xref: /freebsd/sys/dev/wpi/if_wpi.c (revision ad6fc754f3d0dc2047171b41cb4d6e13da3deb98)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*
23  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24  *
25  * The 3945ABG network adapter doesn't use traditional hardware as
26  * many other adaptors do. Instead at run time the eeprom is set into a known
27  * state and told to load boot firmware. The boot firmware loads an init and a
28  * main  binary firmware image into SRAM on the card via DMA.
29  * Once the firmware is loaded, the driver/hw then
30  * communicate by way of circular dma rings via the SRAM to the firmware.
31  *
32  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33  * The 4 tx data rings allow for prioritization QoS.
34  *
35  * The rx data ring consists of 32 dma buffers. Two registers are used to
36  * indicate where in the ring the driver and the firmware are up to. The
37  * driver sets the initial read index (reg1) and the initial write index (reg2),
38  * the firmware updates the read index (reg1) on rx of a packet and fires an
39  * interrupt. The driver then processes the buffers starting at reg1 indicating
40  * to the firmware which buffers have been accessed by updating reg2. At the
41  * same time allocating new memory for the processed buffer.
42  *
43  * A similar thing happens with the tx rings. The difference is the firmware
44  * stop processing buffers once the queue is full and until confirmation
45  * of a successful transmition (tx_done) has occurred.
46  *
47  * The command ring operates in the same manner as the tx queues.
48  *
49  * All communication direct to the card (ie eeprom) is classed as Stage1
50  * communication
51  *
52  * All communication via the firmware to the card is classed as State2.
53  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54  * firmware. The bootstrap firmware and runtime firmware are loaded
55  * from host memory via dma to the card then told to execute. From this point
56  * on the majority of communications between the driver and the card goes
57  * via the firmware.
58  */
59 
60 #include "opt_wlan.h"
61 #include "opt_wpi.h"
62 
63 #include <sys/param.h>
64 #include <sys/sysctl.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/systm.h>
70 #include <sys/malloc.h>
71 #include <sys/queue.h>
72 #include <sys/taskqueue.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/endian.h>
76 #include <sys/linker.h>
77 #include <sys/firmware.h>
78 
79 #include <machine/bus.h>
80 #include <machine/resource.h>
81 #include <sys/rman.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/if_ether.h>
99 #include <netinet/ip.h>
100 
101 #include <net80211/ieee80211_var.h>
102 #include <net80211/ieee80211_radiotap.h>
103 #include <net80211/ieee80211_regdomain.h>
104 #include <net80211/ieee80211_ratectl.h>
105 
106 #include <dev/wpi/if_wpireg.h>
107 #include <dev/wpi/if_wpivar.h>
108 #include <dev/wpi/if_wpi_debug.h>
109 
110 struct wpi_ident {
111 	uint16_t	vendor;
112 	uint16_t	device;
113 	uint16_t	subdevice;
114 	const char	*name;
115 };
116 
117 static const struct wpi_ident wpi_ident_table[] = {
118 	/* The below entries support ABG regardless of the subid */
119 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	/* The below entries only support BG */
122 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0, 0, 0, NULL }
127 };
128 
129 static int	wpi_probe(device_t);
130 static int	wpi_attach(device_t);
131 static void	wpi_radiotap_attach(struct wpi_softc *);
132 static void	wpi_sysctlattach(struct wpi_softc *);
133 static void	wpi_init_beacon(struct wpi_vap *);
134 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136 		    const uint8_t [IEEE80211_ADDR_LEN],
137 		    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void	wpi_vap_delete(struct ieee80211vap *);
139 static int	wpi_detach(device_t);
140 static int	wpi_shutdown(device_t);
141 static int	wpi_suspend(device_t);
142 static int	wpi_resume(device_t);
143 static int	wpi_nic_lock(struct wpi_softc *);
144 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147 		    void **, bus_size_t, bus_size_t);
148 static void	wpi_dma_contig_free(struct wpi_dma_info *);
149 static int	wpi_alloc_shared(struct wpi_softc *);
150 static void	wpi_free_shared(struct wpi_softc *);
151 static int	wpi_alloc_fwmem(struct wpi_softc *);
152 static void	wpi_free_fwmem(struct wpi_softc *);
153 static int	wpi_alloc_rx_ring(struct wpi_softc *);
154 static void	wpi_update_rx_ring(struct wpi_softc *);
155 static void	wpi_reset_rx_ring(struct wpi_softc *);
156 static void	wpi_free_rx_ring(struct wpi_softc *);
157 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
158 		    int);
159 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
162 static int	wpi_read_eeprom(struct wpi_softc *,
163 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
164 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
165 static void	wpi_read_eeprom_band(struct wpi_softc *, int);
166 static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
167 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
168 		    struct ieee80211_channel *);
169 static int	wpi_setregdomain(struct ieee80211com *,
170 		    struct ieee80211_regdomain *, int,
171 		    struct ieee80211_channel[]);
172 static int	wpi_read_eeprom_group(struct wpi_softc *, int);
173 static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
174 static void	wpi_node_free(struct ieee80211_node *);
175 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
176 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
177 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178 static void	wpi_calib_timeout(void *);
179 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
180 		    struct wpi_rx_data *);
181 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
182 		    struct wpi_rx_data *);
183 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
184 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
185 static void	wpi_notif_intr(struct wpi_softc *);
186 static void	wpi_wakeup_intr(struct wpi_softc *);
187 #ifdef WPI_DEBUG
188 static void	wpi_debug_registers(struct wpi_softc *);
189 #endif
190 static void	wpi_fatal_intr(struct wpi_softc *);
191 static void	wpi_intr(void *);
192 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
193 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
194 		    struct ieee80211_node *);
195 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
196 		    struct ieee80211_node *,
197 		    const struct ieee80211_bpf_params *);
198 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
199 		    const struct ieee80211_bpf_params *);
200 static void	wpi_start(struct ifnet *);
201 static void	wpi_start_task(void *, int);
202 static void	wpi_watchdog_rfkill(void *);
203 static void	wpi_scan_timeout(void *);
204 static void	wpi_tx_timeout(void *);
205 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
206 static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
207 static int	wpi_mrr_setup(struct wpi_softc *);
208 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
209 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
210 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
211 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
212 static int	wpi_updateedca(struct ieee80211com *);
213 static void	wpi_set_promisc(struct wpi_softc *);
214 static void	wpi_update_promisc(struct ifnet *);
215 static void	wpi_update_mcast(struct ifnet *);
216 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
217 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
218 static void	wpi_power_calibration(struct wpi_softc *);
219 static int	wpi_set_txpower(struct wpi_softc *, int);
220 static int	wpi_get_power_index(struct wpi_softc *,
221 		    struct wpi_power_group *, struct ieee80211_channel *, int);
222 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
223 static int	wpi_send_btcoex(struct wpi_softc *);
224 static int	wpi_send_rxon(struct wpi_softc *, int, int);
225 static int	wpi_config(struct wpi_softc *);
226 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
227 		    struct ieee80211_channel *, uint8_t);
228 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
229 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
230 		    struct ieee80211_channel *);
231 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
232 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
233 static int	wpi_config_beacon(struct wpi_vap *);
234 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
235 static void	wpi_update_beacon(struct ieee80211vap *, int);
236 static void	wpi_newassoc(struct ieee80211_node *, int);
237 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
238 static int	wpi_load_key(struct ieee80211_node *,
239 		    const struct ieee80211_key *);
240 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
241 static int	wpi_set_global_keys(struct ieee80211_node *);
242 static int	wpi_del_key(struct ieee80211_node *,
243 		    const struct ieee80211_key *);
244 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
245 static int	wpi_process_key(struct ieee80211vap *,
246 		    const struct ieee80211_key *, int);
247 static int	wpi_key_set(struct ieee80211vap *,
248 		    const struct ieee80211_key *,
249 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
250 static int	wpi_key_delete(struct ieee80211vap *,
251 		    const struct ieee80211_key *);
252 static int	wpi_post_alive(struct wpi_softc *);
253 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
254 static int	wpi_load_firmware(struct wpi_softc *);
255 static int	wpi_read_firmware(struct wpi_softc *);
256 static void	wpi_unload_firmware(struct wpi_softc *);
257 static int	wpi_clock_wait(struct wpi_softc *);
258 static int	wpi_apm_init(struct wpi_softc *);
259 static void	wpi_apm_stop_master(struct wpi_softc *);
260 static void	wpi_apm_stop(struct wpi_softc *);
261 static void	wpi_nic_config(struct wpi_softc *);
262 static int	wpi_hw_init(struct wpi_softc *);
263 static void	wpi_hw_stop(struct wpi_softc *);
264 static void	wpi_radio_on(void *, int);
265 static void	wpi_radio_off(void *, int);
266 static void	wpi_init(void *);
267 static void	wpi_stop_locked(struct wpi_softc *);
268 static void	wpi_stop(struct wpi_softc *);
269 static void	wpi_scan_start(struct ieee80211com *);
270 static void	wpi_scan_end(struct ieee80211com *);
271 static void	wpi_set_channel(struct ieee80211com *);
272 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
273 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
274 static void	wpi_hw_reset(void *, int);
275 
276 static device_method_t wpi_methods[] = {
277 	/* Device interface */
278 	DEVMETHOD(device_probe,		wpi_probe),
279 	DEVMETHOD(device_attach,	wpi_attach),
280 	DEVMETHOD(device_detach,	wpi_detach),
281 	DEVMETHOD(device_shutdown,	wpi_shutdown),
282 	DEVMETHOD(device_suspend,	wpi_suspend),
283 	DEVMETHOD(device_resume,	wpi_resume),
284 
285 	DEVMETHOD_END
286 };
287 
288 static driver_t wpi_driver = {
289 	"wpi",
290 	wpi_methods,
291 	sizeof (struct wpi_softc)
292 };
293 static devclass_t wpi_devclass;
294 
295 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
296 
297 MODULE_VERSION(wpi, 1);
298 
299 MODULE_DEPEND(wpi, pci,  1, 1, 1);
300 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
301 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
302 
303 static int
304 wpi_probe(device_t dev)
305 {
306 	const struct wpi_ident *ident;
307 
308 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
309 		if (pci_get_vendor(dev) == ident->vendor &&
310 		    pci_get_device(dev) == ident->device) {
311 			device_set_desc(dev, ident->name);
312 			return (BUS_PROBE_DEFAULT);
313 		}
314 	}
315 	return ENXIO;
316 }
317 
318 static int
319 wpi_attach(device_t dev)
320 {
321 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
322 	struct ieee80211com *ic;
323 	struct ifnet *ifp;
324 	int i, error, rid;
325 #ifdef WPI_DEBUG
326 	int supportsa = 1;
327 	const struct wpi_ident *ident;
328 #endif
329 	uint8_t macaddr[IEEE80211_ADDR_LEN];
330 
331 	sc->sc_dev = dev;
332 
333 #ifdef WPI_DEBUG
334 	error = resource_int_value(device_get_name(sc->sc_dev),
335 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
336 	if (error != 0)
337 		sc->sc_debug = 0;
338 #else
339 	sc->sc_debug = 0;
340 #endif
341 
342 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
343 
344 	/*
345 	 * Get the offset of the PCI Express Capability Structure in PCI
346 	 * Configuration Space.
347 	 */
348 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
349 	if (error != 0) {
350 		device_printf(dev, "PCIe capability structure not found!\n");
351 		return error;
352 	}
353 
354 	/*
355 	 * Some card's only support 802.11b/g not a, check to see if
356 	 * this is one such card. A 0x0 in the subdevice table indicates
357 	 * the entire subdevice range is to be ignored.
358 	 */
359 #ifdef WPI_DEBUG
360 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
361 		if (ident->subdevice &&
362 		    pci_get_subdevice(dev) == ident->subdevice) {
363 		    supportsa = 0;
364 		    break;
365 		}
366 	}
367 #endif
368 
369 	/* Clear device-specific "PCI retry timeout" register (41h). */
370 	pci_write_config(dev, 0x41, 0, 1);
371 
372 	/* Enable bus-mastering. */
373 	pci_enable_busmaster(dev);
374 
375 	rid = PCIR_BAR(0);
376 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
377 	    RF_ACTIVE);
378 	if (sc->mem == NULL) {
379 		device_printf(dev, "can't map mem space\n");
380 		return ENOMEM;
381 	}
382 	sc->sc_st = rman_get_bustag(sc->mem);
383 	sc->sc_sh = rman_get_bushandle(sc->mem);
384 
385 	i = 1;
386 	rid = 0;
387 	if (pci_alloc_msi(dev, &i) == 0)
388 		rid = 1;
389 	/* Install interrupt handler. */
390 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
391 	    (rid != 0 ? 0 : RF_SHAREABLE));
392 	if (sc->irq == NULL) {
393 		device_printf(dev, "can't map interrupt\n");
394 		error = ENOMEM;
395 		goto fail;
396 	}
397 
398 	WPI_LOCK_INIT(sc);
399 	WPI_TX_LOCK_INIT(sc);
400 	WPI_RXON_LOCK_INIT(sc);
401 	WPI_NT_LOCK_INIT(sc);
402 	WPI_TXQ_LOCK_INIT(sc);
403 	WPI_TXQ_STATE_LOCK_INIT(sc);
404 
405 	/* Allocate DMA memory for firmware transfers. */
406 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
407 		device_printf(dev,
408 		    "could not allocate memory for firmware, error %d\n",
409 		    error);
410 		goto fail;
411 	}
412 
413 	/* Allocate shared page. */
414 	if ((error = wpi_alloc_shared(sc)) != 0) {
415 		device_printf(dev, "could not allocate shared page\n");
416 		goto fail;
417 	}
418 
419 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
420 	for (i = 0; i < WPI_NTXQUEUES; i++) {
421 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
422 			device_printf(dev,
423 			    "could not allocate TX ring %d, error %d\n", i,
424 			    error);
425 			goto fail;
426 		}
427 	}
428 
429 	/* Allocate RX ring. */
430 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
431 		device_printf(dev, "could not allocate RX ring, error %d\n",
432 		    error);
433 		goto fail;
434 	}
435 
436 	/* Clear pending interrupts. */
437 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
438 
439 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
440 	if (ifp == NULL) {
441 		device_printf(dev, "can not allocate ifnet structure\n");
442 		goto fail;
443 	}
444 
445 	ic = ifp->if_l2com;
446 	ic->ic_ifp = ifp;
447 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
448 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
449 
450 	/* Set device capabilities. */
451 	ic->ic_caps =
452 		  IEEE80211_C_STA		/* station mode supported */
453 		| IEEE80211_C_IBSS		/* IBSS mode supported */
454 		| IEEE80211_C_HOSTAP		/* Host access point mode */
455 		| IEEE80211_C_MONITOR		/* monitor mode supported */
456 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
457 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
458 		| IEEE80211_C_TXPMGT		/* tx power management */
459 		| IEEE80211_C_SHSLOT		/* short slot time supported */
460 		| IEEE80211_C_WPA		/* 802.11i */
461 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
462 		| IEEE80211_C_WME		/* 802.11e */
463 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
464 		;
465 
466 	ic->ic_cryptocaps =
467 		  IEEE80211_CRYPTO_AES_CCM;
468 
469 	/*
470 	 * Read in the eeprom and also setup the channels for
471 	 * net80211. We don't set the rates as net80211 does this for us
472 	 */
473 	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
474 		device_printf(dev, "could not read EEPROM, error %d\n",
475 		    error);
476 		goto fail;
477 	}
478 
479 #ifdef WPI_DEBUG
480 	if (bootverbose) {
481 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
482 		    sc->domain);
483 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
484 		    sc->type > 1 ? 'B': '?');
485 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
486 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
487 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
488 		    supportsa ? "does" : "does not");
489 
490 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
491 		   check what sc->rev really represents - benjsc 20070615 */
492 	}
493 #endif
494 
495 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
496 	ifp->if_softc = sc;
497 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
498 	ifp->if_init = wpi_init;
499 	ifp->if_ioctl = wpi_ioctl;
500 	ifp->if_start = wpi_start;
501 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
502 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
503 	IFQ_SET_READY(&ifp->if_snd);
504 
505 	ieee80211_ifattach(ic, macaddr);
506 	ic->ic_vap_create = wpi_vap_create;
507 	ic->ic_vap_delete = wpi_vap_delete;
508 	ic->ic_raw_xmit = wpi_raw_xmit;
509 	ic->ic_node_alloc = wpi_node_alloc;
510 	sc->sc_node_free = ic->ic_node_free;
511 	ic->ic_node_free = wpi_node_free;
512 	ic->ic_wme.wme_update = wpi_updateedca;
513 	ic->ic_update_promisc = wpi_update_promisc;
514 	ic->ic_update_mcast = wpi_update_mcast;
515 	ic->ic_newassoc = wpi_newassoc;
516 	ic->ic_scan_start = wpi_scan_start;
517 	ic->ic_scan_end = wpi_scan_end;
518 	ic->ic_set_channel = wpi_set_channel;
519 	sc->sc_scan_curchan = ic->ic_scan_curchan;
520 	ic->ic_scan_curchan = wpi_scan_curchan;
521 	ic->ic_scan_mindwell = wpi_scan_mindwell;
522 	ic->ic_setregdomain = wpi_setregdomain;
523 
524 	wpi_radiotap_attach(sc);
525 
526 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
527 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
528 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
529 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
530 	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
531 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
532 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
533 	TASK_INIT(&sc->sc_start_task, 0, wpi_start_task, sc);
534 
535 	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
536 	    taskqueue_thread_enqueue, &sc->sc_tq);
537 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
538 	if (error != 0) {
539 		device_printf(dev, "can't start threads, error %d\n", error);
540 		goto fail;
541 	}
542 
543 	wpi_sysctlattach(sc);
544 
545 	/*
546 	 * Hook our interrupt after all initialization is complete.
547 	 */
548 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
549 	    NULL, wpi_intr, sc, &sc->sc_ih);
550 	if (error != 0) {
551 		device_printf(dev, "can't establish interrupt, error %d\n",
552 		    error);
553 		goto fail;
554 	}
555 
556 	if (bootverbose)
557 		ieee80211_announce(ic);
558 
559 #ifdef WPI_DEBUG
560 	if (sc->sc_debug & WPI_DEBUG_HW)
561 		ieee80211_announce_channels(ic);
562 #endif
563 
564 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
565 	return 0;
566 
567 fail:	wpi_detach(dev);
568 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
569 	return error;
570 }
571 
572 /*
573  * Attach the interface to 802.11 radiotap.
