1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #include <machine/bus.h> 79 #include <machine/resource.h> 80 #include <sys/rman.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 85 #include <net/bpf.h> 86 #include <net/if.h> 87 #include <net/if_arp.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <net80211/ieee80211_var.h> 94 #include <net80211/ieee80211_radiotap.h> 95 #include <net80211/ieee80211_regdomain.h> 96 #include <net80211/ieee80211_ratectl.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_systm.h> 100 #include <netinet/in_var.h> 101 #include <netinet/ip.h> 102 #include <netinet/if_ether.h> 103 104 #include <dev/wpi/if_wpireg.h> 105 #include <dev/wpi/if_wpivar.h> 106 107 #define WPI_DEBUG 108 109 #ifdef WPI_DEBUG 110 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 111 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 112 #define WPI_DEBUG_SET (wpi_debug != 0) 113 114 enum { 115 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 116 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 117 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 118 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 119 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 120 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 121 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 122 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 123 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 124 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 125 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 126 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 127 WPI_DEBUG_ANY = 0xffffffff 128 }; 129 130 static int wpi_debug = 0; 131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 132 TUNABLE_INT("debug.wpi", &wpi_debug); 133 134 #else 135 #define DPRINTF(x) 136 #define DPRINTFN(n, x) 137 #define WPI_DEBUG_SET 0 138 #endif 139 140 struct wpi_ident { 141 uint16_t vendor; 142 uint16_t device; 143 uint16_t subdevice; 144 const char *name; 145 }; 146 147 static const struct wpi_ident wpi_ident_table[] = { 148 /* The below entries support ABG regardless of the subid */ 149 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 150 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 151 /* The below entries only support BG */ 152 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 153 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 154 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 155 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0, 0, 0, NULL } 157 }; 158 159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 160 const char name[IFNAMSIZ], int unit, int opmode, 161 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 162 const uint8_t mac[IEEE80211_ADDR_LEN]); 163 static void wpi_vap_delete(struct ieee80211vap *); 164 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 165 void **, bus_size_t, bus_size_t, int); 166 static void wpi_dma_contig_free(struct wpi_dma_info *); 167 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 168 static int wpi_alloc_shared(struct wpi_softc *); 169 static void wpi_free_shared(struct wpi_softc *); 170 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 171 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 172 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 173 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 174 int, int); 175 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 176 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 177 static void wpi_newassoc(struct ieee80211_node *, int); 178 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 179 static void wpi_mem_lock(struct wpi_softc *); 180 static void wpi_mem_unlock(struct wpi_softc *); 181 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 182 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 183 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 184 const uint32_t *, int); 185 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 186 static int wpi_alloc_fwmem(struct wpi_softc *); 187 static void wpi_free_fwmem(struct wpi_softc *); 188 static int wpi_load_firmware(struct wpi_softc *); 189 static void wpi_unload_firmware(struct wpi_softc *); 190 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 191 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 192 struct wpi_rx_data *); 193 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 194 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 195 static void wpi_notif_intr(struct wpi_softc *); 196 static void wpi_intr(void *); 197 static uint8_t wpi_plcp_signal(int); 198 static void wpi_watchdog(void *); 199 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 200 struct ieee80211_node *, int); 201 static void wpi_start(struct ifnet *); 202 static void wpi_start_locked(struct ifnet *); 203 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 204 const struct ieee80211_bpf_params *); 205 static void wpi_scan_start(struct ieee80211com *); 206 static void wpi_scan_end(struct ieee80211com *); 207 static void wpi_set_channel(struct ieee80211com *); 208 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 209 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 210 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 211 static void wpi_read_eeprom(struct wpi_softc *, 212 uint8_t macaddr[IEEE80211_ADDR_LEN]); 213 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 214 static void wpi_read_eeprom_group(struct wpi_softc *, int); 215 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 216 static int wpi_wme_update(struct ieee80211com *); 217 static int wpi_mrr_setup(struct wpi_softc *); 218 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 219 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 220 #if 0 221 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 222 #endif 223 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 224 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 225 static int wpi_scan(struct wpi_softc *); 226 static int wpi_config(struct wpi_softc *); 227 static void wpi_stop_master(struct wpi_softc *); 228 static int wpi_power_up(struct wpi_softc *); 229 static int wpi_reset(struct wpi_softc *); 230 static void wpi_hwreset(void *, int); 231 static void wpi_rfreset(void *, int); 232 static void wpi_hw_config(struct wpi_softc *); 233 static void wpi_init(void *); 234 static void wpi_init_locked(struct wpi_softc *, int); 235 static void wpi_stop(struct wpi_softc *); 236 static void wpi_stop_locked(struct wpi_softc *); 237 238 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 239 int); 240 static void wpi_calib_timeout(void *); 241 static void wpi_power_calibration(struct wpi_softc *, int); 242 static int wpi_get_power_index(struct wpi_softc *, 243 struct wpi_power_group *, struct ieee80211_channel *, int); 244 #ifdef WPI_DEBUG 245 static const char *wpi_cmd_str(int); 246 #endif 247 static int wpi_probe(device_t); 248 static int wpi_attach(device_t); 249 static int wpi_detach(device_t); 250 static int wpi_shutdown(device_t); 251 static int wpi_suspend(device_t); 252 static int wpi_resume(device_t); 253 254 255 static device_method_t wpi_methods[] = { 256 /* Device interface */ 257 DEVMETHOD(device_probe, wpi_probe), 258 DEVMETHOD(device_attach, wpi_attach), 259 DEVMETHOD(device_detach, wpi_detach), 260 DEVMETHOD(device_shutdown, wpi_shutdown), 261 DEVMETHOD(device_suspend, wpi_suspend), 262 DEVMETHOD(device_resume, wpi_resume), 263 264 { 0, 0 } 265 }; 266 267 static driver_t wpi_driver = { 268 "wpi", 269 wpi_methods, 270 sizeof (struct wpi_softc) 271 }; 272 273 static devclass_t wpi_devclass; 274 275 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 276 277 static const uint8_t wpi_ridx_to_plcp[] = { 278 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 279 /* R1-R4 (ral/ural is R4-R1) */ 280 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 281 /* CCK: device-dependent */ 282 10, 20, 55, 110 283 }; 284 static const uint8_t wpi_ridx_to_rate[] = { 285 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 286 2, 4, 11, 22 /*CCK */ 287 }; 288 289 290 static int 291 wpi_probe(device_t dev) 292 { 293 const struct wpi_ident *ident; 294 295 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 296 if (pci_get_vendor(dev) == ident->vendor && 297 pci_get_device(dev) == ident->device) { 298 device_set_desc(dev, ident->name); 299 return 0; 300 } 301 } 302 return ENXIO; 303 } 304 305 /** 306 * Load the firmare image from disk to the allocated dma buffer. 307 * we also maintain the reference to the firmware pointer as there 308 * is times where we may need to reload the firmware but we are not 309 * in a context that can access the filesystem (ie taskq cause by restart) 310 * 311 * @return 0 on success, an errno on failure 312 */ 313 static int 314 wpi_load_firmware(struct wpi_softc *sc) 315 { 316 const struct firmware *fp; 317 struct wpi_dma_info *dma = &sc->fw_dma; 318 const struct wpi_firmware_hdr *hdr; 319 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 320 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 321 int error; 322 323 DPRINTFN(WPI_DEBUG_FIRMWARE, 324 ("Attempting Loading Firmware from wpi_fw module\n")); 325 326 WPI_UNLOCK(sc); 327 328 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 329 device_printf(sc->sc_dev, 330 "could not load firmware image 'wpifw'\n"); 331 error = ENOENT; 332 WPI_LOCK(sc); 333 goto fail; 334 } 335 336 fp = sc->fw_fp; 337 338 WPI_LOCK(sc); 339 340 /* Validate the firmware is minimum a particular version */ 341 if (fp->version < WPI_FW_MINVERSION) { 342 device_printf(sc->sc_dev, 343 "firmware version is too old. Need %d, got %d\n", 344 WPI_FW_MINVERSION, 345 fp->version); 346 error = ENXIO; 347 goto fail; 348 } 349 350 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 351 device_printf(sc->sc_dev, 352 "firmware file too short: %zu bytes\n", fp->datasize); 353 error = ENXIO; 354 goto fail; 355 } 356 357 hdr = (const struct wpi_firmware_hdr *)fp->data; 358 359 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 360 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 361 362 rtextsz = le32toh(hdr->rtextsz); 363 rdatasz = le32toh(hdr->rdatasz); 364 itextsz = le32toh(hdr->itextsz); 365 idatasz = le32toh(hdr->idatasz); 366 btextsz = le32toh(hdr->btextsz); 367 368 /* check that all firmware segments are present */ 369 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 370 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 371 device_printf(sc->sc_dev, 372 "firmware file too short: %zu bytes\n", fp->datasize); 373 error = ENXIO; /* XXX appropriate error code? */ 374 goto fail; 375 } 376 377 /* get pointers to firmware segments */ 378 rtext = (const uint8_t *)(hdr + 1); 379 rdata = rtext + rtextsz; 380 itext = rdata + rdatasz; 381 idata = itext + itextsz; 382 btext = idata + idatasz; 383 384 DPRINTFN(WPI_DEBUG_FIRMWARE, 385 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 386 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 387 (le32toh(hdr->version) & 0xff000000) >> 24, 388 (le32toh(hdr->version) & 0x00ff0000) >> 16, 389 (le32toh(hdr->version) & 0x0000ffff), 390 rtextsz, rdatasz, 391 itextsz, idatasz, btextsz)); 392 393 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 394 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 395 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 396 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 397 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 398 399 /* sanity checks */ 400 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 401 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 402 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 403 idatasz > WPI_FW_INIT_DATA_MAXSZ || 404 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 405 (btextsz & 3) != 0) { 406 device_printf(sc->sc_dev, "firmware invalid\n"); 407 error = EINVAL; 408 goto fail; 409 } 410 411 /* copy initialization images into pre-allocated DMA-safe memory */ 412 memcpy(dma->vaddr, idata, idatasz); 413 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 414 415 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 416 417 /* tell adapter where to find initialization images */ 418 wpi_mem_lock(sc); 419 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 420 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 421 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 422 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 423 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 424 wpi_mem_unlock(sc); 425 426 /* load firmware boot code */ 427 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 428 device_printf(sc->sc_dev, "Failed to load microcode\n"); 429 goto fail; 430 } 431 432 /* now press "execute" */ 433 WPI_WRITE(sc, WPI_RESET, 0); 434 435 /* wait at most one second for the first alive notification */ 436 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 437 device_printf(sc->sc_dev, 438 "timeout waiting for adapter to initialize\n"); 439 goto fail; 440 } 441 442 /* copy runtime images into pre-allocated DMA-sage memory */ 443 memcpy(dma->vaddr, rdata, rdatasz); 444 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 445 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 446 447 /* tell adapter where to find runtime images */ 448 wpi_mem_lock(sc); 449 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 450 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 451 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 452 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 453 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 454 wpi_mem_unlock(sc); 455 456 /* wait at most one second for the first alive notification */ 457 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 458 device_printf(sc->sc_dev, 459 "timeout waiting for adapter to initialize2\n"); 460 goto fail; 461 } 462 463 DPRINTFN(WPI_DEBUG_FIRMWARE, 464 ("Firmware loaded to driver successfully\n")); 465 return error; 466 fail: 467 wpi_unload_firmware(sc); 468 return error; 469 } 470 471 /** 472 * Free the referenced firmware image 473 */ 474 static void 475 wpi_unload_firmware(struct wpi_softc *sc) 476 { 477 478 if (sc->fw_fp) { 479 WPI_UNLOCK(sc); 480 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 481 WPI_LOCK(sc); 482 sc->fw_fp = NULL; 483 } 484 } 485 486 static int 487 wpi_attach(device_t dev) 488 { 489 struct wpi_softc *sc = device_get_softc(dev); 490 struct ifnet *ifp; 491 struct ieee80211com *ic; 492 int ac, error, supportsa = 1; 493 uint32_t tmp; 494 const struct wpi_ident *ident; 495 uint8_t macaddr[IEEE80211_ADDR_LEN]; 496 497 sc->sc_dev = dev; 498 499 if (bootverbose || WPI_DEBUG_SET) 500 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 501 502 /* 503 * Some card's only support 802.11b/g not a, check to see if 504 * this is one such card. A 0x0 in the subdevice table indicates 505 * the entire subdevice range is to be ignored. 