1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #include <machine/bus.h> 79 #include <machine/resource.h> 80 #include <sys/rman.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 85 #include <net/bpf.h> 86 #include <net/if.h> 87 #include <net/if_arp.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <net80211/ieee80211_var.h> 94 #include <net80211/ieee80211_radiotap.h> 95 #include <net80211/ieee80211_regdomain.h> 96 #include <net80211/ieee80211_ratectl.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_systm.h> 100 #include <netinet/in_var.h> 101 #include <netinet/ip.h> 102 #include <netinet/if_ether.h> 103 104 #include <dev/wpi/if_wpireg.h> 105 #include <dev/wpi/if_wpivar.h> 106 107 #define WPI_DEBUG 108 109 #ifdef WPI_DEBUG 110 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 111 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 112 #define WPI_DEBUG_SET (wpi_debug != 0) 113 114 enum { 115 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 116 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 117 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 118 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 119 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 120 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 121 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 122 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 123 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 124 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 125 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 126 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 127 WPI_DEBUG_ANY = 0xffffffff 128 }; 129 130 static int wpi_debug = 0; 131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 132 TUNABLE_INT("debug.wpi", &wpi_debug); 133 134 #else 135 #define DPRINTF(x) 136 #define DPRINTFN(n, x) 137 #define WPI_DEBUG_SET 0 138 #endif 139 140 struct wpi_ident { 141 uint16_t vendor; 142 uint16_t device; 143 uint16_t subdevice; 144 const char *name; 145 }; 146 147 static const struct wpi_ident wpi_ident_table[] = { 148 /* The below entries support ABG regardless of the subid */ 149 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 150 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 151 /* The below entries only support BG */ 152 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 153 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 154 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 155 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0, 0, 0, NULL } 157 }; 158 159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 160 const char name[IFNAMSIZ], int unit, int opmode, 161 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 162 const uint8_t mac[IEEE80211_ADDR_LEN]); 163 static void wpi_vap_delete(struct ieee80211vap *); 164 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 165 void **, bus_size_t, bus_size_t, int); 166 static void wpi_dma_contig_free(struct wpi_dma_info *); 167 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 168 static int wpi_alloc_shared(struct wpi_softc *); 169 static void wpi_free_shared(struct wpi_softc *); 170 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 171 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 172 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 173 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 174 int, int); 175 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 176 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 177 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 178 static void wpi_mem_lock(struct wpi_softc *); 179 static void wpi_mem_unlock(struct wpi_softc *); 180 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 181 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 182 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 183 const uint32_t *, int); 184 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 185 static int wpi_alloc_fwmem(struct wpi_softc *); 186 static void wpi_free_fwmem(struct wpi_softc *); 187 static int wpi_load_firmware(struct wpi_softc *); 188 static void wpi_unload_firmware(struct wpi_softc *); 189 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 190 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 191 struct wpi_rx_data *); 192 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 193 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 194 static void wpi_notif_intr(struct wpi_softc *); 195 static void wpi_intr(void *); 196 static uint8_t wpi_plcp_signal(int); 197 static void wpi_watchdog(void *); 198 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 199 struct ieee80211_node *, int); 200 static void wpi_start(struct ifnet *); 201 static void wpi_start_locked(struct ifnet *); 202 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 203 const struct ieee80211_bpf_params *); 204 static void wpi_scan_start(struct ieee80211com *); 205 static void wpi_scan_end(struct ieee80211com *); 206 static void wpi_set_channel(struct ieee80211com *); 207 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 208 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 209 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 210 static void wpi_read_eeprom(struct wpi_softc *, 211 uint8_t macaddr[IEEE80211_ADDR_LEN]); 212 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 213 static void wpi_read_eeprom_group(struct wpi_softc *, int); 214 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 215 static int wpi_wme_update(struct ieee80211com *); 216 static int wpi_mrr_setup(struct wpi_softc *); 217 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 218 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 219 #if 0 220 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 221 #endif 222 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 223 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 224 static int wpi_scan(struct wpi_softc *); 225 static int wpi_config(struct wpi_softc *); 226 static void wpi_stop_master(struct wpi_softc *); 227 static int wpi_power_up(struct wpi_softc *); 228 static int wpi_reset(struct wpi_softc *); 229 static void wpi_hwreset(void *, int); 230 static void wpi_rfreset(void *, int); 231 static void wpi_hw_config(struct wpi_softc *); 232 static void wpi_init(void *); 233 static void wpi_init_locked(struct wpi_softc *, int); 234 static void wpi_stop(struct wpi_softc *); 235 static void wpi_stop_locked(struct wpi_softc *); 236 237 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 238 int); 239 static void wpi_calib_timeout(void *); 240 static void wpi_power_calibration(struct wpi_softc *, int); 241 static int wpi_get_power_index(struct wpi_softc *, 242 struct wpi_power_group *, struct ieee80211_channel *, int); 243 #ifdef WPI_DEBUG 244 static const char *wpi_cmd_str(int); 245 #endif 246 static int wpi_probe(device_t); 247 static int wpi_attach(device_t); 248 static int wpi_detach(device_t); 249 static int wpi_shutdown(device_t); 250 static int wpi_suspend(device_t); 251 static int wpi_resume(device_t); 252 253 254 static device_method_t wpi_methods[] = { 255 /* Device interface */ 256 DEVMETHOD(device_probe, wpi_probe), 257 DEVMETHOD(device_attach, wpi_attach), 258 DEVMETHOD(device_detach, wpi_detach), 259 DEVMETHOD(device_shutdown, wpi_shutdown), 260 DEVMETHOD(device_suspend, wpi_suspend), 261 DEVMETHOD(device_resume, wpi_resume), 262 263 { 0, 0 } 264 }; 265 266 static driver_t wpi_driver = { 267 "wpi", 268 wpi_methods, 269 sizeof (struct wpi_softc) 270 }; 271 272 static devclass_t wpi_devclass; 273 274 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 275 276 static const uint8_t wpi_ridx_to_plcp[] = { 277 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 278 /* R1-R4 (ral/ural is R4-R1) */ 279 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 280 /* CCK: device-dependent */ 281 10, 20, 55, 110 282 }; 283 static const uint8_t wpi_ridx_to_rate[] = { 284 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 285 2, 4, 11, 22 /*CCK */ 286 }; 287 288 289 static int 290 wpi_probe(device_t dev) 291 { 292 const struct wpi_ident *ident; 293 294 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 295 if (pci_get_vendor(dev) == ident->vendor && 296 pci_get_device(dev) == ident->device) { 297 device_set_desc(dev, ident->name); 298 return 0; 299 } 300 } 301 return ENXIO; 302 } 303 304 /** 305 * Load the firmare image from disk to the allocated dma buffer. 306 * we also maintain the reference to the firmware pointer as there 307 * is times where we may need to reload the firmware but we are not 308 * in a context that can access the filesystem (ie taskq cause by restart) 309 * 310 * @return 0 on success, an errno on failure 311 */ 312 static int 313 wpi_load_firmware(struct wpi_softc *sc) 314 { 315 const struct firmware *fp; 316 struct wpi_dma_info *dma = &sc->fw_dma; 317 const struct wpi_firmware_hdr *hdr; 318 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 319 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 320 int error; 321 322 DPRINTFN(WPI_DEBUG_FIRMWARE, 323 ("Attempting Loading Firmware from wpi_fw module\n")); 324 325 WPI_UNLOCK(sc); 326 327 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 328 device_printf(sc->sc_dev, 329 "could not load firmware image 'wpifw'\n"); 330 error = ENOENT; 331 WPI_LOCK(sc); 332 goto fail; 333 } 334 335 fp = sc->fw_fp; 336 337 WPI_LOCK(sc); 338 339 /* Validate the firmware is minimum a particular version */ 340 if (fp->version < WPI_FW_MINVERSION) { 341 device_printf(sc->sc_dev, 342 "firmware version is too old. Need %d, got %d\n", 343 WPI_FW_MINVERSION, 344 fp->version); 345 error = ENXIO; 346 goto fail; 347 } 348 349 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 350 device_printf(sc->sc_dev, 351 "firmware file too short: %zu bytes\n", fp->datasize); 352 error = ENXIO; 353 goto fail; 354 } 355 356 hdr = (const struct wpi_firmware_hdr *)fp->data; 357 358 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 359 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 360 361 rtextsz = le32toh(hdr->rtextsz); 362 rdatasz = le32toh(hdr->rdatasz); 363 itextsz = le32toh(hdr->itextsz); 364 idatasz = le32toh(hdr->idatasz); 365 btextsz = le32toh(hdr->btextsz); 366 367 /* check that all firmware segments are present */ 368 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 369 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 370 device_printf(sc->sc_dev, 371 "firmware file too short: %zu bytes\n", fp->datasize); 372 error = ENXIO; /* XXX appropriate error code? */ 373 goto fail; 374 } 375 376 /* get pointers to firmware segments */ 377 rtext = (const uint8_t *)(hdr + 1); 378 rdata = rtext + rtextsz; 379 itext = rdata + rdatasz; 380 idata = itext + itextsz; 381 btext = idata + idatasz; 382 383 DPRINTFN(WPI_DEBUG_FIRMWARE, 384 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 385 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 386 (le32toh(hdr->version) & 0xff000000) >> 24, 387 (le32toh(hdr->version) & 0x00ff0000) >> 16, 388 (le32toh(hdr->version) & 0x0000ffff), 389 rtextsz, rdatasz, 390 itextsz, idatasz, btextsz)); 391 392 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 393 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 394 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 395 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 396 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 397 398 /* sanity checks */ 399 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 400 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 401 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 402 idatasz > WPI_FW_INIT_DATA_MAXSZ || 403 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 404 (btextsz & 3) != 0) { 405 device_printf(sc->sc_dev, "firmware invalid\n"); 406 error = EINVAL; 407 goto fail; 408 } 409 410 /* copy initialization images into pre-allocated DMA-safe memory */ 411 memcpy(dma->vaddr, idata, idatasz); 412 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 413 414 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 415 416 /* tell adapter where to find initialization images */ 417 wpi_mem_lock(sc); 418 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 419 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 420 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 421 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 422 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 423 wpi_mem_unlock(sc); 424 425 /* load firmware boot code */ 426 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 427 device_printf(sc->sc_dev, "Failed to load microcode\n"); 428 goto fail; 429 } 430 431 /* now press "execute" */ 432 WPI_WRITE(sc, WPI_RESET, 0); 433 434 /* wait at most one second for the first alive notification */ 435 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 436 device_printf(sc->sc_dev, 437 "timeout waiting for adapter to initialize\n"); 438 goto fail; 439 } 440 441 /* copy runtime images into pre-allocated DMA-sage memory */ 442 memcpy(dma->vaddr, rdata, rdatasz); 443 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 444 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 445 446 /* tell adapter where to find runtime images */ 447 wpi_mem_lock(sc); 448 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 449 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 450 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 451 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 452 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 453 wpi_mem_unlock(sc); 454 455 /* wait at most one second for the first alive notification */ 456 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 457 device_printf(sc->sc_dev, 458 "timeout waiting for adapter to initialize2\n"); 459 goto fail; 460 } 461 462 DPRINTFN(WPI_DEBUG_FIRMWARE, 463 ("Firmware loaded to driver successfully\n")); 464 return error; 465 fail: 466 wpi_unload_firmware(sc); 467 return error; 468 } 469 470 /** 471 * Free the referenced firmware image 472 */ 473 static void 474 wpi_unload_firmware(struct wpi_softc *sc) 475 { 476 477 if (sc->fw_fp) { 478 WPI_UNLOCK(sc); 479 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 480 WPI_LOCK(sc); 481 sc->fw_fp = NULL; 482 } 483 } 484 485 static int 486 wpi_attach(device_t dev) 487 { 488 struct wpi_softc *sc = device_get_softc(dev); 489 struct ifnet *ifp; 490 struct ieee80211com *ic; 491 int ac, error, supportsa = 1; 492 uint32_t tmp; 493 const struct wpi_ident *ident; 494 uint8_t macaddr[IEEE80211_ADDR_LEN]; 495 496 sc->sc_dev = dev; 497 498 if (bootverbose || WPI_DEBUG_SET) 499 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 500 501 /* 502 * Some card's only support 802.11b/g not a, check to see if 503 * this is one such card. A 0x0 in the subdevice table indicates 504 * the entire subdevice range is to be ignored. 