574  */
575 static void
576 wpi_radiotap_attach(struct wpi_softc *sc)
577 {
578 	struct ifnet *ifp = sc->sc_ifp;
579 	struct ieee80211com *ic = ifp->if_l2com;
580 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
581 	ieee80211_radiotap_attach(ic,
582 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
583 		WPI_TX_RADIOTAP_PRESENT,
584 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
585 		WPI_RX_RADIOTAP_PRESENT);
586 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
587 }
588 
589 static void
590 wpi_sysctlattach(struct wpi_softc *sc)
591 {
592 #ifdef WPI_DEBUG
593 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
594 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
595 
596 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
597 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
598 		"control debugging printfs");
599 #endif
600 }
601 
602 static void
603 wpi_init_beacon(struct wpi_vap *wvp)
604 {
605 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
606 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
607 
608 	cmd->id = WPI_ID_BROADCAST;
609 	cmd->ofdm_mask = 0xff;
610 	cmd->cck_mask = 0x0f;
611 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
612 	cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
613 
614 	bcn->code = WPI_CMD_SET_BEACON;
615 	bcn->ac = WPI_CMD_QUEUE_NUM;
616 	bcn->size = sizeof(struct wpi_cmd_beacon);
617 }
618 
619 static struct ieee80211vap *
620 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
621     enum ieee80211_opmode opmode, int flags,
622     const uint8_t bssid[IEEE80211_ADDR_LEN],
623     const uint8_t mac[IEEE80211_ADDR_LEN])
624 {
625 	struct wpi_vap *wvp;
626 	struct ieee80211vap *vap;
627 
628 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
629 		return NULL;
630 
631 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
632 	    M_80211_VAP, M_NOWAIT | M_ZERO);
633 	if (wvp == NULL)
634 		return NULL;
635 	vap = &wvp->wv_vap;
636 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
637 
638 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
639 		WPI_VAP_LOCK_INIT(wvp);
640 		wpi_init_beacon(wvp);
641 	}
642 
643 	/* Override with driver methods. */
644 	vap->iv_key_set = wpi_key_set;
645 	vap->iv_key_delete = wpi_key_delete;
646 	wvp->wv_newstate = vap->iv_newstate;
647 	vap->iv_newstate = wpi_newstate;
648 	vap->iv_update_beacon = wpi_update_beacon;
649 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
650 
651 	ieee80211_ratectl_init(vap);
652 	/* Complete setup. */
653 	ieee80211_vap_attach(vap, ieee80211_media_change,
654 	    ieee80211_media_status);
655 	ic->ic_opmode = opmode;
656 	return vap;
657 }
658 
659 static void
660 wpi_vap_delete(struct ieee80211vap *vap)
661 {
662 	struct wpi_vap *wvp = WPI_VAP(vap);
663 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
664 	enum ieee80211_opmode opmode = vap->iv_opmode;
665 
666 	ieee80211_ratectl_deinit(vap);
667 	ieee80211_vap_detach(vap);
668 
669 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
670 		if (bcn->m != NULL)
671 			m_freem(bcn->m);
672 
673 		WPI_VAP_LOCK_DESTROY(wvp);
674 	}
675 
676 	free(wvp, M_80211_VAP);
677 }
678 
679 static int
680 wpi_detach(device_t dev)
681 {
682 	struct wpi_softc *sc = device_get_softc(dev);
683 	struct ifnet *ifp = sc->sc_ifp;
684 	struct ieee80211com *ic;
685 	int qid;
686 
687 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
688 
689 	if (ifp != NULL) {
690 		ic = ifp->if_l2com;
691 
692 		ieee80211_draintask(ic, &sc->sc_reinittask);
693 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
694 		ieee80211_draintask(ic, &sc->sc_radioon_task);
695 		ieee80211_draintask(ic, &sc->sc_start_task);
696 
697 		wpi_stop(sc);
698 
699 		taskqueue_drain_all(sc->sc_tq);
700 		taskqueue_free(sc->sc_tq);
701 
702 		callout_drain(&sc->watchdog_rfkill);
703 		callout_drain(&sc->tx_timeout);
704 		callout_drain(&sc->scan_timeout);
705 		callout_drain(&sc->calib_to);
706 		ieee80211_ifdetach(ic);
707 	}
708 
709 	/* Uninstall interrupt handler. */
710 	if (sc->irq != NULL) {
711 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
712 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
713 		    sc->irq);
714 		pci_release_msi(dev);
715 	}
716 
717 	if (sc->txq[0].data_dmat) {
718 		/* Free DMA resources. */
719 		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
720 			wpi_free_tx_ring(sc, &sc->txq[qid]);
721 
722 		wpi_free_rx_ring(sc);
723 		wpi_free_shared(sc);
724 	}
725 
726 	if (sc->fw_dma.tag)
727 		wpi_free_fwmem(sc);
728 
729 	if (sc->mem != NULL)
730 		bus_release_resource(dev, SYS_RES_MEMORY,
731 		    rman_get_rid(sc->mem), sc->mem);
732 
733 	if (ifp != NULL)
734 		if_free(ifp);
735 
736 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
737 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
738 	WPI_TXQ_LOCK_DESTROY(sc);
739 	WPI_NT_LOCK_DESTROY(sc);
740 	WPI_RXON_LOCK_DESTROY(sc);
741 	WPI_TX_LOCK_DESTROY(sc);
742 	WPI_LOCK_DESTROY(sc);
743 	return 0;
744 }
745 
746 static int
747 wpi_shutdown(device_t dev)
748 {
749 	struct wpi_softc *sc = device_get_softc(dev);
750 
751 	wpi_stop(sc);
752 	return 0;
753 }
754 
755 static int
756 wpi_suspend(device_t dev)
757 {
758 	struct wpi_softc *sc = device_get_softc(dev);
759 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
760 
761 	ieee80211_suspend_all(ic);
762 	return 0;
763 }
764 
765 static int
766 wpi_resume(device_t dev)
767 {
768 	struct wpi_softc *sc = device_get_softc(dev);
769 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
770 
771 	/* Clear device-specific "PCI retry timeout" register (41h). */
772 	pci_write_config(dev, 0x41, 0, 1);
773 
774 	ieee80211_resume_all(ic);
775 	return 0;
776 }
777 
778 /*
779  * Grab exclusive access to NIC memory.
780  */
781 static int
782 wpi_nic_lock(struct wpi_softc *sc)
783 {
784 	int ntries;
785 
786 	/* Request exclusive access to NIC. */
787 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
788 
789 	/* Spin until we actually get the lock. */
790 	for (ntries = 0; ntries < 1000; ntries++) {
791 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
792 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
793 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
794 			return 0;
795 		DELAY(10);
796 	}
797 
798 	device_printf(sc->sc_dev, "could not lock memory\n");
799 
800 	return ETIMEDOUT;
801 }
802 
803 /*
804  * Release lock on NIC memory.
805  */
806 static __inline void
807 wpi_nic_unlock(struct wpi_softc *sc)
808 {
809 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
810 }
811 
812 static __inline uint32_t
813 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
814 {
815 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
816 	WPI_BARRIER_READ_WRITE(sc);
817 	return WPI_READ(sc, WPI_PRPH_RDATA);
818 }
819 
820 static __inline void
821 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
822 {
823 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
824 	WPI_BARRIER_WRITE(sc);
825 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
826 }
827 
828 static __inline void
829 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
830 {
831 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
832 }
833 
834 static __inline void
835 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
836 {
837 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
838 }
839 
840 static __inline void
841 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
842     const uint32_t *data, int count)
843 {
844 	for (; count > 0; count--, data++, addr += 4)
845 		wpi_prph_write(sc, addr, *data);
846 }
847 
848 static __inline uint32_t
849 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
850 {
851 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
852 	WPI_BARRIER_READ_WRITE(sc);
853 	return WPI_READ(sc, WPI_MEM_RDATA);
854 }
855 
856 static __inline void
857 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
858     int count)
859 {
860 	for (; count > 0; count--, addr += 4)
861 		*data++ = wpi_mem_read(sc, addr);
862 }
863 
864 static int
865 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
866 {
867 	uint8_t *out = data;
868 	uint32_t val;
869 	int error, ntries;
870 
871 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
872 
873 	if ((error = wpi_nic_lock(sc)) != 0)
874 		return error;
875 
876 	for (; count > 0; count -= 2, addr++) {
877 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
878 		for (ntries = 0; ntries < 10; ntries++) {
879 			val = WPI_READ(sc, WPI_EEPROM);
880 			if (val & WPI_EEPROM_READ_VALID)
881 				break;
882 			DELAY(5);
883 		}
884 		if (ntries == 10) {
885 			device_printf(sc->sc_dev,
886 			    "timeout reading ROM at 0x%x\n", addr);
887 			return ETIMEDOUT;
888 		}
889 		*out++= val >> 16;
890 		if (count > 1)
891 			*out ++= val >> 24;
892 	}
893 
894 	wpi_nic_unlock(sc);
895 
896 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
897 
898 	return 0;
899 }
900 
901 static void
902 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
903 {
904 	if (error != 0)
905 		return;
906 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
907 	*(bus_addr_t *)arg = segs[0].ds_addr;
908 }
909 
910 /*
911  * Allocates a contiguous block of dma memory of the requested size and
912  * alignment.
913  */
914 static int
915 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
916     void **kvap, bus_size_t size, bus_size_t alignment)
917 {
918 	int error;
919 
920 	dma->tag = NULL;
921 	dma->size = size;
922 
923 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
924 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
925 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
926 	if (error != 0)
927 		goto fail;
928 
929 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
930 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
931 	if (error != 0)
932 		goto fail;
933 
934 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
935 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
936 	if (error != 0)
937 		goto fail;
938 
939 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
940 
941 	if (kvap != NULL)
942 		*kvap = dma->vaddr;
943 
944 	return 0;
945 
946 fail:	wpi_dma_contig_free(dma);
947 	return error;
948 }
949 
950 static void
951 wpi_dma_contig_free(struct wpi_dma_info *dma)
952 {
953 	if (dma->vaddr != NULL) {
954 		bus_dmamap_sync(dma->tag, dma->map,
955 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
956 		bus_dmamap_unload(dma->tag, dma->map);
957 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
958 		dma->vaddr = NULL;
959 	}
960 	if (dma->tag != NULL) {
961 		bus_dma_tag_destroy(dma->tag);
962 		dma->tag = NULL;
963 	}
964 }
965 
966 /*
967  * Allocate a shared page between host and NIC.
968  */
969 static int
970 wpi_alloc_shared(struct wpi_softc *sc)
971 {
972 	/* Shared buffer must be aligned on a 4KB boundary. */
973 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
974 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
975 }
976 
977 static void
978 wpi_free_shared(struct wpi_softc *sc)
979 {
980 	wpi_dma_contig_free(&sc->shared_dma);
981 }
982 
983 /*
984  * Allocate DMA-safe memory for firmware transfer.
985  */
986 static int
987 wpi_alloc_fwmem(struct wpi_softc *sc)
988 {
989 	/* Must be aligned on a 16-byte boundary. */
990 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
991 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
992 }
993 
994 static void
995 wpi_free_fwmem(struct wpi_softc *sc)
996 {
997 	wpi_dma_contig_free(&sc->fw_dma);
998 }
999 
1000 static int
1001 wpi_alloc_rx_ring(struct wpi_softc *sc)
1002 {
1003 	struct wpi_rx_ring *ring = &sc->rxq;
1004 	bus_size_t size;
1005 	int i, error;
1006 
1007 	ring->cur = 0;
1008 	ring->update = 0;
1009 
1010 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1011 
1012 	/* Allocate RX descriptors (16KB aligned.) */
1013 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1014 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1015 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1016 	if (error != 0) {
1017 		device_printf(sc->sc_dev,
1018 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1019 		    __func__, error);
1020 		goto fail;
1021 	}
1022 
1023 	/* Create RX buffer DMA tag. */
1024 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1025 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1026 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1027 	    &ring->data_dmat);
1028 	if (error != 0) {
1029 		device_printf(sc->sc_dev,
1030 		    "%s: could not create RX buf DMA tag, error %d\n",
1031 		    __func__, error);
1032 		goto fail;
1033 	}
1034 
1035 	/*
1036 	 * Allocate and map RX buffers.
1037 	 */
1038 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1039 		struct wpi_rx_data *data = &ring->data[i];
1040 		bus_addr_t paddr;
1041 
1042 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1043 		if (error != 0) {
1044 			device_printf(sc->sc_dev,
1045 			    "%s: could not create RX buf DMA map, error %d\n",
1046 			    __func__, error);
1047 			goto fail;
1048 		}
1049 
1050 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1051 		if (data->m == NULL) {
1052 			device_printf(sc->sc_dev,
1053 			    "%s: could not allocate RX mbuf\n", __func__);
1054 			error = ENOBUFS;
1055 			goto fail;
1056 		}
1057 
1058 		error = bus_dmamap_load(ring->data_dmat, data->map,
1059 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1060 		    &paddr, BUS_DMA_NOWAIT);
1061 		if (error != 0 && error != EFBIG) {
1062 			device_printf(sc->sc_dev,
1063 			    "%s: can't map mbuf (error %d)\n", __func__,
1064 			    error);
1065 			goto fail;
1066 		}
1067 
1068 		/* Set physical address of RX buffer. */
1069 		ring->desc[i] = htole32(paddr);
1070 	}
1071 
1072 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1073 	    BUS_DMASYNC_PREWRITE);
1074 
1075 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1076 
1077 	return 0;
1078 
1079 fail:	wpi_free_rx_ring(sc);
1080 
1081 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1082 
1083 	return error;
1084 }
1085 
1086 static void
1087 wpi_update_rx_ring(struct wpi_softc *sc)
1088 {
1089 	struct wpi_rx_ring *ring = &sc->rxq;
1090 
1091 	if (ring->update != 0) {
1092 		/* Wait for INT_WAKEUP event. */
1093 		return;
1094 	}
1095 
1096 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1097 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1098 		    __func__);
1099 
1100 		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1101 		ring->update = 1;
1102 	} else
1103 		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1104 }
1105 
1106 static void
1107 wpi_reset_rx_ring(struct wpi_softc *sc)
1108 {
1109 	struct wpi_rx_ring *ring = &sc->rxq;
1110 	int ntries;
1111 
1112 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1113 
1114 	if (wpi_nic_lock(sc) == 0) {
1115 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1116 		for (ntries = 0; ntries < 1000; ntries++) {
1117 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1118 			    WPI_FH_RX_STATUS_IDLE)
1119 				break;
1120 			DELAY(10);
1121 		}
1122 		wpi_nic_unlock(sc);
1123 	}
1124 
1125 	ring->cur = 0;
1126 	ring->update = 0;
1127 }
1128 
1129 static void
1130 wpi_free_rx_ring(struct wpi_softc *sc)
1131 {
1132 	struct wpi_rx_ring *ring = &sc->rxq;
1133 	int i;
1134 
1135 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1136 
1137 	wpi_dma_contig_free(&ring->desc_dma);
1138 
1139 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1140 		struct wpi_rx_data *data = &ring->data[i];
1141 
1142 		if (data->m != NULL) {
1143 			bus_dmamap_sync(ring->data_dmat, data->map,
1144 			    BUS_DMASYNC_POSTREAD);
1145 			bus_dmamap_unload(ring->data_dmat, data->map);
1146 			m_freem(data->m);
1147 			data->m = NULL;
1148 		}
1149 		if (data->map != NULL)
1150 			bus_dmamap_destroy(ring->data_dmat, data->map);
1151 	}
1152 	if (ring->data_dmat != NULL) {
1153 		bus_dma_tag_destroy(ring->data_dmat);
1154 		ring->data_dmat = NULL;
1155 	}
1156 }
1157 
1158 static int
1159 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1160 {
1161 	bus_addr_t paddr;
1162 	bus_size_t size;
1163 	int i, error;
1164 
1165 	ring->qid = qid;
1166 	ring->queued = 0;
1167 	ring->cur = 0;
1168 	ring->update = 0;
1169 
1170 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1171 
1172 	/* Allocate TX descriptors (16KB aligned.) */
1173 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1174 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1175 	    size, WPI_RING_DMA_ALIGN);
1176 	if (error != 0) {
1177 		device_printf(sc->sc_dev,
1178 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1179 		    __func__, error);
1180 		goto fail;
1181 	}
1182 
1183 	/* Update shared area with ring physical address. */
1184 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1185 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1186 	    BUS_DMASYNC_PREWRITE);
1187 
1188 	/*
1189 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1190 	 * to allocate commands space for other rings.
1191 	 * XXX Do we really need to allocate descriptors for other rings?
1192 	 */
1193 	if (qid > WPI_CMD_QUEUE_NUM) {
1194 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1195 		return 0;
1196 	}
1197 
1198 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1199 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1200 	    size, 4);
1201 	if (error != 0) {
1202 		device_printf(sc->sc_dev,
1203 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1204 		    __func__, error);
1205 		goto fail;
1206 	}
1207 
1208 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1209 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1210 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1211 	    &ring->data_dmat);
1212 	if (error != 0) {
1213 		device_printf(sc->sc_dev,
1214 		    "%s: could not create TX buf DMA tag, error %d\n",
1215 		    __func__, error);
1216 		goto fail;
1217 	}
1218 
1219 	paddr = ring->cmd_dma.paddr;
1220 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1221 		struct wpi_tx_data *data = &ring->data[i];
1222 
1223 		data->cmd_paddr = paddr;
1224 		paddr += sizeof (struct wpi_tx_cmd);
1225 
1226 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1227 		if (error != 0) {
1228 			device_printf(sc->sc_dev,
1229 			    "%s: could not create TX buf DMA map, error %d\n",
1230 			    __func__, error);
1231 			goto fail;
1232 		}
1233 	}
1234 
1235 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1236 
1237 	return 0;
1238 
1239 fail:	wpi_free_tx_ring(sc, ring);
1240 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1241 	return error;
1242 }
1243 
1244 static void
1245 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1246 {
1247 	if (ring->update != 0) {
1248 		/* Wait for INT_WAKEUP event. */
1249 		return;
1250 	}
1251 
1252 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1253 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1254 		    __func__, ring->qid);
1255 
1256 		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1257 		ring->update = 1;
1258 	} else
1259 		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1260 }
1261 
1262 static void
1263 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1264 {
1265 	int i;
1266 
1267 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1268 
1269 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1270 		struct wpi_tx_data *data = &ring->data[i];
1271 
1272 		if (data->m != NULL) {
1273 			bus_dmamap_sync(ring->data_dmat, data->map,
1274 			    BUS_DMASYNC_POSTWRITE);
1275 			bus_dmamap_unload(ring->data_dmat, data->map);
1276 			m_freem(data->m);
1277 			data->m = NULL;
1278 		}
1279 	}
1280 	/* Clear TX descriptors. */
1281 	memset(ring->desc, 0, ring->desc_dma.size);
1282 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1283 	    BUS_DMASYNC_PREWRITE);
1284 	sc->qfullmsk &= ~(1 << ring->qid);
1285 	ring->queued = 0;
1286 	ring->cur = 0;
1287 	ring->update = 0;
1288 }
1289 
1290 static void
1291 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1292 {
1293 	int i;
1294 
1295 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1296 
1297 	wpi_dma_contig_free(&ring->desc_dma);
1298 	wpi_dma_contig_free(&ring->cmd_dma);
1299 
1300 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1301 		struct wpi_tx_data *data = &ring->data[i];
1302 
1303 		if (data->m != NULL) {
1304 			bus_dmamap_sync(ring->data_dmat, data->map,
1305 			    BUS_DMASYNC_POSTWRITE);
1306 			bus_dmamap_unload(ring->data_dmat, data->map);
1307 			m_freem(data->m);
1308 		}
1309 		if (data->map != NULL)
1310 			bus_dmamap_destroy(ring->data_dmat, data->map);
1311 	}
1312 	if (ring->data_dmat != NULL) {
1313 		bus_dma_tag_destroy(ring->data_dmat);
1314 		ring->data_dmat = NULL;
1315 	}
1316 }
1317 
1318 /*
1319  * Extract various information from EEPROM.
