wvp); 4441 if (bcn->m == NULL) { 4442 bcn->m = ieee80211_beacon_alloc(ni); 4443 if (bcn->m == NULL) { 4444 device_printf(sc->sc_dev, 4445 "%s: could not allocate beacon frame\n", __func__); 4446 4447 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, 4448 __func__); 4449 4450 WPI_VAP_UNLOCK(wvp); 4451 return; 4452 } 4453 } 4454 WPI_VAP_UNLOCK(wvp); 4455 4456 if (item == IEEE80211_BEACON_TIM) 4457 mcast = 1; /* TODO */ 4458 4459 setbit(bo->bo_flags, item); 4460 ieee80211_beacon_update(ni, bcn->m, mcast); 4461 4462 WPI_VAP_LOCK(wvp); 4463 wpi_config_beacon(wvp); 4464 WPI_VAP_UNLOCK(wvp); 4465 4466 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4467 } 4468 4469 static void 4470 wpi_newassoc(struct ieee80211_node *ni, int isnew) 4471 { 4472 struct ieee80211vap *vap = ni->ni_vap; 4473 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4474 struct wpi_node *wn = WPI_NODE(ni); 4475 int error; 4476 4477 WPI_NT_LOCK(sc); 4478 4479 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4480 4481 if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) { 4482 if ((error = wpi_add_ibss_node(sc, ni)) != 0) { 4483 device_printf(sc->sc_dev, 4484 "%s: could not add IBSS node, error %d\n", 4485 __func__, error); 4486 } 4487 } 4488 WPI_NT_UNLOCK(sc); 4489 } 4490 4491 static int 4492 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 4493 { 4494 struct ieee80211com *ic = vap->iv_ic; 4495 struct ieee80211_node *ni = vap->iv_bss; 4496 struct ieee80211_channel *c = ni->ni_chan; 4497 int error; 4498 4499 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4500 4501 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 4502 /* Link LED blinks while monitoring. */ 4503 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 4504 return 0; 4505 } 4506 4507 /* XXX kernel panic workaround */ 4508 if (c == IEEE80211_CHAN_ANYC) { 4509 device_printf(sc->sc_dev, "%s: incomplete configuration\n", 4510 __func__); 4511 return EINVAL; 4512 } 4513 4514 if ((error = wpi_set_timing(sc, ni)) != 0) { 4515 device_printf(sc->sc_dev, 4516 "%s: could not set timing, error %d\n", __func__, error); 4517 return error; 4518 } 4519 4520 /* Update adapter configuration. */ 4521 WPI_RXON_LOCK(sc); 4522 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4523 sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni)); 4524 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 4525 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); 4526 if (IEEE80211_IS_CHAN_2GHZ(c)) 4527 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 4528 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4529 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); 4530 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4531 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); 4532 if (IEEE80211_IS_CHAN_A(c)) { 4533 sc->rxon.cck_mask = 0; 4534 sc->rxon.ofdm_mask = 0x15; 4535 } else if (IEEE80211_IS_CHAN_B(c)) { 4536 sc->rxon.cck_mask = 0x03; 4537 sc->rxon.ofdm_mask = 0; 4538 } else { 4539 /* Assume 802.11b/g. */ 4540 sc->rxon.cck_mask = 0x0f; 4541 sc->rxon.ofdm_mask = 0x15; 4542 } 4543 sc->rxon.filter |= htole32(WPI_FILTER_BSS); 4544 4545 DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n", 4546 sc->rxon.chan, sc->rxon.flags); 4547 4548 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 4549 WPI_RXON_UNLOCK(sc); 4550 device_printf(sc->sc_dev, "%s: could not send RXON\n", 4551 __func__); 4552 return error; 4553 } 4554 4555 /* Start periodic calibration timer. */ 4556 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 4557 4558 WPI_RXON_UNLOCK(sc); 4559 4560 if (vap->iv_opmode == IEEE80211_M_IBSS || 4561 vap->iv_opmode == IEEE80211_M_HOSTAP) { 4562 if ((error = wpi_setup_beacon(sc, ni)) != 0) { 4563 device_printf(sc->sc_dev, 4564 "%s: could not setup beacon, error %d\n", __func__, 4565 error); 4566 return error; 4567 } 4568 } 4569 4570 if (vap->iv_opmode == IEEE80211_M_STA) { 4571 /* Add BSS node. */ 4572 WPI_NT_LOCK(sc); 4573 error = wpi_add_sta_node(sc, ni); 4574 WPI_NT_UNLOCK(sc); 4575 if (error != 0) { 4576 device_printf(sc->sc_dev, 4577 "%s: could not add BSS node, error %d\n", __func__, 4578 error); 4579 return error; 4580 } 4581 } 4582 4583 /* Link LED always on while associated. */ 4584 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 4585 4586 /* Enable power-saving mode if requested by user. */ 4587 if ((vap->iv_flags & IEEE80211_F_PMGTON) && 4588 vap->iv_opmode != IEEE80211_M_IBSS) 4589 (void)wpi_set_pslevel(sc, 0, 3, 1); 4590 4591 