1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #include <machine/bus.h> 79 #include <machine/resource.h> 80 #include <sys/rman.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 85 #include <net/bpf.h> 86 #include <net/if.h> 87 #include <net/if_arp.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <net80211/ieee80211_var.h> 94 #include <net80211/ieee80211_radiotap.h> 95 #include <net80211/ieee80211_regdomain.h> 96 #include <net80211/ieee80211_ratectl.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_systm.h> 100 #include <netinet/in_var.h> 101 #include <netinet/ip.h> 102 #include <netinet/if_ether.h> 103 104 #include <dev/wpi/if_wpireg.h> 105 #include <dev/wpi/if_wpivar.h> 106 107 #define WPI_DEBUG 108 109 #ifdef WPI_DEBUG 110 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 111 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 112 #define WPI_DEBUG_SET (wpi_debug != 0) 113 114 enum { 115 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 116 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 117 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 118 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 119 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 120 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 121 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 122 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 123 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 124 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 125 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 126 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 127 WPI_DEBUG_ANY = 0xffffffff 128 }; 129 130 static int wpi_debug = 0; 131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 132 TUNABLE_INT("debug.wpi", &wpi_debug); 133 134 #else 135 #define DPRINTF(x) 136 #define DPRINTFN(n, x) 137 #define WPI_DEBUG_SET 0 138 #endif 139 140 struct wpi_ident { 141 uint16_t vendor; 142 uint16_t device; 143 uint16_t subdevice; 144 const char *name; 145 }; 146 147 static const struct wpi_ident wpi_ident_table[] = { 148 /* The below entries support ABG regardless of the subid */ 149 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 150 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 151 /* The below entries only support BG */ 152 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 153 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 154 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 155 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0, 0, 0, NULL } 157 }; 158 159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 160 const char name[IFNAMSIZ], int unit, int opmode, 161 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 162 const uint8_t mac[IEEE80211_ADDR_LEN]); 163 static void wpi_vap_delete(struct ieee80211vap *); 164 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 165 void **, bus_size_t, bus_size_t, int); 166 static void wpi_dma_contig_free(struct wpi_dma_info *); 167 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 168 static int wpi_alloc_shared(struct wpi_softc *); 169 static void wpi_free_shared(struct wpi_softc *); 170 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 171 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 172 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 173 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 174 int, int); 175 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 176 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 177 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 178 static void wpi_mem_lock(struct wpi_softc *); 179 static void wpi_mem_unlock(struct wpi_softc *); 180 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 181 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 182 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 183 const uint32_t *, int); 184 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 185 static int wpi_alloc_fwmem(struct wpi_softc *); 186 static void wpi_free_fwmem(struct wpi_softc *); 187 static int wpi_load_firmware(struct wpi_softc *); 188 static void wpi_unload_firmware(struct wpi_softc *); 189 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 190 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 191 struct wpi_rx_data *); 192 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 193 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 194 static void wpi_notif_intr(struct wpi_softc *); 195 static void wpi_intr(void *); 196 static uint8_t wpi_plcp_signal(int); 197 static void wpi_watchdog(void *); 198 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 199 struct ieee80211_node *, int); 200 static void wpi_start(struct ifnet *); 201 static void wpi_start_locked(struct ifnet *); 202 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 203 const struct ieee80211_bpf_params *); 204 static void wpi_scan_start(struct ieee80211com *); 205 static void wpi_scan_end(struct ieee80211com *); 206 static void wpi_set_channel(struct ieee80211com *); 207 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 208 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 209 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 210 static void wpi_read_eeprom(struct wpi_softc *, 211 uint8_t macaddr[IEEE80211_ADDR_LEN]); 212 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 213 static void wpi_read_eeprom_group(struct wpi_softc *, int); 214 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 215 static int wpi_wme_update(struct ieee80211com *); 216 static int wpi_mrr_setup(struct wpi_softc *); 217 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 218 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 219 #if 0 220 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 221 #endif 222 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 223 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 224 static int wpi_scan(struct wpi_softc *); 225 static int wpi_config(struct wpi_softc *); 226 static void wpi_stop_master(struct wpi_softc *); 227 static int wpi_power_up(struct wpi_softc *); 228 static int wpi_reset(struct wpi_softc *); 229 static void wpi_hwreset(void *, int); 230 static void wpi_rfreset(void *, int); 231 static void wpi_hw_config(struct wpi_softc *); 232 static void wpi_init(void *); 233 static void wpi_init_locked(struct wpi_softc *, int); 234 static void wpi_stop(struct wpi_softc *); 235 static void wpi_stop_locked(struct wpi_softc *); 236 237 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 238 int); 239 static void wpi_calib_timeout(void *); 240 static void wpi_power_calibration(struct wpi_softc *, int); 241 static int wpi_get_power_index(struct wpi_softc *, 242 struct wpi_power_group *, struct ieee80211_channel *, int); 243 #ifdef WPI_DEBUG 244 static const char *wpi_cmd_str(int); 245 #endif 246 static int wpi_probe(device_t); 247 static int wpi_attach(device_t); 248 static int wpi_detach(device_t); 249 static int wpi_shutdown(device_t); 250 static int wpi_suspend(device_t); 251 static int wpi_resume(device_t); 252 253 254 static device_method_t wpi_methods[] = { 255 /* Device interface */ 256 DEVMETHOD(device_probe, wpi_probe), 257 DEVMETHOD(device_attach, wpi_attach), 258 DEVMETHOD(device_detach, wpi_detach), 259 DEVMETHOD(device_shutdown, wpi_shutdown), 260 DEVMETHOD(device_suspend, wpi_suspend), 261 DEVMETHOD(device_resume, wpi_resume), 262 263 { 0, 0 } 264 }; 265 266 static driver_t wpi_driver = { 267 "wpi", 268 wpi_methods, 269 sizeof (struct wpi_softc) 270 }; 271 272 static devclass_t wpi_devclass; 273 274 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 275 276 MODULE_VERSION(wpi, 1); 277 278 static const uint8_t wpi_ridx_to_plcp[] = { 279 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 280 /* R1-R4 (ral/ural is R4-R1) */ 281 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 282 /* CCK: device-dependent */ 283 10, 20, 55, 110 284 }; 285 static const uint8_t wpi_ridx_to_rate[] = { 286 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 287 2, 4, 11, 22 /*CCK */ 288 }; 289 290 291 static int 292 wpi_probe(device_t dev) 293 { 294 const struct wpi_ident *ident; 295 296 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 297 if (pci_get_vendor(dev) == ident->vendor && 298 pci_get_device(dev) == ident->device) { 299 device_set_desc(dev, ident->name); 300 return 0; 301 } 302 } 303 return ENXIO; 304 } 305 306 /** 307 * Load the firmare image from disk to the allocated dma buffer. 308 * we also maintain the reference to the firmware pointer as there 309 * is times where we may need to reload the firmware but we are not 310 * in a context that can access the filesystem (ie taskq cause by restart) 311 * 312 * @return 0 on success, an errno on failure 313 */ 314 static int 315 wpi_load_firmware(struct wpi_softc *sc) 316 { 317 const struct firmware *fp; 318 struct wpi_dma_info *dma = &sc->fw_dma; 319 const struct wpi_firmware_hdr *hdr; 320 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 321 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 322 int error; 323 324 DPRINTFN(WPI_DEBUG_FIRMWARE, 325 ("Attempting Loading Firmware from wpi_fw module\n")); 326 327 WPI_UNLOCK(sc); 328 329 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 330 device_printf(sc->sc_dev, 331 "could not load firmware image 'wpifw'\n"); 332 error = ENOENT; 333 WPI_LOCK(sc); 334 goto fail; 335 } 336 337 fp = sc->fw_fp; 338 339 WPI_LOCK(sc); 340 341 /* Validate the firmware is minimum a particular version */ 342 if (fp->version < WPI_FW_MINVERSION) { 343 device_printf(sc->sc_dev, 344 "firmware version is too old. Need %d, got %d\n", 345 WPI_FW_MINVERSION, 346 fp->version); 347 error = ENXIO; 348 goto fail; 349 } 350 351 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 352 device_printf(sc->sc_dev, 353 "firmware file too short: %zu bytes\n", fp->datasize); 354 error = ENXIO; 355 goto fail; 356 } 357 358 hdr = (const struct wpi_firmware_hdr *)fp->data; 359 360 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 361 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 362 363 rtextsz = le32toh(hdr->rtextsz); 364 rdatasz = le32toh(hdr->rdatasz); 365 itextsz = le32toh(hdr->itextsz); 366 idatasz = le32toh(hdr->idatasz); 367 btextsz = le32toh(hdr->btextsz); 368 369 /* check that all firmware segments are present */ 370 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 371 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 372 device_printf(sc->sc_dev, 373 "firmware file too short: %zu bytes\n", fp->datasize); 374 error = ENXIO; /* XXX appropriate error code? */ 375 goto fail; 376 } 377 378 /* get pointers to firmware segments */ 379 rtext = (const uint8_t *)(hdr + 1); 380 rdata = rtext + rtextsz; 381 itext = rdata + rdatasz; 382 idata = itext + itextsz; 383 btext = idata + idatasz; 384 385 DPRINTFN(WPI_DEBUG_FIRMWARE, 386 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 387 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 388 (le32toh(hdr->version) & 0xff000000) >> 24, 389 (le32toh(hdr->version) & 0x00ff0000) >> 16, 390 (le32toh(hdr->version) & 0x0000ffff), 391 rtextsz, rdatasz, 392 itextsz, idatasz, btextsz)); 393 394 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 395 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 396 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 397 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 398 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 399 400 /* sanity checks */ 401 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 402 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 403 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 404 idatasz > WPI_FW_INIT_DATA_MAXSZ || 405 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 406 (btextsz & 3) != 0) { 407 device_printf(sc->sc_dev, "firmware invalid\n"); 408 error = EINVAL; 409 goto fail; 410 } 411 412 /* copy initialization images into pre-allocated DMA-safe memory */ 413 memcpy(dma->vaddr, idata, idatasz); 414 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 415 416 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 417 418 /* tell adapter where to find initialization images */ 419 wpi_mem_lock(sc); 420 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 421 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 422 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 423 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 424 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 425 wpi_mem_unlock(sc); 426 427 /* load firmware boot code */ 428 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 429 device_printf(sc->sc_dev, "Failed to load microcode\n"); 430 goto fail; 431 } 432 433 /* now press "execute" */ 434 WPI_WRITE(sc, WPI_RESET, 0); 435 436 /* wait at most one second for the first alive notification */ 437 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 438 device_printf(sc->sc_dev, 439 "timeout waiting for adapter to initialize\n"); 440 goto fail; 441 } 442 443 /* copy runtime images into pre-allocated DMA-sage memory */ 444 memcpy(dma->vaddr, rdata, rdatasz); 445 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 446 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 447 448 /* tell adapter where to find runtime images */ 449 wpi_mem_lock(sc); 450 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 451 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 452 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 453 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 454 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 455 wpi_mem_unlock(sc); 456 457 /* wait at most one second for the first alive notification */ 458 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 459 device_printf(sc->sc_dev, 460 "timeout waiting for adapter to initialize2\n"); 461 goto fail; 462 } 463 464 DPRINTFN(WPI_DEBUG_FIRMWARE, 465 ("Firmware loaded to driver successfully\n")); 466 return error; 467 fail: 468 wpi_unload_firmware(sc); 469 return error; 470 } 471 472 /** 473 * Free the referenced firmware image 474 */ 475 static void 476 wpi_unload_firmware(struct wpi_softc *sc) 477 { 478 479 if (sc->fw_fp) { 480 WPI_UNLOCK(sc); 481 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 482 WPI_LOCK(sc); 483 sc->fw_fp = NULL; 484 } 485 } 486 487 static int 488 wpi_attach(device_t dev) 489 { 490 struct wpi_softc *sc = device_get_softc(dev); 491 struct ifnet *ifp; 492 struct ieee80211com *ic; 493 int ac, error, supportsa = 1; 494 uint32_t tmp; 495 const struct wpi_ident *ident; 496 uint8_t macaddr[IEEE80211_ADDR_LEN]; 497 498 sc->sc_dev = dev; 499 500 if (bootverbose || WPI_DEBUG_SET) 501 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 502 503 /* 504 * Some card's only support 802.11b/g not a, check to see if 505 * this is one such card. A 0x0 in the subdevice table indicates 506 * the entire subdevice range is to be ignored. 