1320  */
1321 static int
1322 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1323 {
1324 #define WPI_CHK(res) do {		\
1325 	if ((error = res) != 0)		\
1326 		goto fail;		\
1327 } while (0)
1328 	int error, i;
1329 
1330 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1331 
1332 	/* Adapter has to be powered on for EEPROM access to work. */
1333 	if ((error = wpi_apm_init(sc)) != 0) {
1334 		device_printf(sc->sc_dev,
1335 		    "%s: could not power ON adapter, error %d\n", __func__,
1336 		    error);
1337 		return error;
1338 	}
1339 
1340 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1341 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1342 		error = EIO;
1343 		goto fail;
1344 	}
1345 	/* Clear HW ownership of EEPROM. */
1346 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1347 
1348 	/* Read the hardware capabilities, revision and SKU type. */
1349 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1350 	    sizeof(sc->cap)));
1351 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1352 	    sizeof(sc->rev)));
1353 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1354 	    sizeof(sc->type)));
1355 
1356 	sc->rev = le16toh(sc->rev);
1357 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1358 	    sc->rev, sc->type);
1359 
1360 	/* Read the regulatory domain (4 ASCII characters.) */
1361 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1362 	    sizeof(sc->domain)));
1363 
1364 	/* Read MAC address. */
1365 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1366 	    IEEE80211_ADDR_LEN));
1367 
1368 	/* Read the list of authorized channels. */
1369 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1370 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1371 
1372 	/* Read the list of TX power groups. */
1373 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1374 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1375 
1376 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1377 
1378 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1379 	    __func__);
1380 
1381 	return error;
1382 #undef WPI_CHK
1383 }
1384 
1385 /*
1386  * Translate EEPROM flags to net80211.
1387  */
1388 static uint32_t
1389 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1390 {
1391 	uint32_t nflags;
1392 
1393 	nflags = 0;
1394 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1395 		nflags |= IEEE80211_CHAN_PASSIVE;
1396 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1397 		nflags |= IEEE80211_CHAN_NOADHOC;
1398 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1399 		nflags |= IEEE80211_CHAN_DFS;
1400 		/* XXX apparently IBSS may still be marked */
1401 		nflags |= IEEE80211_CHAN_NOADHOC;
1402 	}
1403 
1404 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1405 	if (nflags & IEEE80211_CHAN_NOADHOC)
1406 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1407 
1408 	return nflags;
1409 }
1410 
1411 static void
1412 wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1413 {
1414 	struct ifnet *ifp = sc->sc_ifp;
1415 	struct ieee80211com *ic = ifp->if_l2com;
1416 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1417 	const struct wpi_chan_band *band = &wpi_bands[n];
1418 	struct ieee80211_channel *c;
1419 	uint8_t chan;
1420 	int i, nflags;
1421 
1422 	for (i = 0; i < band->nchan; i++) {
1423 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1424 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1425 			    "Channel Not Valid: %d, band %d\n",
1426 			     band->chan[i],n);
1427 			continue;
1428 		}
1429 
1430 		chan = band->chan[i];
1431 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1432 
1433 		c = &ic->ic_channels[ic->ic_nchans++];
1434 		c->ic_ieee = chan;
1435 		c->ic_maxregpower = channels[i].maxpwr;
1436 		c->ic_maxpower = 2*c->ic_maxregpower;
1437 
1438 		if (n == 0) {	/* 2GHz band */
1439 			c->ic_freq = ieee80211_ieee2mhz(chan,
1440 			    IEEE80211_CHAN_G);
1441 
1442 			/* G =>'s B is supported */
1443 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1444 			c = &ic->ic_channels[ic->ic_nchans++];
1445 			c[0] = c[-1];
1446 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1447 		} else {	/* 5GHz band */
1448 			c->ic_freq = ieee80211_ieee2mhz(chan,
1449 			    IEEE80211_CHAN_A);
1450 
1451 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1452 		}
1453 
1454 		/* Save maximum allowed TX power for this channel. */
1455 		sc->maxpwr[chan] = channels[i].maxpwr;
1456 
1457 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1458 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1459 		    " offset %d\n", chan, c->ic_freq,
1460 		    channels[i].flags, sc->maxpwr[chan],
1461 		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1462 	}
1463 }
1464 
1465 /**
1466  * Read the eeprom to find out what channels are valid for the given
1467  * band and update net80211 with what we find.
1468  */
1469 static int
1470 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1471 {
1472 	struct ifnet *ifp = sc->sc_ifp;
1473 	struct ieee80211com *ic = ifp->if_l2com;
1474 	const struct wpi_chan_band *band = &wpi_bands[n];
1475 	int error;
1476 
1477 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1478 
1479 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1480 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1481 	if (error != 0) {
1482 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1483 		return error;
1484 	}
1485 
1486 	wpi_read_eeprom_band(sc, n);
1487 
1488 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1489 
1490 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1491 
1492 	return 0;
1493 }
1494 
1495 static struct wpi_eeprom_chan *
1496 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1497 {
1498 	int i, j;
1499 
1500 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1501 		for (i = 0; i < wpi_bands[j].nchan; i++)
1502 			if (wpi_bands[j].chan[i] == c->ic_ieee)
1503 				return &sc->eeprom_channels[j][i];
1504 
1505 	return NULL;
1506 }
1507 
1508 /*
1509  * Enforce flags read from EEPROM.
1510  */
1511 static int
1512 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1513     int nchan, struct ieee80211_channel chans[])
1514 {
1515 	struct ifnet *ifp = ic->ic_ifp;
1516 	struct wpi_softc *sc = ifp->if_softc;
1517 	int i;
1518 
1519 	for (i = 0; i < nchan; i++) {
1520 		struct ieee80211_channel *c = &chans[i];
1521 		struct wpi_eeprom_chan *channel;
1522 
1523 		channel = wpi_find_eeprom_channel(sc, c);
1524 		if (channel == NULL) {
1525 			if_printf(ic->ic_ifp,
1526 			    "%s: invalid channel %u freq %u/0x%x\n",
1527 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1528 			return EINVAL;
1529 		}
1530 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1531 	}
1532 
1533 	return 0;
1534 }
1535 
1536 static int
1537 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1538 {
1539 	struct wpi_power_group *group = &sc->groups[n];
1540 	struct wpi_eeprom_group rgroup;
1541 	int i, error;
1542 
1543 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1544 
1545 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1546 	    &rgroup, sizeof rgroup)) != 0) {
1547 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1548 		return error;
1549 	}
1550 
1551 	/* Save TX power group information. */
1552 	group->chan   = rgroup.chan;
1553 	group->maxpwr = rgroup.maxpwr;
1554 	/* Retrieve temperature at which the samples were taken. */
1555 	group->temp   = (int16_t)le16toh(rgroup.temp);
1556 
1557 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1558 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1559 	    group->maxpwr, group->temp);
1560 
1561 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1562 		group->samples[i].index = rgroup.samples[i].index;
1563 		group->samples[i].power = rgroup.samples[i].power;
1564 
1565 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1566 		    "\tsample %d: index=%d power=%d\n", i,
1567 		    group->samples[i].index, group->samples[i].power);
1568 	}
1569 
1570 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1571 
1572 	return 0;
1573 }
1574 
1575 static int
1576 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1577 {
1578 	int newid = WPI_ID_IBSS_MIN;
1579 
1580 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1581 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1582 			sc->nodesmsk |= 1 << newid;
1583 			return newid;
1584 		}
1585 	}
1586 
1587 	return WPI_ID_UNDEFINED;
1588 }
1589 
1590 static __inline int
1591 wpi_add_node_entry_sta(struct wpi_softc *sc)
1592 {
1593 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1594 
1595 	return WPI_ID_BSS;
1596 }
1597 
1598 static __inline int
1599 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1600 {
1601 	if (id == WPI_ID_UNDEFINED)
1602 		return 0;
1603 
1604 	return (sc->nodesmsk >> id) & 1;
1605 }
1606 
1607 static __inline void
1608 wpi_clear_node_table(struct wpi_softc *sc)
1609 {
1610 	sc->nodesmsk = 0;
1611 }
1612 
1613 static __inline void
1614 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1615 {
1616 	sc->nodesmsk &= ~(1 << id);
1617 }
1618 
1619 static struct ieee80211_node *
1620 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1621 {
1622 	struct wpi_node *wn;
1623 
1624 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1625 	    M_NOWAIT | M_ZERO);
1626 
1627 	if (wn == NULL)
1628 		return NULL;
1629 
1630 	wn->id = WPI_ID_UNDEFINED;
1631 
1632 	return &wn->ni;
1633 }
1634 
1635 static void
1636 wpi_node_free(struct ieee80211_node *ni)
1637 {
1638 	struct ieee80211com *ic = ni->ni_ic;
1639 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1640 	struct wpi_node *wn = WPI_NODE(ni);
1641 
1642 	if (wn->id != WPI_ID_UNDEFINED) {
1643 		WPI_NT_LOCK(sc);
1644 		if (wpi_check_node_entry(sc, wn->id)) {
1645 			wpi_del_node_entry(sc, wn->id);
1646 			wpi_del_node(sc, ni);
1647 		}
1648 		WPI_NT_UNLOCK(sc);
1649 	}
1650 
1651 	sc->sc_node_free(ni);
1652 }
1653 
1654 /**
1655  * Called by net80211 when ever there is a change to 80211 state machine
1656  */
1657 static int
1658 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1659 {
1660 	struct wpi_vap *wvp = WPI_VAP(vap);
1661 	struct ieee80211com *ic = vap->iv_ic;
1662 	struct ifnet *ifp = ic->ic_ifp;
1663 	struct wpi_softc *sc = ifp->if_softc;
1664 	int error = 0;
1665 
1666 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1667 
1668 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1669 		ieee80211_state_name[vap->iv_state],
1670 		ieee80211_state_name[nstate]);
1671 
1672 	if (vap->iv_state == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1673 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1674 			device_printf(sc->sc_dev,
1675 			    "%s: could not set power saving level\n",
1676 			    __func__);
1677 			return error;
1678 		}
1679 	}
1680 
1681 	switch (nstate) {
1682 	case IEEE80211_S_SCAN:
1683 		WPI_RXON_LOCK(sc);
1684 		if ((sc->rxon.filter & htole32(WPI_FILTER_BSS)) &&
1685 		    vap->iv_opmode != IEEE80211_M_STA) {
1686 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1687 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1688 				device_printf(sc->sc_dev,
1689 				    "%s: could not send RXON\n", __func__);
1690 			}
1691 		}
1692 		WPI_RXON_UNLOCK(sc);
1693 		break;
1694 
1695 	case IEEE80211_S_ASSOC:
1696 		if (vap->iv_state != IEEE80211_S_RUN)
1697 			break;
1698 		/* FALLTHROUGH */
1699 	case IEEE80211_S_AUTH:
1700 		/*
1701 		 * The node must be registered in the firmware before auth.
1702 		 * Also the associd must be cleared on RUN -> ASSOC
1703 		 * transitions.
1704 		 */
1705 		if ((error = wpi_auth(sc, vap)) != 0) {
1706 			device_printf(sc->sc_dev,
1707 			    "%s: could not move to AUTH state, error %d\n",
1708 			    __func__, error);
1709 		}
1710 		break;
1711 
1712 	case IEEE80211_S_RUN:
1713 		/*
1714 		 * RUN -> RUN transition; Just restart the timers.
1715 		 */
1716 		if (vap->iv_state == IEEE80211_S_RUN) {
1717 			WPI_RXON_LOCK(sc);
1718 			wpi_calib_timeout(sc);
1719 			WPI_RXON_UNLOCK(sc);
1720 			break;
1721 		}
1722 
1723 		/*
1724 		 * !RUN -> RUN requires setting the association id
1725 		 * which is done with a firmware cmd.  We also defer
1726 		 * starting the timers until that work is done.
1727 		 */
1728 		if ((error = wpi_run(sc, vap)) != 0) {
1729 			device_printf(sc->sc_dev,
1730 			    "%s: could not move to RUN state\n", __func__);
1731 		}
1732 		break;
1733 
1734 	default:
1735 		break;
1736 	}
1737 	if (error != 0) {
1738 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1739 		return error;
1740 	}
1741 
1742 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1743 
1744 	return wvp->wv_newstate(vap, nstate, arg);
1745 }
1746 
1747 static void
1748 wpi_calib_timeout(void *arg)
1749 {
1750 	struct wpi_softc *sc = arg;
1751 
1752 	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS)))
1753 		return;
1754 
1755 	wpi_power_calibration(sc);
1756 
1757 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1758 }
1759 
1760 static __inline uint8_t
1761 rate2plcp(const uint8_t rate)
1762 {
1763 	switch (rate) {
1764 	case 12:	return 0xd;
1765 	case 18:	return 0xf;
1766 	case 24:	return 0x5;
1767 	case 36:	return 0x7;
1768 	case 48:	return 0x9;
1769 	case 72:	return 0xb;
1770 	case 96:	return 0x1;
1771 	case 108:	return 0x3;
1772 	case 2:		return 10;
1773 	case 4:		return 20;
1774 	case 11:	return 55;
1775 	case 22:	return 110;
1776 	default:	return 0;
1777 	}
1778 }
1779 
1780 static __inline uint8_t
1781 plcp2rate(const uint8_t plcp)
1782 {
1783 	switch (plcp) {
1784 	case 0xd:	return 12;
1785 	case 0xf:	return 18;
1786 	case 0x5:	return 24;
1787 	case 0x7:	return 36;
1788 	case 0x9:	return 48;
1789 	case 0xb:	return 72;
1790 	case 0x1:	return 96;
1791 	case 0x3:	return 108;
1792 	case 10:	return 2;
1793 	case 20:	return 4;
1794 	case 55:	return 11;
1795 	case 110:	return 22;
1796 	default:	return 0;
1797 	}
1798 }
1799 
1800 /* Quickly determine if a given rate is CCK or OFDM. */
1801 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1802 
1803 static void
1804 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1805     struct wpi_rx_data *data)
1806 {
1807 	struct ifnet *ifp = sc->sc_ifp;
1808 	struct ieee80211com *ic = ifp->if_l2com;
1809 	struct wpi_rx_ring *ring = &sc->rxq;
1810 	struct wpi_rx_stat *stat;
1811 	struct wpi_rx_head *head;
1812 	struct wpi_rx_tail *tail;
1813 	struct ieee80211_frame *wh;
1814 	struct ieee80211_node *ni;
1815 	struct mbuf *m, *m1;
1816 	bus_addr_t paddr;
1817 	uint32_t flags;
1818 	uint16_t len;
1819 	int error;
1820 
1821 	stat = (struct wpi_rx_stat *)(desc + 1);
1822 
1823 	if (stat->len > WPI_STAT_MAXLEN) {
1824 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1825 		goto fail1;
1826 	}
1827 
1828 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1829 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1830 	len = le16toh(head->len);
1831 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1832 	flags = le32toh(tail->flags);
1833 
1834 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1835 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1836 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1837 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1838 
1839 	/* Discard frames with a bad FCS early. */
1840 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1841 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1842 		    __func__, flags);
1843 		goto fail1;
1844 	}
1845 	/* Discard frames that are too short. */
1846 	if (len < sizeof (*wh)) {
1847 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1848 		    __func__, len);
1849 		goto fail1;
1850 	}
1851 
1852 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1853 	if (m1 == NULL) {
1854 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1855 		    __func__);
1856 		goto fail1;
1857 	}
1858 	bus_dmamap_unload(ring->data_dmat, data->map);
1859 
1860 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1861 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1862 	if (error != 0 && error != EFBIG) {
1863 		device_printf(sc->sc_dev,
1864 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1865 		m_freem(m1);
1866 
1867 		/* Try to reload the old mbuf. */
1868 		error = bus_dmamap_load(ring->data_dmat, data->map,
1869 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1870 		    &paddr, BUS_DMA_NOWAIT);
1871 		if (error != 0 && error != EFBIG) {
1872 			panic("%s: could not load old RX mbuf", __func__);
1873 		}
1874 		/* Physical address may have changed. */
1875 		ring->desc[ring->cur] = htole32(paddr);
1876 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1877 		    BUS_DMASYNC_PREWRITE);
1878 		goto fail1;
1879 	}
1880 
1881 	m = data->m;
1882 	data->m = m1;
1883 	/* Update RX descriptor. */
1884 	ring->desc[ring->cur] = htole32(paddr);
1885 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1886 	    BUS_DMASYNC_PREWRITE);
1887 
1888 	/* Finalize mbuf. */
1889 	m->m_pkthdr.rcvif = ifp;
1890 	m->m_data = (caddr_t)(head + 1);
1891 	m->m_pkthdr.len = m->m_len = len;
1892 
1893 	/* Grab a reference to the source node. */
1894 	wh = mtod(m, struct ieee80211_frame *);
1895 
1896 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1897 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
1898 		/* Check whether decryption was successful or not. */
1899 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1900 			DPRINTF(sc, WPI_DEBUG_RECV,
1901 			    "CCMP decryption failed 0x%x\n", flags);
1902 			goto fail2;
1903 		}
1904 		m->m_flags |= M_WEP;
1905 	}
1906 
1907 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1908 
1909 	if (ieee80211_radiotap_active(ic)) {
1910 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1911 
1912 		tap->wr_flags = 0;
1913 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1914 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1915 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
1916 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
1917 		tap->wr_tsft = tail->tstamp;
1918 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1919 		tap->wr_rate = plcp2rate(head->plcp);
1920 	}
1921 
1922 	WPI_UNLOCK(sc);
1923 
1924 	/* Send the frame to the 802.11 layer. */
1925 	if (ni != NULL) {
1926 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
1927 		/* Node is no longer needed. */
1928 		ieee80211_free_node(ni);
1929 	} else
1930 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
1931 
1932 	WPI_LOCK(sc);
1933 
1934 	return;
1935 
1936 fail2:	m_freem(m);
1937 
1938 fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1939 }
1940 
1941 static void
1942 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1943     struct wpi_rx_data *data)
1944 {
1945 	/* Ignore */
1946 }
1947 
1948 static void
1949 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1950 {
1951 	struct ifnet *ifp = sc->sc_ifp;
1952 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1953 	struct wpi_tx_data *data = &ring->data[desc->idx];
1954 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1955 	struct mbuf *m;
1956 	struct ieee80211_node *ni;
1957 	struct ieee80211vap *vap;
1958 	struct ieee80211com *ic;
1959 	uint32_t status = le32toh(stat->status);
1960 	int ackfailcnt = stat->ackfailcnt / 2;	/* wpi_mrr_setup() */
1961 
1962 	KASSERT(data->ni != NULL, ("no node"));
1963 	KASSERT(data->m != NULL, ("no mbuf"));
1964 
1965 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1966 
1967 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1968 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1969 	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1970 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1971 
1972 	/* Unmap and free mbuf. */
1973 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1974 	bus_dmamap_unload(ring->data_dmat, data->map);
1975 	m = data->m, data->m = NULL;
1976 	ni = data->ni, data->ni = NULL;
1977 	vap = ni->ni_vap;
1978 	ic = vap->iv_ic;
1979 
1980 	/*
1981 	 * Update rate control statistics for the node.
1982 	 */
1983 	if ((status & 0xff) != 1) {
1984 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1985 		ieee80211_ratectl_tx_complete(vap, ni,
1986 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1987 	} else {
1988 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1989 		ieee80211_ratectl_tx_complete(vap, ni,
1990 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1991 	}
1992 
1993 	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1994 
1995 	WPI_TXQ_STATE_LOCK(sc);
1996 	ring->queued -= 1;
1997 	if (ring->queued > 0) {
1998 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
1999 
2000 		if (sc->qfullmsk != 0 &&
2001 		    ring->queued < WPI_TX_RING_LOMARK) {
2002 			sc->qfullmsk &= ~(1 << ring->qid);
2003 			IF_LOCK(&ifp->if_snd);
2004 			if (sc->qfullmsk == 0 &&
2005 			    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2006 				ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2007 				IF_UNLOCK(&ifp->if_snd);
2008 				ieee80211_runtask(ic, &sc->sc_start_task);
2009 			} else
2010 				IF_UNLOCK(&ifp->if_snd);
2011 		}
2012 	} else
2013 		callout_stop(&sc->tx_timeout);
2014 	WPI_TXQ_STATE_UNLOCK(sc);
2015 
2016 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2017 }
2018 
2019 /*
2020  * Process a "command done" firmware notification.  This is where we wakeup
2021  * processes waiting for a synchronous command completion.