505 */ 506 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 507 if (ident->subdevice && 508 pci_get_subdevice(dev) == ident->subdevice) { 509 supportsa = 0; 510 break; 511 } 512 } 513 514 /* Create the tasks that can be queued */ 515 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc); 516 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc); 517 518 WPI_LOCK_INIT(sc); 519 520 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 521 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 522 523 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 524 device_printf(dev, "chip is in D%d power mode " 525 "-- setting to D0\n", pci_get_powerstate(dev)); 526 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 527 } 528 529 /* disable the retry timeout register */ 530 pci_write_config(dev, 0x41, 0, 1); 531 532 /* enable bus-mastering */ 533 pci_enable_busmaster(dev); 534 535 sc->mem_rid = PCIR_BAR(0); 536 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 537 RF_ACTIVE); 538 if (sc->mem == NULL) { 539 device_printf(dev, "could not allocate memory resource\n"); 540 error = ENOMEM; 541 goto fail; 542 } 543 544 sc->sc_st = rman_get_bustag(sc->mem); 545 sc->sc_sh = rman_get_bushandle(sc->mem); 546 547 sc->irq_rid = 0; 548 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 549 RF_ACTIVE | RF_SHAREABLE); 550 if (sc->irq == NULL) { 551 device_printf(dev, "could not allocate interrupt resource\n"); 552 error = ENOMEM; 553 goto fail; 554 } 555 556 /* 557 * Allocate DMA memory for firmware transfers. 558 */ 559 if ((error = wpi_alloc_fwmem(sc)) != 0) { 560 printf(": could not allocate firmware memory\n"); 561 error = ENOMEM; 562 goto fail; 563 } 564 565 /* 566 * Put adapter into a known state. 567 */ 568 if ((error = wpi_reset(sc)) != 0) { 569 device_printf(dev, "could not reset adapter\n"); 570 goto fail; 571 } 572 573 wpi_mem_lock(sc); 574 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 575 if (bootverbose || WPI_DEBUG_SET) 576 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 577 578 wpi_mem_unlock(sc); 579 580 /* Allocate shared page */ 581 if ((error = wpi_alloc_shared(sc)) != 0) { 582 device_printf(dev, "could not allocate shared page\n"); 583 goto fail; 584 } 585 586 /* tx data queues - 4 for QoS purposes */ 587 for (ac = 0; ac < WME_NUM_AC; ac++) { 588 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 589 if (error != 0) { 590 device_printf(dev, "could not allocate Tx ring %d\n",ac); 591 goto fail; 592 } 593 } 594 595 /* command queue to talk to the card's firmware */ 596 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 597 if (error != 0) { 598 device_printf(dev, "could not allocate command ring\n"); 599 goto fail; 600 } 601 602 /* receive data queue */ 603 error = wpi_alloc_rx_ring(sc, &sc->rxq); 604 if (error != 0) { 605 device_printf(dev, "could not allocate Rx ring\n"); 606 goto fail; 607 } 608 609 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 610 if (ifp == NULL) { 611 device_printf(dev, "can not if_alloc()\n"); 612 error = ENOMEM; 613 goto fail; 614 } 615 ic = ifp->if_l2com; 616 617 ic->ic_ifp = ifp; 618 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 619 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 620 621 /* set device capabilities */ 622 ic->ic_caps = 623 IEEE80211_C_STA /* station mode supported */ 624 | IEEE80211_C_MONITOR /* monitor mode supported */ 625 | IEEE80211_C_TXPMGT /* tx power management */ 626 | IEEE80211_C_SHSLOT /* short slot time supported */ 627 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 628 | IEEE80211_C_WPA /* 802.11i */ 629 /* XXX looks like WME is partly supported? */ 630 #if 0 631 | IEEE80211_C_IBSS /* IBSS mode support */ 632 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 633 | IEEE80211_C_WME /* 802.11e */ 634 | IEEE80211_C_HOSTAP /* Host access point mode */ 635 #endif 636 ; 637 638 /* 639 * Read in the eeprom and also setup the channels for 640 * net80211. We don't set the rates as net80211 does this for us 641 */ 642 wpi_read_eeprom(sc, macaddr); 643 644 if (bootverbose || WPI_DEBUG_SET) { 645 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 646 device_printf(sc->sc_dev, "Hardware Type: %c\n", 647 sc->type > 1 ? 'B': '?'); 648 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 649 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 650 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 651 supportsa ? "does" : "does not"); 652 653 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 654 what sc->rev really represents - benjsc 20070615 */ 655 } 656 657 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 658 ifp->if_softc = sc; 659 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 660 ifp->if_init = wpi_init; 661 ifp->if_ioctl = wpi_ioctl; 662 ifp->if_start = wpi_start; 663 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 664 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 665 IFQ_SET_READY(&ifp->if_snd); 666 667 ieee80211_ifattach(ic, macaddr); 668 /* override default methods */ 669 ic->ic_raw_xmit = wpi_raw_xmit; 670 ic->ic_wme.wme_update = wpi_wme_update; 671 ic->ic_scan_start = wpi_scan_start; 672 ic->ic_scan_end = wpi_scan_end; 673 ic->ic_set_channel = wpi_set_channel; 674 ic->ic_scan_curchan = wpi_scan_curchan; 675 ic->ic_scan_mindwell = wpi_scan_mindwell; 676 677 ic->ic_vap_create = wpi_vap_create; 678 ic->ic_vap_delete = wpi_vap_delete; 679 680 ieee80211_radiotap_attach(ic, 681 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 682 WPI_TX_RADIOTAP_PRESENT, 683 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 684 WPI_RX_RADIOTAP_PRESENT); 685 686 /* 687 * Hook our interrupt after all initialization is complete. 688 */ 689 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 690 NULL, wpi_intr, sc, &sc->sc_ih); 691 if (error != 0) { 692 device_printf(dev, "could not set up interrupt\n"); 693 goto fail; 694 } 695 696 if (bootverbose) 697 ieee80211_announce(ic); 698 #ifdef XXX_DEBUG 699 ieee80211_announce_channels(ic); 700 #endif 701 return 0; 702 703 fail: wpi_detach(dev); 704 return ENXIO; 705 } 706 707 static int 708 wpi_detach(device_t dev) 709 { 710 struct wpi_softc *sc = device_get_softc(dev); 711 struct ifnet *ifp = sc->sc_ifp; 712 struct ieee80211com *ic; 713 int ac; 714 715 if (ifp != NULL) { 716 ic = ifp->if_l2com; 717 718 ieee80211_draintask(ic, &sc->sc_restarttask); 719 ieee80211_draintask(ic, &sc->sc_radiotask); 720 wpi_stop(sc); 721 callout_drain(&sc->watchdog_to); 722 callout_drain(&sc->calib_to); 723 ieee80211_ifdetach(ic); 724 } 725 726 WPI_LOCK(sc); 727 if (sc->txq[0].data_dmat) { 728 for (ac = 0; ac < WME_NUM_AC; ac++) 729 wpi_free_tx_ring(sc, &sc->txq[ac]); 730 731 wpi_free_tx_ring(sc, &sc->cmdq); 732 wpi_free_rx_ring(sc, &sc->rxq); 733 wpi_free_shared(sc); 734 } 735 736 if (sc->fw_fp != NULL) { 737 wpi_unload_firmware(sc); 738 } 739 740 if (sc->fw_dma.tag) 741 wpi_free_fwmem(sc); 742 WPI_UNLOCK(sc); 743 744 if (sc->irq != NULL) { 745 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 746 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 747 } 748 749 if (sc->mem != NULL) 750 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 751 752 if (ifp != NULL) 753 if_free(ifp); 754 755 WPI_LOCK_DESTROY(sc); 756 757 return 0; 758 } 759 760 static struct ieee80211vap * 761 wpi_vap_create(struct ieee80211com *ic, 762 const char name[IFNAMSIZ], int unit, int opmode, int flags, 763 const uint8_t bssid[IEEE80211_ADDR_LEN], 764 const uint8_t mac[IEEE80211_ADDR_LEN]) 765 { 766 struct wpi_vap *wvp; 767 struct ieee80211vap *vap; 768 769 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 770 return NULL; 771 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 772 M_80211_VAP, M_NOWAIT | M_ZERO); 773 if (wvp == NULL) 774 return NULL; 775 vap = &wvp->vap; 776 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 777 /* override with driver methods */ 778 wvp->newstate = vap->iv_newstate; 779 vap->iv_newstate = wpi_newstate; 780 781 ieee80211_ratectl_init(vap); 782 /* complete setup */ 783 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 784 ic->ic_opmode = opmode; 785 return vap; 786 } 787 788 static void 789 wpi_vap_delete(struct ieee80211vap *vap) 790 { 791 struct wpi_vap *wvp = WPI_VAP(vap); 792 793 ieee80211_ratectl_deinit(vap); 794 ieee80211_vap_detach(vap); 795 free(wvp, M_80211_VAP); 796 } 797 798 static void 799 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 800 { 801 if (error != 0) 802 return; 803 804 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 805 806 *(bus_addr_t *)arg = segs[0].ds_addr; 807 } 808 809 /* 810 * Allocates a contiguous block of dma memory of the requested size and 811 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 812 * allocations greater than 4096 may fail. Hence if the requested alignment is 813 * greater we allocate 'alignment' size extra memory and shift the vaddr and 814 * paddr after the dma load. This bypasses the problem at the cost of a little 815 * more memory. 816 */ 817 static int 818 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 819 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 820 { 821 int error; 822 bus_size_t align; 823 bus_size_t reqsize; 824 825 DPRINTFN(WPI_DEBUG_DMA, 826 ("Size: %zd - alignment %zd\n", size, alignment)); 827 828 dma->size = size; 829 dma->tag = NULL; 830 831 if (alignment > 4096) { 832 align = PAGE_SIZE; 833 reqsize = size + alignment; 834 } else { 835 align = alignment; 836 reqsize = size; 837 } 838 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 839 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 840 NULL, NULL, reqsize, 841 1, reqsize, flags, 842 NULL, NULL, &dma->tag); 843 if (error != 0) { 844 device_printf(sc->sc_dev, 845 "could not create shared page DMA tag\n"); 846 goto fail; 847 } 848 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 849 flags | BUS_DMA_ZERO, &dma->map); 850 if (error != 0) { 851 device_printf(sc->sc_dev, 852 "could not allocate shared page DMA memory\n"); 853 goto fail; 854 } 855 856 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 857 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 858 859 /* Save the original pointers so we can free all the memory */ 860 dma->paddr = dma->paddr_start; 861 dma->vaddr = dma->vaddr_start; 862 863 /* 864 * Check the alignment and increment by 4096 until we get the 865 * requested alignment. Fail if can't obtain the alignment 866 * we requested. 867 */ 868 if ((dma->paddr & (alignment -1 )) != 0) { 869 int i; 870 871 for (i = 0; i < alignment / 4096; i++) { 872 if ((dma->paddr & (alignment - 1 )) == 0) 873 break; 874 dma->paddr += 4096; 875 dma->vaddr += 4096; 876 } 877 if (i == alignment / 4096) { 878 device_printf(sc->sc_dev, 879 "alignment requirement was not satisfied\n"); 880 goto fail; 881 } 882 } 883 884 if (error != 0) { 885 device_printf(sc->sc_dev, 886 "could not load shared page DMA map\n"); 887 goto fail; 888 } 889 890 if (kvap != NULL) 891 *kvap = dma->vaddr; 892 893 return 0; 894 895 fail: 896 wpi_dma_contig_free(dma); 897 return error; 898 } 899 900 static void 901 wpi_dma_contig_free(struct wpi_dma_info *dma) 902 { 903 if (dma->tag) { 904 if (dma->map != NULL) { 905 if (dma->paddr_start != 0) { 906 bus_dmamap_sync(dma->tag, dma->map, 907 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 908 bus_dmamap_unload(dma->tag, dma->map); 909 } 910 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 911 } 912 bus_dma_tag_destroy(dma->tag); 913 } 914 } 915 916 /* 917 * Allocate a shared page between host and NIC. 918 */ 919 static int 920 wpi_alloc_shared(struct wpi_softc *sc) 921 { 922 int error; 923 924 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 925 (void **)&sc->shared, sizeof (struct wpi_shared), 926 PAGE_SIZE, 927 BUS_DMA_NOWAIT); 928 929 if (error != 0) { 930 device_printf(sc->sc_dev, 931 "could not allocate shared area DMA memory\n"); 932 } 933 934 return error; 935 } 936 937 static void 938 wpi_free_shared(struct wpi_softc *sc) 939 { 940 wpi_dma_contig_free(&sc->shared_dma); 941 } 942 943 static int 944 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 945 { 946 947 int i, error; 948 949 ring->cur = 0; 950 951 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 952 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 953 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 954 955 if (error != 0) { 956 device_printf(sc->sc_dev, 957 "%s: could not allocate rx ring DMA memory, error %d\n", 958 __func__, error); 959 goto fail; 960 } 961 962 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 963 BUS_SPACE_MAXADDR_32BIT, 964 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 965 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 966 if (error != 0) { 967 device_printf(sc->sc_dev, 968 "%s: bus_dma_tag_create_failed, error %d\n", 969 __func__, error); 970 goto fail; 971 } 972 973 /* 974 * Setup Rx buffers. 