xref: /freebsd/sys/dev/wpi/if_wpi.c (revision b00fe64f4acfe315181f65999af16e9a7bdc600b)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*
23  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24  *
25  * The 3945ABG network adapter doesn't use traditional hardware as
26  * many other adaptors do. Instead at run time the eeprom is set into a known
27  * state and told to load boot firmware. The boot firmware loads an init and a
28  * main  binary firmware image into SRAM on the card via DMA.
29  * Once the firmware is loaded, the driver/hw then
30  * communicate by way of circular dma rings via the SRAM to the firmware.
31  *
32  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33  * The 4 tx data rings allow for prioritization QoS.
34  *
35  * The rx data ring consists of 32 dma buffers. Two registers are used to
36  * indicate where in the ring the driver and the firmware are up to. The
37  * driver sets the initial read index (reg1) and the initial write index (reg2),
38  * the firmware updates the read index (reg1) on rx of a packet and fires an
39  * interrupt. The driver then processes the buffers starting at reg1 indicating
40  * to the firmware which buffers have been accessed by updating reg2. At the
41  * same time allocating new memory for the processed buffer.
42  *
43  * A similar thing happens with the tx rings. The difference is the firmware
44  * stop processing buffers once the queue is full and until confirmation
45  * of a successful transmition (tx_done) has occurred.
46  *
47  * The command ring operates in the same manner as the tx queues.
48  *
49  * All communication direct to the card (ie eeprom) is classed as Stage1
50  * communication
51  *
52  * All communication via the firmware to the card is classed as State2.
53  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54  * firmware. The bootstrap firmware and runtime firmware are loaded
55  * from host memory via dma to the card then told to execute. From this point
56  * on the majority of communications between the driver and the card goes
57  * via the firmware.
58  */
59 
60 #include "opt_wlan.h"
61 #include "opt_wpi.h"
62 
63 #include <sys/param.h>
64 #include <sys/sysctl.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/systm.h>
70 #include <sys/malloc.h>
71 #include <sys/queue.h>
72 #include <sys/taskqueue.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/endian.h>
76 #include <sys/linker.h>
77 #include <sys/firmware.h>
78 
79 #include <machine/bus.h>
80 #include <machine/resource.h>
81 #include <sys/rman.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/if_ether.h>
99 #include <netinet/ip.h>
100 
101 #include <net80211/ieee80211_var.h>
102 #include <net80211/ieee80211_radiotap.h>
103 #include <net80211/ieee80211_regdomain.h>
104 #include <net80211/ieee80211_ratectl.h>
105 
106 #include <dev/wpi/if_wpireg.h>
107 #include <dev/wpi/if_wpivar.h>
108 #include <dev/wpi/if_wpi_debug.h>
109 
110 struct wpi_ident {
111 	uint16_t	vendor;
112 	uint16_t	device;
113 	uint16_t	subdevice;
114 	const char	*name;
115 };
116 
117 static const struct wpi_ident wpi_ident_table[] = {
118 	/* The below entries support ABG regardless of the subid */
119 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	/* The below entries only support BG */
122 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0, 0, 0, NULL }
127 };
128 
129 static int	wpi_probe(device_t);
130 static int	wpi_attach(device_t);
131 static void	wpi_radiotap_attach(struct wpi_softc *);
132 static void	wpi_sysctlattach(struct wpi_softc *);
133 static void	wpi_init_beacon(struct wpi_vap *);
134 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136 		    const uint8_t [IEEE80211_ADDR_LEN],
137 		    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void	wpi_vap_delete(struct ieee80211vap *);
139 static int	wpi_detach(device_t);
140 static int	wpi_shutdown(device_t);
141 static int	wpi_suspend(device_t);
142 static int	wpi_resume(device_t);
143 static int	wpi_nic_lock(struct wpi_softc *);
144 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147 		    void **, bus_size_t, bus_size_t);
148 static void	wpi_dma_contig_free(struct wpi_dma_info *);
149 static int	wpi_alloc_shared(struct wpi_softc *);
150 static void	wpi_free_shared(struct wpi_softc *);
151 static int	wpi_alloc_fwmem(struct wpi_softc *);
152 static void	wpi_free_fwmem(struct wpi_softc *);
153 static int	wpi_alloc_rx_ring(struct wpi_softc *);
154 static void	wpi_update_rx_ring(struct wpi_softc *);
155 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
156 static void	wpi_reset_rx_ring(struct wpi_softc *);
157 static void	wpi_free_rx_ring(struct wpi_softc *);
158 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
159 		    int);
160 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
162 		    struct wpi_tx_ring *);
163 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
164 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165 static int	wpi_read_eeprom(struct wpi_softc *,
166 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
167 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
168 static void	wpi_read_eeprom_band(struct wpi_softc *, int);
169 static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
170 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
171 		    struct ieee80211_channel *);
172 static int	wpi_setregdomain(struct ieee80211com *,
173 		    struct ieee80211_regdomain *, int,
174 		    struct ieee80211_channel[]);
175 static int	wpi_read_eeprom_group(struct wpi_softc *, int);
176 static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
177 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
178 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
179 static void	wpi_node_free(struct ieee80211_node *);
180 static void	wpi_recv_mgmt(struct ieee80211_node *, struct mbuf *, int, int,
181 		    int);
182 static void	wpi_restore_node(void *, struct ieee80211_node *);
183 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
184 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
185 static void	wpi_calib_timeout(void *);
186 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
187 		    struct wpi_rx_data *);
188 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
189 		    struct wpi_rx_data *);
190 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
191 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
192 static void	wpi_notif_intr(struct wpi_softc *);
193 static void	wpi_wakeup_intr(struct wpi_softc *);
194 #ifdef WPI_DEBUG
195 static void	wpi_debug_registers(struct wpi_softc *);
196 #endif
197 static void	wpi_fatal_intr(struct wpi_softc *);
198 static void	wpi_intr(void *);
199 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
200 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
201 		    struct ieee80211_node *);
202 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
203 		    struct ieee80211_node *,
204 		    const struct ieee80211_bpf_params *);
205 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
206 		    const struct ieee80211_bpf_params *);
207 static void	wpi_start(struct ifnet *);
208 static void	wpi_start_task(void *, int);
209 static void	wpi_watchdog_rfkill(void *);
210 static void	wpi_scan_timeout(void *);
211 static void	wpi_tx_timeout(void *);
212 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
213 static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
214 static int	wpi_mrr_setup(struct wpi_softc *);
215 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
216 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
217 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
218 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
219 static int	wpi_updateedca(struct ieee80211com *);
220 static void	wpi_set_promisc(struct wpi_softc *);
221 static void	wpi_update_promisc(struct ifnet *);
222 static void	wpi_update_mcast(struct ifnet *);
223 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
224 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
225 static void	wpi_power_calibration(struct wpi_softc *);
226 static int	wpi_set_txpower(struct wpi_softc *, int);
227 static int	wpi_get_power_index(struct wpi_softc *,
228 		    struct wpi_power_group *, uint8_t, int, int);
229 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
230 static int	wpi_send_btcoex(struct wpi_softc *);
231 static int	wpi_send_rxon(struct wpi_softc *, int, int);
232 static int	wpi_config(struct wpi_softc *);
233 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
234 		    struct ieee80211_channel *, uint8_t);
235 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
236 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
237 		    struct ieee80211_channel *);
238 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
239 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
240 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
241 static int	wpi_config_beacon(struct wpi_vap *);
242 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
243 static void	wpi_update_beacon(struct ieee80211vap *, int);
244 static void	wpi_newassoc(struct ieee80211_node *, int);
245 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
246 static int	wpi_load_key(struct ieee80211_node *,
247 		    const struct ieee80211_key *);
248 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
249 static int	wpi_set_global_keys(struct ieee80211_node *);
250 static int	wpi_del_key(struct ieee80211_node *,
251 		    const struct ieee80211_key *);
252 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
253 static int	wpi_process_key(struct ieee80211vap *,
254 		    const struct ieee80211_key *, int);
255 static int	wpi_key_set(struct ieee80211vap *,
256 		    const struct ieee80211_key *,
257 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
258 static int	wpi_key_delete(struct ieee80211vap *,
259 		    const struct ieee80211_key *);
260 static int	wpi_post_alive(struct wpi_softc *);
261 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
262 static int	wpi_load_firmware(struct wpi_softc *);
263 static int	wpi_read_firmware(struct wpi_softc *);
264 static void	wpi_unload_firmware(struct wpi_softc *);
265 static int	wpi_clock_wait(struct wpi_softc *);
266 static int	wpi_apm_init(struct wpi_softc *);
267 static void	wpi_apm_stop_master(struct wpi_softc *);
268 static void	wpi_apm_stop(struct wpi_softc *);
269 static void	wpi_nic_config(struct wpi_softc *);
270 static int	wpi_hw_init(struct wpi_softc *);
271 static void	wpi_hw_stop(struct wpi_softc *);
272 static void	wpi_radio_on(void *, int);
273 static void	wpi_radio_off(void *, int);
274 static void	wpi_init(void *);
275 static void	wpi_stop_locked(struct wpi_softc *);
276 static void	wpi_stop(struct wpi_softc *);
277 static void	wpi_scan_start(struct ieee80211com *);
278 static void	wpi_scan_end(struct ieee80211com *);
279 static void	wpi_set_channel(struct ieee80211com *);
280 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
281 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
282 static void	wpi_hw_reset(void *, int);
283 
284 static device_method_t wpi_methods[] = {
285 	/* Device interface */
286 	DEVMETHOD(device_probe,		wpi_probe),
287 	DEVMETHOD(device_attach,	wpi_attach),
288 	DEVMETHOD(device_detach,	wpi_detach),
289 	DEVMETHOD(device_shutdown,	wpi_shutdown),
290 	DEVMETHOD(device_suspend,	wpi_suspend),
291 	DEVMETHOD(device_resume,	wpi_resume),
292 
293 	DEVMETHOD_END
294 };
295 
296 static driver_t wpi_driver = {
297 	"wpi",
298 	wpi_methods,
299 	sizeof (struct wpi_softc)
300 };
301 static devclass_t wpi_devclass;
302 
303 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
304 
305 MODULE_VERSION(wpi, 1);
306 
307 MODULE_DEPEND(wpi, pci,  1, 1, 1);
308 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
309 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
310 
311 static int
312 wpi_probe(device_t dev)
313 {
314 	const struct wpi_ident *ident;
315 
316 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
317 		if (pci_get_vendor(dev) == ident->vendor &&
318 		    pci_get_device(dev) == ident->device) {
319 			device_set_desc(dev, ident->name);
320 			return (BUS_PROBE_DEFAULT);
321 		}
322 	}
323 	return ENXIO;
324 }
325 
326 static int
327 wpi_attach(device_t dev)
328 {
329 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
330 	struct ieee80211com *ic;
331 	struct ifnet *ifp;
332 	int i, error, rid;
333 #ifdef WPI_DEBUG
334 	int supportsa = 1;
335 	const struct wpi_ident *ident;
336 #endif
337 	uint8_t macaddr[IEEE80211_ADDR_LEN];
338 
339 	sc->sc_dev = dev;
340 
341 #ifdef WPI_DEBUG
342 	error = resource_int_value(device_get_name(sc->sc_dev),
343 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
344 	if (error != 0)
345 		sc->sc_debug = 0;
346 #else
347 	sc->sc_debug = 0;
348 #endif
349 
350 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
351 
352 	/*
353 	 * Get the offset of the PCI Express Capability Structure in PCI
354 	 * Configuration Space.
355 	 */
356 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
357 	if (error != 0) {
358 		device_printf(dev, "PCIe capability structure not found!\n");
359 		return error;
360 	}
361 
362 	/*
363 	 * Some card's only support 802.11b/g not a, check to see if
364 	 * this is one such card. A 0x0 in the subdevice table indicates
365 	 * the entire subdevice range is to be ignored.
366 	 */
367 #ifdef WPI_DEBUG
368 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
369 		if (ident->subdevice &&
370 		    pci_get_subdevice(dev) == ident->subdevice) {
371 		    supportsa = 0;
372 		    break;
373 		}
374 	}
375 #endif
376 
377 	/* Clear device-specific "PCI retry timeout" register (41h). */
378 	pci_write_config(dev, 0x41, 0, 1);
379 
380 	/* Enable bus-mastering. */
381 	pci_enable_busmaster(dev);
382 
383 	rid = PCIR_BAR(0);
384 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
385 	    RF_ACTIVE);
386 	if (sc->mem == NULL) {
387 		device_printf(dev, "can't map mem space\n");
388 		return ENOMEM;
389 	}
390 	sc->sc_st = rman_get_bustag(sc->mem);
391 	sc->sc_sh = rman_get_bushandle(sc->mem);
392 
393 	i = 1;
394 	rid = 0;
395 	if (pci_alloc_msi(dev, &i) == 0)
396 		rid = 1;
397 	/* Install interrupt handler. */
398 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
399 	    (rid != 0 ? 0 : RF_SHAREABLE));
400 	if (sc->irq == NULL) {
401 		device_printf(dev, "can't map interrupt\n");
402 		error = ENOMEM;
403 		goto fail;
404 	}
405 
406 	WPI_LOCK_INIT(sc);
407 	WPI_TX_LOCK_INIT(sc);
408 	WPI_RXON_LOCK_INIT(sc);
409 	WPI_NT_LOCK_INIT(sc);
410 	WPI_TXQ_LOCK_INIT(sc);
411 	WPI_TXQ_STATE_LOCK_INIT(sc);
412 
413 	/* Allocate DMA memory for firmware transfers. */
414 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
415 		device_printf(dev,
416 		    "could not allocate memory for firmware, error %d\n",
417 		    error);
418 		goto fail;
419 	}
420 
421 	/* Allocate shared page. */
422 	if ((error = wpi_alloc_shared(sc)) != 0) {
423 		device_printf(dev, "could not allocate shared page\n");
424 		goto fail;
425 	}
426 
427 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
428 	for (i = 0; i < WPI_NTXQUEUES; i++) {
429 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
430 			device_printf(dev,
431 			    "could not allocate TX ring %d, error %d\n", i,
432 			    error);
433 			goto fail;
434 		}
435 	}
436 
437 	/* Allocate RX ring. */
438 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
439 		device_printf(dev, "could not allocate RX ring, error %d\n",
440 		    error);
441 		goto fail;
442 	}
443 
444 	/* Clear pending interrupts. */
445 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
446 
447 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
448 	if (ifp == NULL) {
449 		device_printf(dev, "can not allocate ifnet structure\n");
450 		goto fail;
451 	}
452 
453 	ic = ifp->if_l2com;
454 	ic->ic_ifp = ifp;
455 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
456 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
457 
458 	/* Set device capabilities. */
459 	ic->ic_caps =
460 		  IEEE80211_C_STA		/* station mode supported */
461 		| IEEE80211_C_IBSS		/* IBSS mode supported */
462 		| IEEE80211_C_HOSTAP		/* Host access point mode */
463 		| IEEE80211_C_MONITOR		/* monitor mode supported */
464 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
465 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
466 		| IEEE80211_C_TXPMGT		/* tx power management */
467 		| IEEE80211_C_SHSLOT		/* short slot time supported */
468 		| IEEE80211_C_WPA		/* 802.11i */
469 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
470 		| IEEE80211_C_WME		/* 802.11e */
471 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
472 		;
473 
474 	ic->ic_cryptocaps =
475 		  IEEE80211_CRYPTO_AES_CCM;
476 
477 	/*
478 	 * Read in the eeprom and also setup the channels for
479 	 * net80211. We don't set the rates as net80211 does this for us
480 	 */
481 	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
482 		device_printf(dev, "could not read EEPROM, error %d\n",
483 		    error);
484 		goto fail;
485 	}
486 
487 #ifdef WPI_DEBUG
488 	if (bootverbose) {
489 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
490 		    sc->domain);
491 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
492 		    sc->type > 1 ? 'B': '?');
493 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
494 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
495 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
496 		    supportsa ? "does" : "does not");
497 
498 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
499 		   check what sc->rev really represents - benjsc 20070615 */
500 	}
501 #endif
502 
503 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
504 	ifp->if_softc = sc;
505 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
506 	ifp->if_init = wpi_init;
507 	ifp->if_ioctl = wpi_ioctl;
508 	ifp->if_start = wpi_start;
509 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
510 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
511 	IFQ_SET_READY(&ifp->if_snd);
512 
513 	ieee80211_ifattach(ic, macaddr);
514 	ic->ic_vap_create = wpi_vap_create;
515 	ic->ic_vap_delete = wpi_vap_delete;
516 	ic->ic_raw_xmit = wpi_raw_xmit;
517 	ic->ic_node_alloc = wpi_node_alloc;
518 	sc->sc_node_free = ic->ic_node_free;
519 	ic->ic_node_free = wpi_node_free;
520 	ic->ic_wme.wme_update = wpi_updateedca;
521 	ic->ic_update_promisc = wpi_update_promisc;
522 	ic->ic_update_mcast = wpi_update_mcast;
523 	ic->ic_newassoc = wpi_newassoc;
524 	ic->ic_scan_start = wpi_scan_start;
525 	ic->ic_scan_end = wpi_scan_end;
526 	ic->ic_set_channel = wpi_set_channel;
527 	ic->ic_scan_curchan = wpi_scan_curchan;
528 	ic->ic_scan_mindwell = wpi_scan_mindwell;
529 	ic->ic_setregdomain = wpi_setregdomain;
530 
531 	sc->sc_update_rx_ring = wpi_update_rx_ring;
532 	sc->sc_update_tx_ring = wpi_update_tx_ring;
533 
534 	wpi_radiotap_attach(sc);
535 
536 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
537 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
538 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
539 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
540 	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
541 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
542 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
543 	TASK_INIT(&sc->sc_start_task, 0, wpi_start_task, sc);
544 
545 	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
546 	    taskqueue_thread_enqueue, &sc->sc_tq);
547 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
548 	if (error != 0) {
549 		device_printf(dev, "can't start threads, error %d\n", error);
550 		goto fail;
551 	}
552 
553 	wpi_sysctlattach(sc);
554 
555 	/*
556 	 * Hook our interrupt after all initialization is complete.
557 	 */
558 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
559 	    NULL, wpi_intr, sc, &sc->sc_ih);
560 	if (error != 0) {
561 		device_printf(dev, "can't establish interrupt, error %d\n",
562 		    error);
563 		goto fail;
564 	}
565 
566 	if (bootverbose)
567 		ieee80211_announce(ic);
568 
569 #ifdef WPI_DEBUG
570 	if (sc->sc_debug & WPI_DEBUG_HW)
571 		ieee80211_announce_channels(ic);
572 #endif
573 
574 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
575 	return 0;
576 
577 fail:	wpi_detach(dev);
578 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
579 	return error;
580 }
581 
582 /*
583  * Attach the interface to 802.11 radiotap.