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4592 4593 return 0; 4594 } 4595 4596 static int 4597 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k) 4598 { 4599 const struct ieee80211_cipher *cip = k->wk_cipher; 4600 struct ieee80211vap *vap = ni->ni_vap; 4601 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4602 struct wpi_node *wn = WPI_NODE(ni); 4603 struct wpi_node_info node; 4604 uint16_t kflags; 4605 int error; 4606 4607 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4608 4609 if (wpi_check_node_entry(sc, wn->id) == 0) { 4610 device_printf(sc->sc_dev, "%s: node does not exist\n", 4611 __func__); 4612 return 0; 4613 } 4614 4615 switch (cip->ic_cipher) { 4616 case IEEE80211_CIPHER_AES_CCM: 4617 kflags = WPI_KFLAG_CCMP; 4618 break; 4619 4620 default: 4621 device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__, 4622 cip->ic_cipher); 4623 return 0; 4624 } 4625 4626 kflags |= WPI_KFLAG_KID(k->wk_keyix); 4627 if (k->wk_flags & IEEE80211_KEY_GROUP) 4628 kflags |= WPI_KFLAG_MULTICAST; 4629 4630 memset(&node, 0, sizeof node); 4631 node.id = wn->id; 4632 node.control = WPI_NODE_UPDATE; 4633 node.flags = WPI_FLAG_KEY_SET; 4634 node.kflags = htole16(kflags); 4635 memcpy(node.key, k->wk_key, k->wk_keylen); 4636 again: 4637 DPRINTF(sc, WPI_DEBUG_KEY, 4638 "%s: setting %s key id %d for node %d (%s)\n", __func__, 4639 (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix, 4640 node.id, ether_sprintf(ni->ni_macaddr)); 4641 4642 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 4643 if (error != 0) { 4644 device_printf(sc->sc_dev, "can't update node info, error %d\n", 4645 error); 4646 return !error; 4647 } 4648 4649 if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k && 4650 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { 4651 kflags |= WPI_KFLAG_MULTICAST; 4652 node.kflags = htole16(kflags); 4653 4654 goto again; 4655 } 4656 4657 return 1; 4658 } 4659 4660 static void 4661 wpi_load_key_cb(void *arg, struct ieee80211_node *ni) 4662 { 4663 const struct ieee80211_key *k = arg; 4664 struct ieee80211vap *vap = ni->ni_vap; 4665 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4666 struct wpi_node *wn = WPI_NODE(ni); 4667 int error; 4668 4669 if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED) 4670 return; 4671 4672 WPI_NT_LOCK(sc); 4673 error = wpi_load_key(ni, k); 4674 WPI_NT_UNLOCK(sc); 4675 4676 if (error == 0) { 4677 device_printf(sc->sc_dev, "%s: error while setting key\n", 4678 __func__); 4679 } 4680 } 4681 4682 static int 4683 wpi_set_global_keys(struct ieee80211_node *ni) 4684 { 4685 struct ieee80211vap *vap = ni->ni_vap; 4686 struct ieee80211_key *wk = &vap->iv_nw_keys[0]; 4687 int error = 1; 4688 4689 for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++) 4690 if (wk->wk_keyix != IEEE80211_KEYIX_NONE) 4691 error = wpi_load_key(ni, wk); 4692 4693 return !error; 4694 } 4695 4696 static int 4697 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k) 4698 { 4699 struct ieee80211vap *vap = ni->ni_vap; 4700 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4701 struct wpi_node *wn = WPI_NODE(ni); 4702 struct wpi_node_info node; 4703 uint16_t kflags; 4704 int error; 4705 4706 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4707 4708 if (wpi_check_node_entry(sc, wn->id) == 0) { 4709 DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__); 4710 return 1; /* Nothing to do. */ 4711 } 4712 4713 kflags = WPI_KFLAG_KID(k->wk_keyix); 4714 if (k->wk_flags & IEEE80211_KEY_GROUP) 4715 kflags |= WPI_KFLAG_MULTICAST; 4716 4717 memset(&node, 0, sizeof node); 4718 node.id = wn->id; 4719 node.control = WPI_NODE_UPDATE; 4720 node.flags = WPI_FLAG_KEY_SET; 4721 node.kflags = htole16(kflags); 4722 again: 4723 DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n", 4724 __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", 4725 k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr)); 4726 4727 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 4728 if (error != 0) { 4729 device_printf(sc->sc_dev, "can't update node info, error %d\n", 4730 error); 4731 return !error; 4732 } 4733 4734 if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k && 4735 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { 4736 kflags |= WPI_KFLAG_MULTICAST; 4737 node.kflags = htole16(kflags); 4738 4739 goto again; 4740 } 4741 4742 return 1; 4743 } 4744 4745 static void 4746 wpi_del_key_cb(void *arg, struct ieee80211_node *ni) 4747 { 4748 const struct ieee80211_key *k = arg; 4749 struct ieee80211vap *vap = ni->ni_vap; 4750 