975 */ 976 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 977 struct wpi_rx_data *data = &ring->data[i]; 978 struct mbuf *m; 979 bus_addr_t paddr; 980 981 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 982 if (error != 0) { 983 device_printf(sc->sc_dev, 984 "%s: bus_dmamap_create failed, error %d\n", 985 __func__, error); 986 goto fail; 987 } 988 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 989 if (m == NULL) { 990 device_printf(sc->sc_dev, 991 "%s: could not allocate rx mbuf\n", __func__); 992 error = ENOMEM; 993 goto fail; 994 } 995 /* map page */ 996 error = bus_dmamap_load(ring->data_dmat, data->map, 997 mtod(m, caddr_t), MJUMPAGESIZE, 998 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 999 if (error != 0 && error != EFBIG) { 1000 device_printf(sc->sc_dev, 1001 "%s: bus_dmamap_load failed, error %d\n", 1002 __func__, error); 1003 m_freem(m); 1004 error = ENOMEM; /* XXX unique code */ 1005 goto fail; 1006 } 1007 bus_dmamap_sync(ring->data_dmat, data->map, 1008 BUS_DMASYNC_PREWRITE); 1009 1010 data->m = m; 1011 ring->desc[i] = htole32(paddr); 1012 } 1013 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1014 BUS_DMASYNC_PREWRITE); 1015 return 0; 1016 fail: 1017 wpi_free_rx_ring(sc, ring); 1018 return error; 1019 } 1020 1021 static void 1022 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1023 { 1024 int ntries; 1025 1026 wpi_mem_lock(sc); 1027 1028 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1029 1030 for (ntries = 0; ntries < 100; ntries++) { 1031 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1032 break; 1033 DELAY(10); 1034 } 1035 1036 wpi_mem_unlock(sc); 1037 1038 #ifdef WPI_DEBUG 1039 if (ntries == 100 && wpi_debug > 0) 1040 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1041 #endif 1042 1043 ring->cur = 0; 1044 } 1045 1046 static void 1047 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1048 { 1049 int i; 1050 1051 wpi_dma_contig_free(&ring->desc_dma); 1052 1053 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1054 struct wpi_rx_data *data = &ring->data[i]; 1055 1056 if (data->m != NULL) { 1057 bus_dmamap_sync(ring->data_dmat, data->map, 1058 BUS_DMASYNC_POSTREAD); 1059 bus_dmamap_unload(ring->data_dmat, data->map); 1060 m_freem(data->m); 1061 } 1062 if (data->map != NULL) 1063 bus_dmamap_destroy(ring->data_dmat, data->map); 1064 } 1065 } 1066 1067 static int 1068 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1069 int qid) 1070 { 1071 struct wpi_tx_data *data; 1072 int i, error; 1073 1074 ring->qid = qid; 1075 ring->count = count; 1076 ring->queued = 0; 1077 ring->cur = 0; 1078 ring->data = NULL; 1079 1080 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1081 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1082 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1083 1084 if (error != 0) { 1085 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1086 goto fail; 1087 } 1088 1089 /* update shared page with ring's base address */ 1090 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1091 1092 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1093 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1094 BUS_DMA_NOWAIT); 1095 1096 if (error != 0) { 1097 device_printf(sc->sc_dev, 1098 "could not allocate tx command DMA memory\n"); 1099 goto fail; 1100 } 1101 1102 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1103 M_NOWAIT | M_ZERO); 1104 if (ring->data == NULL) { 1105 device_printf(sc->sc_dev, 1106 "could not allocate tx data slots\n"); 1107 goto fail; 1108 } 1109 1110 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1111 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1112 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1113 &ring->data_dmat); 1114 if (error != 0) { 1115 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1116 goto fail; 1117 } 1118 1119 for (i = 0; i < count; i++) { 1120 data = &ring->data[i]; 1121 1122 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1123 if (error != 0) { 1124 device_printf(sc->sc_dev, 1125 "could not create tx buf DMA map\n"); 1126 goto fail; 1127 } 1128 bus_dmamap_sync(ring->data_dmat, data->map, 1129 BUS_DMASYNC_PREWRITE); 1130 } 1131 1132 return 0; 1133 1134 fail: 1135 wpi_free_tx_ring(sc, ring); 1136 return error; 1137 } 1138 1139 static void 1140 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1141 { 1142 struct wpi_tx_data *data; 1143 int i, ntries; 1144 1145 wpi_mem_lock(sc); 1146 1147 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1148 for (ntries = 0; ntries < 100; ntries++) { 1149 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1150 break; 1151 DELAY(10); 1152 } 1153 #ifdef WPI_DEBUG 1154 if (ntries == 100 && wpi_debug > 0) 1155 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1156 ring->qid); 1157 #endif 1158 wpi_mem_unlock(sc); 1159 1160 for (i = 0; i < ring->count; i++) { 1161 data = &ring->data[i]; 1162 1163 if (data->m != NULL) { 1164 bus_dmamap_unload(ring->data_dmat, data->map); 1165 m_freem(data->m); 1166 data->m = NULL; 1167 } 1168 } 1169 1170 ring->queued = 0; 1171 ring->cur = 0; 1172 } 1173 1174 static void 1175 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1176 { 1177 struct wpi_tx_data *data; 1178 int i; 1179 1180 wpi_dma_contig_free(&ring->desc_dma); 1181 wpi_dma_contig_free(&ring->cmd_dma); 1182 1183 if (ring->data != NULL) { 1184 for (i = 0; i < ring->count; i++) { 1185 data = &ring->data[i]; 1186 1187 if (data->m != NULL) { 1188 bus_dmamap_sync(ring->data_dmat, data->map, 1189 BUS_DMASYNC_POSTWRITE); 1190 bus_dmamap_unload(ring->data_dmat, data->map); 1191 m_freem(data->m); 1192 data->m = NULL; 1193 } 1194 } 1195 free(ring->data, M_DEVBUF); 1196 } 1197 1198 if (ring->data_dmat != NULL) 1199 bus_dma_tag_destroy(ring->data_dmat); 1200 } 1201 1202 static int 1203 wpi_shutdown(device_t dev) 1204 { 1205 struct wpi_softc *sc = device_get_softc(dev); 1206 1207 WPI_LOCK(sc); 1208 wpi_stop_locked(sc); 1209 wpi_unload_firmware(sc); 1210 WPI_UNLOCK(sc); 1211 1212 return 0; 1213 } 1214 1215 static int 1216 wpi_suspend(device_t dev) 1217 { 1218 struct wpi_softc *sc = device_get_softc(dev); 1219 1220 wpi_stop(sc); 1221 return 0; 1222 } 1223 1224 static int 1225 wpi_resume(device_t dev) 1226 { 1227 struct wpi_softc *sc = device_get_softc(dev); 1228 struct ifnet *ifp = sc->sc_ifp; 1229 1230 pci_write_config(dev, 0x41, 0, 1); 1231 1232 if (ifp->if_flags & IFF_UP) { 1233 wpi_init(ifp->if_softc); 1234 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1235 wpi_start(ifp); 1236 } 1237 return 0; 1238 } 1239 1240 /** 1241 * Called by net80211 when ever there is a change to 80211 state machine 1242 */ 1243 static int 1244 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1245 { 1246 struct wpi_vap *wvp = WPI_VAP(vap); 1247 struct ieee80211com *ic = vap->iv_ic; 1248 struct ifnet *ifp = ic->ic_ifp; 1249 struct wpi_softc *sc = ifp->if_softc; 1250 int error; 1251 1252 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1253 ieee80211_state_name[vap->iv_state], 1254 ieee80211_state_name[nstate], sc->flags)); 1255 1256 IEEE80211_UNLOCK(ic); 1257 WPI_LOCK(sc); 1258 if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) { 1259 /* 1260 * On !INIT -> SCAN transitions, we need to clear any possible 1261 * knowledge about associations. 1262 */ 1263 error = wpi_config(sc); 1264 if (error != 0) { 1265 device_printf(sc->sc_dev, 1266 "%s: device config failed, error %d\n", 1267 __func__, error); 1268 } 1269 } 1270 if (nstate == IEEE80211_S_AUTH || 1271 (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) { 1272 /* 1273 * The node must be registered in the firmware before auth. 1274 * Also the associd must be cleared on RUN -> ASSOC 1275 * transitions. 1276 */ 1277 error = wpi_auth(sc, vap); 1278 if (error != 0) { 1279 device_printf(sc->sc_dev, 1280 "%s: could not move to auth state, error %d\n", 1281 __func__, error); 1282 } 1283 } 1284 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1285 error = wpi_run(sc, vap); 1286 if (error != 0) { 1287 device_printf(sc->sc_dev, 1288 "%s: could not move to run state, error %d\n", 1289 __func__, error); 1290 } 1291 } 1292 if (nstate == IEEE80211_S_RUN) { 1293 /* RUN -> RUN transition; just restart the timers */ 1294 wpi_calib_timeout(sc); 1295 /* XXX split out rate control timer */ 1296 } 1297 WPI_UNLOCK(sc); 1298 IEEE80211_LOCK(ic); 1299 return wvp->newstate(vap, nstate, arg); 1300 } 1301 1302 /* 1303 * Grab exclusive access to NIC memory. 1304 */ 1305 static void 1306 wpi_mem_lock(struct wpi_softc *sc) 1307 { 1308 int ntries; 1309 uint32_t tmp; 1310 1311 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1312 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1313 1314 /* spin until we actually get the lock */ 1315 for (ntries = 0; ntries < 100; ntries++) { 1316 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1317 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1318 break; 1319 DELAY(10); 1320 } 1321 if (ntries == 100) 1322 device_printf(sc->sc_dev, "could not lock memory\n"); 1323 } 1324 1325 /* 1326 * Release lock on NIC memory. 1327 */ 1328 static void 1329 wpi_mem_unlock(struct wpi_softc *sc) 1330 { 1331 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1332 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1333 } 1334 1335 static uint32_t 1336 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1337 { 1338 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1339 return WPI_READ(sc, WPI_READ_MEM_DATA); 1340 } 1341 1342 static void 1343 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1344 { 1345 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1346 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1347 } 1348 1349 static void 1350 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1351 const uint32_t *data, int wlen) 1352 { 1353 for (; wlen > 0; wlen--, data++, addr+=4) 1354 wpi_mem_write(sc, addr, *data); 1355 } 1356 1357 /* 1358 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1359 * using the traditional bit-bang method. Data is read up until len bytes have 1360 * been obtained. 1361 */ 1362 static uint16_t 1363 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1364 { 1365 int ntries; 1366 uint32_t val; 1367 uint8_t *out = data; 1368 1369 wpi_mem_lock(sc); 1370 1371 for (; len > 0; len -= 2, addr++) { 1372 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1373 1374 for (ntries = 0; ntries < 10; ntries++) { 1375 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1376 break; 1377 DELAY(5); 1378 } 1379 1380 if (ntries == 10) { 1381 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1382 return ETIMEDOUT; 1383 } 1384 1385 *out++= val >> 16; 1386 if (len > 1) 1387 *out ++= val >> 24; 1388 } 1389 1390 wpi_mem_unlock(sc); 1391 1392 return 0; 1393 } 1394 1395 /* 1396 * The firmware text and data segments are transferred to the NIC using DMA. 1397 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1398 * where to find it. Once the NIC has copied the firmware into its internal 1399 * memory, we can free our local copy in the driver. 1400 */ 1401 static int 1402 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1403 { 1404 int error, ntries; 1405 1406 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1407 1408 size /= sizeof(uint32_t); 1409 1410 wpi_mem_lock(sc); 1411 1412 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1413 (const uint32_t *)fw, size); 1414 1415 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1416 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1417 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1418 1419 /* run microcode */ 1420 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1421 1422 /* wait while the adapter is busy copying the firmware */ 1423 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1424 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1425 DPRINTFN(WPI_DEBUG_HW, 1426 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1427 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1428 if (status & WPI_TX_IDLE(6)) { 1429 DPRINTFN(WPI_DEBUG_HW, 1430 ("Status Match! - ntries = %d\n", ntries)); 1431 break; 1432 } 1433 DELAY(10); 1434 } 1435 if (ntries == 1000) { 1436 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1437 error = ETIMEDOUT; 1438 } 1439 1440 /* start the microcode executing */ 1441 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1442 1443 wpi_mem_unlock(sc); 1444 1445 return (error); 1446 } 1447 1448 static void 1449 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1450 struct wpi_rx_data *data) 1451 { 1452 struct ifnet *ifp = sc->sc_ifp; 1453 struct ieee80211com *ic = ifp->if_l2com; 1454 struct wpi_rx_ring *ring = &sc->rxq; 1455 struct wpi_rx_stat *stat; 1456 struct wpi_rx_head *head; 1457 struct wpi_rx_tail *tail; 1458 struct ieee80211_node *ni; 1459 struct mbuf *m, *mnew; 1460 bus_addr_t paddr; 1461 int error; 1462 1463 stat = (struct wpi_rx_stat *)(desc + 1); 1464 1465 if (stat->len > WPI_STAT_MAXLEN) { 1466 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1467 ifp->if_ierrors++; 1468 return; 1469 } 1470 1471 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 1472 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1473 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1474 1475 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1476 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1477 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1478 (uintmax_t)le64toh(tail->tstamp))); 1479 1480 /* discard Rx frames with bad CRC early */ 1481 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1482 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1483 le32toh(tail->flags))); 1484 ifp->if_ierrors++; 1485 return; 1486 } 1487 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1488 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1489 le16toh(head->len))); 1490 ifp->if_ierrors++; 1491 return; 1492 } 1493 1494 /* XXX don't need mbuf, just dma buffer */ 1495 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1496 if (mnew == NULL) { 1497 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1498 __func__)); 1499 ifp->if_ierrors++; 1500 return; 1501 } 1502 bus_dmamap_unload(ring->data_dmat, data->map); 1503 1504 error = bus_dmamap_load(ring->data_dmat, data->map, 1505 mtod(mnew, caddr_t), MJUMPAGESIZE, 1506 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1507 if (error != 0 && error != EFBIG) { 1508 device_printf(sc->sc_dev, 1509 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1510 m_freem(mnew); 1511 ifp->if_ierrors++; 1512 return; 1513 } 1514 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1515 1516 /* finalize mbuf and swap in new one */ 1517 m = data->m; 1518 m->m_pkthdr.rcvif = ifp; 1519 m->m_data = (caddr_t)(head + 1); 1520 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1521 1522 data->m = mnew; 1523 /* update Rx descriptor */ 1524 ring->desc[ring->cur] = htole32(paddr); 1525 1526 if (ieee80211_radiotap_active(ic)) { 1527 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1528 1529 tap->wr_flags = 0; 1530 tap->wr_chan_freq = 1531 htole16(ic->ic_channels[head->chan].ic_freq); 1532 tap->wr_chan_flags = 1533 htole16(ic->ic_channels[head->chan].ic_flags); 1534 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1535 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1536 tap->wr_tsft = tail->tstamp; 1537 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1538 switch (head->rate) { 1539 /* CCK rates */ 1540 case 10: tap->wr_rate = 2; break; 1541 case 20: tap->wr_rate = 4; break; 1542 case 55: tap->wr_rate = 11; break; 1543 case 110: tap->wr_rate = 22; break; 1544 /* OFDM rates */ 1545 case 0xd: tap->wr_rate = 12; break; 1546 case 0xf: tap->wr_rate = 18; break; 1547 case 0x5: tap->wr_rate = 24; break; 1548 case 0x7: tap->wr_rate = 36; break; 1549 case 0x9: tap->wr_rate = 48; break; 1550 case 0xb: tap->wr_rate = 72; break; 1551 case 0x1: tap->wr_rate = 96; break; 1552 case 0x3: tap->wr_rate = 108; break; 1553 /* unknown rate: should not happen */ 1554 default: tap->wr_rate = 0; 1555 } 1556 if (le16toh(head->flags) & 0x4) 1557 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1558 } 1559 1560 WPI_UNLOCK(sc); 1561 1562 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1563 if (ni != NULL) { 1564 (void) ieee80211_input(ni, m, stat->rssi, 0); 1565 ieee80211_free_node(ni); 1566 } else 1567 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1568 1569 WPI_LOCK(sc); 1570 } 1571 1572 static void 1573 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1574 { 1575 struct ifnet *ifp = sc->sc_ifp; 1576 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1577 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1578 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1579 struct ieee80211_node *ni = txdata->ni; 1580 struct ieee80211vap *vap = ni->ni_vap; 1581 int retrycnt = 0; 1582 1583 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1584 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1585 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1586 le32toh(stat->status))); 1587 1588 /* 1589 * Update rate control statistics for the node. 1590 * XXX we should not count mgmt frames since they're always sent at 1591 * the lowest available bit-rate. 1592 * XXX frames w/o ACK shouldn't be used either 1593 */ 1594 if (stat->ntries > 0) { 1595 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1596 retrycnt = 1; 1597 } 1598 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1599 &retrycnt, NULL); 1600 1601 /* XXX oerrors should only count errors !maxtries */ 1602 if ((le32toh(stat->status) & 0xff) != 1) 1603 ifp->if_oerrors++; 1604 else 1605 ifp->if_opackets++; 1606 1607 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1608 bus_dmamap_unload(ring->data_dmat, txdata->map); 1609 /* XXX handle M_TXCB? */ 1610 m_freem(txdata->m); 1611 txdata->m = NULL; 1612 ieee80211_free_node(txdata->ni); 1613 txdata->ni = NULL; 1614 1615 ring->queued--; 1616 1617 sc->sc_tx_timer = 0; 1618 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1619 wpi_start_locked(ifp); 1620 } 1621 1622 static void 1623 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1624 { 1625 struct wpi_tx_ring *ring = &sc->cmdq; 1626 struct wpi_tx_data *data; 1627 1628 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1629 "type=%s len=%d\n", desc->qid, desc->idx, 1630 desc->flags, wpi_cmd_str(desc->type), 1631 le32toh(desc->len))); 1632 1633 if ((desc->qid & 7) != 4) 1634 return; /* not a command ack */ 1635 1636 data = &ring->data[desc->idx]; 1637 1638 /* if the command was mapped in a mbuf, free it */ 1639 if (data->m != NULL) { 1640 bus_dmamap_unload(ring->data_dmat, data->map); 1641 m_freem(data->m); 1642 data->m = NULL; 1643 } 1644 1645 sc->flags &= ~WPI_FLAG_BUSY; 1646 wakeup(&ring->cmd[desc->idx]); 1647 } 1648 1649 static void 1650 wpi_notif_intr(struct wpi_softc *sc) 1651 { 1652 struct ifnet *ifp = sc->sc_ifp; 1653 struct ieee80211com *ic = ifp->if_l2com; 1654 struct wpi_rx_desc *desc; 1655 struct wpi_rx_data *data; 1656 uint32_t hw; 1657 1658 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 1659 BUS_DMASYNC_POSTREAD); 1660 1661 hw = le32toh(sc->shared->next); 1662 while (sc->rxq.cur != hw) { 1663 data = &sc->rxq.data[sc->rxq.cur]; 1664 1665 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1666 BUS_DMASYNC_POSTREAD); 1667 desc = (void *)data->m->m_ext.ext_buf; 1668 1669 DPRINTFN(WPI_DEBUG_NOTIFY, 1670 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1671 desc->qid, 1672 desc->idx, 1673 desc->flags, 1674 desc->type, 1675 le32toh(desc->len))); 1676 1677 if (!(desc->qid & 0x80)) /* reply to a command */ 1678 wpi_cmd_intr(sc, desc); 1679 1680 switch (desc->type) { 1681 case WPI_RX_DONE: 1682 /* a 802.11 frame was received */ 1683 wpi_rx_intr(sc, desc, data); 1684 break; 1685 1686 case WPI_TX_DONE: 1687 /* a 802.11 frame has been transmitted */ 1688 wpi_tx_intr(sc, desc); 1689 break; 1690 1691 case WPI_UC_READY: 1692 { 1693 struct wpi_ucode_info *uc = 1694 (struct wpi_ucode_info *)(desc + 1); 1695 1696 /* the microcontroller is ready */ 1697 DPRINTF(("microcode alive notification version %x " 1698 "alive %x\n", le32toh(uc->version), 1699 le32toh(uc->valid))); 1700 1701 if (le32toh(uc->valid) != 1) { 1702 device_printf(sc->sc_dev, 1703 "microcontroller initialization failed\n"); 1704 wpi_stop_locked(sc); 1705 } 1706 break; 1707 } 1708 case WPI_STATE_CHANGED: 1709 { 1710 uint32_t *status = (uint32_t *)(desc + 1); 1711 1712 /* enabled/disabled notification */ 1713 DPRINTF(("state changed to %x\n", le32toh(*status))); 1714 1715 if (le32toh(*status) & 1) { 1716 device_printf(sc->sc_dev, 1717 "Radio transmitter is switched off\n"); 1718 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1719 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1720 /* Disable firmware commands */ 1721 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1722 } 1723 break; 1724 } 1725 case WPI_START_SCAN: 1726 { 1727 #ifdef WPI_DEBUG 1728 struct wpi_start_scan *scan = 1729 (struct wpi_start_scan *)(desc + 1); 1730 #endif 1731 1732 DPRINTFN(WPI_DEBUG_SCANNING, 1733 ("scanning channel %d status %x\n", 1734 scan->chan, le32toh(scan->status))); 1735 break; 1736 } 1737 case WPI_STOP_SCAN: 1738 { 1739 #ifdef WPI_DEBUG 1740 struct wpi_stop_scan *scan = 1741 (struct wpi_stop_scan *)(desc + 1); 1742 #endif 1743 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1744 1745 DPRINTFN(WPI_DEBUG_SCANNING, 1746 ("scan finished nchan=%d status=%d chan=%d\n", 1747 scan->nchan, scan->status, scan->chan)); 1748 1749 sc->sc_scan_timer = 0; 1750 ieee80211_scan_next(vap); 1751 break; 1752 } 1753 case WPI_MISSED_BEACON: 1754 { 1755 struct wpi_missed_beacon *beacon = 1756 (struct wpi_missed_beacon *)(desc + 1); 1757 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1758 1759 if (le32toh(beacon->consecutive) >= 1760 vap->iv_bmissthreshold) { 1761 DPRINTF(("Beacon miss: %u >= %u\n", 1762 le32toh(beacon->consecutive), 1763 vap->iv_bmissthreshold)); 1764 ieee80211_beacon_miss(ic); 1765 } 1766 break; 1767 } 1768 } 1769 1770 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1771 } 1772 1773 /* tell the firmware what we have processed */ 1774 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1775 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1776 } 1777 1778 static void 1779 wpi_intr(void *arg) 1780 { 1781 struct wpi_softc *sc = arg; 1782 uint32_t r; 1783 1784 WPI_LOCK(sc); 1785 1786 r = WPI_READ(sc, WPI_INTR); 1787 if (r == 0 || r == 0xffffffff) { 1788 WPI_UNLOCK(sc); 1789 return; 1790 } 1791 1792 /* disable interrupts */ 1793 WPI_WRITE(sc, WPI_MASK, 0); 1794 /* ack interrupts */ 1795 WPI_WRITE(sc, WPI_INTR, r); 1796 1797 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1798 struct ifnet *ifp = sc->sc_ifp; 1799 struct ieee80211com *ic = ifp->if_l2com; 1800 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1801 1802 device_printf(sc->sc_dev, "fatal firmware error\n"); 1803 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1804 "(Hardware Error)")); 1805 if (vap != NULL) 1806 ieee80211_cancel_scan(vap); 1807 ieee80211_runtask(ic, &sc->sc_restarttask); 1808 sc->flags &= ~WPI_FLAG_BUSY; 1809 WPI_UNLOCK(sc); 1810 return; 1811 } 1812 1813 if (r & WPI_RX_INTR) 1814 wpi_notif_intr(sc); 1815 1816 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1817 wakeup(sc); 1818 1819 /* re-enable interrupts */ 1820 if (sc->sc_ifp->if_flags & IFF_UP) 1821 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1822 1823 WPI_UNLOCK(sc); 1824 } 1825 1826 static uint8_t 1827 wpi_plcp_signal(int rate) 1828 { 1829 switch (rate) { 1830 /* CCK rates (returned values are device-dependent) */ 1831 case 2: return 10; 1832 case 4: return 20; 1833 case 11: return 55; 1834 case 22: return 110; 1835 1836 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1837 /* R1-R4 (ral/ural is R4-R1) */ 1838 case 12: return 0xd; 1839 case 18: return 0xf; 1840 case 24: return 0x5; 1841 case 36: return 0x7; 1842 case 48: return 0x9; 1843 case 72: return 0xb; 1844 case 96: return 0x1; 1845 case 108: return 0x3; 1846 1847 /* unsupported rates (should not get there) */ 1848 default: return 0; 1849 } 1850 } 1851 1852 /* quickly determine if a given rate is CCK or OFDM */ 1853 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1854 1855 /* 1856 * Construct the data packet for a transmit buffer and acutally put 1857 * the buffer onto the transmit ring, kicking the card to process the 1858 * the buffer. 1859 */ 1860 static int 1861 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1862 int ac) 1863 { 1864 struct ieee80211vap *vap = ni->ni_vap; 1865 struct ifnet *ifp = sc->sc_ifp; 1866 struct ieee80211com *ic = ifp->if_l2com; 1867 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1868 struct wpi_tx_ring *ring = &sc->txq[ac]; 1869 struct wpi_tx_desc *desc; 1870 struct wpi_tx_data *data; 1871 struct wpi_tx_cmd *cmd; 1872 struct wpi_cmd_data *tx; 1873 struct ieee80211_frame *wh; 1874 const struct ieee80211_txparam *tp; 1875 struct ieee80211_key *k; 1876 struct mbuf *mnew; 1877 int i, error, nsegs, rate, hdrlen, ismcast; 1878 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1879 1880 desc = &ring->desc[ring->cur]; 1881 data = &ring->data[ring->cur]; 1882 1883 wh = mtod(m0, struct ieee80211_frame *); 1884 1885 hdrlen = ieee80211_hdrsize(wh); 1886 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1887 1888 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1889 k = ieee80211_crypto_encap(ni, m0); 1890 if (k == NULL) { 1891 m_freem(m0); 1892 return ENOBUFS; 1893 } 1894 /* packet header may have moved, reset our local pointer */ 1895 wh = mtod(m0, struct ieee80211_frame *); 1896 } 1897 1898 cmd = &ring->cmd[ring->cur]; 1899 cmd->code = WPI_CMD_TX_DATA; 1900 cmd->flags = 0; 1901 cmd->qid = ring->qid; 1902 cmd->idx = ring->cur; 1903 1904 tx = (struct wpi_cmd_data *)cmd->data; 1905 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1906 tx->timeout = htole16(0); 1907 tx->ofdm_mask = 0xff; 1908 tx->cck_mask = 0x0f; 1909 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1910 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1911 tx->len = htole16(m0->m_pkthdr.len); 1912 1913 if (!ismcast) { 1914 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1915 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1916 tx->flags |= htole32(WPI_TX_NEED_ACK); 1917 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1918 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1919 tx->rts_ntries = 7; 1920 } 1921 } 1922 /* pick a rate */ 1923 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1924 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1925 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1926 /* tell h/w to set timestamp in probe responses */ 1927 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1928 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1929 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1930 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1931 tx->timeout = htole16(3); 1932 else 1933 tx->timeout = htole16(2); 1934 rate = tp->mgmtrate; 1935 } else if (ismcast) { 1936 rate = tp->mcastrate; 1937 