2022  */
2023 static void
2024 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2025 {
2026 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2027 	struct wpi_tx_data *data;
2028 
2029 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2030 				   "type %s len %d\n", desc->qid, desc->idx,
2031 				   desc->flags, wpi_cmd_str(desc->type),
2032 				   le32toh(desc->len));
2033 
2034 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2035 		return;	/* Not a command ack. */
2036 
2037 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2038 
2039 	data = &ring->data[desc->idx];
2040 
2041 	/* If the command was mapped in an mbuf, free it. */
2042 	if (data->m != NULL) {
2043 		bus_dmamap_sync(ring->data_dmat, data->map,
2044 		    BUS_DMASYNC_POSTWRITE);
2045 		bus_dmamap_unload(ring->data_dmat, data->map);
2046 		m_freem(data->m);
2047 		data->m = NULL;
2048 	}
2049 
2050 	wakeup(&ring->cmd[desc->idx]);
2051 }
2052 
2053 static void
2054 wpi_notif_intr(struct wpi_softc *sc)
2055 {
2056 	struct ifnet *ifp = sc->sc_ifp;
2057 	struct ieee80211com *ic = ifp->if_l2com;
2058 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2059 	uint32_t hw;
2060 
2061 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2062 	    BUS_DMASYNC_POSTREAD);
2063 
2064 	hw = le32toh(sc->shared->next);
2065 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2066 
2067 	while (sc->rxq.cur != hw) {
2068 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2069 
2070 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2071 		struct wpi_rx_desc *desc;
2072 
2073 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2074 		    BUS_DMASYNC_POSTREAD);
2075 		desc = mtod(data->m, struct wpi_rx_desc *);
2076 
2077 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2078 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2079 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2080 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2081 
2082 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2083 			/* Reply to a command. */
2084 			wpi_cmd_done(sc, desc);
2085 		}
2086 
2087 		switch (desc->type) {
2088 		case WPI_RX_DONE:
2089 			/* An 802.11 frame has been received. */
2090 			wpi_rx_done(sc, desc, data);
2091 
2092 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2093 				/* wpi_stop() was called. */
2094 				return;
2095 			}
2096 
2097 			break;
2098 
2099 		case WPI_TX_DONE:
2100 			/* An 802.11 frame has been transmitted. */
2101 			wpi_tx_done(sc, desc);
2102 			break;
2103 
2104 		case WPI_RX_STATISTICS:
2105 		case WPI_BEACON_STATISTICS:
2106 			wpi_rx_statistics(sc, desc, data);
2107 			break;
2108 
2109 		case WPI_BEACON_MISSED:
2110 		{
2111 			struct wpi_beacon_missed *miss =
2112 			    (struct wpi_beacon_missed *)(desc + 1);
2113 			uint32_t misses;
2114 
2115 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2116 			    BUS_DMASYNC_POSTREAD);
2117 			misses = le32toh(miss->consecutive);
2118 
2119 			DPRINTF(sc, WPI_DEBUG_STATE,
2120 			    "%s: beacons missed %d/%d\n", __func__, misses,
2121 			    le32toh(miss->total));
2122 
2123 			if (vap->iv_state == IEEE80211_S_RUN &&
2124 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0 &&
2125 			    misses >= vap->iv_bmissthreshold)
2126 				ieee80211_beacon_miss(ic);
2127 
2128 			break;
2129 		}
2130 		case WPI_UC_READY:
2131 		{
2132 			struct wpi_ucode_info *uc =
2133 			    (struct wpi_ucode_info *)(desc + 1);
2134 
2135 			/* The microcontroller is ready. */
2136 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2137 			    BUS_DMASYNC_POSTREAD);
2138 			DPRINTF(sc, WPI_DEBUG_RESET,
2139 			    "microcode alive notification version=%d.%d "
2140 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2141 			    uc->subtype, le32toh(uc->valid));
2142 
2143 			if (le32toh(uc->valid) != 1) {
2144 				device_printf(sc->sc_dev,
2145 				    "microcontroller initialization failed\n");
2146 				wpi_stop_locked(sc);
2147 			}
2148 			/* Save the address of the error log in SRAM. */
2149 			sc->errptr = le32toh(uc->errptr);
2150 			break;
2151 		}
2152 		case WPI_STATE_CHANGED:
2153 		{
2154 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2155 			    BUS_DMASYNC_POSTREAD);
2156 
2157 			uint32_t *status = (uint32_t *)(desc + 1);
2158 
2159 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2160 			    le32toh(*status));
2161 
2162 			if (le32toh(*status) & 1) {
2163 				WPI_NT_LOCK(sc);
2164 				wpi_clear_node_table(sc);
2165 				WPI_NT_UNLOCK(sc);
2166 				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2167 				return;
2168 			}
2169 			break;
2170 		}
2171 		case WPI_START_SCAN:
2172 		{
2173 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2174 			    BUS_DMASYNC_POSTREAD);
2175 #ifdef WPI_DEBUG
2176 			struct wpi_start_scan *scan =
2177 			    (struct wpi_start_scan *)(desc + 1);
2178 			DPRINTF(sc, WPI_DEBUG_SCAN,
2179 			    "%s: scanning channel %d status %x\n",
2180 			    __func__, scan->chan, le32toh(scan->status));
2181 #endif
2182 			break;
2183 		}
2184 		case WPI_STOP_SCAN:
2185 		{
2186 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2187 			    BUS_DMASYNC_POSTREAD);
2188 #ifdef WPI_DEBUG
2189 			struct wpi_stop_scan *scan =
2190 			    (struct wpi_stop_scan *)(desc + 1);
2191 			DPRINTF(sc, WPI_DEBUG_SCAN,
2192 			    "scan finished nchan=%d status=%d chan=%d\n",
2193 			    scan->nchan, scan->status, scan->chan);
2194 #endif
2195 			WPI_RXON_LOCK(sc);
2196 			callout_stop(&sc->scan_timeout);
2197 			WPI_RXON_UNLOCK(sc);
2198 			ieee80211_scan_next(vap);
2199 			break;
2200 		}
2201 		}
2202 
2203 		if (sc->rxq.cur % 8 == 0) {
2204 			/* Tell the firmware what we have processed. */
2205 			wpi_update_rx_ring(sc);
2206 		}
2207 	}
2208 }
2209 
2210 /*
2211  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2212  * from power-down sleep mode.
2213  */
2214 static void
2215 wpi_wakeup_intr(struct wpi_softc *sc)
2216 {
2217 	int qid;
2218 
2219 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2220 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2221 
2222 	/* Wakeup RX and TX rings. */
2223 	if (sc->rxq.update) {
2224 		sc->rxq.update = 0;
2225 		wpi_update_rx_ring(sc);
2226 	}
2227 	WPI_TXQ_LOCK(sc);
2228 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2229 		struct wpi_tx_ring *ring = &sc->txq[qid];
2230 
2231 		if (ring->update) {
2232 			ring->update = 0;
2233 			wpi_update_tx_ring(sc, ring);
2234 		}
2235 	}
2236 	WPI_TXQ_UNLOCK(sc);
2237 
2238 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2239 }
2240 
2241 /*
2242  * This function prints firmware registers
2243  */
2244 #ifdef WPI_DEBUG
2245 static void
2246 wpi_debug_registers(struct wpi_softc *sc)
2247 {
2248 #define COUNTOF(array) (sizeof(array) / sizeof(array[0]))
2249 	int i;
2250 	static const uint32_t csr_tbl[] = {
2251 		WPI_HW_IF_CONFIG,
2252 		WPI_INT,
2253 		WPI_INT_MASK,
2254 		WPI_FH_INT,
2255 		WPI_GPIO_IN,
2256 		WPI_RESET,
2257 		WPI_GP_CNTRL,
2258 		WPI_EEPROM,
2259 		WPI_EEPROM_GP,
2260 		WPI_GIO,
2261 		WPI_UCODE_GP1,
2262 		WPI_UCODE_GP2,
2263 		WPI_GIO_CHICKEN,
2264 		WPI_ANA_PLL,
2265 		WPI_DBG_HPET_MEM,
2266 	};
2267 	static const uint32_t prph_tbl[] = {
2268 		WPI_APMG_CLK_CTRL,
2269 		WPI_APMG_PS,
2270 		WPI_APMG_PCI_STT,
2271 		WPI_APMG_RFKILL,
2272 	};
2273 
2274 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2275 
2276 	for (i = 0; i <  COUNTOF(csr_tbl); i++) {
2277 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2278 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2279 
2280 		if ((i + 1) % 2 == 0)
2281 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2282 	}
2283 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2284 
2285 	if (wpi_nic_lock(sc) == 0) {
2286 		for (i = 0; i < COUNTOF(prph_tbl); i++) {
2287 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2288 			    wpi_get_prph_string(prph_tbl[i]),
2289 			    wpi_prph_read(sc, prph_tbl[i]));
2290 
2291 			if ((i + 1) % 2 == 0)
2292 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2293 		}
2294 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2295 		wpi_nic_unlock(sc);
2296 	} else {
2297 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2298 		    "Cannot access internal registers.\n");
2299 	}
2300 #undef COUNTOF
2301 }
2302 #endif
2303 
2304 /*
2305  * Dump the error log of the firmware when a firmware panic occurs.  Although
2306  * we can't debug the firmware because it is neither open source nor free, it
2307  * can help us to identify certain classes of problems.
2308  */
2309 static void
2310 wpi_fatal_intr(struct wpi_softc *sc)
2311 {
2312 	struct wpi_fw_dump dump;
2313 	uint32_t i, offset, count;
2314 	const uint32_t size_errmsg =
2315 	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2316 
2317 	/* Check that the error log address is valid. */
2318 	if (sc->errptr < WPI_FW_DATA_BASE ||
2319 	    sc->errptr + sizeof (dump) >
2320 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2321 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2322 		    sc->errptr);
2323 		return;
2324 	}
2325 	if (wpi_nic_lock(sc) != 0) {
2326 		printf("%s: could not read firmware error log\n", __func__);
2327 		return;
2328 	}
2329 	/* Read number of entries in the log. */
2330 	count = wpi_mem_read(sc, sc->errptr);
2331 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2332 		printf("%s: invalid count field (count = %u)\n", __func__,
2333 		    count);
2334 		wpi_nic_unlock(sc);
2335 		return;
2336 	}
2337 	/* Skip "count" field. */
2338 	offset = sc->errptr + sizeof (uint32_t);
2339 	printf("firmware error log (count = %u):\n", count);
2340 	for (i = 0; i < count; i++) {
2341 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2342 		    sizeof (dump) / sizeof (uint32_t));
2343 
2344 		printf("  error type = \"%s\" (0x%08X)\n",
2345 		    (dump.desc < size_errmsg) ?
2346 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2347 		    dump.desc);
2348 		printf("  error data      = 0x%08X\n",
2349 		    dump.data);
2350 		printf("  branch link     = 0x%08X%08X\n",
2351 		    dump.blink[0], dump.blink[1]);
2352 		printf("  interrupt link  = 0x%08X%08X\n",
2353 		    dump.ilink[0], dump.ilink[1]);
2354 		printf("  time            = %u\n", dump.time);
2355 
2356 		offset += sizeof (dump);
2357 	}
2358 	wpi_nic_unlock(sc);
2359 	/* Dump driver status (TX and RX rings) while we're here. */
2360 	printf("driver status:\n");
2361 	WPI_TXQ_LOCK(sc);
2362 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2363 		struct wpi_tx_ring *ring = &sc->txq[i];
2364 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2365 		    i, ring->qid, ring->cur, ring->queued);
2366 	}
2367 	WPI_TXQ_UNLOCK(sc);
2368 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2369 }
2370 
2371 static void
2372 wpi_intr(void *arg)
2373 {
2374 	struct wpi_softc *sc = arg;
2375 	struct ifnet *ifp = sc->sc_ifp;
2376 	uint32_t r1, r2;
2377 
2378 	WPI_LOCK(sc);
2379 
2380 	/* Disable interrupts. */
2381 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2382 
2383 	r1 = WPI_READ(sc, WPI_INT);
2384 
2385 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2386 		goto end;	/* Hardware gone! */
2387 
2388 	r2 = WPI_READ(sc, WPI_FH_INT);
2389 
2390 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2391 	    r1, r2);
2392 
2393 	if (r1 == 0 && r2 == 0)
2394 		goto done;	/* Interrupt not for us. */
2395 
2396 	/* Acknowledge interrupts. */
2397 	WPI_WRITE(sc, WPI_INT, r1);
2398 	WPI_WRITE(sc, WPI_FH_INT, r2);
2399 
2400 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2401 		device_printf(sc->sc_dev, "fatal firmware error\n");
2402 #ifdef WPI_DEBUG
2403 		wpi_debug_registers(sc);
2404 #endif
2405 		wpi_fatal_intr(sc);
2406 		DPRINTF(sc, WPI_DEBUG_HW,
2407 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2408 		    "(Hardware Error)");
2409 		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2410 		goto end;
2411 	}
2412 
2413 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2414 	    (r2 & WPI_FH_INT_RX))
2415 		wpi_notif_intr(sc);
2416 
2417 	if (r1 & WPI_INT_ALIVE)
2418 		wakeup(sc);	/* Firmware is alive. */
2419 
2420 	if (r1 & WPI_INT_WAKEUP)
2421 		wpi_wakeup_intr(sc);
2422 
2423 done:
2424 	/* Re-enable interrupts. */
2425 	if (ifp->if_flags & IFF_UP)
2426 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2427 
2428 end:	WPI_UNLOCK(sc);
2429 }
2430 
2431 static int
2432 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2433 {
2434 	struct ifnet *ifp = sc->sc_ifp;
2435 	struct ieee80211_frame *wh;
2436 	struct wpi_tx_cmd *cmd;
2437 	struct wpi_tx_data *data;
2438 	struct wpi_tx_desc *desc;
2439 	struct wpi_tx_ring *ring;
2440 	struct mbuf *m1;
2441 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2442 	int error, i, hdrlen, nsegs, totlen, pad;
2443 
2444 	WPI_TXQ_LOCK(sc);
2445 
2446 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2447 
2448 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2449 
2450 	if (sc->txq_active == 0) {
2451 		/* wpi_stop() was called */
2452 		error = ENETDOWN;
2453 		goto fail;
2454 	}
2455 
2456 	wh = mtod(buf->m, struct ieee80211_frame *);
2457 	hdrlen = ieee80211_anyhdrsize(wh);
2458 	totlen = buf->m->m_pkthdr.len;
2459 
2460 	if (hdrlen & 3) {
2461 		/* First segment length must be a multiple of 4. */
2462 		pad = 4 - (hdrlen & 3);
2463 	} else
2464 		pad = 0;
2465 
2466 	ring = &sc->txq[buf->ac];
2467 	desc = &ring->desc[ring->cur];
2468 	data = &ring->data[ring->cur];
2469 
2470 	/* Prepare TX firmware command. */
2471 	cmd = &ring->cmd[ring->cur];
2472 	cmd->code = buf->code;
2473 	cmd->flags = 0;
2474 	cmd->qid = ring->qid;
2475 	cmd->idx = ring->cur;
2476 
2477 	memcpy(cmd->data, buf->data, buf->size);
2478 
2479 	/* Save and trim IEEE802.11 header. */
2480 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2481 	m_adj(buf->m, hdrlen);
2482 
2483 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2484 	    segs, &nsegs, BUS_DMA_NOWAIT);
2485 	if (error != 0 && error != EFBIG) {
2486 		device_printf(sc->sc_dev,
2487 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2488 		goto fail;
2489 	}
2490 	if (error != 0) {
2491 		/* Too many DMA segments, linearize mbuf. */
2492 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2493 		if (m1 == NULL) {
2494 			device_printf(sc->sc_dev,
2495 			    "%s: could not defrag mbuf\n", __func__);
2496 			error = ENOBUFS;
2497 			goto fail;
2498 		}
2499 		buf->m = m1;
2500 
2501 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2502 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2503 		if (error != 0) {
2504 			device_printf(sc->sc_dev,
2505 			    "%s: can't map mbuf (error %d)\n", __func__,
2506 			    error);
2507 			goto fail;
2508 		}
2509 	}
2510 
2511 	KASSERT(nsegs < WPI_MAX_SCATTER,
2512 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2513 	     nsegs, WPI_MAX_SCATTER));
2514 
2515 	data->m = buf->m;
2516 	data->ni = buf->ni;
2517 
2518 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2519 	    __func__, ring->qid, ring->cur, totlen, nsegs);
2520 
2521 	/* Fill TX descriptor. */
2522 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2523 	/* First DMA segment is used by the TX command. */
2524 	desc->segs[0].addr = htole32(data->cmd_paddr);
2525 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2526 	/* Other DMA segments are for data payload. */
2527 	seg = &segs[0];
2528 	for (i = 1; i <= nsegs; i++) {
2529 		desc->segs[i].addr = htole32(seg->ds_addr);
2530 		desc->segs[i].len  = htole32(seg->ds_len);
2531 		seg++;
2532 	}
2533 
2534 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2535 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2536 	    BUS_DMASYNC_PREWRITE);
2537 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2538 	    BUS_DMASYNC_PREWRITE);
2539 
2540 	/* Kick TX ring. */
2541 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2542 	wpi_update_tx_ring(sc, ring);
2543 
2544 	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2545 		/* Mark TX ring as full if we reach a certain threshold. */
2546 		WPI_TXQ_STATE_LOCK(sc);
2547 		if (++ring->queued > WPI_TX_RING_HIMARK) {
2548 			sc->qfullmsk |= 1 << ring->qid;
2549 
2550 			IF_LOCK(&ifp->if_snd);
2551 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2552 			IF_UNLOCK(&ifp->if_snd);
2553 		}
2554 
2555 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2556 		WPI_TXQ_STATE_UNLOCK(sc);
2557 	}
2558 
2559 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2560 
2561 	WPI_TXQ_UNLOCK(sc);
2562 
2563 	return 0;
2564 
2565 fail:	m_freem(buf->m);
2566 
2567 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2568 
2569 	WPI_TXQ_UNLOCK(sc);
2570 
2571 	return error;
2572 }
2573 
2574 /*
2575  * Construct the data packet for a transmit buffer.
