xref: /freebsd/sys/dev/wpi/if_wpi.c (revision af71f40a983c21a3c4a5c7c3d88d566e721bae45)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*
23  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24  *
25  * The 3945ABG network adapter doesn't use traditional hardware as
26  * many other adaptors do. Instead at run time the eeprom is set into a known
27  * state and told to load boot firmware. The boot firmware loads an init and a
28  * main  binary firmware image into SRAM on the card via DMA.
29  * Once the firmware is loaded, the driver/hw then
30  * communicate by way of circular dma rings via the SRAM to the firmware.
31  *
32  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33  * The 4 tx data rings allow for prioritization QoS.
34  *
35  * The rx data ring consists of 32 dma buffers. Two registers are used to
36  * indicate where in the ring the driver and the firmware are up to. The
37  * driver sets the initial read index (reg1) and the initial write index (reg2),
38  * the firmware updates the read index (reg1) on rx of a packet and fires an
39  * interrupt. The driver then processes the buffers starting at reg1 indicating
40  * to the firmware which buffers have been accessed by updating reg2. At the
41  * same time allocating new memory for the processed buffer.
42  *
43  * A similar thing happens with the tx rings. The difference is the firmware
44  * stop processing buffers once the queue is full and until confirmation
45  * of a successful transmition (tx_done) has occurred.
46  *
47  * The command ring operates in the same manner as the tx queues.
48  *
49  * All communication direct to the card (ie eeprom) is classed as Stage1
50  * communication
51  *
52  * All communication via the firmware to the card is classed as State2.
53  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54  * firmware. The bootstrap firmware and runtime firmware are loaded
55  * from host memory via dma to the card then told to execute. From this point
56  * on the majority of communications between the driver and the card goes
57  * via the firmware.
58  */
59 
60 #include "opt_wlan.h"
61 #include "opt_wpi.h"
62 
63 #include <sys/param.h>
64 #include <sys/sysctl.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/systm.h>
70 #include <sys/malloc.h>
71 #include <sys/queue.h>
72 #include <sys/taskqueue.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/endian.h>
76 #include <sys/linker.h>
77 #include <sys/firmware.h>
78 
79 #include <machine/bus.h>
80 #include <machine/resource.h>
81 #include <sys/rman.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/if_ether.h>
99 #include <netinet/ip.h>
100 
101 #include <net80211/ieee80211_var.h>
102 #include <net80211/ieee80211_radiotap.h>
103 #include <net80211/ieee80211_regdomain.h>
104 #include <net80211/ieee80211_ratectl.h>
105 
106 #include <dev/wpi/if_wpireg.h>
107 #include <dev/wpi/if_wpivar.h>
108 #include <dev/wpi/if_wpi_debug.h>
109 
110 struct wpi_ident {
111 	uint16_t	vendor;
112 	uint16_t	device;
113 	uint16_t	subdevice;
114 	const char	*name;
115 };
116 
117 static const struct wpi_ident wpi_ident_table[] = {
118 	/* The below entries support ABG regardless of the subid */
119 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	/* The below entries only support BG */
122 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0, 0, 0, NULL }
127 };
128 
129 static int	wpi_probe(device_t);
130 static int	wpi_attach(device_t);
131 static void	wpi_radiotap_attach(struct wpi_softc *);
132 static void	wpi_sysctlattach(struct wpi_softc *);
133 static void	wpi_init_beacon(struct wpi_vap *);
134 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136 		    const uint8_t [IEEE80211_ADDR_LEN],
137 		    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void	wpi_vap_delete(struct ieee80211vap *);
139 static int	wpi_detach(device_t);
140 static int	wpi_shutdown(device_t);
141 static int	wpi_suspend(device_t);
142 static int	wpi_resume(device_t);
143 static int	wpi_nic_lock(struct wpi_softc *);
144 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147 		    void **, bus_size_t, bus_size_t);
148 static void	wpi_dma_contig_free(struct wpi_dma_info *);
149 static int	wpi_alloc_shared(struct wpi_softc *);
150 static void	wpi_free_shared(struct wpi_softc *);
151 static int	wpi_alloc_fwmem(struct wpi_softc *);
152 static void	wpi_free_fwmem(struct wpi_softc *);
153 static int	wpi_alloc_rx_ring(struct wpi_softc *);
154 static void	wpi_update_rx_ring(struct wpi_softc *);
155 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
156 static void	wpi_reset_rx_ring(struct wpi_softc *);
157 static void	wpi_free_rx_ring(struct wpi_softc *);
158 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
159 		    int);
160 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
162 		    struct wpi_tx_ring *);
163 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
164 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165 static int	wpi_read_eeprom(struct wpi_softc *,
166 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
167 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
168 static void	wpi_read_eeprom_band(struct wpi_softc *, int);
169 static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
170 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
171 		    struct ieee80211_channel *);
172 static int	wpi_setregdomain(struct ieee80211com *,
173 		    struct ieee80211_regdomain *, int,
174 		    struct ieee80211_channel[]);
175 static int	wpi_read_eeprom_group(struct wpi_softc *, int);
176 static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
177 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
178 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
179 static void	wpi_node_free(struct ieee80211_node *);
180 static void	wpi_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
181 		    const struct ieee80211_rx_stats *,
182 		    int, int);
183 static void	wpi_restore_node(void *, struct ieee80211_node *);
184 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
185 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
186 static void	wpi_calib_timeout(void *);
187 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
188 		    struct wpi_rx_data *);
189 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
190 		    struct wpi_rx_data *);
191 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
192 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
193 static void	wpi_notif_intr(struct wpi_softc *);
194 static void	wpi_wakeup_intr(struct wpi_softc *);
195 #ifdef WPI_DEBUG
196 static void	wpi_debug_registers(struct wpi_softc *);
197 #endif
198 static void	wpi_fatal_intr(struct wpi_softc *);
199 static void	wpi_intr(void *);
200 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
201 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
202 		    struct ieee80211_node *);
203 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
204 		    struct ieee80211_node *,
205 		    const struct ieee80211_bpf_params *);
206 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
207 		    const struct ieee80211_bpf_params *);
208 static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
209 static void	wpi_start(void *, int);
210 static void	wpi_watchdog_rfkill(void *);
211 static void	wpi_scan_timeout(void *);
212 static void	wpi_tx_timeout(void *);
213 static void	wpi_parent(struct ieee80211com *);
214 static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
215 static int	wpi_mrr_setup(struct wpi_softc *);
216 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
217 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
218 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
219 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
220 static int	wpi_updateedca(struct ieee80211com *);
221 static void	wpi_set_promisc(struct wpi_softc *);
222 static void	wpi_update_promisc(struct ieee80211com *);
223 static void	wpi_update_mcast(struct ieee80211com *);
224 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
225 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
226 static void	wpi_power_calibration(struct wpi_softc *);
227 static int	wpi_set_txpower(struct wpi_softc *, int);
228 static int	wpi_get_power_index(struct wpi_softc *,
229 		    struct wpi_power_group *, uint8_t, int, int);
230 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
231 static int	wpi_send_btcoex(struct wpi_softc *);
232 static int	wpi_send_rxon(struct wpi_softc *, int, int);
233 static int	wpi_config(struct wpi_softc *);
234 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
235 		    struct ieee80211_channel *, uint8_t);
236 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
237 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
238 		    struct ieee80211_channel *);
239 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
240 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
241 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
242 static int	wpi_config_beacon(struct wpi_vap *);
243 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
244 static void	wpi_update_beacon(struct ieee80211vap *, int);
245 static void	wpi_newassoc(struct ieee80211_node *, int);
246 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
247 static int	wpi_load_key(struct ieee80211_node *,
248 		    const struct ieee80211_key *);
249 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
250 static int	wpi_set_global_keys(struct ieee80211_node *);
251 static int	wpi_del_key(struct ieee80211_node *,
252 		    const struct ieee80211_key *);
253 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
254 static int	wpi_process_key(struct ieee80211vap *,
255 		    const struct ieee80211_key *, int);
256 static int	wpi_key_set(struct ieee80211vap *,
257 		    const struct ieee80211_key *);
258 static int	wpi_key_delete(struct ieee80211vap *,
259 		    const struct ieee80211_key *);
260 static int	wpi_post_alive(struct wpi_softc *);
261 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
262 static int	wpi_load_firmware(struct wpi_softc *);
263 static int	wpi_read_firmware(struct wpi_softc *);
264 static void	wpi_unload_firmware(struct wpi_softc *);
265 static int	wpi_clock_wait(struct wpi_softc *);
266 static int	wpi_apm_init(struct wpi_softc *);
267 static void	wpi_apm_stop_master(struct wpi_softc *);
268 static void	wpi_apm_stop(struct wpi_softc *);
269 static void	wpi_nic_config(struct wpi_softc *);
270 static int	wpi_hw_init(struct wpi_softc *);
271 static void	wpi_hw_stop(struct wpi_softc *);
272 static void	wpi_radio_on(void *, int);
273 static void	wpi_radio_off(void *, int);
274 static int	wpi_init(struct wpi_softc *);
275 static void	wpi_stop_locked(struct wpi_softc *);
276 static void	wpi_stop(struct wpi_softc *);
277 static void	wpi_scan_start(struct ieee80211com *);
278 static void	wpi_scan_end(struct ieee80211com *);
279 static void	wpi_set_channel(struct ieee80211com *);
280 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
281 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
282 static void	wpi_hw_reset(void *, int);
283 
284 static device_method_t wpi_methods[] = {
285 	/* Device interface */
286 	DEVMETHOD(device_probe,		wpi_probe),
287 	DEVMETHOD(device_attach,	wpi_attach),
288 	DEVMETHOD(device_detach,	wpi_detach),
289 	DEVMETHOD(device_shutdown,	wpi_shutdown),
290 	DEVMETHOD(device_suspend,	wpi_suspend),
291 	DEVMETHOD(device_resume,	wpi_resume),
292 
293 	DEVMETHOD_END
294 };
295 
296 static driver_t wpi_driver = {
297 	"wpi",
298 	wpi_methods,
299 	sizeof (struct wpi_softc)
300 };
301 static devclass_t wpi_devclass;
302 
303 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
304 
305 MODULE_VERSION(wpi, 1);
306 
307 MODULE_DEPEND(wpi, pci,  1, 1, 1);
308 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
309 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
310 
311 static int
312 wpi_probe(device_t dev)
313 {
314 	const struct wpi_ident *ident;
315 
316 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
317 		if (pci_get_vendor(dev) == ident->vendor &&
318 		    pci_get_device(dev) == ident->device) {
319 			device_set_desc(dev, ident->name);
320 			return (BUS_PROBE_DEFAULT);
321 		}
322 	}
323 	return ENXIO;
324 }
325 
326 static int
327 wpi_attach(device_t dev)
328 {
329 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
330 	struct ieee80211com *ic;
331 	int i, error, rid;
332 #ifdef WPI_DEBUG
333 	int supportsa = 1;
334 	const struct wpi_ident *ident;
335 #endif
336 
337 	sc->sc_dev = dev;
338 
339 #ifdef WPI_DEBUG
340 	error = resource_int_value(device_get_name(sc->sc_dev),
341 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
342 	if (error != 0)
343 		sc->sc_debug = 0;
344 #else
345 	sc->sc_debug = 0;
346 #endif
347 
348 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
349 
350 	/*
351 	 * Get the offset of the PCI Express Capability Structure in PCI
352 	 * Configuration Space.
353 	 */
354 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
355 	if (error != 0) {
356 		device_printf(dev, "PCIe capability structure not found!\n");
357 		return error;
358 	}
359 
360 	/*
361 	 * Some card's only support 802.11b/g not a, check to see if
362 	 * this is one such card. A 0x0 in the subdevice table indicates
363 	 * the entire subdevice range is to be ignored.
364 	 */
365 #ifdef WPI_DEBUG
366 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
367 		if (ident->subdevice &&
368 		    pci_get_subdevice(dev) == ident->subdevice) {
369 		    supportsa = 0;
370 		    break;
371 		}
372 	}
373 #endif
374 
375 	/* Clear device-specific "PCI retry timeout" register (41h). */
376 	pci_write_config(dev, 0x41, 0, 1);
377 
378 	/* Enable bus-mastering. */
379 	pci_enable_busmaster(dev);
380 
381 	rid = PCIR_BAR(0);
382 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
383 	    RF_ACTIVE);
384 	if (sc->mem == NULL) {
385 		device_printf(dev, "can't map mem space\n");
386 		return ENOMEM;
387 	}
388 	sc->sc_st = rman_get_bustag(sc->mem);
389 	sc->sc_sh = rman_get_bushandle(sc->mem);
390 
391 	i = 1;
392 	rid = 0;
393 	if (pci_alloc_msi(dev, &i) == 0)
394 		rid = 1;
395 	/* Install interrupt handler. */
396 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
397 	    (rid != 0 ? 0 : RF_SHAREABLE));
398 	if (sc->irq == NULL) {
399 		device_printf(dev, "can't map interrupt\n");
400 		error = ENOMEM;
401 		goto fail;
402 	}
403 
404 	WPI_LOCK_INIT(sc);
405 	WPI_TX_LOCK_INIT(sc);
406 	WPI_RXON_LOCK_INIT(sc);
407 	WPI_NT_LOCK_INIT(sc);
408 	WPI_TXQ_LOCK_INIT(sc);
409 	WPI_TXQ_STATE_LOCK_INIT(sc);
410 
411 	/* Allocate DMA memory for firmware transfers. */
412 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
413 		device_printf(dev,
414 		    "could not allocate memory for firmware, error %d\n",
415 		    error);
416 		goto fail;
417 	}
418 
419 	/* Allocate shared page. */
420 	if ((error = wpi_alloc_shared(sc)) != 0) {
421 		device_printf(dev, "could not allocate shared page\n");
422 		goto fail;
423 	}
424 
425 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
426 	for (i = 0; i < WPI_NTXQUEUES; i++) {
427 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
428 			device_printf(dev,
429 			    "could not allocate TX ring %d, error %d\n", i,
430 			    error);
431 			goto fail;
432 		}
433 	}
434 
435 	/* Allocate RX ring. */
436 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
437 		device_printf(dev, "could not allocate RX ring, error %d\n",
438 		    error);
439 		goto fail;
440 	}
441 
442 	/* Clear pending interrupts. */
443 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
444 
445 	ic = &sc->sc_ic;
446 	ic->ic_softc = sc;
447 	ic->ic_name = device_get_nameunit(dev);
448 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
449 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
450 
451 	/* Set device capabilities. */
452 	ic->ic_caps =
453 		  IEEE80211_C_STA		/* station mode supported */
454 		| IEEE80211_C_IBSS		/* IBSS mode supported */
455 		| IEEE80211_C_HOSTAP		/* Host access point mode */
456 		| IEEE80211_C_MONITOR		/* monitor mode supported */
457 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
458 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
459 		| IEEE80211_C_TXPMGT		/* tx power management */
460 		| IEEE80211_C_SHSLOT		/* short slot time supported */
461 		| IEEE80211_C_WPA		/* 802.11i */
462 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
463 		| IEEE80211_C_WME		/* 802.11e */
464 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
465 		;
466 
467 	ic->ic_cryptocaps =
468 		  IEEE80211_CRYPTO_AES_CCM;
469 
470 	/*
471 	 * Read in the eeprom and also setup the channels for
472 	 * net80211. We don't set the rates as net80211 does this for us
473 	 */
474 	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
475 		device_printf(dev, "could not read EEPROM, error %d\n",
476 		    error);
477 		goto fail;
478 	}
479 
480 #ifdef WPI_DEBUG
481 	if (bootverbose) {
482 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
483 		    sc->domain);
484 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
485 		    sc->type > 1 ? 'B': '?');
486 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
487 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
488 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
489 		    supportsa ? "does" : "does not");
490 
491 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
492 		   check what sc->rev really represents - benjsc 20070615 */
493 	}
494 #endif
495 
496 	ieee80211_ifattach(ic);
497 	ic->ic_vap_create = wpi_vap_create;
498 	ic->ic_vap_delete = wpi_vap_delete;
499 	ic->ic_parent = wpi_parent;
500 	ic->ic_raw_xmit = wpi_raw_xmit;
501 	ic->ic_transmit = wpi_transmit;
502 	ic->ic_node_alloc = wpi_node_alloc;
503 	sc->sc_node_free = ic->ic_node_free;
504 	ic->ic_node_free = wpi_node_free;
505 	ic->ic_wme.wme_update = wpi_updateedca;
506 	ic->ic_update_promisc = wpi_update_promisc;
507 	ic->ic_update_mcast = wpi_update_mcast;
508 	ic->ic_newassoc = wpi_newassoc;
509 	ic->ic_scan_start = wpi_scan_start;
510 	ic->ic_scan_end = wpi_scan_end;
511 	ic->ic_set_channel = wpi_set_channel;
512 	ic->ic_scan_curchan = wpi_scan_curchan;
513 	ic->ic_scan_mindwell = wpi_scan_mindwell;
514 	ic->ic_setregdomain = wpi_setregdomain;
515 
516 	sc->sc_update_rx_ring = wpi_update_rx_ring;
517 	sc->sc_update_tx_ring = wpi_update_tx_ring;
518 
519 	wpi_radiotap_attach(sc);
520 
521 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
522 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
523 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
524 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
525 	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
526 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
527 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
528 	TASK_INIT(&sc->sc_start_task, 0, wpi_start, sc);
529 
530 	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
531 	    taskqueue_thread_enqueue, &sc->sc_tq);
532 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
533 	if (error != 0) {
534 		device_printf(dev, "can't start threads, error %d\n", error);
535 		goto fail;
536 	}
537 
538 	wpi_sysctlattach(sc);
539 
540 	/*
541 	 * Hook our interrupt after all initialization is complete.
542 	 */
543 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
544 	    NULL, wpi_intr, sc, &sc->sc_ih);
545 	if (error != 0) {
546 		device_printf(dev, "can't establish interrupt, error %d\n",
547 		    error);
548 		goto fail;
549 	}
550 
551 	if (bootverbose)
552 		ieee80211_announce(ic);
553 
554 #ifdef WPI_DEBUG
555 	if (sc->sc_debug & WPI_DEBUG_HW)
556 		ieee80211_announce_channels(ic);
557 #endif
558 
559 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
560 	return 0;
561 
562 fail:	wpi_detach(dev);
563 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
564 	return error;
565 }
566 
567 /*
568  * Attach the interface to 802.11 radiotap.