506 */ 507 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 508 if (ident->subdevice && 509 pci_get_subdevice(dev) == ident->subdevice) { 510 supportsa = 0; 511 break; 512 } 513 } 514 515 /* Create the tasks that can be queued */ 516 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc); 517 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc); 518 519 WPI_LOCK_INIT(sc); 520 521 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 522 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 523 524 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 525 device_printf(dev, "chip is in D%d power mode " 526 "-- setting to D0\n", pci_get_powerstate(dev)); 527 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 528 } 529 530 /* disable the retry timeout register */ 531 pci_write_config(dev, 0x41, 0, 1); 532 533 /* enable bus-mastering */ 534 pci_enable_busmaster(dev); 535 536 sc->mem_rid = PCIR_BAR(0); 537 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 538 RF_ACTIVE); 539 if (sc->mem == NULL) { 540 device_printf(dev, "could not allocate memory resource\n"); 541 error = ENOMEM; 542 goto fail; 543 } 544 545 sc->sc_st = rman_get_bustag(sc->mem); 546 sc->sc_sh = rman_get_bushandle(sc->mem); 547 548 sc->irq_rid = 0; 549 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 550 RF_ACTIVE | RF_SHAREABLE); 551 if (sc->irq == NULL) { 552 device_printf(dev, "could not allocate interrupt resource\n"); 553 error = ENOMEM; 554 goto fail; 555 } 556 557 /* 558 * Allocate DMA memory for firmware transfers. 559 */ 560 if ((error = wpi_alloc_fwmem(sc)) != 0) { 561 printf(": could not allocate firmware memory\n"); 562 error = ENOMEM; 563 goto fail; 564 } 565 566 /* 567 * Put adapter into a known state. 568 */ 569 if ((error = wpi_reset(sc)) != 0) { 570 device_printf(dev, "could not reset adapter\n"); 571 goto fail; 572 } 573 574 wpi_mem_lock(sc); 575 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 576 if (bootverbose || WPI_DEBUG_SET) 577 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 578 579 wpi_mem_unlock(sc); 580 581 /* Allocate shared page */ 582 if ((error = wpi_alloc_shared(sc)) != 0) { 583 device_printf(dev, "could not allocate shared page\n"); 584 goto fail; 585 } 586 587 /* tx data queues - 4 for QoS purposes */ 588 for (ac = 0; ac < WME_NUM_AC; ac++) { 589 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 590 if (error != 0) { 591 device_printf(dev, "could not allocate Tx ring %d\n",ac); 592 goto fail; 593 } 594 } 595 596 /* command queue to talk to the card's firmware */ 597 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 598 if (error != 0) { 599 device_printf(dev, "could not allocate command ring\n"); 600 goto fail; 601 } 602 603 /* receive data queue */ 604 error = wpi_alloc_rx_ring(sc, &sc->rxq); 605 if (error != 0) { 606 device_printf(dev, "could not allocate Rx ring\n"); 607 goto fail; 608 } 609 610 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 611 if (ifp == NULL) { 612 device_printf(dev, "can not if_alloc()\n"); 613 error = ENOMEM; 614 goto fail; 615 } 616 ic = ifp->if_l2com; 617 618 ic->ic_ifp = ifp; 619 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 620 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 621 622 /* set device capabilities */ 623 ic->ic_caps = 624 IEEE80211_C_STA /* station mode supported */ 625 | IEEE80211_C_MONITOR /* monitor mode supported */ 626 | IEEE80211_C_TXPMGT /* tx power management */ 627 | IEEE80211_C_SHSLOT /* short slot time supported */ 628 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 629 | IEEE80211_C_WPA /* 802.11i */ 630 /* XXX looks like WME is partly supported? */ 631 #if 0 632 | IEEE80211_C_IBSS /* IBSS mode support */ 633 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 634 | IEEE80211_C_WME /* 802.11e */ 635 | IEEE80211_C_HOSTAP /* Host access point mode */ 636 #endif 637 | IEEE80211_C_RATECTL /* use ratectl */ 638 ; 639 640 /* 641 * Read in the eeprom and also setup the channels for 642 * net80211. We don't set the rates as net80211 does this for us 643 */ 644 wpi_read_eeprom(sc, macaddr); 645 646 if (bootverbose || WPI_DEBUG_SET) { 647 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 648 device_printf(sc->sc_dev, "Hardware Type: %c\n", 649 sc->type > 1 ? 'B': '?'); 650 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 651 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 652 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 653 supportsa ? "does" : "does not"); 654 655 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 656 what sc->rev really represents - benjsc 20070615 */ 657 } 658 659 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 660 ifp->if_softc = sc; 661 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 662 ifp->if_init = wpi_init; 663 ifp->if_ioctl = wpi_ioctl; 664 ifp->if_start = wpi_start; 665 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 666 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 667 IFQ_SET_READY(&ifp->if_snd); 668 669 ieee80211_ifattach(ic, macaddr); 670 /* override default methods */ 671 ic->ic_raw_xmit = wpi_raw_xmit; 672 ic->ic_newassoc = wpi_newassoc; 673 ic->ic_wme.wme_update = wpi_wme_update; 674 ic->ic_scan_start = wpi_scan_start; 675 ic->ic_scan_end = wpi_scan_end; 676 ic->ic_set_channel = wpi_set_channel; 677 ic->ic_scan_curchan = wpi_scan_curchan; 678 ic->ic_scan_mindwell = wpi_scan_mindwell; 679 680 ic->ic_vap_create = wpi_vap_create; 681 ic->ic_vap_delete = wpi_vap_delete; 682 683 ieee80211_radiotap_attach(ic, 684 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 685 WPI_TX_RADIOTAP_PRESENT, 686 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 687 WPI_RX_RADIOTAP_PRESENT); 688 689 /* 690 * Hook our interrupt after all initialization is complete. 691 */ 692 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 693 NULL, wpi_intr, sc, &sc->sc_ih); 694 if (error != 0) { 695 device_printf(dev, "could not set up interrupt\n"); 696 goto fail; 697 } 698 699 if (bootverbose) 700 ieee80211_announce(ic); 701 #ifdef XXX_DEBUG 702 ieee80211_announce_channels(ic); 703 #endif 704 return 0; 705 706 fail: wpi_detach(dev); 707 return ENXIO; 708 } 709 710 static int 711 wpi_detach(device_t dev) 712 { 713 struct wpi_softc *sc = device_get_softc(dev); 714 struct ifnet *ifp = sc->sc_ifp; 715 struct ieee80211com *ic; 716 int ac; 717 718 if (ifp != NULL) { 719 ic = ifp->if_l2com; 720 721 ieee80211_draintask(ic, &sc->sc_restarttask); 722 ieee80211_draintask(ic, &sc->sc_radiotask); 723 wpi_stop(sc); 724 callout_drain(&sc->watchdog_to); 725 callout_drain(&sc->calib_to); 726 ieee80211_ifdetach(ic); 727 } 728 729 WPI_LOCK(sc); 730 if (sc->txq[0].data_dmat) { 731 for (ac = 0; ac < WME_NUM_AC; ac++) 732 wpi_free_tx_ring(sc, &sc->txq[ac]); 733 734 wpi_free_tx_ring(sc, &sc->cmdq); 735 wpi_free_rx_ring(sc, &sc->rxq); 736 wpi_free_shared(sc); 737 } 738 739 if (sc->fw_fp != NULL) { 740 wpi_unload_firmware(sc); 741 } 742 743 if (sc->fw_dma.tag) 744 wpi_free_fwmem(sc); 745 WPI_UNLOCK(sc); 746 747 if (sc->irq != NULL) { 748 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 749 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 750 } 751 752 if (sc->mem != NULL) 753 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 754 755 if (ifp != NULL) 756 if_free(ifp); 757 758 WPI_LOCK_DESTROY(sc); 759 760 return 0; 761 } 762 763 static struct ieee80211vap * 764 wpi_vap_create(struct ieee80211com *ic, 765 const char name[IFNAMSIZ], int unit, int opmode, int flags, 766 const uint8_t bssid[IEEE80211_ADDR_LEN], 767 const uint8_t mac[IEEE80211_ADDR_LEN]) 768 { 769 struct wpi_vap *wvp; 770 struct ieee80211vap *vap; 771 772 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 773 return NULL; 774 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 775 M_80211_VAP, M_NOWAIT | M_ZERO); 776 if (wvp == NULL) 777 return NULL; 778 vap = &wvp->vap; 779 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 780 /* override with driver methods */ 781 wvp->newstate = vap->iv_newstate; 782 vap->iv_newstate = wpi_newstate; 783 784 ieee80211_ratectl_init(vap); 785 /* complete setup */ 786 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 787 ic->ic_opmode = opmode; 788 return vap; 789 } 790 791 static void 792 wpi_vap_delete(struct ieee80211vap *vap) 793 { 794 struct wpi_vap *wvp = WPI_VAP(vap); 795 796 ieee80211_ratectl_deinit(vap); 797 ieee80211_vap_detach(vap); 798 free(wvp, M_80211_VAP); 799 } 800 801 static void 802 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 803 { 804 if (error != 0) 805 return; 806 807 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 808 809 *(bus_addr_t *)arg = segs[0].ds_addr; 810 } 811 812 /* 813 * Allocates a contiguous block of dma memory of the requested size and 814 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 815 * allocations greater than 4096 may fail. Hence if the requested alignment is 816 * greater we allocate 'alignment' size extra memory and shift the vaddr and 817 * paddr after the dma load. This bypasses the problem at the cost of a little 818 * more memory. 819 */ 820 static int 821 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 822 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 823 { 824 int error; 825 bus_size_t align; 826 bus_size_t reqsize; 827 828 DPRINTFN(WPI_DEBUG_DMA, 829 ("Size: %zd - alignment %zd\n", size, alignment)); 830 831 dma->size = size; 832 dma->tag = NULL; 833 834 if (alignment > 4096) { 835 align = PAGE_SIZE; 836 reqsize = size + alignment; 837 } else { 838 align = alignment; 839 reqsize = size; 840 } 841 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 842 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 843 NULL, NULL, reqsize, 844 1, reqsize, flags, 845 NULL, NULL, &dma->tag); 846 if (error != 0) { 847 device_printf(sc->sc_dev, 848 "could not create shared page DMA tag\n"); 849 goto fail; 850 } 851 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 852 flags | BUS_DMA_ZERO, &dma->map); 853 if (error != 0) { 854 device_printf(sc->sc_dev, 855 "could not allocate shared page DMA memory\n"); 856 goto fail; 857 } 858 859 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 860 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 861 862 /* Save the original pointers so we can free all the memory */ 863 dma->paddr = dma->paddr_start; 864 dma->vaddr = dma->vaddr_start; 865 866 /* 867 * Check the alignment and increment by 4096 until we get the 868 * requested alignment. Fail if can't obtain the alignment 869 * we requested. 870 */ 871 if ((dma->paddr & (alignment -1 )) != 0) { 872 int i; 873 874 for (i = 0; i < alignment / 4096; i++) { 875 if ((dma->paddr & (alignment - 1 )) == 0) 876 break; 877 dma->paddr += 4096; 878 dma->vaddr += 4096; 879 } 880 if (i == alignment / 4096) { 881 device_printf(sc->sc_dev, 882 "alignment requirement was not satisfied\n"); 883 goto fail; 884 } 885 } 886 887 if (error != 0) { 888 device_printf(sc->sc_dev, 889 "could not load shared page DMA map\n"); 890 goto fail; 891 } 892 893 if (kvap != NULL) 894 *kvap = dma->vaddr; 895 896 return 0; 897 898 fail: 899 wpi_dma_contig_free(dma); 900 return error; 901 } 902 903 static void 904 wpi_dma_contig_free(struct wpi_dma_info *dma) 905 { 906 if (dma->tag) { 907 if (dma->map != NULL) { 908 if (dma->paddr_start != 0) { 909 bus_dmamap_sync(dma->tag, dma->map, 910 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 911 bus_dmamap_unload(dma->tag, dma->map); 912 } 913 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 914 } 915 bus_dma_tag_destroy(dma->tag); 916 } 917 } 918 919 /* 920 * Allocate a shared page between host and NIC. 921 */ 922 static int 923 wpi_alloc_shared(struct wpi_softc *sc) 924 { 925 int error; 926 927 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 928 (void **)&sc->shared, sizeof (struct wpi_shared), 929 PAGE_SIZE, 930 BUS_DMA_NOWAIT); 931 932 if (error != 0) { 933 device_printf(sc->sc_dev, 934 "could not allocate shared area DMA memory\n"); 935 } 936 937 return error; 938 } 939 940 static void 941 wpi_free_shared(struct wpi_softc *sc) 942 { 943 wpi_dma_contig_free(&sc->shared_dma); 944 } 945 946 static int 947 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 948 { 949 950 int i, error; 951 952 ring->cur = 0; 953 954 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 955 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 956 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 957 958 if (error != 0) { 959 device_printf(sc->sc_dev, 960 "%s: could not allocate rx ring DMA memory, error %d\n", 961 __func__, error); 962 goto fail; 963 } 964 965 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 966 BUS_SPACE_MAXADDR_32BIT, 967 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 968 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 969 if (error != 0) { 970 device_printf(sc->sc_dev, 971 "%s: bus_dma_tag_create_failed, error %d\n", 972 __func__, error); 973 goto fail; 974 } 975 976 /* 977 * Setup Rx buffers. 