507 */ 508 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 509 if (ident->subdevice && 510 pci_get_subdevice(dev) == ident->subdevice) { 511 supportsa = 0; 512 break; 513 } 514 } 515 516 /* Create the tasks that can be queued */ 517 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc); 518 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc); 519 520 WPI_LOCK_INIT(sc); 521 522 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 523 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 524 525 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 526 device_printf(dev, "chip is in D%d power mode " 527 "-- setting to D0\n", pci_get_powerstate(dev)); 528 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 529 } 530 531 /* disable the retry timeout register */ 532 pci_write_config(dev, 0x41, 0, 1); 533 534 /* enable bus-mastering */ 535 pci_enable_busmaster(dev); 536 537 sc->mem_rid = PCIR_BAR(0); 538 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 539 RF_ACTIVE); 540 if (sc->mem == NULL) { 541 device_printf(dev, "could not allocate memory resource\n"); 542 error = ENOMEM; 543 goto fail; 544 } 545 546 sc->sc_st = rman_get_bustag(sc->mem); 547 sc->sc_sh = rman_get_bushandle(sc->mem); 548 549 sc->irq_rid = 0; 550 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 551 RF_ACTIVE | RF_SHAREABLE); 552 if (sc->irq == NULL) { 553 device_printf(dev, "could not allocate interrupt resource\n"); 554 error = ENOMEM; 555 goto fail; 556 } 557 558 /* 559 * Allocate DMA memory for firmware transfers. 560 */ 561 if ((error = wpi_alloc_fwmem(sc)) != 0) { 562 printf(": could not allocate firmware memory\n"); 563 error = ENOMEM; 564 goto fail; 565 } 566 567 /* 568 * Put adapter into a known state. 569 */ 570 if ((error = wpi_reset(sc)) != 0) { 571 device_printf(dev, "could not reset adapter\n"); 572 goto fail; 573 } 574 575 wpi_mem_lock(sc); 576 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 577 if (bootverbose || WPI_DEBUG_SET) 578 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 579 580 wpi_mem_unlock(sc); 581 582 /* Allocate shared page */ 583 if ((error = wpi_alloc_shared(sc)) != 0) { 584 device_printf(dev, "could not allocate shared page\n"); 585 goto fail; 586 } 587 588 /* tx data queues - 4 for QoS purposes */ 589 for (ac = 0; ac < WME_NUM_AC; ac++) { 590 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 591 if (error != 0) { 592 device_printf(dev, "could not allocate Tx ring %d\n",ac); 593 goto fail; 594 } 595 } 596 597 /* command queue to talk to the card's firmware */ 598 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 599 if (error != 0) { 600 device_printf(dev, "could not allocate command ring\n"); 601 goto fail; 602 } 603 604 /* receive data queue */ 605 error = wpi_alloc_rx_ring(sc, &sc->rxq); 606 if (error != 0) { 607 device_printf(dev, "could not allocate Rx ring\n"); 608 goto fail; 609 } 610 611 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 612 if (ifp == NULL) { 613 device_printf(dev, "can not if_alloc()\n"); 614 error = ENOMEM; 615 goto fail; 616 } 617 ic = ifp->if_l2com; 618 619 ic->ic_ifp = ifp; 620 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 621 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 622 623 /* set device capabilities */ 624 ic->ic_caps = 625 IEEE80211_C_STA /* station mode supported */ 626 | IEEE80211_C_MONITOR /* monitor mode supported */ 627 | IEEE80211_C_TXPMGT /* tx power management */ 628 | IEEE80211_C_SHSLOT /* short slot time supported */ 629 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 630 | IEEE80211_C_WPA /* 802.11i */ 631 /* XXX looks like WME is partly supported? */ 632 #if 0 633 | IEEE80211_C_IBSS /* IBSS mode support */ 634 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 635 | IEEE80211_C_WME /* 802.11e */ 636 | IEEE80211_C_HOSTAP /* Host access point mode */ 637 #endif 638 ; 639 640 /* 641 * Read in the eeprom and also setup the channels for 642 * net80211. We don't set the rates as net80211 does this for us 643 */ 644 wpi_read_eeprom(sc, macaddr); 645 646 if (bootverbose || WPI_DEBUG_SET) { 647 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 648 device_printf(sc->sc_dev, "Hardware Type: %c\n", 649 sc->type > 1 ? 'B': '?'); 650 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 651 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 652 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 653 supportsa ? "does" : "does not"); 654 655 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 656 what sc->rev really represents - benjsc 20070615 */ 657 } 658 659 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 660 ifp->if_softc = sc; 661 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 662 ifp->if_init = wpi_init; 663 ifp->if_ioctl = wpi_ioctl; 664 ifp->if_start = wpi_start; 665 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 666 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 667 IFQ_SET_READY(&ifp->if_snd); 668 669 ieee80211_ifattach(ic, macaddr); 670 /* override default methods */ 671 ic->ic_raw_xmit = wpi_raw_xmit; 672 ic->ic_wme.wme_update = wpi_wme_update; 673 ic->ic_scan_start = wpi_scan_start; 674 ic->ic_scan_end = wpi_scan_end; 675 ic->ic_set_channel = wpi_set_channel; 676 ic->ic_scan_curchan = wpi_scan_curchan; 677 ic->ic_scan_mindwell = wpi_scan_mindwell; 678 679 ic->ic_vap_create = wpi_vap_create; 680 ic->ic_vap_delete = wpi_vap_delete; 681 682 ieee80211_radiotap_attach(ic, 683 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 684 WPI_TX_RADIOTAP_PRESENT, 685 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 686 WPI_RX_RADIOTAP_PRESENT); 687 688 /* 689 * Hook our interrupt after all initialization is complete. 690 */ 691 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 692 NULL, wpi_intr, sc, &sc->sc_ih); 693 if (error != 0) { 694 device_printf(dev, "could not set up interrupt\n"); 695 goto fail; 696 } 697 698 if (bootverbose) 699 ieee80211_announce(ic); 700 #ifdef XXX_DEBUG 701 ieee80211_announce_channels(ic); 702 #endif 703 return 0; 704 705 fail: wpi_detach(dev); 706 return ENXIO; 707 } 708 709 static int 710 wpi_detach(device_t dev) 711 { 712 struct wpi_softc *sc = device_get_softc(dev); 713 struct ifnet *ifp = sc->sc_ifp; 714 struct ieee80211com *ic; 715 int ac; 716 717 if (ifp != NULL) { 718 ic = ifp->if_l2com; 719 720 ieee80211_draintask(ic, &sc->sc_restarttask); 721 ieee80211_draintask(ic, &sc->sc_radiotask); 722 wpi_stop(sc); 723 callout_drain(&sc->watchdog_to); 724 callout_drain(&sc->calib_to); 725 ieee80211_ifdetach(ic); 726 } 727 728 WPI_LOCK(sc); 729 if (sc->txq[0].data_dmat) { 730 for (ac = 0; ac < WME_NUM_AC; ac++) 731 wpi_free_tx_ring(sc, &sc->txq[ac]); 732 733 wpi_free_tx_ring(sc, &sc->cmdq); 734 wpi_free_rx_ring(sc, &sc->rxq); 735 wpi_free_shared(sc); 736 } 737 738 if (sc->fw_fp != NULL) { 739 wpi_unload_firmware(sc); 740 } 741 742 if (sc->fw_dma.tag) 743 wpi_free_fwmem(sc); 744 WPI_UNLOCK(sc); 745 746 if (sc->irq != NULL) { 747 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 748 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 749 } 750 751 if (sc->mem != NULL) 752 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 753 754 if (ifp != NULL) 755 if_free(ifp); 756 757 WPI_LOCK_DESTROY(sc); 758 759 return 0; 760 } 761 762 static struct ieee80211vap * 763 wpi_vap_create(struct ieee80211com *ic, 764 const char name[IFNAMSIZ], int unit, int opmode, int flags, 765 const uint8_t bssid[IEEE80211_ADDR_LEN], 766 const uint8_t mac[IEEE80211_ADDR_LEN]) 767 { 768 struct wpi_vap *wvp; 769 struct ieee80211vap *vap; 770 771 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 772 return NULL; 773 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 774 M_80211_VAP, M_NOWAIT | M_ZERO); 775 if (wvp == NULL) 776 return NULL; 777 vap = &wvp->vap; 778 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 779 /* override with driver methods */ 780 wvp->newstate = vap->iv_newstate; 781 vap->iv_newstate = wpi_newstate; 782 783 ieee80211_ratectl_init(vap); 784 /* complete setup */ 785 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 786 ic->ic_opmode = opmode; 787 return vap; 788 } 789 790 static void 791 wpi_vap_delete(struct ieee80211vap *vap) 792 { 793 struct wpi_vap *wvp = WPI_VAP(vap); 794 795 ieee80211_ratectl_deinit(vap); 796 ieee80211_vap_detach(vap); 797 free(wvp, M_80211_VAP); 798 } 799 800 static void 801 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 802 { 803 if (error != 0) 804 return; 805 806 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 807 808 *(bus_addr_t *)arg = segs[0].ds_addr; 809 } 810 811 /* 812 * Allocates a contiguous block of dma memory of the requested size and 813 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 814 * allocations greater than 4096 may fail. Hence if the requested alignment is 815 * greater we allocate 'alignment' size extra memory and shift the vaddr and 816 * paddr after the dma load. This bypasses the problem at the cost of a little 817 * more memory. 818 */ 819 static int 820 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 821 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 822 { 823 int error; 824 bus_size_t align; 825 bus_size_t reqsize; 826 827 DPRINTFN(WPI_DEBUG_DMA, 828 ("Size: %zd - alignment %zd\n", size, alignment)); 829 830 dma->size = size; 831 dma->tag = NULL; 832 833 if (alignment > 4096) { 834 align = PAGE_SIZE; 835 reqsize = size + alignment; 836 } else { 837 align = alignment; 838 reqsize = size; 839 } 840 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 841 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 842 NULL, NULL, reqsize, 843 1, reqsize, flags, 844 NULL, NULL, &dma->tag); 845 if (error != 0) { 846 device_printf(sc->sc_dev, 847 "could not create shared page DMA tag\n"); 848 goto fail; 849 } 850 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 851 flags | BUS_DMA_ZERO, &dma->map); 852 if (error != 0) { 853 device_printf(sc->sc_dev, 854 "could not allocate shared page DMA memory\n"); 855 goto fail; 856 } 857 858 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 859 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 860 861 /* Save the original pointers so we can free all the memory */ 862 dma->paddr = dma->paddr_start; 863 dma->vaddr = dma->vaddr_start; 864 865 /* 866 * Check the alignment and increment by 4096 until we get the 867 * requested alignment. Fail if can't obtain the alignment 868 * we requested. 869 */ 870 if ((dma->paddr & (alignment -1 )) != 0) { 871 int i; 872 873 for (i = 0; i < alignment / 4096; i++) { 874 if ((dma->paddr & (alignment - 1 )) == 0) 875 break; 876 dma->paddr += 4096; 877 dma->vaddr += 4096; 878 } 879 if (i == alignment / 4096) { 880 device_printf(sc->sc_dev, 881 "alignment requirement was not satisfied\n"); 882 goto fail; 883 } 884 } 885 886 if (error != 0) { 887 device_printf(sc->sc_dev, 888 "could not load shared page DMA map\n"); 889 goto fail; 890 } 891 892 if (kvap != NULL) 893 *kvap = dma->vaddr; 894 895 return 0; 896 897 fail: 898 wpi_dma_contig_free(dma); 899 return error; 900 } 901 902 static void 903 wpi_dma_contig_free(struct wpi_dma_info *dma) 904 { 905 if (dma->tag) { 906 if (dma->map != NULL) { 907 if (dma->paddr_start != 0) { 908 bus_dmamap_sync(dma->tag, dma->map, 909 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 910 bus_dmamap_unload(dma->tag, dma->map); 911 } 912 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 913 } 914 bus_dma_tag_destroy(dma->tag); 915 } 916 } 917 918 /* 919 * Allocate a shared page between host and NIC. 920 */ 921 static int 922 wpi_alloc_shared(struct wpi_softc *sc) 923 { 924 int error; 925 926 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 927 (void **)&sc->shared, sizeof (struct wpi_shared), 928 PAGE_SIZE, 929 BUS_DMA_NOWAIT); 930 931 if (error != 0) { 932 device_printf(sc->sc_dev, 933 "could not allocate shared area DMA memory\n"); 934 } 935 936 return error; 937 } 938 939 static void 940 wpi_free_shared(struct wpi_softc *sc) 941 { 942 wpi_dma_contig_free(&sc->shared_dma); 943 } 944 945 static int 946 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 947 { 948 949 int i, error; 950 951 ring->cur = 0; 952 953 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 954 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 955 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 956 957 if (error != 0) { 958 device_printf(sc->sc_dev, 959 "%s: could not allocate rx ring DMA memory, error %d\n", 960 __func__, error); 961 goto fail; 962 } 963 964 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 965 BUS_SPACE_MAXADDR_32BIT, 966 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 967 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 968 if (error != 0) { 969 device_printf(sc->sc_dev, 970 "%s: bus_dma_tag_create_failed, error %d\n", 971 __func__, error); 972 goto fail; 973 } 974 975 /* 976 * Setup Rx buffers. 