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1938 rate = tp->ucastrate; 1939 } else { 1940 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1941 rate = ni->ni_txrate; 1942 } 1943 tx->rate = wpi_plcp_signal(rate); 1944 1945 /* be very persistant at sending frames out */ 1946 #if 0 1947 tx->data_ntries = tp->maxretry; 1948 #else 1949 tx->data_ntries = 15; /* XXX way too high */ 1950 #endif 1951 1952 if (ieee80211_radiotap_active_vap(vap)) { 1953 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1954 tap->wt_flags = 0; 1955 tap->wt_rate = rate; 1956 tap->wt_hwqueue = ac; 1957 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1958 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1959 1960 ieee80211_radiotap_tx(vap, m0); 1961 } 1962 1963 /* save and trim IEEE802.11 header */ 1964 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1965 m_adj(m0, hdrlen); 1966 1967 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1968 &nsegs, BUS_DMA_NOWAIT); 1969 if (error != 0 && error != EFBIG) { 1970 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1971 error); 1972 m_freem(m0); 1973 return error; 1974 } 1975 if (error != 0) { 1976 /* XXX use m_collapse */ 1977 mnew = m_defrag(m0, M_DONTWAIT); 1978 if (mnew == NULL) { 1979 device_printf(sc->sc_dev, 1980 "could not defragment mbuf\n"); 1981 m_freem(m0); 1982 return ENOBUFS; 1983 } 1984 m0 = mnew; 1985 1986 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1987 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1988 if (error != 0) { 1989 device_printf(sc->sc_dev, 1990 "could not map mbuf (error %d)\n", error); 1991 m_freem(m0); 1992 return error; 1993 } 1994 } 1995 1996 data->m = m0; 1997 data->ni = ni; 1998 1999 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 2000 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 2001 2002 /* first scatter/gather segment is used by the tx data command */ 2003 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2004 (1 + nsegs) << 24); 2005 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2006 ring->cur * sizeof (struct wpi_tx_cmd)); 2007 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 2008 for (i = 1; i <= nsegs; i++) { 2009 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 2010 desc->segs[i].len = htole32(segs[i - 1].ds_len); 2011 } 2012 2013 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2014 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2015 BUS_DMASYNC_PREWRITE); 2016 2017 ring->queued++; 2018 2019 /* kick ring */ 2020 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2021 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2022 2023 return 0; 2024 } 2025 2026 /** 2027 * Process data waiting to be sent on the IFNET output queue 2028 */ 2029 static void 2030 wpi_start(struct ifnet *ifp) 2031 { 2032 struct wpi_softc *sc = ifp->if_softc; 2033 2034 WPI_LOCK(sc); 2035 wpi_start_locked(ifp); 2036 WPI_UNLOCK(sc); 2037 } 2038 2039 static void 2040 wpi_start_locked(struct ifnet *ifp) 2041 { 2042 struct wpi_softc *sc = ifp->if_softc; 2043 struct ieee80211_node *ni; 2044 struct mbuf *m; 2045 int ac; 2046 2047 WPI_LOCK_ASSERT(sc); 2048 2049 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2050 return; 2051 2052 for (;;) { 2053 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2054 if (m == NULL) 2055 break; 2056 ac = M_WME_GETAC(m); 2057 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2058 /* there is no place left in this ring */ 2059 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2060 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2061 break; 2062 } 2063 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2064 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2065 ieee80211_free_node(ni); 2066 ifp->if_oerrors++; 2067 break; 2068 } 2069 sc->sc_tx_timer = 5; 2070 } 2071 } 2072 2073 static int 2074 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2075 const struct ieee80211_bpf_params *params) 2076 { 2077 struct ieee80211com *ic = ni->ni_ic; 2078 struct ifnet *ifp = ic->ic_ifp; 2079 struct wpi_softc *sc = ifp->if_softc; 2080 2081 /* prevent management frames from being sent if we're not ready */ 2082 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2083 m_freem(m); 2084 ieee80211_free_node(ni); 2085 return ENETDOWN; 2086 } 2087 WPI_LOCK(sc); 2088 2089 /* management frames go into ring 0 */ 2090 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2091 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2092 m_freem(m); 2093 WPI_UNLOCK(sc); 2094 ieee80211_free_node(ni); 2095 return ENOBUFS; /* XXX */ 2096 } 2097 2098 ifp->if_opackets++; 2099 if (wpi_tx_data(sc, m, ni, 0) != 0) 2100 goto bad; 2101 sc->sc_tx_timer = 5; 2102 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2103 2104 WPI_UNLOCK(sc); 2105 return 0; 2106 bad: 2107 ifp->if_oerrors++; 2108 WPI_UNLOCK(sc); 2109 ieee80211_free_node(ni); 2110 return EIO; /* XXX */ 2111 } 2112 2113 static int 2114 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2115 { 2116 struct wpi_softc *sc = ifp->if_softc; 2117 struct ieee80211com *ic = ifp->if_l2com; 2118 struct ifreq *ifr = (struct ifreq *) data; 2119 int error = 0, startall = 0; 2120 2121 switch (cmd) { 2122 case SIOCSIFFLAGS: 2123 WPI_LOCK(sc); 2124 if ((ifp->if_flags & IFF_UP)) { 2125 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2126 wpi_init_locked(sc, 0); 2127 startall = 1; 2128 } 2129 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2130 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2131 wpi_stop_locked(sc); 2132 WPI_UNLOCK(sc); 2133 if (startall) 2134 ieee80211_start_all(ic); 2135 break; 2136 case SIOCGIFMEDIA: 2137 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2138 break; 2139 case SIOCGIFADDR: 2140 error = ether_ioctl(ifp, cmd, data); 2141 break; 2142 default: 2143 error = EINVAL; 2144 break; 2145 } 2146 return error; 2147 } 2148 2149 /* 2150 * Extract various information from EEPROM. 2151 */ 2152 static void 2153 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2154 { 2155 int i; 2156 2157 /* read the hardware capabilities, revision and SKU type */ 2158 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2159 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2160 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2161 2162 /* read the regulatory domain */ 2163 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2164 2165 /* read in the hw MAC address */ 2166 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2167 2168 /* read the list of authorized channels */ 2169 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2170 wpi_read_eeprom_channels(sc,i); 2171 2172 /* read the power level calibration info for each group */ 2173 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2174 wpi_read_eeprom_group(sc,i); 2175 } 2176 2177 /* 2178 * Send a command to the firmware. 2179 */ 2180 static int 2181 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2182 { 2183 struct wpi_tx_ring *ring = &sc->cmdq; 2184 struct wpi_tx_desc *desc; 2185 struct wpi_tx_cmd *cmd; 2186 2187 #ifdef WPI_DEBUG 2188 if (!async) { 2189 WPI_LOCK_ASSERT(sc); 2190 } 2191 #endif 2192 2193 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2194 async)); 2195 2196 if (sc->flags & WPI_FLAG_BUSY) { 2197 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2198 __func__, code); 2199 return EAGAIN; 2200 } 2201 sc->flags|= WPI_FLAG_BUSY; 2202 2203 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2204 code, size)); 2205 2206 desc = &ring->desc[ring->cur]; 2207 cmd = &ring->cmd[ring->cur]; 2208 2209 cmd->code = code; 2210 cmd->flags = 0; 2211 cmd->qid = ring->qid; 2212 cmd->idx = ring->cur; 2213 memcpy(cmd->data, buf, size); 2214 2215 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2216 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2217 ring->cur * sizeof (struct wpi_tx_cmd)); 2218 desc->segs[0].len = htole32(4 + size); 2219 2220 /* kick cmd ring */ 2221 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2222 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2223 2224 if (async) { 2225 sc->flags &= ~ WPI_FLAG_BUSY; 2226 return 0; 2227 } 2228 2229 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2230 } 2231 2232 static int 2233 wpi_wme_update(struct ieee80211com *ic) 2234 { 2235 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2236 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2237 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2238 const struct wmeParams *wmep; 2239 struct wpi_wme_setup wme; 2240 int ac; 2241 2242 /* don't override default WME values if WME is not actually enabled */ 2243 if (!(ic->ic_flags & IEEE80211_F_WME)) 2244 return 0; 2245 2246 wme.flags = 0; 2247 for (ac = 0; ac < WME_NUM_AC; ac++) { 2248 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2249 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2250 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2251 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2252 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2253 2254 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2255 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2256 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2257 } 2258 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2259 #undef WPI_USEC 2260 #undef WPI_EXP2 2261 } 2262 2263 /* 2264 * Configure h/w multi-rate retries. 2265 */ 2266 static int 2267 wpi_mrr_setup(struct wpi_softc *sc) 2268 { 2269 struct ifnet *ifp = sc->sc_ifp; 2270 struct ieee80211com *ic = ifp->if_l2com; 2271 struct wpi_mrr_setup mrr; 2272 int i, error; 2273 2274 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2275 2276 /* CCK rates (not used with 802.11a) */ 2277 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2278 mrr.rates[i].flags = 0; 2279 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2280 /* fallback to the immediate lower CCK rate (if any) */ 2281 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2282 /* try one time at this rate before falling back to "next" */ 2283 mrr.rates[i].ntries = 1; 2284 } 2285 2286 /* OFDM rates (not used with 802.11b) */ 2287 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2288 mrr.rates[i].flags = 0; 2289 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2290 /* fallback to the immediate lower OFDM rate (if any) */ 2291 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2292 mrr.rates[i].next = (i == WPI_OFDM6) ? 2293 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2294 WPI_OFDM6 : WPI_CCK2) : 2295 i - 1; 2296 /* try one time at this rate before falling back to "next" */ 2297 mrr.rates[i].ntries = 1; 2298 } 2299 2300 /* setup MRR for control frames */ 2301 mrr.which = htole32(WPI_MRR_CTL); 2302 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2303 if (error != 0) { 2304 device_printf(sc->sc_dev, 2305 "could not setup MRR for control frames\n"); 2306 return error; 2307 } 2308 2309 /* setup MRR for data frames */ 2310 mrr.which = htole32(WPI_MRR_DATA); 2311 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2312 if (error != 0) { 2313 device_printf(sc->sc_dev, 2314 "could not setup MRR for data frames\n"); 2315 return error; 2316 } 2317 2318 return 0; 2319 } 2320 2321 static void 2322 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2323 { 2324 struct wpi_cmd_led led; 2325 2326 led.which = which; 2327 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2328 led.off = off; 2329 led.on = on; 2330 2331 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2332 } 2333 2334 static void 2335 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2336 { 2337 struct wpi_cmd_tsf tsf; 2338 uint64_t val, mod; 2339 2340 memset(&tsf, 0, sizeof tsf); 2341 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2342 tsf.bintval = htole16(ni->ni_intval); 2343 tsf.lintval = htole16(10); 2344 2345 /* compute remaining time until next beacon */ 2346 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2347 mod = le64toh(tsf.tstamp) % val; 2348 tsf.binitval = htole32((uint32_t)(val - mod)); 2349 2350 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2351 device_printf(sc->sc_dev, "could not enable TSF\n"); 2352 } 2353 2354 #if 0 2355 /* 2356 * Build a beacon frame that the firmware will broadcast periodically in 2357 * IBSS or HostAP modes. 