978 */ 979 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 980 struct wpi_rx_data *data = &ring->data[i]; 981 struct mbuf *m; 982 bus_addr_t paddr; 983 984 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 985 if (error != 0) { 986 device_printf(sc->sc_dev, 987 "%s: bus_dmamap_create failed, error %d\n", 988 __func__, error); 989 goto fail; 990 } 991 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 992 if (m == NULL) { 993 device_printf(sc->sc_dev, 994 "%s: could not allocate rx mbuf\n", __func__); 995 error = ENOMEM; 996 goto fail; 997 } 998 /* map page */ 999 error = bus_dmamap_load(ring->data_dmat, data->map, 1000 mtod(m, caddr_t), MJUMPAGESIZE, 1001 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1002 if (error != 0 && error != EFBIG) { 1003 device_printf(sc->sc_dev, 1004 "%s: bus_dmamap_load failed, error %d\n", 1005 __func__, error); 1006 m_freem(m); 1007 error = ENOMEM; /* XXX unique code */ 1008 goto fail; 1009 } 1010 bus_dmamap_sync(ring->data_dmat, data->map, 1011 BUS_DMASYNC_PREWRITE); 1012 1013 data->m = m; 1014 ring->desc[i] = htole32(paddr); 1015 } 1016 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1017 BUS_DMASYNC_PREWRITE); 1018 return 0; 1019 fail: 1020 wpi_free_rx_ring(sc, ring); 1021 return error; 1022 } 1023 1024 static void 1025 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1026 { 1027 int ntries; 1028 1029 wpi_mem_lock(sc); 1030 1031 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1032 1033 for (ntries = 0; ntries < 100; ntries++) { 1034 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1035 break; 1036 DELAY(10); 1037 } 1038 1039 wpi_mem_unlock(sc); 1040 1041 #ifdef WPI_DEBUG 1042 if (ntries == 100 && wpi_debug > 0) 1043 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1044 #endif 1045 1046 ring->cur = 0; 1047 } 1048 1049 static void 1050 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1051 { 1052 int i; 1053 1054 wpi_dma_contig_free(&ring->desc_dma); 1055 1056 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1057 if (ring->data[i].m != NULL) 1058 m_freem(ring->data[i].m); 1059 } 1060 1061 static int 1062 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1063 int qid) 1064 { 1065 struct wpi_tx_data *data; 1066 int i, error; 1067 1068 ring->qid = qid; 1069 ring->count = count; 1070 ring->queued = 0; 1071 ring->cur = 0; 1072 ring->data = NULL; 1073 1074 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1075 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1076 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1077 1078 if (error != 0) { 1079 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1080 goto fail; 1081 } 1082 1083 /* update shared page with ring's base address */ 1084 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1085 1086 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1087 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1088 BUS_DMA_NOWAIT); 1089 1090 if (error != 0) { 1091 device_printf(sc->sc_dev, 1092 "could not allocate tx command DMA memory\n"); 1093 goto fail; 1094 } 1095 1096 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1097 M_NOWAIT | M_ZERO); 1098 if (ring->data == NULL) { 1099 device_printf(sc->sc_dev, 1100 "could not allocate tx data slots\n"); 1101 goto fail; 1102 } 1103 1104 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1105 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1106 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1107 &ring->data_dmat); 1108 if (error != 0) { 1109 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1110 goto fail; 1111 } 1112 1113 for (i = 0; i < count; i++) { 1114 data = &ring->data[i]; 1115 1116 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1117 if (error != 0) { 1118 device_printf(sc->sc_dev, 1119 "could not create tx buf DMA map\n"); 1120 goto fail; 1121 } 1122 bus_dmamap_sync(ring->data_dmat, data->map, 1123 BUS_DMASYNC_PREWRITE); 1124 } 1125 1126 return 0; 1127 1128 fail: 1129 wpi_free_tx_ring(sc, ring); 1130 return error; 1131 } 1132 1133 static void 1134 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1135 { 1136 struct wpi_tx_data *data; 1137 int i, ntries; 1138 1139 wpi_mem_lock(sc); 1140 1141 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1142 for (ntries = 0; ntries < 100; ntries++) { 1143 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1144 break; 1145 DELAY(10); 1146 } 1147 #ifdef WPI_DEBUG 1148 if (ntries == 100 && wpi_debug > 0) 1149 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1150 ring->qid); 1151 #endif 1152 wpi_mem_unlock(sc); 1153 1154 for (i = 0; i < ring->count; i++) { 1155 data = &ring->data[i]; 1156 1157 if (data->m != NULL) { 1158 bus_dmamap_unload(ring->data_dmat, data->map); 1159 m_freem(data->m); 1160 data->m = NULL; 1161 } 1162 } 1163 1164 ring->queued = 0; 1165 ring->cur = 0; 1166 } 1167 1168 static void 1169 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1170 { 1171 struct wpi_tx_data *data; 1172 int i; 1173 1174 wpi_dma_contig_free(&ring->desc_dma); 1175 wpi_dma_contig_free(&ring->cmd_dma); 1176 1177 if (ring->data != NULL) { 1178 for (i = 0; i < ring->count; i++) { 1179 data = &ring->data[i]; 1180 1181 if (data->m != NULL) { 1182 bus_dmamap_sync(ring->data_dmat, data->map, 1183 BUS_DMASYNC_POSTWRITE); 1184 bus_dmamap_unload(ring->data_dmat, data->map); 1185 m_freem(data->m); 1186 data->m = NULL; 1187 } 1188 } 1189 free(ring->data, M_DEVBUF); 1190 } 1191 1192 if (ring->data_dmat != NULL) 1193 bus_dma_tag_destroy(ring->data_dmat); 1194 } 1195 1196 static int 1197 wpi_shutdown(device_t dev) 1198 { 1199 struct wpi_softc *sc = device_get_softc(dev); 1200 1201 WPI_LOCK(sc); 1202 wpi_stop_locked(sc); 1203 wpi_unload_firmware(sc); 1204 WPI_UNLOCK(sc); 1205 1206 return 0; 1207 } 1208 1209 static int 1210 wpi_suspend(device_t dev) 1211 { 1212 struct wpi_softc *sc = device_get_softc(dev); 1213 1214 wpi_stop(sc); 1215 return 0; 1216 } 1217 1218 static int 1219 wpi_resume(device_t dev) 1220 { 1221 struct wpi_softc *sc = device_get_softc(dev); 1222 struct ifnet *ifp = sc->sc_ifp; 1223 1224 pci_write_config(dev, 0x41, 0, 1); 1225 1226 if (ifp->if_flags & IFF_UP) { 1227 wpi_init(ifp->if_softc); 1228 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1229 wpi_start(ifp); 1230 } 1231 return 0; 1232 } 1233 1234 /** 1235 * Called by net80211 when ever there is a change to 80211 state machine 1236 */ 1237 static int 1238 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1239 { 1240 struct wpi_vap *wvp = WPI_VAP(vap); 1241 struct ieee80211com *ic = vap->iv_ic; 1242 struct ifnet *ifp = ic->ic_ifp; 1243 struct wpi_softc *sc = ifp->if_softc; 1244 int error; 1245 1246 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1247 ieee80211_state_name[vap->iv_state], 1248 ieee80211_state_name[nstate], sc->flags)); 1249 1250 IEEE80211_UNLOCK(ic); 1251 WPI_LOCK(sc); 1252 if (nstate == IEEE80211_S_AUTH) { 1253 /* The node must be registered in the firmware before auth */ 1254 error = wpi_auth(sc, vap); 1255 if (error != 0) { 1256 device_printf(sc->sc_dev, 1257 "%s: could not move to auth state, error %d\n", 1258 __func__, error); 1259 } 1260 } 1261 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1262 error = wpi_run(sc, vap); 1263 if (error != 0) { 1264 device_printf(sc->sc_dev, 1265 "%s: could not move to run state, error %d\n", 1266 __func__, error); 1267 } 1268 } 1269 if (nstate == IEEE80211_S_RUN) { 1270 /* RUN -> RUN transition; just restart the timers */ 1271 wpi_calib_timeout(sc); 1272 /* XXX split out rate control timer */ 1273 } 1274 WPI_UNLOCK(sc); 1275 IEEE80211_LOCK(ic); 1276 return wvp->newstate(vap, nstate, arg); 1277 } 1278 1279 /* 1280 * Grab exclusive access to NIC memory. 1281 */ 1282 static void 1283 wpi_mem_lock(struct wpi_softc *sc) 1284 { 1285 int ntries; 1286 uint32_t tmp; 1287 1288 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1289 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1290 1291 /* spin until we actually get the lock */ 1292 for (ntries = 0; ntries < 100; ntries++) { 1293 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1294 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1295 break; 1296 DELAY(10); 1297 } 1298 if (ntries == 100) 1299 device_printf(sc->sc_dev, "could not lock memory\n"); 1300 } 1301 1302 /* 1303 * Release lock on NIC memory. 1304 */ 1305 static void 1306 wpi_mem_unlock(struct wpi_softc *sc) 1307 { 1308 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1309 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1310 } 1311 1312 static uint32_t 1313 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1314 { 1315 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1316 return WPI_READ(sc, WPI_READ_MEM_DATA); 1317 } 1318 1319 static void 1320 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1321 { 1322 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1323 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1324 } 1325 1326 static void 1327 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1328 const uint32_t *data, int wlen) 1329 { 1330 for (; wlen > 0; wlen--, data++, addr+=4) 1331 wpi_mem_write(sc, addr, *data); 1332 } 1333 1334 /* 1335 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1336 * using the traditional bit-bang method. Data is read up until len bytes have 1337 * been obtained. 1338 */ 1339 static uint16_t 1340 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1341 { 1342 int ntries; 1343 uint32_t val; 1344 uint8_t *out = data; 1345 1346 wpi_mem_lock(sc); 1347 1348 for (; len > 0; len -= 2, addr++) { 1349 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1350 1351 for (ntries = 0; ntries < 10; ntries++) { 1352 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1353 break; 1354 DELAY(5); 1355 } 1356 1357 if (ntries == 10) { 1358 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1359 return ETIMEDOUT; 1360 } 1361 1362 *out++= val >> 16; 1363 if (len > 1) 1364 *out ++= val >> 24; 1365 } 1366 1367 wpi_mem_unlock(sc); 1368 1369 return 0; 1370 } 1371 1372 /* 1373 * The firmware text and data segments are transferred to the NIC using DMA. 1374 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1375 * where to find it. Once the NIC has copied the firmware into its internal 1376 * memory, we can free our local copy in the driver. 1377 */ 1378 static int 1379 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1380 { 1381 int error, ntries; 1382 1383 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1384 1385 size /= sizeof(uint32_t); 1386 1387 wpi_mem_lock(sc); 1388 1389 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1390 (const uint32_t *)fw, size); 1391 1392 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1393 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1394 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1395 1396 /* run microcode */ 1397 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1398 1399 /* wait while the adapter is busy copying the firmware */ 1400 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1401 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1402 DPRINTFN(WPI_DEBUG_HW, 1403 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1404 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1405 if (status & WPI_TX_IDLE(6)) { 1406 DPRINTFN(WPI_DEBUG_HW, 1407 ("Status Match! - ntries = %d\n", ntries)); 1408 break; 1409 } 1410 DELAY(10); 1411 } 1412 if (ntries == 1000) { 1413 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1414 error = ETIMEDOUT; 1415 } 1416 1417 /* start the microcode executing */ 1418 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1419 1420 wpi_mem_unlock(sc); 1421 1422 return (error); 1423 } 1424 1425 static void 1426 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1427 struct wpi_rx_data *data) 1428 { 1429 struct ifnet *ifp = sc->sc_ifp; 1430 struct ieee80211com *ic = ifp->if_l2com; 1431 struct wpi_rx_ring *ring = &sc->rxq; 1432 struct wpi_rx_stat *stat; 1433 struct wpi_rx_head *head; 1434 struct wpi_rx_tail *tail; 1435 struct ieee80211_node *ni; 1436 struct mbuf *m, *mnew; 1437 bus_addr_t paddr; 1438 int error; 1439 1440 stat = (struct wpi_rx_stat *)(desc + 1); 1441 1442 if (stat->len > WPI_STAT_MAXLEN) { 1443 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1444 ifp->if_ierrors++; 1445 return; 1446 } 1447 1448 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1449 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1450 1451 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1452 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1453 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1454 (uintmax_t)le64toh(tail->tstamp))); 1455 1456 /* discard Rx frames with bad CRC early */ 1457 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1458 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1459 le32toh(tail->flags))); 1460 ifp->if_ierrors++; 1461 return; 1462 } 1463 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1464 