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4751 struct wpi_node *wn = WPI_NODE(ni); 4752 int error; 4753 4754 if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED) 4755 return; 4756 4757 WPI_NT_LOCK(sc); 4758 error = wpi_del_key(ni, k); 4759 WPI_NT_UNLOCK(sc); 4760 4761 if (error == 0) { 4762 device_printf(sc->sc_dev, "%s: error while deleting key\n", 4763 __func__); 4764 } 4765 } 4766 4767 static int 4768 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k, 4769 int set) 4770 { 4771 struct ieee80211com *ic = vap->iv_ic; 4772 struct wpi_softc *sc = ic->ic_softc; 4773 struct wpi_vap *wvp = WPI_VAP(vap); 4774 struct ieee80211_node *ni; 4775 int error, ni_ref = 0; 4776 4777 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4778 4779 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 4780 /* Not for us. */ 4781 return 1; 4782 } 4783 4784 if (!(k->wk_flags & IEEE80211_KEY_RECV)) { 4785 /* XMIT keys are handled in wpi_tx_data(). */ 4786 return 1; 4787 } 4788 4789 /* Handle group keys. */ 4790 if (&vap->iv_nw_keys[0] <= k && 4791 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { 4792 WPI_NT_LOCK(sc); 4793 if (set) 4794 wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix); 4795 else 4796 wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix); 4797 WPI_NT_UNLOCK(sc); 4798 4799 if (vap->iv_state == IEEE80211_S_RUN) { 4800 ieee80211_iterate_nodes(&ic->ic_sta, 4801 set ? wpi_load_key_cb : wpi_del_key_cb, 4802 __DECONST(void *, k)); 4803 } 4804 4805 return 1; 4806 } 4807 4808 switch (vap->iv_opmode) { 4809 case IEEE80211_M_STA: 4810 ni = vap->iv_bss; 4811 break; 4812 4813 case IEEE80211_M_IBSS: 4814 case IEEE80211_M_AHDEMO: 4815 case IEEE80211_M_HOSTAP: 4816 ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr); 4817 if (ni == NULL) 4818 return 0; /* should not happen */ 4819 4820 ni_ref = 1; 4821 break; 4822 4823 default: 4824 device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__, 4825 vap->iv_opmode); 4826 return 0; 4827 } 4828 4829 WPI_NT_LOCK(sc); 4830 if (set) 4831 error = wpi_load_key(ni, k); 4832 else 4833 error = wpi_del_key(ni, k); 4834 WPI_NT_UNLOCK(sc); 4835 4836 if (ni_ref) 4837 ieee80211_node_decref(ni); 4838 4839 return error; 4840 } 4841 4842 static int 4843 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 4844 { 4845 return wpi_process_key(vap, k, 1); 4846 } 4847 4848 static int 4849 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 4850 { 4851 return wpi_process_key(vap, k, 0); 4852 } 4853 4854 /* 4855 * This function is called after the runtime firmware notifies us of its 4856 * readiness (called in a process context). 4857 */ 4858 static int 4859 wpi_post_alive(struct wpi_softc *sc) 4860 { 4861 int ntries, error; 4862 4863 /* Check (again) that the radio is not disabled. */ 4864 if ((error = wpi_nic_lock(sc)) != 0) 4865 return error; 4866 4867 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4868 4869 /* NB: Runtime firmware must be up and running. */ 4870 if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) { 4871 device_printf(sc->sc_dev, 4872 "RF switch: radio disabled (%s)\n", __func__); 4873 wpi_nic_unlock(sc); 4874 return EPERM; /* :-) */ 4875 } 4876 wpi_nic_unlock(sc); 4877 4878 /* Wait for thermal sensor to calibrate. */ 4879 for (ntries = 0; ntries < 1000; ntries++) { 4880 if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0) 4881 break; 4882 DELAY(10); 4883 } 4884 4885 if (ntries == 1000) { 4886 device_printf(sc->sc_dev, 4887 "timeout waiting for thermal sensor calibration\n"); 4888 return ETIMEDOUT; 4889 } 4890 4891 DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp); 4892 return 0; 4893 } 4894 4895 /* 4896 * The firmware boot code is small and is intended to be copied directly into 4897 * the NIC internal memory (no DMA transfer). 4898 */ 4899 static int 4900 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size) 4901 { 4902 int error, ntries; 4903 4904 DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size); 4905 4906 size /= sizeof (uint32_t); 4907 4908 if ((error = wpi_nic_lock(sc)) != 0) 4909 return error; 4910 4911 /* Copy microcode image into NIC memory. */ 4912 wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE, 4913 (const uint32_t *)ucode, size); 4914 4915 wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0); 4916 wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE); 4917 wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size); 4918 4919 /* Start boot load now. */ 4920 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START); 