569  */
570 static void
571 wpi_radiotap_attach(struct wpi_softc *sc)
572 {
573 	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
574 	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
575 
576 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
577 	ieee80211_radiotap_attach(&sc->sc_ic,
578 	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
579 	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
580 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
581 }
582 
583 static void
584 wpi_sysctlattach(struct wpi_softc *sc)
585 {
586 #ifdef WPI_DEBUG
587 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
588 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
589 
590 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
591 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
592 		"control debugging printfs");
593 #endif
594 }
595 
596 static void
597 wpi_init_beacon(struct wpi_vap *wvp)
598 {
599 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
600 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
601 
602 	cmd->id = WPI_ID_BROADCAST;
603 	cmd->ofdm_mask = 0xff;
604 	cmd->cck_mask = 0x0f;
605 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
606 
607 	/*
608 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
609 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
610 	 */
611 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
612 
613 	bcn->code = WPI_CMD_SET_BEACON;
614 	bcn->ac = WPI_CMD_QUEUE_NUM;
615 	bcn->size = sizeof(struct wpi_cmd_beacon);
616 }
617 
618 static struct ieee80211vap *
619 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
620     enum ieee80211_opmode opmode, int flags,
621     const uint8_t bssid[IEEE80211_ADDR_LEN],
622     const uint8_t mac[IEEE80211_ADDR_LEN])
623 {
624 	struct wpi_vap *wvp;
625 	struct ieee80211vap *vap;
626 
627 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
628 		return NULL;
629 
630 	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
631 	vap = &wvp->wv_vap;
632 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
633 
634 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
635 		WPI_VAP_LOCK_INIT(wvp);
636 		wpi_init_beacon(wvp);
637 	}
638 
639 	/* Override with driver methods. */
640 	vap->iv_key_set = wpi_key_set;
641 	vap->iv_key_delete = wpi_key_delete;
642 	wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
643 	vap->iv_recv_mgmt = wpi_recv_mgmt;
644 	wvp->wv_newstate = vap->iv_newstate;
645 	vap->iv_newstate = wpi_newstate;
646 	vap->iv_update_beacon = wpi_update_beacon;
647 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
648 
649 	ieee80211_ratectl_init(vap);
650 	/* Complete setup. */
651 	ieee80211_vap_attach(vap, ieee80211_media_change,
652 	    ieee80211_media_status, mac);
653 	ic->ic_opmode = opmode;
654 	return vap;
655 }
656 
657 static void
658 wpi_vap_delete(struct ieee80211vap *vap)
659 {
660 	struct wpi_vap *wvp = WPI_VAP(vap);
661 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
662 	enum ieee80211_opmode opmode = vap->iv_opmode;
663 
664 	ieee80211_ratectl_deinit(vap);
665 	ieee80211_vap_detach(vap);
666 
667 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
668 		if (bcn->m != NULL)
669 			m_freem(bcn->m);
670 
671 		WPI_VAP_LOCK_DESTROY(wvp);
672 	}
673 
674 	free(wvp, M_80211_VAP);
675 }
676 
677 static int
678 wpi_detach(device_t dev)
679 {
680 	struct wpi_softc *sc = device_get_softc(dev);
681 	struct ieee80211com *ic = &sc->sc_ic;
682 	int qid;
683 
684 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
685 
686 	if (ic->ic_vap_create == wpi_vap_create) {
687 		ieee80211_draintask(ic, &sc->sc_radioon_task);
688 		ieee80211_draintask(ic, &sc->sc_start_task);
689 
690 		wpi_stop(sc);
691 
692 		if (sc->sc_tq != NULL) {
693 			taskqueue_drain_all(sc->sc_tq);
694 			taskqueue_free(sc->sc_tq);
695 		}
696 
697 		callout_drain(&sc->watchdog_rfkill);
698 		callout_drain(&sc->tx_timeout);
699 		callout_drain(&sc->scan_timeout);
700 		callout_drain(&sc->calib_to);
701 		ieee80211_ifdetach(ic);
702 	}
703 
704 	/* Uninstall interrupt handler. */
705 	if (sc->irq != NULL) {
706 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
707 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
708 		    sc->irq);
709 		pci_release_msi(dev);
710 	}
711 
712 	if (sc->txq[0].data_dmat) {
713 		/* Free DMA resources. */
714 		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
715 			wpi_free_tx_ring(sc, &sc->txq[qid]);
716 
717 		wpi_free_rx_ring(sc);
718 		wpi_free_shared(sc);
719 	}
720 
721 	if (sc->fw_dma.tag)
722 		wpi_free_fwmem(sc);
723 
724 	if (sc->mem != NULL)
725 		bus_release_resource(dev, SYS_RES_MEMORY,
726 		    rman_get_rid(sc->mem), sc->mem);
727 
728 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
729 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
730 	WPI_TXQ_LOCK_DESTROY(sc);
731 	WPI_NT_LOCK_DESTROY(sc);
732 	WPI_RXON_LOCK_DESTROY(sc);
733 	WPI_TX_LOCK_DESTROY(sc);
734 	WPI_LOCK_DESTROY(sc);
735 	return 0;
736 }
737 
738 static int
739 wpi_shutdown(device_t dev)
740 {
741 	struct wpi_softc *sc = device_get_softc(dev);
742 
743 	wpi_stop(sc);
744 	return 0;
745 }
746 
747 static int
748 wpi_suspend(device_t dev)
749 {
750 	struct wpi_softc *sc = device_get_softc(dev);
751 	struct ieee80211com *ic = &sc->sc_ic;
752 
753 	ieee80211_suspend_all(ic);
754 	return 0;
755 }
756 
757 static int
758 wpi_resume(device_t dev)
759 {
760 	struct wpi_softc *sc = device_get_softc(dev);
761 	struct ieee80211com *ic = &sc->sc_ic;
762 
763 	/* Clear device-specific "PCI retry timeout" register (41h). */
764 	pci_write_config(dev, 0x41, 0, 1);
765 
766 	ieee80211_resume_all(ic);
767 	return 0;
768 }
769 
770 /*
771  * Grab exclusive access to NIC memory.
772  */
773 static int
774 wpi_nic_lock(struct wpi_softc *sc)
775 {
776 	int ntries;
777 
778 	/* Request exclusive access to NIC. */
779 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
780 
781 	/* Spin until we actually get the lock. */
782 	for (ntries = 0; ntries < 1000; ntries++) {
783 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
784 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
785 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
786 			return 0;
787 		DELAY(10);
788 	}
789 
790 	device_printf(sc->sc_dev, "could not lock memory\n");
791 
792 	return ETIMEDOUT;
793 }
794 
795 /*
796  * Release lock on NIC memory.
797  */
798 static __inline void
799 wpi_nic_unlock(struct wpi_softc *sc)
800 {
801 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
802 }
803 
804 static __inline uint32_t
805 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
806 {
807 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
808 	WPI_BARRIER_READ_WRITE(sc);
809 	return WPI_READ(sc, WPI_PRPH_RDATA);
810 }
811 
812 static __inline void
813 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
814 {
815 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
816 	WPI_BARRIER_WRITE(sc);
817 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
818 }
819 
820 static __inline void
821 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
822 {
823 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
824 }
825 
826 static __inline void
827 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
828 {
829 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
830 }
831 
832 static __inline void
833 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
834     const uint32_t *data, int count)
835 {
836 	for (; count > 0; count--, data++, addr += 4)
837 		wpi_prph_write(sc, addr, *data);
838 }
839 
840 static __inline uint32_t
841 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
842 {
843 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
844 	WPI_BARRIER_READ_WRITE(sc);
845 	return WPI_READ(sc, WPI_MEM_RDATA);
846 }
847 
848 static __inline void
849 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
850     int count)
851 {
852 	for (; count > 0; count--, addr += 4)
853 		*data++ = wpi_mem_read(sc, addr);
854 }
855 
856 static int
857 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
858 {
859 	uint8_t *out = data;
860 	uint32_t val;
861 	int error, ntries;
862 
863 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
864 
865 	if ((error = wpi_nic_lock(sc)) != 0)
866 		return error;
867 
868 	for (; count > 0; count -= 2, addr++) {
869 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
870 		for (ntries = 0; ntries < 10; ntries++) {
871 			val = WPI_READ(sc, WPI_EEPROM);
872 			if (val & WPI_EEPROM_READ_VALID)
873 				break;
874 			DELAY(5);
875 		}
876 		if (ntries == 10) {
877 			device_printf(sc->sc_dev,
878 			    "timeout reading ROM at 0x%x\n", addr);
879 			return ETIMEDOUT;
880 		}
881 		*out++= val >> 16;
882 		if (count > 1)
883 			*out ++= val >> 24;
884 	}
885 
886 	wpi_nic_unlock(sc);
887 
888 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
889 
890 	return 0;
891 }
892 
893 static void
894 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
895 {
896 	if (error != 0)
897 		return;
898 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
899 	*(bus_addr_t *)arg = segs[0].ds_addr;
900 }
901 
902 /*
903  * Allocates a contiguous block of dma memory of the requested size and
904  * alignment.
905  */
906 static int
907 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
908     void **kvap, bus_size_t size, bus_size_t alignment)
909 {
910 	int error;
911 
912 	dma->tag = NULL;
913 	dma->size = size;
914 
915 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
916 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
917 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
918 	if (error != 0)
919 		goto fail;
920 
921 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
922 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
923 	if (error != 0)
924 		goto fail;
925 
926 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
927 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
928 	if (error != 0)
929 		goto fail;
930 
931 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
932 
933 	if (kvap != NULL)
934 		*kvap = dma->vaddr;
935 
936 	return 0;
937 
938 fail:	wpi_dma_contig_free(dma);
939 	return error;
940 }
941 
942 static void
943 wpi_dma_contig_free(struct wpi_dma_info *dma)
944 {
945 	if (dma->vaddr != NULL) {
946 		bus_dmamap_sync(dma->tag, dma->map,
947 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
948 		bus_dmamap_unload(dma->tag, dma->map);
949 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
950 		dma->vaddr = NULL;
951 	}
952 	if (dma->tag != NULL) {
953 		bus_dma_tag_destroy(dma->tag);
954 		dma->tag = NULL;
955 	}
956 }
957 
958 /*
959  * Allocate a shared page between host and NIC.
960  */
961 static int
962 wpi_alloc_shared(struct wpi_softc *sc)
963 {
964 	/* Shared buffer must be aligned on a 4KB boundary. */
965 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
966 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
967 }
968 
969 static void
970 wpi_free_shared(struct wpi_softc *sc)
971 {
972 	wpi_dma_contig_free(&sc->shared_dma);
973 }
974 
975 /*
976  * Allocate DMA-safe memory for firmware transfer.
977  */
978 static int
979 wpi_alloc_fwmem(struct wpi_softc *sc)
980 {
981 	/* Must be aligned on a 16-byte boundary. */
982 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
983 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
984 }
985 
986 static void
987 wpi_free_fwmem(struct wpi_softc *sc)
988 {
989 	wpi_dma_contig_free(&sc->fw_dma);
990 }
991 
992 static int
993 wpi_alloc_rx_ring(struct wpi_softc *sc)
994 {
995 	struct wpi_rx_ring *ring = &sc->rxq;
996 	bus_size_t size;
997 	int i, error;
998 
999 	ring->cur = 0;
1000 	ring->update = 0;
1001 
1002 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1003 
1004 	/* Allocate RX descriptors (16KB aligned.) */
1005 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1006 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1007 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1008 	if (error != 0) {
1009 		device_printf(sc->sc_dev,
1010 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1011 		    __func__, error);
1012 		goto fail;
1013 	}
1014 
1015 	/* Create RX buffer DMA tag. */
1016 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1017 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1018 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1019 	    &ring->data_dmat);
1020 	if (error != 0) {
1021 		device_printf(sc->sc_dev,
1022 		    "%s: could not create RX buf DMA tag, error %d\n",
1023 		    __func__, error);
1024 		goto fail;
1025 	}
1026 
1027 	/*
1028 	 * Allocate and map RX buffers.
1029 	 */
1030 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1031 		struct wpi_rx_data *data = &ring->data[i];
1032 		bus_addr_t paddr;
1033 
1034 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1035 		if (error != 0) {
1036 			device_printf(sc->sc_dev,
1037 			    "%s: could not create RX buf DMA map, error %d\n",
1038 			    __func__, error);
1039 			goto fail;
1040 		}
1041 
1042 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1043 		if (data->m == NULL) {
1044 			device_printf(sc->sc_dev,
1045 			    "%s: could not allocate RX mbuf\n", __func__);
1046 			error = ENOBUFS;
1047 			goto fail;
1048 		}
1049 
1050 		error = bus_dmamap_load(ring->data_dmat, data->map,
1051 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1052 		    &paddr, BUS_DMA_NOWAIT);
1053 		if (error != 0 && error != EFBIG) {
1054 			device_printf(sc->sc_dev,
1055 			    "%s: can't map mbuf (error %d)\n", __func__,
1056 			    error);
1057 			goto fail;
1058 		}
1059 
1060 		/* Set physical address of RX buffer. */
1061 		ring->desc[i] = htole32(paddr);
1062 	}
1063 
1064 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1065 	    BUS_DMASYNC_PREWRITE);
1066 
1067 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1068 
1069 	return 0;
1070 
1071 fail:	wpi_free_rx_ring(sc);
1072 
1073 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1074 
1075 	return error;
1076 }
1077 
1078 static void
1079 wpi_update_rx_ring(struct wpi_softc *sc)
1080 {
1081 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1082 }
1083 
1084 static void
1085 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1086 {
1087 	struct wpi_rx_ring *ring = &sc->rxq;
1088 
1089 	if (ring->update != 0) {
1090 		/* Wait for INT_WAKEUP event. */
1091 		return;
1092 	}
1093 
1094 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1095 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1096 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1097 		    __func__);
1098 		ring->update = 1;
1099 	} else {
1100 		wpi_update_rx_ring(sc);
1101 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1102 	}
1103 }
1104 
1105 static void
1106 wpi_reset_rx_ring(struct wpi_softc *sc)
1107 {
1108 	struct wpi_rx_ring *ring = &sc->rxq;
1109 	int ntries;
1110 
1111 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1112 
1113 	if (wpi_nic_lock(sc) == 0) {
1114 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1115 		for (ntries = 0; ntries < 1000; ntries++) {
1116 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1117 			    WPI_FH_RX_STATUS_IDLE)
1118 				break;
1119 			DELAY(10);
1120 		}
1121 		wpi_nic_unlock(sc);
1122 	}
1123 
1124 	ring->cur = 0;
1125 	ring->update = 0;
1126 }
1127 
1128 static void
1129 wpi_free_rx_ring(struct wpi_softc *sc)
1130 {
1131 	struct wpi_rx_ring *ring = &sc->rxq;
1132 	int i;
1133 
1134 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1135 
1136 	wpi_dma_contig_free(&ring->desc_dma);
1137 
1138 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1139 		struct wpi_rx_data *data = &ring->data[i];
1140 
1141 		if (data->m != NULL) {
1142 			bus_dmamap_sync(ring->data_dmat, data->map,
1143 			    BUS_DMASYNC_POSTREAD);
1144 			bus_dmamap_unload(ring->data_dmat, data->map);
1145 			m_freem(data->m);
1146 			data->m = NULL;
1147 		}
1148 		if (data->map != NULL)
1149 			bus_dmamap_destroy(ring->data_dmat, data->map);
1150 	}
1151 	if (ring->data_dmat != NULL) {
1152 		bus_dma_tag_destroy(ring->data_dmat);
1153 		ring->data_dmat = NULL;
1154 	}
1155 }
1156 
1157 static int
1158 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1159 {
1160 	bus_addr_t paddr;
1161 	bus_size_t size;
1162 	int i, error;
1163 
1164 	ring->qid = qid;
1165 	ring->queued = 0;
1166 	ring->cur = 0;
1167 	ring->update = 0;
1168 	mbufq_init(&ring->snd, ifqmaxlen);
1169 
1170 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1171 
1172 	/* Allocate TX descriptors (16KB aligned.) */
1173 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1174 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1175 	    size, WPI_RING_DMA_ALIGN);
1176 	if (error != 0) {
1177 		device_printf(sc->sc_dev,
1178 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1179 		    __func__, error);
1180 		goto fail;
1181 	}
1182 
1183 	/* Update shared area with ring physical address. */
1184 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1185 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1186 	    BUS_DMASYNC_PREWRITE);
1187 
1188 	/*
1189 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1190 	 * to allocate commands space for other rings.
1191 	 * XXX Do we really need to allocate descriptors for other rings?
1192 	 */
1193 	if (qid > WPI_CMD_QUEUE_NUM) {
1194 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1195 		return 0;
1196 	}
1197 
1198 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1199 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1200 	    size, 4);
1201 	if (error != 0) {
1202 		device_printf(sc->sc_dev,
1203 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1204 		    __func__, error);
1205 		goto fail;
1206 	}
1207 
1208 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1209 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1210 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1211 	    &ring->data_dmat);
1212 	if (error != 0) {
1213 		device_printf(sc->sc_dev,
1214 		    "%s: could not create TX buf DMA tag, error %d\n",
1215 		    __func__, error);
1216 		goto fail;
1217 	}
1218 
1219 	paddr = ring->cmd_dma.paddr;
1220 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1221 		struct wpi_tx_data *data = &ring->data[i];
1222 
1223 		data->cmd_paddr = paddr;
1224 		paddr += sizeof (struct wpi_tx_cmd);
1225 
1226 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1227 		if (error != 0) {
1228 			device_printf(sc->sc_dev,
1229 			    "%s: could not create TX buf DMA map, error %d\n",
1230 			    __func__, error);
1231 			goto fail;
1232 		}
1233 	}
1234 
1235 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1236 
1237 	return 0;
1238 
1239 fail:	wpi_free_tx_ring(sc, ring);
1240 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1241 	return error;
1242 }
1243 
1244 static void
1245 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1246 {
1247 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1248 }
1249 
1250 static void
1251 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1252 {
1253 
1254 	if (ring->update != 0) {
1255 		/* Wait for INT_WAKEUP event. */
1256 		return;
1257 	}
1258 
1259 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1260 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1261 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1262 		    __func__, ring->qid);
1263 		ring->update = 1;
1264 	} else {
1265 		wpi_update_tx_ring(sc, ring);
1266 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1267 	}
1268 }
1269 
1270 static void
1271 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1272 {
1273 	int i;
1274 
1275 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1276 
1277 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1278 		struct wpi_tx_data *data = &ring->data[i];
1279 
1280 		if (data->m != NULL) {
1281 			bus_dmamap_sync(ring->data_dmat, data->map,
1282 			    BUS_DMASYNC_POSTWRITE);
1283 			bus_dmamap_unload(ring->data_dmat, data->map);
1284 			m_freem(data->m);
1285 			data->m = NULL;
1286 		}
1287 		if (data->ni != NULL) {
1288 			ieee80211_free_node(data->ni);
1289 			data->ni = NULL;
1290 		}
1291 	}
1292 	/* Clear TX descriptors. */
1293 	memset(ring->desc, 0, ring->desc_dma.size);
1294 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1295 	    BUS_DMASYNC_PREWRITE);
1296 	mbufq_drain(&ring->snd);
1297 	sc->qfullmsk &= ~(1 << ring->qid);
1298 	ring->queued = 0;
1299 	ring->cur = 0;
1300 	ring->update = 0;
1301 }
1302 
1303 static void
1304 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1305 {
1306 	int i;
1307 
1308 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1309 
1310 	wpi_dma_contig_free(&ring->desc_dma);
1311 	wpi_dma_contig_free(&ring->cmd_dma);
1312 
1313 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1314 		struct wpi_tx_data *data = &ring->data[i];
1315 
1316 		if (data->m != NULL) {
1317 			bus_dmamap_sync(ring->data_dmat, data->map,
1318 			    BUS_DMASYNC_POSTWRITE);
1319 			bus_dmamap_unload(ring->data_dmat, data->map);
1320 			m_freem(data->m);
1321 		}
1322 		if (data->map != NULL)
1323 			bus_dmamap_destroy(ring->data_dmat, data->map);
1324 	}
1325 	if (ring->data_dmat != NULL) {
1326 		bus_dma_tag_destroy(ring->data_dmat);
1327 		ring->data_dmat = NULL;
1328 	}
1329 }
1330 
1331 /*
1332  * Extract various information from EEPROM.
1333  */
1334 static int
1335 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1336 {
1337 #define WPI_CHK(res) do {		\
1338 	if ((error = res) != 0)		\
1339 		goto fail;		\
1340 } while (0)
1341 	int error, i;
1342 
1343 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1344 
1345 	/* Adapter has to be powered on for EEPROM access to work. */
1346 	if ((error = wpi_apm_init(sc)) != 0) {
1347 		device_printf(sc->sc_dev,
1348 		    "%s: could not power ON adapter, error %d\n", __func__,
1349 		    error);
1350 		return error;
1351 	}
1352 
1353 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1354 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1355 		error = EIO;
1356 		goto fail;
1357 	}
1358 	/* Clear HW ownership of EEPROM. */
1359 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1360 
1361 	/* Read the hardware capabilities, revision and SKU type. */
1362 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1363 	    sizeof(sc->cap)));
1364 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1365 	    sizeof(sc->rev)));
1366 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1367 	    sizeof(sc->type)));
1368 
1369 	sc->rev = le16toh(sc->rev);
1370 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1371 	    sc->rev, sc->type);
1372 
1373 	/* Read the regulatory domain (4 ASCII characters.) */
1374 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1375 	    sizeof(sc->domain)));
1376 
1377 	/* Read MAC address. */
1378 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1379 	    IEEE80211_ADDR_LEN));
1380 
1381 	/* Read the list of authorized channels. */
1382 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1383 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1384 
1385 	/* Read the list of TX power groups. */
1386 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1387 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1388 
1389 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1390 
1391 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1392 	    __func__);
1393 
1394 	return error;
1395 #undef WPI_CHK
1396 }
1397 
1398 /*
1399  * Translate EEPROM flags to net80211.