584  */
585 static void
586 wpi_radiotap_attach(struct wpi_softc *sc)
587 {
588 	struct ifnet *ifp = sc->sc_ifp;
589 	struct ieee80211com *ic = ifp->if_l2com;
590 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
591 	ieee80211_radiotap_attach(ic,
592 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
593 		WPI_TX_RADIOTAP_PRESENT,
594 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
595 		WPI_RX_RADIOTAP_PRESENT);
596 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
597 }
598 
599 static void
600 wpi_sysctlattach(struct wpi_softc *sc)
601 {
602 #ifdef WPI_DEBUG
603 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
604 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
605 
606 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
607 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
608 		"control debugging printfs");
609 #endif
610 }
611 
612 static void
613 wpi_init_beacon(struct wpi_vap *wvp)
614 {
615 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
616 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
617 
618 	cmd->id = WPI_ID_BROADCAST;
619 	cmd->ofdm_mask = 0xff;
620 	cmd->cck_mask = 0x0f;
621 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
622 
623 	/*
624 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
625 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
626 	 */
627 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
628 
629 	bcn->code = WPI_CMD_SET_BEACON;
630 	bcn->ac = WPI_CMD_QUEUE_NUM;
631 	bcn->size = sizeof(struct wpi_cmd_beacon);
632 }
633 
634 static struct ieee80211vap *
635 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
636     enum ieee80211_opmode opmode, int flags,
637     const uint8_t bssid[IEEE80211_ADDR_LEN],
638     const uint8_t mac[IEEE80211_ADDR_LEN])
639 {
640 	struct wpi_vap *wvp;
641 	struct ieee80211vap *vap;
642 
643 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
644 		return NULL;
645 
646 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
647 	    M_80211_VAP, M_NOWAIT | M_ZERO);
648 	if (wvp == NULL)
649 		return NULL;
650 	vap = &wvp->wv_vap;
651 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
652 
653 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
654 		WPI_VAP_LOCK_INIT(wvp);
655 		wpi_init_beacon(wvp);
656 	}
657 
658 	/* Override with driver methods. */
659 	vap->iv_key_set = wpi_key_set;
660 	vap->iv_key_delete = wpi_key_delete;
661 	wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
662 	vap->iv_recv_mgmt = wpi_recv_mgmt;
663 	wvp->wv_newstate = vap->iv_newstate;
664 	vap->iv_newstate = wpi_newstate;
665 	vap->iv_update_beacon = wpi_update_beacon;
666 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
667 
668 	ieee80211_ratectl_init(vap);
669 	/* Complete setup. */
670 	ieee80211_vap_attach(vap, ieee80211_media_change,
671 	    ieee80211_media_status);
672 	ic->ic_opmode = opmode;
673 	return vap;
674 }
675 
676 static void
677 wpi_vap_delete(struct ieee80211vap *vap)
678 {
679 	struct wpi_vap *wvp = WPI_VAP(vap);
680 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
681 	enum ieee80211_opmode opmode = vap->iv_opmode;
682 
683 	ieee80211_ratectl_deinit(vap);
684 	ieee80211_vap_detach(vap);
685 
686 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
687 		if (bcn->m != NULL)
688 			m_freem(bcn->m);
689 
690 		WPI_VAP_LOCK_DESTROY(wvp);
691 	}
692 
693 	free(wvp, M_80211_VAP);
694 }
695 
696 static int
697 wpi_detach(device_t dev)
698 {
699 	struct wpi_softc *sc = device_get_softc(dev);
700 	struct ifnet *ifp = sc->sc_ifp;
701 	struct ieee80211com *ic;
702 	int qid;
703 
704 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
705 
706 	if (ifp != NULL) {
707 		ic = ifp->if_l2com;
708 
709 		ieee80211_draintask(ic, &sc->sc_radioon_task);
710 		ieee80211_draintask(ic, &sc->sc_start_task);
711 
712 		wpi_stop(sc);
713 
714 		taskqueue_drain_all(sc->sc_tq);
715 		taskqueue_free(sc->sc_tq);
716 
717 		callout_drain(&sc->watchdog_rfkill);
718 		callout_drain(&sc->tx_timeout);
719 		callout_drain(&sc->scan_timeout);
720 		callout_drain(&sc->calib_to);
721 		ieee80211_ifdetach(ic);
722 	}
723 
724 	/* Uninstall interrupt handler. */
725 	if (sc->irq != NULL) {
726 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
727 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
728 		    sc->irq);
729 		pci_release_msi(dev);
730 	}
731 
732 	if (sc->txq[0].data_dmat) {
733 		/* Free DMA resources. */
734 		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
735 			wpi_free_tx_ring(sc, &sc->txq[qid]);
736 
737 		wpi_free_rx_ring(sc);
738 		wpi_free_shared(sc);
739 	}
740 
741 	if (sc->fw_dma.tag)
742 		wpi_free_fwmem(sc);
743 
744 	if (sc->mem != NULL)
745 		bus_release_resource(dev, SYS_RES_MEMORY,
746 		    rman_get_rid(sc->mem), sc->mem);
747 
748 	if (ifp != NULL)
749 		if_free(ifp);
750 
751 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
752 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
753 	WPI_TXQ_LOCK_DESTROY(sc);
754 	WPI_NT_LOCK_DESTROY(sc);
755 	WPI_RXON_LOCK_DESTROY(sc);
756 	WPI_TX_LOCK_DESTROY(sc);
757 	WPI_LOCK_DESTROY(sc);
758 	return 0;
759 }
760 
761 static int
762 wpi_shutdown(device_t dev)
763 {
764 	struct wpi_softc *sc = device_get_softc(dev);
765 
766 	wpi_stop(sc);
767 	return 0;
768 }
769 
770 static int
771 wpi_suspend(device_t dev)
772 {
773 	struct wpi_softc *sc = device_get_softc(dev);
774 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
775 
776 	ieee80211_suspend_all(ic);
777 	return 0;
778 }
779 
780 static int
781 wpi_resume(device_t dev)
782 {
783 	struct wpi_softc *sc = device_get_softc(dev);
784 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
785 
786 	/* Clear device-specific "PCI retry timeout" register (41h). */
787 	pci_write_config(dev, 0x41, 0, 1);
788 
789 	ieee80211_resume_all(ic);
790 	return 0;
791 }
792 
793 /*
794  * Grab exclusive access to NIC memory.
795  */
796 static int
797 wpi_nic_lock(struct wpi_softc *sc)
798 {
799 	int ntries;
800 
801 	/* Request exclusive access to NIC. */
802 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
803 
804 	/* Spin until we actually get the lock. */
805 	for (ntries = 0; ntries < 1000; ntries++) {
806 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
807 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
808 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
809 			return 0;
810 		DELAY(10);
811 	}
812 
813 	device_printf(sc->sc_dev, "could not lock memory\n");
814 
815 	return ETIMEDOUT;
816 }
817 
818 /*
819  * Release lock on NIC memory.
820  */
821 static __inline void
822 wpi_nic_unlock(struct wpi_softc *sc)
823 {
824 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
825 }
826 
827 static __inline uint32_t
828 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
829 {
830 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
831 	WPI_BARRIER_READ_WRITE(sc);
832 	return WPI_READ(sc, WPI_PRPH_RDATA);
833 }
834 
835 static __inline void
836 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
837 {
838 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
839 	WPI_BARRIER_WRITE(sc);
840 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
841 }
842 
843 static __inline void
844 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
845 {
846 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
847 }
848 
849 static __inline void
850 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
851 {
852 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
853 }
854 
855 static __inline void
856 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
857     const uint32_t *data, int count)
858 {
859 	for (; count > 0; count--, data++, addr += 4)
860 		wpi_prph_write(sc, addr, *data);
861 }
862 
863 static __inline uint32_t
864 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
865 {
866 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
867 	WPI_BARRIER_READ_WRITE(sc);
868 	return WPI_READ(sc, WPI_MEM_RDATA);
869 }
870 
871 static __inline void
872 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
873     int count)
874 {
875 	for (; count > 0; count--, addr += 4)
876 		*data++ = wpi_mem_read(sc, addr);
877 }
878 
879 static int
880 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
881 {
882 	uint8_t *out = data;
883 	uint32_t val;
884 	int error, ntries;
885 
886 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
887 
888 	if ((error = wpi_nic_lock(sc)) != 0)
889 		return error;
890 
891 	for (; count > 0; count -= 2, addr++) {
892 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
893 		for (ntries = 0; ntries < 10; ntries++) {
894 			val = WPI_READ(sc, WPI_EEPROM);
895 			if (val & WPI_EEPROM_READ_VALID)
896 				break;
897 			DELAY(5);
898 		}
899 		if (ntries == 10) {
900 			device_printf(sc->sc_dev,
901 			    "timeout reading ROM at 0x%x\n", addr);
902 			return ETIMEDOUT;
903 		}
904 		*out++= val >> 16;
905 		if (count > 1)
906 			*out ++= val >> 24;
907 	}
908 
909 	wpi_nic_unlock(sc);
910 
911 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
912 
913 	return 0;
914 }
915 
916 static void
917 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
918 {
919 	if (error != 0)
920 		return;
921 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
922 	*(bus_addr_t *)arg = segs[0].ds_addr;
923 }
924 
925 /*
926  * Allocates a contiguous block of dma memory of the requested size and
927  * alignment.
928  */
929 static int
930 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
931     void **kvap, bus_size_t size, bus_size_t alignment)
932 {
933 	int error;
934 
935 	dma->tag = NULL;
936 	dma->size = size;
937 
938 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
939 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
940 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
941 	if (error != 0)
942 		goto fail;
943 
944 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
945 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
946 	if (error != 0)
947 		goto fail;
948 
949 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
950 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
951 	if (error != 0)
952 		goto fail;
953 
954 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
955 
956 	if (kvap != NULL)
957 		*kvap = dma->vaddr;
958 
959 	return 0;
960 
961 fail:	wpi_dma_contig_free(dma);
962 	return error;
963 }
964 
965 static void
966 wpi_dma_contig_free(struct wpi_dma_info *dma)
967 {
968 	if (dma->vaddr != NULL) {
969 		bus_dmamap_sync(dma->tag, dma->map,
970 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
971 		bus_dmamap_unload(dma->tag, dma->map);
972 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
973 		dma->vaddr = NULL;
974 	}
975 	if (dma->tag != NULL) {
976 		bus_dma_tag_destroy(dma->tag);
977 		dma->tag = NULL;
978 	}
979 }
980 
981 /*
982  * Allocate a shared page between host and NIC.
983  */
984 static int
985 wpi_alloc_shared(struct wpi_softc *sc)
986 {
987 	/* Shared buffer must be aligned on a 4KB boundary. */
988 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
989 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
990 }
991 
992 static void
993 wpi_free_shared(struct wpi_softc *sc)
994 {
995 	wpi_dma_contig_free(&sc->shared_dma);
996 }
997 
998 /*
999  * Allocate DMA-safe memory for firmware transfer.
1000  */
1001 static int
1002 wpi_alloc_fwmem(struct wpi_softc *sc)
1003 {
1004 	/* Must be aligned on a 16-byte boundary. */
1005 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1006 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
1007 }
1008 
1009 static void
1010 wpi_free_fwmem(struct wpi_softc *sc)
1011 {
1012 	wpi_dma_contig_free(&sc->fw_dma);
1013 }
1014 
1015 static int
1016 wpi_alloc_rx_ring(struct wpi_softc *sc)
1017 {
1018 	struct wpi_rx_ring *ring = &sc->rxq;
1019 	bus_size_t size;
1020 	int i, error;
1021 
1022 	ring->cur = 0;
1023 	ring->update = 0;
1024 
1025 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1026 
1027 	/* Allocate RX descriptors (16KB aligned.) */
1028 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1029 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1030 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1031 	if (error != 0) {
1032 		device_printf(sc->sc_dev,
1033 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1034 		    __func__, error);
1035 		goto fail;
1036 	}
1037 
1038 	/* Create RX buffer DMA tag. */
1039 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1040 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1041 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1042 	    &ring->data_dmat);
1043 	if (error != 0) {
1044 		device_printf(sc->sc_dev,
1045 		    "%s: could not create RX buf DMA tag, error %d\n",
1046 		    __func__, error);
1047 		goto fail;
1048 	}
1049 
1050 	/*
1051 	 * Allocate and map RX buffers.
1052 	 */
1053 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1054 		struct wpi_rx_data *data = &ring->data[i];
1055 		bus_addr_t paddr;
1056 
1057 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1058 		if (error != 0) {
1059 			device_printf(sc->sc_dev,
1060 			    "%s: could not create RX buf DMA map, error %d\n",
1061 			    __func__, error);
1062 			goto fail;
1063 		}
1064 
1065 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1066 		if (data->m == NULL) {
1067 			device_printf(sc->sc_dev,
1068 			    "%s: could not allocate RX mbuf\n", __func__);
1069 			error = ENOBUFS;
1070 			goto fail;
1071 		}
1072 
1073 		error = bus_dmamap_load(ring->data_dmat, data->map,
1074 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1075 		    &paddr, BUS_DMA_NOWAIT);
1076 		if (error != 0 && error != EFBIG) {
1077 			device_printf(sc->sc_dev,
1078 			    "%s: can't map mbuf (error %d)\n", __func__,
1079 			    error);
1080 			goto fail;
1081 		}
1082 
1083 		/* Set physical address of RX buffer. */
1084 		ring->desc[i] = htole32(paddr);
1085 	}
1086 
1087 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1088 	    BUS_DMASYNC_PREWRITE);
1089 
1090 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1091 
1092 	return 0;
1093 
1094 fail:	wpi_free_rx_ring(sc);
1095 
1096 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1097 
1098 	return error;
1099 }
1100 
1101 static void
1102 wpi_update_rx_ring(struct wpi_softc *sc)
1103 {
1104 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1105 }
1106 
1107 static void
1108 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1109 {
1110 	struct wpi_rx_ring *ring = &sc->rxq;
1111 
1112 	if (ring->update != 0) {
1113 		/* Wait for INT_WAKEUP event. */
1114 		return;
1115 	}
1116 
1117 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1118 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1119 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1120 		    __func__);
1121 		ring->update = 1;
1122 	} else {
1123 		wpi_update_rx_ring(sc);
1124 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1125 	}
1126 }
1127 
1128 static void
1129 wpi_reset_rx_ring(struct wpi_softc *sc)
1130 {
1131 	struct wpi_rx_ring *ring = &sc->rxq;
1132 	int ntries;
1133 
1134 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1135 
1136 	if (wpi_nic_lock(sc) == 0) {
1137 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1138 		for (ntries = 0; ntries < 1000; ntries++) {
1139 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1140 			    WPI_FH_RX_STATUS_IDLE)
1141 				break;
1142 			DELAY(10);
1143 		}
1144 		wpi_nic_unlock(sc);
1145 	}
1146 
1147 	ring->cur = 0;
1148 	ring->update = 0;
1149 }
1150 
1151 static void
1152 wpi_free_rx_ring(struct wpi_softc *sc)
1153 {
1154 	struct wpi_rx_ring *ring = &sc->rxq;
1155 	int i;
1156 
1157 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1158 
1159 	wpi_dma_contig_free(&ring->desc_dma);
1160 
1161 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1162 		struct wpi_rx_data *data = &ring->data[i];
1163 
1164 		if (data->m != NULL) {
1165 			bus_dmamap_sync(ring->data_dmat, data->map,
1166 			    BUS_DMASYNC_POSTREAD);
1167 			bus_dmamap_unload(ring->data_dmat, data->map);
1168 			m_freem(data->m);
1169 			data->m = NULL;
1170 		}
1171 		if (data->map != NULL)
1172 			bus_dmamap_destroy(ring->data_dmat, data->map);
1173 	}
1174 	if (ring->data_dmat != NULL) {
1175 		bus_dma_tag_destroy(ring->data_dmat);
1176 		ring->data_dmat = NULL;
1177 	}
1178 }
1179 
1180 static int
1181 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1182 {
1183 	bus_addr_t paddr;
1184 	bus_size_t size;
1185 	int i, error;
1186 
1187 	ring->qid = qid;
1188 	ring->queued = 0;
1189 	ring->cur = 0;
1190 	ring->update = 0;
1191 
1192 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1193 
1194 	/* Allocate TX descriptors (16KB aligned.) */
1195 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1196 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1197 	    size, WPI_RING_DMA_ALIGN);
1198 	if (error != 0) {
1199 		device_printf(sc->sc_dev,
1200 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1201 		    __func__, error);
1202 		goto fail;
1203 	}
1204 
1205 	/* Update shared area with ring physical address. */
1206 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1207 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1208 	    BUS_DMASYNC_PREWRITE);
1209 
1210 	/*
1211 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1212 	 * to allocate commands space for other rings.
1213 	 * XXX Do we really need to allocate descriptors for other rings?
1214 	 */
1215 	if (qid > WPI_CMD_QUEUE_NUM) {
1216 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1217 		return 0;
1218 	}
1219 
1220 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1221 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1222 	    size, 4);
1223 	if (error != 0) {
1224 		device_printf(sc->sc_dev,
1225 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1226 		    __func__, error);
1227 		goto fail;
1228 	}
1229 
1230 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1231 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1232 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1233 	    &ring->data_dmat);
1234 	if (error != 0) {
1235 		device_printf(sc->sc_dev,
1236 		    "%s: could not create TX buf DMA tag, error %d\n",
1237 		    __func__, error);
1238 		goto fail;
1239 	}
1240 
1241 	paddr = ring->cmd_dma.paddr;
1242 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1243 		struct wpi_tx_data *data = &ring->data[i];
1244 
1245 		data->cmd_paddr = paddr;
1246 		paddr += sizeof (struct wpi_tx_cmd);
1247 
1248 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1249 		if (error != 0) {
1250 			device_printf(sc->sc_dev,
1251 			    "%s: could not create TX buf DMA map, error %d\n",
1252 			    __func__, error);
1253 			goto fail;
1254 		}
1255 	}
1256 
1257 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1258 
1259 	return 0;
1260 
1261 fail:	wpi_free_tx_ring(sc, ring);
1262 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1263 	return error;
1264 }
1265 
1266 static void
1267 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1268 {
1269 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1270 }
1271 
1272 static void
1273 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1274 {
1275 
1276 	if (ring->update != 0) {
1277 		/* Wait for INT_WAKEUP event. */
1278 		return;
1279 	}
1280 
1281 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1282 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1283 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1284 		    __func__, ring->qid);
1285 		ring->update = 1;
1286 	} else {
1287 		wpi_update_tx_ring(sc, ring);
1288 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1289 	}
1290 }
1291 
1292 static void
1293 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1294 {
1295 	int i;
1296 
1297 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1298 
1299 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1300 		struct wpi_tx_data *data = &ring->data[i];
1301 
1302 		if (data->m != NULL) {
1303 			bus_dmamap_sync(ring->data_dmat, data->map,
1304 			    BUS_DMASYNC_POSTWRITE);
1305 			bus_dmamap_unload(ring->data_dmat, data->map);
1306 			m_freem(data->m);
1307 			data->m = NULL;
1308 		}
1309 		if (data->ni != NULL) {
1310 			ieee80211_free_node(data->ni);
1311 			data->ni = NULL;
1312 		}
1313 	}
1314 	/* Clear TX descriptors. */
1315 	memset(ring->desc, 0, ring->desc_dma.size);
1316 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1317 	    BUS_DMASYNC_PREWRITE);
1318 	sc->qfullmsk &= ~(1 << ring->qid);
1319 	ring->queued = 0;
1320 	ring->cur = 0;
1321 	ring->update = 0;
1322 }
1323 
1324 static void
1325 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1326 {
1327 	int i;
1328 
1329 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1330 
1331 	wpi_dma_contig_free(&ring->desc_dma);
1332 	wpi_dma_contig_free(&ring->cmd_dma);
1333 
1334 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1335 		struct wpi_tx_data *data = &ring->data[i];
1336 
1337 		if (data->m != NULL) {
1338 			bus_dmamap_sync(ring->data_dmat, data->map,
1339 			    BUS_DMASYNC_POSTWRITE);
1340 			bus_dmamap_unload(ring->data_dmat, data->map);
1341 			m_freem(data->m);
1342 		}
1343 		if (data->map != NULL)
1344 			bus_dmamap_destroy(ring->data_dmat, data->map);
1345 	}
1346 	if (ring->data_dmat != NULL) {
1347 		bus_dma_tag_destroy(ring->data_dmat);
1348 		ring->data_dmat = NULL;
1349 	}
1350 }
1351 
1352 /*
1353  * Extract various information from EEPROM.
1354  */
1355 static int
1356 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1357 {
1358 #define WPI_CHK(res) do {		\
1359 	if ((error = res) != 0)		\
1360 		goto fail;		\
1361 } while (0)
1362 	int error, i;
1363 
1364 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1365 
1366 	/* Adapter has to be powered on for EEPROM access to work. */
1367 	if ((error = wpi_apm_init(sc)) != 0) {
1368 		device_printf(sc->sc_dev,
1369 		    "%s: could not power ON adapter, error %d\n", __func__,
1370 		    error);
1371 		return error;
1372 	}
1373 
1374 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1375 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1376 		error = EIO;
1377 		goto fail;
1378 	}
1379 	/* Clear HW ownership of EEPROM. */
1380 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1381 
1382 	/* Read the hardware capabilities, revision and SKU type. */
1383 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1384 	    sizeof(sc->cap)));
1385 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1386 	    sizeof(sc->rev)));
1387 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1388 	    sizeof(sc->type)));
1389 
1390 	sc->rev = le16toh(sc->rev);
1391 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1392 	    sc->rev, sc->type);
1393 
1394 	/* Read the regulatory domain (4 ASCII characters.) */
1395 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1396 	    sizeof(sc->domain)));
1397 
1398 	/* Read MAC address. */
1399 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1400 	    IEEE80211_ADDR_LEN));
1401 
1402 	/* Read the list of authorized channels. */
1403 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1404 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1405 
1406 	/* Read the list of TX power groups. */
1407 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1408 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1409 
1410 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1411 
1412 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1413 	    __func__);
1414 
1415 	return error;
1416 #undef WPI_CHK
1417 }
1418 
1419 /*
1420  * Translate EEPROM flags to net80211.