4921 4922 /* Wait for transfer to complete. */ 4923 for (ntries = 0; ntries < 1000; ntries++) { 4924 uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS); 4925 DPRINTF(sc, WPI_DEBUG_HW, 4926 "firmware status=0x%x, val=0x%x, result=0x%x\n", status, 4927 WPI_FH_TX_STATUS_IDLE(6), 4928 status & WPI_FH_TX_STATUS_IDLE(6)); 4929 if (status & WPI_FH_TX_STATUS_IDLE(6)) { 4930 DPRINTF(sc, WPI_DEBUG_HW, 4931 "Status Match! - ntries = %d\n", ntries); 4932 break; 4933 } 4934 DELAY(10); 4935 } 4936 if (ntries == 1000) { 4937 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 4938 __func__); 4939 wpi_nic_unlock(sc); 4940 return ETIMEDOUT; 4941 } 4942 4943 /* Enable boot after power up. */ 4944 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN); 4945 4946 wpi_nic_unlock(sc); 4947 return 0; 4948 } 4949 4950 static int 4951 wpi_load_firmware(struct wpi_softc *sc) 4952 { 4953 struct wpi_fw_info *fw = &sc->fw; 4954 struct wpi_dma_info *dma = &sc->fw_dma; 4955 int error; 4956 4957 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4958 4959 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 4960 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 4961 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4962 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz); 4963 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4964 4965 /* Tell adapter where to find initialization sections. */ 4966 if ((error = wpi_nic_lock(sc)) != 0) 4967 return error; 4968 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); 4969 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz); 4970 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, 4971 dma->paddr + WPI_FW_DATA_MAXSZ); 4972 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 4973 wpi_nic_unlock(sc); 4974 4975 /* Load firmware boot code. */ 4976 error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 4977 if (error != 0) { 4978 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 4979 __func__); 4980 return error; 4981 } 4982 4983 /* Now press "execute". */ 4984 WPI_WRITE(sc, WPI_RESET, 0); 4985 4986 /* Wait at most one second for first alive notification. */ 4987 if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 4988 device_printf(sc->sc_dev, 4989 "%s: timeout waiting for adapter to initialize, error %d\n", 4990 __func__, error); 4991 return error; 4992 } 4993 4994 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 4995 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 4996 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4997 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz); 4998 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4999 5000 /* Tell adapter where to find runtime sections. */ 5001 if ((error = wpi_nic_lock(sc)) != 0) 5002 return error; 5003 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); 5004 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5005 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, 5006 dma->paddr + WPI_FW_DATA_MAXSZ); 5007 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, 5008 WPI_FW_UPDATED | fw->main.textsz); 5009 wpi_nic_unlock(sc); 5010 5011 return 0; 5012 } 5013 5014 static int 5015 wpi_read_firmware(struct wpi_softc *sc) 5016 { 5017 const struct firmware *fp; 5018 struct wpi_fw_info *fw = &sc->fw; 5019 const struct wpi_firmware_hdr *hdr; 5020 int error; 5021 5022 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5023 5024 DPRINTF(sc, WPI_DEBUG_FIRMWARE, 5025 "Attempting Loading Firmware from %s module\n", WPI_FW_NAME); 5026 5027 WPI_UNLOCK(sc); 5028 fp = firmware_get(WPI_FW_NAME); 5029 WPI_LOCK(sc); 5030 5031 if (fp == NULL) { 5032 device_printf(sc->sc_dev, 5033 "could not load firmware image '%s'\n", WPI_FW_NAME); 5034 return EINVAL; 5035 } 5036 5037 sc->fw_fp = fp; 5038 5039 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 5040 device_printf(sc->sc_dev, 5041 "firmware file too short: %zu bytes\n", fp->datasize); 5042 error = EINVAL; 5043 goto fail; 5044 } 5045 5046 fw->size = fp->datasize; 5047 fw->data = (const uint8_t *)fp->data; 5048 5049 /* Extract firmware header information. */ 5050 hdr = (const struct wpi_firmware_hdr *)fw->data; 5051 5052 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 5053 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 5054 5055 fw->main.textsz = le32toh(hdr->rtextsz); 5056 fw->main.datasz = le32toh(hdr->rdatasz); 5057 fw->init.textsz = le32toh(hdr->itextsz); 5058 fw->init.datasz = le32toh(hdr->idatasz); 5059 fw->boot.textsz = le32toh(hdr->btextsz); 5060 fw->boot.datasz = 0; 5061 5062 /* Sanity-check firmware header. */ 5063 if (fw->main.textsz > WPI_FW_TEXT_MAXSZ || 5064 fw->main.datasz > WPI_FW_DATA_MAXSZ || 5065 fw->init.textsz > WPI_FW_TEXT_MAXSZ || 5066 fw->init.datasz > WPI_FW_DATA_MAXSZ || 5067 fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ || 5068 (fw->boot.textsz & 3) != 0) { 5069 device_printf(sc->sc_dev, "invalid firmware header\n"); 5070 error = EINVAL; 5071 goto fail; 5072 } 5073 5074 /* Check that all firmware sections fit. */ 5075 if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz + 5076 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5077 device_printf(sc->sc_dev, 5078 "firmware file too short: %zu bytes\n", fw->size); 5079 error = EINVAL; 5080 goto fail; 5081 } 5082 5083 /* Get pointers to firmware sections. */ 5084 fw->main.text = (const uint8_t *)(hdr + 1); 5085 fw->main.data = fw->main.text + fw->main.textsz; 5086 fw->init.text = fw->main.data + fw->main.datasz; 5087 fw->init.data = fw->init.text + fw->init.textsz; 5088 fw->boot.text = fw->init.data + fw->init.datasz; 5089 5090 DPRINTF(sc, WPI_DEBUG_FIRMWARE, 5091 "Firmware Version: Major %d, Minor %d, Driver %d, \n" 5092 "runtime (text: %u, data: %u) init (text: %u, data %u) " 5093 "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver), 5094 fw->main.textsz, fw->main.datasz, 5095 fw->init.textsz, fw->init.datasz, fw->boot.textsz); 5096 5097 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text); 5098 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data); 5099 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text); 5100 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data); 5101 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text); 5102 5103 return 0; 5104 5105 fail: wpi_unload_firmware(sc); 5106 return error; 5107 } 5108 5109 /** 5110 * Free the referenced firmware image 5111 */ 5112 static void 5113 wpi_unload_firmware(struct wpi_softc *sc) 5114 { 5115 if (sc->fw_fp != NULL) { 5116 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 5117 sc->fw_fp = NULL; 5118 } 5119 } 5120 5121 static int 5122 wpi_clock_wait(struct wpi_softc *sc) 5123 { 5124 int ntries; 5125 5126 /* Set "initialization complete" bit. */ 5127 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE); 5128 5129 /* Wait for clock stabilization. */ 5130 for (ntries = 0; ntries < 2500; ntries++) { 5131 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY) 5132 return 0; 5133 DELAY(100); 5134 } 5135 device_printf(sc->sc_dev, 5136 "%s: timeout waiting for clock stabilization\n", __func__); 5137 5138 return ETIMEDOUT; 5139 } 5140 5141 static int 5142 wpi_apm_init(struct wpi_softc *sc) 5143 { 5144 uint32_t reg; 5145 int error; 5146 5147 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5148 5149 /* Disable L0s exit timer (NMI bug workaround). */ 5150 WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER); 5151 /* Don't wait for ICH L0s (ICH bug workaround). */ 5152 WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX); 5153 5154 /* Set FH wait threshold to max (HW bug under stress workaround). */ 5155 WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000); 5156 5157 /* Retrieve PCIe Active State Power Management (ASPM). */ 5158 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1); 5159 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 5160 if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */ 5161 WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA); 5162 else 5163 WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA); 5164 5165 WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT); 5166 5167 /* Wait for clock stabilization before accessing prph. */ 5168 if ((error = wpi_clock_wait(sc)) != 0) 5169 return error; 5170 5171 if ((error = wpi_nic_lock(sc)) != 0) 5172 return error; 5173 /* Cleanup. */ 5174 wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400); 5175 wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200); 5176 5177 /* Enable DMA and BSM (Bootstrap State Machine). */ 5178 wpi_prph_write(sc, WPI_APMG_CLK_EN, 5179 WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT); 5180 DELAY(20); 5181 /* Disable L1-Active. */ 5182 wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS); 5183 wpi_nic_unlock(sc); 5184 5185 return 0; 5186 } 5187 5188 static void 5189 wpi_apm_stop_master(struct wpi_softc *sc) 5190 { 5191 int ntries; 5192 5193 /* Stop busmaster DMA activity. */ 5194 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER); 