1400  */
1401 static uint32_t
1402 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1403 {
1404 	uint32_t nflags;
1405 
1406 	nflags = 0;
1407 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1408 		nflags |= IEEE80211_CHAN_PASSIVE;
1409 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1410 		nflags |= IEEE80211_CHAN_NOADHOC;
1411 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1412 		nflags |= IEEE80211_CHAN_DFS;
1413 		/* XXX apparently IBSS may still be marked */
1414 		nflags |= IEEE80211_CHAN_NOADHOC;
1415 	}
1416 
1417 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1418 	if (nflags & IEEE80211_CHAN_NOADHOC)
1419 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1420 
1421 	return nflags;
1422 }
1423 
1424 static void
1425 wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1426 {
1427 	struct ieee80211com *ic = &sc->sc_ic;
1428 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1429 	const struct wpi_chan_band *band = &wpi_bands[n];
1430 	struct ieee80211_channel *c;
1431 	uint8_t chan;
1432 	int i, nflags;
1433 
1434 	for (i = 0; i < band->nchan; i++) {
1435 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1436 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1437 			    "Channel Not Valid: %d, band %d\n",
1438 			     band->chan[i],n);
1439 			continue;
1440 		}
1441 
1442 		chan = band->chan[i];
1443 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1444 
1445 		c = &ic->ic_channels[ic->ic_nchans++];
1446 		c->ic_ieee = chan;
1447 		c->ic_maxregpower = channels[i].maxpwr;
1448 		c->ic_maxpower = 2*c->ic_maxregpower;
1449 
1450 		if (n == 0) {	/* 2GHz band */
1451 			c->ic_freq = ieee80211_ieee2mhz(chan,
1452 			    IEEE80211_CHAN_G);
1453 
1454 			/* G =>'s B is supported */
1455 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1456 			c = &ic->ic_channels[ic->ic_nchans++];
1457 			c[0] = c[-1];
1458 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1459 		} else {	/* 5GHz band */
1460 			c->ic_freq = ieee80211_ieee2mhz(chan,
1461 			    IEEE80211_CHAN_A);
1462 
1463 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1464 		}
1465 
1466 		/* Save maximum allowed TX power for this channel. */
1467 		sc->maxpwr[chan] = channels[i].maxpwr;
1468 
1469 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1470 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1471 		    " offset %d\n", chan, c->ic_freq,
1472 		    channels[i].flags, sc->maxpwr[chan],
1473 		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1474 	}
1475 }
1476 
1477 /**
1478  * Read the eeprom to find out what channels are valid for the given
1479  * band and update net80211 with what we find.
1480  */
1481 static int
1482 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1483 {
1484 	struct ieee80211com *ic = &sc->sc_ic;
1485 	const struct wpi_chan_band *band = &wpi_bands[n];
1486 	int error;
1487 
1488 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1489 
1490 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1491 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1492 	if (error != 0) {
1493 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1494 		return error;
1495 	}
1496 
1497 	wpi_read_eeprom_band(sc, n);
1498 
1499 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1500 
1501 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1502 
1503 	return 0;
1504 }
1505 
1506 static struct wpi_eeprom_chan *
1507 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1508 {
1509 	int i, j;
1510 
1511 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1512 		for (i = 0; i < wpi_bands[j].nchan; i++)
1513 			if (wpi_bands[j].chan[i] == c->ic_ieee)
1514 				return &sc->eeprom_channels[j][i];
1515 
1516 	return NULL;
1517 }
1518 
1519 /*
1520  * Enforce flags read from EEPROM.
1521  */
1522 static int
1523 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1524     int nchan, struct ieee80211_channel chans[])
1525 {
1526 	struct wpi_softc *sc = ic->ic_softc;
1527 	int i;
1528 
1529 	for (i = 0; i < nchan; i++) {
1530 		struct ieee80211_channel *c = &chans[i];
1531 		struct wpi_eeprom_chan *channel;
1532 
1533 		channel = wpi_find_eeprom_channel(sc, c);
1534 		if (channel == NULL) {
1535 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1536 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1537 			return EINVAL;
1538 		}
1539 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1540 	}
1541 
1542 	return 0;
1543 }
1544 
1545 static int
1546 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1547 {
1548 	struct wpi_power_group *group = &sc->groups[n];
1549 	struct wpi_eeprom_group rgroup;
1550 	int i, error;
1551 
1552 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1553 
1554 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1555 	    &rgroup, sizeof rgroup)) != 0) {
1556 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1557 		return error;
1558 	}
1559 
1560 	/* Save TX power group information. */
1561 	group->chan   = rgroup.chan;
1562 	group->maxpwr = rgroup.maxpwr;
1563 	/* Retrieve temperature at which the samples were taken. */
1564 	group->temp   = (int16_t)le16toh(rgroup.temp);
1565 
1566 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1567 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1568 	    group->maxpwr, group->temp);
1569 
1570 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1571 		group->samples[i].index = rgroup.samples[i].index;
1572 		group->samples[i].power = rgroup.samples[i].power;
1573 
1574 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1575 		    "\tsample %d: index=%d power=%d\n", i,
1576 		    group->samples[i].index, group->samples[i].power);
1577 	}
1578 
1579 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1580 
1581 	return 0;
1582 }
1583 
1584 static int
1585 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1586 {
1587 	int newid = WPI_ID_IBSS_MIN;
1588 
1589 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1590 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1591 			sc->nodesmsk |= 1 << newid;
1592 			return newid;
1593 		}
1594 	}
1595 
1596 	return WPI_ID_UNDEFINED;
1597 }
1598 
1599 static __inline int
1600 wpi_add_node_entry_sta(struct wpi_softc *sc)
1601 {
1602 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1603 
1604 	return WPI_ID_BSS;
1605 }
1606 
1607 static __inline int
1608 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1609 {
1610 	if (id == WPI_ID_UNDEFINED)
1611 		return 0;
1612 
1613 	return (sc->nodesmsk >> id) & 1;
1614 }
1615 
1616 static __inline void
1617 wpi_clear_node_table(struct wpi_softc *sc)
1618 {
1619 	sc->nodesmsk = 0;
1620 }
1621 
1622 static __inline void
1623 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1624 {
1625 	sc->nodesmsk &= ~(1 << id);
1626 }
1627 
1628 static struct ieee80211_node *
1629 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1630 {
1631 	struct wpi_node *wn;
1632 
1633 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1634 	    M_NOWAIT | M_ZERO);
1635 
1636 	if (wn == NULL)
1637 		return NULL;
1638 
1639 	wn->id = WPI_ID_UNDEFINED;
1640 
1641 	return &wn->ni;
1642 }
1643 
1644 static void
1645 wpi_node_free(struct ieee80211_node *ni)
1646 {
1647 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1648 	struct wpi_node *wn = WPI_NODE(ni);
1649 
1650 	if (wn->id != WPI_ID_UNDEFINED) {
1651 		WPI_NT_LOCK(sc);
1652 		if (wpi_check_node_entry(sc, wn->id)) {
1653 			wpi_del_node_entry(sc, wn->id);
1654 			wpi_del_node(sc, ni);
1655 		}
1656 		WPI_NT_UNLOCK(sc);
1657 	}
1658 
1659 	sc->sc_node_free(ni);
1660 }
1661 
1662 static __inline int
1663 wpi_check_bss_filter(struct wpi_softc *sc)
1664 {
1665 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1666 }
1667 
1668 static void
1669 wpi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1670     const struct ieee80211_rx_stats *rxs,
1671     int rssi, int nf)
1672 {
1673 	struct ieee80211vap *vap = ni->ni_vap;
1674 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1675 	struct wpi_vap *wvp = WPI_VAP(vap);
1676 	uint64_t ni_tstamp, rx_tstamp;
1677 
1678 	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1679 
1680 	if (vap->iv_opmode == IEEE80211_M_IBSS &&
1681 	    vap->iv_state == IEEE80211_S_RUN &&
1682 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1683 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1684 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1685 		rx_tstamp = le64toh(sc->rx_tstamp);
1686 
1687 		if (ni_tstamp >= rx_tstamp) {
1688 			DPRINTF(sc, WPI_DEBUG_STATE,
1689 			    "ibss merge, tsf %ju tstamp %ju\n",
1690 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1691 			(void) ieee80211_ibss_merge(ni);
1692 		}
1693 	}
1694 }
1695 
1696 static void
1697 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1698 {
1699 	struct wpi_softc *sc = arg;
1700 	struct wpi_node *wn = WPI_NODE(ni);
1701 	int error;
1702 
1703 	WPI_NT_LOCK(sc);
1704 	if (wn->id != WPI_ID_UNDEFINED) {
1705 		wn->id = WPI_ID_UNDEFINED;
1706 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1707 			device_printf(sc->sc_dev,
1708 			    "%s: could not add IBSS node, error %d\n",
1709 			    __func__, error);
1710 		}
1711 	}
1712 	WPI_NT_UNLOCK(sc);
1713 }
1714 
1715 static void
1716 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1717 {
1718 	struct ieee80211com *ic = &sc->sc_ic;
1719 
1720 	/* Set group keys once. */
1721 	WPI_NT_LOCK(sc);
1722 	wvp->wv_gtk = 0;
1723 	WPI_NT_UNLOCK(sc);
1724 
1725 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1726 	ieee80211_crypto_reload_keys(ic);
1727 }
1728 
1729 /**
1730  * Called by net80211 when ever there is a change to 80211 state machine
1731  */
1732 static int
1733 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1734 {
1735 	struct wpi_vap *wvp = WPI_VAP(vap);
1736 	struct ieee80211com *ic = vap->iv_ic;
1737 	struct wpi_softc *sc = ic->ic_softc;
1738 	int error = 0;
1739 
1740 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1741 
1742 	WPI_TXQ_LOCK(sc);
1743 	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1744 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1745 		WPI_TXQ_UNLOCK(sc);
1746 
1747 		return ENXIO;
1748 	}
1749 	WPI_TXQ_UNLOCK(sc);
1750 
1751 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1752 		ieee80211_state_name[vap->iv_state],
1753 		ieee80211_state_name[nstate]);
1754 
1755 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1756 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1757 			device_printf(sc->sc_dev,
1758 			    "%s: could not set power saving level\n",
1759 			    __func__);
1760 			return error;
1761 		}
1762 
1763 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1764 	}
1765 
1766 	switch (nstate) {
1767 	case IEEE80211_S_SCAN:
1768 		WPI_RXON_LOCK(sc);
1769 		if (wpi_check_bss_filter(sc) != 0) {
1770 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1771 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1772 				device_printf(sc->sc_dev,
1773 				    "%s: could not send RXON\n", __func__);
1774 			}
1775 		}
1776 		WPI_RXON_UNLOCK(sc);
1777 		break;
1778 
1779 	case IEEE80211_S_ASSOC:
1780 		if (vap->iv_state != IEEE80211_S_RUN)
1781 			break;
1782 		/* FALLTHROUGH */
1783 	case IEEE80211_S_AUTH:
1784 		/*
1785 		 * NB: do not optimize AUTH -> AUTH state transmission -
1786 		 * this will break powersave with non-QoS AP!
1787 		 */
1788 
1789 		/*
1790 		 * The node must be registered in the firmware before auth.
1791 		 * Also the associd must be cleared on RUN -> ASSOC
1792 		 * transitions.
1793 		 */
1794 		if ((error = wpi_auth(sc, vap)) != 0) {
1795 			device_printf(sc->sc_dev,
1796 			    "%s: could not move to AUTH state, error %d\n",
1797 			    __func__, error);
1798 		}
1799 		break;
1800 
1801 	case IEEE80211_S_RUN:
1802 		/*
1803 		 * RUN -> RUN transition:
1804 		 * STA mode: Just restart the timers.
1805 		 * IBSS mode: Process IBSS merge.
1806 		 */
1807 		if (vap->iv_state == IEEE80211_S_RUN) {
1808 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1809 				WPI_RXON_LOCK(sc);
1810 				wpi_calib_timeout(sc);
1811 				WPI_RXON_UNLOCK(sc);
1812 				break;
1813 			} else {
1814 				/*
1815 				 * Drop the BSS_FILTER bit
1816 				 * (there is no another way to change bssid).
1817 				 */
1818 				WPI_RXON_LOCK(sc);
1819 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1820 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1821 					device_printf(sc->sc_dev,
1822 					    "%s: could not send RXON\n",
1823 					    __func__);
1824 				}
1825 				WPI_RXON_UNLOCK(sc);
1826 
1827 				/* Restore all what was lost. */
1828 				wpi_restore_node_table(sc, wvp);
1829 
1830 				/* XXX set conditionally? */
1831 				wpi_updateedca(ic);
1832 			}
1833 		}
1834 
1835 		/*
1836 		 * !RUN -> RUN requires setting the association id
1837 		 * which is done with a firmware cmd.  We also defer
1838 		 * starting the timers until that work is done.
1839 		 */
1840 		if ((error = wpi_run(sc, vap)) != 0) {
1841 			device_printf(sc->sc_dev,
1842 			    "%s: could not move to RUN state\n", __func__);
1843 		}
1844 		break;
1845 
1846 	default:
1847 		break;
1848 	}
1849 	if (error != 0) {
1850 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1851 		return error;
1852 	}
1853 
1854 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1855 
1856 	return wvp->wv_newstate(vap, nstate, arg);
1857 }
1858 
1859 static void
1860 wpi_calib_timeout(void *arg)
1861 {
1862 	struct wpi_softc *sc = arg;
1863 
1864 	if (wpi_check_bss_filter(sc) == 0)
1865 		return;
1866 
1867 	wpi_power_calibration(sc);
1868 
1869 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1870 }
1871 
1872 static __inline uint8_t
1873 rate2plcp(const uint8_t rate)
1874 {
1875 	switch (rate) {
1876 	case 12:	return 0xd;
1877 	case 18:	return 0xf;
1878 	case 24:	return 0x5;
1879 	case 36:	return 0x7;
1880 	case 48:	return 0x9;
1881 	case 72:	return 0xb;
1882 	case 96:	return 0x1;
1883 	case 108:	return 0x3;
1884 	case 2:		return 10;
1885 	case 4:		return 20;
1886 	case 11:	return 55;
1887 	case 22:	return 110;
1888 	default:	return 0;
1889 	}
1890 }
1891 
1892 static __inline uint8_t
1893 plcp2rate(const uint8_t plcp)
1894 {
1895 	switch (plcp) {
1896 	case 0xd:	return 12;
1897 	case 0xf:	return 18;
1898 	case 0x5:	return 24;
1899 	case 0x7:	return 36;
1900 	case 0x9:	return 48;
1901 	case 0xb:	return 72;
1902 	case 0x1:	return 96;
1903 	case 0x3:	return 108;
1904 	case 10:	return 2;
1905 	case 20:	return 4;
1906 	case 55:	return 11;
1907 	case 110:	return 22;
1908 	default:	return 0;
1909 	}
1910 }
1911 
1912 /* Quickly determine if a given rate is CCK or OFDM. */
1913 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1914 
1915 static void
1916 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1917     struct wpi_rx_data *data)
1918 {
1919 	struct ieee80211com *ic = &sc->sc_ic;
1920 	struct wpi_rx_ring *ring = &sc->rxq;
1921 	struct wpi_rx_stat *stat;
1922 	struct wpi_rx_head *head;
1923 	struct wpi_rx_tail *tail;
1924 	struct ieee80211_frame *wh;
1925 	struct ieee80211_node *ni;
1926 	struct mbuf *m, *m1;
1927 	bus_addr_t paddr;
1928 	uint32_t flags;
1929 	uint16_t len;
1930 	int error;
1931 
1932 	stat = (struct wpi_rx_stat *)(desc + 1);
1933 
1934 	if (stat->len > WPI_STAT_MAXLEN) {
1935 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1936 		goto fail1;
1937 	}
1938 
1939 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1940 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1941 	len = le16toh(head->len);
1942 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1943 	flags = le32toh(tail->flags);
1944 
1945 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1946 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1947 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1948 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1949 
1950 	/* Discard frames with a bad FCS early. */
1951 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1952 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1953 		    __func__, flags);
1954 		goto fail1;
1955 	}
1956 	/* Discard frames that are too short. */
1957 	if (len < sizeof (struct ieee80211_frame_ack)) {
1958 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1959 		    __func__, len);
1960 		goto fail1;
1961 	}
1962 
1963 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1964 	if (m1 == NULL) {
1965 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1966 		    __func__);
1967 		goto fail1;
1968 	}
1969 	bus_dmamap_unload(ring->data_dmat, data->map);
1970 
1971 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1972 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1973 	if (error != 0 && error != EFBIG) {
1974 		device_printf(sc->sc_dev,
1975 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1976 		m_freem(m1);
1977 
1978 		/* Try to reload the old mbuf. */
1979 		error = bus_dmamap_load(ring->data_dmat, data->map,
1980 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1981 		    &paddr, BUS_DMA_NOWAIT);
1982 		if (error != 0 && error != EFBIG) {
1983 			panic("%s: could not load old RX mbuf", __func__);
1984 		}
1985 		/* Physical address may have changed. */
1986 		ring->desc[ring->cur] = htole32(paddr);
1987 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1988 		    BUS_DMASYNC_PREWRITE);
1989 		goto fail1;
1990 	}
1991 
1992 	m = data->m;
1993 	data->m = m1;
1994 	/* Update RX descriptor. */
1995 	ring->desc[ring->cur] = htole32(paddr);
1996 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1997 	    BUS_DMASYNC_PREWRITE);
1998 
1999 	/* Finalize mbuf. */
2000 	m->m_data = (caddr_t)(head + 1);
2001 	m->m_pkthdr.len = m->m_len = len;
2002 
2003 	/* Grab a reference to the source node. */
2004 	wh = mtod(m, struct ieee80211_frame *);
2005 
2006 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2007 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2008 		/* Check whether decryption was successful or not. */
2009 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2010 			DPRINTF(sc, WPI_DEBUG_RECV,
2011 			    "CCMP decryption failed 0x%x\n", flags);
2012 			goto fail2;
2013 		}
2014 		m->m_flags |= M_WEP;
2015 	}
2016 
2017 	if (len >= sizeof(struct ieee80211_frame_min))
2018 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2019 	else
2020 		ni = NULL;
2021 
2022 	sc->rx_tstamp = tail->tstamp;
2023 
2024 	if (ieee80211_radiotap_active(ic)) {
2025 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2026 
2027 		tap->wr_flags = 0;
2028 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2029 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2030 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2031 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2032 		tap->wr_tsft = tail->tstamp;
2033 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2034 		tap->wr_rate = plcp2rate(head->plcp);
2035 	}
2036 
2037 	WPI_UNLOCK(sc);
2038 
2039 	/* Send the frame to the 802.11 layer. */
2040 	if (ni != NULL) {
2041 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2042 		/* Node is no longer needed. */
2043 		ieee80211_free_node(ni);
2044 	} else
2045 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2046 
2047 	WPI_LOCK(sc);
2048 
2049 	return;
2050 
2051 fail2:	m_freem(m);
2052 
2053 fail1:	counter_u64_add(ic->ic_ierrors, 1);
2054 }
2055 
2056 static void
2057 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2058     struct wpi_rx_data *data)
2059 {
2060 	/* Ignore */
2061 }
2062 
2063 static void
2064 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2065 {
2066 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2067 	struct wpi_tx_data *data = &ring->data[desc->idx];
2068 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2069 	struct mbuf *m;
2070 	struct ieee80211_node *ni;
2071 	struct ieee80211vap *vap;
2072 	struct ieee80211com *ic;
2073 	uint32_t status = le32toh(stat->status);
2074 	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2075 
2076 	KASSERT(data->ni != NULL, ("no node"));
2077 	KASSERT(data->m != NULL, ("no mbuf"));
2078 
2079 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2080 
2081 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2082 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2083 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2084 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2085 
2086 	/* Unmap and free mbuf. */
2087 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2088 	bus_dmamap_unload(ring->data_dmat, data->map);
2089 	m = data->m, data->m = NULL;
2090 	ni = data->ni, data->ni = NULL;
2091 	vap = ni->ni_vap;
2092 	ic = vap->iv_ic;
2093 
2094 	/*
2095 	 * Update rate control statistics for the node.