1421  */
1422 static uint32_t
1423 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1424 {
1425 	uint32_t nflags;
1426 
1427 	nflags = 0;
1428 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1429 		nflags |= IEEE80211_CHAN_PASSIVE;
1430 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1431 		nflags |= IEEE80211_CHAN_NOADHOC;
1432 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1433 		nflags |= IEEE80211_CHAN_DFS;
1434 		/* XXX apparently IBSS may still be marked */
1435 		nflags |= IEEE80211_CHAN_NOADHOC;
1436 	}
1437 
1438 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1439 	if (nflags & IEEE80211_CHAN_NOADHOC)
1440 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1441 
1442 	return nflags;
1443 }
1444 
1445 static void
1446 wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1447 {
1448 	struct ifnet *ifp = sc->sc_ifp;
1449 	struct ieee80211com *ic = ifp->if_l2com;
1450 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1451 	const struct wpi_chan_band *band = &wpi_bands[n];
1452 	struct ieee80211_channel *c;
1453 	uint8_t chan;
1454 	int i, nflags;
1455 
1456 	for (i = 0; i < band->nchan; i++) {
1457 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1458 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1459 			    "Channel Not Valid: %d, band %d\n",
1460 			     band->chan[i],n);
1461 			continue;
1462 		}
1463 
1464 		chan = band->chan[i];
1465 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1466 
1467 		c = &ic->ic_channels[ic->ic_nchans++];
1468 		c->ic_ieee = chan;
1469 		c->ic_maxregpower = channels[i].maxpwr;
1470 		c->ic_maxpower = 2*c->ic_maxregpower;
1471 
1472 		if (n == 0) {	/* 2GHz band */
1473 			c->ic_freq = ieee80211_ieee2mhz(chan,
1474 			    IEEE80211_CHAN_G);
1475 
1476 			/* G =>'s B is supported */
1477 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1478 			c = &ic->ic_channels[ic->ic_nchans++];
1479 			c[0] = c[-1];
1480 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1481 		} else {	/* 5GHz band */
1482 			c->ic_freq = ieee80211_ieee2mhz(chan,
1483 			    IEEE80211_CHAN_A);
1484 
1485 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1486 		}
1487 
1488 		/* Save maximum allowed TX power for this channel. */
1489 		sc->maxpwr[chan] = channels[i].maxpwr;
1490 
1491 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1492 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1493 		    " offset %d\n", chan, c->ic_freq,
1494 		    channels[i].flags, sc->maxpwr[chan],
1495 		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1496 	}
1497 }
1498 
1499 /**
1500  * Read the eeprom to find out what channels are valid for the given
1501  * band and update net80211 with what we find.
1502  */
1503 static int
1504 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1505 {
1506 	struct ifnet *ifp = sc->sc_ifp;
1507 	struct ieee80211com *ic = ifp->if_l2com;
1508 	const struct wpi_chan_band *band = &wpi_bands[n];
1509 	int error;
1510 
1511 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1512 
1513 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1514 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1515 	if (error != 0) {
1516 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1517 		return error;
1518 	}
1519 
1520 	wpi_read_eeprom_band(sc, n);
1521 
1522 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1523 
1524 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1525 
1526 	return 0;
1527 }
1528 
1529 static struct wpi_eeprom_chan *
1530 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1531 {
1532 	int i, j;
1533 
1534 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1535 		for (i = 0; i < wpi_bands[j].nchan; i++)
1536 			if (wpi_bands[j].chan[i] == c->ic_ieee)
1537 				return &sc->eeprom_channels[j][i];
1538 
1539 	return NULL;
1540 }
1541 
1542 /*
1543  * Enforce flags read from EEPROM.
1544  */
1545 static int
1546 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1547     int nchan, struct ieee80211_channel chans[])
1548 {
1549 	struct ifnet *ifp = ic->ic_ifp;
1550 	struct wpi_softc *sc = ifp->if_softc;
1551 	int i;
1552 
1553 	for (i = 0; i < nchan; i++) {
1554 		struct ieee80211_channel *c = &chans[i];
1555 		struct wpi_eeprom_chan *channel;
1556 
1557 		channel = wpi_find_eeprom_channel(sc, c);
1558 		if (channel == NULL) {
1559 			if_printf(ic->ic_ifp,
1560 			    "%s: invalid channel %u freq %u/0x%x\n",
1561 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1562 			return EINVAL;
1563 		}
1564 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 static int
1571 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1572 {
1573 	struct wpi_power_group *group = &sc->groups[n];
1574 	struct wpi_eeprom_group rgroup;
1575 	int i, error;
1576 
1577 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1578 
1579 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1580 	    &rgroup, sizeof rgroup)) != 0) {
1581 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1582 		return error;
1583 	}
1584 
1585 	/* Save TX power group information. */
1586 	group->chan   = rgroup.chan;
1587 	group->maxpwr = rgroup.maxpwr;
1588 	/* Retrieve temperature at which the samples were taken. */
1589 	group->temp   = (int16_t)le16toh(rgroup.temp);
1590 
1591 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1592 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1593 	    group->maxpwr, group->temp);
1594 
1595 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1596 		group->samples[i].index = rgroup.samples[i].index;
1597 		group->samples[i].power = rgroup.samples[i].power;
1598 
1599 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1600 		    "\tsample %d: index=%d power=%d\n", i,
1601 		    group->samples[i].index, group->samples[i].power);
1602 	}
1603 
1604 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1605 
1606 	return 0;
1607 }
1608 
1609 static int
1610 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1611 {
1612 	int newid = WPI_ID_IBSS_MIN;
1613 
1614 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1615 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1616 			sc->nodesmsk |= 1 << newid;
1617 			return newid;
1618 		}
1619 	}
1620 
1621 	return WPI_ID_UNDEFINED;
1622 }
1623 
1624 static __inline int
1625 wpi_add_node_entry_sta(struct wpi_softc *sc)
1626 {
1627 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1628 
1629 	return WPI_ID_BSS;
1630 }
1631 
1632 static __inline int
1633 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1634 {
1635 	if (id == WPI_ID_UNDEFINED)
1636 		return 0;
1637 
1638 	return (sc->nodesmsk >> id) & 1;
1639 }
1640 
1641 static __inline void
1642 wpi_clear_node_table(struct wpi_softc *sc)
1643 {
1644 	sc->nodesmsk = 0;
1645 }
1646 
1647 static __inline void
1648 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1649 {
1650 	sc->nodesmsk &= ~(1 << id);
1651 }
1652 
1653 static struct ieee80211_node *
1654 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1655 {
1656 	struct wpi_node *wn;
1657 
1658 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1659 	    M_NOWAIT | M_ZERO);
1660 
1661 	if (wn == NULL)
1662 		return NULL;
1663 
1664 	wn->id = WPI_ID_UNDEFINED;
1665 
1666 	return &wn->ni;
1667 }
1668 
1669 static void
1670 wpi_node_free(struct ieee80211_node *ni)
1671 {
1672 	struct ieee80211com *ic = ni->ni_ic;
1673 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1674 	struct wpi_node *wn = WPI_NODE(ni);
1675 
1676 	if (wn->id != WPI_ID_UNDEFINED) {
1677 		WPI_NT_LOCK(sc);
1678 		if (wpi_check_node_entry(sc, wn->id)) {
1679 			wpi_del_node_entry(sc, wn->id);
1680 			wpi_del_node(sc, ni);
1681 		}
1682 		WPI_NT_UNLOCK(sc);
1683 	}
1684 
1685 	sc->sc_node_free(ni);
1686 }
1687 
1688 static __inline int
1689 wpi_check_bss_filter(struct wpi_softc *sc)
1690 {
1691 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1692 }
1693 
1694 static void
1695 wpi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, int rssi,
1696     int nf)
1697 {
1698 	struct ieee80211vap *vap = ni->ni_vap;
1699 	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1700 	struct wpi_vap *wvp = WPI_VAP(vap);
1701 	uint64_t ni_tstamp, rx_tstamp;
1702 
1703 	wvp->wv_recv_mgmt(ni, m, subtype, rssi, nf);
1704 
1705 	if (vap->iv_opmode == IEEE80211_M_IBSS &&
1706 	    vap->iv_state == IEEE80211_S_RUN &&
1707 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1708 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1709 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1710 		rx_tstamp = le64toh(sc->rx_tstamp);
1711 
1712 		if (ni_tstamp >= rx_tstamp) {
1713 			DPRINTF(sc, WPI_DEBUG_STATE,
1714 			    "ibss merge, tsf %ju tstamp %ju\n",
1715 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1716 			(void) ieee80211_ibss_merge(ni);
1717 		}
1718 	}
1719 }
1720 
1721 static void
1722 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1723 {
1724 	struct wpi_softc *sc = arg;
1725 	struct wpi_node *wn = WPI_NODE(ni);
1726 	int error;
1727 
1728 	WPI_NT_LOCK(sc);
1729 	if (wn->id != WPI_ID_UNDEFINED) {
1730 		wn->id = WPI_ID_UNDEFINED;
1731 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1732 			device_printf(sc->sc_dev,
1733 			    "%s: could not add IBSS node, error %d\n",
1734 			    __func__, error);
1735 		}
1736 	}
1737 	WPI_NT_UNLOCK(sc);
1738 }
1739 
1740 static void
1741 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1742 {
1743 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1744 
1745 	/* Set group keys once. */
1746 	WPI_NT_LOCK(sc);
1747 	wvp->wv_gtk = 0;
1748 	WPI_NT_UNLOCK(sc);
1749 
1750 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1751 	ieee80211_crypto_reload_keys(ic);
1752 }
1753 
1754 /**
1755  * Called by net80211 when ever there is a change to 80211 state machine
1756  */
1757 static int
1758 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1759 {
1760 	struct wpi_vap *wvp = WPI_VAP(vap);
1761 	struct ieee80211com *ic = vap->iv_ic;
1762 	struct ifnet *ifp = ic->ic_ifp;
1763 	struct wpi_softc *sc = ifp->if_softc;
1764 	int error = 0;
1765 
1766 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1767 
1768 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1769 		ieee80211_state_name[vap->iv_state],
1770 		ieee80211_state_name[nstate]);
1771 
1772 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1773 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1774 			device_printf(sc->sc_dev,
1775 			    "%s: could not set power saving level\n",
1776 			    __func__);
1777 			return error;
1778 		}
1779 
1780 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1781 	}
1782 
1783 	switch (nstate) {
1784 	case IEEE80211_S_SCAN:
1785 		WPI_RXON_LOCK(sc);
1786 		if (wpi_check_bss_filter(sc) != 0) {
1787 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1788 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1789 				device_printf(sc->sc_dev,
1790 				    "%s: could not send RXON\n", __func__);
1791 			}
1792 		}
1793 		WPI_RXON_UNLOCK(sc);
1794 		break;
1795 
1796 	case IEEE80211_S_ASSOC:
1797 		if (vap->iv_state != IEEE80211_S_RUN)
1798 			break;
1799 		/* FALLTHROUGH */
1800 	case IEEE80211_S_AUTH:
1801 		/*
1802 		 * NB: do not optimize AUTH -> AUTH state transmission -
1803 		 * this will break powersave with non-QoS AP!
1804 		 */
1805 
1806 		/*
1807 		 * The node must be registered in the firmware before auth.
1808 		 * Also the associd must be cleared on RUN -> ASSOC
1809 		 * transitions.
1810 		 */
1811 		if ((error = wpi_auth(sc, vap)) != 0) {
1812 			device_printf(sc->sc_dev,
1813 			    "%s: could not move to AUTH state, error %d\n",
1814 			    __func__, error);
1815 		}
1816 		break;
1817 
1818 	case IEEE80211_S_RUN:
1819 		/*
1820 		 * RUN -> RUN transition:
1821 		 * STA mode: Just restart the timers.
1822 		 * IBSS mode: Process IBSS merge.
1823 		 */
1824 		if (vap->iv_state == IEEE80211_S_RUN) {
1825 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1826 				WPI_RXON_LOCK(sc);
1827 				wpi_calib_timeout(sc);
1828 				WPI_RXON_UNLOCK(sc);
1829 				break;
1830 			} else {
1831 				/*
1832 				 * Drop the BSS_FILTER bit
1833 				 * (there is no another way to change bssid).
1834 				 */
1835 				WPI_RXON_LOCK(sc);
1836 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1837 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1838 					device_printf(sc->sc_dev,
1839 					    "%s: could not send RXON\n",
1840 					    __func__);
1841 				}
1842 				WPI_RXON_UNLOCK(sc);
1843 
1844 				/* Restore all what was lost. */
1845 				wpi_restore_node_table(sc, wvp);
1846 
1847 				/* XXX set conditionally? */
1848 				wpi_updateedca(ic);
1849 			}
1850 		}
1851 
1852 		/*
1853 		 * !RUN -> RUN requires setting the association id
1854 		 * which is done with a firmware cmd.  We also defer
1855 		 * starting the timers until that work is done.
1856 		 */
1857 		if ((error = wpi_run(sc, vap)) != 0) {
1858 			device_printf(sc->sc_dev,
1859 			    "%s: could not move to RUN state\n", __func__);
1860 		}
1861 		break;
1862 
1863 	default:
1864 		break;
1865 	}
1866 	if (error != 0) {
1867 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1868 		return error;
1869 	}
1870 
1871 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1872 
1873 	return wvp->wv_newstate(vap, nstate, arg);
1874 }
1875 
1876 static void
1877 wpi_calib_timeout(void *arg)
1878 {
1879 	struct wpi_softc *sc = arg;
1880 
1881 	if (wpi_check_bss_filter(sc) == 0)
1882 		return;
1883 
1884 	wpi_power_calibration(sc);
1885 
1886 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1887 }
1888 
1889 static __inline uint8_t
1890 rate2plcp(const uint8_t rate)
1891 {
1892 	switch (rate) {
1893 	case 12:	return 0xd;
1894 	case 18:	return 0xf;
1895 	case 24:	return 0x5;
1896 	case 36:	return 0x7;
1897 	case 48:	return 0x9;
1898 	case 72:	return 0xb;
1899 	case 96:	return 0x1;
1900 	case 108:	return 0x3;
1901 	case 2:		return 10;
1902 	case 4:		return 20;
1903 	case 11:	return 55;
1904 	case 22:	return 110;
1905 	default:	return 0;
1906 	}
1907 }
1908 
1909 static __inline uint8_t
1910 plcp2rate(const uint8_t plcp)
1911 {
1912 	switch (plcp) {
1913 	case 0xd:	return 12;
1914 	case 0xf:	return 18;
1915 	case 0x5:	return 24;
1916 	case 0x7:	return 36;
1917 	case 0x9:	return 48;
1918 	case 0xb:	return 72;
1919 	case 0x1:	return 96;
1920 	case 0x3:	return 108;
1921 	case 10:	return 2;
1922 	case 20:	return 4;
1923 	case 55:	return 11;
1924 	case 110:	return 22;
1925 	default:	return 0;
1926 	}
1927 }
1928 
1929 /* Quickly determine if a given rate is CCK or OFDM. */
1930 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1931 
1932 static void
1933 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1934     struct wpi_rx_data *data)
1935 {
1936 	struct ifnet *ifp = sc->sc_ifp;
1937 	struct ieee80211com *ic = ifp->if_l2com;
1938 	struct wpi_rx_ring *ring = &sc->rxq;
1939 	struct wpi_rx_stat *stat;
1940 	struct wpi_rx_head *head;
1941 	struct wpi_rx_tail *tail;
1942 	struct ieee80211_frame *wh;
1943 	struct ieee80211_node *ni;
1944 	struct mbuf *m, *m1;
1945 	bus_addr_t paddr;
1946 	uint32_t flags;
1947 	uint16_t len;
1948 	int error;
1949 
1950 	stat = (struct wpi_rx_stat *)(desc + 1);
1951 
1952 	if (stat->len > WPI_STAT_MAXLEN) {
1953 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1954 		goto fail1;
1955 	}
1956 
1957 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1958 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1959 	len = le16toh(head->len);
1960 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1961 	flags = le32toh(tail->flags);
1962 
1963 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1964 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1965 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1966 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1967 
1968 	/* Discard frames with a bad FCS early. */
1969 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1970 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1971 		    __func__, flags);
1972 		goto fail1;
1973 	}
1974 	/* Discard frames that are too short. */
1975 	if (len < sizeof (struct ieee80211_frame_ack)) {
1976 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1977 		    __func__, len);
1978 		goto fail1;
1979 	}
1980 
1981 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1982 	if (m1 == NULL) {
1983 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1984 		    __func__);
1985 		goto fail1;
1986 	}
1987 	bus_dmamap_unload(ring->data_dmat, data->map);
1988 
1989 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1990 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1991 	if (error != 0 && error != EFBIG) {
1992 		device_printf(sc->sc_dev,
1993 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1994 		m_freem(m1);
1995 
1996 		/* Try to reload the old mbuf. */
1997 		error = bus_dmamap_load(ring->data_dmat, data->map,
1998 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1999 		    &paddr, BUS_DMA_NOWAIT);
2000 		if (error != 0 && error != EFBIG) {
2001 			panic("%s: could not load old RX mbuf", __func__);
2002 		}
2003 		/* Physical address may have changed. */
2004 		ring->desc[ring->cur] = htole32(paddr);
2005 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2006 		    BUS_DMASYNC_PREWRITE);
2007 		goto fail1;
2008 	}
2009 
2010 	m = data->m;
2011 	data->m = m1;
2012 	/* Update RX descriptor. */
2013 	ring->desc[ring->cur] = htole32(paddr);
2014 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2015 	    BUS_DMASYNC_PREWRITE);
2016 
2017 	/* Finalize mbuf. */
2018 	m->m_pkthdr.rcvif = ifp;
2019 	m->m_data = (caddr_t)(head + 1);
2020 	m->m_pkthdr.len = m->m_len = len;
2021 
2022 	/* Grab a reference to the source node. */
2023 	wh = mtod(m, struct ieee80211_frame *);
2024 
2025 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2026 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2027 		/* Check whether decryption was successful or not. */
2028 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2029 			DPRINTF(sc, WPI_DEBUG_RECV,
2030 			    "CCMP decryption failed 0x%x\n", flags);
2031 			goto fail2;
2032 		}
2033 		m->m_flags |= M_WEP;
2034 	}
2035 
2036 	if (len >= sizeof(struct ieee80211_frame_min))
2037 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2038 	else
2039 		ni = NULL;
2040 
2041 	sc->rx_tstamp = tail->tstamp;
2042 
2043 	if (ieee80211_radiotap_active(ic)) {
2044 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2045 
2046 		tap->wr_flags = 0;
2047 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2048 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2049 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2050 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2051 		tap->wr_tsft = tail->tstamp;
2052 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2053 		tap->wr_rate = plcp2rate(head->plcp);
2054 	}
2055 
2056 	WPI_UNLOCK(sc);
2057 
2058 	/* Send the frame to the 802.11 layer. */
2059 	if (ni != NULL) {
2060 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2061 		/* Node is no longer needed. */
2062 		ieee80211_free_node(ni);
2063 	} else
2064 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2065 
2066 	WPI_LOCK(sc);
2067 
2068 	return;
2069 
2070 fail2:	m_freem(m);
2071 
2072 fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2073 }
2074 
2075 static void
2076 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2077     struct wpi_rx_data *data)
2078 {
2079 	/* Ignore */
2080 }
2081 
2082 static void
2083 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2084 {
2085 	struct ifnet *ifp = sc->sc_ifp;
2086 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2087 	struct wpi_tx_data *data = &ring->data[desc->idx];
2088 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2089 	struct mbuf *m;
2090 	struct ieee80211_node *ni;
2091 	struct ieee80211vap *vap;
2092 	struct ieee80211com *ic;
2093 	uint32_t status = le32toh(stat->status);
2094 	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2095 
2096 	KASSERT(data->ni != NULL, ("no node"));
2097 	KASSERT(data->m != NULL, ("no mbuf"));
2098 
2099 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2100 
2101 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2102 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2103 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2104 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2105 
2106 	/* Unmap and free mbuf. */
2107 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2108 	bus_dmamap_unload(ring->data_dmat, data->map);
2109 	m = data->m, data->m = NULL;
2110 	ni = data->ni, data->ni = NULL;
2111 	vap = ni->ni_vap;
2112 	ic = vap->iv_ic;
2113 
2114 	/*
2115 	 * Update rate control statistics for the node.