977 */ 978 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 979 struct wpi_rx_data *data = &ring->data[i]; 980 struct mbuf *m; 981 bus_addr_t paddr; 982 983 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 984 if (error != 0) { 985 device_printf(sc->sc_dev, 986 "%s: bus_dmamap_create failed, error %d\n", 987 __func__, error); 988 goto fail; 989 } 990 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 991 if (m == NULL) { 992 device_printf(sc->sc_dev, 993 "%s: could not allocate rx mbuf\n", __func__); 994 error = ENOMEM; 995 goto fail; 996 } 997 /* map page */ 998 error = bus_dmamap_load(ring->data_dmat, data->map, 999 mtod(m, caddr_t), MJUMPAGESIZE, 1000 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1001 if (error != 0 && error != EFBIG) { 1002 device_printf(sc->sc_dev, 1003 "%s: bus_dmamap_load failed, error %d\n", 1004 __func__, error); 1005 m_freem(m); 1006 error = ENOMEM; /* XXX unique code */ 1007 goto fail; 1008 } 1009 bus_dmamap_sync(ring->data_dmat, data->map, 1010 BUS_DMASYNC_PREWRITE); 1011 1012 data->m = m; 1013 ring->desc[i] = htole32(paddr); 1014 } 1015 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1016 BUS_DMASYNC_PREWRITE); 1017 return 0; 1018 fail: 1019 wpi_free_rx_ring(sc, ring); 1020 return error; 1021 } 1022 1023 static void 1024 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1025 { 1026 int ntries; 1027 1028 wpi_mem_lock(sc); 1029 1030 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1031 1032 for (ntries = 0; ntries < 100; ntries++) { 1033 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1034 break; 1035 DELAY(10); 1036 } 1037 1038 wpi_mem_unlock(sc); 1039 1040 #ifdef WPI_DEBUG 1041 if (ntries == 100 && wpi_debug > 0) 1042 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1043 #endif 1044 1045 ring->cur = 0; 1046 } 1047 1048 static void 1049 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1050 { 1051 int i; 1052 1053 wpi_dma_contig_free(&ring->desc_dma); 1054 1055 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1056 struct wpi_rx_data *data = &ring->data[i]; 1057 1058 if (data->m != NULL) { 1059 bus_dmamap_sync(ring->data_dmat, data->map, 1060 BUS_DMASYNC_POSTREAD); 1061 bus_dmamap_unload(ring->data_dmat, data->map); 1062 m_freem(data->m); 1063 } 1064 if (data->map != NULL) 1065 bus_dmamap_destroy(ring->data_dmat, data->map); 1066 } 1067 } 1068 1069 static int 1070 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1071 int qid) 1072 { 1073 struct wpi_tx_data *data; 1074 int i, error; 1075 1076 ring->qid = qid; 1077 ring->count = count; 1078 ring->queued = 0; 1079 ring->cur = 0; 1080 ring->data = NULL; 1081 1082 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1083 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1084 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1085 1086 if (error != 0) { 1087 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1088 goto fail; 1089 } 1090 1091 /* update shared page with ring's base address */ 1092 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1093 1094 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1095 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1096 BUS_DMA_NOWAIT); 1097 1098 if (error != 0) { 1099 device_printf(sc->sc_dev, 1100 "could not allocate tx command DMA memory\n"); 1101 goto fail; 1102 } 1103 1104 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1105 M_NOWAIT | M_ZERO); 1106 if (ring->data == NULL) { 1107 device_printf(sc->sc_dev, 1108 "could not allocate tx data slots\n"); 1109 goto fail; 1110 } 1111 1112 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1113 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1114 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1115 &ring->data_dmat); 1116 if (error != 0) { 1117 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1118 goto fail; 1119 } 1120 1121 for (i = 0; i < count; i++) { 1122 data = &ring->data[i]; 1123 1124 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1125 if (error != 0) { 1126 device_printf(sc->sc_dev, 1127 "could not create tx buf DMA map\n"); 1128 goto fail; 1129 } 1130 bus_dmamap_sync(ring->data_dmat, data->map, 1131 BUS_DMASYNC_PREWRITE); 1132 } 1133 1134 return 0; 1135 1136 fail: 1137 wpi_free_tx_ring(sc, ring); 1138 return error; 1139 } 1140 1141 static void 1142 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1143 { 1144 struct wpi_tx_data *data; 1145 int i, ntries; 1146 1147 wpi_mem_lock(sc); 1148 1149 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1150 for (ntries = 0; ntries < 100; ntries++) { 1151 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1152 break; 1153 DELAY(10); 1154 } 1155 #ifdef WPI_DEBUG 1156 if (ntries == 100 && wpi_debug > 0) 1157 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1158 ring->qid); 1159 #endif 1160 wpi_mem_unlock(sc); 1161 1162 for (i = 0; i < ring->count; i++) { 1163 data = &ring->data[i]; 1164 1165 if (data->m != NULL) { 1166 bus_dmamap_unload(ring->data_dmat, data->map); 1167 m_freem(data->m); 1168 data->m = NULL; 1169 } 1170 } 1171 1172 ring->queued = 0; 1173 ring->cur = 0; 1174 } 1175 1176 static void 1177 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1178 { 1179 struct wpi_tx_data *data; 1180 int i; 1181 1182 wpi_dma_contig_free(&ring->desc_dma); 1183 wpi_dma_contig_free(&ring->cmd_dma); 1184 1185 if (ring->data != NULL) { 1186 for (i = 0; i < ring->count; i++) { 1187 data = &ring->data[i]; 1188 1189 if (data->m != NULL) { 1190 bus_dmamap_sync(ring->data_dmat, data->map, 1191 BUS_DMASYNC_POSTWRITE); 1192 bus_dmamap_unload(ring->data_dmat, data->map); 1193 m_freem(data->m); 1194 data->m = NULL; 1195 } 1196 } 1197 free(ring->data, M_DEVBUF); 1198 } 1199 1200 if (ring->data_dmat != NULL) 1201 bus_dma_tag_destroy(ring->data_dmat); 1202 } 1203 1204 static int 1205 wpi_shutdown(device_t dev) 1206 { 1207 struct wpi_softc *sc = device_get_softc(dev); 1208 1209 WPI_LOCK(sc); 1210 wpi_stop_locked(sc); 1211 wpi_unload_firmware(sc); 1212 WPI_UNLOCK(sc); 1213 1214 return 0; 1215 } 1216 1217 static int 1218 wpi_suspend(device_t dev) 1219 { 1220 struct wpi_softc *sc = device_get_softc(dev); 1221 1222 wpi_stop(sc); 1223 return 0; 1224 } 1225 1226 static int 1227 wpi_resume(device_t dev) 1228 { 1229 struct wpi_softc *sc = device_get_softc(dev); 1230 struct ifnet *ifp = sc->sc_ifp; 1231 1232 pci_write_config(dev, 0x41, 0, 1); 1233 1234 if (ifp->if_flags & IFF_UP) { 1235 wpi_init(ifp->if_softc); 1236 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1237 wpi_start(ifp); 1238 } 1239 return 0; 1240 } 1241 1242 /** 1243 * Called by net80211 when ever there is a change to 80211 state machine 1244 */ 1245 static int 1246 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1247 { 1248 struct wpi_vap *wvp = WPI_VAP(vap); 1249 struct ieee80211com *ic = vap->iv_ic; 1250 struct ifnet *ifp = ic->ic_ifp; 1251 struct wpi_softc *sc = ifp->if_softc; 1252 int error; 1253 1254 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1255 ieee80211_state_name[vap->iv_state], 1256 ieee80211_state_name[nstate], sc->flags)); 1257 1258 IEEE80211_UNLOCK(ic); 1259 WPI_LOCK(sc); 1260 if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) { 1261 /* 1262 * On !INIT -> SCAN transitions, we need to clear any possible 1263 * knowledge about associations. 1264 */ 1265 error = wpi_config(sc); 1266 if (error != 0) { 1267 device_printf(sc->sc_dev, 1268 "%s: device config failed, error %d\n", 1269 __func__, error); 1270 } 1271 } 1272 if (nstate == IEEE80211_S_AUTH || 1273 (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) { 1274 /* 1275 * The node must be registered in the firmware before auth. 1276 * Also the associd must be cleared on RUN -> ASSOC 1277 * transitions. 1278 */ 1279 error = wpi_auth(sc, vap); 1280 if (error != 0) { 1281 device_printf(sc->sc_dev, 1282 "%s: could not move to auth state, error %d\n", 1283 __func__, error); 1284 } 1285 } 1286 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1287 error = wpi_run(sc, vap); 1288 if (error != 0) { 1289 device_printf(sc->sc_dev, 1290 "%s: could not move to run state, error %d\n", 1291 __func__, error); 1292 } 1293 } 1294 if (nstate == IEEE80211_S_RUN) { 1295 /* RUN -> RUN transition; just restart the timers */ 1296 wpi_calib_timeout(sc); 1297 /* XXX split out rate control timer */ 1298 } 1299 WPI_UNLOCK(sc); 1300 IEEE80211_LOCK(ic); 1301 return wvp->newstate(vap, nstate, arg); 1302 } 1303 1304 /* 1305 * Grab exclusive access to NIC memory. 1306 */ 1307 static void 1308 wpi_mem_lock(struct wpi_softc *sc) 1309 { 1310 int ntries; 1311 uint32_t tmp; 1312 1313 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1314 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1315 1316 /* spin until we actually get the lock */ 1317 for (ntries = 0; ntries < 100; ntries++) { 1318 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1319 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1320 break; 1321 DELAY(10); 1322 } 1323 if (ntries == 100) 1324 device_printf(sc->sc_dev, "could not lock memory\n"); 1325 } 1326 1327 /* 1328 * Release lock on NIC memory. 1329 */ 1330 static void 1331 wpi_mem_unlock(struct wpi_softc *sc) 1332 { 1333 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1334 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1335 } 1336 1337 static uint32_t 1338 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1339 { 1340 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1341 return WPI_READ(sc, WPI_READ_MEM_DATA); 1342 } 1343 1344 static void 1345 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1346 { 1347 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1348 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1349 } 1350 1351 static void 1352 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1353 const uint32_t *data, int wlen) 1354 { 1355 for (; wlen > 0; wlen--, data++, addr+=4) 1356 wpi_mem_write(sc, addr, *data); 1357 } 1358 1359 /* 1360 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1361 * using the traditional bit-bang method. Data is read up until len bytes have 1362 * been obtained. 1363 */ 1364 static uint16_t 1365 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1366 { 1367 int ntries; 1368 uint32_t val; 1369 uint8_t *out = data; 1370 1371 wpi_mem_lock(sc); 1372 1373 for (; len > 0; len -= 2, addr++) { 1374 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1375 1376 for (ntries = 0; ntries < 10; ntries++) { 1377 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1378 break; 1379 DELAY(5); 1380 } 1381 1382 if (ntries == 10) { 1383 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1384 return ETIMEDOUT; 1385 } 1386 1387 *out++= val >> 16; 1388 if (len > 1) 1389 *out ++= val >> 24; 1390 } 1391 1392 wpi_mem_unlock(sc); 1393 1394 return 0; 1395 } 1396 1397 /* 1398 * The firmware text and data segments are transferred to the NIC using DMA. 1399 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1400 * where to find it. Once the NIC has copied the firmware into its internal 1401 * memory, we can free our local copy in the driver. 1402 */ 1403 static int 1404 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1405 { 1406 int error, ntries; 1407 1408 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1409 1410 size /= sizeof(uint32_t); 1411 1412 wpi_mem_lock(sc); 1413 1414 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1415 (const uint32_t *)fw, size); 1416 1417 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1418 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1419 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1420 1421 /* run microcode */ 1422 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1423 1424 /* wait while the adapter is busy copying the firmware */ 1425 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1426 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1427 DPRINTFN(WPI_DEBUG_HW, 1428 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1429 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1430 if (status & WPI_TX_IDLE(6)) { 1431 DPRINTFN(WPI_DEBUG_HW, 1432 ("Status Match! - ntries = %d\n", ntries)); 1433 break; 1434 } 1435 DELAY(10); 1436 } 1437 if (ntries == 1000) { 1438 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1439 error = ETIMEDOUT; 1440 } 1441 1442 /* start the microcode executing */ 1443 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1444 1445 wpi_mem_unlock(sc); 1446 1447 return (error); 1448 } 1449 1450 static void 1451 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1452 struct wpi_rx_data *data) 1453 { 1454 struct ifnet *ifp = sc->sc_ifp; 1455 struct ieee80211com *ic = ifp->if_l2com; 1456 struct wpi_rx_ring *ring = &sc->rxq; 1457 struct wpi_rx_stat *stat; 1458 struct wpi_rx_head *head; 1459 struct wpi_rx_tail *tail; 1460 struct ieee80211_node *ni; 1461 struct mbuf *m, *mnew; 1462 bus_addr_t paddr; 1463 int error; 1464 1465 stat = (struct wpi_rx_stat *)(desc + 1); 1466 1467 if (stat->len > WPI_STAT_MAXLEN) { 1468 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1469 ifp->if_ierrors++; 1470 return; 1471 } 1472 1473 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 1474 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1475 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1476 1477 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1478 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1479 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1480 (uintmax_t)le64toh(tail->tstamp))); 1481 1482 /* discard Rx frames with bad CRC early */ 1483 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1484 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1485 le32toh(tail->flags))); 1486 ifp->if_ierrors++; 1487 return; 1488 } 1489 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1490 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1491 le16toh(head->len))); 1492 ifp->if_ierrors++; 1493 return; 1494 } 1495 1496 /* XXX don't need mbuf, just dma buffer */ 1497 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1498 if (mnew == NULL) { 1499 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1500 __func__)); 1501 ifp->if_ierrors++; 1502 return; 1503 } 1504 bus_dmamap_unload(ring->data_dmat, data->map); 1505 1506 error = bus_dmamap_load(ring->data_dmat, data->map, 1507 mtod(mnew, caddr_t), MJUMPAGESIZE, 1508 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1509 if (error != 0 && error != EFBIG) { 1510 device_printf(sc->sc_dev, 1511 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1512 m_freem(mnew); 1513 ifp->if_ierrors++; 1514 return; 1515 } 1516 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1517 1518 /* finalize mbuf and swap in new one */ 1519 m = data->m; 1520 m->m_pkthdr.rcvif = ifp; 1521 m->m_data = (caddr_t)(head + 1); 1522 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1523 1524 data->m = mnew; 1525 /* update Rx descriptor */ 1526 ring->desc[ring->cur] = htole32(paddr); 1527 1528 if (ieee80211_radiotap_active(ic)) { 1529 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1530 1531 tap->wr_flags = 0; 1532 tap->wr_chan_freq = 1533 htole16(ic->ic_channels[head->chan].ic_freq); 1534 tap->wr_chan_flags = 1535 htole16(ic->ic_channels[head->chan].ic_flags); 1536 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1537 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1538 tap->wr_tsft = tail->tstamp; 1539 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1540 switch (head->rate) { 1541 /* CCK rates */ 1542 case 10: tap->wr_rate = 2; break; 1543 case 20: tap->wr_rate = 4; break; 1544 case 55: tap->wr_rate = 11; break; 1545 case 110: tap->wr_rate = 22; break; 1546 /* OFDM rates */ 1547 case 0xd: tap->wr_rate = 12; break; 1548 case 0xf: tap->wr_rate = 18; break; 1549 case 0x5: tap->wr_rate = 24; break; 1550 case 0x7: tap->wr_rate = 36; break; 1551 case 0x9: tap->wr_rate = 48; break; 1552 case 0xb: tap->wr_rate = 72; break; 1553 case 0x1: tap->wr_rate = 96; break; 1554 case 0x3: tap->wr_rate = 108; break; 1555 /* unknown rate: should not happen */ 1556 default: tap->wr_rate = 0; 1557 } 1558 if (le16toh(head->flags) & 0x4) 1559 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1560 } 1561 1562 WPI_UNLOCK(sc); 1563 1564 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1565 if (ni != NULL) { 1566 (void) ieee80211_input(ni, m, stat->rssi, 0); 1567 ieee80211_free_node(ni); 1568 } else 1569 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1570 1571 WPI_LOCK(sc); 1572 } 1573 1574 static void 1575 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1576 { 1577 struct ifnet *ifp = sc->sc_ifp; 1578 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1579 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1580 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1581 struct ieee80211_node *ni = txdata->ni; 1582 struct ieee80211vap *vap = ni->ni_vap; 1583 int retrycnt = 0; 1584 1585 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1586 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1587 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1588 le32toh(stat->status))); 1589 1590 /* 1591 * Update rate control statistics for the node. 1592 * XXX we should not count mgmt frames since they're always sent at 1593 * the lowest available bit-rate. 1594 * XXX frames w/o ACK shouldn't be used either 1595 */ 1596 if (stat->ntries > 0) { 1597 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1598 retrycnt = 1; 1599 } 1600 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1601 &retrycnt, NULL); 1602 1603 /* XXX oerrors should only count errors !maxtries */ 1604 if ((le32toh(stat->status) & 0xff) != 1) 1605 ifp->if_oerrors++; 1606 else 1607 ifp->if_opackets++; 1608 1609 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1610 bus_dmamap_unload(ring->data_dmat, txdata->map); 1611 /* XXX handle M_TXCB? */ 1612 m_freem(txdata->m); 1613 txdata->m = NULL; 1614 ieee80211_free_node(txdata->ni); 1615 txdata->ni = NULL; 1616 1617 ring->queued--; 1618 1619 sc->sc_tx_timer = 0; 1620 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1621 wpi_start_locked(ifp); 1622 } 1623 1624 static void 1625 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1626 { 1627 struct wpi_tx_ring *ring = &sc->cmdq; 1628 struct wpi_tx_data *data; 1629 1630 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1631 "type=%s len=%d\n", desc->qid, desc->idx, 1632 desc->flags, wpi_cmd_str(desc->type), 1633 le32toh(desc->len))); 1634 1635 if ((desc->qid & 7) != 4) 1636 return; /* not a command ack */ 1637 1638 data = &ring->data[desc->idx]; 1639 1640 /* if the command was mapped in a mbuf, free it */ 1641 if (data->m != NULL) { 1642 bus_dmamap_unload(ring->data_dmat, data->map); 1643 m_freem(data->m); 1644 data->m = NULL; 1645 } 1646 1647 sc->flags &= ~WPI_FLAG_BUSY; 1648 wakeup(&ring->cmd[desc->idx]); 1649 } 1650 1651 static void 1652 wpi_notif_intr(struct wpi_softc *sc) 1653 { 1654 struct ifnet *ifp = sc->sc_ifp; 1655 struct ieee80211com *ic = ifp->if_l2com; 1656 struct wpi_rx_desc *desc; 1657 struct wpi_rx_data *data; 1658 uint32_t hw; 1659 1660 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 1661 BUS_DMASYNC_POSTREAD); 1662 1663 hw = le32toh(sc->shared->next); 1664 while (sc->rxq.cur != hw) { 1665 data = &sc->rxq.data[sc->rxq.cur]; 1666 1667 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1668 BUS_DMASYNC_POSTREAD); 1669 desc = (void *)data->m->m_ext.ext_buf; 1670 1671 DPRINTFN(WPI_DEBUG_NOTIFY, 1672 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1673 desc->qid, 1674 desc->idx, 1675 desc->flags, 1676 desc->type, 1677 le32toh(desc->len))); 1678 1679 if (!(desc->qid & 0x80)) /* reply to a command */ 1680 wpi_cmd_intr(sc, desc); 1681 1682 switch (desc->type) { 1683 case WPI_RX_DONE: 1684 /* a 802.11 frame was received */ 1685 wpi_rx_intr(sc, desc, data); 1686 break; 1687 1688 case WPI_TX_DONE: 1689 /* a 802.11 frame has been transmitted */ 1690 wpi_tx_intr(sc, desc); 1691 break; 1692 1693 case WPI_UC_READY: 1694 { 1695 struct wpi_ucode_info *uc = 1696 (struct wpi_ucode_info *)(desc + 1); 1697 1698 /* the microcontroller is ready */ 1699 DPRINTF(("microcode alive notification version %x " 1700 "alive %x\n", le32toh(uc->version), 1701 le32toh(uc->valid))); 1702 1703 if (le32toh(uc->valid) != 1) { 1704 device_printf(sc->sc_dev, 1705 "microcontroller initialization failed\n"); 1706 wpi_stop_locked(sc); 1707 } 1708 break; 1709 } 1710 case WPI_STATE_CHANGED: 1711 { 1712 uint32_t *status = (uint32_t *)(desc + 1); 1713 1714 /* enabled/disabled notification */ 1715 DPRINTF(("state changed to %x\n", le32toh(*status))); 1716 1717 if (le32toh(*status) & 1) { 1718 device_printf(sc->sc_dev, 1719 "Radio transmitter is switched off\n"); 1720 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1721 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1722 /* Disable firmware commands */ 1723 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1724 } 1725 break; 1726 } 1727 case WPI_START_SCAN: 1728 { 1729 #ifdef WPI_DEBUG 1730 struct wpi_start_scan *scan = 1731 (struct wpi_start_scan *)(desc + 1); 1732 #endif 1733 1734 DPRINTFN(WPI_DEBUG_SCANNING, 1735 ("scanning channel %d status %x\n", 1736 scan->chan, le32toh(scan->status))); 1737 break; 1738 } 1739 case WPI_STOP_SCAN: 1740 { 1741 #ifdef WPI_DEBUG 1742 struct wpi_stop_scan *scan = 1743 (struct wpi_stop_scan *)(desc + 1); 1744 #endif 1745 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1746 1747 DPRINTFN(WPI_DEBUG_SCANNING, 1748 ("scan finished nchan=%d status=%d chan=%d\n", 1749 scan->nchan, scan->status, scan->chan)); 1750 1751 sc->sc_scan_timer = 0; 1752 ieee80211_scan_next(vap); 1753 break; 1754 } 1755 case WPI_MISSED_BEACON: 1756 { 1757 struct wpi_missed_beacon *beacon = 1758 (struct wpi_missed_beacon *)(desc + 1); 1759 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1760 1761 if (le32toh(beacon->consecutive) >= 1762 vap->iv_bmissthreshold) { 1763 DPRINTF(("Beacon miss: %u >= %u\n", 1764 le32toh(beacon->consecutive), 1765 vap->iv_bmissthreshold)); 1766 ieee80211_beacon_miss(ic); 1767 } 1768 break; 1769 } 1770 } 1771 1772 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1773 } 1774 1775 /* tell the firmware what we have processed */ 1776 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1777 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1778 } 1779 1780 static void 1781 wpi_intr(void *arg) 1782 { 1783 struct wpi_softc *sc = arg; 1784 uint32_t r; 1785 1786 WPI_LOCK(sc); 1787 1788 r = WPI_READ(sc, WPI_INTR); 1789 if (r == 0 || r == 0xffffffff) { 1790 WPI_UNLOCK(sc); 1791 return; 1792 } 1793 1794 /* disable interrupts */ 1795 WPI_WRITE(sc, WPI_MASK, 0); 1796 /* ack interrupts */ 1797 WPI_WRITE(sc, WPI_INTR, r); 1798 1799 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1800 struct ifnet *ifp = sc->sc_ifp; 1801 struct ieee80211com *ic = ifp->if_l2com; 1802 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1803 1804 device_printf(sc->sc_dev, "fatal firmware error\n"); 1805 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1806 "(Hardware Error)")); 1807 if (vap != NULL) 1808 ieee80211_cancel_scan(vap); 1809 ieee80211_runtask(ic, &sc->sc_restarttask); 1810 sc->flags &= ~WPI_FLAG_BUSY; 1811 WPI_UNLOCK(sc); 1812 return; 1813 } 1814 1815 if (r & WPI_RX_INTR) 1816 wpi_notif_intr(sc); 1817 1818 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1819 wakeup(sc); 1820 1821 /* re-enable interrupts */ 1822 if (sc->sc_ifp->if_flags & IFF_UP) 1823 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1824 1825 WPI_UNLOCK(sc); 1826 } 1827 1828 static uint8_t 1829 wpi_plcp_signal(int rate) 1830 { 1831 switch (rate) { 1832 /* CCK rates (returned values are device-dependent) */ 1833 case 2: return 10; 1834 case 4: return 20; 1835 case 11: return 55; 1836 case 22: return 110; 1837 1838 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1839 /* R1-R4 (ral/ural is R4-R1) */ 1840 case 12: return 0xd; 1841 case 18: return 0xf; 1842 case 24: return 0x5; 1843 case 36: return 0x7; 1844 case 48: return 0x9; 1845 case 72: return 0xb; 1846 case 96: return 0x1; 1847 case 108: return 0x3; 1848 1849 /* unsupported rates (should not get there) */ 1850 default: return 0; 1851 } 1852 } 1853 1854 /* quickly determine if a given rate is CCK or OFDM */ 1855 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1856 1857 /* 1858 * Construct the data packet for a transmit buffer and acutally put 1859 * the buffer onto the transmit ring, kicking the card to process the 1860 * the buffer. 1861 */ 1862 static int 1863 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1864 int ac) 1865 { 1866 struct ieee80211vap *vap = ni->ni_vap; 1867 struct ifnet *ifp = sc->sc_ifp; 1868 struct ieee80211com *ic = ifp->if_l2com; 1869 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1870 struct wpi_tx_ring *ring = &sc->txq[ac]; 1871 struct wpi_tx_desc *desc; 1872 struct wpi_tx_data *data; 1873 struct wpi_tx_cmd *cmd; 1874 struct wpi_cmd_data *tx; 1875 struct ieee80211_frame *wh; 1876 const struct ieee80211_txparam *tp; 1877 struct ieee80211_key *k; 1878 struct mbuf *mnew; 1879 int i, error, nsegs, rate, hdrlen, ismcast; 1880 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1881 1882 desc = &ring->desc[ring->cur]; 1883 data = &ring->data[ring->cur]; 1884 1885 wh = mtod(m0, struct ieee80211_frame *); 1886 1887 hdrlen = ieee80211_hdrsize(wh); 1888 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1889 1890 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1891 k = ieee80211_crypto_encap(ni, m0); 1892 if (k == NULL) { 1893 m_freem(m0); 1894 return ENOBUFS; 1895 } 1896 /* packet header may have moved, reset our local pointer */ 1897 wh = mtod(m0, struct ieee80211_frame *); 1898 } 1899 1900 cmd = &ring->cmd[ring->cur]; 1901 cmd->code = WPI_CMD_TX_DATA; 1902 cmd->flags = 0; 1903 cmd->qid = ring->qid; 1904 cmd->idx = ring->cur; 1905 1906 tx = (struct wpi_cmd_data *)cmd->data; 1907 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1908 tx->timeout = htole16(0); 1909 tx->ofdm_mask = 0xff; 1910 tx->cck_mask = 0x0f; 1911 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1912 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1913 tx->len = htole16(m0->m_pkthdr.len); 1914 1915 if (!ismcast) { 1916 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1917 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1918 tx->flags |= htole32(WPI_TX_NEED_ACK); 1919 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1920 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1921 tx->rts_ntries = 7; 1922 } 1923 } 1924 /* pick a rate */ 1925 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1926 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1927 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1928 /* tell h/w to set timestamp in probe responses */ 1929 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1930 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1931 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1932 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1933 tx->timeout = htole16(3); 1934 else 1935 tx->timeout = htole16(2); 1936 rate = tp->mgmtrate; 1937 } else if (ismcast) { 1938 