2096 	 */
2097 	if (status & WPI_TX_STATUS_FAIL) {
2098 		ieee80211_ratectl_tx_complete(vap, ni,
2099 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2100 	} else
2101 		ieee80211_ratectl_tx_complete(vap, ni,
2102 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2103 
2104 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2105 
2106 	WPI_TXQ_STATE_LOCK(sc);
2107 	ring->queued -= 1;
2108 	if (ring->queued > 0) {
2109 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2110 
2111 		if ((sc->qfullmsk & (1 << ring->qid)) != 0 &&
2112 		     ring->queued < WPI_TX_RING_LOMARK) {
2113 			sc->qfullmsk &= ~(1 << ring->qid);
2114 			ieee80211_runtask(ic, &sc->sc_start_task);
2115 		}
2116 	} else
2117 		callout_stop(&sc->tx_timeout);
2118 	WPI_TXQ_STATE_UNLOCK(sc);
2119 
2120 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2121 }
2122 
2123 /*
2124  * Process a "command done" firmware notification.  This is where we wakeup
2125  * processes waiting for a synchronous command completion.
2126  */
2127 static void
2128 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2129 {
2130 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2131 	struct wpi_tx_data *data;
2132 
2133 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2134 				   "type %s len %d\n", desc->qid, desc->idx,
2135 				   desc->flags, wpi_cmd_str(desc->type),
2136 				   le32toh(desc->len));
2137 
2138 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2139 		return;	/* Not a command ack. */
2140 
2141 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2142 
2143 	data = &ring->data[desc->idx];
2144 
2145 	/* If the command was mapped in an mbuf, free it. */
2146 	if (data->m != NULL) {
2147 		bus_dmamap_sync(ring->data_dmat, data->map,
2148 		    BUS_DMASYNC_POSTWRITE);
2149 		bus_dmamap_unload(ring->data_dmat, data->map);
2150 		m_freem(data->m);
2151 		data->m = NULL;
2152 	}
2153 
2154 	wakeup(&ring->cmd[desc->idx]);
2155 
2156 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2157 		WPI_TXQ_LOCK(sc);
2158 		if (sc->sc_flags & WPI_PS_PATH) {
2159 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2160 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2161 		} else {
2162 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2163 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2164 		}
2165 		WPI_TXQ_UNLOCK(sc);
2166 	}
2167 }
2168 
2169 static void
2170 wpi_notif_intr(struct wpi_softc *sc)
2171 {
2172 	struct ieee80211com *ic = &sc->sc_ic;
2173 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2174 	uint32_t hw;
2175 
2176 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2177 	    BUS_DMASYNC_POSTREAD);
2178 
2179 	hw = le32toh(sc->shared->next) & 0xfff;
2180 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2181 
2182 	while (sc->rxq.cur != hw) {
2183 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2184 
2185 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2186 		struct wpi_rx_desc *desc;
2187 
2188 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2189 		    BUS_DMASYNC_POSTREAD);
2190 		desc = mtod(data->m, struct wpi_rx_desc *);
2191 
2192 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2193 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2194 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2195 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2196 
2197 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2198 			/* Reply to a command. */
2199 			wpi_cmd_done(sc, desc);
2200 		}
2201 
2202 		switch (desc->type) {
2203 		case WPI_RX_DONE:
2204 			/* An 802.11 frame has been received. */
2205 			wpi_rx_done(sc, desc, data);
2206 
2207 			if (sc->sc_running == 0) {
2208 				/* wpi_stop() was called. */
2209 				return;
2210 			}
2211 
2212 			break;
2213 
2214 		case WPI_TX_DONE:
2215 			/* An 802.11 frame has been transmitted. */
2216 			wpi_tx_done(sc, desc);
2217 			break;
2218 
2219 		case WPI_RX_STATISTICS:
2220 		case WPI_BEACON_STATISTICS:
2221 			wpi_rx_statistics(sc, desc, data);
2222 			break;
2223 
2224 		case WPI_BEACON_MISSED:
2225 		{
2226 			struct wpi_beacon_missed *miss =
2227 			    (struct wpi_beacon_missed *)(desc + 1);
2228 			uint32_t expected, misses, received, threshold;
2229 
2230 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2231 			    BUS_DMASYNC_POSTREAD);
2232 
2233 			misses = le32toh(miss->consecutive);
2234 			expected = le32toh(miss->expected);
2235 			received = le32toh(miss->received);
2236 			threshold = MAX(2, vap->iv_bmissthreshold);
2237 
2238 			DPRINTF(sc, WPI_DEBUG_BMISS,
2239 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2240 			    __func__, misses, le32toh(miss->total), received,
2241 			    expected);
2242 
2243 			if (misses >= threshold ||
2244 			    (received == 0 && expected >= threshold)) {
2245 				WPI_RXON_LOCK(sc);
2246 				if (callout_pending(&sc->scan_timeout)) {
2247 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2248 					    0, 1);
2249 				}
2250 				WPI_RXON_UNLOCK(sc);
2251 				if (vap->iv_state == IEEE80211_S_RUN &&
2252 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2253 					ieee80211_beacon_miss(ic);
2254 			}
2255 
2256 			break;
2257 		}
2258 #ifdef WPI_DEBUG
2259 		case WPI_BEACON_SENT:
2260 		{
2261 			struct wpi_tx_stat *stat =
2262 			    (struct wpi_tx_stat *)(desc + 1);
2263 			uint64_t *tsf = (uint64_t *)(stat + 1);
2264 			uint32_t *mode = (uint32_t *)(tsf + 1);
2265 
2266 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2267 			    BUS_DMASYNC_POSTREAD);
2268 
2269 			DPRINTF(sc, WPI_DEBUG_BEACON,
2270 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2271 			    "duration %u, status %x, tsf %ju, mode %x\n",
2272 			    stat->rtsfailcnt, stat->ackfailcnt,
2273 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2274 			    le32toh(stat->status), *tsf, *mode);
2275 
2276 			break;
2277 		}
2278 #endif
2279 		case WPI_UC_READY:
2280 		{
2281 			struct wpi_ucode_info *uc =
2282 			    (struct wpi_ucode_info *)(desc + 1);
2283 
2284 			/* The microcontroller is ready. */
2285 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2286 			    BUS_DMASYNC_POSTREAD);
2287 			DPRINTF(sc, WPI_DEBUG_RESET,
2288 			    "microcode alive notification version=%d.%d "
2289 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2290 			    uc->subtype, le32toh(uc->valid));
2291 
2292 			if (le32toh(uc->valid) != 1) {
2293 				device_printf(sc->sc_dev,
2294 				    "microcontroller initialization failed\n");
2295 				wpi_stop_locked(sc);
2296 				return;
2297 			}
2298 			/* Save the address of the error log in SRAM. */
2299 			sc->errptr = le32toh(uc->errptr);
2300 			break;
2301 		}
2302 		case WPI_STATE_CHANGED:
2303 		{
2304 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2305 			    BUS_DMASYNC_POSTREAD);
2306 
2307 			uint32_t *status = (uint32_t *)(desc + 1);
2308 
2309 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2310 			    le32toh(*status));
2311 
2312 			if (le32toh(*status) & 1) {
2313 				WPI_NT_LOCK(sc);
2314 				wpi_clear_node_table(sc);
2315 				WPI_NT_UNLOCK(sc);
2316 				taskqueue_enqueue(sc->sc_tq,
2317 				    &sc->sc_radiooff_task);
2318 				return;
2319 			}
2320 			break;
2321 		}
2322 #ifdef WPI_DEBUG
2323 		case WPI_START_SCAN:
2324 		{
2325 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2326 			    BUS_DMASYNC_POSTREAD);
2327 
2328 			struct wpi_start_scan *scan =
2329 			    (struct wpi_start_scan *)(desc + 1);
2330 			DPRINTF(sc, WPI_DEBUG_SCAN,
2331 			    "%s: scanning channel %d status %x\n",
2332 			    __func__, scan->chan, le32toh(scan->status));
2333 
2334 			break;
2335 		}
2336 #endif
2337 		case WPI_STOP_SCAN:
2338 		{
2339 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2340 			    BUS_DMASYNC_POSTREAD);
2341 
2342 			struct wpi_stop_scan *scan =
2343 			    (struct wpi_stop_scan *)(desc + 1);
2344 
2345 			DPRINTF(sc, WPI_DEBUG_SCAN,
2346 			    "scan finished nchan=%d status=%d chan=%d\n",
2347 			    scan->nchan, scan->status, scan->chan);
2348 
2349 			WPI_RXON_LOCK(sc);
2350 			callout_stop(&sc->scan_timeout);
2351 			WPI_RXON_UNLOCK(sc);
2352 			if (scan->status == WPI_SCAN_ABORTED)
2353 				ieee80211_cancel_scan(vap);
2354 			else
2355 				ieee80211_scan_next(vap);
2356 			break;
2357 		}
2358 		}
2359 
2360 		if (sc->rxq.cur % 8 == 0) {
2361 			/* Tell the firmware what we have processed. */
2362 			sc->sc_update_rx_ring(sc);
2363 		}
2364 	}
2365 }
2366 
2367 /*
2368  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2369  * from power-down sleep mode.
2370  */
2371 static void
2372 wpi_wakeup_intr(struct wpi_softc *sc)
2373 {
2374 	int qid;
2375 
2376 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2377 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2378 
2379 	/* Wakeup RX and TX rings. */
2380 	if (sc->rxq.update) {
2381 		sc->rxq.update = 0;
2382 		wpi_update_rx_ring(sc);
2383 	}
2384 	WPI_TXQ_LOCK(sc);
2385 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2386 		struct wpi_tx_ring *ring = &sc->txq[qid];
2387 
2388 		if (ring->update) {
2389 			ring->update = 0;
2390 			wpi_update_tx_ring(sc, ring);
2391 		}
2392 	}
2393 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2394 	WPI_TXQ_UNLOCK(sc);
2395 }
2396 
2397 /*
2398  * This function prints firmware registers
2399  */
2400 #ifdef WPI_DEBUG
2401 static void
2402 wpi_debug_registers(struct wpi_softc *sc)
2403 {
2404 	size_t i;
2405 	static const uint32_t csr_tbl[] = {
2406 		WPI_HW_IF_CONFIG,
2407 		WPI_INT,
2408 		WPI_INT_MASK,
2409 		WPI_FH_INT,
2410 		WPI_GPIO_IN,
2411 		WPI_RESET,
2412 		WPI_GP_CNTRL,
2413 		WPI_EEPROM,
2414 		WPI_EEPROM_GP,
2415 		WPI_GIO,
2416 		WPI_UCODE_GP1,
2417 		WPI_UCODE_GP2,
2418 		WPI_GIO_CHICKEN,
2419 		WPI_ANA_PLL,
2420 		WPI_DBG_HPET_MEM,
2421 	};
2422 	static const uint32_t prph_tbl[] = {
2423 		WPI_APMG_CLK_CTRL,
2424 		WPI_APMG_PS,
2425 		WPI_APMG_PCI_STT,
2426 		WPI_APMG_RFKILL,
2427 	};
2428 
2429 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2430 
2431 	for (i = 0; i < nitems(csr_tbl); i++) {
2432 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2433 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2434 
2435 		if ((i + 1) % 2 == 0)
2436 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2437 	}
2438 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2439 
2440 	if (wpi_nic_lock(sc) == 0) {
2441 		for (i = 0; i < nitems(prph_tbl); i++) {
2442 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2443 			    wpi_get_prph_string(prph_tbl[i]),
2444 			    wpi_prph_read(sc, prph_tbl[i]));
2445 
2446 			if ((i + 1) % 2 == 0)
2447 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2448 		}
2449 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2450 		wpi_nic_unlock(sc);
2451 	} else {
2452 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2453 		    "Cannot access internal registers.\n");
2454 	}
2455 }
2456 #endif
2457 
2458 /*
2459  * Dump the error log of the firmware when a firmware panic occurs.  Although
2460  * we can't debug the firmware because it is neither open source nor free, it
2461  * can help us to identify certain classes of problems.
2462  */
2463 static void
2464 wpi_fatal_intr(struct wpi_softc *sc)
2465 {
2466 	struct wpi_fw_dump dump;
2467 	uint32_t i, offset, count;
2468 
2469 	/* Check that the error log address is valid. */
2470 	if (sc->errptr < WPI_FW_DATA_BASE ||
2471 	    sc->errptr + sizeof (dump) >
2472 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2473 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2474 		    sc->errptr);
2475 		return;
2476 	}
2477 	if (wpi_nic_lock(sc) != 0) {
2478 		printf("%s: could not read firmware error log\n", __func__);
2479 		return;
2480 	}
2481 	/* Read number of entries in the log. */
2482 	count = wpi_mem_read(sc, sc->errptr);
2483 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2484 		printf("%s: invalid count field (count = %u)\n", __func__,
2485 		    count);
2486 		wpi_nic_unlock(sc);
2487 		return;
2488 	}
2489 	/* Skip "count" field. */
2490 	offset = sc->errptr + sizeof (uint32_t);
2491 	printf("firmware error log (count = %u):\n", count);
2492 	for (i = 0; i < count; i++) {
2493 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2494 		    sizeof (dump) / sizeof (uint32_t));
2495 
2496 		printf("  error type = \"%s\" (0x%08X)\n",
2497 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2498 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2499 		    dump.desc);
2500 		printf("  error data      = 0x%08X\n",
2501 		    dump.data);
2502 		printf("  branch link     = 0x%08X%08X\n",
2503 		    dump.blink[0], dump.blink[1]);
2504 		printf("  interrupt link  = 0x%08X%08X\n",
2505 		    dump.ilink[0], dump.ilink[1]);
2506 		printf("  time            = %u\n", dump.time);
2507 
2508 		offset += sizeof (dump);
2509 	}
2510 	wpi_nic_unlock(sc);
2511 	/* Dump driver status (TX and RX rings) while we're here. */
2512 	printf("driver status:\n");
2513 	WPI_TXQ_LOCK(sc);
2514 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2515 		struct wpi_tx_ring *ring = &sc->txq[i];
2516 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2517 		    i, ring->qid, ring->cur, ring->queued);
2518 	}
2519 	WPI_TXQ_UNLOCK(sc);
2520 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2521 }
2522 
2523 static void
2524 wpi_intr(void *arg)
2525 {
2526 	struct wpi_softc *sc = arg;
2527 	uint32_t r1, r2;
2528 
2529 	WPI_LOCK(sc);
2530 
2531 	/* Disable interrupts. */
2532 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2533 
2534 	r1 = WPI_READ(sc, WPI_INT);
2535 
2536 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2537 		goto end;	/* Hardware gone! */
2538 
2539 	r2 = WPI_READ(sc, WPI_FH_INT);
2540 
2541 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2542 	    r1, r2);
2543 
2544 	if (r1 == 0 && r2 == 0)
2545 		goto done;	/* Interrupt not for us. */
2546 
2547 	/* Acknowledge interrupts. */
2548 	WPI_WRITE(sc, WPI_INT, r1);
2549 	WPI_WRITE(sc, WPI_FH_INT, r2);
2550 
2551 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2552 		device_printf(sc->sc_dev, "fatal firmware error\n");
2553 #ifdef WPI_DEBUG
2554 		wpi_debug_registers(sc);
2555 #endif
2556 		wpi_fatal_intr(sc);
2557 		DPRINTF(sc, WPI_DEBUG_HW,
2558 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2559 		    "(Hardware Error)");
2560 		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2561 		goto end;
2562 	}
2563 
2564 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2565 	    (r2 & WPI_FH_INT_RX))
2566 		wpi_notif_intr(sc);
2567 
2568 	if (r1 & WPI_INT_ALIVE)
2569 		wakeup(sc);	/* Firmware is alive. */
2570 
2571 	if (r1 & WPI_INT_WAKEUP)
2572 		wpi_wakeup_intr(sc);
2573 
2574 done:
2575 	/* Re-enable interrupts. */
2576 	if (sc->sc_running)
2577 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2578 
2579 end:	WPI_UNLOCK(sc);
2580 }
2581 
2582 static int
2583 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2584 {
2585 	struct ieee80211_frame *wh;
2586 	struct wpi_tx_cmd *cmd;
2587 	struct wpi_tx_data *data;
2588 	struct wpi_tx_desc *desc;
2589 	struct wpi_tx_ring *ring;
2590 	struct mbuf *m1;
2591 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2592 	int error, i, hdrlen, nsegs, totlen, pad;
2593 
2594 	WPI_TXQ_LOCK(sc);
2595 
2596 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2597 
2598 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2599 
2600 	if (sc->sc_running == 0) {
2601 		/* wpi_stop() was called */
2602 		error = ENETDOWN;
2603 		goto fail;
2604 	}
2605 
2606 	wh = mtod(buf->m, struct ieee80211_frame *);
2607 	hdrlen = ieee80211_anyhdrsize(wh);
2608 	totlen = buf->m->m_pkthdr.len;
2609 
2610 	if (hdrlen & 3) {
2611 		/* First segment length must be a multiple of 4. */
2612 		pad = 4 - (hdrlen & 3);
2613 	} else
2614 		pad = 0;
2615 
2616 	ring = &sc->txq[buf->ac];
2617 	desc = &ring->desc[ring->cur];
2618 	data = &ring->data[ring->cur];
2619 
2620 	/* Prepare TX firmware command. */
2621 	cmd = &ring->cmd[ring->cur];
2622 	cmd->code = buf->code;
2623 	cmd->flags = 0;
2624 	cmd->qid = ring->qid;
2625 	cmd->idx = ring->cur;
2626 
2627 	memcpy(cmd->data, buf->data, buf->size);
2628 
2629 	/* Save and trim IEEE802.11 header. */
2630 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2631 	m_adj(buf->m, hdrlen);
2632 
2633 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2634 	    segs, &nsegs, BUS_DMA_NOWAIT);
2635 	if (error != 0 && error != EFBIG) {
2636 		device_printf(sc->sc_dev,
2637 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2638 		goto fail;
2639 	}
2640 	if (error != 0) {
2641 		/* Too many DMA segments, linearize mbuf. */
2642 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2643 		if (m1 == NULL) {
2644 			device_printf(sc->sc_dev,
2645 			    "%s: could not defrag mbuf\n", __func__);
2646 			error = ENOBUFS;
2647 			goto fail;
2648 		}
2649 		buf->m = m1;
2650 
2651 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2652 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2653 		if (error != 0) {
2654 			device_printf(sc->sc_dev,
2655 			    "%s: can't map mbuf (error %d)\n", __func__,
2656 			    error);
2657 			goto fail;
2658 		}
2659 	}
2660 
2661 	KASSERT(nsegs < WPI_MAX_SCATTER,
2662 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2663 	     nsegs, WPI_MAX_SCATTER));
2664 
2665 	data->m = buf->m;
2666 	data->ni = buf->ni;
2667 
2668 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2669 	    __func__, ring->qid, ring->cur, totlen, nsegs);
2670 
2671 	/* Fill TX descriptor. */
2672 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2673 	/* First DMA segment is used by the TX command. */
2674 	desc->segs[0].addr = htole32(data->cmd_paddr);
2675 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2676 	/* Other DMA segments are for data payload. */
2677 	seg = &segs[0];
2678 	for (i = 1; i <= nsegs; i++) {
2679 		desc->segs[i].addr = htole32(seg->ds_addr);
2680 		desc->segs[i].len  = htole32(seg->ds_len);
2681 		seg++;
2682 	}
2683 
2684 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2685 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2686 	    BUS_DMASYNC_PREWRITE);
2687 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2688 	    BUS_DMASYNC_PREWRITE);
2689 
2690 	/* Kick TX ring. */
2691 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2692 	sc->sc_update_tx_ring(sc, ring);
2693 
2694 	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2695 		/* Mark TX ring as full if we reach a certain threshold. */
2696 		WPI_TXQ_STATE_LOCK(sc);
2697 		if (++ring->queued > WPI_TX_RING_HIMARK)
2698 			sc->qfullmsk |= 1 << ring->qid;
2699 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2700 		WPI_TXQ_STATE_UNLOCK(sc);
2701 	}
2702 
2703 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2704 
2705 	WPI_TXQ_UNLOCK(sc);
2706 
2707 	return 0;
2708 
2709 fail:	m_freem(buf->m);
2710 
2711 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2712 
2713 	WPI_TXQ_UNLOCK(sc);
2714 
2715 	return error;
2716 }
2717 
2718 /*
2719  * Construct the data packet for a transmit buffer.