2358 */ 2359 static int 2360 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2361 { 2362 struct ifnet *ifp = sc->sc_ifp; 2363 struct ieee80211com *ic = ifp->if_l2com; 2364 struct wpi_tx_ring *ring = &sc->cmdq; 2365 struct wpi_tx_desc *desc; 2366 struct wpi_tx_data *data; 2367 struct wpi_tx_cmd *cmd; 2368 struct wpi_cmd_beacon *bcn; 2369 struct ieee80211_beacon_offsets bo; 2370 struct mbuf *m0; 2371 bus_addr_t physaddr; 2372 int error; 2373 2374 desc = &ring->desc[ring->cur]; 2375 data = &ring->data[ring->cur]; 2376 2377 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2378 if (m0 == NULL) { 2379 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2380 return ENOMEM; 2381 } 2382 2383 cmd = &ring->cmd[ring->cur]; 2384 cmd->code = WPI_CMD_SET_BEACON; 2385 cmd->flags = 0; 2386 cmd->qid = ring->qid; 2387 cmd->idx = ring->cur; 2388 2389 bcn = (struct wpi_cmd_beacon *)cmd->data; 2390 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2391 bcn->id = WPI_ID_BROADCAST; 2392 bcn->ofdm_mask = 0xff; 2393 bcn->cck_mask = 0x0f; 2394 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2395 bcn->len = htole16(m0->m_pkthdr.len); 2396 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2397 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2398 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2399 2400 /* save and trim IEEE802.11 header */ 2401 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2402 m_adj(m0, sizeof (struct ieee80211_frame)); 2403 2404 /* assume beacon frame is contiguous */ 2405 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2406 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2407 if (error != 0) { 2408 device_printf(sc->sc_dev, "could not map beacon\n"); 2409 m_freem(m0); 2410 return error; 2411 } 2412 2413 data->m = m0; 2414 2415 /* first scatter/gather segment is used by the beacon command */ 2416 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2417 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2418 ring->cur * sizeof (struct wpi_tx_cmd)); 2419 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2420 desc->segs[1].addr = htole32(physaddr); 2421 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2422 2423 /* kick cmd ring */ 2424 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2425 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2426 2427 return 0; 2428 } 2429 #endif 2430 2431 static int 2432 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2433 { 2434 struct ieee80211com *ic = vap->iv_ic; 2435 struct ieee80211_node *ni = vap->iv_bss; 2436 struct wpi_node_info node; 2437 int error; 2438 2439 2440 /* update adapter's configuration */ 2441 sc->config.associd = 0; 2442 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2443 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2444 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2445 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2446 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2447 WPI_CONFIG_24GHZ); 2448 } else { 2449 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO | 2450 WPI_CONFIG_24GHZ); 2451 } 2452 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2453 sc->config.cck_mask = 0; 2454 sc->config.ofdm_mask = 0x15; 2455 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2456 sc->config.cck_mask = 0x03; 2457 sc->config.ofdm_mask = 0; 2458 } else { 2459 /* XXX assume 802.11b/g */ 2460 sc->config.cck_mask = 0x0f; 2461 sc->config.ofdm_mask = 0x15; 2462 } 2463 2464 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2465 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2466 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2467 sizeof (struct wpi_config), 1); 2468 if (error != 0) { 2469 device_printf(sc->sc_dev, "could not configure\n"); 2470 return error; 2471 } 2472 2473 /* configuration has changed, set Tx power accordingly */ 2474 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2475 device_printf(sc->sc_dev, "could not set Tx power\n"); 2476 return error; 2477 } 2478 2479 /* add default node */ 2480 memset(&node, 0, sizeof node); 2481 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2482 node.id = WPI_ID_BSS; 2483 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2484 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2485 node.action = htole32(WPI_ACTION_SET_RATE); 2486 node.antenna = WPI_ANTENNA_BOTH; 2487 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2488 if (error != 0) 2489 device_printf(sc->sc_dev, "could not add BSS node\n"); 2490 2491 return (error); 2492 } 2493 2494 static int 2495 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2496 { 2497 struct ieee80211com *ic = vap->iv_ic; 2498 struct ieee80211_node *ni = vap->iv_bss; 2499 int error; 2500 2501 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2502 /* link LED blinks while monitoring */ 2503 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2504 return 0; 2505 } 2506 2507 wpi_enable_tsf(sc, ni); 2508 2509 /* update adapter's configuration */ 2510 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2511 /* short preamble/slot time are negotiated when associating */ 2512 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2513 WPI_CONFIG_SHSLOT); 2514 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2515 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2516 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2517 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2518 sc->config.filter |= htole32(WPI_FILTER_BSS); 2519 2520 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2521 2522 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2523 sc->config.flags)); 2524 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2525 wpi_config), 1); 2526 if (error != 0) { 2527 device_printf(sc->sc_dev, "could not update configuration\n"); 2528 return error; 2529 } 2530 2531 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2532 if (error != 0) { 2533 device_printf(sc->sc_dev, "could set txpower\n"); 2534 return error; 2535 } 2536 2537 /* link LED always on while associated */ 2538 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2539 2540 /* start automatic rate control timer */ 2541 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2542 2543 return (error); 2544 } 2545 2546 /* 2547 * Send a scan request to the firmware. Since this command is huge, we map it 2548 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2549 * much of this code is similar to that in wpi_cmd but because we must manually 2550 * construct the probe & channels, we duplicate what's needed here. XXX In the 2551 * future, this function should be modified to use wpi_cmd to help cleanup the 2552 * code base. 2553 */ 2554 static int 2555 wpi_scan(struct wpi_softc *sc) 2556 { 2557 struct ifnet *ifp = sc->sc_ifp; 2558 struct ieee80211com *ic = ifp->if_l2com; 2559 struct ieee80211_scan_state *ss = ic->ic_scan; 2560 struct wpi_tx_ring *ring = &sc->cmdq; 2561 struct wpi_tx_desc *desc; 2562 struct wpi_tx_data *data; 2563 struct wpi_tx_cmd *cmd; 2564 struct wpi_scan_hdr *hdr; 2565 struct wpi_scan_chan *chan; 2566 struct ieee80211_frame *wh; 2567 struct ieee80211_rateset *rs; 2568 struct ieee80211_channel *c; 2569 enum ieee80211_phymode mode; 2570 uint8_t *frm; 2571 int nrates, pktlen, error, i, nssid; 2572 bus_addr_t physaddr; 2573 2574 desc = &ring->desc[ring->cur]; 2575 data = &ring->data[ring->cur]; 2576 2577 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2578 if (data->m == NULL) { 2579 device_printf(sc->sc_dev, 2580 "could not allocate mbuf for scan command\n"); 2581 return ENOMEM; 2582 } 2583 2584 cmd = mtod(data->m, struct wpi_tx_cmd *); 2585 cmd->code = WPI_CMD_SCAN; 2586 cmd->flags = 0; 2587 cmd->qid = ring->qid; 2588 cmd->idx = ring->cur; 2589 2590 hdr = (struct wpi_scan_hdr *)cmd->data; 2591 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2592 2593 /* 2594 * Move to the next channel if no packets are received within 5 msecs 2595 * after sending the probe request (this helps to reduce the duration 2596 * of active scans). 2597 */ 2598 hdr->quiet = htole16(5); 2599 hdr->threshold = htole16(1); 2600 2601 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2602 /* send probe requests at 6Mbps */ 2603 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2604 2605 /* Enable crc checking */ 2606 hdr->promotion = htole16(1); 2607 } else { 2608 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2609 /* send probe requests at 1Mbps */ 2610 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2611 } 2612 hdr->tx.id = WPI_ID_BROADCAST; 2613 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2614 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2615 2616 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2617 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2618 for (i = 0; i < nssid; i++) { 2619 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2620 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2621 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2622 hdr->scan_essids[i].esslen); 2623 #ifdef WPI_DEBUG 2624 if (wpi_debug & WPI_DEBUG_SCANNING) { 2625 printf("Scanning Essid: "); 2626 ieee80211_print_essid(hdr->scan_essids[i].essid, 2627 hdr->scan_essids[i].esslen); 2628 printf("\n"); 2629 } 2630 #endif 2631 } 2632 2633 /* 2634 * Build a probe request frame. Most of the following code is a 2635 * copy & paste of what is done in net80211. 2636 */ 2637 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2638 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2639 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2640 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2641 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2642 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2643 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2644 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2645 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2646 2647 frm = (uint8_t *)(wh + 1); 2648 2649 /* add essid IE, the hardware will fill this in for us */ 2650 *frm++ = IEEE80211_ELEMID_SSID; 2651 *frm++ = 0; 2652 2653 mode = ieee80211_chan2mode(ic->ic_curchan); 2654 rs = &ic->ic_sup_rates[mode]; 2655 2656 /* add supported rates IE */ 2657 *frm++ = IEEE80211_ELEMID_RATES; 2658 nrates = rs->rs_nrates; 2659 if (nrates > IEEE80211_RATE_SIZE) 2660 nrates = IEEE80211_RATE_SIZE; 2661 *frm++ = nrates; 2662 memcpy(frm, rs->rs_rates, nrates); 2663 frm += nrates; 2664 2665 /* add supported xrates IE */ 2666 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2667 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2668 *frm++ = IEEE80211_ELEMID_XRATES; 2669 *frm++ = nrates; 2670 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2671 frm += nrates; 2672 } 2673 2674 /* setup length of probe request */ 2675 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2676 2677 /* 2678 * Construct information about the channel that we 2679 * want to scan. The firmware expects this to be directly 2680 * after the scan probe request 2681 */ 2682 c = ic->ic_curchan; 2683 chan = (struct wpi_scan_chan *)frm; 2684 chan->chan = ieee80211_chan2ieee(ic, c); 2685 chan->flags = 0; 2686 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2687 chan->flags |= WPI_CHAN_ACTIVE; 2688 if (nssid != 0) 2689 chan->flags |= WPI_CHAN_DIRECT; 2690 } 2691 chan->gain_dsp = 0x6e; /* Default level */ 2692 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2693 chan->active = htole16(10); 2694 chan->passive = htole16(ss->ss_maxdwell); 2695 chan->gain_radio = 0x3b; 2696 } else { 2697 chan->active = htole16(20); 2698 chan->passive = htole16(ss->ss_maxdwell); 2699 chan->gain_radio = 0x28; 2700 } 2701 2702 DPRINTFN(WPI_DEBUG_SCANNING, 2703 ("Scanning %u Passive: %d\n", 2704 chan->chan, 2705 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2706 2707 hdr->nchan++; 2708 chan++; 2709 2710 frm += sizeof (struct wpi_scan_chan); 2711 #if 0 2712 // XXX All Channels.... 2713 for (c = &ic->ic_channels[1]; 2714 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2715 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2716 continue; 2717 2718 chan->chan = ieee80211_chan2ieee(ic, c); 2719 chan->flags = 0; 2720 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2721 chan->flags |= WPI_CHAN_ACTIVE; 2722 if (ic->ic_des_ssid[0].len != 0) 2723 chan->flags |= WPI_CHAN_DIRECT; 2724 } 2725 chan->gain_dsp = 0x6e; /* Default level */ 2726 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2727 chan->active = htole16(10); 2728 chan->passive = htole16(110); 2729 chan->gain_radio = 0x3b; 2730 } else { 2731 chan->active = htole16(20); 2732 chan->passive = htole16(120); 2733 chan->gain_radio = 0x28; 2734 } 2735 2736 DPRINTFN(WPI_DEBUG_SCANNING, 2737 ("Scanning %u Passive: %d\n", 2738 chan->chan, 2739 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2740 2741 hdr->nchan++; 2742 chan++; 2743 2744 frm += sizeof (struct wpi_scan_chan); 2745 } 2746 #endif 2747 2748 hdr->len = htole16(frm - (uint8_t *)hdr); 2749 pktlen = frm - (uint8_t *)cmd; 2750 2751 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2752 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2753 if (error != 0) { 2754 device_printf(sc->sc_dev, "could not map scan command\n"); 2755 m_freem(data->m); 2756 data->m = NULL; 2757 return error; 2758 } 2759 2760 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2761 desc->segs[0].addr = htole32(physaddr); 2762 desc->segs[0].len = htole32(pktlen); 2763 2764 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2765 BUS_DMASYNC_PREWRITE); 2766 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2767 2768 /* kick cmd ring */ 2769 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2770 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2771 2772 sc->sc_scan_timer = 5; 2773 return 0; /* will be notified async. of failure/success */ 2774 } 2775 2776 /** 2777 * Configure the card to listen to a particular channel, this transisions the 2778 * card in to being able to receive frames from remote devices. 