rate = tp->mcastrate; 1939 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1940 rate = tp->ucastrate; 1941 } else { 1942 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1943 rate = ni->ni_txrate; 1944 } 1945 tx->rate = wpi_plcp_signal(rate); 1946 1947 /* be very persistant at sending frames out */ 1948 #if 0 1949 tx->data_ntries = tp->maxretry; 1950 #else 1951 tx->data_ntries = 15; /* XXX way too high */ 1952 #endif 1953 1954 if (ieee80211_radiotap_active_vap(vap)) { 1955 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1956 tap->wt_flags = 0; 1957 tap->wt_rate = rate; 1958 tap->wt_hwqueue = ac; 1959 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1960 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1961 1962 ieee80211_radiotap_tx(vap, m0); 1963 } 1964 1965 /* save and trim IEEE802.11 header */ 1966 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1967 m_adj(m0, hdrlen); 1968 1969 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1970 &nsegs, BUS_DMA_NOWAIT); 1971 if (error != 0 && error != EFBIG) { 1972 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1973 error); 1974 m_freem(m0); 1975 return error; 1976 } 1977 if (error != 0) { 1978 /* XXX use m_collapse */ 1979 mnew = m_defrag(m0, M_DONTWAIT); 1980 if (mnew == NULL) { 1981 device_printf(sc->sc_dev, 1982 "could not defragment mbuf\n"); 1983 m_freem(m0); 1984 return ENOBUFS; 1985 } 1986 m0 = mnew; 1987 1988 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1989 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1990 if (error != 0) { 1991 device_printf(sc->sc_dev, 1992 "could not map mbuf (error %d)\n", error); 1993 m_freem(m0); 1994 return error; 1995 } 1996 } 1997 1998 data->m = m0; 1999 data->ni = ni; 2000 2001 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 2002 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 2003 2004 /* first scatter/gather segment is used by the tx data command */ 2005 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2006 (1 + nsegs) << 24); 2007 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2008 ring->cur * sizeof (struct wpi_tx_cmd)); 2009 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 2010 for (i = 1; i <= nsegs; i++) { 2011 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 2012 desc->segs[i].len = htole32(segs[i - 1].ds_len); 2013 } 2014 2015 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2016 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2017 BUS_DMASYNC_PREWRITE); 2018 2019 ring->queued++; 2020 2021 /* kick ring */ 2022 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2023 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2024 2025 return 0; 2026 } 2027 2028 /** 2029 * Process data waiting to be sent on the IFNET output queue 2030 */ 2031 static void 2032 wpi_start(struct ifnet *ifp) 2033 { 2034 struct wpi_softc *sc = ifp->if_softc; 2035 2036 WPI_LOCK(sc); 2037 wpi_start_locked(ifp); 2038 WPI_UNLOCK(sc); 2039 } 2040 2041 static void 2042 wpi_start_locked(struct ifnet *ifp) 2043 { 2044 struct wpi_softc *sc = ifp->if_softc; 2045 struct ieee80211_node *ni; 2046 struct mbuf *m; 2047 int ac; 2048 2049 WPI_LOCK_ASSERT(sc); 2050 2051 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2052 return; 2053 2054 for (;;) { 2055 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2056 if (m == NULL) 2057 break; 2058 ac = M_WME_GETAC(m); 2059 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2060 /* there is no place left in this ring */ 2061 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2062 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2063 break; 2064 } 2065 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2066 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2067 ieee80211_free_node(ni); 2068 ifp->if_oerrors++; 2069 break; 2070 } 2071 sc->sc_tx_timer = 5; 2072 } 2073 } 2074 2075 static int 2076 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2077 const struct ieee80211_bpf_params *params) 2078 { 2079 struct ieee80211com *ic = ni->ni_ic; 2080 struct ifnet *ifp = ic->ic_ifp; 2081 struct wpi_softc *sc = ifp->if_softc; 2082 2083 /* prevent management frames from being sent if we're not ready */ 2084 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2085 m_freem(m); 2086 ieee80211_free_node(ni); 2087 return ENETDOWN; 2088 } 2089 WPI_LOCK(sc); 2090 2091 /* management frames go into ring 0 */ 2092 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2093 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2094 m_freem(m); 2095 WPI_UNLOCK(sc); 2096 ieee80211_free_node(ni); 2097 return ENOBUFS; /* XXX */ 2098 } 2099 2100 ifp->if_opackets++; 2101 if (wpi_tx_data(sc, m, ni, 0) != 0) 2102 goto bad; 2103 sc->sc_tx_timer = 5; 2104 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2105 2106 WPI_UNLOCK(sc); 2107 return 0; 2108 bad: 2109 ifp->if_oerrors++; 2110 WPI_UNLOCK(sc); 2111 ieee80211_free_node(ni); 2112 return EIO; /* XXX */ 2113 } 2114 2115 static int 2116 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2117 { 2118 struct wpi_softc *sc = ifp->if_softc; 2119 struct ieee80211com *ic = ifp->if_l2com; 2120 struct ifreq *ifr = (struct ifreq *) data; 2121 int error = 0, startall = 0; 2122 2123 switch (cmd) { 2124 case SIOCSIFFLAGS: 2125 WPI_LOCK(sc); 2126 if ((ifp->if_flags & IFF_UP)) { 2127 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2128 wpi_init_locked(sc, 0); 2129 startall = 1; 2130 } 2131 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2132 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2133 wpi_stop_locked(sc); 2134 WPI_UNLOCK(sc); 2135 if (startall) 2136 ieee80211_start_all(ic); 2137 break; 2138 case SIOCGIFMEDIA: 2139 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2140 break; 2141 case SIOCGIFADDR: 2142 error = ether_ioctl(ifp, cmd, data); 2143 break; 2144 default: 2145 error = EINVAL; 2146 break; 2147 } 2148 return error; 2149 } 2150 2151 /* 2152 * Extract various information from EEPROM. 2153 */ 2154 static void 2155 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2156 { 2157 int i; 2158 2159 /* read the hardware capabilities, revision and SKU type */ 2160 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2161 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2162 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2163 2164 /* read the regulatory domain */ 2165 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2166 2167 /* read in the hw MAC address */ 2168 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2169 2170 /* read the list of authorized channels */ 2171 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2172 wpi_read_eeprom_channels(sc,i); 2173 2174 /* read the power level calibration info for each group */ 2175 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2176 wpi_read_eeprom_group(sc,i); 2177 } 2178 2179 /* 2180 * Send a command to the firmware. 2181 */ 2182 static int 2183 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2184 { 2185 struct wpi_tx_ring *ring = &sc->cmdq; 2186 struct wpi_tx_desc *desc; 2187 struct wpi_tx_cmd *cmd; 2188 2189 #ifdef WPI_DEBUG 2190 if (!async) { 2191 WPI_LOCK_ASSERT(sc); 2192 } 2193 #endif 2194 2195 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2196 async)); 2197 2198 if (sc->flags & WPI_FLAG_BUSY) { 2199 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2200 __func__, code); 2201 return EAGAIN; 2202 } 2203 sc->flags|= WPI_FLAG_BUSY; 2204 2205 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2206 code, size)); 2207 2208 desc = &ring->desc[ring->cur]; 2209 cmd = &ring->cmd[ring->cur]; 2210 2211 cmd->code = code; 2212 cmd->flags = 0; 2213 cmd->qid = ring->qid; 2214 cmd->idx = ring->cur; 2215 memcpy(cmd->data, buf, size); 2216 2217 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2218 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2219 ring->cur * sizeof (struct wpi_tx_cmd)); 2220 desc->segs[0].len = htole32(4 + size); 2221 2222 /* kick cmd ring */ 2223 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2224 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2225 2226 if (async) { 2227 sc->flags &= ~ WPI_FLAG_BUSY; 2228 return 0; 2229 } 2230 2231 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2232 } 2233 2234 static int 2235 wpi_wme_update(struct ieee80211com *ic) 2236 { 2237 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2238 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2239 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2240 const struct wmeParams *wmep; 2241 struct wpi_wme_setup wme; 2242 int ac; 2243 2244 /* don't override default WME values if WME is not actually enabled */ 2245 if (!(ic->ic_flags & IEEE80211_F_WME)) 2246 return 0; 2247 2248 wme.flags = 0; 2249 for (ac = 0; ac < WME_NUM_AC; ac++) { 2250 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2251 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2252 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2253 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2254 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2255 2256 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2257 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2258 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2259 } 2260 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2261 #undef WPI_USEC 2262 #undef WPI_EXP2 2263 } 2264 2265 /* 2266 * Configure h/w multi-rate retries. 2267 */ 2268 static int 2269 wpi_mrr_setup(struct wpi_softc *sc) 2270 { 2271 struct ifnet *ifp = sc->sc_ifp; 2272 struct ieee80211com *ic = ifp->if_l2com; 2273 struct wpi_mrr_setup mrr; 2274 int i, error; 2275 2276 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2277 2278 /* CCK rates (not used with 802.11a) */ 2279 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2280 mrr.rates[i].flags = 0; 2281 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2282 /* fallback to the immediate lower CCK rate (if any) */ 2283 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2284 /* try one time at this rate before falling back to "next" */ 2285 mrr.rates[i].ntries = 1; 2286 } 2287 2288 /* OFDM rates (not used with 802.11b) */ 2289 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2290 mrr.rates[i].flags = 0; 2291 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2292 /* fallback to the immediate lower OFDM rate (if any) */ 2293 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2294 mrr.rates[i].next = (i == WPI_OFDM6) ? 2295 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2296 WPI_OFDM6 : WPI_CCK2) : 2297 i - 1; 2298 /* try one time at this rate before falling back to "next" */ 2299 mrr.rates[i].ntries = 1; 2300 } 2301 2302 /* setup MRR for control frames */ 2303 mrr.which = WPI_MRR_CTL; 2304 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2305 if (error != 0) { 2306 device_printf(sc->sc_dev, 2307 "could not setup MRR for control frames\n"); 2308 return error; 2309 } 2310 2311 /* setup MRR for data frames */ 2312 mrr.which = WPI_MRR_DATA; 2313 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2314 if (error != 0) { 2315 device_printf(sc->sc_dev, 2316 "could not setup MRR for data frames\n"); 2317 return error; 2318 } 2319 2320 return 0; 2321 } 2322 2323 static void 2324 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2325 { 2326 struct wpi_cmd_led led; 2327 2328 led.which = which; 2329 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2330 led.off = off; 2331 led.on = on; 2332 2333 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2334 } 2335 2336 static void 2337 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2338 { 2339 struct wpi_cmd_tsf tsf; 2340 uint64_t val, mod; 2341 2342 memset(&tsf, 0, sizeof tsf); 2343 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2344 tsf.bintval = htole16(ni->ni_intval); 2345 tsf.lintval = htole16(10); 2346 2347 /* compute remaining time until next beacon */ 2348 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2349 mod = le64toh(tsf.tstamp) % val; 2350 tsf.binitval = htole32((uint32_t)(val - mod)); 2351 2352 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2353 device_printf(sc->sc_dev, "could not enable TSF\n"); 2354 } 2355 2356 #if 0 2357 /* 2358 * Build a beacon frame that the firmware will broadcast periodically in 2359 * IBSS or HostAP modes. 