2720  */
2721 static int
2722 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2723 {
2724 	const struct ieee80211_txparam *tp;
2725 	struct ieee80211vap *vap = ni->ni_vap;
2726 	struct ieee80211com *ic = ni->ni_ic;
2727 	struct wpi_node *wn = WPI_NODE(ni);
2728 	struct ieee80211_channel *chan;
2729 	struct ieee80211_frame *wh;
2730 	struct ieee80211_key *k = NULL;
2731 	struct wpi_buf tx_data;
2732 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2733 	uint32_t flags;
2734 	uint16_t qos;
2735 	uint8_t tid, type;
2736 	int ac, error, swcrypt, rate, ismcast, totlen;
2737 
2738 	wh = mtod(m, struct ieee80211_frame *);
2739 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2740 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2741 
2742 	/* Select EDCA Access Category and TX ring for this frame. */
2743 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2744 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2745 		tid = qos & IEEE80211_QOS_TID;
2746 	} else {
2747 		qos = 0;
2748 		tid = 0;
2749 	}
2750 	ac = M_WME_GETAC(m);
2751 
2752 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2753 		ni->ni_chan : ic->ic_curchan;
2754 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2755 
2756 	/* Choose a TX rate index. */
2757 	if (type == IEEE80211_FC0_TYPE_MGT)
2758 		rate = tp->mgmtrate;
2759 	else if (ismcast)
2760 		rate = tp->mcastrate;
2761 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2762 		rate = tp->ucastrate;
2763 	else if (m->m_flags & M_EAPOL)
2764 		rate = tp->mgmtrate;
2765 	else {
2766 		/* XXX pass pktlen */
2767 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2768 		rate = ni->ni_txrate;
2769 	}
2770 
2771 	/* Encrypt the frame if need be. */
2772 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2773 		/* Retrieve key for TX. */
2774 		k = ieee80211_crypto_encap(ni, m);
2775 		if (k == NULL) {
2776 			error = ENOBUFS;
2777 			goto fail;
2778 		}
2779 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2780 
2781 		/* 802.11 header may have moved. */
2782 		wh = mtod(m, struct ieee80211_frame *);
2783 	}
2784 	totlen = m->m_pkthdr.len;
2785 
2786 	if (ieee80211_radiotap_active_vap(vap)) {
2787 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2788 
2789 		tap->wt_flags = 0;
2790 		tap->wt_rate = rate;
2791 		if (k != NULL)
2792 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2793 
2794 		ieee80211_radiotap_tx(vap, m);
2795 	}
2796 
2797 	flags = 0;
2798 	if (!ismcast) {
2799 		/* Unicast frame, check if an ACK is expected. */
2800 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2801 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2802 			flags |= WPI_TX_NEED_ACK;
2803 	}
2804 
2805 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2806 		flags |= WPI_TX_AUTO_SEQ;
2807 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2808 		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2809 
2810 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2811 	if (!ismcast) {
2812 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2813 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2814 			flags |= WPI_TX_NEED_RTS;
2815 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2816 		    WPI_RATE_IS_OFDM(rate)) {
2817 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2818 				flags |= WPI_TX_NEED_CTS;
2819 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2820 				flags |= WPI_TX_NEED_RTS;
2821 		}
2822 
2823 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2824 			flags |= WPI_TX_FULL_TXOP;
2825 	}
2826 
2827 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2828 	if (type == IEEE80211_FC0_TYPE_MGT) {
2829 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2830 
2831 		/* Tell HW to set timestamp in probe responses. */
2832 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2833 			flags |= WPI_TX_INSERT_TSTAMP;
2834 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2835 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2836 			tx->timeout = htole16(3);
2837 		else
2838 			tx->timeout = htole16(2);
2839 	}
2840 
2841 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2842 		tx->id = WPI_ID_BROADCAST;
2843 	else {
2844 		if (wn->id == WPI_ID_UNDEFINED) {
2845 			device_printf(sc->sc_dev,
2846 			    "%s: undefined node id\n", __func__);
2847 			error = EINVAL;
2848 			goto fail;
2849 		}
2850 
2851 		tx->id = wn->id;
2852 	}
2853 
2854 	if (k != NULL && !swcrypt) {
2855 		switch (k->wk_cipher->ic_cipher) {
2856 		case IEEE80211_CIPHER_AES_CCM:
2857 			tx->security = WPI_CIPHER_CCMP;
2858 			break;
2859 
2860 		default:
2861 			break;
2862 		}
2863 
2864 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2865 	}
2866 
2867 	tx->len = htole16(totlen);
2868 	tx->flags = htole32(flags);
2869 	tx->plcp = rate2plcp(rate);
2870 	tx->tid = tid;
2871 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2872 	tx->ofdm_mask = 0xff;
2873 	tx->cck_mask = 0x0f;
2874 	tx->rts_ntries = 7;
2875 	tx->data_ntries = tp->maxretry;
2876 
2877 	tx_data.ni = ni;
2878 	tx_data.m = m;
2879 	tx_data.size = sizeof(struct wpi_cmd_data);
2880 	tx_data.code = WPI_CMD_TX_DATA;
2881 	tx_data.ac = ac;
2882 
2883 	return wpi_cmd2(sc, &tx_data);
2884 
2885 fail:	m_freem(m);
2886 	return error;
2887 }
2888 
2889 static int
2890 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2891     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2892 {
2893 	struct ieee80211vap *vap = ni->ni_vap;
2894 	struct ieee80211_key *k = NULL;
2895 	struct ieee80211_frame *wh;
2896 	struct wpi_buf tx_data;
2897 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2898 	uint32_t flags;
2899 	uint8_t type;
2900 	int ac, rate, swcrypt, totlen;
2901 
2902 	wh = mtod(m, struct ieee80211_frame *);
2903 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2904 
2905 	ac = params->ibp_pri & 3;
2906 
2907 	/* Choose a TX rate index. */
2908 	rate = params->ibp_rate0;
2909 
2910 	flags = 0;
2911 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2912 		flags |= WPI_TX_AUTO_SEQ;
2913 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2914 		flags |= WPI_TX_NEED_ACK;
2915 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2916 		flags |= WPI_TX_NEED_RTS;
2917 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2918 		flags |= WPI_TX_NEED_CTS;
2919 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2920 		flags |= WPI_TX_FULL_TXOP;
2921 
2922 	/* Encrypt the frame if need be. */
2923 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2924 		/* Retrieve key for TX. */
2925 		k = ieee80211_crypto_encap(ni, m);
2926 		if (k == NULL) {
2927 			m_freem(m);
2928 			return ENOBUFS;
2929 		}
2930 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2931 
2932 		/* 802.11 header may have moved. */
2933 		wh = mtod(m, struct ieee80211_frame *);
2934 	}
2935 	totlen = m->m_pkthdr.len;
2936 
2937 	if (ieee80211_radiotap_active_vap(vap)) {
2938 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2939 
2940 		tap->wt_flags = 0;
2941 		tap->wt_rate = rate;
2942 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2943 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2944 
2945 		ieee80211_radiotap_tx(vap, m);
2946 	}
2947 
2948 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2949 	if (type == IEEE80211_FC0_TYPE_MGT) {
2950 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2951 
2952 		/* Tell HW to set timestamp in probe responses. */
2953 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2954 			flags |= WPI_TX_INSERT_TSTAMP;
2955 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2956 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2957 			tx->timeout = htole16(3);
2958 		else
2959 			tx->timeout = htole16(2);
2960 	}
2961 
2962 	if (k != NULL && !swcrypt) {
2963 		switch (k->wk_cipher->ic_cipher) {
2964 		case IEEE80211_CIPHER_AES_CCM:
2965 			tx->security = WPI_CIPHER_CCMP;
2966 			break;
2967 
2968 		default:
2969 			break;
2970 		}
2971 
2972 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2973 	}
2974 
2975 	tx->len = htole16(totlen);
2976 	tx->flags = htole32(flags);
2977 	tx->plcp = rate2plcp(rate);
2978 	tx->id = WPI_ID_BROADCAST;
2979 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2980 	tx->rts_ntries = params->ibp_try1;
2981 	tx->data_ntries = params->ibp_try0;
2982 
2983 	tx_data.ni = ni;
2984 	tx_data.m = m;
2985 	tx_data.size = sizeof(struct wpi_cmd_data);
2986 	tx_data.code = WPI_CMD_TX_DATA;
2987 	tx_data.ac = ac;
2988 
2989 	return wpi_cmd2(sc, &tx_data);
2990 }
2991 
2992 static __inline int
2993 wpi_tx_ring_is_full(struct wpi_softc *sc, int ac)
2994 {
2995 	struct wpi_tx_ring *ring = &sc->txq[ac];
2996 	int retval;
2997 
2998 	WPI_TXQ_STATE_LOCK(sc);
2999 	retval = (ring->queued > WPI_TX_RING_HIMARK);
3000 	WPI_TXQ_STATE_UNLOCK(sc);
3001 
3002 	return retval;
3003 }
3004 
3005 static __inline void
3006 wpi_handle_tx_failure(struct ieee80211_node *ni)
3007 {
3008 	/* NB: m is reclaimed on tx failure */
3009 	if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3010 	ieee80211_free_node(ni);
3011 }
3012 
3013 static int
3014 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3015     const struct ieee80211_bpf_params *params)
3016 {
3017 	struct ieee80211com *ic = ni->ni_ic;
3018 	struct wpi_softc *sc = ic->ic_softc;
3019 	int ac, error = 0;
3020 
3021 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3022 
3023 	ac = M_WME_GETAC(m);
3024 
3025 	WPI_TX_LOCK(sc);
3026 
3027 	if (sc->sc_running == 0 || wpi_tx_ring_is_full(sc, ac)) {
3028 		m_freem(m);
3029 		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3030 		goto unlock;
3031 	}
3032 
3033 	if (params == NULL) {
3034 		/*
3035 		 * Legacy path; interpret frame contents to decide
3036 		 * precisely how to send the frame.
3037 		 */
3038 		error = wpi_tx_data(sc, m, ni);
3039 	} else {
3040 		/*
3041 		 * Caller supplied explicit parameters to use in
3042 		 * sending the frame.
3043 		 */
3044 		error = wpi_tx_data_raw(sc, m, ni, params);
3045 	}
3046 
3047 unlock:	WPI_TX_UNLOCK(sc);
3048 
3049 	if (error != 0) {
3050 		wpi_handle_tx_failure(ni);
3051 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3052 
3053 		return error;
3054 	}
3055 
3056 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3057 
3058 	return 0;
3059 }
3060 
3061 static int
3062 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3063 {
3064 	struct wpi_softc *sc = ic->ic_softc;
3065 	struct ieee80211_node *ni;
3066 	struct mbufq *sndq;
3067 	int ac, error;
3068 
3069 	WPI_TX_LOCK(sc);
3070 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3071 
3072 	/* Check if interface is up & running. */
3073 	if (sc->sc_running == 0) {
3074 		error = ENXIO;
3075 		goto unlock;
3076 	}
3077 
3078 	/* Check for available space. */
3079 	ac = M_WME_GETAC(m);
3080 	sndq = &sc->txq[ac].snd;
3081 	if (wpi_tx_ring_is_full(sc, ac) || mbufq_len(sndq) != 0) {
3082 		/* wpi_tx_done() will dequeue it. */
3083 		error = mbufq_enqueue(sndq, m);
3084 		goto unlock;
3085 	}
3086 
3087 	error = 0;
3088 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3089 	if (wpi_tx_data(sc, m, ni) != 0) {
3090 		wpi_handle_tx_failure(ni);
3091 	}
3092 
3093 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3094 
3095 unlock:	WPI_TX_UNLOCK(sc);
3096 
3097 	return (error);
3098 }
3099 
3100 /**
3101  * Process data waiting to be sent on the output queue
3102  */
3103 static void
3104 wpi_start(void *arg0, int pending)
3105 {
3106 	struct wpi_softc *sc = arg0;
3107 	struct ieee80211_node *ni;
3108 	struct mbuf *m;
3109 	uint8_t i;
3110 
3111 	WPI_TX_LOCK(sc);
3112 	if (sc->sc_running == 0)
3113 		goto unlock;
3114 
3115 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3116 
3117 	for (i = 0; i < WPI_CMD_QUEUE_NUM; i++) {
3118 		struct mbufq *sndq = &sc->txq[i].snd;
3119 
3120 		for (;;) {
3121 			if (wpi_tx_ring_is_full(sc, i))
3122 				break;
3123 
3124 			if ((m = mbufq_dequeue(sndq)) == NULL)
3125 				break;
3126 
3127 			ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3128 			if (wpi_tx_data(sc, m, ni) != 0) {
3129 				wpi_handle_tx_failure(ni);
3130 			}
3131 		}
3132 	}
3133 
3134 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3135 unlock:	WPI_TX_UNLOCK(sc);
3136 }
3137 
3138 static void
3139 wpi_watchdog_rfkill(void *arg)
3140 {
3141 	struct wpi_softc *sc = arg;
3142 	struct ieee80211com *ic = &sc->sc_ic;
3143 
3144 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3145 
3146 	/* No need to lock firmware memory. */
3147 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3148 		/* Radio kill switch is still off. */
3149 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3150 		    sc);
3151 	} else
3152 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3153 }
3154 
3155 static void
3156 wpi_scan_timeout(void *arg)
3157 {
3158 	struct wpi_softc *sc = arg;
3159 	struct ieee80211com *ic = &sc->sc_ic;
3160 
3161 	ic_printf(ic, "scan timeout\n");
3162 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3163 }
3164 
3165 static void
3166 wpi_tx_timeout(void *arg)
3167 {
3168 	struct wpi_softc *sc = arg;
3169 	struct ieee80211com *ic = &sc->sc_ic;
3170 
3171 	ic_printf(ic, "device timeout\n");
3172 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3173 }
3174 
3175 static void
3176 wpi_parent(struct ieee80211com *ic)
3177 {
3178 	struct wpi_softc *sc = ic->ic_softc;
3179 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3180 
3181 	if (ic->ic_nrunning > 0) {
3182 		if (wpi_init(sc) == 0) {
3183 			ieee80211_notify_radio(ic, 1);
3184 			ieee80211_start_all(ic);
3185 		} else {
3186 			ieee80211_notify_radio(ic, 0);
3187 			ieee80211_stop(vap);
3188 		}
3189 	} else
3190 		wpi_stop(sc);
3191 }
3192 
3193 /*
3194  * Send a command to the firmware.
3195  */
3196 static int
3197 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
3198     int async)
3199 {
3200 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3201 	struct wpi_tx_desc *desc;
3202 	struct wpi_tx_data *data;
3203 	struct wpi_tx_cmd *cmd;
3204 	struct mbuf *m;
3205 	bus_addr_t paddr;
3206 	int totlen, error;
3207 
3208 	WPI_TXQ_LOCK(sc);
3209 
3210 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3211 
3212 	if (sc->sc_running == 0) {
3213 		/* wpi_stop() was called */
3214 		if (code == WPI_CMD_SCAN)
3215 			error = ENETDOWN;
3216 		else
3217 			error = 0;
3218 
3219 		goto fail;
3220 	}
3221 
3222 	if (async == 0)
3223 		WPI_LOCK_ASSERT(sc);
3224 
3225 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %zu async %d\n",
3226 	    __func__, wpi_cmd_str(code), size, async);
3227 
3228 	desc = &ring->desc[ring->cur];
3229 	data = &ring->data[ring->cur];
3230 	totlen = 4 + size;
3231 
3232 	if (size > sizeof cmd->data) {
3233 		/* Command is too large to fit in a descriptor. */
3234 		if (totlen > MCLBYTES) {
3235 			error = EINVAL;
3236 			goto fail;
3237 		}
3238 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3239 		if (m == NULL) {
3240 			error = ENOMEM;
3241 			goto fail;
3242 		}
3243 		cmd = mtod(m, struct wpi_tx_cmd *);
3244 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3245 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3246 		if (error != 0) {
3247 			m_freem(m);
3248 			goto fail;
3249 		}
3250 		data->m = m;
3251 	} else {
3252 		cmd = &ring->cmd[ring->cur];
3253 		paddr = data->cmd_paddr;
3254 	}
3255 
3256 	cmd->code = code;
3257 	cmd->flags = 0;
3258 	cmd->qid = ring->qid;
3259 	cmd->idx = ring->cur;
3260 	memcpy(cmd->data, buf, size);
3261 
3262 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3263 	desc->segs[0].addr = htole32(paddr);
3264 	desc->segs[0].len  = htole32(totlen);
3265 
3266 	if (size > sizeof cmd->data) {
3267 		bus_dmamap_sync(ring->data_dmat, data->map,
3268 		    BUS_DMASYNC_PREWRITE);
3269 	} else {
3270 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3271 		    BUS_DMASYNC_PREWRITE);
3272 	}
3273 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3274 	    BUS_DMASYNC_PREWRITE);
3275 
3276 	/* Kick command ring. */
3277 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3278 	sc->sc_update_tx_ring(sc, ring);
3279 
3280 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3281 
3282 	WPI_TXQ_UNLOCK(sc);
3283 
3284 	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3285 
3286 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3287 
3288 	WPI_TXQ_UNLOCK(sc);
3289 
3290 	return error;
3291 }
3292 
3293 /*
3294  * Configure HW multi-rate retries.
3295  */
3296 static int
3297 wpi_mrr_setup(struct wpi_softc *sc)
3298 {
3299 	struct ieee80211com *ic = &sc->sc_ic;
3300 	struct wpi_mrr_setup mrr;
3301 	int i, error;
3302 
3303 	/* CCK rates (not used with 802.11a). */
3304 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3305 		mrr.rates[i].flags = 0;
3306 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3307 		/* Fallback to the immediate lower CCK rate (if any.) */
3308 		mrr.rates[i].next =
3309 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3310 		/* Try twice at this rate before falling back to "next". */
3311 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3312 	}
3313 	/* OFDM rates (not used with 802.11b). */
3314 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3315 		mrr.rates[i].flags = 0;
3316 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3317 		/* Fallback to the immediate lower rate (if any.) */
3318 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3319 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3320 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3321 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3322 		    i - 1;
3323 		/* Try twice at this rate before falling back to "next". */
3324 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3325 	}
3326 	/* Setup MRR for control frames. */
3327 	mrr.which = htole32(WPI_MRR_CTL);
3328 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3329 	if (error != 0) {
3330 		device_printf(sc->sc_dev,
3331 		    "could not setup MRR for control frames\n");
3332 		return error;
3333 	}
3334 	/* Setup MRR for data frames. */
3335 	mrr.which = htole32(WPI_MRR_DATA);
3336 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3337 	if (error != 0) {
3338 		device_printf(sc->sc_dev,
3339 		    "could not setup MRR for data frames\n");
3340 		return error;
3341 	}
3342 	return 0;
3343 }
3344 
3345 static int
3346 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3347 {
3348 	struct ieee80211com *ic = ni->ni_ic;
3349 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3350 	struct wpi_node *wn = WPI_NODE(ni);
3351 	struct wpi_node_info node;
3352 	int error;
3353 
3354 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3355 
3356 	if (wn->id == WPI_ID_UNDEFINED)
3357 		return EINVAL;
3358 
3359 	memset(&node, 0, sizeof node);
3360 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3361 	node.id = wn->id;
3362 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3363 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3364 	node.action = htole32(WPI_ACTION_SET_RATE);
3365 	node.antenna = WPI_ANTENNA_BOTH;
3366 
3367 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3368 	    wn->id, ether_sprintf(ni->ni_macaddr));
3369 
3370 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3371 	if (error != 0) {
3372 		device_printf(sc->sc_dev,
3373 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3374 		    error);
3375 		return error;
3376 	}
3377 
3378 	if (wvp->wv_gtk != 0) {
3379 		error = wpi_set_global_keys(ni);
3380 		if (error != 0) {
3381 			device_printf(sc->sc_dev,
3382 			    "%s: error while setting global keys\n", __func__);
3383 			return ENXIO;
3384 		}
3385 	}
3386 
3387 	return 0;
3388 }
3389 
3390 /*
3391  * Broadcast node is used to send group-addressed and management frames.