2779 */ 2780 static int 2781 wpi_config(struct wpi_softc *sc) 2782 { 2783 struct ifnet *ifp = sc->sc_ifp; 2784 struct ieee80211com *ic = ifp->if_l2com; 2785 struct wpi_power power; 2786 struct wpi_bluetooth bluetooth; 2787 struct wpi_node_info node; 2788 int error; 2789 2790 /* set power mode */ 2791 memset(&power, 0, sizeof power); 2792 power.flags = htole32(WPI_POWER_CAM|0x8); 2793 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2794 if (error != 0) { 2795 device_printf(sc->sc_dev, "could not set power mode\n"); 2796 return error; 2797 } 2798 2799 /* configure bluetooth coexistence */ 2800 memset(&bluetooth, 0, sizeof bluetooth); 2801 bluetooth.flags = 3; 2802 bluetooth.lead = 0xaa; 2803 bluetooth.kill = 1; 2804 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2805 0); 2806 if (error != 0) { 2807 device_printf(sc->sc_dev, 2808 "could not configure bluetooth coexistence\n"); 2809 return error; 2810 } 2811 2812 /* configure adapter */ 2813 memset(&sc->config, 0, sizeof (struct wpi_config)); 2814 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2815 /*set default channel*/ 2816 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2817 sc->config.flags = htole32(WPI_CONFIG_TSF); 2818 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2819 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2820 WPI_CONFIG_24GHZ); 2821 } 2822 sc->config.filter = 0; 2823 switch (ic->ic_opmode) { 2824 case IEEE80211_M_STA: 2825 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2826 sc->config.mode = WPI_MODE_STA; 2827 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2828 break; 2829 case IEEE80211_M_IBSS: 2830 case IEEE80211_M_AHDEMO: 2831 sc->config.mode = WPI_MODE_IBSS; 2832 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2833 WPI_FILTER_MULTICAST); 2834 break; 2835 case IEEE80211_M_HOSTAP: 2836 sc->config.mode = WPI_MODE_HOSTAP; 2837 break; 2838 case IEEE80211_M_MONITOR: 2839 sc->config.mode = WPI_MODE_MONITOR; 2840 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2841 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2842 break; 2843 default: 2844 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2845 return EINVAL; 2846 } 2847 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2848 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2849 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2850 sizeof (struct wpi_config), 0); 2851 if (error != 0) { 2852 device_printf(sc->sc_dev, "configure command failed\n"); 2853 return error; 2854 } 2855 2856 /* configuration has changed, set Tx power accordingly */ 2857 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2858 device_printf(sc->sc_dev, "could not set Tx power\n"); 2859 return error; 2860 } 2861 2862 /* add broadcast node */ 2863 memset(&node, 0, sizeof node); 2864 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2865 node.id = WPI_ID_BROADCAST; 2866 node.rate = wpi_plcp_signal(2); 2867 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2868 if (error != 0) { 2869 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2870 return error; 2871 } 2872 2873 /* Setup rate scalling */ 2874 error = wpi_mrr_setup(sc); 2875 if (error != 0) { 2876 device_printf(sc->sc_dev, "could not setup MRR\n"); 2877 return error; 2878 } 2879 2880 return 0; 2881 } 2882 2883 static void 2884 wpi_stop_master(struct wpi_softc *sc) 2885 { 2886 uint32_t tmp; 2887 int ntries; 2888 2889 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2890 2891 tmp = WPI_READ(sc, WPI_RESET); 2892 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2893 2894 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2895 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2896 return; /* already asleep */ 2897 2898 for (ntries = 0; ntries < 100; ntries++) { 2899 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2900 break; 2901 DELAY(10); 2902 } 2903 if (ntries == 100) { 2904 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2905 } 2906 } 2907 2908 static int 2909 wpi_power_up(struct wpi_softc *sc) 2910 { 2911 uint32_t tmp; 2912 int ntries; 2913 2914 wpi_mem_lock(sc); 2915 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2916 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2917 wpi_mem_unlock(sc); 2918 2919 for (ntries = 0; ntries < 5000; ntries++) { 2920 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2921 break; 2922 DELAY(10); 2923 } 2924 if (ntries == 5000) { 2925 device_printf(sc->sc_dev, 2926 "timeout waiting for NIC to power up\n"); 2927 return ETIMEDOUT; 2928 } 2929 return 0; 2930 } 2931 2932 static int 2933 wpi_reset(struct wpi_softc *sc) 2934 { 2935 uint32_t tmp; 2936 int ntries; 2937 2938 DPRINTFN(WPI_DEBUG_HW, 2939 ("Resetting the card - clearing any uploaded firmware\n")); 2940 2941 /* clear any pending interrupts */ 2942 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2943 2944 tmp = WPI_READ(sc, WPI_PLL_CTL); 2945 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2946 2947 tmp = WPI_READ(sc, WPI_CHICKEN); 2948 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2949 2950 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2951 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2952 2953 /* wait for clock stabilization */ 2954 for (ntries = 0; ntries < 25000; ntries++) { 2955 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2956 break; 2957 DELAY(10); 2958 } 2959 if (ntries == 25000) { 2960 device_printf(sc->sc_dev, 2961 "timeout waiting for clock stabilization\n"); 2962 return ETIMEDOUT; 2963 } 2964 2965 /* initialize EEPROM */ 2966 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2967 2968 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2969 device_printf(sc->sc_dev, "EEPROM not found\n"); 2970 return EIO; 2971 } 2972 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2973 2974 return 0; 2975 } 2976 2977 static void 2978 wpi_hw_config(struct wpi_softc *sc) 2979 { 2980 uint32_t rev, hw; 2981 2982 /* voodoo from the Linux "driver".. */ 2983 hw = WPI_READ(sc, WPI_HWCONFIG); 2984 2985 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2986 if ((rev & 0xc0) == 0x40) 2987 hw |= WPI_HW_ALM_MB; 2988 else if (!(rev & 0x80)) 2989 hw |= WPI_HW_ALM_MM; 2990 2991 if (sc->cap == 0x80) 2992 hw |= WPI_HW_SKU_MRC; 2993 2994 hw &= ~WPI_HW_REV_D; 2995 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2996 hw |= WPI_HW_REV_D; 2997 2998 if (sc->type > 1) 2999 hw |= WPI_HW_TYPE_B; 3000 3001 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3002 } 3003 3004 static void 3005 wpi_rfkill_resume(struct wpi_softc *sc) 3006 { 3007 struct ifnet *ifp = sc->sc_ifp; 3008 struct ieee80211com *ic = ifp->if_l2com; 3009 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3010 int ntries; 3011 3012 /* enable firmware again */ 3013 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3014 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3015 3016 /* wait for thermal sensors to calibrate */ 3017 for (ntries = 0; ntries < 1000; ntries++) { 3018 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3019 break; 3020 DELAY(10); 3021 } 3022 3023 if (ntries == 1000) { 3024 device_printf(sc->sc_dev, 3025 "timeout waiting for thermal calibration\n"); 3026 return; 3027 } 3028 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3029 3030 if (wpi_config(sc) != 0) { 3031 device_printf(sc->sc_dev, "device config failed\n"); 3032 return; 3033 } 3034 3035 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3036 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3037 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3038 3039 if (vap != NULL) { 3040 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3041 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3042 ieee80211_beacon_miss(ic); 3043 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3044 } else 3045 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3046 } else { 3047 ieee80211_scan_next(vap); 3048 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3049 } 3050 } 3051 3052 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3053 } 3054 3055 static void 3056 wpi_init_locked(struct wpi_softc *sc, int force) 3057 { 3058 struct ifnet *ifp = sc->sc_ifp; 3059 uint32_t tmp; 3060 int ntries, qid; 3061 3062 wpi_stop_locked(sc); 3063 (void)wpi_reset(sc); 3064 3065 wpi_mem_lock(sc); 3066 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3067 DELAY(20); 3068 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3069 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3070 wpi_mem_unlock(sc); 3071 3072 (void)wpi_power_up(sc); 3073 wpi_hw_config(sc); 3074 3075 /* init Rx ring */ 3076 wpi_mem_lock(sc); 3077 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3078 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3079 offsetof(struct wpi_shared, next)); 3080 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3081 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3082 wpi_mem_unlock(sc); 3083 3084 /* init Tx rings */ 3085 wpi_mem_lock(sc); 3086 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3087 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3088 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3089 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3090 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3091 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3092 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3093 3094 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3095 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3096 3097 for (qid = 0; qid < 6; qid++) { 3098 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3099 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3100 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3101 } 3102 wpi_mem_unlock(sc); 3103 3104 /* clear "radio off" and "disable command" bits (reversed logic) */ 3105 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3106 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3107 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3108 3109 /* clear any pending interrupts */ 3110 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3111 3112 /* enable interrupts */ 3113 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3114 3115 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3116 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3117 3118 if ((wpi_load_firmware(sc)) != 0) { 3119 device_printf(sc->sc_dev, 3120 "A problem occurred loading the firmware to the driver\n"); 3121 return; 3122 } 3123 3124 /* At this point the firmware is up and running. If the hardware 3125 * RF switch is turned off thermal calibration will fail, though 3126 * the card is still happy to continue to accept commands, catch 3127 * this case and schedule a task to watch for it to be turned on. 3128 */ 3129 wpi_mem_lock(sc); 3130 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3131 wpi_mem_unlock(sc); 3132 3133 if (!(tmp & 0x1)) { 3134 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3135 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3136 goto out; 3137 } 3138 3139 /* wait for thermal sensors to calibrate */ 3140 for (ntries = 0; ntries < 1000; ntries++) { 3141 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3142 break; 3143 DELAY(10); 3144 } 3145 3146 if (ntries == 1000) { 3147 device_printf(sc->sc_dev, 3148 "timeout waiting for thermal sensors calibration\n"); 3149 return; 3150 } 3151 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3152 3153 if (wpi_config(sc) != 0) { 3154 device_printf(sc->sc_dev, "device config failed\n"); 3155 return; 3156 } 3157 3158 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3159 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3160 out: 3161 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3162 } 3163 3164 static void 3165 wpi_init(void *arg) 3166 { 3167 struct wpi_softc *sc = arg; 3168 struct ifnet *ifp = sc->sc_ifp; 3169 struct ieee80211com *ic = ifp->if_l2com; 3170 3171 WPI_LOCK(sc); 3172 wpi_init_locked(sc, 0); 3173 WPI_UNLOCK(sc); 3174 3175 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3176 ieee80211_start_all(ic); /* start all vaps */ 3177 } 3178 3179 static void 3180 wpi_stop_locked(struct wpi_softc *sc) 3181 { 3182 struct ifnet *ifp = sc->sc_ifp; 3183 uint32_t tmp; 3184 int ac; 3185 3186 sc->sc_tx_timer = 0; 3187 sc->sc_scan_timer = 0; 3188 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3189 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3190 callout_stop(&sc->watchdog_to); 3191 callout_stop(&sc->calib_to); 3192 3193 3194 /* disable interrupts */ 3195 WPI_WRITE(sc, WPI_MASK, 0); 3196 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3197 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3198 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3199 3200 wpi_mem_lock(sc); 3201 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3202 wpi_mem_unlock(sc); 3203 3204 /* reset all Tx rings */ 3205 for (ac = 0; ac < 4; ac++) 3206 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3207 wpi_reset_tx_ring(sc, &sc->cmdq); 3208 3209 /* reset Rx ring */ 3210 wpi_reset_rx_ring(sc, &sc->rxq); 3211 3212 wpi_mem_lock(sc); 3213 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3214 wpi_mem_unlock(sc); 3215 3216 DELAY(5); 3217 3218 wpi_stop_master(sc); 3219 3220 tmp = WPI_READ(sc, WPI_RESET); 3221 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3222 sc->flags &= ~WPI_FLAG_BUSY; 3223 } 3224 3225 static void 3226 wpi_stop(struct wpi_softc *sc) 3227 { 3228 WPI_LOCK(sc); 3229 wpi_stop_locked(sc); 3230 WPI_UNLOCK(sc); 3231 } 3232 3233 static void 3234 wpi_calib_timeout(void *arg) 3235 { 3236 struct wpi_softc *sc = arg; 3237 struct ifnet *ifp = sc->sc_ifp; 3238 struct ieee80211com *ic = ifp->if_l2com; 3239 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3240 int temp; 3241 3242 if (vap->iv_state != IEEE80211_S_RUN) 3243 return; 3244 3245 /* update sensor data */ 3246 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3247 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3248 3249 wpi_power_calibration(sc, temp); 3250 3251 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3252 } 3253 3254 /* 3255 * This function is called periodically (every 60 seconds) to adjust output 3256 * power to temperature changes. 