2576  */
2577 static int
2578 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2579 {
2580 	const struct ieee80211_txparam *tp;
2581 	struct ieee80211vap *vap = ni->ni_vap;
2582 	struct ieee80211com *ic = ni->ni_ic;
2583 	struct wpi_node *wn = WPI_NODE(ni);
2584 	struct ieee80211_channel *chan;
2585 	struct ieee80211_frame *wh;
2586 	struct ieee80211_key *k = NULL;
2587 	struct wpi_buf tx_data;
2588 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2589 	uint32_t flags;
2590 	uint16_t qos;
2591 	uint8_t tid, type;
2592 	int ac, error, swcrypt, rate, ismcast, totlen;
2593 
2594 	wh = mtod(m, struct ieee80211_frame *);
2595 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2596 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2597 
2598 	/* Select EDCA Access Category and TX ring for this frame. */
2599 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2600  		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2601 		tid = qos & IEEE80211_QOS_TID;
2602 	} else {
2603 		qos = 0;
2604 		tid = 0;
2605 	}
2606 	ac = M_WME_GETAC(m);
2607 
2608 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2609 		ni->ni_chan : ic->ic_curchan;
2610 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2611 
2612 	/* Choose a TX rate index. */
2613 	if (type == IEEE80211_FC0_TYPE_MGT)
2614 		rate = tp->mgmtrate;
2615 	else if (ismcast)
2616 		rate = tp->mcastrate;
2617 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2618 		rate = tp->ucastrate;
2619 	else if (m->m_flags & M_EAPOL)
2620 		rate = tp->mgmtrate;
2621 	else {
2622 		/* XXX pass pktlen */
2623 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2624 		rate = ni->ni_txrate;
2625 	}
2626 
2627 	/* Encrypt the frame if need be. */
2628 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2629 		/* Retrieve key for TX. */
2630 		k = ieee80211_crypto_encap(ni, m);
2631 		if (k == NULL) {
2632 			error = ENOBUFS;
2633 			goto fail;
2634 		}
2635 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2636 
2637 		/* 802.11 header may have moved. */
2638 		wh = mtod(m, struct ieee80211_frame *);
2639 	}
2640 	totlen = m->m_pkthdr.len;
2641 
2642 	if (ieee80211_radiotap_active_vap(vap)) {
2643 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2644 
2645 		tap->wt_flags = 0;
2646 		tap->wt_rate = rate;
2647 		if (k != NULL)
2648 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2649 
2650 		ieee80211_radiotap_tx(vap, m);
2651 	}
2652 
2653 	flags = 0;
2654 	if (!ismcast) {
2655 		/* Unicast frame, check if an ACK is expected. */
2656 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2657 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2658 			flags |= WPI_TX_NEED_ACK;
2659 	}
2660 
2661 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2662 		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2663 
2664 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2665 	if (!ismcast) {
2666 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2667 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2668 			flags |= WPI_TX_NEED_RTS;
2669 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2670 		    WPI_RATE_IS_OFDM(rate)) {
2671 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2672 				flags |= WPI_TX_NEED_CTS;
2673 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2674 				flags |= WPI_TX_NEED_RTS;
2675 		}
2676 
2677 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2678 			flags |= WPI_TX_FULL_TXOP;
2679 	}
2680 
2681 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2682 	if (type == IEEE80211_FC0_TYPE_MGT) {
2683 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2684 
2685 		/* Tell HW to set timestamp in probe responses. */
2686 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2687 			flags |= WPI_TX_INSERT_TSTAMP;
2688 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2689 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2690 			tx->timeout = htole16(3);
2691 		else
2692 			tx->timeout = htole16(2);
2693 	}
2694 
2695 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2696 		tx->id = WPI_ID_BROADCAST;
2697 	else {
2698 		if (wn->id == WPI_ID_UNDEFINED) {
2699 			device_printf(sc->sc_dev,
2700 			    "%s: undefined node id\n", __func__);
2701 			error = EINVAL;
2702 			goto fail;
2703 		}
2704 
2705 		tx->id = wn->id;
2706 	}
2707 
2708 	if (type != IEEE80211_FC0_TYPE_MGT)
2709 		tx->data_ntries = tp->maxretry;
2710 
2711 	if (k != NULL && !swcrypt) {
2712 		switch (k->wk_cipher->ic_cipher) {
2713 		case IEEE80211_CIPHER_AES_CCM:
2714 			tx->security = WPI_CIPHER_CCMP;
2715 			break;
2716 
2717 		default:
2718 			break;
2719 		}
2720 
2721 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2722 	}
2723 
2724 	tx->len = htole16(totlen);
2725 	tx->flags = htole32(flags);
2726 	tx->plcp = rate2plcp(rate);
2727 	tx->tid = tid;
2728 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2729 	tx->ofdm_mask = 0xff;
2730 	tx->cck_mask = 0x0f;
2731 	tx->rts_ntries = 7;
2732 
2733 	tx_data.ni = ni;
2734 	tx_data.m = m;
2735 	tx_data.size = sizeof(struct wpi_cmd_data);
2736 	tx_data.code = WPI_CMD_TX_DATA;
2737 	tx_data.ac = ac;
2738 
2739 	return wpi_cmd2(sc, &tx_data);
2740 
2741 fail:	m_freem(m);
2742 	return error;
2743 }
2744 
2745 static int
2746 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2747     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2748 {
2749 	struct ieee80211vap *vap = ni->ni_vap;
2750 	struct ieee80211_key *k = NULL;
2751 	struct ieee80211_frame *wh;
2752 	struct wpi_buf tx_data;
2753 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2754 	uint32_t flags;
2755 	uint8_t type;
2756 	int ac, rate, swcrypt, totlen;
2757 
2758 	wh = mtod(m, struct ieee80211_frame *);
2759 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2760 
2761 	ac = params->ibp_pri & 3;
2762 
2763 	/* Choose a TX rate index. */
2764 	rate = params->ibp_rate0;
2765 
2766 	flags = 0;
2767 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2768 		flags |= WPI_TX_NEED_ACK;
2769 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2770 		flags |= WPI_TX_NEED_RTS;
2771 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2772 		flags |= WPI_TX_NEED_CTS;
2773 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2774 		flags |= WPI_TX_FULL_TXOP;
2775 
2776 	/* Encrypt the frame if need be. */
2777 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2778 		/* Retrieve key for TX. */
2779 		k = ieee80211_crypto_encap(ni, m);
2780 		if (k == NULL) {
2781 			m_freem(m);
2782 			return ENOBUFS;
2783 		}
2784 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2785 
2786 		/* 802.11 header may have moved. */
2787 		wh = mtod(m, struct ieee80211_frame *);
2788 	}
2789 	totlen = m->m_pkthdr.len;
2790 
2791 	if (ieee80211_radiotap_active_vap(vap)) {
2792 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2793 
2794 		tap->wt_flags = 0;
2795 		tap->wt_rate = rate;
2796 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2797 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2798 
2799 		ieee80211_radiotap_tx(vap, m);
2800 	}
2801 
2802 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2803 	if (type == IEEE80211_FC0_TYPE_MGT) {
2804 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2805 
2806 		/* Tell HW to set timestamp in probe responses. */
2807 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2808 			flags |= WPI_TX_INSERT_TSTAMP;
2809 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2810 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2811 			tx->timeout = htole16(3);
2812 		else
2813 			tx->timeout = htole16(2);
2814 	}
2815 
2816 	if (k != NULL && !swcrypt) {
2817 		switch (k->wk_cipher->ic_cipher) {
2818 		case IEEE80211_CIPHER_AES_CCM:
2819 			tx->security = WPI_CIPHER_CCMP;
2820 			break;
2821 
2822 		default:
2823 			break;
2824 		}
2825 
2826 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2827 	}
2828 
2829 	tx->len = htole16(totlen);
2830 	tx->flags = htole32(flags);
2831 	tx->plcp = rate2plcp(rate);
2832 	tx->id = WPI_ID_BROADCAST;
2833 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2834 	tx->rts_ntries = params->ibp_try1;
2835 	tx->data_ntries = params->ibp_try0;
2836 
2837 	tx_data.ni = ni;
2838 	tx_data.m = m;
2839 	tx_data.size = sizeof(struct wpi_cmd_data);
2840 	tx_data.code = WPI_CMD_TX_DATA;
2841 	tx_data.ac = ac;
2842 
2843 	return wpi_cmd2(sc, &tx_data);
2844 }
2845 
2846 static int
2847 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2848     const struct ieee80211_bpf_params *params)
2849 {
2850 	struct ieee80211com *ic = ni->ni_ic;
2851 	struct ifnet *ifp = ic->ic_ifp;
2852 	struct wpi_softc *sc = ifp->if_softc;
2853 	int error = 0;
2854 
2855 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2856 
2857 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2858 		ieee80211_free_node(ni);
2859 		m_freem(m);
2860 		return ENETDOWN;
2861 	}
2862 
2863 	WPI_TX_LOCK(sc);
2864 	if (params == NULL) {
2865 		/*
2866 		 * Legacy path; interpret frame contents to decide
2867 		 * precisely how to send the frame.
2868 		 */
2869 		error = wpi_tx_data(sc, m, ni);
2870 	} else {
2871 		/*
2872 		 * Caller supplied explicit parameters to use in
2873 		 * sending the frame.
2874 		 */
2875 		error = wpi_tx_data_raw(sc, m, ni, params);
2876 	}
2877 	WPI_TX_UNLOCK(sc);
2878 
2879 	if (error != 0) {
2880 		/* NB: m is reclaimed on tx failure */
2881 		ieee80211_free_node(ni);
2882 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2883 
2884 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2885 
2886 		return error;
2887 	}
2888 
2889 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2890 
2891 	return 0;
2892 }
2893 
2894 /**
2895  * Process data waiting to be sent on the IFNET output queue
2896  */
2897 static void
2898 wpi_start(struct ifnet *ifp)
2899 {
2900 	struct wpi_softc *sc = ifp->if_softc;
2901 	struct ieee80211_node *ni;
2902 	struct mbuf *m;
2903 
2904 	WPI_TX_LOCK(sc);
2905 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2906 
2907 	for (;;) {
2908 		IF_LOCK(&ifp->if_snd);
2909 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2910 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2911 			IF_UNLOCK(&ifp->if_snd);
2912 			break;
2913 		}
2914 		IF_UNLOCK(&ifp->if_snd);
2915 
2916 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2917 		if (m == NULL)
2918 			break;
2919 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2920 		if (wpi_tx_data(sc, m, ni) != 0) {
2921 			ieee80211_free_node(ni);
2922 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2923 		}
2924 	}
2925 
2926 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2927 	WPI_TX_UNLOCK(sc);
2928 }
2929 
2930 static void
2931 wpi_start_task(void *arg0, int pending)
2932 {
2933 	struct wpi_softc *sc = arg0;
2934 	struct ifnet *ifp = sc->sc_ifp;
2935 
2936 	wpi_start(ifp);
2937 }
2938 
2939 static void
2940 wpi_watchdog_rfkill(void *arg)
2941 {
2942 	struct wpi_softc *sc = arg;
2943 	struct ifnet *ifp = sc->sc_ifp;
2944 	struct ieee80211com *ic = ifp->if_l2com;
2945 
2946 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2947 
2948 	/* No need to lock firmware memory. */
2949 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2950 		/* Radio kill switch is still off. */
2951 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2952 		    sc);
2953 	} else
2954 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2955 }
2956 
2957 static void
2958 wpi_scan_timeout(void *arg)
2959 {
2960 	struct wpi_softc *sc = arg;
2961 	struct ifnet *ifp = sc->sc_ifp;
2962 
2963 	if_printf(ifp, "scan timeout\n");
2964 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2965 }
2966 
2967 static void
2968 wpi_tx_timeout(void *arg)
2969 {
2970 	struct wpi_softc *sc = arg;
2971 	struct ifnet *ifp = sc->sc_ifp;
2972 
2973 	if_printf(ifp, "device timeout\n");
2974 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2975 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2976 }
2977 
2978 static int
2979 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2980 {
2981 	struct wpi_softc *sc = ifp->if_softc;
2982 	struct ieee80211com *ic = ifp->if_l2com;
2983 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2984 	struct ifreq *ifr = (struct ifreq *) data;
2985 	int error = 0;
2986 
2987 	switch (cmd) {
2988 	case SIOCGIFADDR:
2989 		error = ether_ioctl(ifp, cmd, data);
2990 		break;
2991 	case SIOCSIFFLAGS:
2992 		if (ifp->if_flags & IFF_UP) {
2993 			wpi_init(sc);
2994 
2995 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
2996 			    vap != NULL)
2997 				ieee80211_stop(vap);
2998 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2999 			wpi_stop(sc);
3000 		break;
3001 	case SIOCGIFMEDIA:
3002 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3003 		break;
3004 	default:
3005 		error = EINVAL;
3006 		break;
3007 	}
3008 	return error;
3009 }
3010 
3011 /*
3012  * Send a command to the firmware.
3013  */
3014 static int
3015 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
3016     int async)
3017 {
3018 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3019 	struct wpi_tx_desc *desc;
3020 	struct wpi_tx_data *data;
3021 	struct wpi_tx_cmd *cmd;
3022 	struct mbuf *m;
3023 	bus_addr_t paddr;
3024 	int totlen, error;
3025 
3026 	WPI_TXQ_LOCK(sc);
3027 
3028 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3029 
3030 	if (sc->txq_active == 0) {
3031 		/* wpi_stop() was called */
3032 		error = 0;
3033 		goto fail;
3034 	}
3035 
3036 	if (async == 0)
3037 		WPI_LOCK_ASSERT(sc);
3038 
3039 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %zu async %d\n",
3040 	    __func__, wpi_cmd_str(code), size, async);
3041 
3042 	desc = &ring->desc[ring->cur];
3043 	data = &ring->data[ring->cur];
3044 	totlen = 4 + size;
3045 
3046 	if (size > sizeof cmd->data) {
3047 		/* Command is too large to fit in a descriptor. */
3048 		if (totlen > MCLBYTES) {
3049 			error = EINVAL;
3050 			goto fail;
3051 		}
3052 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3053 		if (m == NULL) {
3054 			error = ENOMEM;
3055 			goto fail;
3056 		}
3057 		cmd = mtod(m, struct wpi_tx_cmd *);
3058 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3059 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3060 		if (error != 0) {
3061 			m_freem(m);
3062 			goto fail;
3063 		}
3064 		data->m = m;
3065 	} else {
3066 		cmd = &ring->cmd[ring->cur];
3067 		paddr = data->cmd_paddr;
3068 	}
3069 
3070 	cmd->code = code;
3071 	cmd->flags = 0;
3072 	cmd->qid = ring->qid;
3073 	cmd->idx = ring->cur;
3074 	memcpy(cmd->data, buf, size);
3075 
3076 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3077 	desc->segs[0].addr = htole32(paddr);
3078 	desc->segs[0].len  = htole32(totlen);
3079 
3080 	if (size > sizeof cmd->data) {
3081 		bus_dmamap_sync(ring->data_dmat, data->map,
3082 		    BUS_DMASYNC_PREWRITE);
3083 	} else {
3084 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3085 		    BUS_DMASYNC_PREWRITE);
3086 	}
3087 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3088 	    BUS_DMASYNC_PREWRITE);
3089 
3090 	/* Kick command ring. */
3091 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3092 	wpi_update_tx_ring(sc, ring);
3093 
3094 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3095 
3096 	WPI_TXQ_UNLOCK(sc);
3097 
3098 	if (async)
3099 		return 0;
3100 
3101 	return mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3102 
3103 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3104 
3105 	WPI_TXQ_UNLOCK(sc);
3106 
3107 	return error;
3108 }
3109 
3110 /*
3111  * Configure HW multi-rate retries.
3112  */
3113 static int
3114 wpi_mrr_setup(struct wpi_softc *sc)
3115 {
3116 	struct ifnet *ifp = sc->sc_ifp;
3117 	struct ieee80211com *ic = ifp->if_l2com;
3118 	struct wpi_mrr_setup mrr;
3119 	int i, error;
3120 
3121 	/* CCK rates (not used with 802.11a). */
3122 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3123 		mrr.rates[i].flags = 0;
3124 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3125 		/* Fallback to the immediate lower CCK rate (if any.) */
3126 		mrr.rates[i].next =
3127 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3128 		/* Try one time at this rate before falling back to "next". */
3129 		mrr.rates[i].ntries = 1;
3130 	}
3131 	/* OFDM rates (not used with 802.11b). */
3132 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3133 		mrr.rates[i].flags = 0;
3134 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3135 		/* Fallback to the immediate lower rate (if any.) */
3136 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3137 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3138 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3139 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3140 		    i - 1;
3141 		/* Try one time at this rate before falling back to "next". */
3142 		mrr.rates[i].ntries = 1;
3143 	}
3144 	/* Setup MRR for control frames. */
3145 	mrr.which = htole32(WPI_MRR_CTL);
3146 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3147 	if (error != 0) {
3148 		device_printf(sc->sc_dev,
3149 		    "could not setup MRR for control frames\n");
3150 		return error;
3151 	}
3152 	/* Setup MRR for data frames. */
3153 	mrr.which = htole32(WPI_MRR_DATA);
3154 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3155 	if (error != 0) {
3156 		device_printf(sc->sc_dev,
3157 		    "could not setup MRR for data frames\n");
3158 		return error;
3159 	}
3160 	return 0;
3161 }
3162 
3163 static int
3164 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3165 {
3166 	struct ieee80211com *ic = ni->ni_ic;
3167 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3168 	struct wpi_node *wn = WPI_NODE(ni);
3169 	struct wpi_node_info node;
3170 	int error;
3171 
3172 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3173 
3174 	if (wn->id == WPI_ID_UNDEFINED)
3175 		return EINVAL;
3176 
3177 	memset(&node, 0, sizeof node);
3178 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3179 	node.id = wn->id;
3180 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3181 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3182 	node.action = htole32(WPI_ACTION_SET_RATE);
3183 	node.antenna = WPI_ANTENNA_BOTH;
3184 
3185 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3186 	    wn->id, ether_sprintf(ni->ni_macaddr));
3187 
3188 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3189 	if (error != 0) {
3190 		device_printf(sc->sc_dev,
3191 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3192 		    error);
3193 		return error;
3194 	}
3195 
3196 	if (wvp->wv_gtk != 0) {
3197 		error = wpi_set_global_keys(ni);
3198 		if (error != 0) {
3199 			device_printf(sc->sc_dev,
3200 			    "%s: error while setting global keys\n", __func__);
3201 			return ENXIO;
3202 		}
3203 	}
3204 
3205 	return 0;
3206 }
3207 
3208 /*
3209  * Broadcast node is used to send group-addressed and management frames.