3392  */
3393 static int
3394 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3395 {
3396 	struct ieee80211com *ic = &sc->sc_ic;
3397 	struct wpi_node_info node;
3398 
3399 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3400 
3401 	memset(&node, 0, sizeof node);
3402 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3403 	node.id = WPI_ID_BROADCAST;
3404 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3405 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3406 	node.action = htole32(WPI_ACTION_SET_RATE);
3407 	node.antenna = WPI_ANTENNA_BOTH;
3408 
3409 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3410 
3411 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3412 }
3413 
3414 static int
3415 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3416 {
3417 	struct wpi_node *wn = WPI_NODE(ni);
3418 	int error;
3419 
3420 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3421 
3422 	wn->id = wpi_add_node_entry_sta(sc);
3423 
3424 	if ((error = wpi_add_node(sc, ni)) != 0) {
3425 		wpi_del_node_entry(sc, wn->id);
3426 		wn->id = WPI_ID_UNDEFINED;
3427 		return error;
3428 	}
3429 
3430 	return 0;
3431 }
3432 
3433 static int
3434 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3435 {
3436 	struct wpi_node *wn = WPI_NODE(ni);
3437 	int error;
3438 
3439 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3440 	    ("the node %d was added before", wn->id));
3441 
3442 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3443 
3444 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3445 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3446 		return ENOMEM;
3447 	}
3448 
3449 	if ((error = wpi_add_node(sc, ni)) != 0) {
3450 		wpi_del_node_entry(sc, wn->id);
3451 		wn->id = WPI_ID_UNDEFINED;
3452 		return error;
3453 	}
3454 
3455 	return 0;
3456 }
3457 
3458 static void
3459 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3460 {
3461 	struct wpi_node *wn = WPI_NODE(ni);
3462 	struct wpi_cmd_del_node node;
3463 	int error;
3464 
3465 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3466 
3467 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3468 
3469 	memset(&node, 0, sizeof node);
3470 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3471 	node.count = 1;
3472 
3473 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3474 	    wn->id, ether_sprintf(ni->ni_macaddr));
3475 
3476 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3477 	if (error != 0) {
3478 		device_printf(sc->sc_dev,
3479 		    "%s: could not delete node %u, error %d\n", __func__,
3480 		    wn->id, error);
3481 	}
3482 }
3483 
3484 static int
3485 wpi_updateedca(struct ieee80211com *ic)
3486 {
3487 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3488 	struct wpi_softc *sc = ic->ic_softc;
3489 	struct wpi_edca_params cmd;
3490 	int aci, error;
3491 
3492 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3493 
3494 	memset(&cmd, 0, sizeof cmd);
3495 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3496 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3497 		const struct wmeParams *ac =
3498 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3499 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3500 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3501 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3502 		cmd.ac[aci].txoplimit =
3503 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3504 
3505 		DPRINTF(sc, WPI_DEBUG_EDCA,
3506 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3507 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3508 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3509 		    cmd.ac[aci].txoplimit);
3510 	}
3511 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3512 
3513 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3514 
3515 	return error;
3516 #undef WPI_EXP2
3517 }
3518 
3519 static void
3520 wpi_set_promisc(struct wpi_softc *sc)
3521 {
3522 	struct ieee80211com *ic = &sc->sc_ic;
3523 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3524 	uint32_t promisc_filter;
3525 
3526 	promisc_filter = WPI_FILTER_CTL;
3527 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3528 		promisc_filter |= WPI_FILTER_PROMISC;
3529 
3530 	if (ic->ic_promisc > 0)
3531 		sc->rxon.filter |= htole32(promisc_filter);
3532 	else
3533 		sc->rxon.filter &= ~htole32(promisc_filter);
3534 }
3535 
3536 static void
3537 wpi_update_promisc(struct ieee80211com *ic)
3538 {
3539 	struct wpi_softc *sc = ic->ic_softc;
3540 
3541 	WPI_RXON_LOCK(sc);
3542 	wpi_set_promisc(sc);
3543 
3544 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3545 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3546 		    __func__);
3547 	}
3548 	WPI_RXON_UNLOCK(sc);
3549 }
3550 
3551 static void
3552 wpi_update_mcast(struct ieee80211com *ic)
3553 {
3554 	/* Ignore */
3555 }
3556 
3557 static void
3558 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3559 {
3560 	struct wpi_cmd_led led;
3561 
3562 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3563 
3564 	led.which = which;
3565 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3566 	led.off = off;
3567 	led.on = on;
3568 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3569 }
3570 
3571 static int
3572 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3573 {
3574 	struct wpi_cmd_timing cmd;
3575 	uint64_t val, mod;
3576 
3577 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3578 
3579 	memset(&cmd, 0, sizeof cmd);
3580 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3581 	cmd.bintval = htole16(ni->ni_intval);
3582 	cmd.lintval = htole16(10);
3583 
3584 	/* Compute remaining time until next beacon. */
3585 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3586 	mod = le64toh(cmd.tstamp) % val;
3587 	cmd.binitval = htole32((uint32_t)(val - mod));
3588 
3589 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3590 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3591 
3592 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3593 }
3594 
3595 /*
3596  * This function is called periodically (every 60 seconds) to adjust output
3597  * power to temperature changes.
3598  */
3599 static void
3600 wpi_power_calibration(struct wpi_softc *sc)
3601 {
3602 	int temp;
3603 
3604 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3605 
3606 	/* Update sensor data. */
3607 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3608 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3609 
3610 	/* Sanity-check read value. */
3611 	if (temp < -260 || temp > 25) {
3612 		/* This can't be correct, ignore. */
3613 		DPRINTF(sc, WPI_DEBUG_TEMP,
3614 		    "out-of-range temperature reported: %d\n", temp);
3615 		return;
3616 	}
3617 
3618 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3619 
3620 	/* Adjust Tx power if need be. */
3621 	if (abs(temp - sc->temp) <= 6)
3622 		return;
3623 
3624 	sc->temp = temp;
3625 
3626 	if (wpi_set_txpower(sc, 1) != 0) {
3627 		/* just warn, too bad for the automatic calibration... */
3628 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3629 	}
3630 }
3631 
3632 /*
3633  * Set TX power for current channel.
3634  */
3635 static int
3636 wpi_set_txpower(struct wpi_softc *sc, int async)
3637 {
3638 	struct wpi_power_group *group;
3639 	struct wpi_cmd_txpower cmd;
3640 	uint8_t chan;
3641 	int idx, is_chan_5ghz, i;
3642 
3643 	/* Retrieve current channel from last RXON. */
3644 	chan = sc->rxon.chan;
3645 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3646 
3647 	/* Find the TX power group to which this channel belongs. */
3648 	if (is_chan_5ghz) {
3649 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3650 			if (chan <= group->chan)
3651 				break;
3652 	} else
3653 		group = &sc->groups[0];
3654 
3655 	memset(&cmd, 0, sizeof cmd);
3656 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3657 	cmd.chan = htole16(chan);
3658 
3659 	/* Set TX power for all OFDM and CCK rates. */
3660 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3661 		/* Retrieve TX power for this channel/rate. */
3662 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3663 
3664 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3665 
3666 		if (is_chan_5ghz) {
3667 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3668 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3669 		} else {
3670 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3671 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3672 		}
3673 		DPRINTF(sc, WPI_DEBUG_TEMP,
3674 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3675 	}
3676 
3677 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3678 }
3679 
3680 /*
3681  * Determine Tx power index for a given channel/rate combination.
3682  * This takes into account the regulatory information from EEPROM and the
3683  * current temperature.
3684  */
3685 static int
3686 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3687     uint8_t chan, int is_chan_5ghz, int ridx)
3688 {
3689 /* Fixed-point arithmetic division using a n-bit fractional part. */
3690 #define fdivround(a, b, n)	\
3691 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3692 
3693 /* Linear interpolation. */
3694 #define interpolate(x, x1, y1, x2, y2, n)	\
3695 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3696 
3697 	struct wpi_power_sample *sample;
3698 	int pwr, idx;
3699 
3700 	/* Default TX power is group maximum TX power minus 3dB. */
3701 	pwr = group->maxpwr / 2;
3702 
3703 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3704 	switch (ridx) {
3705 	case WPI_RIDX_OFDM36:
3706 		pwr -= is_chan_5ghz ?  5 : 0;
3707 		break;
3708 	case WPI_RIDX_OFDM48:
3709 		pwr -= is_chan_5ghz ? 10 : 7;
3710 		break;
3711 	case WPI_RIDX_OFDM54:
3712 		pwr -= is_chan_5ghz ? 12 : 9;
3713 		break;
3714 	}
3715 
3716 	/* Never exceed the channel maximum allowed TX power. */
3717 	pwr = min(pwr, sc->maxpwr[chan]);
3718 
3719 	/* Retrieve TX power index into gain tables from samples. */
3720 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3721 		if (pwr > sample[1].power)
3722 			break;
3723 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3724 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3725 	    sample[1].power, sample[1].index, 19);
3726 
3727 	/*-
3728 	 * Adjust power index based on current temperature:
3729 	 * - if cooler than factory-calibrated: decrease output power
3730 	 * - if warmer than factory-calibrated: increase output power
3731 	 */
3732 	idx -= (sc->temp - group->temp) * 11 / 100;
3733 
3734 	/* Decrease TX power for CCK rates (-5dB). */
3735 	if (ridx >= WPI_RIDX_CCK1)
3736 		idx += 10;
3737 
3738 	/* Make sure idx stays in a valid range. */
3739 	if (idx < 0)
3740 		return 0;
3741 	if (idx > WPI_MAX_PWR_INDEX)
3742 		return WPI_MAX_PWR_INDEX;
3743 	return idx;
3744 
3745 #undef interpolate
3746 #undef fdivround
3747 }
3748 
3749 /*
3750  * Set STA mode power saving level (between 0 and 5).
3751  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3752  */
3753 static int
3754 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3755 {
3756 	struct wpi_pmgt_cmd cmd;
3757 	const struct wpi_pmgt *pmgt;
3758 	uint32_t max, skip_dtim;
3759 	uint32_t reg;
3760 	int i;
3761 
3762 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3763 	    "%s: dtim=%d, level=%d, async=%d\n",
3764 	    __func__, dtim, level, async);
3765 
3766 	/* Select which PS parameters to use. */
3767 	if (dtim <= 10)
3768 		pmgt = &wpi_pmgt[0][level];
3769 	else
3770 		pmgt = &wpi_pmgt[1][level];
3771 
3772 	memset(&cmd, 0, sizeof cmd);
3773 	WPI_TXQ_LOCK(sc);
3774 	if (level != 0)	{	/* not CAM */
3775 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3776 		sc->sc_flags |= WPI_PS_PATH;
3777 	} else
3778 		sc->sc_flags &= ~WPI_PS_PATH;
3779 	WPI_TXQ_UNLOCK(sc);
3780 	/* Retrieve PCIe Active State Power Management (ASPM). */
3781 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3782 	if (!(reg & 0x1))	/* L0s Entry disabled. */
3783 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3784 
3785 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3786 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3787 
3788 	if (dtim == 0) {
3789 		dtim = 1;
3790 		skip_dtim = 0;
3791 	} else
3792 		skip_dtim = pmgt->skip_dtim;
3793 
3794 	if (skip_dtim != 0) {
3795 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3796 		max = pmgt->intval[4];
3797 		if (max == (uint32_t)-1)
3798 			max = dtim * (skip_dtim + 1);
3799 		else if (max > dtim)
3800 			max = (max / dtim) * dtim;
3801 	} else
3802 		max = dtim;
3803 
3804 	for (i = 0; i < 5; i++)
3805 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3806 
3807 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3808 }
3809 
3810 static int
3811 wpi_send_btcoex(struct wpi_softc *sc)
3812 {
3813 	struct wpi_bluetooth cmd;
3814 
3815 	memset(&cmd, 0, sizeof cmd);
3816 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3817 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3818 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3819 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3820 	    __func__);
3821 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3822 }
3823 
3824 static int
3825 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3826 {
3827 	int error;
3828 
3829 	if (async)
3830 		WPI_RXON_LOCK_ASSERT(sc);
3831 
3832 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3833 		struct wpi_assoc rxon_assoc;
3834 
3835 		rxon_assoc.flags = sc->rxon.flags;
3836 		rxon_assoc.filter = sc->rxon.filter;
3837 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3838 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3839 		rxon_assoc.reserved = 0;
3840 
3841 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3842 		    sizeof (struct wpi_assoc), async);
3843 		if (error != 0) {
3844 			device_printf(sc->sc_dev,
3845 			    "RXON_ASSOC command failed, error %d\n", error);
3846 			return error;
3847 		}
3848 	} else {
3849 		if (async) {
3850 			WPI_NT_LOCK(sc);
3851 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3852 			    sizeof (struct wpi_rxon), async);
3853 			if (error == 0)
3854 				wpi_clear_node_table(sc);
3855 			WPI_NT_UNLOCK(sc);
3856 		} else {
3857 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3858 			    sizeof (struct wpi_rxon), async);
3859 			if (error == 0)
3860 				wpi_clear_node_table(sc);
3861 		}
3862 
3863 		if (error != 0) {
3864 			device_printf(sc->sc_dev,
3865 			    "RXON command failed, error %d\n", error);
3866 			return error;
3867 		}
3868 
3869 		/* Add broadcast node. */
3870 		error = wpi_add_broadcast_node(sc, async);
3871 		if (error != 0) {
3872 			device_printf(sc->sc_dev,
3873 			    "could not add broadcast node, error %d\n", error);
3874 			return error;
3875 		}
3876 	}
3877 
3878 	/* Configuration has changed, set Tx power accordingly. */
3879 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3880 		device_printf(sc->sc_dev,
3881 		    "%s: could not set TX power, error %d\n", __func__, error);
3882 		return error;
3883 	}
3884 
3885 	return 0;
3886 }
3887 
3888 /**
3889  * Configure the card to listen to a particular channel, this transisions the
3890  * card in to being able to receive frames from remote devices.
3891  */
3892 static int
3893 wpi_config(struct wpi_softc *sc)
3894 {
3895 	struct ieee80211com *ic = &sc->sc_ic;
3896 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3897 	struct ieee80211_channel *c = ic->ic_curchan;
3898 	int error;
3899 
3900 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3901 
3902 	/* Set power saving level to CAM during initialization. */
3903 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3904 		device_printf(sc->sc_dev,
3905 		    "%s: could not set power saving level\n", __func__);
3906 		return error;
3907 	}
3908 
3909 	/* Configure bluetooth coexistence. */
3910 	if ((error = wpi_send_btcoex(sc)) != 0) {
3911 		device_printf(sc->sc_dev,
3912 		    "could not configure bluetooth coexistence\n");
3913 		return error;
3914 	}
3915 
3916 	/* Configure adapter. */
3917 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3918 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3919 
3920 	/* Set default channel. */
3921 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3922 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3923 	if (IEEE80211_IS_CHAN_2GHZ(c))
3924 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3925 
3926 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3927 	switch (ic->ic_opmode) {
3928 	case IEEE80211_M_STA:
3929 		sc->rxon.mode = WPI_MODE_STA;
3930 		break;
3931 	case IEEE80211_M_IBSS:
3932 		sc->rxon.mode = WPI_MODE_IBSS;
3933 		sc->rxon.filter |= WPI_FILTER_BEACON;
3934 		break;
3935 	case IEEE80211_M_HOSTAP:
3936 		/* XXX workaround for beaconing */
3937 		sc->rxon.mode = WPI_MODE_IBSS;
3938 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3939 		break;
3940 	case IEEE80211_M_AHDEMO:
3941 		sc->rxon.mode = WPI_MODE_HOSTAP;
3942 		break;
3943 	case IEEE80211_M_MONITOR:
3944 		sc->rxon.mode = WPI_MODE_MONITOR;
3945 		break;
3946 	default:
3947 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3948 		    ic->ic_opmode);
3949 		return EINVAL;
3950 	}
3951 	sc->rxon.filter = htole32(sc->rxon.filter);
3952 	wpi_set_promisc(sc);
3953 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3954 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3955 
3956 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3957 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3958 		    __func__);
3959 		return error;
3960 	}
3961 
3962 	/* Setup rate scalling. */
3963 	if ((error = wpi_mrr_setup(sc)) != 0) {
3964 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3965 		    error);
3966 		return error;
3967 	}
3968 
3969 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3970 
3971 	return 0;
3972 }
3973 
3974 static uint16_t
3975 wpi_get_active_dwell_time(struct wpi_softc *sc,
3976     struct ieee80211_channel *c, uint8_t n_probes)
3977 {
3978 	/* No channel? Default to 2GHz settings. */
3979 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3980 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3981 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3982 	}
3983 
3984 	/* 5GHz dwell time. */
3985 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3986 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3987 }
3988 
3989 /*
3990  * Limit the total dwell time.
3991  *
3992  * Returns the dwell time in milliseconds.
3993  */
3994 static uint16_t
3995 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3996 {
3997 	struct ieee80211com *ic = &sc->sc_ic;
3998 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3999 	int bintval = 0;
4000 
4001 	/* bintval is in TU (1.024mS) */
4002 	if (vap != NULL)
4003 		bintval = vap->iv_bss->ni_intval;
4004 
4005 	/*
4006 	 * If it's non-zero, we should calculate the minimum of
4007 	 * it and the DWELL_BASE.
4008 	 *
4009 	 * XXX Yes, the math should take into account that bintval
4010 	 * is 1.024mS, not 1mS..
4011 	 */
4012 	if (bintval > 0) {
4013 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4014 		    bintval);
4015 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4016 	}
4017 
4018 	/* No association context? Default. */
4019 	return dwell_time;
4020 }
4021 
4022 static uint16_t
4023 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4024 {
4025 	uint16_t passive;
4026 
4027 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4028 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4029 	else
4030 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4031 
4032 	/* Clamp to the beacon interval if we're associated. */
4033 	return (wpi_limit_dwell(sc, passive));
4034 }
4035 
4036 static uint32_t
4037 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4038 {
4039 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4040 	uint32_t nbeacons = time / bintval;
4041 
4042 	if (mod > WPI_PAUSE_MAX_TIME)
4043 		mod = WPI_PAUSE_MAX_TIME;
4044 
4045 	return WPI_PAUSE_SCAN(nbeacons, mod);
4046 }
4047 
4048 /*
4049  * Send a scan request to the firmware.
4050  */
4051 static int
4052 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4053 {
4054 	struct ieee80211com *ic = &sc->sc_ic;
4055 	struct ieee80211_scan_state *ss = ic->ic_scan;
4056 	struct ieee80211vap *vap = ss->ss_vap;
4057 	struct wpi_scan_hdr *hdr;
4058 	struct wpi_cmd_data *tx;
4059 	struct wpi_scan_essid *essids;
4060 	struct wpi_scan_chan *chan;
4061 	struct ieee80211_frame *wh;
4062 	struct ieee80211_rateset *rs;
4063 	uint16_t dwell_active, dwell_passive;
4064 	uint8_t *buf, *frm;
4065 	int bgscan, bintval, buflen, error, i, nssid;
4066 
4067 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4068 
4069 	/*
4070 	 * We are absolutely not allowed to send a scan command when another
4071 	 * scan command is pending.
4072 	 */
4073 	if (callout_pending(&sc->scan_timeout)) {
4074 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4075 		    __func__);
4076 		error = EAGAIN;
4077 		goto fail;
4078 	}
4079 
4080 	bgscan = wpi_check_bss_filter(sc);
4081 	bintval = vap->iv_bss->ni_intval;
4082 	if (bgscan != 0 &&
4083 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4084 		error = EOPNOTSUPP;
4085 		goto fail;
4086 	}
4087 
4088 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4089 	if (buf == NULL) {
4090 		device_printf(sc->sc_dev,
4091 		    "%s: could not allocate buffer for scan command\n",
4092 		    __func__);
4093 		error = ENOMEM;
4094 		goto fail;
4095 	}
4096 	hdr = (struct wpi_scan_hdr *)buf;
4097 
4098 	/*
4099 	 * Move to the next channel if no packets are received within 10 msecs
4100 	 * after sending the probe request.
4101 	 */
4102 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4103 	hdr->quiet_threshold = htole16(1);
4104 
4105 	if (bgscan != 0) {
4106 		/*
4107 		 * Max needs to be greater than active and passive and quiet!
4108 		 * It's also in microseconds!
4109 		 */
4110 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4111 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4112 		    bintval));
4113 	}
4114 
4115 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4116 
4117 	tx = (struct wpi_cmd_data *)(hdr + 1);
4118 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4119 	tx->id = WPI_ID_BROADCAST;
4120 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4121 
4122 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4123 		/* Send probe requests at 6Mbps. */
4124 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4125 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4126 	} else {
4127 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4128 		/* Send probe requests at 1Mbps. */
4129 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4130 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4131 	}
4132 
4133 	essids = (struct wpi_scan_essid *)(tx + 1);
4134 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4135 	for (i = 0; i < nssid; i++) {
4136 		essids[i].id = IEEE80211_ELEMID_SSID;
4137 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4138 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4139 #ifdef WPI_DEBUG
4140 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4141 			printf("Scanning Essid: ");
4142 			ieee80211_print_essid(essids[i].data, essids[i].len);
4143 			printf("\n");
4144 		}
4145 #endif
4146 	}
4147 
4148 	/*
4149 	 * Build a probe request frame.  Most of the following code is a
4150 	 * copy & paste of what is done in net80211.