2116 	 */
2117 	if (status & WPI_TX_STATUS_FAIL) {
2118 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2119 		ieee80211_ratectl_tx_complete(vap, ni,
2120 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2121 	} else {
2122 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2123 		ieee80211_ratectl_tx_complete(vap, ni,
2124 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2125 	}
2126 
2127 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2128 
2129 	WPI_TXQ_STATE_LOCK(sc);
2130 	ring->queued -= 1;
2131 	if (ring->queued > 0) {
2132 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2133 
2134 		if (sc->qfullmsk != 0 &&
2135 		    ring->queued < WPI_TX_RING_LOMARK) {
2136 			sc->qfullmsk &= ~(1 << ring->qid);
2137 			IF_LOCK(&ifp->if_snd);
2138 			if (sc->qfullmsk == 0 &&
2139 			    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2140 				ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2141 				IF_UNLOCK(&ifp->if_snd);
2142 				ieee80211_runtask(ic, &sc->sc_start_task);
2143 			} else
2144 				IF_UNLOCK(&ifp->if_snd);
2145 		}
2146 	} else
2147 		callout_stop(&sc->tx_timeout);
2148 	WPI_TXQ_STATE_UNLOCK(sc);
2149 
2150 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2151 }
2152 
2153 /*
2154  * Process a "command done" firmware notification.  This is where we wakeup
2155  * processes waiting for a synchronous command completion.
2156  */
2157 static void
2158 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2159 {
2160 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2161 	struct wpi_tx_data *data;
2162 
2163 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2164 				   "type %s len %d\n", desc->qid, desc->idx,
2165 				   desc->flags, wpi_cmd_str(desc->type),
2166 				   le32toh(desc->len));
2167 
2168 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2169 		return;	/* Not a command ack. */
2170 
2171 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2172 
2173 	data = &ring->data[desc->idx];
2174 
2175 	/* If the command was mapped in an mbuf, free it. */
2176 	if (data->m != NULL) {
2177 		bus_dmamap_sync(ring->data_dmat, data->map,
2178 		    BUS_DMASYNC_POSTWRITE);
2179 		bus_dmamap_unload(ring->data_dmat, data->map);
2180 		m_freem(data->m);
2181 		data->m = NULL;
2182 	}
2183 
2184 	wakeup(&ring->cmd[desc->idx]);
2185 
2186 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2187 		WPI_TXQ_LOCK(sc);
2188 		if (sc->sc_flags & WPI_PS_PATH) {
2189 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2190 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2191 		} else {
2192 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2193 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2194 		}
2195 		WPI_TXQ_UNLOCK(sc);
2196 	}
2197 }
2198 
2199 static void
2200 wpi_notif_intr(struct wpi_softc *sc)
2201 {
2202 	struct ifnet *ifp = sc->sc_ifp;
2203 	struct ieee80211com *ic = ifp->if_l2com;
2204 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2205 	uint32_t hw;
2206 
2207 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2208 	    BUS_DMASYNC_POSTREAD);
2209 
2210 	hw = le32toh(sc->shared->next) & 0xfff;
2211 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2212 
2213 	while (sc->rxq.cur != hw) {
2214 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2215 
2216 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2217 		struct wpi_rx_desc *desc;
2218 
2219 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2220 		    BUS_DMASYNC_POSTREAD);
2221 		desc = mtod(data->m, struct wpi_rx_desc *);
2222 
2223 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2224 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2225 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2226 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2227 
2228 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2229 			/* Reply to a command. */
2230 			wpi_cmd_done(sc, desc);
2231 		}
2232 
2233 		switch (desc->type) {
2234 		case WPI_RX_DONE:
2235 			/* An 802.11 frame has been received. */
2236 			wpi_rx_done(sc, desc, data);
2237 
2238 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2239 				/* wpi_stop() was called. */
2240 				return;
2241 			}
2242 
2243 			break;
2244 
2245 		case WPI_TX_DONE:
2246 			/* An 802.11 frame has been transmitted. */
2247 			wpi_tx_done(sc, desc);
2248 			break;
2249 
2250 		case WPI_RX_STATISTICS:
2251 		case WPI_BEACON_STATISTICS:
2252 			wpi_rx_statistics(sc, desc, data);
2253 			break;
2254 
2255 		case WPI_BEACON_MISSED:
2256 		{
2257 			struct wpi_beacon_missed *miss =
2258 			    (struct wpi_beacon_missed *)(desc + 1);
2259 			uint32_t expected, misses, received, threshold;
2260 
2261 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2262 			    BUS_DMASYNC_POSTREAD);
2263 
2264 			misses = le32toh(miss->consecutive);
2265 			expected = le32toh(miss->expected);
2266 			received = le32toh(miss->received);
2267 			threshold = MAX(2, vap->iv_bmissthreshold);
2268 
2269 			DPRINTF(sc, WPI_DEBUG_BMISS,
2270 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2271 			    __func__, misses, le32toh(miss->total), received,
2272 			    expected);
2273 
2274 			if (misses >= threshold ||
2275 			    (received == 0 && expected >= threshold)) {
2276 				WPI_RXON_LOCK(sc);
2277 				if (callout_pending(&sc->scan_timeout)) {
2278 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2279 					    0, 1);
2280 				}
2281 				WPI_RXON_UNLOCK(sc);
2282 				if (vap->iv_state == IEEE80211_S_RUN &&
2283 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2284 					ieee80211_beacon_miss(ic);
2285 			}
2286 
2287 			break;
2288 		}
2289 #ifdef WPI_DEBUG
2290 		case WPI_BEACON_SENT:
2291 		{
2292 			struct wpi_tx_stat *stat =
2293 			    (struct wpi_tx_stat *)(desc + 1);
2294 			uint64_t *tsf = (uint64_t *)(stat + 1);
2295 			uint32_t *mode = (uint32_t *)(tsf + 1);
2296 
2297 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2298 			    BUS_DMASYNC_POSTREAD);
2299 
2300 			DPRINTF(sc, WPI_DEBUG_BEACON,
2301 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2302 			    "duration %u, status %x, tsf %ju, mode %x\n",
2303 			    stat->rtsfailcnt, stat->ackfailcnt,
2304 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2305 			    le32toh(stat->status), *tsf, *mode);
2306 
2307 			break;
2308 		}
2309 #endif
2310 		case WPI_UC_READY:
2311 		{
2312 			struct wpi_ucode_info *uc =
2313 			    (struct wpi_ucode_info *)(desc + 1);
2314 
2315 			/* The microcontroller is ready. */
2316 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2317 			    BUS_DMASYNC_POSTREAD);
2318 			DPRINTF(sc, WPI_DEBUG_RESET,
2319 			    "microcode alive notification version=%d.%d "
2320 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2321 			    uc->subtype, le32toh(uc->valid));
2322 
2323 			if (le32toh(uc->valid) != 1) {
2324 				device_printf(sc->sc_dev,
2325 				    "microcontroller initialization failed\n");
2326 				wpi_stop_locked(sc);
2327 			}
2328 			/* Save the address of the error log in SRAM. */
2329 			sc->errptr = le32toh(uc->errptr);
2330 			break;
2331 		}
2332 		case WPI_STATE_CHANGED:
2333 		{
2334 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2335 			    BUS_DMASYNC_POSTREAD);
2336 
2337 			uint32_t *status = (uint32_t *)(desc + 1);
2338 
2339 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2340 			    le32toh(*status));
2341 
2342 			if (le32toh(*status) & 1) {
2343 				WPI_NT_LOCK(sc);
2344 				wpi_clear_node_table(sc);
2345 				WPI_NT_UNLOCK(sc);
2346 				taskqueue_enqueue(sc->sc_tq,
2347 				    &sc->sc_radiooff_task);
2348 				return;
2349 			}
2350 			break;
2351 		}
2352 #ifdef WPI_DEBUG
2353 		case WPI_START_SCAN:
2354 		{
2355 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2356 			    BUS_DMASYNC_POSTREAD);
2357 
2358 			struct wpi_start_scan *scan =
2359 			    (struct wpi_start_scan *)(desc + 1);
2360 			DPRINTF(sc, WPI_DEBUG_SCAN,
2361 			    "%s: scanning channel %d status %x\n",
2362 			    __func__, scan->chan, le32toh(scan->status));
2363 
2364 			break;
2365 		}
2366 #endif
2367 		case WPI_STOP_SCAN:
2368 		{
2369 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2370 			    BUS_DMASYNC_POSTREAD);
2371 
2372 			struct wpi_stop_scan *scan =
2373 			    (struct wpi_stop_scan *)(desc + 1);
2374 
2375 			DPRINTF(sc, WPI_DEBUG_SCAN,
2376 			    "scan finished nchan=%d status=%d chan=%d\n",
2377 			    scan->nchan, scan->status, scan->chan);
2378 
2379 			WPI_RXON_LOCK(sc);
2380 			callout_stop(&sc->scan_timeout);
2381 			WPI_RXON_UNLOCK(sc);
2382 			if (scan->status == WPI_SCAN_ABORTED)
2383 				ieee80211_cancel_scan(vap);
2384 			else
2385 				ieee80211_scan_next(vap);
2386 			break;
2387 		}
2388 		}
2389 
2390 		if (sc->rxq.cur % 8 == 0) {
2391 			/* Tell the firmware what we have processed. */
2392 			sc->sc_update_rx_ring(sc);
2393 		}
2394 	}
2395 }
2396 
2397 /*
2398  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2399  * from power-down sleep mode.
2400  */
2401 static void
2402 wpi_wakeup_intr(struct wpi_softc *sc)
2403 {
2404 	int qid;
2405 
2406 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2407 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2408 
2409 	/* Wakeup RX and TX rings. */
2410 	if (sc->rxq.update) {
2411 		sc->rxq.update = 0;
2412 		wpi_update_rx_ring(sc);
2413 	}
2414 	WPI_TXQ_LOCK(sc);
2415 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2416 		struct wpi_tx_ring *ring = &sc->txq[qid];
2417 
2418 		if (ring->update) {
2419 			ring->update = 0;
2420 			wpi_update_tx_ring(sc, ring);
2421 		}
2422 	}
2423 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2424 	WPI_TXQ_UNLOCK(sc);
2425 }
2426 
2427 /*
2428  * This function prints firmware registers
2429  */
2430 #ifdef WPI_DEBUG
2431 static void
2432 wpi_debug_registers(struct wpi_softc *sc)
2433 {
2434 	size_t i;
2435 	static const uint32_t csr_tbl[] = {
2436 		WPI_HW_IF_CONFIG,
2437 		WPI_INT,
2438 		WPI_INT_MASK,
2439 		WPI_FH_INT,
2440 		WPI_GPIO_IN,
2441 		WPI_RESET,
2442 		WPI_GP_CNTRL,
2443 		WPI_EEPROM,
2444 		WPI_EEPROM_GP,
2445 		WPI_GIO,
2446 		WPI_UCODE_GP1,
2447 		WPI_UCODE_GP2,
2448 		WPI_GIO_CHICKEN,
2449 		WPI_ANA_PLL,
2450 		WPI_DBG_HPET_MEM,
2451 	};
2452 	static const uint32_t prph_tbl[] = {
2453 		WPI_APMG_CLK_CTRL,
2454 		WPI_APMG_PS,
2455 		WPI_APMG_PCI_STT,
2456 		WPI_APMG_RFKILL,
2457 	};
2458 
2459 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2460 
2461 	for (i = 0; i < nitems(csr_tbl); i++) {
2462 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2463 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2464 
2465 		if ((i + 1) % 2 == 0)
2466 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2467 	}
2468 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2469 
2470 	if (wpi_nic_lock(sc) == 0) {
2471 		for (i = 0; i < nitems(prph_tbl); i++) {
2472 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2473 			    wpi_get_prph_string(prph_tbl[i]),
2474 			    wpi_prph_read(sc, prph_tbl[i]));
2475 
2476 			if ((i + 1) % 2 == 0)
2477 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2478 		}
2479 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2480 		wpi_nic_unlock(sc);
2481 	} else {
2482 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2483 		    "Cannot access internal registers.\n");
2484 	}
2485 }
2486 #endif
2487 
2488 /*
2489  * Dump the error log of the firmware when a firmware panic occurs.  Although
2490  * we can't debug the firmware because it is neither open source nor free, it
2491  * can help us to identify certain classes of problems.
2492  */
2493 static void
2494 wpi_fatal_intr(struct wpi_softc *sc)
2495 {
2496 	struct wpi_fw_dump dump;
2497 	uint32_t i, offset, count;
2498 
2499 	/* Check that the error log address is valid. */
2500 	if (sc->errptr < WPI_FW_DATA_BASE ||
2501 	    sc->errptr + sizeof (dump) >
2502 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2503 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2504 		    sc->errptr);
2505 		return;
2506 	}
2507 	if (wpi_nic_lock(sc) != 0) {
2508 		printf("%s: could not read firmware error log\n", __func__);
2509 		return;
2510 	}
2511 	/* Read number of entries in the log. */
2512 	count = wpi_mem_read(sc, sc->errptr);
2513 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2514 		printf("%s: invalid count field (count = %u)\n", __func__,
2515 		    count);
2516 		wpi_nic_unlock(sc);
2517 		return;
2518 	}
2519 	/* Skip "count" field. */
2520 	offset = sc->errptr + sizeof (uint32_t);
2521 	printf("firmware error log (count = %u):\n", count);
2522 	for (i = 0; i < count; i++) {
2523 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2524 		    sizeof (dump) / sizeof (uint32_t));
2525 
2526 		printf("  error type = \"%s\" (0x%08X)\n",
2527 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2528 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2529 		    dump.desc);
2530 		printf("  error data      = 0x%08X\n",
2531 		    dump.data);
2532 		printf("  branch link     = 0x%08X%08X\n",
2533 		    dump.blink[0], dump.blink[1]);
2534 		printf("  interrupt link  = 0x%08X%08X\n",
2535 		    dump.ilink[0], dump.ilink[1]);
2536 		printf("  time            = %u\n", dump.time);
2537 
2538 		offset += sizeof (dump);
2539 	}
2540 	wpi_nic_unlock(sc);
2541 	/* Dump driver status (TX and RX rings) while we're here. */
2542 	printf("driver status:\n");
2543 	WPI_TXQ_LOCK(sc);
2544 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2545 		struct wpi_tx_ring *ring = &sc->txq[i];
2546 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2547 		    i, ring->qid, ring->cur, ring->queued);
2548 	}
2549 	WPI_TXQ_UNLOCK(sc);
2550 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2551 }
2552 
2553 static void
2554 wpi_intr(void *arg)
2555 {
2556 	struct wpi_softc *sc = arg;
2557 	struct ifnet *ifp = sc->sc_ifp;
2558 	uint32_t r1, r2;
2559 
2560 	WPI_LOCK(sc);
2561 
2562 	/* Disable interrupts. */
2563 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2564 
2565 	r1 = WPI_READ(sc, WPI_INT);
2566 
2567 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2568 		goto end;	/* Hardware gone! */
2569 
2570 	r2 = WPI_READ(sc, WPI_FH_INT);
2571 
2572 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2573 	    r1, r2);
2574 
2575 	if (r1 == 0 && r2 == 0)
2576 		goto done;	/* Interrupt not for us. */
2577 
2578 	/* Acknowledge interrupts. */
2579 	WPI_WRITE(sc, WPI_INT, r1);
2580 	WPI_WRITE(sc, WPI_FH_INT, r2);
2581 
2582 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2583 		device_printf(sc->sc_dev, "fatal firmware error\n");
2584 #ifdef WPI_DEBUG
2585 		wpi_debug_registers(sc);
2586 #endif
2587 		wpi_fatal_intr(sc);
2588 		DPRINTF(sc, WPI_DEBUG_HW,
2589 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2590 		    "(Hardware Error)");
2591 		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2592 		goto end;
2593 	}
2594 
2595 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2596 	    (r2 & WPI_FH_INT_RX))
2597 		wpi_notif_intr(sc);
2598 
2599 	if (r1 & WPI_INT_ALIVE)
2600 		wakeup(sc);	/* Firmware is alive. */
2601 
2602 	if (r1 & WPI_INT_WAKEUP)
2603 		wpi_wakeup_intr(sc);
2604 
2605 done:
2606 	/* Re-enable interrupts. */
2607 	if (ifp->if_flags & IFF_UP)
2608 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2609 
2610 end:	WPI_UNLOCK(sc);
2611 }
2612 
2613 static int
2614 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2615 {
2616 	struct ifnet *ifp = sc->sc_ifp;
2617 	struct ieee80211_frame *wh;
2618 	struct wpi_tx_cmd *cmd;
2619 	struct wpi_tx_data *data;
2620 	struct wpi_tx_desc *desc;
2621 	struct wpi_tx_ring *ring;
2622 	struct mbuf *m1;
2623 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2624 	int error, i, hdrlen, nsegs, totlen, pad;
2625 
2626 	WPI_TXQ_LOCK(sc);
2627 
2628 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2629 
2630 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2631 
2632 	if (sc->txq_active == 0) {
2633 		/* wpi_stop() was called */
2634 		error = ENETDOWN;
2635 		goto fail;
2636 	}
2637 
2638 	wh = mtod(buf->m, struct ieee80211_frame *);
2639 	hdrlen = ieee80211_anyhdrsize(wh);
2640 	totlen = buf->m->m_pkthdr.len;
2641 
2642 	if (hdrlen & 3) {
2643 		/* First segment length must be a multiple of 4. */
2644 		pad = 4 - (hdrlen & 3);
2645 	} else
2646 		pad = 0;
2647 
2648 	ring = &sc->txq[buf->ac];
2649 	desc = &ring->desc[ring->cur];
2650 	data = &ring->data[ring->cur];
2651 
2652 	/* Prepare TX firmware command. */
2653 	cmd = &ring->cmd[ring->cur];
2654 	cmd->code = buf->code;
2655 	cmd->flags = 0;
2656 	cmd->qid = ring->qid;
2657 	cmd->idx = ring->cur;
2658 
2659 	memcpy(cmd->data, buf->data, buf->size);
2660 
2661 	/* Save and trim IEEE802.11 header. */
2662 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2663 	m_adj(buf->m, hdrlen);
2664 
2665 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2666 	    segs, &nsegs, BUS_DMA_NOWAIT);
2667 	if (error != 0 && error != EFBIG) {
2668 		device_printf(sc->sc_dev,
2669 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2670 		goto fail;
2671 	}
2672 	if (error != 0) {
2673 		/* Too many DMA segments, linearize mbuf. */
2674 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2675 		if (m1 == NULL) {
2676 			device_printf(sc->sc_dev,
2677 			    "%s: could not defrag mbuf\n", __func__);
2678 			error = ENOBUFS;
2679 			goto fail;
2680 		}
2681 		buf->m = m1;
2682 
2683 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2684 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2685 		if (error != 0) {
2686 			device_printf(sc->sc_dev,
2687 			    "%s: can't map mbuf (error %d)\n", __func__,
2688 			    error);
2689 			goto fail;
2690 		}
2691 	}
2692 
2693 	KASSERT(nsegs < WPI_MAX_SCATTER,
2694 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2695 	     nsegs, WPI_MAX_SCATTER));
2696 
2697 	data->m = buf->m;
2698 	data->ni = buf->ni;
2699 
2700 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2701 	    __func__, ring->qid, ring->cur, totlen, nsegs);
2702 
2703 	/* Fill TX descriptor. */
2704 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2705 	/* First DMA segment is used by the TX command. */
2706 	desc->segs[0].addr = htole32(data->cmd_paddr);
2707 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2708 	/* Other DMA segments are for data payload. */
2709 	seg = &segs[0];
2710 	for (i = 1; i <= nsegs; i++) {
2711 		desc->segs[i].addr = htole32(seg->ds_addr);
2712 		desc->segs[i].len  = htole32(seg->ds_len);
2713 		seg++;
2714 	}
2715 
2716 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2717 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2718 	    BUS_DMASYNC_PREWRITE);
2719 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2720 	    BUS_DMASYNC_PREWRITE);
2721 
2722 	/* Kick TX ring. */
2723 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2724 	sc->sc_update_tx_ring(sc, ring);
2725 
2726 	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2727 		/* Mark TX ring as full if we reach a certain threshold. */
2728 		WPI_TXQ_STATE_LOCK(sc);
2729 		if (++ring->queued > WPI_TX_RING_HIMARK) {
2730 			sc->qfullmsk |= 1 << ring->qid;
2731 
2732 			IF_LOCK(&ifp->if_snd);
2733 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2734 			IF_UNLOCK(&ifp->if_snd);
2735 		}
2736 
2737 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2738 		WPI_TXQ_STATE_UNLOCK(sc);
2739 	}
2740 
2741 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2742 
2743 	WPI_TXQ_UNLOCK(sc);
2744 
2745 	return 0;
2746 
2747 fail:	m_freem(buf->m);
2748 
2749 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2750 
2751 	WPI_TXQ_UNLOCK(sc);
2752 
2753 	return error;
2754 }
2755 
2756 /*
2757  * Construct the data packet for a transmit buffer.