2360 */ 2361 static int 2362 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2363 { 2364 struct ifnet *ifp = sc->sc_ifp; 2365 struct ieee80211com *ic = ifp->if_l2com; 2366 struct wpi_tx_ring *ring = &sc->cmdq; 2367 struct wpi_tx_desc *desc; 2368 struct wpi_tx_data *data; 2369 struct wpi_tx_cmd *cmd; 2370 struct wpi_cmd_beacon *bcn; 2371 struct ieee80211_beacon_offsets bo; 2372 struct mbuf *m0; 2373 bus_addr_t physaddr; 2374 int error; 2375 2376 desc = &ring->desc[ring->cur]; 2377 data = &ring->data[ring->cur]; 2378 2379 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2380 if (m0 == NULL) { 2381 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2382 return ENOMEM; 2383 } 2384 2385 cmd = &ring->cmd[ring->cur]; 2386 cmd->code = WPI_CMD_SET_BEACON; 2387 cmd->flags = 0; 2388 cmd->qid = ring->qid; 2389 cmd->idx = ring->cur; 2390 2391 bcn = (struct wpi_cmd_beacon *)cmd->data; 2392 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2393 bcn->id = WPI_ID_BROADCAST; 2394 bcn->ofdm_mask = 0xff; 2395 bcn->cck_mask = 0x0f; 2396 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2397 bcn->len = htole16(m0->m_pkthdr.len); 2398 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2399 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2400 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2401 2402 /* save and trim IEEE802.11 header */ 2403 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2404 m_adj(m0, sizeof (struct ieee80211_frame)); 2405 2406 /* assume beacon frame is contiguous */ 2407 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2408 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2409 if (error != 0) { 2410 device_printf(sc->sc_dev, "could not map beacon\n"); 2411 m_freem(m0); 2412 return error; 2413 } 2414 2415 data->m = m0; 2416 2417 /* first scatter/gather segment is used by the beacon command */ 2418 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2419 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2420 ring->cur * sizeof (struct wpi_tx_cmd)); 2421 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2422 desc->segs[1].addr = htole32(physaddr); 2423 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2424 2425 /* kick cmd ring */ 2426 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2427 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2428 2429 return 0; 2430 } 2431 #endif 2432 2433 static int 2434 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2435 { 2436 struct ieee80211com *ic = vap->iv_ic; 2437 struct ieee80211_node *ni = vap->iv_bss; 2438 struct wpi_node_info node; 2439 int error; 2440 2441 2442 /* update adapter's configuration */ 2443 sc->config.associd = 0; 2444 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2445 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2446 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2447 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2448 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2449 WPI_CONFIG_24GHZ); 2450 } else { 2451 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO | 2452 WPI_CONFIG_24GHZ); 2453 } 2454 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2455 sc->config.cck_mask = 0; 2456 sc->config.ofdm_mask = 0x15; 2457 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2458 sc->config.cck_mask = 0x03; 2459 sc->config.ofdm_mask = 0; 2460 } else { 2461 /* XXX assume 802.11b/g */ 2462 sc->config.cck_mask = 0x0f; 2463 sc->config.ofdm_mask = 0x15; 2464 } 2465 2466 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2467 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2468 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2469 sizeof (struct wpi_config), 1); 2470 if (error != 0) { 2471 device_printf(sc->sc_dev, "could not configure\n"); 2472 return error; 2473 } 2474 2475 /* configuration has changed, set Tx power accordingly */ 2476 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2477 device_printf(sc->sc_dev, "could not set Tx power\n"); 2478 return error; 2479 } 2480 2481 /* add default node */ 2482 memset(&node, 0, sizeof node); 2483 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2484 node.id = WPI_ID_BSS; 2485 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2486 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2487 node.action = htole32(WPI_ACTION_SET_RATE); 2488 node.antenna = WPI_ANTENNA_BOTH; 2489 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2490 if (error != 0) 2491 device_printf(sc->sc_dev, "could not add BSS node\n"); 2492 2493 return (error); 2494 } 2495 2496 static int 2497 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2498 { 2499 struct ieee80211com *ic = vap->iv_ic; 2500 struct ieee80211_node *ni = vap->iv_bss; 2501 int error; 2502 2503 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2504 /* link LED blinks while monitoring */ 2505 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2506 return 0; 2507 } 2508 2509 wpi_enable_tsf(sc, ni); 2510 2511 /* update adapter's configuration */ 2512 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2513 /* short preamble/slot time are negotiated when associating */ 2514 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2515 WPI_CONFIG_SHSLOT); 2516 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2517 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2518 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2519 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2520 sc->config.filter |= htole32(WPI_FILTER_BSS); 2521 2522 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2523 2524 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2525 sc->config.flags)); 2526 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2527 wpi_config), 1); 2528 if (error != 0) { 2529 device_printf(sc->sc_dev, "could not update configuration\n"); 2530 return error; 2531 } 2532 2533 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2534 if (error != 0) { 2535 device_printf(sc->sc_dev, "could set txpower\n"); 2536 return error; 2537 } 2538 2539 /* link LED always on while associated */ 2540 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2541 2542 /* start automatic rate control timer */ 2543 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2544 2545 return (error); 2546 } 2547 2548 /* 2549 * Send a scan request to the firmware. Since this command is huge, we map it 2550 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2551 * much of this code is similar to that in wpi_cmd but because we must manually 2552 * construct the probe & channels, we duplicate what's needed here. XXX In the 2553 * future, this function should be modified to use wpi_cmd to help cleanup the 2554 * code base. 2555 */ 2556 static int 2557 wpi_scan(struct wpi_softc *sc) 2558 { 2559 struct ifnet *ifp = sc->sc_ifp; 2560 struct ieee80211com *ic = ifp->if_l2com; 2561 struct ieee80211_scan_state *ss = ic->ic_scan; 2562 struct wpi_tx_ring *ring = &sc->cmdq; 2563 struct wpi_tx_desc *desc; 2564 struct wpi_tx_data *data; 2565 struct wpi_tx_cmd *cmd; 2566 struct wpi_scan_hdr *hdr; 2567 struct wpi_scan_chan *chan; 2568 struct ieee80211_frame *wh; 2569 struct ieee80211_rateset *rs; 2570 struct ieee80211_channel *c; 2571 enum ieee80211_phymode mode; 2572 uint8_t *frm; 2573 int nrates, pktlen, error, i, nssid; 2574 bus_addr_t physaddr; 2575 2576 desc = &ring->desc[ring->cur]; 2577 data = &ring->data[ring->cur]; 2578 2579 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2580 if (data->m == NULL) { 2581 device_printf(sc->sc_dev, 2582 "could not allocate mbuf for scan command\n"); 2583 return ENOMEM; 2584 } 2585 2586 cmd = mtod(data->m, struct wpi_tx_cmd *); 2587 cmd->code = WPI_CMD_SCAN; 2588 cmd->flags = 0; 2589 cmd->qid = ring->qid; 2590 cmd->idx = ring->cur; 2591 2592 hdr = (struct wpi_scan_hdr *)cmd->data; 2593 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2594 2595 /* 2596 * Move to the next channel if no packets are received within 5 msecs 2597 * after sending the probe request (this helps to reduce the duration 2598 * of active scans). 2599 */ 2600 hdr->quiet = htole16(5); 2601 hdr->threshold = htole16(1); 2602 2603 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2604 /* send probe requests at 6Mbps */ 2605 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2606 2607 /* Enable crc checking */ 2608 hdr->promotion = htole16(1); 2609 } else { 2610 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2611 /* send probe requests at 1Mbps */ 2612 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2613 } 2614 hdr->tx.id = WPI_ID_BROADCAST; 2615 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2616 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2617 2618 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2619 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2620 for (i = 0; i < nssid; i++) { 2621 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2622 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2623 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2624 hdr->scan_essids[i].esslen); 2625 #ifdef WPI_DEBUG 2626 if (wpi_debug & WPI_DEBUG_SCANNING) { 2627 printf("Scanning Essid: "); 2628 ieee80211_print_essid(hdr->scan_essids[i].essid, 2629 hdr->scan_essids[i].esslen); 2630 printf("\n"); 2631 } 2632 #endif 2633 } 2634 2635 /* 2636 * Build a probe request frame. Most of the following code is a 2637 * copy & paste of what is done in net80211. 2638 */ 2639 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2640 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2641 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2642 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2643 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2644 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2645 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2646 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2647 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2648 2649 frm = (uint8_t *)(wh + 1); 2650 2651 /* add essid IE, the hardware will fill this in for us */ 2652 *frm++ = IEEE80211_ELEMID_SSID; 2653 *frm++ = 0; 2654 2655 mode = ieee80211_chan2mode(ic->ic_curchan); 2656 rs = &ic->ic_sup_rates[mode]; 2657 2658 /* add supported rates IE */ 2659 *frm++ = IEEE80211_ELEMID_RATES; 2660 nrates = rs->rs_nrates; 2661 if (nrates > IEEE80211_RATE_SIZE) 2662 nrates = IEEE80211_RATE_SIZE; 2663 *frm++ = nrates; 2664 memcpy(frm, rs->rs_rates, nrates); 2665 frm += nrates; 2666 2667 /* add supported xrates IE */ 2668 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2669 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2670 *frm++ = IEEE80211_ELEMID_XRATES; 2671 *frm++ = nrates; 2672 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2673 frm += nrates; 2674 } 2675 2676 /* setup length of probe request */ 2677 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2678 2679 /* 2680 * Construct information about the channel that we 2681 * want to scan. The firmware expects this to be directly 2682 * after the scan probe request 2683 */ 2684 c = ic->ic_curchan; 2685 chan = (struct wpi_scan_chan *)frm; 2686 chan->chan = ieee80211_chan2ieee(ic, c); 2687 chan->flags = 0; 2688 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2689 chan->flags |= WPI_CHAN_ACTIVE; 2690 if (nssid != 0) 2691 chan->flags |= WPI_CHAN_DIRECT; 2692 } 2693 chan->gain_dsp = 0x6e; /* Default level */ 2694 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2695 chan->active = htole16(10); 2696 chan->passive = htole16(ss->ss_maxdwell); 2697 chan->gain_radio = 0x3b; 2698 } else { 2699 chan->active = htole16(20); 2700 chan->passive = htole16(ss->ss_maxdwell); 2701 chan->gain_radio = 0x28; 2702 } 2703 2704 DPRINTFN(WPI_DEBUG_SCANNING, 2705 ("Scanning %u Passive: %d\n", 2706 chan->chan, 2707 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2708 2709 hdr->nchan++; 2710 chan++; 2711 2712 frm += sizeof (struct wpi_scan_chan); 2713 #if 0 2714 // XXX All Channels.... 2715 for (c = &ic->ic_channels[1]; 2716 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2717 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2718 continue; 2719 2720 chan->chan = ieee80211_chan2ieee(ic, c); 2721 chan->flags = 0; 2722 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2723 chan->flags |= WPI_CHAN_ACTIVE; 2724 if (ic->ic_des_ssid[0].len != 0) 2725 chan->flags |= WPI_CHAN_DIRECT; 2726 } 2727 chan->gain_dsp = 0x6e; /* Default level */ 2728 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2729 chan->active = htole16(10); 2730 chan->passive = htole16(110); 2731 chan->gain_radio = 0x3b; 2732 } else { 2733 chan->active = htole16(20); 2734 chan->passive = htole16(120); 2735 chan->gain_radio = 0x28; 2736 } 2737 2738 DPRINTFN(WPI_DEBUG_SCANNING, 2739 ("Scanning %u Passive: %d\n", 2740 chan->chan, 2741 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2742 2743 hdr->nchan++; 2744 chan++; 2745 2746 frm += sizeof (struct wpi_scan_chan); 2747 } 2748 #endif 2749 2750 hdr->len = htole16(frm - (uint8_t *)hdr); 2751 pktlen = frm - (uint8_t *)cmd; 2752 2753 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2754 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2755 if (error != 0) { 2756 device_printf(sc->sc_dev, "could not map scan command\n"); 2757 m_freem(data->m); 2758 data->m = NULL; 2759 return error; 2760 } 2761 2762 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2763 desc->segs[0].addr = htole32(physaddr); 2764 desc->segs[0].len = htole32(pktlen); 2765 2766 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2767 BUS_DMASYNC_PREWRITE); 2768 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2769 2770 /* kick cmd ring */ 2771 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2772 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2773 2774 sc->sc_scan_timer = 5; 2775 return 0; /* will be notified async. of failure/success */ 2776 } 2777 2778 /** 2779 * Configure the card to listen to a particular channel, this transisions the 2780 * card in to being able to receive frames from remote devices. 