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1465 le16toh(head->len))); 1466 ifp->if_ierrors++; 1467 return; 1468 } 1469 1470 /* XXX don't need mbuf, just dma buffer */ 1471 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1472 if (mnew == NULL) { 1473 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1474 __func__)); 1475 ifp->if_ierrors++; 1476 return; 1477 } 1478 error = bus_dmamap_load(ring->data_dmat, data->map, 1479 mtod(mnew, caddr_t), MJUMPAGESIZE, 1480 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1481 if (error != 0 && error != EFBIG) { 1482 device_printf(sc->sc_dev, 1483 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1484 m_freem(mnew); 1485 ifp->if_ierrors++; 1486 return; 1487 } 1488 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1489 1490 /* finalize mbuf and swap in new one */ 1491 m = data->m; 1492 m->m_pkthdr.rcvif = ifp; 1493 m->m_data = (caddr_t)(head + 1); 1494 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1495 1496 data->m = mnew; 1497 /* update Rx descriptor */ 1498 ring->desc[ring->cur] = htole32(paddr); 1499 1500 if (ieee80211_radiotap_active(ic)) { 1501 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1502 1503 tap->wr_flags = 0; 1504 tap->wr_chan_freq = 1505 htole16(ic->ic_channels[head->chan].ic_freq); 1506 tap->wr_chan_flags = 1507 htole16(ic->ic_channels[head->chan].ic_flags); 1508 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1509 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1510 tap->wr_tsft = tail->tstamp; 1511 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1512 switch (head->rate) { 1513 /* CCK rates */ 1514 case 10: tap->wr_rate = 2; break; 1515 case 20: tap->wr_rate = 4; break; 1516 case 55: tap->wr_rate = 11; break; 1517 case 110: tap->wr_rate = 22; break; 1518 /* OFDM rates */ 1519 case 0xd: tap->wr_rate = 12; break; 1520 case 0xf: tap->wr_rate = 18; break; 1521 case 0x5: tap->wr_rate = 24; break; 1522 case 0x7: tap->wr_rate = 36; break; 1523 case 0x9: tap->wr_rate = 48; break; 1524 case 0xb: tap->wr_rate = 72; break; 1525 case 0x1: tap->wr_rate = 96; break; 1526 case 0x3: tap->wr_rate = 108; break; 1527 /* unknown rate: should not happen */ 1528 default: tap->wr_rate = 0; 1529 } 1530 if (le16toh(head->flags) & 0x4) 1531 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1532 } 1533 1534 WPI_UNLOCK(sc); 1535 1536 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1537 if (ni != NULL) { 1538 (void) ieee80211_input(ni, m, stat->rssi, 0); 1539 ieee80211_free_node(ni); 1540 } else 1541 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1542 1543 WPI_LOCK(sc); 1544 } 1545 1546 static void 1547 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1548 { 1549 struct ifnet *ifp = sc->sc_ifp; 1550 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1551 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1552 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1553 struct ieee80211_node *ni = txdata->ni; 1554 struct ieee80211vap *vap = ni->ni_vap; 1555 int retrycnt = 0; 1556 1557 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1558 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1559 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1560 le32toh(stat->status))); 1561 1562 /* 1563 * Update rate control statistics for the node. 1564 * XXX we should not count mgmt frames since they're always sent at 1565 * the lowest available bit-rate. 1566 * XXX frames w/o ACK shouldn't be used either 1567 */ 1568 if (stat->ntries > 0) { 1569 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1570 retrycnt = 1; 1571 } 1572 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1573 &retrycnt, NULL); 1574 1575 /* XXX oerrors should only count errors !maxtries */ 1576 if ((le32toh(stat->status) & 0xff) != 1) 1577 ifp->if_oerrors++; 1578 else 1579 ifp->if_opackets++; 1580 1581 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1582 bus_dmamap_unload(ring->data_dmat, txdata->map); 1583 /* XXX handle M_TXCB? */ 1584 m_freem(txdata->m); 1585 txdata->m = NULL; 1586 ieee80211_free_node(txdata->ni); 1587 txdata->ni = NULL; 1588 1589 ring->queued--; 1590 1591 sc->sc_tx_timer = 0; 1592 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1593 wpi_start_locked(ifp); 1594 } 1595 1596 static void 1597 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1598 { 1599 struct wpi_tx_ring *ring = &sc->cmdq; 1600 struct wpi_tx_data *data; 1601 1602 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1603 "type=%s len=%d\n", desc->qid, desc->idx, 1604 desc->flags, wpi_cmd_str(desc->type), 1605 le32toh(desc->len))); 1606 1607 if ((desc->qid & 7) != 4) 1608 return; /* not a command ack */ 1609 1610 data = &ring->data[desc->idx]; 1611 1612 /* if the command was mapped in a mbuf, free it */ 1613 if (data->m != NULL) { 1614 bus_dmamap_unload(ring->data_dmat, data->map); 1615 m_freem(data->m); 1616 data->m = NULL; 1617 } 1618 1619 sc->flags &= ~WPI_FLAG_BUSY; 1620 wakeup(&ring->cmd[desc->idx]); 1621 } 1622 1623 static void 1624 wpi_notif_intr(struct wpi_softc *sc) 1625 { 1626 struct ifnet *ifp = sc->sc_ifp; 1627 struct ieee80211com *ic = ifp->if_l2com; 1628 struct wpi_rx_desc *desc; 1629 struct wpi_rx_data *data; 1630 uint32_t hw; 1631 1632 hw = le32toh(sc->shared->next); 1633 while (sc->rxq.cur != hw) { 1634 data = &sc->rxq.data[sc->rxq.cur]; 1635 desc = (void *)data->m->m_ext.ext_buf; 1636 1637 DPRINTFN(WPI_DEBUG_NOTIFY, 1638 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1639 desc->qid, 1640 desc->idx, 1641 desc->flags, 1642 desc->type, 1643 le32toh(desc->len))); 1644 1645 if (!(desc->qid & 0x80)) /* reply to a command */ 1646 wpi_cmd_intr(sc, desc); 1647 1648 switch (desc->type) { 1649 case WPI_RX_DONE: 1650 /* a 802.11 frame was received */ 1651 wpi_rx_intr(sc, desc, data); 1652 break; 1653 1654 case WPI_TX_DONE: 1655 /* a 802.11 frame has been transmitted */ 1656 wpi_tx_intr(sc, desc); 1657 break; 1658 1659 case WPI_UC_READY: 1660 { 1661 struct wpi_ucode_info *uc = 1662 (struct wpi_ucode_info *)(desc + 1); 1663 1664 /* the microcontroller is ready */ 1665 DPRINTF(("microcode alive notification version %x " 1666 "alive %x\n", le32toh(uc->version), 1667 le32toh(uc->valid))); 1668 1669 if (le32toh(uc->valid) != 1) { 1670 device_printf(sc->sc_dev, 1671 "microcontroller initialization failed\n"); 1672 wpi_stop_locked(sc); 1673 } 1674 break; 1675 } 1676 case WPI_STATE_CHANGED: 1677 { 1678 uint32_t *status = (uint32_t *)(desc + 1); 1679 1680 /* enabled/disabled notification */ 1681 DPRINTF(("state changed to %x\n", le32toh(*status))); 1682 1683 if (le32toh(*status) & 1) { 1684 device_printf(sc->sc_dev, 1685 "Radio transmitter is switched off\n"); 1686 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1687 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1688 /* Disable firmware commands */ 1689 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1690 } 1691 break; 1692 } 1693 case WPI_START_SCAN: 1694 { 1695 #ifdef WPI_DEBUG 1696 struct wpi_start_scan *scan = 1697 (struct wpi_start_scan *)(desc + 1); 1698 #endif 1699 1700 DPRINTFN(WPI_DEBUG_SCANNING, 1701 ("scanning channel %d status %x\n", 1702 scan->chan, le32toh(scan->status))); 1703 break; 1704 } 1705 case WPI_STOP_SCAN: 1706 { 1707 #ifdef WPI_DEBUG 1708 struct wpi_stop_scan *scan = 1709 (struct wpi_stop_scan *)(desc + 1); 1710 #endif 1711 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1712 1713 DPRINTFN(WPI_DEBUG_SCANNING, 1714 ("scan finished nchan=%d status=%d chan=%d\n", 1715 scan->nchan, scan->status, scan->chan)); 1716 1717 sc->sc_scan_timer = 0; 1718 ieee80211_scan_next(vap); 1719 break; 1720 } 1721 case WPI_MISSED_BEACON: 1722 { 1723 struct wpi_missed_beacon *beacon = 1724 (struct wpi_missed_beacon *)(desc + 1); 1725 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1726 1727 if (le32toh(beacon->consecutive) >= 1728 vap->iv_bmissthreshold) { 1729 DPRINTF(("Beacon miss: %u >= %u\n", 1730 le32toh(beacon->consecutive), 1731 vap->iv_bmissthreshold)); 1732 ieee80211_beacon_miss(ic); 1733 } 1734 break; 1735 } 1736 } 1737 1738 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1739 } 1740 1741 /* tell the firmware what we have processed */ 1742 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1743 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1744 } 1745 1746 static void 1747 wpi_intr(void *arg) 1748 { 1749 struct wpi_softc *sc = arg; 1750 uint32_t r; 1751 1752 WPI_LOCK(sc); 1753 1754 r = WPI_READ(sc, WPI_INTR); 1755 if (r == 0 || r == 0xffffffff) { 1756 WPI_UNLOCK(sc); 1757 return; 1758 } 1759 1760 /* disable interrupts */ 1761 WPI_WRITE(sc, WPI_MASK, 0); 1762 /* ack interrupts */ 1763 WPI_WRITE(sc, WPI_INTR, r); 1764 1765 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1766 struct ifnet *ifp = sc->sc_ifp; 1767 struct ieee80211com *ic = ifp->if_l2com; 1768 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1769 1770 device_printf(sc->sc_dev, "fatal firmware error\n"); 1771 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1772 "(Hardware Error)")); 1773 if (vap != NULL) 1774 ieee80211_cancel_scan(vap); 1775 ieee80211_runtask(ic, &sc->sc_restarttask); 1776 sc->flags &= ~WPI_FLAG_BUSY; 1777 WPI_UNLOCK(sc); 1778 return; 1779 } 1780 1781 if (r & WPI_RX_INTR) 1782 wpi_notif_intr(sc); 1783 1784 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1785 wakeup(sc); 1786 1787 /* re-enable interrupts */ 1788 if (sc->sc_ifp->if_flags & IFF_UP) 1789 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1790 1791 WPI_UNLOCK(sc); 1792 } 1793 1794 static uint8_t 1795 wpi_plcp_signal(int rate) 1796 { 1797 switch (rate) { 1798 /* CCK rates (returned values are device-dependent) */ 1799 case 2: return 10; 1800 case 4: return 20; 1801 case 11: return 55; 1802 case 22: return 110; 1803 1804 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1805 /* R1-R4 (ral/ural is R4-R1) */ 1806 case 12: return 0xd; 1807 case 18: return 0xf; 1808 case 24: return 0x5; 1809 case 36: return 0x7; 1810 case 48: return 0x9; 1811 case 72: return 0xb; 1812 case 96: return 0x1; 1813 case 108: return 0x3; 1814 1815 /* unsupported rates (should not get there) */ 1816 default: return 0; 1817 } 1818 } 1819 1820 /* quickly determine if a given rate is CCK or OFDM */ 1821 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1822 1823 /* 1824 * Construct the data packet for a transmit buffer and acutally put 1825 * the buffer onto the transmit ring, kicking the card to process the 1826 * the buffer. 1827 */ 1828 static int 1829 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1830 int ac) 1831 { 1832 struct ieee80211vap *vap = ni->ni_vap; 1833 struct ifnet *ifp = sc->sc_ifp; 1834 struct ieee80211com *ic = ifp->if_l2com; 1835 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1836 struct wpi_tx_ring *ring = &sc->txq[ac]; 1837 struct wpi_tx_desc *desc; 1838 struct wpi_tx_data *data; 1839 struct wpi_tx_cmd *cmd; 1840 struct wpi_cmd_data *tx; 1841 struct ieee80211_frame *wh; 1842 const struct ieee80211_txparam *tp; 1843 struct ieee80211_key *k; 1844 struct mbuf *mnew; 1845 int i, error, nsegs, rate, hdrlen, ismcast; 1846 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1847 1848 desc = &ring->desc[ring->cur]; 1849 data = &ring->data[ring->cur]; 1850 1851 wh = mtod(m0, struct ieee80211_frame *); 1852 1853 hdrlen = ieee80211_hdrsize(wh); 1854 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1855 1856 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1857 k = ieee80211_crypto_encap(ni, m0); 1858 if (k == NULL) { 1859 m_freem(m0); 1860 return ENOBUFS; 1861 } 1862 /* packet header may have moved, reset our local pointer */ 1863 wh = mtod(m0, struct ieee80211_frame *); 1864 } 1865 1866 cmd = &ring->cmd[ring->cur]; 1867 cmd->code = WPI_CMD_TX_DATA; 1868 cmd->flags = 0; 1869 cmd->qid = ring->qid; 1870 cmd->idx = ring->cur; 1871 1872 tx = (struct wpi_cmd_data *)cmd->data; 1873 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1874 tx->timeout = htole16(0); 1875 tx->ofdm_mask = 0xff; 1876 tx->cck_mask = 0x0f; 1877 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1878 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1879 tx->len = htole16(m0->m_pkthdr.len); 1880 1881 if (!ismcast) { 1882 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1883 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1884 tx->flags |= htole32(WPI_TX_NEED_ACK); 1885 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1886 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1887 tx->rts_ntries = 7; 1888 } 1889 } 1890 /* pick a rate */ 1891 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1892 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1893 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1894 /* tell h/w to set timestamp in probe responses */ 1895 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1896 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1897 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1898 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1899 tx->timeout = htole16(3); 1900 else 1901 tx->timeout = htole16(2); 1902 rate = tp->mgmtrate; 1903 } else if (ismcast) { 1904 rate = tp->mcastrate; 1905 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1906 rate = tp->ucastrate; 1907 } else { 1908 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1909 rate = ni->ni_txrate; 1910 } 1911 tx->rate = wpi_plcp_signal(rate); 1912 1913 /* be very persistant at sending frames out */ 1914 #if 0 1915 tx->data_ntries = tp->maxretry; 1916 #else 1917 tx->data_ntries = 15; /* XXX way too high */ 1918 #endif 1919 1920 if (ieee80211_radiotap_active_vap(vap)) { 1921 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1922 