2758  */
2759 static int
2760 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2761 {
2762 	const struct ieee80211_txparam *tp;
2763 	struct ieee80211vap *vap = ni->ni_vap;
2764 	struct ieee80211com *ic = ni->ni_ic;
2765 	struct wpi_node *wn = WPI_NODE(ni);
2766 	struct ieee80211_channel *chan;
2767 	struct ieee80211_frame *wh;
2768 	struct ieee80211_key *k = NULL;
2769 	struct wpi_buf tx_data;
2770 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2771 	uint32_t flags;
2772 	uint16_t qos;
2773 	uint8_t tid, type;
2774 	int ac, error, swcrypt, rate, ismcast, totlen;
2775 
2776 	wh = mtod(m, struct ieee80211_frame *);
2777 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2778 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2779 
2780 	/* Select EDCA Access Category and TX ring for this frame. */
2781 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2782 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2783 		tid = qos & IEEE80211_QOS_TID;
2784 	} else {
2785 		qos = 0;
2786 		tid = 0;
2787 	}
2788 	ac = M_WME_GETAC(m);
2789 
2790 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2791 		ni->ni_chan : ic->ic_curchan;
2792 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2793 
2794 	/* Choose a TX rate index. */
2795 	if (type == IEEE80211_FC0_TYPE_MGT)
2796 		rate = tp->mgmtrate;
2797 	else if (ismcast)
2798 		rate = tp->mcastrate;
2799 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2800 		rate = tp->ucastrate;
2801 	else if (m->m_flags & M_EAPOL)
2802 		rate = tp->mgmtrate;
2803 	else {
2804 		/* XXX pass pktlen */
2805 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2806 		rate = ni->ni_txrate;
2807 	}
2808 
2809 	/* Encrypt the frame if need be. */
2810 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2811 		/* Retrieve key for TX. */
2812 		k = ieee80211_crypto_encap(ni, m);
2813 		if (k == NULL) {
2814 			error = ENOBUFS;
2815 			goto fail;
2816 		}
2817 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2818 
2819 		/* 802.11 header may have moved. */
2820 		wh = mtod(m, struct ieee80211_frame *);
2821 	}
2822 	totlen = m->m_pkthdr.len;
2823 
2824 	if (ieee80211_radiotap_active_vap(vap)) {
2825 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2826 
2827 		tap->wt_flags = 0;
2828 		tap->wt_rate = rate;
2829 		if (k != NULL)
2830 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2831 
2832 		ieee80211_radiotap_tx(vap, m);
2833 	}
2834 
2835 	flags = 0;
2836 	if (!ismcast) {
2837 		/* Unicast frame, check if an ACK is expected. */
2838 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2839 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2840 			flags |= WPI_TX_NEED_ACK;
2841 	}
2842 
2843 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2844 		flags |= WPI_TX_AUTO_SEQ;
2845 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2846 		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2847 
2848 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2849 	if (!ismcast) {
2850 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2851 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2852 			flags |= WPI_TX_NEED_RTS;
2853 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2854 		    WPI_RATE_IS_OFDM(rate)) {
2855 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2856 				flags |= WPI_TX_NEED_CTS;
2857 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2858 				flags |= WPI_TX_NEED_RTS;
2859 		}
2860 
2861 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2862 			flags |= WPI_TX_FULL_TXOP;
2863 	}
2864 
2865 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2866 	if (type == IEEE80211_FC0_TYPE_MGT) {
2867 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2868 
2869 		/* Tell HW to set timestamp in probe responses. */
2870 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2871 			flags |= WPI_TX_INSERT_TSTAMP;
2872 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2873 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2874 			tx->timeout = htole16(3);
2875 		else
2876 			tx->timeout = htole16(2);
2877 	}
2878 
2879 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2880 		tx->id = WPI_ID_BROADCAST;
2881 	else {
2882 		if (wn->id == WPI_ID_UNDEFINED) {
2883 			device_printf(sc->sc_dev,
2884 			    "%s: undefined node id\n", __func__);
2885 			error = EINVAL;
2886 			goto fail;
2887 		}
2888 
2889 		tx->id = wn->id;
2890 	}
2891 
2892 	if (k != NULL && !swcrypt) {
2893 		switch (k->wk_cipher->ic_cipher) {
2894 		case IEEE80211_CIPHER_AES_CCM:
2895 			tx->security = WPI_CIPHER_CCMP;
2896 			break;
2897 
2898 		default:
2899 			break;
2900 		}
2901 
2902 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2903 	}
2904 
2905 	tx->len = htole16(totlen);
2906 	tx->flags = htole32(flags);
2907 	tx->plcp = rate2plcp(rate);
2908 	tx->tid = tid;
2909 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2910 	tx->ofdm_mask = 0xff;
2911 	tx->cck_mask = 0x0f;
2912 	tx->rts_ntries = 7;
2913 	tx->data_ntries = tp->maxretry;
2914 
2915 	tx_data.ni = ni;
2916 	tx_data.m = m;
2917 	tx_data.size = sizeof(struct wpi_cmd_data);
2918 	tx_data.code = WPI_CMD_TX_DATA;
2919 	tx_data.ac = ac;
2920 
2921 	return wpi_cmd2(sc, &tx_data);
2922 
2923 fail:	m_freem(m);
2924 	return error;
2925 }
2926 
2927 static int
2928 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2929     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2930 {
2931 	struct ieee80211vap *vap = ni->ni_vap;
2932 	struct ieee80211_key *k = NULL;
2933 	struct ieee80211_frame *wh;
2934 	struct wpi_buf tx_data;
2935 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2936 	uint32_t flags;
2937 	uint8_t type;
2938 	int ac, rate, swcrypt, totlen;
2939 
2940 	wh = mtod(m, struct ieee80211_frame *);
2941 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2942 
2943 	ac = params->ibp_pri & 3;
2944 
2945 	/* Choose a TX rate index. */
2946 	rate = params->ibp_rate0;
2947 
2948 	flags = 0;
2949 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2950 		flags |= WPI_TX_AUTO_SEQ;
2951 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2952 		flags |= WPI_TX_NEED_ACK;
2953 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2954 		flags |= WPI_TX_NEED_RTS;
2955 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2956 		flags |= WPI_TX_NEED_CTS;
2957 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2958 		flags |= WPI_TX_FULL_TXOP;
2959 
2960 	/* Encrypt the frame if need be. */
2961 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2962 		/* Retrieve key for TX. */
2963 		k = ieee80211_crypto_encap(ni, m);
2964 		if (k == NULL) {
2965 			m_freem(m);
2966 			return ENOBUFS;
2967 		}
2968 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2969 
2970 		/* 802.11 header may have moved. */
2971 		wh = mtod(m, struct ieee80211_frame *);
2972 	}
2973 	totlen = m->m_pkthdr.len;
2974 
2975 	if (ieee80211_radiotap_active_vap(vap)) {
2976 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2977 
2978 		tap->wt_flags = 0;
2979 		tap->wt_rate = rate;
2980 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2981 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2982 
2983 		ieee80211_radiotap_tx(vap, m);
2984 	}
2985 
2986 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2987 	if (type == IEEE80211_FC0_TYPE_MGT) {
2988 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2989 
2990 		/* Tell HW to set timestamp in probe responses. */
2991 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2992 			flags |= WPI_TX_INSERT_TSTAMP;
2993 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2994 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2995 			tx->timeout = htole16(3);
2996 		else
2997 			tx->timeout = htole16(2);
2998 	}
2999 
3000 	if (k != NULL && !swcrypt) {
3001 		switch (k->wk_cipher->ic_cipher) {
3002 		case IEEE80211_CIPHER_AES_CCM:
3003 			tx->security = WPI_CIPHER_CCMP;
3004 			break;
3005 
3006 		default:
3007 			break;
3008 		}
3009 
3010 		memcpy(tx->key, k->wk_key, k->wk_keylen);
3011 	}
3012 
3013 	tx->len = htole16(totlen);
3014 	tx->flags = htole32(flags);
3015 	tx->plcp = rate2plcp(rate);
3016 	tx->id = WPI_ID_BROADCAST;
3017 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3018 	tx->rts_ntries = params->ibp_try1;
3019 	tx->data_ntries = params->ibp_try0;
3020 
3021 	tx_data.ni = ni;
3022 	tx_data.m = m;
3023 	tx_data.size = sizeof(struct wpi_cmd_data);
3024 	tx_data.code = WPI_CMD_TX_DATA;
3025 	tx_data.ac = ac;
3026 
3027 	return wpi_cmd2(sc, &tx_data);
3028 }
3029 
3030 static int
3031 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3032     const struct ieee80211_bpf_params *params)
3033 {
3034 	struct ieee80211com *ic = ni->ni_ic;
3035 	struct ifnet *ifp = ic->ic_ifp;
3036 	struct wpi_softc *sc = ifp->if_softc;
3037 	int error = 0;
3038 
3039 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3040 
3041 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3042 		ieee80211_free_node(ni);
3043 		m_freem(m);
3044 		return ENETDOWN;
3045 	}
3046 
3047 	WPI_TX_LOCK(sc);
3048 	if (params == NULL) {
3049 		/*
3050 		 * Legacy path; interpret frame contents to decide
3051 		 * precisely how to send the frame.
3052 		 */
3053 		error = wpi_tx_data(sc, m, ni);
3054 	} else {
3055 		/*
3056 		 * Caller supplied explicit parameters to use in
3057 		 * sending the frame.
3058 		 */
3059 		error = wpi_tx_data_raw(sc, m, ni, params);
3060 	}
3061 	WPI_TX_UNLOCK(sc);
3062 
3063 	if (error != 0) {
3064 		/* NB: m is reclaimed on tx failure */
3065 		ieee80211_free_node(ni);
3066 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3067 
3068 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3069 
3070 		return error;
3071 	}
3072 
3073 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3074 
3075 	return 0;
3076 }
3077 
3078 /**
3079  * Process data waiting to be sent on the IFNET output queue
3080  */
3081 static void
3082 wpi_start(struct ifnet *ifp)
3083 {
3084 	struct wpi_softc *sc = ifp->if_softc;
3085 	struct ieee80211_node *ni;
3086 	struct mbuf *m;
3087 
3088 	WPI_TX_LOCK(sc);
3089 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3090 
3091 	for (;;) {
3092 		IF_LOCK(&ifp->if_snd);
3093 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
3094 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3095 			IF_UNLOCK(&ifp->if_snd);
3096 			break;
3097 		}
3098 		IF_UNLOCK(&ifp->if_snd);
3099 
3100 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3101 		if (m == NULL)
3102 			break;
3103 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3104 		if (wpi_tx_data(sc, m, ni) != 0) {
3105 			ieee80211_free_node(ni);
3106 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3107 		}
3108 	}
3109 
3110 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3111 	WPI_TX_UNLOCK(sc);
3112 }
3113 
3114 static void
3115 wpi_start_task(void *arg0, int pending)
3116 {
3117 	struct wpi_softc *sc = arg0;
3118 	struct ifnet *ifp = sc->sc_ifp;
3119 
3120 	wpi_start(ifp);
3121 }
3122 
3123 static void
3124 wpi_watchdog_rfkill(void *arg)
3125 {
3126 	struct wpi_softc *sc = arg;
3127 	struct ifnet *ifp = sc->sc_ifp;
3128 	struct ieee80211com *ic = ifp->if_l2com;
3129 
3130 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3131 
3132 	/* No need to lock firmware memory. */
3133 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3134 		/* Radio kill switch is still off. */
3135 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3136 		    sc);
3137 	} else
3138 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3139 }
3140 
3141 static void
3142 wpi_scan_timeout(void *arg)
3143 {
3144 	struct wpi_softc *sc = arg;
3145 	struct ifnet *ifp = sc->sc_ifp;
3146 
3147 	if_printf(ifp, "scan timeout\n");
3148 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3149 }
3150 
3151 static void
3152 wpi_tx_timeout(void *arg)
3153 {
3154 	struct wpi_softc *sc = arg;
3155 	struct ifnet *ifp = sc->sc_ifp;
3156 
3157 	if_printf(ifp, "device timeout\n");
3158 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3159 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3160 }
3161 
3162 static int
3163 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3164 {
3165 	struct wpi_softc *sc = ifp->if_softc;
3166 	struct ieee80211com *ic = ifp->if_l2com;
3167 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3168 	struct ifreq *ifr = (struct ifreq *) data;
3169 	int error = 0;
3170 
3171 	switch (cmd) {
3172 	case SIOCGIFADDR:
3173 		error = ether_ioctl(ifp, cmd, data);
3174 		break;
3175 	case SIOCSIFFLAGS:
3176 		if (ifp->if_flags & IFF_UP) {
3177 			wpi_init(sc);
3178 
3179 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
3180 			    vap != NULL)
3181 				ieee80211_stop(vap);
3182 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3183 			wpi_stop(sc);
3184 		break;
3185 	case SIOCGIFMEDIA:
3186 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3187 		break;
3188 	default:
3189 		error = EINVAL;
3190 		break;
3191 	}
3192 	return error;
3193 }
3194 
3195 /*
3196  * Send a command to the firmware.
3197  */
3198 static int
3199 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
3200     int async)
3201 {
3202 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3203 	struct wpi_tx_desc *desc;
3204 	struct wpi_tx_data *data;
3205 	struct wpi_tx_cmd *cmd;
3206 	struct mbuf *m;
3207 	bus_addr_t paddr;
3208 	int totlen, error;
3209 
3210 	WPI_TXQ_LOCK(sc);
3211 
3212 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3213 
3214 	if (sc->txq_active == 0) {
3215 		/* wpi_stop() was called */
3216 		error = 0;
3217 		goto fail;
3218 	}
3219 
3220 	if (async == 0)
3221 		WPI_LOCK_ASSERT(sc);
3222 
3223 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %zu async %d\n",
3224 	    __func__, wpi_cmd_str(code), size, async);
3225 
3226 	desc = &ring->desc[ring->cur];
3227 	data = &ring->data[ring->cur];
3228 	totlen = 4 + size;
3229 
3230 	if (size > sizeof cmd->data) {
3231 		/* Command is too large to fit in a descriptor. */
3232 		if (totlen > MCLBYTES) {
3233 			error = EINVAL;
3234 			goto fail;
3235 		}
3236 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3237 		if (m == NULL) {
3238 			error = ENOMEM;
3239 			goto fail;
3240 		}
3241 		cmd = mtod(m, struct wpi_tx_cmd *);
3242 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3243 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3244 		if (error != 0) {
3245 			m_freem(m);
3246 			goto fail;
3247 		}
3248 		data->m = m;
3249 	} else {
3250 		cmd = &ring->cmd[ring->cur];
3251 		paddr = data->cmd_paddr;
3252 	}
3253 
3254 	cmd->code = code;
3255 	cmd->flags = 0;
3256 	cmd->qid = ring->qid;
3257 	cmd->idx = ring->cur;
3258 	memcpy(cmd->data, buf, size);
3259 
3260 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3261 	desc->segs[0].addr = htole32(paddr);
3262 	desc->segs[0].len  = htole32(totlen);
3263 
3264 	if (size > sizeof cmd->data) {
3265 		bus_dmamap_sync(ring->data_dmat, data->map,
3266 		    BUS_DMASYNC_PREWRITE);
3267 	} else {
3268 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3269 		    BUS_DMASYNC_PREWRITE);
3270 	}
3271 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3272 	    BUS_DMASYNC_PREWRITE);
3273 
3274 	/* Kick command ring. */
3275 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3276 	sc->sc_update_tx_ring(sc, ring);
3277 
3278 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3279 
3280 	WPI_TXQ_UNLOCK(sc);
3281 
3282 	if (async)
3283 		return 0;
3284 
3285 	return mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3286 
3287 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3288 
3289 	WPI_TXQ_UNLOCK(sc);
3290 
3291 	return error;
3292 }
3293 
3294 /*
3295  * Configure HW multi-rate retries.
3296  */
3297 static int
3298 wpi_mrr_setup(struct wpi_softc *sc)
3299 {
3300 	struct ifnet *ifp = sc->sc_ifp;
3301 	struct ieee80211com *ic = ifp->if_l2com;
3302 	struct wpi_mrr_setup mrr;
3303 	int i, error;
3304 
3305 	/* CCK rates (not used with 802.11a). */
3306 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3307 		mrr.rates[i].flags = 0;
3308 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3309 		/* Fallback to the immediate lower CCK rate (if any.) */
3310 		mrr.rates[i].next =
3311 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3312 		/* Try twice at this rate before falling back to "next". */
3313 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3314 	}
3315 	/* OFDM rates (not used with 802.11b). */
3316 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3317 		mrr.rates[i].flags = 0;
3318 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3319 		/* Fallback to the immediate lower rate (if any.) */
3320 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3321 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3322 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3323 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3324 		    i - 1;
3325 		/* Try twice at this rate before falling back to "next". */
3326 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3327 	}
3328 	/* Setup MRR for control frames. */
3329 	mrr.which = htole32(WPI_MRR_CTL);
3330 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3331 	if (error != 0) {
3332 		device_printf(sc->sc_dev,
3333 		    "could not setup MRR for control frames\n");
3334 		return error;
3335 	}
3336 	/* Setup MRR for data frames. */
3337 	mrr.which = htole32(WPI_MRR_DATA);
3338 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3339 	if (error != 0) {
3340 		device_printf(sc->sc_dev,
3341 		    "could not setup MRR for data frames\n");
3342 		return error;
3343 	}
3344 	return 0;
3345 }
3346 
3347 static int
3348 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3349 {
3350 	struct ieee80211com *ic = ni->ni_ic;
3351 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3352 	struct wpi_node *wn = WPI_NODE(ni);
3353 	struct wpi_node_info node;
3354 	int error;
3355 
3356 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3357 
3358 	if (wn->id == WPI_ID_UNDEFINED)
3359 		return EINVAL;
3360 
3361 	memset(&node, 0, sizeof node);
3362 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3363 	node.id = wn->id;
3364 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3365 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3366 	node.action = htole32(WPI_ACTION_SET_RATE);
3367 	node.antenna = WPI_ANTENNA_BOTH;
3368 
3369 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3370 	    wn->id, ether_sprintf(ni->ni_macaddr));
3371 
3372 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3373 	if (error != 0) {
3374 		device_printf(sc->sc_dev,
3375 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3376 		    error);
3377 		return error;
3378 	}
3379 
3380 	if (wvp->wv_gtk != 0) {
3381 		error = wpi_set_global_keys(ni);
3382 		if (error != 0) {
3383 			device_printf(sc->sc_dev,
3384 			    "%s: error while setting global keys\n", __func__);
3385 			return ENXIO;
3386 		}
3387 	}
3388 
3389 	return 0;
3390 }
3391 
3392 /*
3393  * Broadcast node is used to send group-addressed and management frames.