3210  */
3211 static int
3212 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3213 {
3214 	struct ifnet *ifp = sc->sc_ifp;
3215 	struct ieee80211com *ic = ifp->if_l2com;
3216 	struct wpi_node_info node;
3217 
3218 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3219 
3220 	memset(&node, 0, sizeof node);
3221 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3222 	node.id = WPI_ID_BROADCAST;
3223 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3224 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3225 	node.action = htole32(WPI_ACTION_SET_RATE);
3226 	node.antenna = WPI_ANTENNA_BOTH;
3227 
3228 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3229 
3230 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3231 }
3232 
3233 static int
3234 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3235 {
3236 	struct wpi_node *wn = WPI_NODE(ni);
3237 	int error;
3238 
3239 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3240 
3241 	wn->id = wpi_add_node_entry_sta(sc);
3242 
3243 	if ((error = wpi_add_node(sc, ni)) != 0) {
3244 		wpi_del_node_entry(sc, wn->id);
3245 		wn->id = WPI_ID_UNDEFINED;
3246 		return error;
3247 	}
3248 
3249 	return 0;
3250 }
3251 
3252 static int
3253 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3254 {
3255 	struct wpi_node *wn = WPI_NODE(ni);
3256 	int error;
3257 
3258 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3259 	    ("the node %d was added before", wn->id));
3260 
3261 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3262 
3263 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3264 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3265 		return ENOMEM;
3266 	}
3267 
3268 	if ((error = wpi_add_node(sc, ni)) != 0) {
3269 		wpi_del_node_entry(sc, wn->id);
3270 		wn->id = WPI_ID_UNDEFINED;
3271 		return error;
3272 	}
3273 
3274 	return 0;
3275 }
3276 
3277 static void
3278 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3279 {
3280 	struct wpi_node *wn = WPI_NODE(ni);
3281 	struct wpi_cmd_del_node node;
3282 	int error;
3283 
3284 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3285 
3286 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3287 
3288 	memset(&node, 0, sizeof node);
3289 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3290 	node.count = 1;
3291 
3292 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3293 	    wn->id, ether_sprintf(ni->ni_macaddr));
3294 
3295 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3296 	if (error != 0) {
3297 		device_printf(sc->sc_dev,
3298 		    "%s: could not delete node %u, error %d\n", __func__,
3299 		    wn->id, error);
3300 	}
3301 }
3302 
3303 static int
3304 wpi_updateedca(struct ieee80211com *ic)
3305 {
3306 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3307 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3308 	struct wpi_edca_params cmd;
3309 	int aci, error;
3310 
3311 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3312 
3313 	memset(&cmd, 0, sizeof cmd);
3314 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3315 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3316 		const struct wmeParams *ac =
3317 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3318 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3319 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3320 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3321 		cmd.ac[aci].txoplimit =
3322 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3323 
3324 		DPRINTF(sc, WPI_DEBUG_EDCA,
3325 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3326 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3327 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3328 		    cmd.ac[aci].txoplimit);
3329 	}
3330 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3331 
3332 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3333 
3334 	return error;
3335 #undef WPI_EXP2
3336 }
3337 
3338 static void
3339 wpi_set_promisc(struct wpi_softc *sc)
3340 {
3341 	struct ifnet *ifp = sc->sc_ifp;
3342 	struct ieee80211com *ic = ifp->if_l2com;
3343 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3344 	uint32_t promisc_filter;
3345 
3346 	promisc_filter = WPI_FILTER_CTL;
3347 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3348 		promisc_filter |= WPI_FILTER_PROMISC;
3349 
3350 	if (ifp->if_flags & IFF_PROMISC)
3351 		sc->rxon.filter |= htole32(promisc_filter);
3352 	else
3353 		sc->rxon.filter &= ~htole32(promisc_filter);
3354 }
3355 
3356 static void
3357 wpi_update_promisc(struct ifnet *ifp)
3358 {
3359 	struct wpi_softc *sc = ifp->if_softc;
3360 
3361 	WPI_RXON_LOCK(sc);
3362 	wpi_set_promisc(sc);
3363 
3364 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3365 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3366 		    __func__);
3367 	}
3368 	WPI_RXON_UNLOCK(sc);
3369 }
3370 
3371 static void
3372 wpi_update_mcast(struct ifnet *ifp)
3373 {
3374 	/* Ignore */
3375 }
3376 
3377 static void
3378 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3379 {
3380 	struct wpi_cmd_led led;
3381 
3382 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3383 
3384 	led.which = which;
3385 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3386 	led.off = off;
3387 	led.on = on;
3388 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3389 }
3390 
3391 static int
3392 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3393 {
3394 	struct wpi_cmd_timing cmd;
3395 	uint64_t val, mod;
3396 
3397 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3398 
3399 	memset(&cmd, 0, sizeof cmd);
3400 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3401 	cmd.bintval = htole16(ni->ni_intval);
3402 	cmd.lintval = htole16(10);
3403 
3404 	/* Compute remaining time until next beacon. */
3405 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3406 	mod = le64toh(cmd.tstamp) % val;
3407 	cmd.binitval = htole32((uint32_t)(val - mod));
3408 
3409 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3410 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3411 
3412 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3413 }
3414 
3415 /*
3416  * This function is called periodically (every 60 seconds) to adjust output
3417  * power to temperature changes.
3418  */
3419 static void
3420 wpi_power_calibration(struct wpi_softc *sc)
3421 {
3422 	int temp;
3423 
3424 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3425 
3426 	/* Update sensor data. */
3427 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3428 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3429 
3430 	/* Sanity-check read value. */
3431 	if (temp < -260 || temp > 25) {
3432 		/* This can't be correct, ignore. */
3433 		DPRINTF(sc, WPI_DEBUG_TEMP,
3434 		    "out-of-range temperature reported: %d\n", temp);
3435 		return;
3436 	}
3437 
3438 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3439 
3440 	/* Adjust Tx power if need be. */
3441 	if (abs(temp - sc->temp) <= 6)
3442 		return;
3443 
3444 	sc->temp = temp;
3445 
3446 	if (wpi_set_txpower(sc, 1) != 0) {
3447 		/* just warn, too bad for the automatic calibration... */
3448 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3449 	}
3450 }
3451 
3452 /*
3453  * Set TX power for current channel.
3454  */
3455 static int
3456 wpi_set_txpower(struct wpi_softc *sc, int async)
3457 {
3458 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3459 	struct ieee80211_channel *ch;
3460 	struct wpi_power_group *group;
3461 	struct wpi_cmd_txpower cmd;
3462 	uint8_t chan;
3463 	int idx, i;
3464 
3465 	/* Retrieve current channel from last RXON. */
3466 	chan = sc->rxon.chan;
3467 	ch = &ic->ic_channels[chan];
3468 
3469 	/* Find the TX power group to which this channel belongs. */
3470 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3471 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3472 			if (chan <= group->chan)
3473 				break;
3474 	} else
3475 		group = &sc->groups[0];
3476 
3477 	memset(&cmd, 0, sizeof cmd);
3478 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3479 	cmd.chan = htole16(chan);
3480 
3481 	/* Set TX power for all OFDM and CCK rates. */
3482 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3483 		/* Retrieve TX power for this channel/rate. */
3484 		idx = wpi_get_power_index(sc, group, ch, i);
3485 
3486 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3487 
3488 		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3489 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3490 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3491 		} else {
3492 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3493 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3494 		}
3495 		DPRINTF(sc, WPI_DEBUG_TEMP,
3496 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3497 	}
3498 
3499 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3500 }
3501 
3502 /*
3503  * Determine Tx power index for a given channel/rate combination.
3504  * This takes into account the regulatory information from EEPROM and the
3505  * current temperature.
3506  */
3507 static int
3508 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3509     struct ieee80211_channel *c, int ridx)
3510 {
3511 /* Fixed-point arithmetic division using a n-bit fractional part. */
3512 #define fdivround(a, b, n)	\
3513 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3514 
3515 /* Linear interpolation. */
3516 #define interpolate(x, x1, y1, x2, y2, n)	\
3517 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3518 
3519 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3520 	struct wpi_power_sample *sample;
3521 	int pwr, idx;
3522 	u_int chan;
3523 
3524 	/* Get channel number. */
3525 	chan = ieee80211_chan2ieee(ic, c);
3526 
3527 	/* Default TX power is group maximum TX power minus 3dB. */
3528 	pwr = group->maxpwr / 2;
3529 
3530 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3531 	switch (ridx) {
3532 	case WPI_RIDX_OFDM36:
3533 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3534 		break;
3535 	case WPI_RIDX_OFDM48:
3536 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3537 		break;
3538 	case WPI_RIDX_OFDM54:
3539 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3540 		break;
3541 	}
3542 
3543 	/* Never exceed the channel maximum allowed TX power. */
3544 	pwr = min(pwr, sc->maxpwr[chan]);
3545 
3546 	/* Retrieve TX power index into gain tables from samples. */
3547 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3548 		if (pwr > sample[1].power)
3549 			break;
3550 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3551 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3552 	    sample[1].power, sample[1].index, 19);
3553 
3554 	/*-
3555 	 * Adjust power index based on current temperature:
3556 	 * - if cooler than factory-calibrated: decrease output power
3557 	 * - if warmer than factory-calibrated: increase output power
3558 	 */
3559 	idx -= (sc->temp - group->temp) * 11 / 100;
3560 
3561 	/* Decrease TX power for CCK rates (-5dB). */
3562 	if (ridx >= WPI_RIDX_CCK1)
3563 		idx += 10;
3564 
3565 	/* Make sure idx stays in a valid range. */
3566 	if (idx < 0)
3567 		return 0;
3568 	if (idx > WPI_MAX_PWR_INDEX)
3569 		return WPI_MAX_PWR_INDEX;
3570 	return idx;
3571 
3572 #undef interpolate
3573 #undef fdivround
3574 }
3575 
3576 /*
3577  * Set STA mode power saving level (between 0 and 5).
3578  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3579  */
3580 static int
3581 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3582 {
3583 	struct wpi_pmgt_cmd cmd;
3584 	const struct wpi_pmgt *pmgt;
3585 	uint32_t max, skip_dtim;
3586 	uint32_t reg;
3587 	int i;
3588 
3589 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3590 	    "%s: dtim=%d, level=%d, async=%d\n",
3591 	    __func__, dtim, level, async);
3592 
3593 	/* Select which PS parameters to use. */
3594 	if (dtim <= 10)
3595 		pmgt = &wpi_pmgt[0][level];
3596 	else
3597 		pmgt = &wpi_pmgt[1][level];
3598 
3599 	memset(&cmd, 0, sizeof cmd);
3600 	if (level != 0)	/* not CAM */
3601 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3602 	/* Retrieve PCIe Active State Power Management (ASPM). */
3603 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3604 	if (!(reg & 0x1))	/* L0s Entry disabled. */
3605 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3606 
3607 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3608 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3609 
3610 	if (dtim == 0) {
3611 		dtim = 1;
3612 		skip_dtim = 0;
3613 	} else
3614 		skip_dtim = pmgt->skip_dtim;
3615 
3616 	if (skip_dtim != 0) {
3617 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3618 		max = pmgt->intval[4];
3619 		if (max == (uint32_t)-1)
3620 			max = dtim * (skip_dtim + 1);
3621 		else if (max > dtim)
3622 			max = (max / dtim) * dtim;
3623 	} else
3624 		max = dtim;
3625 
3626 	for (i = 0; i < 5; i++)
3627 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3628 
3629 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3630 }
3631 
3632 static int
3633 wpi_send_btcoex(struct wpi_softc *sc)
3634 {
3635 	struct wpi_bluetooth cmd;
3636 
3637 	memset(&cmd, 0, sizeof cmd);
3638 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3639 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3640 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3641 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3642 	    __func__);
3643 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3644 }
3645 
3646 static int
3647 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3648 {
3649 	int error;
3650 
3651 	if (async)
3652 		WPI_RXON_LOCK_ASSERT(sc);
3653 
3654 	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3655 		struct wpi_assoc rxon_assoc;
3656 
3657 		rxon_assoc.flags = sc->rxon.flags;
3658 		rxon_assoc.filter = sc->rxon.filter;
3659 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3660 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3661 		rxon_assoc.reserved = 0;
3662 
3663 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3664 		    sizeof (struct wpi_assoc), async);
3665 		if (error != 0) {
3666 			device_printf(sc->sc_dev,
3667 			    "RXON_ASSOC command failed, error %d\n", error);
3668 			return error;
3669 		}
3670 	} else {
3671 		if (async) {
3672 			WPI_NT_LOCK(sc);
3673 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3674 			    sizeof (struct wpi_rxon), async);
3675 			if (error == 0)
3676 				wpi_clear_node_table(sc);
3677 			WPI_NT_UNLOCK(sc);
3678 		} else {
3679 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3680 			    sizeof (struct wpi_rxon), async);
3681 			if (error == 0)
3682 				wpi_clear_node_table(sc);
3683 		}
3684 
3685 		if (error != 0) {
3686 			device_printf(sc->sc_dev,
3687 			    "RXON command failed, error %d\n", error);
3688 			return error;
3689 		}
3690 
3691 		/* Add broadcast node. */
3692 		error = wpi_add_broadcast_node(sc, async);
3693 		if (error != 0) {
3694 			device_printf(sc->sc_dev,
3695 			    "could not add broadcast node, error %d\n", error);
3696 			return error;
3697 		}
3698 	}
3699 
3700 	/* Configuration has changed, set Tx power accordingly. */
3701 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3702 		device_printf(sc->sc_dev,
3703 		    "%s: could not set TX power, error %d\n", __func__, error);
3704 		return error;
3705 	}
3706 
3707 	return 0;
3708 }
3709 
3710 /**
3711  * Configure the card to listen to a particular channel, this transisions the
3712  * card in to being able to receive frames from remote devices.
3713  */
3714 static int
3715 wpi_config(struct wpi_softc *sc)
3716 {
3717 	struct ifnet *ifp = sc->sc_ifp;
3718 	struct ieee80211com *ic = ifp->if_l2com;
3719 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3720 	uint32_t flags;
3721 	int error;
3722 
3723 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3724 
3725 	/* Set power saving level to CAM during initialization. */
3726 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3727 		device_printf(sc->sc_dev,
3728 		    "%s: could not set power saving level\n", __func__);
3729 		return error;
3730 	}
3731 
3732 	/* Configure bluetooth coexistence. */
3733 	if ((error = wpi_send_btcoex(sc)) != 0) {
3734 		device_printf(sc->sc_dev,
3735 		    "could not configure bluetooth coexistence\n");
3736 		return error;
3737 	}
3738 
3739 	/* Configure adapter. */
3740 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3741 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3742 
3743 	/* Set default channel. */
3744 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3745 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3746 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3747 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3748 
3749 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3750 	switch (ic->ic_opmode) {
3751 	case IEEE80211_M_STA:
3752 		sc->rxon.mode = WPI_MODE_STA;
3753 		break;
3754 	case IEEE80211_M_IBSS:
3755 		sc->rxon.mode = WPI_MODE_IBSS;
3756 		sc->rxon.filter |= WPI_FILTER_BEACON;
3757 		break;
3758 	case IEEE80211_M_HOSTAP:
3759 		/* XXX workaround for beaconing */
3760 		sc->rxon.mode = WPI_MODE_IBSS;
3761 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3762 		break;
3763 	case IEEE80211_M_AHDEMO:
3764 		/* XXX workaround for passive channels selection */
3765 		sc->rxon.mode = WPI_MODE_HOSTAP;
3766 		break;
3767 	case IEEE80211_M_MONITOR:
3768 		sc->rxon.mode = WPI_MODE_MONITOR;
3769 		break;
3770 	default:
3771 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3772 		    ic->ic_opmode);
3773 		return EINVAL;
3774 	}
3775 	sc->rxon.filter = htole32(sc->rxon.filter);
3776 	wpi_set_promisc(sc);
3777 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3778 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3779 
3780 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3781 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3782 		    __func__);
3783 		return error;
3784 	}
3785 
3786 	/* Setup rate scalling. */
3787 	if ((error = wpi_mrr_setup(sc)) != 0) {
3788 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3789 		    error);
3790 		return error;
3791 	}
3792 
3793 	/* Disable beacon notifications (unused). */
3794 	flags = WPI_STATISTICS_BEACON_DISABLE;
3795 	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3796 	if (error != 0) {
3797 		device_printf(sc->sc_dev,
3798 		    "could not disable beacon statistics, error %d\n", error);
3799 		return error;
3800 	}
3801 
3802 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3803 
3804 	return 0;
3805 }
3806 
3807 static uint16_t
3808 wpi_get_active_dwell_time(struct wpi_softc *sc,
3809     struct ieee80211_channel *c, uint8_t n_probes)
3810 {
3811 	/* No channel? Default to 2GHz settings. */
3812 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3813 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3814 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3815 	}
3816 
3817 	/* 5GHz dwell time. */
3818 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3819 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3820 }
3821 
3822 /*
3823  * Limit the total dwell time to 85% of the beacon interval.
3824  *
3825  * Returns the dwell time in milliseconds.
3826  */
3827 static uint16_t
3828 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3829 {
3830 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3831 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3832 	int bintval = 0;
3833 
3834 	/* bintval is in TU (1.024mS) */
3835 	if (vap != NULL)
3836 		bintval = vap->iv_bss->ni_intval;
3837 
3838 	/*
3839 	 * If it's non-zero, we should calculate the minimum of
3840 	 * it and the DWELL_BASE.
3841 	 *
3842 	 * XXX Yes, the math should take into account that bintval
3843 	 * is 1.024mS, not 1mS..
3844 	 */
3845 	if (bintval > 0) {
3846 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3847 		    bintval);
3848 		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3849 	}
3850 
3851 	/* No association context? Default. */
3852 	return (WPI_PASSIVE_DWELL_BASE);
3853 }
3854 
3855 static uint16_t
3856 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3857 {
3858 	uint16_t passive;
3859 
3860 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3861 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3862 	else
3863 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3864 
3865 	/* Clamp to the beacon interval if we're associated. */
3866 	return (wpi_limit_dwell(sc, passive));
3867 }
3868 
3869 /*
3870  * Send a scan request to the firmware.
3871  */
3872 static int
3873 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3874 {
3875 	struct ifnet *ifp = sc->sc_ifp;
3876 	struct ieee80211com *ic = ifp->if_l2com;
3877 	struct ieee80211_scan_state *ss = ic->ic_scan;
3878 	struct ieee80211vap *vap = ss->ss_vap;
3879 	struct wpi_scan_hdr *hdr;
3880 	struct wpi_cmd_data *tx;
3881 	struct wpi_scan_essid *essids;
3882 	struct wpi_scan_chan *chan;
3883 	struct ieee80211_frame *wh;
3884 	struct ieee80211_rateset *rs;
3885 	uint16_t dwell_active, dwell_passive;
3886 	uint8_t *buf, *frm;
3887 	int buflen, error, i, nssid;
3888 
3889 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3890 
3891 	/*
3892 	 * We are absolutely not allowed to send a scan command when another
3893 	 * scan command is pending.
3894 	 */
3895 	if (callout_pending(&sc->scan_timeout)) {
3896 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3897 		    __func__);
3898 
3899 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3900 
3901 		return (EAGAIN);
3902 	}
3903 
3904 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3905 	if (buf == NULL) {
3906 		device_printf(sc->sc_dev,
3907 		    "%s: could not allocate buffer for scan command\n",
3908 		    __func__);
3909 		error = ENOMEM;
3910 		goto fail;
3911 	}
3912 	hdr = (struct wpi_scan_hdr *)buf;
3913 
3914 	/*
3915 	 * Move to the next channel if no packets are received within 10 msecs
3916 	 * after sending the probe request.
3917 	 */
3918 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3919 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3920 	/*
3921 	 * Max needs to be greater than active and passive and quiet!
3922 	 * It's also in microseconds!
3923 	 */
3924 	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3925 	hdr->pause_svc = htole32((4 << 24) |
3926 	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3927 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3928 
3929 	tx = (struct wpi_cmd_data *)(hdr + 1);
3930 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3931 	tx->id = WPI_ID_BROADCAST;
3932 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3933 
3934 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3935 		/* Send probe requests at 6Mbps. */
3936 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3937 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3938 	} else {
3939 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3940 		/* Send probe requests at 1Mbps. */
3941 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3942 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3943 	}
3944 
3945 	essids = (struct wpi_scan_essid *)(tx + 1);
3946 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3947 	for (i = 0; i < nssid; i++) {
3948 		essids[i].id = IEEE80211_ELEMID_SSID;
3949 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3950 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3951 #ifdef WPI_DEBUG
3952 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3953 			printf("Scanning Essid: ");
3954 			ieee80211_print_essid(essids[i].data, essids[i].len);
3955 			printf("\n");
3956 		}
3957 #endif
3958 	}
3959 
3960 	/*
3961 	 * Build a probe request frame.  Most of the following code is a
3962 	 * copy & paste of what is done in net80211.
3963 	 */
3964 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3965 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3966 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3967 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3968 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3969 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3970 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3971 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3972 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3973 
3974 	frm = (uint8_t *)(wh + 1);
3975 	frm = ieee80211_add_ssid(frm, NULL, 0);
3976 	frm = ieee80211_add_rates(frm, rs);
3977 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3978 		frm = ieee80211_add_xrates(frm, rs);
3979 
3980 	/* Set length of probe request. */
3981 	tx->len = htole16(frm - (uint8_t *)wh);
3982 
3983 	/*
3984 	 * Construct information about the channel that we
3985 	 * want to scan. The firmware expects this to be directly
3986 	 * after the scan probe request
3987 	 */
3988 	chan = (struct wpi_scan_chan *)frm;
3989 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3990 	chan->flags = 0;
3991 	if (nssid) {
3992 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3993 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3994 	} else
3995 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3996 
3997 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3998 		chan->flags |= WPI_CHAN_ACTIVE;
3999 
4000 	/*
4001 	 * Calculate the active/passive dwell times.