tap->wt_flags = 0; 1923 tap->wt_rate = rate; 1924 tap->wt_hwqueue = ac; 1925 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1926 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1927 1928 ieee80211_radiotap_tx(vap, m0); 1929 } 1930 1931 /* save and trim IEEE802.11 header */ 1932 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1933 m_adj(m0, hdrlen); 1934 1935 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1936 &nsegs, BUS_DMA_NOWAIT); 1937 if (error != 0 && error != EFBIG) { 1938 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1939 error); 1940 m_freem(m0); 1941 return error; 1942 } 1943 if (error != 0) { 1944 /* XXX use m_collapse */ 1945 mnew = m_defrag(m0, M_DONTWAIT); 1946 if (mnew == NULL) { 1947 device_printf(sc->sc_dev, 1948 "could not defragment mbuf\n"); 1949 m_freem(m0); 1950 return ENOBUFS; 1951 } 1952 m0 = mnew; 1953 1954 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1955 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1956 if (error != 0) { 1957 device_printf(sc->sc_dev, 1958 "could not map mbuf (error %d)\n", error); 1959 m_freem(m0); 1960 return error; 1961 } 1962 } 1963 1964 data->m = m0; 1965 data->ni = ni; 1966 1967 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1968 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1969 1970 /* first scatter/gather segment is used by the tx data command */ 1971 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1972 (1 + nsegs) << 24); 1973 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1974 ring->cur * sizeof (struct wpi_tx_cmd)); 1975 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 1976 for (i = 1; i <= nsegs; i++) { 1977 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 1978 desc->segs[i].len = htole32(segs[i - 1].ds_len); 1979 } 1980 1981 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1982 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1983 BUS_DMASYNC_PREWRITE); 1984 1985 ring->queued++; 1986 1987 /* kick ring */ 1988 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 1989 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 1990 1991 return 0; 1992 } 1993 1994 /** 1995 * Process data waiting to be sent on the IFNET output queue 1996 */ 1997 static void 1998 wpi_start(struct ifnet *ifp) 1999 { 2000 struct wpi_softc *sc = ifp->if_softc; 2001 2002 WPI_LOCK(sc); 2003 wpi_start_locked(ifp); 2004 WPI_UNLOCK(sc); 2005 } 2006 2007 static void 2008 wpi_start_locked(struct ifnet *ifp) 2009 { 2010 struct wpi_softc *sc = ifp->if_softc; 2011 struct ieee80211_node *ni; 2012 struct mbuf *m; 2013 int ac; 2014 2015 WPI_LOCK_ASSERT(sc); 2016 2017 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2018 return; 2019 2020 for (;;) { 2021 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2022 if (m == NULL) 2023 break; 2024 ac = M_WME_GETAC(m); 2025 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2026 /* there is no place left in this ring */ 2027 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2028 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2029 break; 2030 } 2031 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2032 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2033 ieee80211_free_node(ni); 2034 ifp->if_oerrors++; 2035 break; 2036 } 2037 sc->sc_tx_timer = 5; 2038 } 2039 } 2040 2041 static int 2042 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2043 const struct ieee80211_bpf_params *params) 2044 { 2045 struct ieee80211com *ic = ni->ni_ic; 2046 struct ifnet *ifp = ic->ic_ifp; 2047 struct wpi_softc *sc = ifp->if_softc; 2048 2049 /* prevent management frames from being sent if we're not ready */ 2050 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2051 m_freem(m); 2052 ieee80211_free_node(ni); 2053 return ENETDOWN; 2054 } 2055 WPI_LOCK(sc); 2056 2057 /* management frames go into ring 0 */ 2058 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2059 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2060 m_freem(m); 2061 WPI_UNLOCK(sc); 2062 ieee80211_free_node(ni); 2063 return ENOBUFS; /* XXX */ 2064 } 2065 2066 ifp->if_opackets++; 2067 if (wpi_tx_data(sc, m, ni, 0) != 0) 2068 goto bad; 2069 sc->sc_tx_timer = 5; 2070 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2071 2072 WPI_UNLOCK(sc); 2073 return 0; 2074 bad: 2075 ifp->if_oerrors++; 2076 WPI_UNLOCK(sc); 2077 ieee80211_free_node(ni); 2078 return EIO; /* XXX */ 2079 } 2080 2081 static int 2082 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2083 { 2084 struct wpi_softc *sc = ifp->if_softc; 2085 struct ieee80211com *ic = ifp->if_l2com; 2086 struct ifreq *ifr = (struct ifreq *) data; 2087 int error = 0, startall = 0; 2088 2089 switch (cmd) { 2090 case SIOCSIFFLAGS: 2091 WPI_LOCK(sc); 2092 if ((ifp->if_flags & IFF_UP)) { 2093 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2094 wpi_init_locked(sc, 0); 2095 startall = 1; 2096 } 2097 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2098 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2099 wpi_stop_locked(sc); 2100 WPI_UNLOCK(sc); 2101 if (startall) 2102 ieee80211_start_all(ic); 2103 break; 2104 case SIOCGIFMEDIA: 2105 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2106 break; 2107 case SIOCGIFADDR: 2108 error = ether_ioctl(ifp, cmd, data); 2109 break; 2110 default: 2111 error = EINVAL; 2112 break; 2113 } 2114 return error; 2115 } 2116 2117 /* 2118 * Extract various information from EEPROM. 2119 */ 2120 static void 2121 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2122 { 2123 int i; 2124 2125 /* read the hardware capabilities, revision and SKU type */ 2126 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2127 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2128 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2129 2130 /* read the regulatory domain */ 2131 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2132 2133 /* read in the hw MAC address */ 2134 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2135 2136 /* read the list of authorized channels */ 2137 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2138 wpi_read_eeprom_channels(sc,i); 2139 2140 /* read the power level calibration info for each group */ 2141 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2142 wpi_read_eeprom_group(sc,i); 2143 } 2144 2145 /* 2146 * Send a command to the firmware. 2147 */ 2148 static int 2149 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2150 { 2151 struct wpi_tx_ring *ring = &sc->cmdq; 2152 struct wpi_tx_desc *desc; 2153 struct wpi_tx_cmd *cmd; 2154 2155 #ifdef WPI_DEBUG 2156 if (!async) { 2157 WPI_LOCK_ASSERT(sc); 2158 } 2159 #endif 2160 2161 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2162 async)); 2163 2164 if (sc->flags & WPI_FLAG_BUSY) { 2165 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2166 __func__, code); 2167 return EAGAIN; 2168 } 2169 sc->flags|= WPI_FLAG_BUSY; 2170 2171 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2172 code, size)); 2173 2174 desc = &ring->desc[ring->cur]; 2175 cmd = &ring->cmd[ring->cur]; 2176 2177 cmd->code = code; 2178 cmd->flags = 0; 2179 cmd->qid = ring->qid; 2180 cmd->idx = ring->cur; 2181 memcpy(cmd->data, buf, size); 2182 2183 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2184 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2185 ring->cur * sizeof (struct wpi_tx_cmd)); 2186 desc->segs[0].len = htole32(4 + size); 2187 2188 /* kick cmd ring */ 2189 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2190 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2191 2192 if (async) { 2193 sc->flags &= ~ WPI_FLAG_BUSY; 2194 return 0; 2195 } 2196 2197 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2198 } 2199 2200 static int 2201 wpi_wme_update(struct ieee80211com *ic) 2202 { 2203 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2204 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2205 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2206 const struct wmeParams *wmep; 2207 struct wpi_wme_setup wme; 2208 int ac; 2209 2210 /* don't override default WME values if WME is not actually enabled */ 2211 if (!(ic->ic_flags & IEEE80211_F_WME)) 2212 return 0; 2213 2214 wme.flags = 0; 2215 for (ac = 0; ac < WME_NUM_AC; ac++) { 2216 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2217 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2218 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2219 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2220 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2221 2222 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2223 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2224 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2225 } 2226 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2227 #undef WPI_USEC 2228 #undef WPI_EXP2 2229 } 2230 2231 /* 2232 * Configure h/w multi-rate retries. 2233 */ 2234 static int 2235 wpi_mrr_setup(struct wpi_softc *sc) 2236 { 2237 struct ifnet *ifp = sc->sc_ifp; 2238 struct ieee80211com *ic = ifp->if_l2com; 2239 struct wpi_mrr_setup mrr; 2240 int i, error; 2241 2242 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2243 2244 /* CCK rates (not used with 802.11a) */ 2245 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2246 mrr.rates[i].flags = 0; 2247 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2248 /* fallback to the immediate lower CCK rate (if any) */ 2249 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2250 /* try one time at this rate before falling back to "next" */ 2251 mrr.rates[i].ntries = 1; 2252 } 2253 2254 /* OFDM rates (not used with 802.11b) */ 2255 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2256 mrr.rates[i].flags = 0; 2257 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2258 /* fallback to the immediate lower OFDM rate (if any) */ 2259 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2260 mrr.rates[i].next = (i == WPI_OFDM6) ? 2261 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2262 WPI_OFDM6 : WPI_CCK2) : 2263 i - 1; 2264 /* try one time at this rate before falling back to "next" */ 2265 mrr.rates[i].ntries = 1; 2266 } 2267 2268 /* setup MRR for control frames */ 2269 mrr.which = htole32(WPI_MRR_CTL); 2270 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2271 if (error != 0) { 2272 device_printf(sc->sc_dev, 2273 "could not setup MRR for control frames\n"); 2274 return error; 2275 } 2276 2277 /* setup MRR for data frames */ 2278 mrr.which = htole32(WPI_MRR_DATA); 2279 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2280 if (error != 0) { 2281 device_printf(sc->sc_dev, 2282 "could not setup MRR for data frames\n"); 2283 return error; 2284 } 2285 2286 return 0; 2287 } 2288 2289 static void 2290 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2291 { 2292 struct wpi_cmd_led led; 2293 2294 led.which = which; 2295 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2296 led.off = off; 2297 led.on = on; 2298 2299 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2300 } 2301 2302 static void 2303 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2304 { 2305 struct wpi_cmd_tsf tsf; 2306 uint64_t val, mod; 2307 2308 memset(&tsf, 0, sizeof tsf); 2309 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2310 tsf.bintval = htole16(ni->ni_intval); 2311 tsf.lintval = htole16(10); 2312 2313 /* compute remaining time until next beacon */ 2314 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2315 mod = le64toh(tsf.tstamp) % val; 2316 tsf.binitval = htole32((uint32_t)(val - mod)); 2317 2318 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2319 device_printf(sc->sc_dev, "could not enable TSF\n"); 2320 } 2321 2322 #if 0 2323 /* 2324 * Build a beacon frame that the firmware will broadcast periodically in 2325 * IBSS or HostAP modes. 