4151 	 */
4152 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4153 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4154 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4155 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4156 	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4157 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4158 	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4159 
4160 	frm = (uint8_t *)(wh + 1);
4161 	frm = ieee80211_add_ssid(frm, NULL, 0);
4162 	frm = ieee80211_add_rates(frm, rs);
4163 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4164 		frm = ieee80211_add_xrates(frm, rs);
4165 
4166 	/* Set length of probe request. */
4167 	tx->len = htole16(frm - (uint8_t *)wh);
4168 
4169 	/*
4170 	 * Construct information about the channel that we
4171 	 * want to scan. The firmware expects this to be directly
4172 	 * after the scan probe request
4173 	 */
4174 	chan = (struct wpi_scan_chan *)frm;
4175 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4176 	chan->flags = 0;
4177 	if (nssid) {
4178 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4179 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4180 	} else
4181 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4182 
4183 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4184 		chan->flags |= WPI_CHAN_ACTIVE;
4185 
4186 	/*
4187 	 * Calculate the active/passive dwell times.
4188 	 */
4189 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4190 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4191 
4192 	/* Make sure they're valid. */
4193 	if (dwell_active > dwell_passive)
4194 		dwell_active = dwell_passive;
4195 
4196 	chan->active = htole16(dwell_active);
4197 	chan->passive = htole16(dwell_passive);
4198 
4199 	chan->dsp_gain = 0x6e;  /* Default level */
4200 
4201 	if (IEEE80211_IS_CHAN_5GHZ(c))
4202 		chan->rf_gain = 0x3b;
4203 	else
4204 		chan->rf_gain = 0x28;
4205 
4206 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4207 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4208 
4209 	hdr->nchan++;
4210 
4211 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4212 		/* XXX Force probe request transmission. */
4213 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4214 
4215 		chan++;
4216 
4217 		/* Reduce unnecessary delay. */
4218 		chan->flags = 0;
4219 		chan->passive = chan->active = hdr->quiet_time;
4220 
4221 		hdr->nchan++;
4222 	}
4223 
4224 	chan++;
4225 
4226 	buflen = (uint8_t *)chan - buf;
4227 	hdr->len = htole16(buflen);
4228 
4229 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4230 	    hdr->nchan);
4231 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4232 	free(buf, M_DEVBUF);
4233 
4234 	if (error != 0)
4235 		goto fail;
4236 
4237 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4238 
4239 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4240 
4241 	return 0;
4242 
4243 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4244 
4245 	return error;
4246 }
4247 
4248 static int
4249 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4250 {
4251 	struct ieee80211com *ic = vap->iv_ic;
4252 	struct ieee80211_node *ni = vap->iv_bss;
4253 	struct ieee80211_channel *c = ni->ni_chan;
4254 	int error;
4255 
4256 	WPI_RXON_LOCK(sc);
4257 
4258 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4259 
4260 	/* Update adapter configuration. */
4261 	sc->rxon.associd = 0;
4262 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4263 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4264 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4265 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4266 	if (IEEE80211_IS_CHAN_2GHZ(c))
4267 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4268 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4269 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4270 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4271 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4272 	if (IEEE80211_IS_CHAN_A(c)) {
4273 		sc->rxon.cck_mask  = 0;
4274 		sc->rxon.ofdm_mask = 0x15;
4275 	} else if (IEEE80211_IS_CHAN_B(c)) {
4276 		sc->rxon.cck_mask  = 0x03;
4277 		sc->rxon.ofdm_mask = 0;
4278 	} else {
4279 		/* Assume 802.11b/g. */
4280 		sc->rxon.cck_mask  = 0x0f;
4281 		sc->rxon.ofdm_mask = 0x15;
4282 	}
4283 
4284 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4285 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4286 	    sc->rxon.ofdm_mask);
4287 
4288 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4289 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4290 		    __func__);
4291 	}
4292 
4293 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4294 
4295 	WPI_RXON_UNLOCK(sc);
4296 
4297 	return error;
4298 }
4299 
4300 static int
4301 wpi_config_beacon(struct wpi_vap *wvp)
4302 {
4303 	struct ieee80211vap *vap = &wvp->wv_vap;
4304 	struct ieee80211com *ic = vap->iv_ic;
4305 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4306 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4307 	struct wpi_softc *sc = ic->ic_softc;
4308 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4309 	struct ieee80211_tim_ie *tie;
4310 	struct mbuf *m;
4311 	uint8_t *ptr;
4312 	int error;
4313 
4314 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4315 
4316 	WPI_VAP_LOCK_ASSERT(wvp);
4317 
4318 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4319 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4320 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4321 
4322 	/* XXX seems to be unused */
4323 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4324 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4325 		ptr = mtod(bcn->m, uint8_t *);
4326 
4327 		cmd->tim = htole16(bo->bo_tim - ptr);
4328 		cmd->timsz = tie->tim_len;
4329 	}
4330 
4331 	/* Necessary for recursion in ieee80211_beacon_update(). */
4332 	m = bcn->m;
4333 	bcn->m = m_dup(m, M_NOWAIT);
4334 	if (bcn->m == NULL) {
4335 		device_printf(sc->sc_dev,
4336 		    "%s: could not copy beacon frame\n", __func__);
4337 		error = ENOMEM;
4338 		goto end;
4339 	}
4340 
4341 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4342 		device_printf(sc->sc_dev,
4343 		    "%s: could not update beacon frame, error %d", __func__,
4344 		    error);
4345 	}
4346 
4347 	/* Restore mbuf. */
4348 end:	bcn->m = m;
4349 
4350 	return error;
4351 }
4352 
4353 static int
4354 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4355 {
4356 	struct ieee80211vap *vap = ni->ni_vap;
4357 	struct wpi_vap *wvp = WPI_VAP(vap);
4358 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4359 	struct mbuf *m;
4360 	int error;
4361 
4362 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4363 
4364 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4365 		return EINVAL;
4366 
4367 	m = ieee80211_beacon_alloc(ni);
4368 	if (m == NULL) {
4369 		device_printf(sc->sc_dev,
4370 		    "%s: could not allocate beacon frame\n", __func__);
4371 		return ENOMEM;
4372 	}
4373 
4374 	WPI_VAP_LOCK(wvp);
4375 	if (bcn->m != NULL)
4376 		m_freem(bcn->m);
4377 
4378 	bcn->m = m;
4379 
4380 	error = wpi_config_beacon(wvp);
4381 	WPI_VAP_UNLOCK(wvp);
4382 
4383 	return error;
4384 }
4385 
4386 static void
4387 wpi_update_beacon(struct ieee80211vap *vap, int item)
4388 {
4389 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4390 	struct wpi_vap *wvp = WPI_VAP(vap);
4391 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4392 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4393 	struct ieee80211_node *ni = vap->iv_bss;
4394 	int mcast = 0;
4395 
4396 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4397 
4398 	WPI_VAP_LOCK(wvp);
4399 	if (bcn->m == NULL) {
4400 		bcn->m = ieee80211_beacon_alloc(ni);
4401 		if (bcn->m == NULL) {
4402 			device_printf(sc->sc_dev,
4403 			    "%s: could not allocate beacon frame\n", __func__);
4404 
4405 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4406 			    __func__);
4407 
4408 			WPI_VAP_UNLOCK(wvp);
4409 			return;
4410 		}
4411 	}
4412 	WPI_VAP_UNLOCK(wvp);
4413 
4414 	if (item == IEEE80211_BEACON_TIM)
4415 		mcast = 1;	/* TODO */
4416 
4417 	setbit(bo->bo_flags, item);
4418 	ieee80211_beacon_update(ni, bcn->m, mcast);
4419 
4420 	WPI_VAP_LOCK(wvp);
4421 	wpi_config_beacon(wvp);
4422 	WPI_VAP_UNLOCK(wvp);
4423 
4424 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4425 }
4426 
4427 static void
4428 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4429 {
4430 	struct ieee80211vap *vap = ni->ni_vap;
4431 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4432 	struct wpi_node *wn = WPI_NODE(ni);
4433 	int error;
4434 
4435 	WPI_NT_LOCK(sc);
4436 
4437 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4438 
4439 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4440 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4441 			device_printf(sc->sc_dev,
4442 			    "%s: could not add IBSS node, error %d\n",
4443 			    __func__, error);
4444 		}
4445 	}
4446 	WPI_NT_UNLOCK(sc);
4447 }
4448 
4449 static int
4450 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4451 {
4452 	struct ieee80211com *ic = vap->iv_ic;
4453 	struct ieee80211_node *ni = vap->iv_bss;
4454 	struct ieee80211_channel *c = ni->ni_chan;
4455 	int error;
4456 
4457 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4458 
4459 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4460 		/* Link LED blinks while monitoring. */
4461 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4462 		return 0;
4463 	}
4464 
4465 	/* XXX kernel panic workaround */
4466 	if (c == IEEE80211_CHAN_ANYC) {
4467 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4468 		    __func__);
4469 		return EINVAL;
4470 	}
4471 
4472 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4473 		device_printf(sc->sc_dev,
4474 		    "%s: could not set timing, error %d\n", __func__, error);
4475 		return error;
4476 	}
4477 
4478 	/* Update adapter configuration. */
4479 	WPI_RXON_LOCK(sc);
4480 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4481 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4482 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4483 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4484 	if (IEEE80211_IS_CHAN_2GHZ(c))
4485 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4486 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4487 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4488 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4489 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4490 	if (IEEE80211_IS_CHAN_A(c)) {
4491 		sc->rxon.cck_mask  = 0;
4492 		sc->rxon.ofdm_mask = 0x15;
4493 	} else if (IEEE80211_IS_CHAN_B(c)) {
4494 		sc->rxon.cck_mask  = 0x03;
4495 		sc->rxon.ofdm_mask = 0;
4496 	} else {
4497 		/* Assume 802.11b/g. */
4498 		sc->rxon.cck_mask  = 0x0f;
4499 		sc->rxon.ofdm_mask = 0x15;
4500 	}
4501 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4502 
4503 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4504 	    sc->rxon.chan, sc->rxon.flags);
4505 
4506 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4507 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4508 		    __func__);
4509 		return error;
4510 	}
4511 
4512 	/* Start periodic calibration timer. */
4513 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4514 
4515 	WPI_RXON_UNLOCK(sc);
4516 
4517 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4518 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4519 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4520 			device_printf(sc->sc_dev,
4521 			    "%s: could not setup beacon, error %d\n", __func__,
4522 			    error);
4523 			return error;
4524 		}
4525 	}
4526 
4527 	if (vap->iv_opmode == IEEE80211_M_STA) {
4528 		/* Add BSS node. */
4529 		WPI_NT_LOCK(sc);
4530 		error = wpi_add_sta_node(sc, ni);
4531 		WPI_NT_UNLOCK(sc);
4532 		if (error != 0) {
4533 			device_printf(sc->sc_dev,
4534 			    "%s: could not add BSS node, error %d\n", __func__,
4535 			    error);
4536 			return error;
4537 		}
4538 	}
4539 
4540 	/* Link LED always on while associated. */
4541 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4542 
4543 	/* Enable power-saving mode if requested by user. */
4544 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4545 	    vap->iv_opmode != IEEE80211_M_IBSS)
4546 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4547 
4548 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4549 
4550 	return 0;
4551 }
4552 
4553 static int
4554 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4555 {
4556 	const struct ieee80211_cipher *cip = k->wk_cipher;
4557 	struct ieee80211vap *vap = ni->ni_vap;
4558 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4559 	struct wpi_node *wn = WPI_NODE(ni);
4560 	struct wpi_node_info node;
4561 	uint16_t kflags;
4562 	int error;
4563 
4564 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4565 
4566 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4567 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4568 		    __func__);
4569 		return 0;
4570 	}
4571 
4572 	switch (cip->ic_cipher) {
4573 	case IEEE80211_CIPHER_AES_CCM:
4574 		kflags = WPI_KFLAG_CCMP;
4575 		break;
4576 
4577 	default:
4578 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4579 		    cip->ic_cipher);
4580 		return 0;
4581 	}
4582 
4583 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4584 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4585 		kflags |= WPI_KFLAG_MULTICAST;
4586 
4587 	memset(&node, 0, sizeof node);
4588 	node.id = wn->id;
4589 	node.control = WPI_NODE_UPDATE;
4590 	node.flags = WPI_FLAG_KEY_SET;
4591 	node.kflags = htole16(kflags);
4592 	memcpy(node.key, k->wk_key, k->wk_keylen);
4593 again:
4594 	DPRINTF(sc, WPI_DEBUG_KEY,
4595 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4596 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4597 	    node.id, ether_sprintf(ni->ni_macaddr));
4598 
4599 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4600 	if (error != 0) {
4601 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4602 		    error);
4603 		return !error;
4604 	}
4605 
4606 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4607 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4608 		kflags |= WPI_KFLAG_MULTICAST;
4609 		node.kflags = htole16(kflags);
4610 
4611 		goto again;
4612 	}
4613 
4614 	return 1;
4615 }
4616 
4617 static void
4618 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4619 {
4620 	const struct ieee80211_key *k = arg;
4621 	struct ieee80211vap *vap = ni->ni_vap;
4622 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4623 	struct wpi_node *wn = WPI_NODE(ni);
4624 	int error;
4625 
4626 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4627 		return;
4628 
4629 	WPI_NT_LOCK(sc);
4630 	error = wpi_load_key(ni, k);
4631 	WPI_NT_UNLOCK(sc);
4632 
4633 	if (error == 0) {
4634 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4635 		    __func__);
4636 	}
4637 }
4638 
4639 static int
4640 wpi_set_global_keys(struct ieee80211_node *ni)
4641 {
4642 	struct ieee80211vap *vap = ni->ni_vap;
4643 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4644 	int error = 1;
4645 
4646 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4647 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4648 			error = wpi_load_key(ni, wk);
4649 
4650 	return !error;
4651 }
4652 
4653 static int
4654 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4655 {
4656 	struct ieee80211vap *vap = ni->ni_vap;
4657 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4658 	struct wpi_node *wn = WPI_NODE(ni);
4659 	struct wpi_node_info node;
4660 	uint16_t kflags;
4661 	int error;
4662 
4663 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4664 
4665 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4666 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4667 		return 1;	/* Nothing to do. */
4668 	}
4669 
4670 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4671 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4672 		kflags |= WPI_KFLAG_MULTICAST;
4673 
4674 	memset(&node, 0, sizeof node);
4675 	node.id = wn->id;
4676 	node.control = WPI_NODE_UPDATE;
4677 	node.flags = WPI_FLAG_KEY_SET;
4678 	node.kflags = htole16(kflags);
4679 again:
4680 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4681 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4682 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4683 
4684 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4685 	if (error != 0) {
4686 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4687 		    error);
4688 		return !error;
4689 	}
4690 
4691 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4692 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4693 		kflags |= WPI_KFLAG_MULTICAST;
4694 		node.kflags = htole16(kflags);
4695 
4696 		goto again;
4697 	}
4698 
4699 	return 1;
4700 }
4701 
4702 static void
4703 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4704 {
4705 	const struct ieee80211_key *k = arg;
4706 	struct ieee80211vap *vap = ni->ni_vap;
4707 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4708 	struct wpi_node *wn = WPI_NODE(ni);
4709 	int error;
4710 
4711 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4712 		return;
4713 
4714 	WPI_NT_LOCK(sc);
4715 	error = wpi_del_key(ni, k);
4716 	WPI_NT_UNLOCK(sc);
4717 
4718 	if (error == 0) {
4719 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4720 		    __func__);
4721 	}
4722 }
4723 
4724 static int
4725 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4726     int set)
4727 {
4728 	struct ieee80211com *ic = vap->iv_ic;
4729 	struct wpi_softc *sc = ic->ic_softc;
4730 	struct wpi_vap *wvp = WPI_VAP(vap);
4731 	struct ieee80211_node *ni;
4732 	int error, ni_ref = 0;
4733 
4734 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4735 
4736 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4737 		/* Not for us. */
4738 		return 1;
4739 	}
4740 
4741 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4742 		/* XMIT keys are handled in wpi_tx_data(). */
4743 		return 1;
4744 	}
4745 
4746 	/* Handle group keys. */
4747 	if (&vap->iv_nw_keys[0] <= k &&
4748 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4749 		WPI_NT_LOCK(sc);
4750 		if (set)
4751 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4752 		else
4753 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4754 		WPI_NT_UNLOCK(sc);
4755 
4756 		if (vap->iv_state == IEEE80211_S_RUN) {
4757 			ieee80211_iterate_nodes(&ic->ic_sta,
4758 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4759 			    __DECONST(void *, k));
4760 		}
4761 
4762 		return 1;
4763 	}
4764 
4765 	switch (vap->iv_opmode) {
4766 	case IEEE80211_M_STA:
4767 		ni = vap->iv_bss;
4768 		break;
4769 
4770 	case IEEE80211_M_IBSS:
4771 	case IEEE80211_M_AHDEMO:
4772 	case IEEE80211_M_HOSTAP:
4773 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4774 		if (ni == NULL)
4775 			return 0;	/* should not happen */
4776 
4777 		ni_ref = 1;
4778 		break;
4779 
4780 	default:
4781 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4782 		    vap->iv_opmode);
4783 		return 0;
4784 	}
4785 
4786 	WPI_NT_LOCK(sc);
4787 	if (set)
4788 		error = wpi_load_key(ni, k);
4789 	else
4790 		error = wpi_del_key(ni, k);
4791 	WPI_NT_UNLOCK(sc);
4792 
4793 	if (ni_ref)
4794 		ieee80211_node_decref(ni);
4795 
4796 	return error;
4797 }
4798 
4799 static int
4800 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4801 {
4802 	return wpi_process_key(vap, k, 1);
4803 }
4804 
4805 static int
4806 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4807 {
4808 	return wpi_process_key(vap, k, 0);
4809 }
4810 
4811 /*
4812  * This function is called after the runtime firmware notifies us of its
4813  * readiness (called in a process context).
4814  */
4815 static int
4816 wpi_post_alive(struct wpi_softc *sc)
4817 {
4818 	int ntries, error;
4819 
4820 	/* Check (again) that the radio is not disabled. */
4821 	if ((error = wpi_nic_lock(sc)) != 0)
4822 		return error;
4823 
4824 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4825 
4826 	/* NB: Runtime firmware must be up and running. */
4827 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4828 		device_printf(sc->sc_dev,
4829 		    "RF switch: radio disabled (%s)\n", __func__);
4830 		wpi_nic_unlock(sc);
4831 		return EPERM;   /* :-) */
4832 	}
4833 	wpi_nic_unlock(sc);
4834 
4835 	/* Wait for thermal sensor to calibrate. */
4836 	for (ntries = 0; ntries < 1000; ntries++) {
4837 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4838 			break;
4839 		DELAY(10);
4840 	}
4841 
4842 	if (ntries == 1000) {
4843 		device_printf(sc->sc_dev,
4844 		    "timeout waiting for thermal sensor calibration\n");
4845 		return ETIMEDOUT;
4846 	}
4847 
4848 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4849 	return 0;
4850 }
4851 
4852 /*
4853  * The firmware boot code is small and is intended to be copied directly into
4854  * the NIC internal memory (no DMA transfer).