4002 	 */
4003 
4004 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4005 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4006 
4007 	/* Make sure they're valid. */
4008 	if (dwell_passive <= dwell_active)
4009 		dwell_passive = dwell_active + 1;
4010 
4011 	chan->active = htole16(dwell_active);
4012 	chan->passive = htole16(dwell_passive);
4013 
4014 	chan->dsp_gain = 0x6e;  /* Default level */
4015 
4016 	if (IEEE80211_IS_CHAN_5GHZ(c))
4017 		chan->rf_gain = 0x3b;
4018 	else
4019 		chan->rf_gain = 0x28;
4020 
4021 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4022 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4023 
4024 	hdr->nchan++;
4025 	chan++;
4026 
4027 	buflen = (uint8_t *)chan - buf;
4028 	hdr->len = htole16(buflen);
4029 
4030 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4031 	    hdr->nchan);
4032 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4033 	free(buf, M_DEVBUF);
4034 
4035 	if (error != 0)
4036 		goto fail;
4037 
4038 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4039 
4040 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4041 
4042 	return 0;
4043 
4044 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4045 
4046 	return error;
4047 }
4048 
4049 static int
4050 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4051 {
4052 	struct ieee80211com *ic = vap->iv_ic;
4053 	struct ieee80211_node *ni = vap->iv_bss;
4054 	int error;
4055 
4056 	WPI_RXON_LOCK(sc);
4057 
4058 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4059 
4060 	/* Update adapter configuration. */
4061 	sc->rxon.associd = 0;
4062 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4063 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4064 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4065 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4066 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4067 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4068 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4069 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4070 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4071 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4072 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4073 		sc->rxon.cck_mask  = 0;
4074 		sc->rxon.ofdm_mask = 0x15;
4075 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4076 		sc->rxon.cck_mask  = 0x03;
4077 		sc->rxon.ofdm_mask = 0;
4078 	} else {
4079 		/* Assume 802.11b/g. */
4080 		sc->rxon.cck_mask  = 0x0f;
4081 		sc->rxon.ofdm_mask = 0x15;
4082 	}
4083 
4084 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4085 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4086 	    sc->rxon.ofdm_mask);
4087 
4088 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4089 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4090 		    __func__);
4091 	}
4092 
4093 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4094 
4095 	WPI_RXON_UNLOCK(sc);
4096 
4097 	return error;
4098 }
4099 
4100 static int
4101 wpi_config_beacon(struct wpi_vap *wvp)
4102 {
4103 	struct ieee80211com *ic = wvp->wv_vap.iv_ic;
4104 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4105 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4106 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4107 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4108 	struct ieee80211_tim_ie *tie;
4109 	struct mbuf *m;
4110 	uint8_t *ptr;
4111 	int error;
4112 
4113 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4114 
4115 	WPI_VAP_LOCK_ASSERT(wvp);
4116 
4117 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4118 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4119 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4120 
4121 	/* XXX seems to be unused */
4122 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4123 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4124 		ptr = mtod(bcn->m, uint8_t *);
4125 
4126 		cmd->tim = htole16(bo->bo_tim - ptr);
4127 		cmd->timsz = tie->tim_len;
4128 	}
4129 
4130 	/* Necessary for recursion in ieee80211_beacon_update(). */
4131 	m = bcn->m;
4132 	bcn->m = m_dup(m, M_NOWAIT);
4133 	if (bcn->m == NULL) {
4134 		device_printf(sc->sc_dev,
4135 		    "%s: could not copy beacon frame\n", __func__);
4136 		error = ENOMEM;
4137 		goto end;
4138 	}
4139 
4140 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4141 		device_printf(sc->sc_dev,
4142 		    "%s: could not update beacon frame, error %d", __func__,
4143 		    error);
4144 	}
4145 
4146 	/* Restore mbuf. */
4147 end:	bcn->m = m;
4148 
4149 	return error;
4150 }
4151 
4152 static int
4153 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4154 {
4155 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
4156 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4157 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4158 	struct mbuf *m;
4159 	int error;
4160 
4161 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4162 
4163 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4164 		return EINVAL;
4165 
4166 	m = ieee80211_beacon_alloc(ni, bo);
4167 	if (m == NULL) {
4168 		device_printf(sc->sc_dev,
4169 		    "%s: could not allocate beacon frame\n", __func__);
4170 		return ENOMEM;
4171 	}
4172 
4173 	WPI_VAP_LOCK(wvp);
4174 	if (bcn->m != NULL)
4175 		m_freem(bcn->m);
4176 
4177 	bcn->m = m;
4178 
4179 	error = wpi_config_beacon(wvp);
4180 	WPI_VAP_UNLOCK(wvp);
4181 
4182 	return error;
4183 }
4184 
4185 static void
4186 wpi_update_beacon(struct ieee80211vap *vap, int item)
4187 {
4188 	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4189 	struct wpi_vap *wvp = WPI_VAP(vap);
4190 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4191 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4192 	struct ieee80211_node *ni = vap->iv_bss;
4193 	int mcast = 0;
4194 
4195 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4196 
4197 	WPI_VAP_LOCK(wvp);
4198 	if (bcn->m == NULL) {
4199 		bcn->m = ieee80211_beacon_alloc(ni, bo);
4200 		if (bcn->m == NULL) {
4201 			device_printf(sc->sc_dev,
4202 			    "%s: could not allocate beacon frame\n", __func__);
4203 
4204 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4205 			    __func__);
4206 
4207 			WPI_VAP_UNLOCK(wvp);
4208 			return;
4209 		}
4210 	}
4211 	WPI_VAP_UNLOCK(wvp);
4212 
4213 	if (item == IEEE80211_BEACON_TIM)
4214 		mcast = 1;	/* TODO */
4215 
4216 	setbit(bo->bo_flags, item);
4217 	ieee80211_beacon_update(ni, bo, bcn->m, mcast);
4218 
4219 	WPI_VAP_LOCK(wvp);
4220 	wpi_config_beacon(wvp);
4221 	WPI_VAP_UNLOCK(wvp);
4222 
4223 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4224 }
4225 
4226 static void
4227 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4228 {
4229 	struct ieee80211vap *vap = ni->ni_vap;
4230 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4231 	struct wpi_node *wn = WPI_NODE(ni);
4232 	int error;
4233 
4234 	WPI_NT_LOCK(sc);
4235 
4236 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4237 
4238 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4239 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4240 			device_printf(sc->sc_dev,
4241 			    "%s: could not add IBSS node, error %d\n",
4242 			    __func__, error);
4243 		}
4244 	}
4245 	WPI_NT_UNLOCK(sc);
4246 }
4247 
4248 static int
4249 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4250 {
4251 	struct ieee80211com *ic = vap->iv_ic;
4252 	struct ieee80211_node *ni = vap->iv_bss;
4253 	int error;
4254 
4255 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4256 
4257 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4258 		/* Link LED blinks while monitoring. */
4259 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4260 		return 0;
4261 	}
4262 
4263 	/* XXX kernel panic workaround */
4264 	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
4265 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4266 		    __func__);
4267 		return EINVAL;
4268 	}
4269 
4270 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4271 		device_printf(sc->sc_dev,
4272 		    "%s: could not set timing, error %d\n", __func__, error);
4273 		return error;
4274 	}
4275 
4276 	/* Update adapter configuration. */
4277 	WPI_RXON_LOCK(sc);
4278 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4279 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4280 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4281 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4282 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4283 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4284 	/* Short preamble and slot time are negotiated when associating. */
4285 	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
4286 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4287 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4288 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4289 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4290 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4291 		sc->rxon.cck_mask  = 0;
4292 		sc->rxon.ofdm_mask = 0x15;
4293 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4294 		sc->rxon.cck_mask  = 0x03;
4295 		sc->rxon.ofdm_mask = 0;
4296 	} else {
4297 		/* Assume 802.11b/g. */
4298 		sc->rxon.cck_mask  = 0x0f;
4299 		sc->rxon.ofdm_mask = 0x15;
4300 	}
4301 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4302 
4303 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4304 	    sc->rxon.chan, sc->rxon.flags);
4305 
4306 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4307 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4308 		    __func__);
4309 		return error;
4310 	}
4311 
4312 	/* Start periodic calibration timer. */
4313 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4314 
4315 	WPI_RXON_UNLOCK(sc);
4316 
4317 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4318 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4319 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4320 			device_printf(sc->sc_dev,
4321 			    "%s: could not setup beacon, error %d\n", __func__,
4322 			    error);
4323 			return error;
4324 		}
4325 	}
4326 
4327 	if (vap->iv_opmode == IEEE80211_M_STA) {
4328 		/* Add BSS node. */
4329 		WPI_NT_LOCK(sc);
4330 		error = wpi_add_sta_node(sc, ni);
4331 		WPI_NT_UNLOCK(sc);
4332 		if (error != 0) {
4333 			device_printf(sc->sc_dev,
4334 			    "%s: could not add BSS node, error %d\n", __func__,
4335 			    error);
4336 			return error;
4337 		}
4338 	}
4339 
4340 	/* Link LED always on while associated. */
4341 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4342 
4343 	/* Enable power-saving mode if requested by user. */
4344 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4345 	    vap->iv_opmode != IEEE80211_M_IBSS)
4346 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4347 
4348 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4349 
4350 	return 0;
4351 }
4352 
4353 static int
4354 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4355 {
4356 	const struct ieee80211_cipher *cip = k->wk_cipher;
4357 	struct ieee80211vap *vap = ni->ni_vap;
4358 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4359 	struct wpi_node *wn = WPI_NODE(ni);
4360 	struct wpi_node_info node;
4361 	uint16_t kflags;
4362 	int error;
4363 
4364 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4365 
4366 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4367 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4368 		    __func__);
4369 		return 0;
4370 	}
4371 
4372 	switch (cip->ic_cipher) {
4373 	case IEEE80211_CIPHER_AES_CCM:
4374 		kflags = WPI_KFLAG_CCMP;
4375 		break;
4376 
4377 	default:
4378 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4379 		    cip->ic_cipher);
4380 		return 0;
4381 	}
4382 
4383 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4384 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4385 		kflags |= WPI_KFLAG_MULTICAST;
4386 
4387 	memset(&node, 0, sizeof node);
4388 	node.id = wn->id;
4389 	node.control = WPI_NODE_UPDATE;
4390 	node.flags = WPI_FLAG_KEY_SET;
4391 	node.kflags = htole16(kflags);
4392 	memcpy(node.key, k->wk_key, k->wk_keylen);
4393 again:
4394 	DPRINTF(sc, WPI_DEBUG_KEY,
4395 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4396 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4397 	    node.id, ether_sprintf(ni->ni_macaddr));
4398 
4399 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4400 	if (error != 0) {
4401 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4402 		    error);
4403 		return !error;
4404 	}
4405 
4406 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4407 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4408 		kflags |= WPI_KFLAG_MULTICAST;
4409 		node.kflags = htole16(kflags);
4410 
4411 		goto again;
4412 	}
4413 
4414 	return 1;
4415 }
4416 
4417 static void
4418 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4419 {
4420 	const struct ieee80211_key *k = arg;
4421 	struct ieee80211vap *vap = ni->ni_vap;
4422 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4423 	struct wpi_node *wn = WPI_NODE(ni);
4424 	int error;
4425 
4426 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4427 		return;
4428 
4429 	WPI_NT_LOCK(sc);
4430 	error = wpi_load_key(ni, k);
4431 	WPI_NT_UNLOCK(sc);
4432 
4433 	if (error == 0) {
4434 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4435 		    __func__);
4436 	}
4437 }
4438 
4439 static int
4440 wpi_set_global_keys(struct ieee80211_node *ni)
4441 {
4442 	struct ieee80211vap *vap = ni->ni_vap;
4443 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4444 	int error = 1;
4445 
4446 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4447 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4448 			error = wpi_load_key(ni, wk);
4449 
4450 	return !error;
4451 }
4452 
4453 static int
4454 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4455 {
4456 	struct ieee80211vap *vap = ni->ni_vap;
4457 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4458 	struct wpi_node *wn = WPI_NODE(ni);
4459 	struct wpi_node_info node;
4460 	uint16_t kflags;
4461 	int error;
4462 
4463 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4464 
4465 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4466 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4467 		return 1;	/* Nothing to do. */
4468 	}
4469 
4470 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4471 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4472 		kflags |= WPI_KFLAG_MULTICAST;
4473 
4474 	memset(&node, 0, sizeof node);
4475 	node.id = wn->id;
4476 	node.control = WPI_NODE_UPDATE;
4477 	node.flags = WPI_FLAG_KEY_SET;
4478 	node.kflags = htole16(kflags);
4479 again:
4480 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4481 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4482 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4483 
4484 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4485 	if (error != 0) {
4486 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4487 		    error);
4488 		return !error;
4489 	}
4490 
4491 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4492 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4493 		kflags |= WPI_KFLAG_MULTICAST;
4494 		node.kflags = htole16(kflags);
4495 
4496 		goto again;
4497 	}
4498 
4499 	return 1;
4500 }
4501 
4502 static void
4503 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4504 {
4505 	const struct ieee80211_key *k = arg;
4506 	struct ieee80211vap *vap = ni->ni_vap;
4507 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4508 	struct wpi_node *wn = WPI_NODE(ni);
4509 	int error;
4510 
4511 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4512 		return;
4513 
4514 	WPI_NT_LOCK(sc);
4515 	error = wpi_del_key(ni, k);
4516 	WPI_NT_UNLOCK(sc);
4517 
4518 	if (error == 0) {
4519 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4520 		    __func__);
4521 	}
4522 }
4523 
4524 static int
4525 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4526     int set)
4527 {
4528 	struct ieee80211com *ic = vap->iv_ic;
4529 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4530 	struct wpi_vap *wvp = WPI_VAP(vap);
4531 	struct ieee80211_node *ni;
4532 	int error, ni_ref = 0;
4533 
4534 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4535 
4536 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4537 		/* Not for us. */
4538 		return 1;
4539 	}
4540 
4541 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4542 		/* XMIT keys are handled in wpi_tx_data(). */
4543 		return 1;
4544 	}
4545 
4546 	/* Handle group keys. */
4547 	if (&vap->iv_nw_keys[0] <= k &&
4548 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4549 		WPI_NT_LOCK(sc);
4550 		if (set)
4551 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4552 		else
4553 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4554 		WPI_NT_UNLOCK(sc);
4555 
4556 		if (vap->iv_state == IEEE80211_S_RUN) {
4557 			ieee80211_iterate_nodes(&ic->ic_sta,
4558 			    set ? wpi_load_key_cb : wpi_del_key_cb, (void *)k);
4559 		}
4560 
4561 		return 1;
4562 	}
4563 
4564 	switch (vap->iv_opmode) {
4565 	case IEEE80211_M_STA:
4566 		ni = vap->iv_bss;
4567 		break;
4568 
4569 	case IEEE80211_M_IBSS:
4570 	case IEEE80211_M_AHDEMO:
4571 	case IEEE80211_M_HOSTAP:
4572 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4573 		if (ni == NULL)
4574 			return 0;	/* should not happen */
4575 
4576 		ni_ref = 1;
4577 		break;
4578 
4579 	default:
4580 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4581 		    vap->iv_opmode);
4582 		return 0;
4583 	}
4584 
4585 	WPI_NT_LOCK(sc);
4586 	if (set)
4587 		error = wpi_load_key(ni, k);
4588 	else
4589 		error = wpi_del_key(ni, k);
4590 	WPI_NT_UNLOCK(sc);
4591 
4592 	if (ni_ref)
4593 		ieee80211_node_decref(ni);
4594 
4595 	return error;
4596 }
4597 
4598 static int
4599 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4600     const uint8_t mac[IEEE80211_ADDR_LEN])
4601 {
4602 	return wpi_process_key(vap, k, 1);
4603 }
4604 
4605 static int
4606 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4607 {
4608 	return wpi_process_key(vap, k, 0);
4609 }
4610 
4611 /*
4612  * This function is called after the runtime firmware notifies us of its
4613  * readiness (called in a process context).
4614  */
4615 static int
4616 wpi_post_alive(struct wpi_softc *sc)
4617 {
4618 	int ntries, error;
4619 
4620 	/* Check (again) that the radio is not disabled. */
4621 	if ((error = wpi_nic_lock(sc)) != 0)
4622 		return error;
4623 
4624 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4625 
4626 	/* NB: Runtime firmware must be up and running. */
4627 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4628  		device_printf(sc->sc_dev,
4629 		    "RF switch: radio disabled (%s)\n", __func__);
4630 		wpi_nic_unlock(sc);
4631 		return EPERM;   /* :-) */
4632 	}
4633 	wpi_nic_unlock(sc);
4634 
4635 	/* Wait for thermal sensor to calibrate. */
4636 	for (ntries = 0; ntries < 1000; ntries++) {
4637 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4638 			break;
4639 		DELAY(10);
4640 	}
4641 
4642 	if (ntries == 1000) {
4643 		device_printf(sc->sc_dev,
4644 		    "timeout waiting for thermal sensor calibration\n");
4645 		return ETIMEDOUT;
4646 	}
4647 
4648 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4649 	return 0;
4650 }
4651 
4652 /*
4653  * The firmware boot code is small and is intended to be copied directly into
4654  * the NIC internal memory (no DMA transfer).