2326 */ 2327 static int 2328 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2329 { 2330 struct ifnet *ifp = sc->sc_ifp; 2331 struct ieee80211com *ic = ifp->if_l2com; 2332 struct wpi_tx_ring *ring = &sc->cmdq; 2333 struct wpi_tx_desc *desc; 2334 struct wpi_tx_data *data; 2335 struct wpi_tx_cmd *cmd; 2336 struct wpi_cmd_beacon *bcn; 2337 struct ieee80211_beacon_offsets bo; 2338 struct mbuf *m0; 2339 bus_addr_t physaddr; 2340 int error; 2341 2342 desc = &ring->desc[ring->cur]; 2343 data = &ring->data[ring->cur]; 2344 2345 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2346 if (m0 == NULL) { 2347 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2348 return ENOMEM; 2349 } 2350 2351 cmd = &ring->cmd[ring->cur]; 2352 cmd->code = WPI_CMD_SET_BEACON; 2353 cmd->flags = 0; 2354 cmd->qid = ring->qid; 2355 cmd->idx = ring->cur; 2356 2357 bcn = (struct wpi_cmd_beacon *)cmd->data; 2358 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2359 bcn->id = WPI_ID_BROADCAST; 2360 bcn->ofdm_mask = 0xff; 2361 bcn->cck_mask = 0x0f; 2362 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2363 bcn->len = htole16(m0->m_pkthdr.len); 2364 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2365 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2366 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2367 2368 /* save and trim IEEE802.11 header */ 2369 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2370 m_adj(m0, sizeof (struct ieee80211_frame)); 2371 2372 /* assume beacon frame is contiguous */ 2373 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2374 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2375 if (error != 0) { 2376 device_printf(sc->sc_dev, "could not map beacon\n"); 2377 m_freem(m0); 2378 return error; 2379 } 2380 2381 data->m = m0; 2382 2383 /* first scatter/gather segment is used by the beacon command */ 2384 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2385 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2386 ring->cur * sizeof (struct wpi_tx_cmd)); 2387 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2388 desc->segs[1].addr = htole32(physaddr); 2389 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2390 2391 /* kick cmd ring */ 2392 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2393 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2394 2395 return 0; 2396 } 2397 #endif 2398 2399 static int 2400 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2401 { 2402 struct ieee80211com *ic = vap->iv_ic; 2403 struct ieee80211_node *ni = vap->iv_bss; 2404 struct wpi_node_info node; 2405 int error; 2406 2407 2408 /* update adapter's configuration */ 2409 sc->config.associd = 0; 2410 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2411 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2412 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2413 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2414 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2415 WPI_CONFIG_24GHZ); 2416 } 2417 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2418 sc->config.cck_mask = 0; 2419 sc->config.ofdm_mask = 0x15; 2420 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2421 sc->config.cck_mask = 0x03; 2422 sc->config.ofdm_mask = 0; 2423 } else { 2424 /* XXX assume 802.11b/g */ 2425 sc->config.cck_mask = 0x0f; 2426 sc->config.ofdm_mask = 0x15; 2427 } 2428 2429 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2430 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2431 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2432 sizeof (struct wpi_config), 1); 2433 if (error != 0) { 2434 device_printf(sc->sc_dev, "could not configure\n"); 2435 return error; 2436 } 2437 2438 /* configuration has changed, set Tx power accordingly */ 2439 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2440 device_printf(sc->sc_dev, "could not set Tx power\n"); 2441 return error; 2442 } 2443 2444 /* add default node */ 2445 memset(&node, 0, sizeof node); 2446 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2447 node.id = WPI_ID_BSS; 2448 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2449 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2450 node.action = htole32(WPI_ACTION_SET_RATE); 2451 node.antenna = WPI_ANTENNA_BOTH; 2452 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2453 if (error != 0) 2454 device_printf(sc->sc_dev, "could not add BSS node\n"); 2455 2456 return (error); 2457 } 2458 2459 static int 2460 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2461 { 2462 struct ieee80211com *ic = vap->iv_ic; 2463 struct ieee80211_node *ni = vap->iv_bss; 2464 int error; 2465 2466 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2467 /* link LED blinks while monitoring */ 2468 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2469 return 0; 2470 } 2471 2472 wpi_enable_tsf(sc, ni); 2473 2474 /* update adapter's configuration */ 2475 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2476 /* short preamble/slot time are negotiated when associating */ 2477 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2478 WPI_CONFIG_SHSLOT); 2479 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2480 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2481 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2482 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2483 sc->config.filter |= htole32(WPI_FILTER_BSS); 2484 2485 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2486 2487 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2488 sc->config.flags)); 2489 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2490 wpi_config), 1); 2491 if (error != 0) { 2492 device_printf(sc->sc_dev, "could not update configuration\n"); 2493 return error; 2494 } 2495 2496 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2497 if (error != 0) { 2498 device_printf(sc->sc_dev, "could set txpower\n"); 2499 return error; 2500 } 2501 2502 /* link LED always on while associated */ 2503 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2504 2505 /* start automatic rate control timer */ 2506 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2507 2508 return (error); 2509 } 2510 2511 /* 2512 * Send a scan request to the firmware. Since this command is huge, we map it 2513 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2514 * much of this code is similar to that in wpi_cmd but because we must manually 2515 * construct the probe & channels, we duplicate what's needed here. XXX In the 2516 * future, this function should be modified to use wpi_cmd to help cleanup the 2517 * code base. 2518 */ 2519 static int 2520 wpi_scan(struct wpi_softc *sc) 2521 { 2522 struct ifnet *ifp = sc->sc_ifp; 2523 struct ieee80211com *ic = ifp->if_l2com; 2524 struct ieee80211_scan_state *ss = ic->ic_scan; 2525 struct wpi_tx_ring *ring = &sc->cmdq; 2526 struct wpi_tx_desc *desc; 2527 struct wpi_tx_data *data; 2528 struct wpi_tx_cmd *cmd; 2529 struct wpi_scan_hdr *hdr; 2530 struct wpi_scan_chan *chan; 2531 struct ieee80211_frame *wh; 2532 struct ieee80211_rateset *rs; 2533 struct ieee80211_channel *c; 2534 enum ieee80211_phymode mode; 2535 uint8_t *frm; 2536 int nrates, pktlen, error, i, nssid; 2537 bus_addr_t physaddr; 2538 2539 desc = &ring->desc[ring->cur]; 2540 data = &ring->data[ring->cur]; 2541 2542 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2543 if (data->m == NULL) { 2544 device_printf(sc->sc_dev, 2545 "could not allocate mbuf for scan command\n"); 2546 return ENOMEM; 2547 } 2548 2549 cmd = mtod(data->m, struct wpi_tx_cmd *); 2550 cmd->code = WPI_CMD_SCAN; 2551 cmd->flags = 0; 2552 cmd->qid = ring->qid; 2553 cmd->idx = ring->cur; 2554 2555 hdr = (struct wpi_scan_hdr *)cmd->data; 2556 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2557 2558 /* 2559 * Move to the next channel if no packets are received within 5 msecs 2560 * after sending the probe request (this helps to reduce the duration 2561 * of active scans). 2562 */ 2563 hdr->quiet = htole16(5); 2564 hdr->threshold = htole16(1); 2565 2566 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2567 /* send probe requests at 6Mbps */ 2568 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2569 2570 /* Enable crc checking */ 2571 hdr->promotion = htole16(1); 2572 } else { 2573 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2574 /* send probe requests at 1Mbps */ 2575 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2576 } 2577 hdr->tx.id = WPI_ID_BROADCAST; 2578 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2579 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2580 2581 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2582 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2583 for (i = 0; i < nssid; i++) { 2584 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2585 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2586 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2587 hdr->scan_essids[i].esslen); 2588 #ifdef WPI_DEBUG 2589 if (wpi_debug & WPI_DEBUG_SCANNING) { 2590 printf("Scanning Essid: "); 2591 ieee80211_print_essid(hdr->scan_essids[i].essid, 2592 hdr->scan_essids[i].esslen); 2593 printf("\n"); 2594 } 2595 #endif 2596 } 2597 2598 /* 2599 * Build a probe request frame. Most of the following code is a 2600 * copy & paste of what is done in net80211. 2601 */ 2602 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2603 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2604 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2605 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2606 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2607 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2608 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2609 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2610 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2611 2612 frm = (uint8_t *)(wh + 1); 2613 2614 /* add essid IE, the hardware will fill this in for us */ 2615 *frm++ = IEEE80211_ELEMID_SSID; 2616 *frm++ = 0; 2617 2618 mode = ieee80211_chan2mode(ic->ic_curchan); 2619 rs = &ic->ic_sup_rates[mode]; 2620 2621 /* add supported rates IE */ 2622 *frm++ = IEEE80211_ELEMID_RATES; 2623 nrates = rs->rs_nrates; 2624 if (nrates > IEEE80211_RATE_SIZE) 2625 nrates = IEEE80211_RATE_SIZE; 2626 *frm++ = nrates; 2627 memcpy(frm, rs->rs_rates, nrates); 2628 frm += nrates; 2629 2630 /* add supported xrates IE */ 2631 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2632 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2633 *frm++ = IEEE80211_ELEMID_XRATES; 2634 *frm++ = nrates; 2635 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2636 frm += nrates; 2637 } 2638 2639 /* setup length of probe request */ 2640 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2641 2642 /* 2643 * Construct information about the channel that we 2644 * want to scan. The firmware expects this to be directly 2645 * after the scan probe request 2646 */ 2647 c = ic->ic_curchan; 2648 chan = (struct wpi_scan_chan *)frm; 2649 chan->chan = ieee80211_chan2ieee(ic, c); 2650 chan->flags = 0; 2651 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2652 chan->flags |= WPI_CHAN_ACTIVE; 2653 if (nssid != 0) 2654 chan->flags |= WPI_CHAN_DIRECT; 2655 } 2656 chan->gain_dsp = 0x6e; /* Default level */ 2657 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2658 chan->active = htole16(10); 2659 chan->passive = htole16(ss->ss_maxdwell); 2660 chan->gain_radio = 0x3b; 2661 } else { 2662 chan->active = htole16(20); 2663 chan->passive = htole16(ss->ss_maxdwell); 2664 chan->gain_radio = 0x28; 2665 } 2666 2667 DPRINTFN(WPI_DEBUG_SCANNING, 2668 ("Scanning %u Passive: %d\n", 2669 chan->chan, 2670 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2671 2672 hdr->nchan++; 2673 chan++; 2674 2675 frm += sizeof (struct wpi_scan_chan); 2676 #if 0 2677 // XXX All Channels.... 2678 for (c = &ic->ic_channels[1]; 2679 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2680 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2681 continue; 2682 2683 chan->chan = ieee80211_chan2ieee(ic, c); 2684 chan->flags = 0; 2685 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2686 chan->flags |= WPI_CHAN_ACTIVE; 2687 if (ic->ic_des_ssid[0].len != 0) 2688 chan->flags |= WPI_CHAN_DIRECT; 2689 } 2690 chan->gain_dsp = 0x6e; /* Default level */ 2691 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2692 chan->active = htole16(10); 2693 chan->passive = htole16(110); 2694 chan->gain_radio = 0x3b; 2695 } else { 2696 chan->active = htole16(20); 2697 chan->passive = htole16(120); 2698 chan->gain_radio = 0x28; 2699 } 2700 2701 DPRINTFN(WPI_DEBUG_SCANNING, 2702 ("Scanning %u Passive: %d\n", 2703 chan->chan, 2704 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2705 2706 hdr->nchan++; 2707 chan++; 2708 2709 frm += sizeof (struct wpi_scan_chan); 2710 } 2711 #endif 2712 2713 hdr->len = htole16(frm - (uint8_t *)hdr); 2714 pktlen = frm - (uint8_t *)cmd; 2715 2716 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2717 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2718 if (error != 0) { 2719 device_printf(sc->sc_dev, "could not map scan command\n"); 2720 m_freem(data->m); 2721 data->m = NULL; 2722 return error; 2723 } 2724 2725 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2726 desc->segs[0].addr = htole32(physaddr); 2727 desc->segs[0].len = htole32(pktlen); 2728 2729 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2730 BUS_DMASYNC_PREWRITE); 2731 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2732 2733 /* kick cmd ring */ 2734 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2735 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2736 2737 sc->sc_scan_timer = 5; 2738 return 0; /* will be notified async. of failure/success */ 2739 } 2740 2741 /** 2742 * Configure the card to listen to a particular channel, this transisions the 2743 * card in to being able to receive frames from remote devices. 