3394  */
3395 static int
3396 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3397 {
3398 	struct ifnet *ifp = sc->sc_ifp;
3399 	struct ieee80211com *ic = ifp->if_l2com;
3400 	struct wpi_node_info node;
3401 
3402 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3403 
3404 	memset(&node, 0, sizeof node);
3405 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3406 	node.id = WPI_ID_BROADCAST;
3407 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3408 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3409 	node.action = htole32(WPI_ACTION_SET_RATE);
3410 	node.antenna = WPI_ANTENNA_BOTH;
3411 
3412 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3413 
3414 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3415 }
3416 
3417 static int
3418 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3419 {
3420 	struct wpi_node *wn = WPI_NODE(ni);
3421 	int error;
3422 
3423 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3424 
3425 	wn->id = wpi_add_node_entry_sta(sc);
3426 
3427 	if ((error = wpi_add_node(sc, ni)) != 0) {
3428 		wpi_del_node_entry(sc, wn->id);
3429 		wn->id = WPI_ID_UNDEFINED;
3430 		return error;
3431 	}
3432 
3433 	return 0;
3434 }
3435 
3436 static int
3437 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3438 {
3439 	struct wpi_node *wn = WPI_NODE(ni);
3440 	int error;
3441 
3442 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3443 	    ("the node %d was added before", wn->id));
3444 
3445 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3446 
3447 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3448 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3449 		return ENOMEM;
3450 	}
3451 
3452 	if ((error = wpi_add_node(sc, ni)) != 0) {
3453 		wpi_del_node_entry(sc, wn->id);
3454 		wn->id = WPI_ID_UNDEFINED;
3455 		return error;
3456 	}
3457 
3458 	return 0;
3459 }
3460 
3461 static void
3462 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3463 {
3464 	struct wpi_node *wn = WPI_NODE(ni);
3465 	struct wpi_cmd_del_node node;
3466 	int error;
3467 
3468 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3469 
3470 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3471 
3472 	memset(&node, 0, sizeof node);
3473 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3474 	node.count = 1;
3475 
3476 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3477 	    wn->id, ether_sprintf(ni->ni_macaddr));
3478 
3479 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3480 	if (error != 0) {
3481 		device_printf(sc->sc_dev,
3482 		    "%s: could not delete node %u, error %d\n", __func__,
3483 		    wn->id, error);
3484 	}
3485 }
3486 
3487 static int
3488 wpi_updateedca(struct ieee80211com *ic)
3489 {
3490 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3491 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3492 	struct wpi_edca_params cmd;
3493 	int aci, error;
3494 
3495 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3496 
3497 	memset(&cmd, 0, sizeof cmd);
3498 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3499 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3500 		const struct wmeParams *ac =
3501 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3502 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3503 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3504 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3505 		cmd.ac[aci].txoplimit =
3506 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3507 
3508 		DPRINTF(sc, WPI_DEBUG_EDCA,
3509 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3510 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3511 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3512 		    cmd.ac[aci].txoplimit);
3513 	}
3514 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3515 
3516 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3517 
3518 	return error;
3519 #undef WPI_EXP2
3520 }
3521 
3522 static void
3523 wpi_set_promisc(struct wpi_softc *sc)
3524 {
3525 	struct ifnet *ifp = sc->sc_ifp;
3526 	struct ieee80211com *ic = ifp->if_l2com;
3527 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3528 	uint32_t promisc_filter;
3529 
3530 	promisc_filter = WPI_FILTER_CTL;
3531 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3532 		promisc_filter |= WPI_FILTER_PROMISC;
3533 
3534 	if (ifp->if_flags & IFF_PROMISC)
3535 		sc->rxon.filter |= htole32(promisc_filter);
3536 	else
3537 		sc->rxon.filter &= ~htole32(promisc_filter);
3538 }
3539 
3540 static void
3541 wpi_update_promisc(struct ifnet *ifp)
3542 {
3543 	struct wpi_softc *sc = ifp->if_softc;
3544 
3545 	WPI_RXON_LOCK(sc);
3546 	wpi_set_promisc(sc);
3547 
3548 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3549 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3550 		    __func__);
3551 	}
3552 	WPI_RXON_UNLOCK(sc);
3553 }
3554 
3555 static void
3556 wpi_update_mcast(struct ifnet *ifp)
3557 {
3558 	/* Ignore */
3559 }
3560 
3561 static void
3562 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3563 {
3564 	struct wpi_cmd_led led;
3565 
3566 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3567 
3568 	led.which = which;
3569 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3570 	led.off = off;
3571 	led.on = on;
3572 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3573 }
3574 
3575 static int
3576 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3577 {
3578 	struct wpi_cmd_timing cmd;
3579 	uint64_t val, mod;
3580 
3581 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3582 
3583 	memset(&cmd, 0, sizeof cmd);
3584 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3585 	cmd.bintval = htole16(ni->ni_intval);
3586 	cmd.lintval = htole16(10);
3587 
3588 	/* Compute remaining time until next beacon. */
3589 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3590 	mod = le64toh(cmd.tstamp) % val;
3591 	cmd.binitval = htole32((uint32_t)(val - mod));
3592 
3593 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3594 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3595 
3596 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3597 }
3598 
3599 /*
3600  * This function is called periodically (every 60 seconds) to adjust output
3601  * power to temperature changes.
3602  */
3603 static void
3604 wpi_power_calibration(struct wpi_softc *sc)
3605 {
3606 	int temp;
3607 
3608 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3609 
3610 	/* Update sensor data. */
3611 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3612 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3613 
3614 	/* Sanity-check read value. */
3615 	if (temp < -260 || temp > 25) {
3616 		/* This can't be correct, ignore. */
3617 		DPRINTF(sc, WPI_DEBUG_TEMP,
3618 		    "out-of-range temperature reported: %d\n", temp);
3619 		return;
3620 	}
3621 
3622 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3623 
3624 	/* Adjust Tx power if need be. */
3625 	if (abs(temp - sc->temp) <= 6)
3626 		return;
3627 
3628 	sc->temp = temp;
3629 
3630 	if (wpi_set_txpower(sc, 1) != 0) {
3631 		/* just warn, too bad for the automatic calibration... */
3632 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3633 	}
3634 }
3635 
3636 /*
3637  * Set TX power for current channel.
3638  */
3639 static int
3640 wpi_set_txpower(struct wpi_softc *sc, int async)
3641 {
3642 	struct wpi_power_group *group;
3643 	struct wpi_cmd_txpower cmd;
3644 	uint8_t chan;
3645 	int idx, is_chan_5ghz, i;
3646 
3647 	/* Retrieve current channel from last RXON. */
3648 	chan = sc->rxon.chan;
3649 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3650 
3651 	/* Find the TX power group to which this channel belongs. */
3652 	if (is_chan_5ghz) {
3653 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3654 			if (chan <= group->chan)
3655 				break;
3656 	} else
3657 		group = &sc->groups[0];
3658 
3659 	memset(&cmd, 0, sizeof cmd);
3660 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3661 	cmd.chan = htole16(chan);
3662 
3663 	/* Set TX power for all OFDM and CCK rates. */
3664 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3665 		/* Retrieve TX power for this channel/rate. */
3666 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3667 
3668 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3669 
3670 		if (is_chan_5ghz) {
3671 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3672 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3673 		} else {
3674 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3675 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3676 		}
3677 		DPRINTF(sc, WPI_DEBUG_TEMP,
3678 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3679 	}
3680 
3681 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3682 }
3683 
3684 /*
3685  * Determine Tx power index for a given channel/rate combination.
3686  * This takes into account the regulatory information from EEPROM and the
3687  * current temperature.
3688  */
3689 static int
3690 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3691     uint8_t chan, int is_chan_5ghz, int ridx)
3692 {
3693 /* Fixed-point arithmetic division using a n-bit fractional part. */
3694 #define fdivround(a, b, n)	\
3695 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3696 
3697 /* Linear interpolation. */
3698 #define interpolate(x, x1, y1, x2, y2, n)	\
3699 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3700 
3701 	struct wpi_power_sample *sample;
3702 	int pwr, idx;
3703 
3704 	/* Default TX power is group maximum TX power minus 3dB. */
3705 	pwr = group->maxpwr / 2;
3706 
3707 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3708 	switch (ridx) {
3709 	case WPI_RIDX_OFDM36:
3710 		pwr -= is_chan_5ghz ?  5 : 0;
3711 		break;
3712 	case WPI_RIDX_OFDM48:
3713 		pwr -= is_chan_5ghz ? 10 : 7;
3714 		break;
3715 	case WPI_RIDX_OFDM54:
3716 		pwr -= is_chan_5ghz ? 12 : 9;
3717 		break;
3718 	}
3719 
3720 	/* Never exceed the channel maximum allowed TX power. */
3721 	pwr = min(pwr, sc->maxpwr[chan]);
3722 
3723 	/* Retrieve TX power index into gain tables from samples. */
3724 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3725 		if (pwr > sample[1].power)
3726 			break;
3727 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3728 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3729 	    sample[1].power, sample[1].index, 19);
3730 
3731 	/*-
3732 	 * Adjust power index based on current temperature:
3733 	 * - if cooler than factory-calibrated: decrease output power
3734 	 * - if warmer than factory-calibrated: increase output power
3735 	 */
3736 	idx -= (sc->temp - group->temp) * 11 / 100;
3737 
3738 	/* Decrease TX power for CCK rates (-5dB). */
3739 	if (ridx >= WPI_RIDX_CCK1)
3740 		idx += 10;
3741 
3742 	/* Make sure idx stays in a valid range. */
3743 	if (idx < 0)
3744 		return 0;
3745 	if (idx > WPI_MAX_PWR_INDEX)
3746 		return WPI_MAX_PWR_INDEX;
3747 	return idx;
3748 
3749 #undef interpolate
3750 #undef fdivround
3751 }
3752 
3753 /*
3754  * Set STA mode power saving level (between 0 and 5).
3755  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3756  */
3757 static int
3758 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3759 {
3760 	struct wpi_pmgt_cmd cmd;
3761 	const struct wpi_pmgt *pmgt;
3762 	uint32_t max, skip_dtim;
3763 	uint32_t reg;
3764 	int i;
3765 
3766 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3767 	    "%s: dtim=%d, level=%d, async=%d\n",
3768 	    __func__, dtim, level, async);
3769 
3770 	/* Select which PS parameters to use. */
3771 	if (dtim <= 10)
3772 		pmgt = &wpi_pmgt[0][level];
3773 	else
3774 		pmgt = &wpi_pmgt[1][level];
3775 
3776 	memset(&cmd, 0, sizeof cmd);
3777 	WPI_TXQ_LOCK(sc);
3778 	if (level != 0)	{	/* not CAM */
3779 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3780 		sc->sc_flags |= WPI_PS_PATH;
3781 	} else
3782 		sc->sc_flags &= ~WPI_PS_PATH;
3783 	WPI_TXQ_UNLOCK(sc);
3784 	/* Retrieve PCIe Active State Power Management (ASPM). */
3785 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3786 	if (!(reg & 0x1))	/* L0s Entry disabled. */
3787 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3788 
3789 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3790 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3791 
3792 	if (dtim == 0) {
3793 		dtim = 1;
3794 		skip_dtim = 0;
3795 	} else
3796 		skip_dtim = pmgt->skip_dtim;
3797 
3798 	if (skip_dtim != 0) {
3799 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3800 		max = pmgt->intval[4];
3801 		if (max == (uint32_t)-1)
3802 			max = dtim * (skip_dtim + 1);
3803 		else if (max > dtim)
3804 			max = (max / dtim) * dtim;
3805 	} else
3806 		max = dtim;
3807 
3808 	for (i = 0; i < 5; i++)
3809 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3810 
3811 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3812 }
3813 
3814 static int
3815 wpi_send_btcoex(struct wpi_softc *sc)
3816 {
3817 	struct wpi_bluetooth cmd;
3818 
3819 	memset(&cmd, 0, sizeof cmd);
3820 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3821 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3822 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3823 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3824 	    __func__);
3825 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3826 }
3827 
3828 static int
3829 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3830 {
3831 	int error;
3832 
3833 	if (async)
3834 		WPI_RXON_LOCK_ASSERT(sc);
3835 
3836 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3837 		struct wpi_assoc rxon_assoc;
3838 
3839 		rxon_assoc.flags = sc->rxon.flags;
3840 		rxon_assoc.filter = sc->rxon.filter;
3841 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3842 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3843 		rxon_assoc.reserved = 0;
3844 
3845 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3846 		    sizeof (struct wpi_assoc), async);
3847 		if (error != 0) {
3848 			device_printf(sc->sc_dev,
3849 			    "RXON_ASSOC command failed, error %d\n", error);
3850 			return error;
3851 		}
3852 	} else {
3853 		if (async) {
3854 			WPI_NT_LOCK(sc);
3855 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3856 			    sizeof (struct wpi_rxon), async);
3857 			if (error == 0)
3858 				wpi_clear_node_table(sc);
3859 			WPI_NT_UNLOCK(sc);
3860 		} else {
3861 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3862 			    sizeof (struct wpi_rxon), async);
3863 			if (error == 0)
3864 				wpi_clear_node_table(sc);
3865 		}
3866 
3867 		if (error != 0) {
3868 			device_printf(sc->sc_dev,
3869 			    "RXON command failed, error %d\n", error);
3870 			return error;
3871 		}
3872 
3873 		/* Add broadcast node. */
3874 		error = wpi_add_broadcast_node(sc, async);
3875 		if (error != 0) {
3876 			device_printf(sc->sc_dev,
3877 			    "could not add broadcast node, error %d\n", error);
3878 			return error;
3879 		}
3880 	}
3881 
3882 	/* Configuration has changed, set Tx power accordingly. */
3883 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3884 		device_printf(sc->sc_dev,
3885 		    "%s: could not set TX power, error %d\n", __func__, error);
3886 		return error;
3887 	}
3888 
3889 	return 0;
3890 }
3891 
3892 /**
3893  * Configure the card to listen to a particular channel, this transisions the
3894  * card in to being able to receive frames from remote devices.
3895  */
3896 static int
3897 wpi_config(struct wpi_softc *sc)
3898 {
3899 	struct ifnet *ifp = sc->sc_ifp;
3900 	struct ieee80211com *ic = ifp->if_l2com;
3901 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3902 	struct ieee80211_channel *c = ic->ic_curchan;
3903 	int error;
3904 
3905 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3906 
3907 	/* Set power saving level to CAM during initialization. */
3908 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3909 		device_printf(sc->sc_dev,
3910 		    "%s: could not set power saving level\n", __func__);
3911 		return error;
3912 	}
3913 
3914 	/* Configure bluetooth coexistence. */
3915 	if ((error = wpi_send_btcoex(sc)) != 0) {
3916 		device_printf(sc->sc_dev,
3917 		    "could not configure bluetooth coexistence\n");
3918 		return error;
3919 	}
3920 
3921 	/* Configure adapter. */
3922 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3923 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3924 
3925 	/* Set default channel. */
3926 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3927 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3928 	if (IEEE80211_IS_CHAN_2GHZ(c))
3929 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3930 
3931 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3932 	switch (ic->ic_opmode) {
3933 	case IEEE80211_M_STA:
3934 		sc->rxon.mode = WPI_MODE_STA;
3935 		break;
3936 	case IEEE80211_M_IBSS:
3937 		sc->rxon.mode = WPI_MODE_IBSS;
3938 		sc->rxon.filter |= WPI_FILTER_BEACON;
3939 		break;
3940 	case IEEE80211_M_HOSTAP:
3941 		/* XXX workaround for beaconing */
3942 		sc->rxon.mode = WPI_MODE_IBSS;
3943 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3944 		break;
3945 	case IEEE80211_M_AHDEMO:
3946 		sc->rxon.mode = WPI_MODE_HOSTAP;
3947 		break;
3948 	case IEEE80211_M_MONITOR:
3949 		sc->rxon.mode = WPI_MODE_MONITOR;
3950 		break;
3951 	default:
3952 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3953 		    ic->ic_opmode);
3954 		return EINVAL;
3955 	}
3956 	sc->rxon.filter = htole32(sc->rxon.filter);
3957 	wpi_set_promisc(sc);
3958 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3959 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3960 
3961 	/* XXX Current configuration may be unusable. */
3962 	if (IEEE80211_IS_CHAN_NOADHOC(c) && sc->rxon.mode == WPI_MODE_IBSS) {
3963 		device_printf(sc->sc_dev,
3964 		    "%s: invalid channel (%d) selected for IBSS mode\n",
3965 		    __func__, ieee80211_chan2ieee(ic, c));
3966 		return EINVAL;
3967 	}
3968 
3969 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3970 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3971 		    __func__);
3972 		return error;
3973 	}
3974 
3975 	/* Setup rate scalling. */
3976 	if ((error = wpi_mrr_setup(sc)) != 0) {
3977 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3978 		    error);
3979 		return error;
3980 	}
3981 
3982 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3983 
3984 	return 0;
3985 }
3986 
3987 static uint16_t
3988 wpi_get_active_dwell_time(struct wpi_softc *sc,
3989     struct ieee80211_channel *c, uint8_t n_probes)
3990 {
3991 	/* No channel? Default to 2GHz settings. */
3992 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3993 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3994 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3995 	}
3996 
3997 	/* 5GHz dwell time. */
3998 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3999 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4000 }
4001 
4002 /*
4003  * Limit the total dwell time.
4004  *
4005  * Returns the dwell time in milliseconds.
4006  */
4007 static uint16_t
4008 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4009 {
4010 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4011 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4012 	int bintval = 0;
4013 
4014 	/* bintval is in TU (1.024mS) */
4015 	if (vap != NULL)
4016 		bintval = vap->iv_bss->ni_intval;
4017 
4018 	/*
4019 	 * If it's non-zero, we should calculate the minimum of
4020 	 * it and the DWELL_BASE.
4021 	 *
4022 	 * XXX Yes, the math should take into account that bintval
4023 	 * is 1.024mS, not 1mS..
4024 	 */
4025 	if (bintval > 0) {
4026 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4027 		    bintval);
4028 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4029 	}
4030 
4031 	/* No association context? Default. */
4032 	return dwell_time;
4033 }
4034 
4035 static uint16_t
4036 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4037 {
4038 	uint16_t passive;
4039 
4040 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4041 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4042 	else
4043 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4044 
4045 	/* Clamp to the beacon interval if we're associated. */
4046 	return (wpi_limit_dwell(sc, passive));
4047 }
4048 
4049 static uint32_t
4050 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4051 {
4052 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4053 	uint32_t nbeacons = time / bintval;
4054 
4055 	if (mod > WPI_PAUSE_MAX_TIME)
4056 		mod = WPI_PAUSE_MAX_TIME;
4057 
4058 	return WPI_PAUSE_SCAN(nbeacons, mod);
4059 }
4060 
4061 /*
4062  * Send a scan request to the firmware.
4063  */
4064 static int
4065 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4066 {
4067 	struct ifnet *ifp = sc->sc_ifp;
4068 	struct ieee80211com *ic = ifp->if_l2com;
4069 	struct ieee80211_scan_state *ss = ic->ic_scan;
4070 	struct ieee80211vap *vap = ss->ss_vap;
4071 	struct wpi_scan_hdr *hdr;
4072 	struct wpi_cmd_data *tx;
4073 	struct wpi_scan_essid *essids;
4074 	struct wpi_scan_chan *chan;
4075 	struct ieee80211_frame *wh;
4076 	struct ieee80211_rateset *rs;
4077 	uint16_t dwell_active, dwell_passive;
4078 	uint8_t *buf, *frm;
4079 	int bgscan, bintval, buflen, error, i, nssid;
4080 
4081 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4082 
4083 	/*
4084 	 * We are absolutely not allowed to send a scan command when another
4085 	 * scan command is pending.
4086 	 */
4087 	if (callout_pending(&sc->scan_timeout)) {
4088 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4089 		    __func__);
4090 		error = EAGAIN;
4091 		goto fail;
4092 	}
4093 
4094 	bgscan = wpi_check_bss_filter(sc);
4095 	bintval = vap->iv_bss->ni_intval;
4096 	if (bgscan != 0 &&
4097 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4098 		error = EOPNOTSUPP;
4099 		goto fail;
4100 	}
4101 
4102 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4103 	if (buf == NULL) {
4104 		device_printf(sc->sc_dev,
4105 		    "%s: could not allocate buffer for scan command\n",
4106 		    __func__);
4107 		error = ENOMEM;
4108 		goto fail;
4109 	}
4110 	hdr = (struct wpi_scan_hdr *)buf;
4111 
4112 	/*
4113 	 * Move to the next channel if no packets are received within 10 msecs
4114 	 * after sending the probe request.
4115 	 */
4116 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4117 	hdr->quiet_threshold = htole16(1);
4118 
4119 	if (bgscan != 0) {
4120 		/*
4121 		 * Max needs to be greater than active and passive and quiet!
4122 		 * It's also in microseconds!
4123 		 */
4124 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4125 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4126 		    bintval));
4127 	}
4128 
4129 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4130 
4131 	tx = (struct wpi_cmd_data *)(hdr + 1);
4132 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4133 	tx->id = WPI_ID_BROADCAST;
4134 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4135 
4136 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4137 		/* Send probe requests at 6Mbps. */
4138 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4139 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4140 	} else {
4141 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4142 		/* Send probe requests at 1Mbps. */
4143 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4144 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4145 	}
4146 
4147 	essids = (struct wpi_scan_essid *)(tx + 1);
4148 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4149 	for (i = 0; i < nssid; i++) {
4150 		essids[i].id = IEEE80211_ELEMID_SSID;
4151 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4152 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4153 #ifdef WPI_DEBUG
4154 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4155 			printf("Scanning Essid: ");
4156 			ieee80211_print_essid(essids[i].data, essids[i].len);
4157 			printf("\n");
4158 		}
4159 #endif
4160 	}
4161 
4162 	/*
4163 	 * Build a probe request frame.  Most of the following code is a
4164 	 * copy & paste of what is done in net80211.