5195 5196 if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) == 5197 WPI_GP_CNTRL_MAC_PS) 5198 return; /* Already asleep. */ 5199 5200 for (ntries = 0; ntries < 100; ntries++) { 5201 if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED) 5202 return; 5203 DELAY(10); 5204 } 5205 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", 5206 __func__); 5207 } 5208 5209 static void 5210 wpi_apm_stop(struct wpi_softc *sc) 5211 { 5212 wpi_apm_stop_master(sc); 5213 5214 /* Reset the entire device. */ 5215 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW); 5216 DELAY(10); 5217 /* Clear "initialization complete" bit. */ 5218 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE); 5219 } 5220 5221 static void 5222 wpi_nic_config(struct wpi_softc *sc) 5223 { 5224 uint32_t rev; 5225 5226 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5227 5228 /* voodoo from the Linux "driver".. */ 5229 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 5230 if ((rev & 0xc0) == 0x40) 5231 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB); 5232 else if (!(rev & 0x80)) 5233 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM); 5234 5235 if (sc->cap == 0x80) 5236 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC); 5237 5238 if ((sc->rev & 0xf0) == 0xd0) 5239 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); 5240 else 5241 WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); 5242 5243 if (sc->type > 1) 5244 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B); 5245 } 5246 5247 static int 5248 wpi_hw_init(struct wpi_softc *sc) 5249 { 5250 uint8_t chnl; 5251 int ntries, error; 5252 5253 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 5254 5255 /* Clear pending interrupts. */ 5256 WPI_WRITE(sc, WPI_INT, 0xffffffff); 5257 5258 if ((error = wpi_apm_init(sc)) != 0) { 5259 device_printf(sc->sc_dev, 5260 "%s: could not power ON adapter, error %d\n", __func__, 5261 error); 5262 return error; 5263 } 5264 5265 /* Select VMAIN power source. */ 5266 if ((error = wpi_nic_lock(sc)) != 0) 5267 return error; 5268 wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK); 5269 wpi_nic_unlock(sc); 5270 /* Spin until VMAIN gets selected. */ 5271 for (ntries = 0; ntries < 5000; ntries++) { 5272 if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN) 5273 break; 5274 DELAY(10); 5275 } 5276 if (ntries == 5000) { 5277 device_printf(sc->sc_dev, "timeout selecting power source\n"); 5278 return ETIMEDOUT; 5279 } 5280 5281 /* Perform adapter initialization. */ 5282 wpi_nic_config(sc); 5283 5284 /* Initialize RX ring. */ 5285 if ((error = wpi_nic_lock(sc)) != 0) 5286 return error; 5287 /* Set physical address of RX ring. */ 5288 WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr); 5289 /* Set physical address of RX read pointer. */ 5290 WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr + 5291 offsetof(struct wpi_shared, next)); 5292 WPI_WRITE(sc, WPI_FH_RX_WPTR, 0); 5293 /* Enable RX. */ 5294 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 5295 WPI_FH_RX_CONFIG_DMA_ENA | 5296 WPI_FH_RX_CONFIG_RDRBD_ENA | 5297 WPI_FH_RX_CONFIG_WRSTATUS_ENA | 5298 WPI_FH_RX_CONFIG_MAXFRAG | 5299 WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) | 5300 WPI_FH_RX_CONFIG_IRQ_DST_HOST | 5301 WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1)); 5302 (void)WPI_READ(sc, WPI_FH_RSSR_TBL); /* barrier */ 5303 wpi_nic_unlock(sc); 5304 WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7); 5305 5306 /* Initialize TX rings. */ 5307 if ((error = wpi_nic_lock(sc)) != 0) 5308 return error; 5309 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2); /* bypass mode */ 5310 wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1); /* enable RA0 */ 5311 /* Enable all 6 TX rings. */ 5312 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f); 5313 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000); 5314 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002); 5315 wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4); 5316 wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5); 5317 /* Set physical address of TX rings. */ 5318 WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr); 5319 WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5); 5320 5321 /* Enable all DMA channels. */ 5322 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { 5323 WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0); 5324 WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0); 5325 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008); 