2744 */ 2745 static int 2746 wpi_config(struct wpi_softc *sc) 2747 { 2748 struct ifnet *ifp = sc->sc_ifp; 2749 struct ieee80211com *ic = ifp->if_l2com; 2750 struct wpi_power power; 2751 struct wpi_bluetooth bluetooth; 2752 struct wpi_node_info node; 2753 int error; 2754 2755 /* set power mode */ 2756 memset(&power, 0, sizeof power); 2757 power.flags = htole32(WPI_POWER_CAM|0x8); 2758 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2759 if (error != 0) { 2760 device_printf(sc->sc_dev, "could not set power mode\n"); 2761 return error; 2762 } 2763 2764 /* configure bluetooth coexistence */ 2765 memset(&bluetooth, 0, sizeof bluetooth); 2766 bluetooth.flags = 3; 2767 bluetooth.lead = 0xaa; 2768 bluetooth.kill = 1; 2769 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2770 0); 2771 if (error != 0) { 2772 device_printf(sc->sc_dev, 2773 "could not configure bluetooth coexistence\n"); 2774 return error; 2775 } 2776 2777 /* configure adapter */ 2778 memset(&sc->config, 0, sizeof (struct wpi_config)); 2779 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2780 /*set default channel*/ 2781 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2782 sc->config.flags = htole32(WPI_CONFIG_TSF); 2783 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2784 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2785 WPI_CONFIG_24GHZ); 2786 } 2787 sc->config.filter = 0; 2788 switch (ic->ic_opmode) { 2789 case IEEE80211_M_STA: 2790 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2791 sc->config.mode = WPI_MODE_STA; 2792 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2793 break; 2794 case IEEE80211_M_IBSS: 2795 case IEEE80211_M_AHDEMO: 2796 sc->config.mode = WPI_MODE_IBSS; 2797 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2798 WPI_FILTER_MULTICAST); 2799 break; 2800 case IEEE80211_M_HOSTAP: 2801 sc->config.mode = WPI_MODE_HOSTAP; 2802 break; 2803 case IEEE80211_M_MONITOR: 2804 sc->config.mode = WPI_MODE_MONITOR; 2805 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2806 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2807 break; 2808 default: 2809 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2810 return EINVAL; 2811 } 2812 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2813 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2814 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2815 sizeof (struct wpi_config), 0); 2816 if (error != 0) { 2817 device_printf(sc->sc_dev, "configure command failed\n"); 2818 return error; 2819 } 2820 2821 /* configuration has changed, set Tx power accordingly */ 2822 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2823 device_printf(sc->sc_dev, "could not set Tx power\n"); 2824 return error; 2825 } 2826 2827 /* add broadcast node */ 2828 memset(&node, 0, sizeof node); 2829 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2830 node.id = WPI_ID_BROADCAST; 2831 node.rate = wpi_plcp_signal(2); 2832 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2833 if (error != 0) { 2834 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2835 return error; 2836 } 2837 2838 /* Setup rate scalling */ 2839 error = wpi_mrr_setup(sc); 2840 if (error != 0) { 2841 device_printf(sc->sc_dev, "could not setup MRR\n"); 2842 return error; 2843 } 2844 2845 return 0; 2846 } 2847 2848 static void 2849 wpi_stop_master(struct wpi_softc *sc) 2850 { 2851 uint32_t tmp; 2852 int ntries; 2853 2854 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2855 2856 tmp = WPI_READ(sc, WPI_RESET); 2857 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2858 2859 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2860 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2861 return; /* already asleep */ 2862 2863 for (ntries = 0; ntries < 100; ntries++) { 2864 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2865 break; 2866 DELAY(10); 2867 } 2868 if (ntries == 100) { 2869 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2870 } 2871 } 2872 2873 static int 2874 wpi_power_up(struct wpi_softc *sc) 2875 { 2876 uint32_t tmp; 2877 int ntries; 2878 2879 wpi_mem_lock(sc); 2880 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2881 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2882 wpi_mem_unlock(sc); 2883 2884 for (ntries = 0; ntries < 5000; ntries++) { 2885 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2886 break; 2887 DELAY(10); 2888 } 2889 if (ntries == 5000) { 2890 device_printf(sc->sc_dev, 2891 "timeout waiting for NIC to power up\n"); 2892 return ETIMEDOUT; 2893 } 2894 return 0; 2895 } 2896 2897 static int 2898 wpi_reset(struct wpi_softc *sc) 2899 { 2900 uint32_t tmp; 2901 int ntries; 2902 2903 DPRINTFN(WPI_DEBUG_HW, 2904 ("Resetting the card - clearing any uploaded firmware\n")); 2905 2906 /* clear any pending interrupts */ 2907 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2908 2909 tmp = WPI_READ(sc, WPI_PLL_CTL); 2910 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2911 2912 tmp = WPI_READ(sc, WPI_CHICKEN); 2913 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2914 2915 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2916 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2917 2918 /* wait for clock stabilization */ 2919 for (ntries = 0; ntries < 25000; ntries++) { 2920 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2921 break; 2922 DELAY(10); 2923 } 2924 if (ntries == 25000) { 2925 device_printf(sc->sc_dev, 2926 "timeout waiting for clock stabilization\n"); 2927 return ETIMEDOUT; 2928 } 2929 2930 /* initialize EEPROM */ 2931 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2932 2933 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2934 device_printf(sc->sc_dev, "EEPROM not found\n"); 2935 return EIO; 2936 } 2937 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2938 2939 return 0; 2940 } 2941 2942 static void 2943 wpi_hw_config(struct wpi_softc *sc) 2944 { 2945 uint32_t rev, hw; 2946 2947 /* voodoo from the Linux "driver".. */ 2948 hw = WPI_READ(sc, WPI_HWCONFIG); 2949 2950 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2951 if ((rev & 0xc0) == 0x40) 2952 hw |= WPI_HW_ALM_MB; 2953 else if (!(rev & 0x80)) 2954 hw |= WPI_HW_ALM_MM; 2955 2956 if (sc->cap == 0x80) 2957 hw |= WPI_HW_SKU_MRC; 2958 2959 hw &= ~WPI_HW_REV_D; 2960 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2961 hw |= WPI_HW_REV_D; 2962 2963 if (sc->type > 1) 2964 hw |= WPI_HW_TYPE_B; 2965 2966 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2967 } 2968 2969 static void 2970 wpi_rfkill_resume(struct wpi_softc *sc) 2971 { 2972 struct ifnet *ifp = sc->sc_ifp; 2973 struct ieee80211com *ic = ifp->if_l2com; 2974 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2975 int ntries; 2976 2977 /* enable firmware again */ 2978 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 2979 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 2980 2981 /* wait for thermal sensors to calibrate */ 2982 for (ntries = 0; ntries < 1000; ntries++) { 2983 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 2984 break; 2985 DELAY(10); 2986 } 2987 2988 if (ntries == 1000) { 2989 device_printf(sc->sc_dev, 2990 "timeout waiting for thermal calibration\n"); 2991 WPI_UNLOCK(sc); 2992 return; 2993 } 2994 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 2995 2996 if (wpi_config(sc) != 0) { 2997 device_printf(sc->sc_dev, "device config failed\n"); 2998 WPI_UNLOCK(sc); 2999 return; 3000 } 3001 3002 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3003 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3004 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3005 3006 if (vap != NULL) { 3007 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3008 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3009 ieee80211_beacon_miss(ic); 3010 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3011 } else 3012 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3013 } else { 3014 ieee80211_scan_next(vap); 3015 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3016 } 3017 } 3018 3019 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3020 } 3021 3022 static void 3023 wpi_init_locked(struct wpi_softc *sc, int force) 3024 { 3025 struct ifnet *ifp = sc->sc_ifp; 3026 uint32_t tmp; 3027 int ntries, qid; 3028 3029 wpi_stop_locked(sc); 3030 (void)wpi_reset(sc); 3031 3032 wpi_mem_lock(sc); 3033 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3034 DELAY(20); 3035 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3036 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3037 wpi_mem_unlock(sc); 3038 3039 (void)wpi_power_up(sc); 3040 wpi_hw_config(sc); 3041 3042 /* init Rx ring */ 3043 wpi_mem_lock(sc); 3044 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3045 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3046 offsetof(struct wpi_shared, next)); 3047 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3048 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3049 wpi_mem_unlock(sc); 3050 3051 /* init Tx rings */ 3052 wpi_mem_lock(sc); 3053 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3054 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3055 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3056 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3057 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3058 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3059 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3060 3061 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3062 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3063 3064 for (qid = 0; qid < 6; qid++) { 3065 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3066 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3067 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3068 } 3069 wpi_mem_unlock(sc); 3070 3071 /* clear "radio off" and "disable command" bits (reversed logic) */ 3072 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3073 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3074 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3075 3076 /* clear any pending interrupts */ 3077 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3078 3079 /* enable interrupts */ 3080 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3081 3082 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3083 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3084 3085 if ((wpi_load_firmware(sc)) != 0) { 3086 device_printf(sc->sc_dev, 3087 "A problem occurred loading the firmware to the driver\n"); 3088 return; 3089 } 3090 3091 /* At this point the firmware is up and running. If the hardware 3092 * RF switch is turned off thermal calibration will fail, though 3093 * the card is still happy to continue to accept commands, catch 3094 * this case and schedule a task to watch for it to be turned on. 3095 */ 3096 wpi_mem_lock(sc); 3097 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3098 wpi_mem_unlock(sc); 3099 3100 if (!(tmp & 0x1)) { 3101 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3102 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3103 goto out; 3104 } 3105 3106 /* wait for thermal sensors to calibrate */ 3107 for (ntries = 0; ntries < 1000; ntries++) { 3108 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3109 break; 3110 DELAY(10); 3111 } 3112 3113 if (ntries == 1000) { 3114 device_printf(sc->sc_dev, 3115 "timeout waiting for thermal sensors calibration\n"); 3116 return; 3117 } 3118 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3119 3120 if (wpi_config(sc) != 0) { 3121 device_printf(sc->sc_dev, "device config failed\n"); 3122 return; 3123 } 3124 3125 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3126 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3127 out: 3128 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3129 } 3130 3131 static void 3132 wpi_init(void *arg) 3133 { 3134 struct wpi_softc *sc = arg; 3135 struct ifnet *ifp = sc->sc_ifp; 3136 struct ieee80211com *ic = ifp->if_l2com; 3137 3138 WPI_LOCK(sc); 3139 wpi_init_locked(sc, 0); 3140 WPI_UNLOCK(sc); 3141 3142 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3143 ieee80211_start_all(ic); /* start all vaps */ 3144 } 3145 3146 static void 3147 wpi_stop_locked(struct wpi_softc *sc) 3148 { 3149 struct ifnet *ifp = sc->sc_ifp; 3150 uint32_t tmp; 3151 int ac; 3152 3153 sc->sc_tx_timer = 0; 3154 sc->sc_scan_timer = 0; 3155 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3156 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3157 callout_stop(&sc->watchdog_to); 3158 callout_stop(&sc->calib_to); 3159 3160 3161 /* disable interrupts */ 3162 WPI_WRITE(sc, WPI_MASK, 0); 3163 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3164 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3165 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3166 3167 wpi_mem_lock(sc); 3168 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3169 wpi_mem_unlock(sc); 3170 3171 /* reset all Tx rings */ 3172 for (ac = 0; ac < 4; ac++) 3173 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3174 wpi_reset_tx_ring(sc, &sc->cmdq); 3175 3176 /* reset Rx ring */ 3177 wpi_reset_rx_ring(sc, &sc->rxq); 3178 3179 wpi_mem_lock(sc); 3180 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3181 wpi_mem_unlock(sc); 3182 3183 DELAY(5); 3184 3185 wpi_stop_master(sc); 3186 3187 tmp = WPI_READ(sc, WPI_RESET); 3188 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3189 sc->flags &= ~WPI_FLAG_BUSY; 3190 } 3191 3192 static void 3193 wpi_stop(struct wpi_softc *sc) 3194 { 3195 WPI_LOCK(sc); 3196 wpi_stop_locked(sc); 3197 WPI_UNLOCK(sc); 3198 } 3199 3200 static void 3201 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3202 { 3203 3204 /* XXX move */ 3205 ieee80211_ratectl_node_init(ni); 3206 } 3207 3208 static void 3209 wpi_calib_timeout(void *arg) 3210 { 3211 struct wpi_softc *sc = arg; 3212 struct ifnet *ifp = sc->sc_ifp; 3213 struct ieee80211com *ic = ifp->if_l2com; 3214 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3215 int temp; 3216 3217 if (vap->iv_state != IEEE80211_S_RUN) 3218 return; 3219 3220 /* update sensor data */ 3221 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3222 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3223 3224 wpi_power_calibration(sc, temp); 3225 3226 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3227 } 3228 3229 /* 3230 * This function is called periodically (every 60 seconds) to adjust output 3231 * power to temperature changes. 