2781 */ 2782 static int 2783 wpi_config(struct wpi_softc *sc) 2784 { 2785 struct ifnet *ifp = sc->sc_ifp; 2786 struct ieee80211com *ic = ifp->if_l2com; 2787 struct wpi_power power; 2788 struct wpi_bluetooth bluetooth; 2789 struct wpi_node_info node; 2790 int error; 2791 2792 /* set power mode */ 2793 memset(&power, 0, sizeof power); 2794 power.flags = htole32(WPI_POWER_CAM|0x8); 2795 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2796 if (error != 0) { 2797 device_printf(sc->sc_dev, "could not set power mode\n"); 2798 return error; 2799 } 2800 2801 /* configure bluetooth coexistence */ 2802 memset(&bluetooth, 0, sizeof bluetooth); 2803 bluetooth.flags = 3; 2804 bluetooth.lead = 0xaa; 2805 bluetooth.kill = 1; 2806 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2807 0); 2808 if (error != 0) { 2809 device_printf(sc->sc_dev, 2810 "could not configure bluetooth coexistence\n"); 2811 return error; 2812 } 2813 2814 /* configure adapter */ 2815 memset(&sc->config, 0, sizeof (struct wpi_config)); 2816 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2817 /*set default channel*/ 2818 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2819 sc->config.flags = htole32(WPI_CONFIG_TSF); 2820 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2821 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2822 WPI_CONFIG_24GHZ); 2823 } 2824 sc->config.filter = 0; 2825 switch (ic->ic_opmode) { 2826 case IEEE80211_M_STA: 2827 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2828 sc->config.mode = WPI_MODE_STA; 2829 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2830 break; 2831 case IEEE80211_M_IBSS: 2832 case IEEE80211_M_AHDEMO: 2833 sc->config.mode = WPI_MODE_IBSS; 2834 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2835 WPI_FILTER_MULTICAST); 2836 break; 2837 case IEEE80211_M_HOSTAP: 2838 sc->config.mode = WPI_MODE_HOSTAP; 2839 break; 2840 case IEEE80211_M_MONITOR: 2841 sc->config.mode = WPI_MODE_MONITOR; 2842 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2843 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2844 break; 2845 default: 2846 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2847 return EINVAL; 2848 } 2849 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2850 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2851 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2852 sizeof (struct wpi_config), 0); 2853 if (error != 0) { 2854 device_printf(sc->sc_dev, "configure command failed\n"); 2855 return error; 2856 } 2857 2858 /* configuration has changed, set Tx power accordingly */ 2859 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2860 device_printf(sc->sc_dev, "could not set Tx power\n"); 2861 return error; 2862 } 2863 2864 /* add broadcast node */ 2865 memset(&node, 0, sizeof node); 2866 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2867 node.id = WPI_ID_BROADCAST; 2868 node.rate = wpi_plcp_signal(2); 2869 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2870 if (error != 0) { 2871 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2872 return error; 2873 } 2874 2875 /* Setup rate scalling */ 2876 error = wpi_mrr_setup(sc); 2877 if (error != 0) { 2878 device_printf(sc->sc_dev, "could not setup MRR\n"); 2879 return error; 2880 } 2881 2882 return 0; 2883 } 2884 2885 static void 2886 wpi_stop_master(struct wpi_softc *sc) 2887 { 2888 uint32_t tmp; 2889 int ntries; 2890 2891 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2892 2893 tmp = WPI_READ(sc, WPI_RESET); 2894 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2895 2896 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2897 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2898 return; /* already asleep */ 2899 2900 for (ntries = 0; ntries < 100; ntries++) { 2901 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2902 break; 2903 DELAY(10); 2904 } 2905 if (ntries == 100) { 2906 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2907 } 2908 } 2909 2910 static int 2911 wpi_power_up(struct wpi_softc *sc) 2912 { 2913 uint32_t tmp; 2914 int ntries; 2915 2916 wpi_mem_lock(sc); 2917 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2918 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2919 wpi_mem_unlock(sc); 2920 2921 for (ntries = 0; ntries < 5000; ntries++) { 2922 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2923 break; 2924 DELAY(10); 2925 } 2926 if (ntries == 5000) { 2927 device_printf(sc->sc_dev, 2928 "timeout waiting for NIC to power up\n"); 2929 return ETIMEDOUT; 2930 } 2931 return 0; 2932 } 2933 2934 static int 2935 wpi_reset(struct wpi_softc *sc) 2936 { 2937 uint32_t tmp; 2938 int ntries; 2939 2940 DPRINTFN(WPI_DEBUG_HW, 2941 ("Resetting the card - clearing any uploaded firmware\n")); 2942 2943 /* clear any pending interrupts */ 2944 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2945 2946 tmp = WPI_READ(sc, WPI_PLL_CTL); 2947 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2948 2949 tmp = WPI_READ(sc, WPI_CHICKEN); 2950 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2951 2952 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2953 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2954 2955 /* wait for clock stabilization */ 2956 for (ntries = 0; ntries < 25000; ntries++) { 2957 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2958 break; 2959 DELAY(10); 2960 } 2961 if (ntries == 25000) { 2962 device_printf(sc->sc_dev, 2963 "timeout waiting for clock stabilization\n"); 2964 return ETIMEDOUT; 2965 } 2966 2967 /* initialize EEPROM */ 2968 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2969 2970 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2971 device_printf(sc->sc_dev, "EEPROM not found\n"); 2972 return EIO; 2973 } 2974 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2975 2976 return 0; 2977 } 2978 2979 static void 2980 wpi_hw_config(struct wpi_softc *sc) 2981 { 2982 uint32_t rev, hw; 2983 2984 /* voodoo from the Linux "driver".. */ 2985 hw = WPI_READ(sc, WPI_HWCONFIG); 2986 2987 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2988 if ((rev & 0xc0) == 0x40) 2989 hw |= WPI_HW_ALM_MB; 2990 else if (!(rev & 0x80)) 2991 hw |= WPI_HW_ALM_MM; 2992 2993 if (sc->cap == 0x80) 2994 hw |= WPI_HW_SKU_MRC; 2995 2996 hw &= ~WPI_HW_REV_D; 2997 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2998 hw |= WPI_HW_REV_D; 2999 3000 if (sc->type > 1) 3001 hw |= WPI_HW_TYPE_B; 3002 3003 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3004 } 3005 3006 static void 3007 wpi_rfkill_resume(struct wpi_softc *sc) 3008 { 3009 struct ifnet *ifp = sc->sc_ifp; 3010 struct ieee80211com *ic = ifp->if_l2com; 3011 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3012 int ntries; 3013 3014 /* enable firmware again */ 3015 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3016 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3017 3018 /* wait for thermal sensors to calibrate */ 3019 for (ntries = 0; ntries < 1000; ntries++) { 3020 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3021 break; 3022 DELAY(10); 3023 } 3024 3025 if (ntries == 1000) { 3026 device_printf(sc->sc_dev, 3027 "timeout waiting for thermal calibration\n"); 3028 return; 3029 } 3030 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3031 3032 if (wpi_config(sc) != 0) { 3033 device_printf(sc->sc_dev, "device config failed\n"); 3034 return; 3035 } 3036 3037 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3038 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3039 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3040 3041 if (vap != NULL) { 3042 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3043 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3044 ieee80211_beacon_miss(ic); 3045 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3046 } else 3047 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3048 } else { 3049 ieee80211_scan_next(vap); 3050 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3051 } 3052 } 3053 3054 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3055 } 3056 3057 static void 3058 wpi_init_locked(struct wpi_softc *sc, int force) 3059 { 3060 struct ifnet *ifp = sc->sc_ifp; 3061 uint32_t tmp; 3062 int ntries, qid; 3063 3064 wpi_stop_locked(sc); 3065 (void)wpi_reset(sc); 3066 3067 wpi_mem_lock(sc); 3068 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3069 DELAY(20); 3070 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3071 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3072 wpi_mem_unlock(sc); 3073 3074 (void)wpi_power_up(sc); 3075 wpi_hw_config(sc); 3076 3077 /* init Rx ring */ 3078 wpi_mem_lock(sc); 3079 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3080 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3081 offsetof(struct wpi_shared, next)); 3082 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3083 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3084 wpi_mem_unlock(sc); 3085 3086 /* init Tx rings */ 3087 wpi_mem_lock(sc); 3088 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3089 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3090 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3091 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3092 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3093 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3094 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3095 3096 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3097 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3098 3099 for (qid = 0; qid < 6; qid++) { 3100 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3101 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3102 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3103 } 3104 wpi_mem_unlock(sc); 3105 3106 /* clear "radio off" and "disable command" bits (reversed logic) */ 3107 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3108 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3109 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3110 3111 /* clear any pending interrupts */ 3112 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3113 3114 /* enable interrupts */ 3115 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3116 3117 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3118 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3119 3120 if ((wpi_load_firmware(sc)) != 0) { 3121 device_printf(sc->sc_dev, 3122 "A problem occurred loading the firmware to the driver\n"); 3123 return; 3124 } 3125 3126 /* At this point the firmware is up and running. If the hardware 3127 * RF switch is turned off thermal calibration will fail, though 3128 * the card is still happy to continue to accept commands, catch 3129 * this case and schedule a task to watch for it to be turned on. 3130 */ 3131 wpi_mem_lock(sc); 3132 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3133 wpi_mem_unlock(sc); 3134 3135 if (!(tmp & 0x1)) { 3136 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3137 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3138 goto out; 3139 } 3140 3141 /* wait for thermal sensors to calibrate */ 3142 for (ntries = 0; ntries < 1000; ntries++) { 3143 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3144 break; 3145 DELAY(10); 3146 } 3147 3148 if (ntries == 1000) { 3149 device_printf(sc->sc_dev, 3150 "timeout waiting for thermal sensors calibration\n"); 3151 return; 3152 } 3153 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3154 3155 if (wpi_config(sc) != 0) { 3156 device_printf(sc->sc_dev, "device config failed\n"); 3157 return; 3158 } 3159 3160 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3161 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3162 out: 3163 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3164 } 3165 3166 static void 3167 wpi_init(void *arg) 3168 { 3169 struct wpi_softc *sc = arg; 3170 struct ifnet *ifp = sc->sc_ifp; 3171 struct ieee80211com *ic = ifp->if_l2com; 3172 3173 WPI_LOCK(sc); 3174 wpi_init_locked(sc, 0); 3175 WPI_UNLOCK(sc); 3176 3177 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3178 ieee80211_start_all(ic); /* start all vaps */ 3179 } 3180 3181 static void 3182 wpi_stop_locked(struct wpi_softc *sc) 3183 { 3184 struct ifnet *ifp = sc->sc_ifp; 3185 uint32_t tmp; 3186 int ac; 3187 3188 sc->sc_tx_timer = 0; 3189 sc->sc_scan_timer = 0; 3190 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3191 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3192 callout_stop(&sc->watchdog_to); 3193 callout_stop(&sc->calib_to); 3194 3195 3196 /* disable interrupts */ 3197 WPI_WRITE(sc, WPI_MASK, 0); 3198 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3199 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3200 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3201 3202 wpi_mem_lock(sc); 3203 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3204 wpi_mem_unlock(sc); 3205 3206 /* reset all Tx rings */ 3207 for (ac = 0; ac < 4; ac++) 3208 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3209 wpi_reset_tx_ring(sc, &sc->cmdq); 3210 3211 /* reset Rx ring */ 3212 wpi_reset_rx_ring(sc, &sc->rxq); 3213 3214 wpi_mem_lock(sc); 3215 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3216 wpi_mem_unlock(sc); 3217 3218 DELAY(5); 3219 3220 wpi_stop_master(sc); 3221 3222 tmp = WPI_READ(sc, WPI_RESET); 3223 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3224 sc->flags &= ~WPI_FLAG_BUSY; 3225 } 3226 3227 static void 3228 wpi_stop(struct wpi_softc *sc) 3229 { 3230 WPI_LOCK(sc); 3231 wpi_stop_locked(sc); 3232 WPI_UNLOCK(sc); 3233 } 3234 3235 static void 3236 wpi_calib_timeout(void *arg) 3237 { 3238 struct wpi_softc *sc = arg; 3239 struct ifnet *ifp = sc->sc_ifp; 3240 struct ieee80211com *ic = ifp->if_l2com; 3241 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3242 int temp; 3243 3244 if (vap->iv_state != IEEE80211_S_RUN) 3245 return; 3246 3247 /* update sensor data */ 3248 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3249 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3250 3251 wpi_power_calibration(sc, temp); 3252 3253 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3254 } 3255 3256 /* 3257 * This function is called periodically (every 60 seconds) to adjust output 3258 * power to temperature changes. 