5326 } 5327 wpi_nic_unlock(sc); 5328 (void)WPI_READ(sc, WPI_FH_TX_BASE); /* barrier */ 5329 5330 /* Clear "radio off" and "commands blocked" bits. */ 5331 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 5332 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED); 5333 5334 /* Clear pending interrupts. */ 5335 WPI_WRITE(sc, WPI_INT, 0xffffffff); 5336 /* Enable interrupts. */ 5337 WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF); 5338 5339 /* _Really_ make sure "radio off" bit is cleared! */ 5340 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 5341 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 5342 5343 if ((error = wpi_load_firmware(sc)) != 0) { 5344 device_printf(sc->sc_dev, 5345 "%s: could not load firmware, error %d\n", __func__, 5346 error); 5347 return error; 5348 } 5349 /* Wait at most one second for firmware alive notification. */ 5350 if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 5351 device_printf(sc->sc_dev, 5352 "%s: timeout waiting for adapter to initialize, error %d\n", 5353 __func__, error); 5354 return error; 5355 } 5356 5357 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 5358 5359 /* Do post-firmware initialization. */ 5360 return wpi_post_alive(sc); 5361 } 5362 5363 static void 5364 wpi_hw_stop(struct wpi_softc *sc) 5365 { 5366 uint8_t chnl, qid; 5367 int ntries; 5368 5369 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5370 5371 if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) 5372 wpi_nic_lock(sc); 5373 5374 WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO); 5375 5376 /* Disable interrupts. */ 5377 WPI_WRITE(sc, WPI_INT_MASK, 0); 5378 WPI_WRITE(sc, WPI_INT, 0xffffffff); 5379 WPI_WRITE(sc, WPI_FH_INT, 0xffffffff); 5380 5381 /* Make sure we no longer hold the NIC lock. */ 5382 wpi_nic_unlock(sc); 5383 5384 if (wpi_nic_lock(sc) == 0) { 5385 /* Stop TX scheduler. */ 5386 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0); 5387 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0); 5388 5389 /* Stop all DMA channels. */ 5390 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { 5391 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0); 5392 for (ntries = 0; ntries < 200; ntries++) { 5393 if (WPI_READ(sc, WPI_FH_TX_STATUS) & 5394 WPI_FH_TX_STATUS_IDLE(chnl)) 5395 break; 5396 DELAY(10); 5397 } 5398 } 5399 wpi_nic_unlock(sc); 5400 } 5401 5402 /* Stop RX ring. */ 5403 wpi_reset_rx_ring(sc); 5404 5405 /* Reset all TX rings. */ 5406 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) 5407 wpi_reset_tx_ring(sc, &sc->txq[qid]); 5408 5409 if (wpi_nic_lock(sc) == 0) { 5410 wpi_prph_write(sc, WPI_APMG_CLK_DIS, 5411 WPI_APMG_CLK_CTRL_DMA_CLK_RQT); 5412 wpi_nic_unlock(sc); 5413 } 5414 DELAY(5); 5415 /* Power OFF adapter. */ 5416 wpi_apm_stop(sc); 5417 } 5418 5419 static void 5420 wpi_radio_on(void *arg0, int pending) 5421 { 5422 struct wpi_softc *sc = arg0; 5423 struct ieee80211com *ic = &sc->sc_ic; 5424 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5425 5426 device_printf(sc->sc_dev, "RF switch: radio enabled\n"); 5427 5428 WPI_LOCK(sc); 5429 callout_stop(&sc->watchdog_rfkill); 5430 WPI_UNLOCK(sc); 5431 5432 if (vap != NULL) 5433 ieee80211_init(vap); 5434 } 5435 5436 static void 5437 wpi_radio_off(void *arg0, int pending) 5438 { 5439 struct wpi_softc *sc = arg0; 5440 struct ieee80211com *ic = &sc->sc_ic; 5441 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5442 5443 device_printf(sc->sc_dev, "RF switch: radio disabled\n"); 5444 5445 ieee80211_notify_radio(ic, 0); 5446 wpi_stop(sc); 5447 if (vap != NULL) 5448 ieee80211_stop(vap); 5449 5450 WPI_LOCK(sc); 5451 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc); 5452 WPI_UNLOCK(sc); 5453 } 5454 5455 static int 5456 wpi_init(struct wpi_softc *sc) 5457 { 5458 int error = 0; 5459 5460 WPI_LOCK(sc); 5461 5462 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 5463 5464 if (sc->sc_running != 0) 5465 goto end; 5466 5467 /* Check that the radio is not disabled by hardware switch. */ 5468 if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) { 5469 device_printf(sc->sc_dev, 5470 "RF switch: radio disabled (%s)\n", __func__); 5471 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, 5472 sc); 5473 error = EINPROGRESS; 5474 goto end; 5475 } 5476 5477 /* Read firmware images from the filesystem. */ 5478 if ((error = wpi_read_firmware(sc)) != 0) { 5479 device_printf(sc->sc_dev, 5480 "%s: could not read firmware, error %d\n", __func__, 5481 error); 5482 goto end; 5483 } 5484 5485 