4165 	 */
4166 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4167 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4168 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4169 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4170 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4171 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4172 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4173 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
4174 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
4175 
4176 	frm = (uint8_t *)(wh + 1);
4177 	frm = ieee80211_add_ssid(frm, NULL, 0);
4178 	frm = ieee80211_add_rates(frm, rs);
4179 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4180 		frm = ieee80211_add_xrates(frm, rs);
4181 
4182 	/* Set length of probe request. */
4183 	tx->len = htole16(frm - (uint8_t *)wh);
4184 
4185 	/*
4186 	 * Construct information about the channel that we
4187 	 * want to scan. The firmware expects this to be directly
4188 	 * after the scan probe request
4189 	 */
4190 	chan = (struct wpi_scan_chan *)frm;
4191 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4192 	chan->flags = 0;
4193 	if (nssid) {
4194 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4195 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4196 	} else
4197 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4198 
4199 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4200 		chan->flags |= WPI_CHAN_ACTIVE;
4201 
4202 	/*
4203 	 * Calculate the active/passive dwell times.
4204 	 */
4205 
4206 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4207 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4208 
4209 	/* Make sure they're valid. */
4210 	if (dwell_active > dwell_passive)
4211 		dwell_active = dwell_passive;
4212 
4213 	chan->active = htole16(dwell_active);
4214 	chan->passive = htole16(dwell_passive);
4215 
4216 	chan->dsp_gain = 0x6e;  /* Default level */
4217 
4218 	if (IEEE80211_IS_CHAN_5GHZ(c))
4219 		chan->rf_gain = 0x3b;
4220 	else
4221 		chan->rf_gain = 0x28;
4222 
4223 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4224 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4225 
4226 	hdr->nchan++;
4227 
4228 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4229 		/* XXX Force probe request transmission. */
4230 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4231 
4232 		chan++;
4233 
4234 		/* Reduce unnecessary delay. */
4235 		chan->flags = 0;
4236 		chan->passive = chan->active = hdr->quiet_time;
4237 
4238 		hdr->nchan++;
4239 	}
4240 
4241 	chan++;
4242 
4243 	buflen = (uint8_t *)chan - buf;
4244 	hdr->len = htole16(buflen);
4245 
4246 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4247 	    hdr->nchan);
4248 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4249 	free(buf, M_DEVBUF);
4250 
4251 	if (error != 0)
4252 		goto fail;
4253 
4254 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4255 
4256 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4257 
4258 	return 0;
4259 
4260 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4261 
4262 	return error;
4263 }
4264 
4265 static int
4266 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4267 {
4268 	struct ieee80211com *ic = vap->iv_ic;
4269 	struct ieee80211_node *ni = vap->iv_bss;
4270 	struct ieee80211_channel *c = ni->ni_chan;
4271 	int error;
4272 
4273 	WPI_RXON_LOCK(sc);
4274 
4275 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4276 
4277 	/* Update adapter configuration. */
4278 	sc->rxon.associd = 0;
4279 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4280 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4281 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4282 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4283 	if (IEEE80211_IS_CHAN_2GHZ(c))
4284 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4285 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4286 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4287 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4288 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4289 	if (IEEE80211_IS_CHAN_A(c)) {
4290 		sc->rxon.cck_mask  = 0;
4291 		sc->rxon.ofdm_mask = 0x15;
4292 	} else if (IEEE80211_IS_CHAN_B(c)) {
4293 		sc->rxon.cck_mask  = 0x03;
4294 		sc->rxon.ofdm_mask = 0;
4295 	} else {
4296 		/* Assume 802.11b/g. */
4297 		sc->rxon.cck_mask  = 0x0f;
4298 		sc->rxon.ofdm_mask = 0x15;
4299 	}
4300 
4301 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4302 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4303 	    sc->rxon.ofdm_mask);
4304 
4305 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4306 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4307 		    __func__);
4308 	}
4309 
4310 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4311 
4312 	WPI_RXON_UNLOCK(sc);
4313 
4314 	return error;
4315 }
4316 
4317 static int
4318 wpi_config_beacon(struct wpi_vap *wvp)
4319 {
4320 	struct ieee80211com *ic = wvp->wv_vap.iv_ic;
4321 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4322 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4323 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4324 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4325 	struct ieee80211_tim_ie *tie;
4326 	struct mbuf *m;
4327 	uint8_t *ptr;
4328 	int error;
4329 
4330 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4331 
4332 	WPI_VAP_LOCK_ASSERT(wvp);
4333 
4334 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4335 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4336 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4337 
4338 	/* XXX seems to be unused */
4339 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4340 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4341 		ptr = mtod(bcn->m, uint8_t *);
4342 
4343 		cmd->tim = htole16(bo->bo_tim - ptr);
4344 		cmd->timsz = tie->tim_len;
4345 	}
4346 
4347 	/* Necessary for recursion in ieee80211_beacon_update(). */
4348 	m = bcn->m;
4349 	bcn->m = m_dup(m, M_NOWAIT);
4350 	if (bcn->m == NULL) {
4351 		device_printf(sc->sc_dev,
4352 		    "%s: could not copy beacon frame\n", __func__);
4353 		error = ENOMEM;
4354 		goto end;
4355 	}
4356 
4357 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4358 		device_printf(sc->sc_dev,
4359 		    "%s: could not update beacon frame, error %d", __func__,
4360 		    error);
4361 	}
4362 
4363 	/* Restore mbuf. */
4364 end:	bcn->m = m;
4365 
4366 	return error;
4367 }
4368 
4369 static int
4370 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4371 {
4372 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
4373 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4374 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4375 	struct mbuf *m;
4376 	int error;
4377 
4378 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4379 
4380 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4381 		return EINVAL;
4382 
4383 	m = ieee80211_beacon_alloc(ni, bo);
4384 	if (m == NULL) {
4385 		device_printf(sc->sc_dev,
4386 		    "%s: could not allocate beacon frame\n", __func__);
4387 		return ENOMEM;
4388 	}
4389 
4390 	WPI_VAP_LOCK(wvp);
4391 	if (bcn->m != NULL)
4392 		m_freem(bcn->m);
4393 
4394 	bcn->m = m;
4395 
4396 	error = wpi_config_beacon(wvp);
4397 	WPI_VAP_UNLOCK(wvp);
4398 
4399 	return error;
4400 }
4401 
4402 static void
4403 wpi_update_beacon(struct ieee80211vap *vap, int item)
4404 {
4405 	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4406 	struct wpi_vap *wvp = WPI_VAP(vap);
4407 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4408 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4409 	struct ieee80211_node *ni = vap->iv_bss;
4410 	int mcast = 0;
4411 
4412 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4413 
4414 	WPI_VAP_LOCK(wvp);
4415 	if (bcn->m == NULL) {
4416 		bcn->m = ieee80211_beacon_alloc(ni, bo);
4417 		if (bcn->m == NULL) {
4418 			device_printf(sc->sc_dev,
4419 			    "%s: could not allocate beacon frame\n", __func__);
4420 
4421 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4422 			    __func__);
4423 
4424 			WPI_VAP_UNLOCK(wvp);
4425 			return;
4426 		}
4427 	}
4428 	WPI_VAP_UNLOCK(wvp);
4429 
4430 	if (item == IEEE80211_BEACON_TIM)
4431 		mcast = 1;	/* TODO */
4432 
4433 	setbit(bo->bo_flags, item);
4434 	ieee80211_beacon_update(ni, bo, bcn->m, mcast);
4435 
4436 	WPI_VAP_LOCK(wvp);
4437 	wpi_config_beacon(wvp);
4438 	WPI_VAP_UNLOCK(wvp);
4439 
4440 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4441 }
4442 
4443 static void
4444 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4445 {
4446 	struct ieee80211vap *vap = ni->ni_vap;
4447 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4448 	struct wpi_node *wn = WPI_NODE(ni);
4449 	int error;
4450 
4451 	WPI_NT_LOCK(sc);
4452 
4453 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4454 
4455 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4456 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4457 			device_printf(sc->sc_dev,
4458 			    "%s: could not add IBSS node, error %d\n",
4459 			    __func__, error);
4460 		}
4461 	}
4462 	WPI_NT_UNLOCK(sc);
4463 }
4464 
4465 static int
4466 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4467 {
4468 	struct ieee80211com *ic = vap->iv_ic;
4469 	struct ieee80211_node *ni = vap->iv_bss;
4470 	struct ieee80211_channel *c = ni->ni_chan;
4471 	int error;
4472 
4473 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4474 
4475 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4476 		/* Link LED blinks while monitoring. */
4477 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4478 		return 0;
4479 	}
4480 
4481 	/* XXX kernel panic workaround */
4482 	if (c == IEEE80211_CHAN_ANYC) {
4483 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4484 		    __func__);
4485 		return EINVAL;
4486 	}
4487 
4488 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4489 		device_printf(sc->sc_dev,
4490 		    "%s: could not set timing, error %d\n", __func__, error);
4491 		return error;
4492 	}
4493 
4494 	/* Update adapter configuration. */
4495 	WPI_RXON_LOCK(sc);
4496 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4497 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4498 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4499 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4500 	if (IEEE80211_IS_CHAN_2GHZ(c))
4501 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4502 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4503 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4504 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4505 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4506 	if (IEEE80211_IS_CHAN_A(c)) {
4507 		sc->rxon.cck_mask  = 0;
4508 		sc->rxon.ofdm_mask = 0x15;
4509 	} else if (IEEE80211_IS_CHAN_B(c)) {
4510 		sc->rxon.cck_mask  = 0x03;
4511 		sc->rxon.ofdm_mask = 0;
4512 	} else {
4513 		/* Assume 802.11b/g. */
4514 		sc->rxon.cck_mask  = 0x0f;
4515 		sc->rxon.ofdm_mask = 0x15;
4516 	}
4517 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4518 
4519 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4520 	    sc->rxon.chan, sc->rxon.flags);
4521 
4522 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4523 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4524 		    __func__);
4525 		return error;
4526 	}
4527 
4528 	/* Start periodic calibration timer. */
4529 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4530 
4531 	WPI_RXON_UNLOCK(sc);
4532 
4533 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4534 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4535 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4536 			device_printf(sc->sc_dev,
4537 			    "%s: could not setup beacon, error %d\n", __func__,
4538 			    error);
4539 			return error;
4540 		}
4541 	}
4542 
4543 	if (vap->iv_opmode == IEEE80211_M_STA) {
4544 		/* Add BSS node. */
4545 		WPI_NT_LOCK(sc);
4546 		error = wpi_add_sta_node(sc, ni);
4547 		WPI_NT_UNLOCK(sc);
4548 		if (error != 0) {
4549 			device_printf(sc->sc_dev,
4550 			    "%s: could not add BSS node, error %d\n", __func__,
4551 			    error);
4552 			return error;
4553 		}
4554 	}
4555 
4556 	/* Link LED always on while associated. */
4557 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4558 
4559 	/* Enable power-saving mode if requested by user. */
4560 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4561 	    vap->iv_opmode != IEEE80211_M_IBSS)
4562 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4563 
4564 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4565 
4566 	return 0;
4567 }
4568 
4569 static int
4570 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4571 {
4572 	const struct ieee80211_cipher *cip = k->wk_cipher;
4573 	struct ieee80211vap *vap = ni->ni_vap;
4574 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4575 	struct wpi_node *wn = WPI_NODE(ni);
4576 	struct wpi_node_info node;
4577 	uint16_t kflags;
4578 	int error;
4579 
4580 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4581 
4582 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4583 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4584 		    __func__);
4585 		return 0;
4586 	}
4587 
4588 	switch (cip->ic_cipher) {
4589 	case IEEE80211_CIPHER_AES_CCM:
4590 		kflags = WPI_KFLAG_CCMP;
4591 		break;
4592 
4593 	default:
4594 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4595 		    cip->ic_cipher);
4596 		return 0;
4597 	}
4598 
4599 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4600 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4601 		kflags |= WPI_KFLAG_MULTICAST;
4602 
4603 	memset(&node, 0, sizeof node);
4604 	node.id = wn->id;
4605 	node.control = WPI_NODE_UPDATE;
4606 	node.flags = WPI_FLAG_KEY_SET;
4607 	node.kflags = htole16(kflags);
4608 	memcpy(node.key, k->wk_key, k->wk_keylen);
4609 again:
4610 	DPRINTF(sc, WPI_DEBUG_KEY,
4611 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4612 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4613 	    node.id, ether_sprintf(ni->ni_macaddr));
4614 
4615 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4616 	if (error != 0) {
4617 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4618 		    error);
4619 		return !error;
4620 	}
4621 
4622 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4623 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4624 		kflags |= WPI_KFLAG_MULTICAST;
4625 		node.kflags = htole16(kflags);
4626 
4627 		goto again;
4628 	}
4629 
4630 	return 1;
4631 }
4632 
4633 static void
4634 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4635 {
4636 	const struct ieee80211_key *k = arg;
4637 	struct ieee80211vap *vap = ni->ni_vap;
4638 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4639 	struct wpi_node *wn = WPI_NODE(ni);
4640 	int error;
4641 
4642 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4643 		return;
4644 
4645 	WPI_NT_LOCK(sc);
4646 	error = wpi_load_key(ni, k);
4647 	WPI_NT_UNLOCK(sc);
4648 
4649 	if (error == 0) {
4650 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4651 		    __func__);
4652 	}
4653 }
4654 
4655 static int
4656 wpi_set_global_keys(struct ieee80211_node *ni)
4657 {
4658 	struct ieee80211vap *vap = ni->ni_vap;
4659 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4660 	int error = 1;
4661 
4662 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4663 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4664 			error = wpi_load_key(ni, wk);
4665 
4666 	return !error;
4667 }
4668 
4669 static int
4670 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4671 {
4672 	struct ieee80211vap *vap = ni->ni_vap;
4673 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4674 	struct wpi_node *wn = WPI_NODE(ni);
4675 	struct wpi_node_info node;
4676 	uint16_t kflags;
4677 	int error;
4678 
4679 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4680 
4681 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4682 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4683 		return 1;	/* Nothing to do. */
4684 	}
4685 
4686 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4687 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4688 		kflags |= WPI_KFLAG_MULTICAST;
4689 
4690 	memset(&node, 0, sizeof node);
4691 	node.id = wn->id;
4692 	node.control = WPI_NODE_UPDATE;
4693 	node.flags = WPI_FLAG_KEY_SET;
4694 	node.kflags = htole16(kflags);
4695 again:
4696 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4697 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4698 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4699 
4700 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4701 	if (error != 0) {
4702 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4703 		    error);
4704 		return !error;
4705 	}
4706 
4707 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4708 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4709 		kflags |= WPI_KFLAG_MULTICAST;
4710 		node.kflags = htole16(kflags);
4711 
4712 		goto again;
4713 	}
4714 
4715 	return 1;
4716 }
4717 
4718 static void
4719 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4720 {
4721 	const struct ieee80211_key *k = arg;
4722 	struct ieee80211vap *vap = ni->ni_vap;
4723 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4724 	struct wpi_node *wn = WPI_NODE(ni);
4725 	int error;
4726 
4727 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4728 		return;
4729 
4730 	WPI_NT_LOCK(sc);
4731 	error = wpi_del_key(ni, k);
4732 	WPI_NT_UNLOCK(sc);
4733 
4734 	if (error == 0) {
4735 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4736 		    __func__);
4737 	}
4738 }
4739 
4740 static int
4741 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4742     int set)
4743 {
4744 	struct ieee80211com *ic = vap->iv_ic;
4745 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4746 	struct wpi_vap *wvp = WPI_VAP(vap);
4747 	struct ieee80211_node *ni;
4748 	int error, ni_ref = 0;
4749 
4750 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4751 
4752 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4753 		/* Not for us. */
4754 		return 1;
4755 	}
4756 
4757 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4758 		/* XMIT keys are handled in wpi_tx_data(). */
4759 		return 1;
4760 	}
4761 
4762 	/* Handle group keys. */
4763 	if (&vap->iv_nw_keys[0] <= k &&
4764 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4765 		WPI_NT_LOCK(sc);
4766 		if (set)
4767 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4768 		else
4769 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4770 		WPI_NT_UNLOCK(sc);
4771 
4772 		if (vap->iv_state == IEEE80211_S_RUN) {
4773 			ieee80211_iterate_nodes(&ic->ic_sta,
4774 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4775 			    __DECONST(void *, k));
4776 		}
4777 
4778 		return 1;
4779 	}
4780 
4781 	switch (vap->iv_opmode) {
4782 	case IEEE80211_M_STA:
4783 		ni = vap->iv_bss;
4784 		break;
4785 
4786 	case IEEE80211_M_IBSS:
4787 	case IEEE80211_M_AHDEMO:
4788 	case IEEE80211_M_HOSTAP:
4789 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4790 		if (ni == NULL)
4791 			return 0;	/* should not happen */
4792 
4793 		ni_ref = 1;
4794 		break;
4795 
4796 	default:
4797 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4798 		    vap->iv_opmode);
4799 		return 0;
4800 	}
4801 
4802 	WPI_NT_LOCK(sc);
4803 	if (set)
4804 		error = wpi_load_key(ni, k);
4805 	else
4806 		error = wpi_del_key(ni, k);
4807 	WPI_NT_UNLOCK(sc);
4808 
4809 	if (ni_ref)
4810 		ieee80211_node_decref(ni);
4811 
4812 	return error;
4813 }
4814 
4815 static int
4816 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4817     const uint8_t mac[IEEE80211_ADDR_LEN])
4818 {
4819 	return wpi_process_key(vap, k, 1);
4820 }
4821 
4822 static int
4823 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4824 {
4825 	return wpi_process_key(vap, k, 0);
4826 }
4827 
4828 /*
4829  * This function is called after the runtime firmware notifies us of its
4830  * readiness (called in a process context).
4831  */
4832 static int
4833 wpi_post_alive(struct wpi_softc *sc)
4834 {
4835 	int ntries, error;
4836 
4837 	/* Check (again) that the radio is not disabled. */
4838 	if ((error = wpi_nic_lock(sc)) != 0)
4839 		return error;
4840 
4841 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4842 
4843 	/* NB: Runtime firmware must be up and running. */
4844 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4845 		device_printf(sc->sc_dev,
4846 		    "RF switch: radio disabled (%s)\n", __func__);
4847 		wpi_nic_unlock(sc);
4848 		return EPERM;   /* :-) */
4849 	}
4850 	wpi_nic_unlock(sc);
4851 
4852 	/* Wait for thermal sensor to calibrate. */
4853 	for (ntries = 0; ntries < 1000; ntries++) {
4854 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4855 			break;
4856 		DELAY(10);
4857 	}
4858 
4859 	if (ntries == 1000) {
4860 		device_printf(sc->sc_dev,
4861 		    "timeout waiting for thermal sensor calibration\n");
4862 		return ETIMEDOUT;
4863 	}
4864 
4865 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4866 	return 0;
4867 }
4868 
4869 /*
4870  * The firmware boot code is small and is intended to be copied directly into
4871  * the NIC internal memory (no DMA transfer).