3259 */ 3260 static void 3261 wpi_power_calibration(struct wpi_softc *sc, int temp) 3262 { 3263 struct ifnet *ifp = sc->sc_ifp; 3264 struct ieee80211com *ic = ifp->if_l2com; 3265 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3266 3267 /* sanity-check read value */ 3268 if (temp < -260 || temp > 25) { 3269 /* this can't be correct, ignore */ 3270 DPRINTFN(WPI_DEBUG_TEMP, 3271 ("out-of-range temperature reported: %d\n", temp)); 3272 return; 3273 } 3274 3275 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3276 3277 /* adjust Tx power if need be */ 3278 if (abs(temp - sc->temp) <= 6) 3279 return; 3280 3281 sc->temp = temp; 3282 3283 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3284 /* just warn, too bad for the automatic calibration... */ 3285 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3286 } 3287 } 3288 3289 /** 3290 * Read the eeprom to find out what channels are valid for the given 3291 * band and update net80211 with what we find. 3292 */ 3293 static void 3294 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3295 { 3296 struct ifnet *ifp = sc->sc_ifp; 3297 struct ieee80211com *ic = ifp->if_l2com; 3298 const struct wpi_chan_band *band = &wpi_bands[n]; 3299 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3300 struct ieee80211_channel *c; 3301 int chan, i, passive; 3302 3303 wpi_read_prom_data(sc, band->addr, channels, 3304 band->nchan * sizeof (struct wpi_eeprom_chan)); 3305 3306 for (i = 0; i < band->nchan; i++) { 3307 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3308 DPRINTFN(WPI_DEBUG_HW, 3309 ("Channel Not Valid: %d, band %d\n", 3310 band->chan[i],n)); 3311 continue; 3312 } 3313 3314 passive = 0; 3315 chan = band->chan[i]; 3316 c = &ic->ic_channels[ic->ic_nchans++]; 3317 3318 /* is active scan allowed on this channel? */ 3319 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3320 passive = IEEE80211_CHAN_PASSIVE; 3321 } 3322 3323 if (n == 0) { /* 2GHz band */ 3324 c->ic_ieee = chan; 3325 c->ic_freq = ieee80211_ieee2mhz(chan, 3326 IEEE80211_CHAN_2GHZ); 3327 c->ic_flags = IEEE80211_CHAN_B | passive; 3328 3329 c = &ic->ic_channels[ic->ic_nchans++]; 3330 c->ic_ieee = chan; 3331 c->ic_freq = ieee80211_ieee2mhz(chan, 3332 IEEE80211_CHAN_2GHZ); 3333 c->ic_flags = IEEE80211_CHAN_G | passive; 3334 3335 } else { /* 5GHz band */ 3336 /* 3337 * Some 3945ABG adapters support channels 7, 8, 11 3338 * and 12 in the 2GHz *and* 5GHz bands. 3339 * Because of limitations in our net80211(9) stack, 3340 * we can't support these channels in 5GHz band. 3341 * XXX not true; just need to map to proper frequency 3342 */ 3343 if (chan <= 14) 3344 continue; 3345 3346 c->ic_ieee = chan; 3347 c->ic_freq = ieee80211_ieee2mhz(chan, 3348 IEEE80211_CHAN_5GHZ); 3349 c->ic_flags = IEEE80211_CHAN_A | passive; 3350 } 3351 3352 /* save maximum allowed power for this channel */ 3353 sc->maxpwr[chan] = channels[i].maxpwr; 3354 3355 #if 0 3356 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3357 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3358 //ic->ic_channels[chan].ic_minpower... 3359 //ic->ic_channels[chan].ic_maxregtxpower... 3360 #endif 3361 3362 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3363 " passive=%d, offset %d\n", chan, c->ic_freq, 3364 channels[i].flags, sc->maxpwr[chan], 3365 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3366 ic->ic_nchans)); 3367 } 3368 } 3369 3370 static void 3371 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3372 { 3373 struct wpi_power_group *group = &sc->groups[n]; 3374 struct wpi_eeprom_group rgroup; 3375 int i; 3376 3377 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3378 sizeof rgroup); 3379 3380 /* save power group information */ 3381 group->chan = rgroup.chan; 3382 group->maxpwr = rgroup.maxpwr; 3383 /* temperature at which the samples were taken */ 3384 group->temp = (int16_t)le16toh(rgroup.temp); 3385 3386 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3387 group->chan, group->maxpwr, group->temp)); 3388 3389 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3390 group->samples[i].index = rgroup.samples[i].index; 3391 group->samples[i].power = rgroup.samples[i].power; 3392 3393 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3394 group->samples[i].index, group->samples[i].power)); 3395 } 3396 } 3397 3398 /* 3399 * Update Tx power to match what is defined for channel `c'. 3400 */ 3401 static int 3402 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3403 { 3404 struct ifnet *ifp = sc->sc_ifp; 3405 struct ieee80211com *ic = ifp->if_l2com; 3406 struct wpi_power_group *group; 3407 struct wpi_cmd_txpower txpower; 3408 u_int chan; 3409 int i; 3410 3411 /* get channel number */ 3412 chan = ieee80211_chan2ieee(ic, c); 3413 3414 /* find the power group to which this channel belongs */ 3415 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3416 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3417 if (chan <= group->chan) 3418 break; 3419 } else 3420 group = &sc->groups[0]; 3421 3422 memset(&txpower, 0, sizeof txpower); 3423 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3424 txpower.channel = htole16(chan); 3425 3426 /* set Tx power for all OFDM and CCK rates */ 3427 for (i = 0; i <= 11 ; i++) { 3428 /* retrieve Tx power for this channel/rate combination */ 3429 int idx = wpi_get_power_index(sc, group, c, 3430 wpi_ridx_to_rate[i]); 3431 3432 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3433 3434 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3435 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3436 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3437 } else { 3438 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3439 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3440 } 3441 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3442 chan, wpi_ridx_to_rate[i], idx)); 3443 } 3444 3445 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3446 } 3447 3448 /* 3449 * Determine Tx power index for a given channel/rate combination. 3450 * This takes into account the regulatory information from EEPROM and the 3451 * current temperature. 3452 */ 3453 static int 3454 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3455 struct ieee80211_channel *c, int rate) 3456 { 3457 /* fixed-point arithmetic division using a n-bit fractional part */ 3458 #define fdivround(a, b, n) \ 3459 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3460 3461 /* linear interpolation */ 3462 #define interpolate(x, x1, y1, x2, y2, n) \ 3463 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3464 3465 struct ifnet *ifp = sc->sc_ifp; 3466 struct ieee80211com *ic = ifp->if_l2com; 3467 struct wpi_power_sample *sample; 3468 int pwr, idx; 3469 u_int chan; 3470 3471 /* get channel number */ 3472 chan = ieee80211_chan2ieee(ic, c); 3473 3474 /* default power is group's maximum power - 3dB */ 3475 pwr = group->maxpwr / 2; 3476 3477 /* decrease power for highest OFDM rates to reduce distortion */ 3478 switch (rate) { 3479 case 72: /* 36Mb/s */ 3480 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3481 break; 3482 case 96: /* 48Mb/s */ 3483 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3484 break; 3485 case 108: /* 54Mb/s */ 3486 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3487 break; 3488 } 3489 3490 /* never exceed channel's maximum allowed Tx power */ 3491 pwr = min(pwr, sc->maxpwr[chan]); 3492 3493 /* retrieve power index into gain tables from samples */ 3494 for (sample = group->samples; sample < &group->samples[3]; sample++) 3495 if (pwr > sample[1].power) 3496 break; 3497 /* fixed-point linear interpolation using a 19-bit fractional part */ 3498 idx = interpolate(pwr, sample[0].power, sample[0].index, 3499 sample[1].power, sample[1].index, 19); 3500 3501 /* 3502 * Adjust power index based on current temperature 3503 * - if colder than factory-calibrated: decreate output power 3504 * - if warmer than factory-calibrated: increase output power 3505 */ 3506 idx -= (sc->temp - group->temp) * 11 / 100; 3507 3508 /* decrease power for CCK rates (-5dB) */ 3509 if (!WPI_RATE_IS_OFDM(rate)) 3510 idx += 10; 3511 3512 /* keep power index in a valid range */ 3513 if (idx < 0) 3514 return 0; 3515 if (idx > WPI_MAX_PWR_INDEX) 3516 return WPI_MAX_PWR_INDEX; 3517 return idx; 3518 3519 #undef interpolate 3520 #undef fdivround 3521 } 3522 3523 /** 3524 * Called by net80211 framework to indicate that a scan 3525 * is starting. This function doesn't actually do the scan, 3526 * wpi_scan_curchan starts things off. This function is more 3527 * of an early warning from the framework we should get ready 3528 * for the scan. 3529 */ 3530 static void 3531 wpi_scan_start(struct ieee80211com *ic) 3532 { 3533 struct ifnet *ifp = ic->ic_ifp; 3534 struct wpi_softc *sc = ifp->if_softc; 3535 3536 WPI_LOCK(sc); 3537 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3538 WPI_UNLOCK(sc); 3539 } 3540 3541 /** 3542 * Called by the net80211 framework, indicates that the 3543 * scan has ended. If there is a scan in progress on the card 3544 * then it should be aborted. 3545 */ 3546 static void 3547 wpi_scan_end(struct ieee80211com *ic) 3548 { 3549 /* XXX ignore */ 3550 } 3551 3552 /** 3553 * Called by the net80211 framework to indicate to the driver 3554 * that the channel should be changed 3555 */ 3556 static void 3557 wpi_set_channel(struct ieee80211com *ic) 3558 { 3559 struct ifnet *ifp = ic->ic_ifp; 3560 struct wpi_softc *sc = ifp->if_softc; 3561 int error; 3562 3563 /* 3564 * Only need to set the channel in Monitor mode. AP scanning and auth 3565 * are already taken care of by their respective firmware commands. 3566 */ 3567 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3568 WPI_LOCK(sc); 3569 error = wpi_config(sc); 3570 WPI_UNLOCK(sc); 3571 if (error != 0) 3572 device_printf(sc->sc_dev, 3573 "error %d settting channel\n", error); 3574 } 3575 } 3576 3577 /** 3578 * Called by net80211 to indicate that we need to scan the current 3579 * channel. The channel is previously be set via the wpi_set_channel 3580 * callback. 3581 */ 3582 static void 3583 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3584 { 3585 struct ieee80211vap *vap = ss->ss_vap; 3586 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3587 struct wpi_softc *sc = ifp->if_softc; 3588 3589 WPI_LOCK(sc); 3590 if (wpi_scan(sc)) 3591 ieee80211_cancel_scan(vap); 3592 WPI_UNLOCK(sc); 3593 } 3594 3595 /** 3596 * Called by the net80211 framework to indicate 3597 * the minimum dwell time has been met, terminate the scan. 3598 * We don't actually terminate the scan as the firmware will notify 3599 * us when it's finished and we have no way to interrupt it. 3600 */ 3601 static void 3602 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3603 { 3604 /* NB: don't try to abort scan; wait for firmware to finish */ 3605 } 3606 3607 static void 3608 wpi_hwreset(void *arg, int pending) 3609 { 3610 struct wpi_softc *sc = arg; 3611 3612 WPI_LOCK(sc); 3613 wpi_init_locked(sc, 0); 3614 WPI_UNLOCK(sc); 3615 } 3616 3617 static void 3618 wpi_rfreset(void *arg, int pending) 3619 { 3620 struct wpi_softc *sc = arg; 3621 3622 WPI_LOCK(sc); 3623 wpi_rfkill_resume(sc); 3624 WPI_UNLOCK(sc); 3625 } 3626 3627 /* 3628 * Allocate DMA-safe memory for firmware transfer. 3629 */ 3630 static int 3631 wpi_alloc_fwmem(struct wpi_softc *sc) 3632 { 3633 /* allocate enough contiguous space to store text and data */ 3634 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3635 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3636 BUS_DMA_NOWAIT); 3637 } 3638 3639 static void 3640 wpi_free_fwmem(struct wpi_softc *sc) 3641 { 3642 wpi_dma_contig_free(&sc->fw_dma); 3643 } 3644 3645 /** 3646 * Called every second, wpi_watchdog used by the watch dog timer 3647 * to check that the card is still alive 3648 */ 3649 static void 3650 wpi_watchdog(void *arg) 3651 { 3652 struct wpi_softc *sc = arg; 3653 struct ifnet *ifp = sc->sc_ifp; 3654 struct ieee80211com *ic = ifp->if_l2com; 3655 uint32_t tmp; 3656 3657 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3658 3659 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3660 /* No need to lock firmware memory */ 3661 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3662 3663 if ((tmp & 0x1) == 0) { 3664 /* Radio kill switch is still off */ 3665 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3666 return; 3667 } 3668 3669 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3670 ieee80211_runtask(ic, &sc->sc_radiotask); 3671 return; 3672 } 3673 3674 if (sc->sc_tx_timer > 0) { 3675 if (--sc->sc_tx_timer == 0) { 3676 device_printf(sc->sc_dev,"device timeout\n"); 3677 ifp->if_oerrors++; 3678 ieee80211_runtask(ic, &sc->sc_restarttask); 3679 } 3680 } 3681 if (sc->sc_scan_timer > 0) { 3682 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3683 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3684 device_printf(sc->sc_dev,"scan timeout\n"); 3685 ieee80211_cancel_scan(vap); 3686 ieee80211_runtask(ic, &sc->sc_restarttask); 3687 } 3688 } 3689 3690 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3691 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3692 } 3693 3694 #ifdef WPI_DEBUG 3695 static const char *wpi_cmd_str(int cmd) 3696 { 3697 switch (cmd) { 3698 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3699 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3700 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3701 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3702 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3703 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3704 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3705 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3706 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3707 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3708 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3709 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3710 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3711 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3712 3713 default: 3714 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3715 return "UNKNOWN CMD"; /* Make the compiler happy */ 3716 } 3717 } 3718 #endif 3719 3720 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3721 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3722 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3723