3257 */ 3258 static void 3259 wpi_power_calibration(struct wpi_softc *sc, int temp) 3260 { 3261 struct ifnet *ifp = sc->sc_ifp; 3262 struct ieee80211com *ic = ifp->if_l2com; 3263 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3264 3265 /* sanity-check read value */ 3266 if (temp < -260 || temp > 25) { 3267 /* this can't be correct, ignore */ 3268 DPRINTFN(WPI_DEBUG_TEMP, 3269 ("out-of-range temperature reported: %d\n", temp)); 3270 return; 3271 } 3272 3273 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3274 3275 /* adjust Tx power if need be */ 3276 if (abs(temp - sc->temp) <= 6) 3277 return; 3278 3279 sc->temp = temp; 3280 3281 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3282 /* just warn, too bad for the automatic calibration... */ 3283 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3284 } 3285 } 3286 3287 /** 3288 * Read the eeprom to find out what channels are valid for the given 3289 * band and update net80211 with what we find. 3290 */ 3291 static void 3292 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3293 { 3294 struct ifnet *ifp = sc->sc_ifp; 3295 struct ieee80211com *ic = ifp->if_l2com; 3296 const struct wpi_chan_band *band = &wpi_bands[n]; 3297 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3298 struct ieee80211_channel *c; 3299 int chan, i, passive; 3300 3301 wpi_read_prom_data(sc, band->addr, channels, 3302 band->nchan * sizeof (struct wpi_eeprom_chan)); 3303 3304 for (i = 0; i < band->nchan; i++) { 3305 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3306 DPRINTFN(WPI_DEBUG_HW, 3307 ("Channel Not Valid: %d, band %d\n", 3308 band->chan[i],n)); 3309 continue; 3310 } 3311 3312 passive = 0; 3313 chan = band->chan[i]; 3314 c = &ic->ic_channels[ic->ic_nchans++]; 3315 3316 /* is active scan allowed on this channel? */ 3317 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3318 passive = IEEE80211_CHAN_PASSIVE; 3319 } 3320 3321 if (n == 0) { /* 2GHz band */ 3322 c->ic_ieee = chan; 3323 c->ic_freq = ieee80211_ieee2mhz(chan, 3324 IEEE80211_CHAN_2GHZ); 3325 c->ic_flags = IEEE80211_CHAN_B | passive; 3326 3327 c = &ic->ic_channels[ic->ic_nchans++]; 3328 c->ic_ieee = chan; 3329 c->ic_freq = ieee80211_ieee2mhz(chan, 3330 IEEE80211_CHAN_2GHZ); 3331 c->ic_flags = IEEE80211_CHAN_G | passive; 3332 3333 } else { /* 5GHz band */ 3334 /* 3335 * Some 3945ABG adapters support channels 7, 8, 11 3336 * and 12 in the 2GHz *and* 5GHz bands. 3337 * Because of limitations in our net80211(9) stack, 3338 * we can't support these channels in 5GHz band. 3339 * XXX not true; just need to map to proper frequency 3340 */ 3341 if (chan <= 14) 3342 continue; 3343 3344 c->ic_ieee = chan; 3345 c->ic_freq = ieee80211_ieee2mhz(chan, 3346 IEEE80211_CHAN_5GHZ); 3347 c->ic_flags = IEEE80211_CHAN_A | passive; 3348 } 3349 3350 /* save maximum allowed power for this channel */ 3351 sc->maxpwr[chan] = channels[i].maxpwr; 3352 3353 #if 0 3354 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3355 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3356 //ic->ic_channels[chan].ic_minpower... 3357 //ic->ic_channels[chan].ic_maxregtxpower... 3358 #endif 3359 3360 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3361 " passive=%d, offset %d\n", chan, c->ic_freq, 3362 channels[i].flags, sc->maxpwr[chan], 3363 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3364 ic->ic_nchans)); 3365 } 3366 } 3367 3368 static void 3369 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3370 { 3371 struct wpi_power_group *group = &sc->groups[n]; 3372 struct wpi_eeprom_group rgroup; 3373 int i; 3374 3375 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3376 sizeof rgroup); 3377 3378 /* save power group information */ 3379 group->chan = rgroup.chan; 3380 group->maxpwr = rgroup.maxpwr; 3381 /* temperature at which the samples were taken */ 3382 group->temp = (int16_t)le16toh(rgroup.temp); 3383 3384 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3385 group->chan, group->maxpwr, group->temp)); 3386 3387 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3388 group->samples[i].index = rgroup.samples[i].index; 3389 group->samples[i].power = rgroup.samples[i].power; 3390 3391 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3392 group->samples[i].index, group->samples[i].power)); 3393 } 3394 } 3395 3396 /* 3397 * Update Tx power to match what is defined for channel `c'. 3398 */ 3399 static int 3400 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3401 { 3402 struct ifnet *ifp = sc->sc_ifp; 3403 struct ieee80211com *ic = ifp->if_l2com; 3404 struct wpi_power_group *group; 3405 struct wpi_cmd_txpower txpower; 3406 u_int chan; 3407 int i; 3408 3409 /* get channel number */ 3410 chan = ieee80211_chan2ieee(ic, c); 3411 3412 /* find the power group to which this channel belongs */ 3413 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3414 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3415 if (chan <= group->chan) 3416 break; 3417 } else 3418 group = &sc->groups[0]; 3419 3420 memset(&txpower, 0, sizeof txpower); 3421 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3422 txpower.channel = htole16(chan); 3423 3424 /* set Tx power for all OFDM and CCK rates */ 3425 for (i = 0; i <= 11 ; i++) { 3426 /* retrieve Tx power for this channel/rate combination */ 3427 int idx = wpi_get_power_index(sc, group, c, 3428 wpi_ridx_to_rate[i]); 3429 3430 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3431 3432 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3433 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3434 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3435 } else { 3436 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3437 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3438 } 3439 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3440 chan, wpi_ridx_to_rate[i], idx)); 3441 } 3442 3443 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3444 } 3445 3446 /* 3447 * Determine Tx power index for a given channel/rate combination. 3448 * This takes into account the regulatory information from EEPROM and the 3449 * current temperature. 3450 */ 3451 static int 3452 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3453 struct ieee80211_channel *c, int rate) 3454 { 3455 /* fixed-point arithmetic division using a n-bit fractional part */ 3456 #define fdivround(a, b, n) \ 3457 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3458 3459 /* linear interpolation */ 3460 #define interpolate(x, x1, y1, x2, y2, n) \ 3461 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3462 3463 struct ifnet *ifp = sc->sc_ifp; 3464 struct ieee80211com *ic = ifp->if_l2com; 3465 struct wpi_power_sample *sample; 3466 int pwr, idx; 3467 u_int chan; 3468 3469 /* get channel number */ 3470 chan = ieee80211_chan2ieee(ic, c); 3471 3472 /* default power is group's maximum power - 3dB */ 3473 pwr = group->maxpwr / 2; 3474 3475 /* decrease power for highest OFDM rates to reduce distortion */ 3476 switch (rate) { 3477 case 72: /* 36Mb/s */ 3478 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3479 break; 3480 case 96: /* 48Mb/s */ 3481 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3482 break; 3483 case 108: /* 54Mb/s */ 3484 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3485 break; 3486 } 3487 3488 /* never exceed channel's maximum allowed Tx power */ 3489 pwr = min(pwr, sc->maxpwr[chan]); 3490 3491 /* retrieve power index into gain tables from samples */ 3492 for (sample = group->samples; sample < &group->samples[3]; sample++) 3493 if (pwr > sample[1].power) 3494 break; 3495 /* fixed-point linear interpolation using a 19-bit fractional part */ 3496 idx = interpolate(pwr, sample[0].power, sample[0].index, 3497 sample[1].power, sample[1].index, 19); 3498 3499 /* 3500 * Adjust power index based on current temperature 3501 * - if colder than factory-calibrated: decreate output power 3502 * - if warmer than factory-calibrated: increase output power 3503 */ 3504 idx -= (sc->temp - group->temp) * 11 / 100; 3505 3506 /* decrease power for CCK rates (-5dB) */ 3507 if (!WPI_RATE_IS_OFDM(rate)) 3508 idx += 10; 3509 3510 /* keep power index in a valid range */ 3511 if (idx < 0) 3512 return 0; 3513 if (idx > WPI_MAX_PWR_INDEX) 3514 return WPI_MAX_PWR_INDEX; 3515 return idx; 3516 3517 #undef interpolate 3518 #undef fdivround 3519 } 3520 3521 /** 3522 * Called by net80211 framework to indicate that a scan 3523 * is starting. This function doesn't actually do the scan, 3524 * wpi_scan_curchan starts things off. This function is more 3525 * of an early warning from the framework we should get ready 3526 * for the scan. 3527 */ 3528 static void 3529 wpi_scan_start(struct ieee80211com *ic) 3530 { 3531 struct ifnet *ifp = ic->ic_ifp; 3532 struct wpi_softc *sc = ifp->if_softc; 3533 3534 WPI_LOCK(sc); 3535 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3536 WPI_UNLOCK(sc); 3537 } 3538 3539 /** 3540 * Called by the net80211 framework, indicates that the 3541 * scan has ended. If there is a scan in progress on the card 3542 * then it should be aborted. 3543 */ 3544 static void 3545 wpi_scan_end(struct ieee80211com *ic) 3546 { 3547 /* XXX ignore */ 3548 } 3549 3550 /** 3551 * Called by the net80211 framework to indicate to the driver 3552 * that the channel should be changed 3553 */ 3554 static void 3555 wpi_set_channel(struct ieee80211com *ic) 3556 { 3557 struct ifnet *ifp = ic->ic_ifp; 3558 struct wpi_softc *sc = ifp->if_softc; 3559 int error; 3560 3561 /* 3562 * Only need to set the channel in Monitor mode. AP scanning and auth 3563 * are already taken care of by their respective firmware commands. 3564 */ 3565 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3566 WPI_LOCK(sc); 3567 error = wpi_config(sc); 3568 WPI_UNLOCK(sc); 3569 if (error != 0) 3570 device_printf(sc->sc_dev, 3571 "error %d settting channel\n", error); 3572 } 3573 } 3574 3575 /** 3576 * Called by net80211 to indicate that we need to scan the current 3577 * channel. The channel is previously be set via the wpi_set_channel 3578 * callback. 3579 */ 3580 static void 3581 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3582 { 3583 struct ieee80211vap *vap = ss->ss_vap; 3584 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3585 struct wpi_softc *sc = ifp->if_softc; 3586 3587 WPI_LOCK(sc); 3588 if (wpi_scan(sc)) 3589 ieee80211_cancel_scan(vap); 3590 WPI_UNLOCK(sc); 3591 } 3592 3593 /** 3594 * Called by the net80211 framework to indicate 3595 * the minimum dwell time has been met, terminate the scan. 3596 * We don't actually terminate the scan as the firmware will notify 3597 * us when it's finished and we have no way to interrupt it. 3598 */ 3599 static void 3600 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3601 { 3602 /* NB: don't try to abort scan; wait for firmware to finish */ 3603 } 3604 3605 static void 3606 wpi_hwreset(void *arg, int pending) 3607 { 3608 struct wpi_softc *sc = arg; 3609 3610 WPI_LOCK(sc); 3611 wpi_init_locked(sc, 0); 3612 WPI_UNLOCK(sc); 3613 } 3614 3615 static void 3616 wpi_rfreset(void *arg, int pending) 3617 { 3618 struct wpi_softc *sc = arg; 3619 3620 WPI_LOCK(sc); 3621 wpi_rfkill_resume(sc); 3622 WPI_UNLOCK(sc); 3623 } 3624 3625 /* 3626 * Allocate DMA-safe memory for firmware transfer. 3627 */ 3628 static int 3629 wpi_alloc_fwmem(struct wpi_softc *sc) 3630 { 3631 /* allocate enough contiguous space to store text and data */ 3632 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3633 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3634 BUS_DMA_NOWAIT); 3635 } 3636 3637 static void 3638 wpi_free_fwmem(struct wpi_softc *sc) 3639 { 3640 wpi_dma_contig_free(&sc->fw_dma); 3641 } 3642 3643 /** 3644 * Called every second, wpi_watchdog used by the watch dog timer 3645 * to check that the card is still alive 3646 */ 3647 static void 3648 wpi_watchdog(void *arg) 3649 { 3650 struct wpi_softc *sc = arg; 3651 struct ifnet *ifp = sc->sc_ifp; 3652 struct ieee80211com *ic = ifp->if_l2com; 3653 uint32_t tmp; 3654 3655 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3656 3657 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3658 /* No need to lock firmware memory */ 3659 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3660 3661 if ((tmp & 0x1) == 0) { 3662 /* Radio kill switch is still off */ 3663 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3664 return; 3665 } 3666 3667 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3668 ieee80211_runtask(ic, &sc->sc_radiotask); 3669 return; 3670 } 3671 3672 if (sc->sc_tx_timer > 0) { 3673 if (--sc->sc_tx_timer == 0) { 3674 device_printf(sc->sc_dev,"device timeout\n"); 3675 ifp->if_oerrors++; 3676 ieee80211_runtask(ic, &sc->sc_restarttask); 3677 } 3678 } 3679 if (sc->sc_scan_timer > 0) { 3680 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3681 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3682 device_printf(sc->sc_dev,"scan timeout\n"); 3683 ieee80211_cancel_scan(vap); 3684 ieee80211_runtask(ic, &sc->sc_restarttask); 3685 } 3686 } 3687 3688 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3689 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3690 } 3691 3692 #ifdef WPI_DEBUG 3693 static const char *wpi_cmd_str(int cmd) 3694 { 3695 switch (cmd) { 3696 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3697 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3698 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3699 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3700 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3701 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3702 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3703 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3704 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3705 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3706 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3707 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3708 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3709 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3710 3711 default: 3712 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3713 return "UNKNOWN CMD"; /* Make the compiler happy */ 3714 } 3715 } 3716 #endif 3717 3718 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3719 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3720 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3721