4855  */
4856 static int
4857 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4858 {
4859 	int error, ntries;
4860 
4861 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4862 
4863 	size /= sizeof (uint32_t);
4864 
4865 	if ((error = wpi_nic_lock(sc)) != 0)
4866 		return error;
4867 
4868 	/* Copy microcode image into NIC memory. */
4869 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4870 	    (const uint32_t *)ucode, size);
4871 
4872 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4873 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4874 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4875 
4876 	/* Start boot load now. */
4877 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4878 
4879 	/* Wait for transfer to complete. */
4880 	for (ntries = 0; ntries < 1000; ntries++) {
4881 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4882 		DPRINTF(sc, WPI_DEBUG_HW,
4883 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4884 		    WPI_FH_TX_STATUS_IDLE(6),
4885 		    status & WPI_FH_TX_STATUS_IDLE(6));
4886 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4887 			DPRINTF(sc, WPI_DEBUG_HW,
4888 			    "Status Match! - ntries = %d\n", ntries);
4889 			break;
4890 		}
4891 		DELAY(10);
4892 	}
4893 	if (ntries == 1000) {
4894 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4895 		    __func__);
4896 		wpi_nic_unlock(sc);
4897 		return ETIMEDOUT;
4898 	}
4899 
4900 	/* Enable boot after power up. */
4901 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4902 
4903 	wpi_nic_unlock(sc);
4904 	return 0;
4905 }
4906 
4907 static int
4908 wpi_load_firmware(struct wpi_softc *sc)
4909 {
4910 	struct wpi_fw_info *fw = &sc->fw;
4911 	struct wpi_dma_info *dma = &sc->fw_dma;
4912 	int error;
4913 
4914 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4915 
4916 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4917 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4918 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4919 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4920 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4921 
4922 	/* Tell adapter where to find initialization sections. */
4923 	if ((error = wpi_nic_lock(sc)) != 0)
4924 		return error;
4925 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4926 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4927 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4928 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4929 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4930 	wpi_nic_unlock(sc);
4931 
4932 	/* Load firmware boot code. */
4933 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4934 	if (error != 0) {
4935 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4936 		    __func__);
4937 		return error;
4938 	}
4939 
4940 	/* Now press "execute". */
4941 	WPI_WRITE(sc, WPI_RESET, 0);
4942 
4943 	/* Wait at most one second for first alive notification. */
4944 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4945 		device_printf(sc->sc_dev,
4946 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4947 		    __func__, error);
4948 		return error;
4949 	}
4950 
4951 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4952 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4953 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4954 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4955 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4956 
4957 	/* Tell adapter where to find runtime sections. */
4958 	if ((error = wpi_nic_lock(sc)) != 0)
4959 		return error;
4960 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4961 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4962 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4963 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4964 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4965 	    WPI_FW_UPDATED | fw->main.textsz);
4966 	wpi_nic_unlock(sc);
4967 
4968 	return 0;
4969 }
4970 
4971 static int
4972 wpi_read_firmware(struct wpi_softc *sc)
4973 {
4974 	const struct firmware *fp;
4975 	struct wpi_fw_info *fw = &sc->fw;
4976 	const struct wpi_firmware_hdr *hdr;
4977 	int error;
4978 
4979 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4980 
4981 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4982 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4983 
4984 	WPI_UNLOCK(sc);
4985 	fp = firmware_get(WPI_FW_NAME);
4986 	WPI_LOCK(sc);
4987 
4988 	if (fp == NULL) {
4989 		device_printf(sc->sc_dev,
4990 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4991 		return EINVAL;
4992 	}
4993 
4994 	sc->fw_fp = fp;
4995 
4996 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4997 		device_printf(sc->sc_dev,
4998 		    "firmware file too short: %zu bytes\n", fp->datasize);
4999 		error = EINVAL;
5000 		goto fail;
5001 	}
5002 
5003 	fw->size = fp->datasize;
5004 	fw->data = (const uint8_t *)fp->data;
5005 
5006 	/* Extract firmware header information. */
5007 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5008 
5009 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5010 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5011 
5012 	fw->main.textsz = le32toh(hdr->rtextsz);
5013 	fw->main.datasz = le32toh(hdr->rdatasz);
5014 	fw->init.textsz = le32toh(hdr->itextsz);
5015 	fw->init.datasz = le32toh(hdr->idatasz);
5016 	fw->boot.textsz = le32toh(hdr->btextsz);
5017 	fw->boot.datasz = 0;
5018 
5019 	/* Sanity-check firmware header. */
5020 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5021 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5022 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5023 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5024 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5025 	    (fw->boot.textsz & 3) != 0) {
5026 		device_printf(sc->sc_dev, "invalid firmware header\n");
5027 		error = EINVAL;
5028 		goto fail;
5029 	}
5030 
5031 	/* Check that all firmware sections fit. */
5032 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5033 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5034 		device_printf(sc->sc_dev,
5035 		    "firmware file too short: %zu bytes\n", fw->size);
5036 		error = EINVAL;
5037 		goto fail;
5038 	}
5039 
5040 	/* Get pointers to firmware sections. */
5041 	fw->main.text = (const uint8_t *)(hdr + 1);
5042 	fw->main.data = fw->main.text + fw->main.textsz;
5043 	fw->init.text = fw->main.data + fw->main.datasz;
5044 	fw->init.data = fw->init.text + fw->init.textsz;
5045 	fw->boot.text = fw->init.data + fw->init.datasz;
5046 
5047 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5048 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5049 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5050 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5051 	    fw->main.textsz, fw->main.datasz,
5052 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5053 
5054 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5055 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5056 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5057 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5058 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5059 
5060 	return 0;
5061 
5062 fail:	wpi_unload_firmware(sc);
5063 	return error;
5064 }
5065 
5066 /**
5067  * Free the referenced firmware image
5068  */
5069 static void
5070 wpi_unload_firmware(struct wpi_softc *sc)
5071 {
5072 	if (sc->fw_fp != NULL) {
5073 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5074 		sc->fw_fp = NULL;
5075 	}
5076 }
5077 
5078 static int
5079 wpi_clock_wait(struct wpi_softc *sc)
5080 {
5081 	int ntries;
5082 
5083 	/* Set "initialization complete" bit. */
5084 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5085 
5086 	/* Wait for clock stabilization. */
5087 	for (ntries = 0; ntries < 2500; ntries++) {
5088 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5089 			return 0;
5090 		DELAY(100);
5091 	}
5092 	device_printf(sc->sc_dev,
5093 	    "%s: timeout waiting for clock stabilization\n", __func__);
5094 
5095 	return ETIMEDOUT;
5096 }
5097 
5098 static int
5099 wpi_apm_init(struct wpi_softc *sc)
5100 {
5101 	uint32_t reg;
5102 	int error;
5103 
5104 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5105 
5106 	/* Disable L0s exit timer (NMI bug workaround). */
5107 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5108 	/* Don't wait for ICH L0s (ICH bug workaround). */
5109 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5110 
5111 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5112 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5113 
5114 	/* Retrieve PCIe Active State Power Management (ASPM). */
5115 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5116 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5117 	if (reg & 0x02)	/* L1 Entry enabled. */
5118 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5119 	else
5120 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5121 
5122 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5123 
5124 	/* Wait for clock stabilization before accessing prph. */
5125 	if ((error = wpi_clock_wait(sc)) != 0)
5126 		return error;
5127 
5128 	if ((error = wpi_nic_lock(sc)) != 0)
5129 		return error;
5130 	/* Cleanup. */
5131 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5132 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5133 
5134 	/* Enable DMA and BSM (Bootstrap State Machine). */
5135 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5136 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5137 	DELAY(20);
5138 	/* Disable L1-Active. */
5139 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5140 	wpi_nic_unlock(sc);
5141 
5142 	return 0;
5143 }
5144 
5145 static void
5146 wpi_apm_stop_master(struct wpi_softc *sc)
5147 {
5148 	int ntries;
5149 
5150 	/* Stop busmaster DMA activity. */
5151 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5152 
5153 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5154 	    WPI_GP_CNTRL_MAC_PS)
5155 		return; /* Already asleep. */
5156 
5157 	for (ntries = 0; ntries < 100; ntries++) {
5158 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5159 			return;
5160 		DELAY(10);
5161 	}
5162 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5163 	    __func__);
5164 }
5165 
5166 static void
5167 wpi_apm_stop(struct wpi_softc *sc)
5168 {
5169 	wpi_apm_stop_master(sc);
5170 
5171 	/* Reset the entire device. */
5172 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5173 	DELAY(10);
5174 	/* Clear "initialization complete" bit. */
5175 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5176 }
5177 
5178 static void
5179 wpi_nic_config(struct wpi_softc *sc)
5180 {
5181 	uint32_t rev;
5182 
5183 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5184 
5185 	/* voodoo from the Linux "driver".. */
5186 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5187 	if ((rev & 0xc0) == 0x40)
5188 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5189 	else if (!(rev & 0x80))
5190 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5191 
5192 	if (sc->cap == 0x80)
5193 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5194 
5195 	if ((sc->rev & 0xf0) == 0xd0)
5196 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5197 	else
5198 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5199 
5200 	if (sc->type > 1)
5201 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5202 }
5203 
5204 static int
5205 wpi_hw_init(struct wpi_softc *sc)
5206 {
5207 	int chnl, ntries, error;
5208 
5209 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5210 
5211 	/* Clear pending interrupts. */
5212 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5213 
5214 	if ((error = wpi_apm_init(sc)) != 0) {
5215 		device_printf(sc->sc_dev,
5216 		    "%s: could not power ON adapter, error %d\n", __func__,
5217 		    error);
5218 		return error;
5219 	}
5220 
5221 	/* Select VMAIN power source. */
5222 	if ((error = wpi_nic_lock(sc)) != 0)
5223 		return error;
5224 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5225 	wpi_nic_unlock(sc);
5226 	/* Spin until VMAIN gets selected. */
5227 	for (ntries = 0; ntries < 5000; ntries++) {
5228 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5229 			break;
5230 		DELAY(10);
5231 	}
5232 	if (ntries == 5000) {
5233 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5234 		return ETIMEDOUT;
5235 	}
5236 
5237 	/* Perform adapter initialization. */
5238 	wpi_nic_config(sc);
5239 
5240 	/* Initialize RX ring. */
5241 	if ((error = wpi_nic_lock(sc)) != 0)
5242 		return error;
5243 	/* Set physical address of RX ring. */
5244 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5245 	/* Set physical address of RX read pointer. */
5246 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5247 	    offsetof(struct wpi_shared, next));
5248 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5249 	/* Enable RX. */
5250 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5251 	    WPI_FH_RX_CONFIG_DMA_ENA |
5252 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5253 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5254 	    WPI_FH_RX_CONFIG_MAXFRAG |
5255 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5256 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5257 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5258 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5259 	wpi_nic_unlock(sc);
5260 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5261 
5262 	/* Initialize TX rings. */
5263 	if ((error = wpi_nic_lock(sc)) != 0)
5264 		return error;
5265 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5266 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5267 	/* Enable all 6 TX rings. */
5268 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5269 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5270 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5271 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5272 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5273 	/* Set physical address of TX rings. */
5274 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5275 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5276 
5277 	/* Enable all DMA channels. */
5278 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5279 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5280 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5281 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5282 	}
5283 	wpi_nic_unlock(sc);
5284 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5285 
5286 	/* Clear "radio off" and "commands blocked" bits. */
5287 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5288 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5289 
5290 	/* Clear pending interrupts. */
5291 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5292 	/* Enable interrupts. */
5293 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5294 
5295 	/* _Really_ make sure "radio off" bit is cleared! */
5296 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5297 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5298 
5299 	if ((error = wpi_load_firmware(sc)) != 0) {
5300 		device_printf(sc->sc_dev,
5301 		    "%s: could not load firmware, error %d\n", __func__,
5302 		    error);
5303 		return error;
5304 	}
5305 	/* Wait at most one second for firmware alive notification. */
5306 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5307 		device_printf(sc->sc_dev,
5308 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5309 		    __func__, error);
5310 		return error;
5311 	}
5312 
5313 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5314 
5315 	/* Do post-firmware initialization. */
5316 	return wpi_post_alive(sc);
5317 }
5318 
5319 static void
5320 wpi_hw_stop(struct wpi_softc *sc)
5321 {
5322 	int chnl, qid, ntries;
5323 
5324 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5325 
5326 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5327 		wpi_nic_lock(sc);
5328 
5329 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5330 
5331 	/* Disable interrupts. */
5332 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5333 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5334 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5335 
5336 	/* Make sure we no longer hold the NIC lock. */
5337 	wpi_nic_unlock(sc);
5338 
5339 	if (wpi_nic_lock(sc) == 0) {
5340 		/* Stop TX scheduler. */
5341 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5342 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5343 
5344 		/* Stop all DMA channels. */
5345 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5346 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5347 			for (ntries = 0; ntries < 200; ntries++) {
5348 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5349 				    WPI_FH_TX_STATUS_IDLE(chnl))
5350 					break;
5351 				DELAY(10);
5352 			}
5353 		}
5354 		wpi_nic_unlock(sc);
5355 	}
5356 
5357 	/* Stop RX ring. */
5358 	wpi_reset_rx_ring(sc);
5359 
5360 	/* Reset all TX rings. */
5361 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
5362 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5363 
5364 	if (wpi_nic_lock(sc) == 0) {
5365 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5366 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5367 		wpi_nic_unlock(sc);
5368 	}
5369 	DELAY(5);
5370 	/* Power OFF adapter. */
5371 	wpi_apm_stop(sc);
5372 }
5373 
5374 static void
5375 wpi_radio_on(void *arg0, int pending)
5376 {
5377 	struct wpi_softc *sc = arg0;
5378 	struct ieee80211com *ic = &sc->sc_ic;
5379 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5380 
5381 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5382 
5383 	WPI_LOCK(sc);
5384 	callout_stop(&sc->watchdog_rfkill);
5385 	WPI_UNLOCK(sc);
5386 
5387 	if (vap != NULL)
5388 		ieee80211_init(vap);
5389 }
5390 
5391 static void
5392 wpi_radio_off(void *arg0, int pending)
5393 {
5394 	struct wpi_softc *sc = arg0;
5395 	struct ieee80211com *ic = &sc->sc_ic;
5396 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5397 
5398 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5399 
5400 	ieee80211_notify_radio(ic, 0);
5401 	wpi_stop(sc);
5402 	if (vap != NULL)
5403 		ieee80211_stop(vap);
5404 
5405 	WPI_LOCK(sc);
5406 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5407 	WPI_UNLOCK(sc);
5408 }
5409 
5410 static int
5411 wpi_init(struct wpi_softc *sc)
5412 {
5413 	int error = 0;
5414 
5415 	WPI_LOCK(sc);
5416 
5417 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5418 
5419 	if (sc->sc_running != 0)
5420 		goto end;
5421 
5422 	/* Check that the radio is not disabled by hardware switch. */
5423 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5424 		device_printf(sc->sc_dev,
5425 		    "RF switch: radio disabled (%s)\n", __func__);
5426 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5427 		    sc);
5428 		error = EINPROGRESS;
5429 		goto end;
5430 	}
5431 
5432 	/* Read firmware images from the filesystem. */
5433 	if ((error = wpi_read_firmware(sc)) != 0) {
5434 		device_printf(sc->sc_dev,
5435 		    "%s: could not read firmware, error %d\n", __func__,
5436 		    error);
5437 		goto end;
5438 	}
5439 
5440 	sc->sc_running = 1;
5441 
5442 	/* Initialize hardware and upload firmware. */
5443 	error = wpi_hw_init(sc);
5444 	wpi_unload_firmware(sc);
5445 	if (error != 0) {
5446 		device_printf(sc->sc_dev,
5447 		    "%s: could not initialize hardware, error %d\n", __func__,
5448 		    error);
5449 		goto fail;
5450 	}
5451 
5452 	/* Configure adapter now that it is ready. */
5453 	if ((error = wpi_config(sc)) != 0) {
5454 		device_printf(sc->sc_dev,
5455 		    "%s: could not configure device, error %d\n", __func__,
5456 		    error);
5457 		goto fail;
5458 	}
5459 
5460 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5461 
5462 	WPI_UNLOCK(sc);
5463 
5464 	return 0;
5465 
5466 fail:	wpi_stop_locked(sc);
5467 
5468 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5469 	WPI_UNLOCK(sc);
5470 
5471 	return error;
5472 }
5473 
5474 static void
5475 wpi_stop_locked(struct wpi_softc *sc)
5476 {
5477 
5478 	WPI_LOCK_ASSERT(sc);
5479 
5480 	if (sc->sc_running == 0)
5481 		return;
5482 
5483 	WPI_TX_LOCK(sc);
5484 	WPI_TXQ_LOCK(sc);
5485 	sc->sc_running = 0;
5486 	WPI_TXQ_UNLOCK(sc);
5487 	WPI_TX_UNLOCK(sc);
5488 
5489 	WPI_TXQ_STATE_LOCK(sc);
5490 	callout_stop(&sc->tx_timeout);
5491 	WPI_TXQ_STATE_UNLOCK(sc);
5492 
5493 	WPI_RXON_LOCK(sc);
5494 	callout_stop(&sc->scan_timeout);
5495 	callout_stop(&sc->calib_to);
5496 	WPI_RXON_UNLOCK(sc);
5497 
5498 	/* Power OFF hardware. */
5499 	wpi_hw_stop(sc);
5500 }
5501 
5502 static void
5503 wpi_stop(struct wpi_softc *sc)
5504 {
5505 	WPI_LOCK(sc);
5506 	wpi_stop_locked(sc);
5507 	WPI_UNLOCK(sc);
5508 }
5509 
5510 /*
5511  * Callback from net80211 to start a scan.
5512  */
5513 static void
5514 wpi_scan_start(struct ieee80211com *ic)
5515 {
5516 	struct wpi_softc *sc = ic->ic_softc;
5517 
5518 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5519 }
5520 
5521 /*
5522  * Callback from net80211 to terminate a scan.
5523  */
5524 static void
5525 wpi_scan_end(struct ieee80211com *ic)
5526 {
5527 	struct wpi_softc *sc = ic->ic_softc;
5528 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5529 
5530 	if (vap->iv_state == IEEE80211_S_RUN)
5531 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5532 }
5533 
5534 /**
5535  * Called by the net80211 framework to indicate to the driver
5536  * that the channel should be changed
5537  */
5538 static void
5539 wpi_set_channel(struct ieee80211com *ic)
5540 {
5541 	const struct ieee80211_channel *c = ic->ic_curchan;
5542 	struct wpi_softc *sc = ic->ic_softc;
5543 	int error;
5544 
5545 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5546 
5547 	WPI_LOCK(sc);
5548 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5549 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5550 	WPI_UNLOCK(sc);
5551 	WPI_TX_LOCK(sc);
5552 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5553 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5554 	WPI_TX_UNLOCK(sc);
5555 
5556 	/*
5557 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5558 	 * are already taken care of by their respective firmware commands.
5559 	 */
5560 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5561 		WPI_RXON_LOCK(sc);
5562 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5563 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5564 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5565 			    WPI_RXON_24GHZ);
5566 		} else {
5567 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5568 			    WPI_RXON_24GHZ);
5569 		}
5570 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5571 			device_printf(sc->sc_dev,
5572 			    "%s: error %d setting channel\n", __func__,
5573 			    error);
5574 		WPI_RXON_UNLOCK(sc);
5575 	}
5576 }
5577 
5578 /**
5579  * Called by net80211 to indicate that we need to scan the current
5580  * channel. The channel is previously be set via the wpi_set_channel
5581  * callback.
5582  */
5583 static void
5584 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5585 {
5586 	struct ieee80211vap *vap = ss->ss_vap;
5587 	struct ieee80211com *ic = vap->iv_ic;
5588 	struct wpi_softc *sc = ic->ic_softc;
5589 	int error;
5590 
5591 	WPI_RXON_LOCK(sc);
5592 	error = wpi_scan(sc, ic->ic_curchan);
5593 	WPI_RXON_UNLOCK(sc);
5594 	if (error != 0)
5595 		ieee80211_cancel_scan(vap);
5596 }
5597 
5598 /**
5599  * Called by the net80211 framework to indicate
5600  * the minimum dwell time has been met, terminate the scan.
5601  * We don't actually terminate the scan as the firmware will notify
5602  * us when it's finished and we have no way to interrupt it.
5603  */
5604 static void
5605 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5606 {
5607 	/* NB: don't try to abort scan; wait for firmware to finish */
5608 }
5609 
5610 static void
5611 wpi_hw_reset(void *arg, int pending)
5612 {
5613 	struct wpi_softc *sc = arg;
5614 	struct ieee80211com *ic = &sc->sc_ic;
5615 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5616 
5617 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5618 
5619 	ieee80211_notify_radio(ic, 0);
5620 	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5621 		ieee80211_cancel_scan(vap);
5622 
5623 	wpi_stop(sc);
5624 	if (vap != NULL) {
5625 		ieee80211_stop(vap);
5626 		ieee80211_init(vap);
5627 	}
5628 }
5629