sc->sc_running = 1; 5486 5487 /* Initialize hardware and upload firmware. */ 5488 error = wpi_hw_init(sc); 5489 wpi_unload_firmware(sc); 5490 if (error != 0) { 5491 device_printf(sc->sc_dev, 5492 "%s: could not initialize hardware, error %d\n", __func__, 5493 error); 5494 goto fail; 5495 } 5496 5497 /* Configure adapter now that it is ready. */ 5498 if ((error = wpi_config(sc)) != 0) { 5499 device_printf(sc->sc_dev, 5500 "%s: could not configure device, error %d\n", __func__, 5501 error); 5502 goto fail; 5503 } 5504 5505 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 5506 5507 WPI_UNLOCK(sc); 5508 5509 return 0; 5510 5511 fail: wpi_stop_locked(sc); 5512 5513 end: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 5514 WPI_UNLOCK(sc); 5515 5516 return error; 5517 } 5518 5519 static void 5520 wpi_stop_locked(struct wpi_softc *sc) 5521 { 5522 5523 WPI_LOCK_ASSERT(sc); 5524 5525 if (sc->sc_running == 0) 5526 return; 5527 5528 WPI_TX_LOCK(sc); 5529 WPI_TXQ_LOCK(sc); 5530 sc->sc_running = 0; 5531 WPI_TXQ_UNLOCK(sc); 5532 WPI_TX_UNLOCK(sc); 5533 5534 WPI_TXQ_STATE_LOCK(sc); 5535 callout_stop(&sc->tx_timeout); 5536 WPI_TXQ_STATE_UNLOCK(sc); 5537 5538 WPI_RXON_LOCK(sc); 5539 callout_stop(&sc->scan_timeout); 5540 callout_stop(&sc->calib_to); 5541 WPI_RXON_UNLOCK(sc); 5542 5543 /* Power OFF hardware. */ 5544 wpi_hw_stop(sc); 5545 } 5546 5547 static void 5548 wpi_stop(struct wpi_softc *sc) 5549 { 5550 WPI_LOCK(sc); 5551 wpi_stop_locked(sc); 5552 WPI_UNLOCK(sc); 5553 } 5554 5555 /* 5556 * Callback from net80211 to start a scan. 5557 */ 5558 static void 5559 wpi_scan_start(struct ieee80211com *ic) 5560 { 5561 struct wpi_softc *sc = ic->ic_softc; 5562 5563 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 5564 } 5565 5566 /* 5567 * Callback from net80211 to terminate a scan. 5568 */ 5569 static void 5570 wpi_scan_end(struct ieee80211com *ic) 5571 { 5572 struct wpi_softc *sc = ic->ic_softc; 5573 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5574 5575 if (vap->iv_state == IEEE80211_S_RUN) 5576 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 5577 } 5578 5579 /** 5580 * Called by the net80211 framework to indicate to the driver 5581 * that the channel should be changed 5582 */ 5583 static void 5584 wpi_set_channel(struct ieee80211com *ic) 5585 { 5586 const struct ieee80211_channel *c = ic->ic_curchan; 5587 struct wpi_softc *sc = ic->ic_softc; 5588 int error; 5589 5590 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5591 5592 WPI_LOCK(sc); 5593 sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); 5594 sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); 5595 WPI_UNLOCK(sc); 5596 WPI_TX_LOCK(sc); 5597 sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); 5598 sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); 5599 WPI_TX_UNLOCK(sc); 5600 5601 /* 5602 * Only need to set the channel in Monitor mode. AP scanning and auth 5603 * are already taken care of by their respective firmware commands. 5604 */ 5605 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 5606 WPI_RXON_LOCK(sc); 5607 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 5608 if (IEEE80211_IS_CHAN_2GHZ(c)) { 5609 sc->rxon.flags |= htole32(WPI_RXON_AUTO | 5610 WPI_RXON_24GHZ); 5611 } else { 5612 sc->rxon.flags &= ~htole32(WPI_RXON_AUTO | 5613 WPI_RXON_24GHZ); 5614 } 5615 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) 5616 device_printf(sc->sc_dev, 5617 "%s: error %d setting channel\n", __func__, 5618 error); 5619 WPI_RXON_UNLOCK(sc); 5620 } 5621 } 5622 5623 /** 5624 * Called by net80211 to indicate that we need to scan the current 5625 * channel. The channel is previously be set via the wpi_set_channel 5626 * callback. 5627 */ 5628 static void 5629 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 5630 { 5631 struct ieee80211vap *vap = ss->ss_vap; 5632 struct ieee80211com *ic = vap->iv_ic; 5633 struct wpi_softc *sc = ic->ic_softc; 5634 int error; 5635 5636 WPI_RXON_LOCK(sc); 5637 error = wpi_scan(sc, ic->ic_curchan); 5638 WPI_RXON_UNLOCK(sc); 5639 if (error != 0) 5640 ieee80211_cancel_scan(vap); 5641 } 5642 5643 /** 5644 * Called by the net80211 framework to indicate 5645 * the minimum dwell time has been met, terminate the scan. 5646 * We don't actually terminate the scan as the firmware will notify 5647 * us when it's finished and we have no way to interrupt it. 5648 */ 5649 static void 5650 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 5651 { 5652 /* NB: don't try to abort scan; wait for firmware to finish */ 5653 } 5654