4872  */
4873 static int
4874 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4875 {
4876 	int error, ntries;
4877 
4878 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4879 
4880 	size /= sizeof (uint32_t);
4881 
4882 	if ((error = wpi_nic_lock(sc)) != 0)
4883 		return error;
4884 
4885 	/* Copy microcode image into NIC memory. */
4886 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4887 	    (const uint32_t *)ucode, size);
4888 
4889 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4890 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4891 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4892 
4893 	/* Start boot load now. */
4894 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4895 
4896 	/* Wait for transfer to complete. */
4897 	for (ntries = 0; ntries < 1000; ntries++) {
4898 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4899 		DPRINTF(sc, WPI_DEBUG_HW,
4900 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4901 		    WPI_FH_TX_STATUS_IDLE(6),
4902 		    status & WPI_FH_TX_STATUS_IDLE(6));
4903 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4904 			DPRINTF(sc, WPI_DEBUG_HW,
4905 			    "Status Match! - ntries = %d\n", ntries);
4906 			break;
4907 		}
4908 		DELAY(10);
4909 	}
4910 	if (ntries == 1000) {
4911 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4912 		    __func__);
4913 		wpi_nic_unlock(sc);
4914 		return ETIMEDOUT;
4915 	}
4916 
4917 	/* Enable boot after power up. */
4918 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4919 
4920 	wpi_nic_unlock(sc);
4921 	return 0;
4922 }
4923 
4924 static int
4925 wpi_load_firmware(struct wpi_softc *sc)
4926 {
4927 	struct wpi_fw_info *fw = &sc->fw;
4928 	struct wpi_dma_info *dma = &sc->fw_dma;
4929 	int error;
4930 
4931 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4932 
4933 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4934 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4935 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4936 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4937 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4938 
4939 	/* Tell adapter where to find initialization sections. */
4940 	if ((error = wpi_nic_lock(sc)) != 0)
4941 		return error;
4942 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4943 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4944 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4945 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4946 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4947 	wpi_nic_unlock(sc);
4948 
4949 	/* Load firmware boot code. */
4950 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4951 	if (error != 0) {
4952 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4953 		    __func__);
4954 		return error;
4955 	}
4956 
4957 	/* Now press "execute". */
4958 	WPI_WRITE(sc, WPI_RESET, 0);
4959 
4960 	/* Wait at most one second for first alive notification. */
4961 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4962 		device_printf(sc->sc_dev,
4963 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4964 		    __func__, error);
4965 		return error;
4966 	}
4967 
4968 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4969 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4970 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4971 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4972 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4973 
4974 	/* Tell adapter where to find runtime sections. */
4975 	if ((error = wpi_nic_lock(sc)) != 0)
4976 		return error;
4977 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4978 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4979 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4980 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4981 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4982 	    WPI_FW_UPDATED | fw->main.textsz);
4983 	wpi_nic_unlock(sc);
4984 
4985 	return 0;
4986 }
4987 
4988 static int
4989 wpi_read_firmware(struct wpi_softc *sc)
4990 {
4991 	const struct firmware *fp;
4992 	struct wpi_fw_info *fw = &sc->fw;
4993 	const struct wpi_firmware_hdr *hdr;
4994 	int error;
4995 
4996 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4997 
4998 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4999 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5000 
5001 	WPI_UNLOCK(sc);
5002 	fp = firmware_get(WPI_FW_NAME);
5003 	WPI_LOCK(sc);
5004 
5005 	if (fp == NULL) {
5006 		device_printf(sc->sc_dev,
5007 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5008 		return EINVAL;
5009 	}
5010 
5011 	sc->fw_fp = fp;
5012 
5013 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5014 		device_printf(sc->sc_dev,
5015 		    "firmware file too short: %zu bytes\n", fp->datasize);
5016 		error = EINVAL;
5017 		goto fail;
5018 	}
5019 
5020 	fw->size = fp->datasize;
5021 	fw->data = (const uint8_t *)fp->data;
5022 
5023 	/* Extract firmware header information. */
5024 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5025 
5026 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5027 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5028 
5029 	fw->main.textsz = le32toh(hdr->rtextsz);
5030 	fw->main.datasz = le32toh(hdr->rdatasz);
5031 	fw->init.textsz = le32toh(hdr->itextsz);
5032 	fw->init.datasz = le32toh(hdr->idatasz);
5033 	fw->boot.textsz = le32toh(hdr->btextsz);
5034 	fw->boot.datasz = 0;
5035 
5036 	/* Sanity-check firmware header. */
5037 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5038 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5039 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5040 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5041 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5042 	    (fw->boot.textsz & 3) != 0) {
5043 		device_printf(sc->sc_dev, "invalid firmware header\n");
5044 		error = EINVAL;
5045 		goto fail;
5046 	}
5047 
5048 	/* Check that all firmware sections fit. */
5049 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5050 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5051 		device_printf(sc->sc_dev,
5052 		    "firmware file too short: %zu bytes\n", fw->size);
5053 		error = EINVAL;
5054 		goto fail;
5055 	}
5056 
5057 	/* Get pointers to firmware sections. */
5058 	fw->main.text = (const uint8_t *)(hdr + 1);
5059 	fw->main.data = fw->main.text + fw->main.textsz;
5060 	fw->init.text = fw->main.data + fw->main.datasz;
5061 	fw->init.data = fw->init.text + fw->init.textsz;
5062 	fw->boot.text = fw->init.data + fw->init.datasz;
5063 
5064 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5065 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5066 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5067 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5068 	    fw->main.textsz, fw->main.datasz,
5069 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5070 
5071 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5072 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5073 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5074 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5075 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5076 
5077 	return 0;
5078 
5079 fail:	wpi_unload_firmware(sc);
5080 	return error;
5081 }
5082 
5083 /**
5084  * Free the referenced firmware image
5085  */
5086 static void
5087 wpi_unload_firmware(struct wpi_softc *sc)
5088 {
5089 	if (sc->fw_fp != NULL) {
5090 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5091 		sc->fw_fp = NULL;
5092 	}
5093 }
5094 
5095 static int
5096 wpi_clock_wait(struct wpi_softc *sc)
5097 {
5098 	int ntries;
5099 
5100 	/* Set "initialization complete" bit. */
5101 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5102 
5103 	/* Wait for clock stabilization. */
5104 	for (ntries = 0; ntries < 2500; ntries++) {
5105 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5106 			return 0;
5107 		DELAY(100);
5108 	}
5109 	device_printf(sc->sc_dev,
5110 	    "%s: timeout waiting for clock stabilization\n", __func__);
5111 
5112 	return ETIMEDOUT;
5113 }
5114 
5115 static int
5116 wpi_apm_init(struct wpi_softc *sc)
5117 {
5118 	uint32_t reg;
5119 	int error;
5120 
5121 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5122 
5123 	/* Disable L0s exit timer (NMI bug workaround). */
5124 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5125 	/* Don't wait for ICH L0s (ICH bug workaround). */
5126 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5127 
5128 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5129 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5130 
5131 	/* Retrieve PCIe Active State Power Management (ASPM). */
5132 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5133 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5134 	if (reg & 0x02)	/* L1 Entry enabled. */
5135 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5136 	else
5137 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5138 
5139 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5140 
5141 	/* Wait for clock stabilization before accessing prph. */
5142 	if ((error = wpi_clock_wait(sc)) != 0)
5143 		return error;
5144 
5145 	if ((error = wpi_nic_lock(sc)) != 0)
5146 		return error;
5147 	/* Cleanup. */
5148 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5149 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5150 
5151 	/* Enable DMA and BSM (Bootstrap State Machine). */
5152 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5153 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5154 	DELAY(20);
5155 	/* Disable L1-Active. */
5156 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5157 	wpi_nic_unlock(sc);
5158 
5159 	return 0;
5160 }
5161 
5162 static void
5163 wpi_apm_stop_master(struct wpi_softc *sc)
5164 {
5165 	int ntries;
5166 
5167 	/* Stop busmaster DMA activity. */
5168 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5169 
5170 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5171 	    WPI_GP_CNTRL_MAC_PS)
5172 		return; /* Already asleep. */
5173 
5174 	for (ntries = 0; ntries < 100; ntries++) {
5175 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5176 			return;
5177 		DELAY(10);
5178 	}
5179 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5180 	    __func__);
5181 }
5182 
5183 static void
5184 wpi_apm_stop(struct wpi_softc *sc)
5185 {
5186 	wpi_apm_stop_master(sc);
5187 
5188 	/* Reset the entire device. */
5189 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5190 	DELAY(10);
5191 	/* Clear "initialization complete" bit. */
5192 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5193 }
5194 
5195 static void
5196 wpi_nic_config(struct wpi_softc *sc)
5197 {
5198 	uint32_t rev;
5199 
5200 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5201 
5202 	/* voodoo from the Linux "driver".. */
5203 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5204 	if ((rev & 0xc0) == 0x40)
5205 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5206 	else if (!(rev & 0x80))
5207 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5208 
5209 	if (sc->cap == 0x80)
5210 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5211 
5212 	if ((sc->rev & 0xf0) == 0xd0)
5213 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5214 	else
5215 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5216 
5217 	if (sc->type > 1)
5218 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5219 }
5220 
5221 static int
5222 wpi_hw_init(struct wpi_softc *sc)
5223 {
5224 	int chnl, ntries, error;
5225 
5226 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5227 
5228 	/* Clear pending interrupts. */
5229 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5230 
5231 	if ((error = wpi_apm_init(sc)) != 0) {
5232 		device_printf(sc->sc_dev,
5233 		    "%s: could not power ON adapter, error %d\n", __func__,
5234 		    error);
5235 		return error;
5236 	}
5237 
5238 	/* Select VMAIN power source. */
5239 	if ((error = wpi_nic_lock(sc)) != 0)
5240 		return error;
5241 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5242 	wpi_nic_unlock(sc);
5243 	/* Spin until VMAIN gets selected. */
5244 	for (ntries = 0; ntries < 5000; ntries++) {
5245 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5246 			break;
5247 		DELAY(10);
5248 	}
5249 	if (ntries == 5000) {
5250 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5251 		return ETIMEDOUT;
5252 	}
5253 
5254 	/* Perform adapter initialization. */
5255 	wpi_nic_config(sc);
5256 
5257 	/* Initialize RX ring. */
5258 	if ((error = wpi_nic_lock(sc)) != 0)
5259 		return error;
5260 	/* Set physical address of RX ring. */
5261 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5262 	/* Set physical address of RX read pointer. */
5263 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5264 	    offsetof(struct wpi_shared, next));
5265 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5266 	/* Enable RX. */
5267 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5268 	    WPI_FH_RX_CONFIG_DMA_ENA |
5269 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5270 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5271 	    WPI_FH_RX_CONFIG_MAXFRAG |
5272 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5273 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5274 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5275 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5276 	wpi_nic_unlock(sc);
5277 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5278 
5279 	/* Initialize TX rings. */
5280 	if ((error = wpi_nic_lock(sc)) != 0)
5281 		return error;
5282 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5283 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5284 	/* Enable all 6 TX rings. */
5285 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5286 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5287 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5288 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5289 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5290 	/* Set physical address of TX rings. */
5291 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5292 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5293 
5294 	/* Enable all DMA channels. */
5295 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5296 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5297 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5298 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5299 	}
5300 	wpi_nic_unlock(sc);
5301 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5302 
5303 	/* Clear "radio off" and "commands blocked" bits. */
5304 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5305 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5306 
5307 	/* Clear pending interrupts. */
5308 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5309 	/* Enable interrupts. */
5310 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5311 
5312 	/* _Really_ make sure "radio off" bit is cleared! */
5313 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5314 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5315 
5316 	if ((error = wpi_load_firmware(sc)) != 0) {
5317 		device_printf(sc->sc_dev,
5318 		    "%s: could not load firmware, error %d\n", __func__,
5319 		    error);
5320 		return error;
5321 	}
5322 	/* Wait at most one second for firmware alive notification. */
5323 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5324 		device_printf(sc->sc_dev,
5325 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5326 		    __func__, error);
5327 		return error;
5328 	}
5329 
5330 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5331 
5332 	/* Do post-firmware initialization. */
5333 	return wpi_post_alive(sc);
5334 }
5335 
5336 static void
5337 wpi_hw_stop(struct wpi_softc *sc)
5338 {
5339 	int chnl, qid, ntries;
5340 
5341 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5342 
5343 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5344 		wpi_nic_lock(sc);
5345 
5346 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5347 
5348 	/* Disable interrupts. */
5349 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5350 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5351 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5352 
5353 	/* Make sure we no longer hold the NIC lock. */
5354 	wpi_nic_unlock(sc);
5355 
5356 	if (wpi_nic_lock(sc) == 0) {
5357 		/* Stop TX scheduler. */
5358 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5359 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5360 
5361 		/* Stop all DMA channels. */
5362 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5363 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5364 			for (ntries = 0; ntries < 200; ntries++) {
5365 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5366 				    WPI_FH_TX_STATUS_IDLE(chnl))
5367 					break;
5368 				DELAY(10);
5369 			}
5370 		}
5371 		wpi_nic_unlock(sc);
5372 	}
5373 
5374 	/* Stop RX ring. */
5375 	wpi_reset_rx_ring(sc);
5376 
5377 	/* Reset all TX rings. */
5378 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
5379 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5380 
5381 	if (wpi_nic_lock(sc) == 0) {
5382 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5383 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5384 		wpi_nic_unlock(sc);
5385 	}
5386 	DELAY(5);
5387 	/* Power OFF adapter. */
5388 	wpi_apm_stop(sc);
5389 }
5390 
5391 static void
5392 wpi_radio_on(void *arg0, int pending)
5393 {
5394 	struct wpi_softc *sc = arg0;
5395 	struct ifnet *ifp = sc->sc_ifp;
5396 	struct ieee80211com *ic = ifp->if_l2com;
5397 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5398 
5399 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5400 
5401 	if (vap != NULL) {
5402 		wpi_init(sc);
5403 		ieee80211_init(vap);
5404 	}
5405 
5406 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
5407 		WPI_LOCK(sc);
5408 		callout_stop(&sc->watchdog_rfkill);
5409 		WPI_UNLOCK(sc);
5410 	}
5411 }
5412 
5413 static void
5414 wpi_radio_off(void *arg0, int pending)
5415 {
5416 	struct wpi_softc *sc = arg0;
5417 	struct ifnet *ifp = sc->sc_ifp;
5418 	struct ieee80211com *ic = ifp->if_l2com;
5419 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5420 
5421 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5422 
5423 	wpi_stop(sc);
5424 	if (vap != NULL)
5425 		ieee80211_stop(vap);
5426 
5427 	WPI_LOCK(sc);
5428 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5429 	WPI_UNLOCK(sc);
5430 }
5431 
5432 static void
5433 wpi_init(void *arg)
5434 {
5435 	struct wpi_softc *sc = arg;
5436 	struct ifnet *ifp = sc->sc_ifp;
5437 	struct ieee80211com *ic = ifp->if_l2com;
5438 	int error;
5439 
5440 	WPI_LOCK(sc);
5441 
5442 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5443 
5444 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
5445 		goto end;
5446 
5447 	/* Check that the radio is not disabled by hardware switch. */
5448 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5449 		device_printf(sc->sc_dev,
5450 		    "RF switch: radio disabled (%s)\n", __func__);
5451 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5452 		    sc);
5453 		goto end;
5454 	}
5455 
5456 	/* Read firmware images from the filesystem. */
5457 	if ((error = wpi_read_firmware(sc)) != 0) {
5458 		device_printf(sc->sc_dev,
5459 		    "%s: could not read firmware, error %d\n", __func__,
5460 		    error);
5461 		goto fail;
5462 	}
5463 
5464 	/* Initialize hardware and upload firmware. */
5465 	error = wpi_hw_init(sc);
5466 	wpi_unload_firmware(sc);
5467 	if (error != 0) {
5468 		device_printf(sc->sc_dev,
5469 		    "%s: could not initialize hardware, error %d\n", __func__,
5470 		    error);
5471 		goto fail;
5472 	}
5473 
5474 	/* Configure adapter now that it is ready. */
5475 	sc->txq_active = 1;
5476 	if ((error = wpi_config(sc)) != 0) {
5477 		device_printf(sc->sc_dev,
5478 		    "%s: could not configure device, error %d\n", __func__,
5479 		    error);
5480 		goto fail;
5481 	}
5482 
5483 	IF_LOCK(&ifp->if_snd);
5484 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5485 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5486 	IF_UNLOCK(&ifp->if_snd);
5487 
5488 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5489 
5490 	WPI_UNLOCK(sc);
5491 
5492 	ieee80211_start_all(ic);
5493 
5494 	return;
5495 
5496 fail:	wpi_stop_locked(sc);
5497 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5498 	WPI_UNLOCK(sc);
5499 }
5500 
5501 static void
5502 wpi_stop_locked(struct wpi_softc *sc)
5503 {
5504 	struct ifnet *ifp = sc->sc_ifp;
5505 
5506 	WPI_LOCK_ASSERT(sc);
5507 
5508 	WPI_TXQ_LOCK(sc);
5509 	sc->txq_active = 0;
5510 	WPI_TXQ_UNLOCK(sc);
5511 
5512 	WPI_TXQ_STATE_LOCK(sc);
5513 	callout_stop(&sc->tx_timeout);
5514 	WPI_TXQ_STATE_UNLOCK(sc);
5515 
5516 	WPI_RXON_LOCK(sc);
5517 	callout_stop(&sc->scan_timeout);
5518 	callout_stop(&sc->calib_to);
5519 	WPI_RXON_UNLOCK(sc);
5520 
5521 	IF_LOCK(&ifp->if_snd);
5522 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5523 	IF_UNLOCK(&ifp->if_snd);
5524 
5525 	/* Power OFF hardware. */
5526 	wpi_hw_stop(sc);
5527 }
5528 
5529 static void
5530 wpi_stop(struct wpi_softc *sc)
5531 {
5532 	WPI_LOCK(sc);
5533 	wpi_stop_locked(sc);
5534 	WPI_UNLOCK(sc);
5535 }
5536 
5537 /*
5538  * Callback from net80211 to start a scan.
5539  */
5540 static void
5541 wpi_scan_start(struct ieee80211com *ic)
5542 {
5543 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5544 
5545 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5546 }
5547 
5548 /*
5549  * Callback from net80211 to terminate a scan.
5550  */
5551 static void
5552 wpi_scan_end(struct ieee80211com *ic)
5553 {
5554 	struct ifnet *ifp = ic->ic_ifp;
5555 	struct wpi_softc *sc = ifp->if_softc;
5556 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5557 
5558 	if (vap->iv_state == IEEE80211_S_RUN)
5559 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5560 }
5561 
5562 /**
5563  * Called by the net80211 framework to indicate to the driver
5564  * that the channel should be changed
5565  */
5566 static void
5567 wpi_set_channel(struct ieee80211com *ic)
5568 {
5569 	const struct ieee80211_channel *c = ic->ic_curchan;
5570 	struct ifnet *ifp = ic->ic_ifp;
5571 	struct wpi_softc *sc = ifp->if_softc;
5572 	int error;
5573 
5574 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5575 
5576 	WPI_LOCK(sc);
5577 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5578 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5579 	WPI_UNLOCK(sc);
5580 	WPI_TX_LOCK(sc);
5581 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5582 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5583 	WPI_TX_UNLOCK(sc);
5584 
5585 	/*
5586 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5587 	 * are already taken care of by their respective firmware commands.
5588 	 */
5589 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5590 		WPI_RXON_LOCK(sc);
5591 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5592 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5593 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5594 			    WPI_RXON_24GHZ);
5595 		} else {
5596 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5597 			    WPI_RXON_24GHZ);
5598 		}
5599 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5600 			device_printf(sc->sc_dev,
5601 			    "%s: error %d setting channel\n", __func__,
5602 			    error);
5603 		WPI_RXON_UNLOCK(sc);
5604 	}
5605 }
5606 
5607 /**
5608  * Called by net80211 to indicate that we need to scan the current
5609  * channel. The channel is previously be set via the wpi_set_channel
5610  * callback.
5611  */
5612 static void
5613 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5614 {
5615 	struct ieee80211vap *vap = ss->ss_vap;
5616 	struct ieee80211com *ic = vap->iv_ic;
5617 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5618 	int error;
5619 
5620 	WPI_RXON_LOCK(sc);
5621 	error = wpi_scan(sc, ic->ic_curchan);
5622 	WPI_RXON_UNLOCK(sc);
5623 	if (error != 0)
5624 		ieee80211_cancel_scan(vap);
5625 }
5626 
5627 /**
5628  * Called by the net80211 framework to indicate
5629  * the minimum dwell time has been met, terminate the scan.
5630  * We don't actually terminate the scan as the firmware will notify
5631  * us when it's finished and we have no way to interrupt it.
5632  */
5633 static void
5634 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5635 {
5636 	/* NB: don't try to abort scan; wait for firmware to finish */
5637 }
5638 
5639 static void
5640 wpi_hw_reset(void *arg, int pending)
5641 {
5642 	struct wpi_softc *sc = arg;
5643 	struct ifnet *ifp = sc->sc_ifp;
5644 	struct ieee80211com *ic = ifp->if_l2com;
5645 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5646 
5647 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5648 
5649 	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5650 		ieee80211_cancel_scan(vap);
5651 
5652 	wpi_stop(sc);
5653 	if (vap != NULL)
5654 		ieee80211_stop(vap);
5655 	wpi_init(sc);
5656 	if (vap != NULL)
5657 		ieee80211_init(vap);
5658 }
5659