3232 */ 3233 static void 3234 wpi_power_calibration(struct wpi_softc *sc, int temp) 3235 { 3236 struct ifnet *ifp = sc->sc_ifp; 3237 struct ieee80211com *ic = ifp->if_l2com; 3238 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3239 3240 /* sanity-check read value */ 3241 if (temp < -260 || temp > 25) { 3242 /* this can't be correct, ignore */ 3243 DPRINTFN(WPI_DEBUG_TEMP, 3244 ("out-of-range temperature reported: %d\n", temp)); 3245 return; 3246 } 3247 3248 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3249 3250 /* adjust Tx power if need be */ 3251 if (abs(temp - sc->temp) <= 6) 3252 return; 3253 3254 sc->temp = temp; 3255 3256 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3257 /* just warn, too bad for the automatic calibration... */ 3258 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3259 } 3260 } 3261 3262 /** 3263 * Read the eeprom to find out what channels are valid for the given 3264 * band and update net80211 with what we find. 3265 */ 3266 static void 3267 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3268 { 3269 struct ifnet *ifp = sc->sc_ifp; 3270 struct ieee80211com *ic = ifp->if_l2com; 3271 const struct wpi_chan_band *band = &wpi_bands[n]; 3272 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3273 struct ieee80211_channel *c; 3274 int chan, i, passive; 3275 3276 wpi_read_prom_data(sc, band->addr, channels, 3277 band->nchan * sizeof (struct wpi_eeprom_chan)); 3278 3279 for (i = 0; i < band->nchan; i++) { 3280 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3281 DPRINTFN(WPI_DEBUG_HW, 3282 ("Channel Not Valid: %d, band %d\n", 3283 band->chan[i],n)); 3284 continue; 3285 } 3286 3287 passive = 0; 3288 chan = band->chan[i]; 3289 c = &ic->ic_channels[ic->ic_nchans++]; 3290 3291 /* is active scan allowed on this channel? */ 3292 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3293 passive = IEEE80211_CHAN_PASSIVE; 3294 } 3295 3296 if (n == 0) { /* 2GHz band */ 3297 c->ic_ieee = chan; 3298 c->ic_freq = ieee80211_ieee2mhz(chan, 3299 IEEE80211_CHAN_2GHZ); 3300 c->ic_flags = IEEE80211_CHAN_B | passive; 3301 3302 c = &ic->ic_channels[ic->ic_nchans++]; 3303 c->ic_ieee = chan; 3304 c->ic_freq = ieee80211_ieee2mhz(chan, 3305 IEEE80211_CHAN_2GHZ); 3306 c->ic_flags = IEEE80211_CHAN_G | passive; 3307 3308 } else { /* 5GHz band */ 3309 /* 3310 * Some 3945ABG adapters support channels 7, 8, 11 3311 * and 12 in the 2GHz *and* 5GHz bands. 3312 * Because of limitations in our net80211(9) stack, 3313 * we can't support these channels in 5GHz band. 3314 * XXX not true; just need to map to proper frequency 3315 */ 3316 if (chan <= 14) 3317 continue; 3318 3319 c->ic_ieee = chan; 3320 c->ic_freq = ieee80211_ieee2mhz(chan, 3321 IEEE80211_CHAN_5GHZ); 3322 c->ic_flags = IEEE80211_CHAN_A | passive; 3323 } 3324 3325 /* save maximum allowed power for this channel */ 3326 sc->maxpwr[chan] = channels[i].maxpwr; 3327 3328 #if 0 3329 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3330 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3331 //ic->ic_channels[chan].ic_minpower... 3332 //ic->ic_channels[chan].ic_maxregtxpower... 3333 #endif 3334 3335 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3336 " passive=%d, offset %d\n", chan, c->ic_freq, 3337 channels[i].flags, sc->maxpwr[chan], 3338 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3339 ic->ic_nchans)); 3340 } 3341 } 3342 3343 static void 3344 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3345 { 3346 struct wpi_power_group *group = &sc->groups[n]; 3347 struct wpi_eeprom_group rgroup; 3348 int i; 3349 3350 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3351 sizeof rgroup); 3352 3353 /* save power group information */ 3354 group->chan = rgroup.chan; 3355 group->maxpwr = rgroup.maxpwr; 3356 /* temperature at which the samples were taken */ 3357 group->temp = (int16_t)le16toh(rgroup.temp); 3358 3359 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3360 group->chan, group->maxpwr, group->temp)); 3361 3362 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3363 group->samples[i].index = rgroup.samples[i].index; 3364 group->samples[i].power = rgroup.samples[i].power; 3365 3366 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3367 group->samples[i].index, group->samples[i].power)); 3368 } 3369 } 3370 3371 /* 3372 * Update Tx power to match what is defined for channel `c'. 3373 */ 3374 static int 3375 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3376 { 3377 struct ifnet *ifp = sc->sc_ifp; 3378 struct ieee80211com *ic = ifp->if_l2com; 3379 struct wpi_power_group *group; 3380 struct wpi_cmd_txpower txpower; 3381 u_int chan; 3382 int i; 3383 3384 /* get channel number */ 3385 chan = ieee80211_chan2ieee(ic, c); 3386 3387 /* find the power group to which this channel belongs */ 3388 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3389 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3390 if (chan <= group->chan) 3391 break; 3392 } else 3393 group = &sc->groups[0]; 3394 3395 memset(&txpower, 0, sizeof txpower); 3396 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3397 txpower.channel = htole16(chan); 3398 3399 /* set Tx power for all OFDM and CCK rates */ 3400 for (i = 0; i <= 11 ; i++) { 3401 /* retrieve Tx power for this channel/rate combination */ 3402 int idx = wpi_get_power_index(sc, group, c, 3403 wpi_ridx_to_rate[i]); 3404 3405 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3406 3407 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3408 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3409 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3410 } else { 3411 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3412 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3413 } 3414 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3415 chan, wpi_ridx_to_rate[i], idx)); 3416 } 3417 3418 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3419 } 3420 3421 /* 3422 * Determine Tx power index for a given channel/rate combination. 3423 * This takes into account the regulatory information from EEPROM and the 3424 * current temperature. 3425 */ 3426 static int 3427 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3428 struct ieee80211_channel *c, int rate) 3429 { 3430 /* fixed-point arithmetic division using a n-bit fractional part */ 3431 #define fdivround(a, b, n) \ 3432 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3433 3434 /* linear interpolation */ 3435 #define interpolate(x, x1, y1, x2, y2, n) \ 3436 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3437 3438 struct ifnet *ifp = sc->sc_ifp; 3439 struct ieee80211com *ic = ifp->if_l2com; 3440 struct wpi_power_sample *sample; 3441 int pwr, idx; 3442 u_int chan; 3443 3444 /* get channel number */ 3445 chan = ieee80211_chan2ieee(ic, c); 3446 3447 /* default power is group's maximum power - 3dB */ 3448 pwr = group->maxpwr / 2; 3449 3450 /* decrease power for highest OFDM rates to reduce distortion */ 3451 switch (rate) { 3452 case 72: /* 36Mb/s */ 3453 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3454 break; 3455 case 96: /* 48Mb/s */ 3456 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3457 break; 3458 case 108: /* 54Mb/s */ 3459 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3460 break; 3461 } 3462 3463 /* never exceed channel's maximum allowed Tx power */ 3464 pwr = min(pwr, sc->maxpwr[chan]); 3465 3466 /* retrieve power index into gain tables from samples */ 3467 for (sample = group->samples; sample < &group->samples[3]; sample++) 3468 if (pwr > sample[1].power) 3469 break; 3470 /* fixed-point linear interpolation using a 19-bit fractional part */ 3471 idx = interpolate(pwr, sample[0].power, sample[0].index, 3472 sample[1].power, sample[1].index, 19); 3473 3474 /* 3475 * Adjust power index based on current temperature 3476 * - if colder than factory-calibrated: decreate output power 3477 * - if warmer than factory-calibrated: increase output power 3478 */ 3479 idx -= (sc->temp - group->temp) * 11 / 100; 3480 3481 /* decrease power for CCK rates (-5dB) */ 3482 if (!WPI_RATE_IS_OFDM(rate)) 3483 idx += 10; 3484 3485 /* keep power index in a valid range */ 3486 if (idx < 0) 3487 return 0; 3488 if (idx > WPI_MAX_PWR_INDEX) 3489 return WPI_MAX_PWR_INDEX; 3490 return idx; 3491 3492 #undef interpolate 3493 #undef fdivround 3494 } 3495 3496 /** 3497 * Called by net80211 framework to indicate that a scan 3498 * is starting. This function doesn't actually do the scan, 3499 * wpi_scan_curchan starts things off. This function is more 3500 * of an early warning from the framework we should get ready 3501 * for the scan. 3502 */ 3503 static void 3504 wpi_scan_start(struct ieee80211com *ic) 3505 { 3506 struct ifnet *ifp = ic->ic_ifp; 3507 struct wpi_softc *sc = ifp->if_softc; 3508 3509 WPI_LOCK(sc); 3510 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3511 WPI_UNLOCK(sc); 3512 } 3513 3514 /** 3515 * Called by the net80211 framework, indicates that the 3516 * scan has ended. If there is a scan in progress on the card 3517 * then it should be aborted. 3518 */ 3519 static void 3520 wpi_scan_end(struct ieee80211com *ic) 3521 { 3522 /* XXX ignore */ 3523 } 3524 3525 /** 3526 * Called by the net80211 framework to indicate to the driver 3527 * that the channel should be changed 3528 */ 3529 static void 3530 wpi_set_channel(struct ieee80211com *ic) 3531 { 3532 struct ifnet *ifp = ic->ic_ifp; 3533 struct wpi_softc *sc = ifp->if_softc; 3534 int error; 3535 3536 /* 3537 * Only need to set the channel in Monitor mode. AP scanning and auth 3538 * are already taken care of by their respective firmware commands. 3539 */ 3540 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3541 error = wpi_config(sc); 3542 if (error != 0) 3543 device_printf(sc->sc_dev, 3544 "error %d settting channel\n", error); 3545 } 3546 } 3547 3548 /** 3549 * Called by net80211 to indicate that we need to scan the current 3550 * channel. The channel is previously be set via the wpi_set_channel 3551 * callback. 3552 */ 3553 static void 3554 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3555 { 3556 struct ieee80211vap *vap = ss->ss_vap; 3557 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3558 struct wpi_softc *sc = ifp->if_softc; 3559 3560 WPI_LOCK(sc); 3561 if (wpi_scan(sc)) 3562 ieee80211_cancel_scan(vap); 3563 WPI_UNLOCK(sc); 3564 } 3565 3566 /** 3567 * Called by the net80211 framework to indicate 3568 * the minimum dwell time has been met, terminate the scan. 3569 * We don't actually terminate the scan as the firmware will notify 3570 * us when it's finished and we have no way to interrupt it. 3571 */ 3572 static void 3573 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3574 { 3575 /* NB: don't try to abort scan; wait for firmware to finish */ 3576 } 3577 3578 static void 3579 wpi_hwreset(void *arg, int pending) 3580 { 3581 struct wpi_softc *sc = arg; 3582 3583 WPI_LOCK(sc); 3584 wpi_init_locked(sc, 0); 3585 WPI_UNLOCK(sc); 3586 } 3587 3588 static void 3589 wpi_rfreset(void *arg, int pending) 3590 { 3591 struct wpi_softc *sc = arg; 3592 3593 WPI_LOCK(sc); 3594 wpi_rfkill_resume(sc); 3595 WPI_UNLOCK(sc); 3596 } 3597 3598 /* 3599 * Allocate DMA-safe memory for firmware transfer. 3600 */ 3601 static int 3602 wpi_alloc_fwmem(struct wpi_softc *sc) 3603 { 3604 /* allocate enough contiguous space to store text and data */ 3605 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3606 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3607 BUS_DMA_NOWAIT); 3608 } 3609 3610 static void 3611 wpi_free_fwmem(struct wpi_softc *sc) 3612 { 3613 wpi_dma_contig_free(&sc->fw_dma); 3614 } 3615 3616 /** 3617 * Called every second, wpi_watchdog used by the watch dog timer 3618 * to check that the card is still alive 3619 */ 3620 static void 3621 wpi_watchdog(void *arg) 3622 { 3623 struct wpi_softc *sc = arg; 3624 struct ifnet *ifp = sc->sc_ifp; 3625 struct ieee80211com *ic = ifp->if_l2com; 3626 uint32_t tmp; 3627 3628 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3629 3630 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3631 /* No need to lock firmware memory */ 3632 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3633 3634 if ((tmp & 0x1) == 0) { 3635 /* Radio kill switch is still off */ 3636 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3637 return; 3638 } 3639 3640 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3641 ieee80211_runtask(ic, &sc->sc_radiotask); 3642 return; 3643 } 3644 3645 if (sc->sc_tx_timer > 0) { 3646 if (--sc->sc_tx_timer == 0) { 3647 device_printf(sc->sc_dev,"device timeout\n"); 3648 ifp->if_oerrors++; 3649 ieee80211_runtask(ic, &sc->sc_restarttask); 3650 } 3651 } 3652 if (sc->sc_scan_timer > 0) { 3653 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3654 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3655 device_printf(sc->sc_dev,"scan timeout\n"); 3656 ieee80211_cancel_scan(vap); 3657 ieee80211_runtask(ic, &sc->sc_restarttask); 3658 } 3659 } 3660 3661 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3662 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3663 } 3664 3665 #ifdef WPI_DEBUG 3666 static const char *wpi_cmd_str(int cmd) 3667 { 3668 switch (cmd) { 3669 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3670 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3671 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3672 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3673 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3674 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3675 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3676 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3677 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3678 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3679 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3680 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3681 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3682 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3683 3684 default: 3685 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3686 return "UNKNOWN CMD"; /* Make the compiler happy */ 3687 } 3688 } 3689 #endif 3690 3691 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3692 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3693 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3694