4655  */
4656 static int
4657 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4658 {
4659 	int error, ntries;
4660 
4661 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4662 
4663 	size /= sizeof (uint32_t);
4664 
4665 	if ((error = wpi_nic_lock(sc)) != 0)
4666 		return error;
4667 
4668 	/* Copy microcode image into NIC memory. */
4669 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4670 	    (const uint32_t *)ucode, size);
4671 
4672 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4673 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4674 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4675 
4676 	/* Start boot load now. */
4677 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4678 
4679 	/* Wait for transfer to complete. */
4680 	for (ntries = 0; ntries < 1000; ntries++) {
4681 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4682 		DPRINTF(sc, WPI_DEBUG_HW,
4683 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4684 		    WPI_FH_TX_STATUS_IDLE(6),
4685 		    status & WPI_FH_TX_STATUS_IDLE(6));
4686 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4687 			DPRINTF(sc, WPI_DEBUG_HW,
4688 			    "Status Match! - ntries = %d\n", ntries);
4689 			break;
4690 		}
4691 		DELAY(10);
4692 	}
4693 	if (ntries == 1000) {
4694 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4695 		    __func__);
4696 		wpi_nic_unlock(sc);
4697 		return ETIMEDOUT;
4698 	}
4699 
4700 	/* Enable boot after power up. */
4701 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4702 
4703 	wpi_nic_unlock(sc);
4704 	return 0;
4705 }
4706 
4707 static int
4708 wpi_load_firmware(struct wpi_softc *sc)
4709 {
4710 	struct wpi_fw_info *fw = &sc->fw;
4711 	struct wpi_dma_info *dma = &sc->fw_dma;
4712 	int error;
4713 
4714 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4715 
4716 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4717 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4718 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4719 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4720 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4721 
4722 	/* Tell adapter where to find initialization sections. */
4723 	if ((error = wpi_nic_lock(sc)) != 0)
4724 		return error;
4725 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4726 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4727 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4728 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4729 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4730 	wpi_nic_unlock(sc);
4731 
4732 	/* Load firmware boot code. */
4733 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4734 	if (error != 0) {
4735 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4736 		    __func__);
4737 		return error;
4738 	}
4739 
4740 	/* Now press "execute". */
4741 	WPI_WRITE(sc, WPI_RESET, 0);
4742 
4743 	/* Wait at most one second for first alive notification. */
4744 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4745 		device_printf(sc->sc_dev,
4746 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4747 		    __func__, error);
4748 		return error;
4749 	}
4750 
4751 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4752 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4753 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4754 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4755 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4756 
4757 	/* Tell adapter where to find runtime sections. */
4758 	if ((error = wpi_nic_lock(sc)) != 0)
4759 		return error;
4760 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4761 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4762 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4763 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4764 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4765 	    WPI_FW_UPDATED | fw->main.textsz);
4766 	wpi_nic_unlock(sc);
4767 
4768 	return 0;
4769 }
4770 
4771 static int
4772 wpi_read_firmware(struct wpi_softc *sc)
4773 {
4774 	const struct firmware *fp;
4775 	struct wpi_fw_info *fw = &sc->fw;
4776 	const struct wpi_firmware_hdr *hdr;
4777 	int error;
4778 
4779 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4780 
4781 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4782 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4783 
4784 	WPI_UNLOCK(sc);
4785 	fp = firmware_get(WPI_FW_NAME);
4786 	WPI_LOCK(sc);
4787 
4788 	if (fp == NULL) {
4789 		device_printf(sc->sc_dev,
4790 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4791 		return EINVAL;
4792 	}
4793 
4794 	sc->fw_fp = fp;
4795 
4796 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4797 		device_printf(sc->sc_dev,
4798 		    "firmware file too short: %zu bytes\n", fp->datasize);
4799 		error = EINVAL;
4800 		goto fail;
4801 	}
4802 
4803 	fw->size = fp->datasize;
4804 	fw->data = (const uint8_t *)fp->data;
4805 
4806 	/* Extract firmware header information. */
4807 	hdr = (const struct wpi_firmware_hdr *)fw->data;
4808 
4809 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4810 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4811 
4812 	fw->main.textsz = le32toh(hdr->rtextsz);
4813 	fw->main.datasz = le32toh(hdr->rdatasz);
4814 	fw->init.textsz = le32toh(hdr->itextsz);
4815 	fw->init.datasz = le32toh(hdr->idatasz);
4816 	fw->boot.textsz = le32toh(hdr->btextsz);
4817 	fw->boot.datasz = 0;
4818 
4819 	/* Sanity-check firmware header. */
4820 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4821 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4822 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4823 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4824 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4825 	    (fw->boot.textsz & 3) != 0) {
4826 		device_printf(sc->sc_dev, "invalid firmware header\n");
4827 		error = EINVAL;
4828 		goto fail;
4829 	}
4830 
4831 	/* Check that all firmware sections fit. */
4832 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4833 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4834 		device_printf(sc->sc_dev,
4835 		    "firmware file too short: %zu bytes\n", fw->size);
4836 		error = EINVAL;
4837 		goto fail;
4838 	}
4839 
4840 	/* Get pointers to firmware sections. */
4841 	fw->main.text = (const uint8_t *)(hdr + 1);
4842 	fw->main.data = fw->main.text + fw->main.textsz;
4843 	fw->init.text = fw->main.data + fw->main.datasz;
4844 	fw->init.data = fw->init.text + fw->init.textsz;
4845 	fw->boot.text = fw->init.data + fw->init.datasz;
4846 
4847 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4848 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4849 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
4850 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
4851 	    fw->main.textsz, fw->main.datasz,
4852 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4853 
4854 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4855 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4856 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4857 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4858 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4859 
4860 	return 0;
4861 
4862 fail:	wpi_unload_firmware(sc);
4863 	return error;
4864 }
4865 
4866 /**
4867  * Free the referenced firmware image
4868  */
4869 static void
4870 wpi_unload_firmware(struct wpi_softc *sc)
4871 {
4872 	if (sc->fw_fp != NULL) {
4873 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4874 		sc->fw_fp = NULL;
4875 	}
4876 }
4877 
4878 static int
4879 wpi_clock_wait(struct wpi_softc *sc)
4880 {
4881 	int ntries;
4882 
4883 	/* Set "initialization complete" bit. */
4884 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4885 
4886 	/* Wait for clock stabilization. */
4887 	for (ntries = 0; ntries < 2500; ntries++) {
4888 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4889 			return 0;
4890 		DELAY(100);
4891 	}
4892 	device_printf(sc->sc_dev,
4893 	    "%s: timeout waiting for clock stabilization\n", __func__);
4894 
4895 	return ETIMEDOUT;
4896 }
4897 
4898 static int
4899 wpi_apm_init(struct wpi_softc *sc)
4900 {
4901 	uint32_t reg;
4902 	int error;
4903 
4904 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4905 
4906 	/* Disable L0s exit timer (NMI bug workaround). */
4907 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4908 	/* Don't wait for ICH L0s (ICH bug workaround). */
4909 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4910 
4911 	/* Set FH wait threshold to max (HW bug under stress workaround). */
4912 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4913 
4914 	/* Cleanup. */
4915 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
4916 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4917 
4918 	/* Retrieve PCIe Active State Power Management (ASPM). */
4919 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4920 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4921 	if (reg & 0x02)	/* L1 Entry enabled. */
4922 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4923 	else
4924 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4925 
4926 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4927 
4928 	/* Wait for clock stabilization before accessing prph. */
4929 	if ((error = wpi_clock_wait(sc)) != 0)
4930 		return error;
4931 
4932 	if ((error = wpi_nic_lock(sc)) != 0)
4933 		return error;
4934 	/* Enable DMA and BSM (Bootstrap State Machine). */
4935 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4936 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4937 	DELAY(20);
4938 	/* Disable L1-Active. */
4939 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4940 	wpi_nic_unlock(sc);
4941 
4942 	return 0;
4943 }
4944 
4945 static void
4946 wpi_apm_stop_master(struct wpi_softc *sc)
4947 {
4948 	int ntries;
4949 
4950 	/* Stop busmaster DMA activity. */
4951 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4952 
4953 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4954 	    WPI_GP_CNTRL_MAC_PS)
4955 		return; /* Already asleep. */
4956 
4957 	for (ntries = 0; ntries < 100; ntries++) {
4958 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4959 			return;
4960 		DELAY(10);
4961 	}
4962 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
4963 	    __func__);
4964 }
4965 
4966 static void
4967 wpi_apm_stop(struct wpi_softc *sc)
4968 {
4969 	wpi_apm_stop_master(sc);
4970 
4971 	/* Reset the entire device. */
4972 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4973 	DELAY(10);
4974 	/* Clear "initialization complete" bit. */
4975 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4976 }
4977 
4978 static void
4979 wpi_nic_config(struct wpi_softc *sc)
4980 {
4981 	uint32_t rev;
4982 
4983 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4984 
4985 	/* voodoo from the Linux "driver".. */
4986 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4987 	if ((rev & 0xc0) == 0x40)
4988 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4989 	else if (!(rev & 0x80))
4990 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4991 
4992 	if (sc->cap == 0x80)
4993 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4994 
4995 	if ((sc->rev & 0xf0) == 0xd0)
4996 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4997 	else
4998 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4999 
5000 	if (sc->type > 1)
5001 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5002 }
5003 
5004 static int
5005 wpi_hw_init(struct wpi_softc *sc)
5006 {
5007 	int chnl, ntries, error;
5008 
5009 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5010 
5011 	/* Clear pending interrupts. */
5012 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5013 
5014 	if ((error = wpi_apm_init(sc)) != 0) {
5015 		device_printf(sc->sc_dev,
5016 		    "%s: could not power ON adapter, error %d\n", __func__,
5017 		    error);
5018 		return error;
5019 	}
5020 
5021 	/* Select VMAIN power source. */
5022 	if ((error = wpi_nic_lock(sc)) != 0)
5023 		return error;
5024 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5025 	wpi_nic_unlock(sc);
5026 	/* Spin until VMAIN gets selected. */
5027 	for (ntries = 0; ntries < 5000; ntries++) {
5028 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5029 			break;
5030 		DELAY(10);
5031 	}
5032 	if (ntries == 5000) {
5033 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5034 		return ETIMEDOUT;
5035 	}
5036 
5037 	/* Perform adapter initialization. */
5038 	wpi_nic_config(sc);
5039 
5040 	/* Initialize RX ring. */
5041 	if ((error = wpi_nic_lock(sc)) != 0)
5042 		return error;
5043 	/* Set physical address of RX ring. */
5044 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5045 	/* Set physical address of RX read pointer. */
5046 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5047 	    offsetof(struct wpi_shared, next));
5048 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5049 	/* Enable RX. */
5050 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5051 	    WPI_FH_RX_CONFIG_DMA_ENA |
5052 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5053 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5054 	    WPI_FH_RX_CONFIG_MAXFRAG |
5055 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5056 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5057 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5058 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5059 	wpi_nic_unlock(sc);
5060 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5061 
5062 	/* Initialize TX rings. */
5063 	if ((error = wpi_nic_lock(sc)) != 0)
5064 		return error;
5065 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5066 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5067 	/* Enable all 6 TX rings. */
5068 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5069 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5070 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5071 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5072 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5073 	/* Set physical address of TX rings. */
5074 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5075 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5076 
5077 	/* Enable all DMA channels. */
5078 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5079 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5080 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5081 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5082 	}
5083 	wpi_nic_unlock(sc);
5084 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5085 
5086 	/* Clear "radio off" and "commands blocked" bits. */
5087 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5088 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5089 
5090 	/* Clear pending interrupts. */
5091 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5092 	/* Enable interrupts. */
5093 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5094 
5095 	/* _Really_ make sure "radio off" bit is cleared! */
5096 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5097 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5098 
5099 	if ((error = wpi_load_firmware(sc)) != 0) {
5100 		device_printf(sc->sc_dev,
5101 		    "%s: could not load firmware, error %d\n", __func__,
5102 		    error);
5103 		return error;
5104 	}
5105 	/* Wait at most one second for firmware alive notification. */
5106 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5107 		device_printf(sc->sc_dev,
5108 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5109 		    __func__, error);
5110 		return error;
5111 	}
5112 
5113 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5114 
5115 	/* Do post-firmware initialization. */
5116 	return wpi_post_alive(sc);
5117 }
5118 
5119 static void
5120 wpi_hw_stop(struct wpi_softc *sc)
5121 {
5122 	int chnl, qid, ntries;
5123 
5124 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5125 
5126 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5127 		wpi_nic_lock(sc);
5128 
5129 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5130 
5131 	/* Disable interrupts. */
5132 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5133 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5134 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5135 
5136 	/* Make sure we no longer hold the NIC lock. */
5137 	wpi_nic_unlock(sc);
5138 
5139 	if (wpi_nic_lock(sc) == 0) {
5140 		/* Stop TX scheduler. */
5141 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5142 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5143 
5144 		/* Stop all DMA channels. */
5145 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5146 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5147 			for (ntries = 0; ntries < 200; ntries++) {
5148 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5149 				    WPI_FH_TX_STATUS_IDLE(chnl))
5150 					break;
5151 				DELAY(10);
5152 			}
5153 		}
5154 		wpi_nic_unlock(sc);
5155 	}
5156 
5157 	/* Stop RX ring. */
5158 	wpi_reset_rx_ring(sc);
5159 
5160 	/* Reset all TX rings. */
5161 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
5162 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5163 
5164 	if (wpi_nic_lock(sc) == 0) {
5165 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5166 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5167 		wpi_nic_unlock(sc);
5168 	}
5169 	DELAY(5);
5170 	/* Power OFF adapter. */
5171 	wpi_apm_stop(sc);
5172 }
5173 
5174 static void
5175 wpi_radio_on(void *arg0, int pending)
5176 {
5177 	struct wpi_softc *sc = arg0;
5178 	struct ifnet *ifp = sc->sc_ifp;
5179 	struct ieee80211com *ic = ifp->if_l2com;
5180 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5181 
5182 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5183 
5184 	if (vap != NULL) {
5185 		wpi_init(sc);
5186 		ieee80211_init(vap);
5187 	}
5188 
5189 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
5190 		WPI_LOCK(sc);
5191 		callout_stop(&sc->watchdog_rfkill);
5192 		WPI_UNLOCK(sc);
5193 	}
5194 }
5195 
5196 static void
5197 wpi_radio_off(void *arg0, int pending)
5198 {
5199 	struct wpi_softc *sc = arg0;
5200 	struct ifnet *ifp = sc->sc_ifp;
5201 	struct ieee80211com *ic = ifp->if_l2com;
5202 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5203 
5204 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5205 
5206 	wpi_stop(sc);
5207 	if (vap != NULL)
5208 		ieee80211_stop(vap);
5209 
5210 	WPI_LOCK(sc);
5211 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5212 	WPI_UNLOCK(sc);
5213 }
5214 
5215 static void
5216 wpi_init(void *arg)
5217 {
5218 	struct wpi_softc *sc = arg;
5219 	struct ifnet *ifp = sc->sc_ifp;
5220 	struct ieee80211com *ic = ifp->if_l2com;
5221 	int error;
5222 
5223 	WPI_LOCK(sc);
5224 
5225 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5226 
5227 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
5228 		goto end;
5229 
5230 	/* Check that the radio is not disabled by hardware switch. */
5231 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5232 		device_printf(sc->sc_dev,
5233 		    "RF switch: radio disabled (%s)\n", __func__);
5234 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5235 		    sc);
5236 		goto end;
5237 	}
5238 
5239 	/* Read firmware images from the filesystem. */
5240 	if ((error = wpi_read_firmware(sc)) != 0) {
5241 		device_printf(sc->sc_dev,
5242 		    "%s: could not read firmware, error %d\n", __func__,
5243 		    error);
5244 		goto fail;
5245 	}
5246 
5247 	/* Initialize hardware and upload firmware. */
5248 	error = wpi_hw_init(sc);
5249 	wpi_unload_firmware(sc);
5250 	if (error != 0) {
5251 		device_printf(sc->sc_dev,
5252 		    "%s: could not initialize hardware, error %d\n", __func__,
5253 		    error);
5254 		goto fail;
5255 	}
5256 
5257 	/* Configure adapter now that it is ready. */
5258 	sc->txq_active = 1;
5259 	if ((error = wpi_config(sc)) != 0) {
5260 		device_printf(sc->sc_dev,
5261 		    "%s: could not configure device, error %d\n", __func__,
5262 		    error);
5263 		goto fail;
5264 	}
5265 
5266 	IF_LOCK(&ifp->if_snd);
5267 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5268 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5269 	IF_UNLOCK(&ifp->if_snd);
5270 
5271 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5272 
5273 	WPI_UNLOCK(sc);
5274 
5275 	ieee80211_start_all(ic);
5276 
5277 	return;
5278 
5279 fail:	wpi_stop_locked(sc);
5280 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5281 	WPI_UNLOCK(sc);
5282 }
5283 
5284 static void
5285 wpi_stop_locked(struct wpi_softc *sc)
5286 {
5287 	struct ifnet *ifp = sc->sc_ifp;
5288 
5289 	WPI_LOCK_ASSERT(sc);
5290 
5291 	WPI_TXQ_LOCK(sc);
5292 	sc->txq_active = 0;
5293 	WPI_TXQ_UNLOCK(sc);
5294 
5295 	WPI_TXQ_STATE_LOCK(sc);
5296 	callout_stop(&sc->tx_timeout);
5297 	WPI_TXQ_STATE_UNLOCK(sc);
5298 
5299 	WPI_RXON_LOCK(sc);
5300 	callout_stop(&sc->scan_timeout);
5301 	callout_stop(&sc->calib_to);
5302 	WPI_RXON_UNLOCK(sc);
5303 
5304 	IF_LOCK(&ifp->if_snd);
5305 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5306 	IF_UNLOCK(&ifp->if_snd);
5307 
5308 	/* Power OFF hardware. */
5309 	wpi_hw_stop(sc);
5310 }
5311 
5312 static void
5313 wpi_stop(struct wpi_softc *sc)
5314 {
5315 	WPI_LOCK(sc);
5316 	wpi_stop_locked(sc);
5317 	WPI_UNLOCK(sc);
5318 }
5319 
5320 /*
5321  * Callback from net80211 to start a scan.
5322  */
5323 static void
5324 wpi_scan_start(struct ieee80211com *ic)
5325 {
5326 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5327 
5328 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5329 }
5330 
5331 /*
5332  * Callback from net80211 to terminate a scan.
5333  */
5334 static void
5335 wpi_scan_end(struct ieee80211com *ic)
5336 {
5337 	struct ifnet *ifp = ic->ic_ifp;
5338 	struct wpi_softc *sc = ifp->if_softc;
5339 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5340 
5341 	if (vap->iv_state == IEEE80211_S_RUN)
5342 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5343 }
5344 
5345 /**
5346  * Called by the net80211 framework to indicate to the driver
5347  * that the channel should be changed
5348  */
5349 static void
5350 wpi_set_channel(struct ieee80211com *ic)
5351 {
5352 	const struct ieee80211_channel *c = ic->ic_curchan;
5353 	struct ifnet *ifp = ic->ic_ifp;
5354 	struct wpi_softc *sc = ifp->if_softc;
5355 	int error;
5356 
5357 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5358 
5359 	WPI_LOCK(sc);
5360 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5361 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5362 	WPI_UNLOCK(sc);
5363 	WPI_TX_LOCK(sc);
5364 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5365 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5366 	WPI_TX_UNLOCK(sc);
5367 
5368 	/*
5369 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5370 	 * are already taken care of by their respective firmware commands.
5371 	 */
5372 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5373 		WPI_RXON_LOCK(sc);
5374 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5375 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5376 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5377 			    WPI_RXON_24GHZ);
5378 		} else {
5379 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5380 			    WPI_RXON_24GHZ);
5381 		}
5382 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5383 			device_printf(sc->sc_dev,
5384 			    "%s: error %d setting channel\n", __func__,
5385 			    error);
5386 		WPI_RXON_UNLOCK(sc);
5387 	}
5388 }
5389 
5390 /**
5391  * Called by net80211 to indicate that we need to scan the current
5392  * channel. The channel is previously be set via the wpi_set_channel
5393  * callback.
5394  */
5395 static void
5396 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5397 {
5398 	struct ieee80211vap *vap = ss->ss_vap;
5399 	struct ieee80211com *ic = vap->iv_ic;
5400 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5401 	int error;
5402 
5403 	WPI_RXON_LOCK(sc);
5404 	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
5405 		error = wpi_scan(sc, ic->ic_curchan);
5406 		WPI_RXON_UNLOCK(sc);
5407 		if (error != 0)
5408 			ieee80211_cancel_scan(vap);
5409 	} else {
5410 		WPI_RXON_UNLOCK(sc);
5411 		/* Send probe request when associated. */
5412 		sc->sc_scan_curchan(ss, maxdwell);
5413 	}
5414 }
5415 
5416 /**
5417  * Called by the net80211 framework to indicate
5418  * the minimum dwell time has been met, terminate the scan.
5419  * We don't actually terminate the scan as the firmware will notify
5420  * us when it's finished and we have no way to interrupt it.
5421  */
5422 static void
5423 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5424 {
5425 	/* NB: don't try to abort scan; wait for firmware to finish */
5426 }
5427 
5428 static void
5429 wpi_hw_reset(void *arg, int pending)
5430 {
5431 	struct wpi_softc *sc = arg;
5432 	struct ifnet *ifp = sc->sc_ifp;
5433 	struct ieee80211com *ic = ifp->if_l2com;
5434 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5435 
5436 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5437 
5438 	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5439 		ieee80211_cancel_scan(vap);
5440 
5441 	wpi_stop(sc);
5442 	if (vap != NULL)
5443 		ieee80211_stop(vap);
5444 	wpi_init(sc);
5445 	if (vap != NULL)
5446 		ieee80211_init(vap);
5447 }
5448