xref: /freebsd/sys/dev/wpi/if_wpi.c (revision a4dc509f723944821bcfcc52005ff87c9a5dee5b)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*
23  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24  *
25  * The 3945ABG network adapter doesn't use traditional hardware as
26  * many other adaptors do. Instead at run time the eeprom is set into a known
27  * state and told to load boot firmware. The boot firmware loads an init and a
28  * main  binary firmware image into SRAM on the card via DMA.
29  * Once the firmware is loaded, the driver/hw then
30  * communicate by way of circular dma rings via the SRAM to the firmware.
31  *
32  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33  * The 4 tx data rings allow for prioritization QoS.
34  *
35  * The rx data ring consists of 32 dma buffers. Two registers are used to
36  * indicate where in the ring the driver and the firmware are up to. The
37  * driver sets the initial read index (reg1) and the initial write index (reg2),
38  * the firmware updates the read index (reg1) on rx of a packet and fires an
39  * interrupt. The driver then processes the buffers starting at reg1 indicating
40  * to the firmware which buffers have been accessed by updating reg2. At the
41  * same time allocating new memory for the processed buffer.
42  *
43  * A similar thing happens with the tx rings. The difference is the firmware
44  * stop processing buffers once the queue is full and until confirmation
45  * of a successful transmition (tx_done) has occurred.
46  *
47  * The command ring operates in the same manner as the tx queues.
48  *
49  * All communication direct to the card (ie eeprom) is classed as Stage1
50  * communication
51  *
52  * All communication via the firmware to the card is classed as State2.
53  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54  * firmware. The bootstrap firmware and runtime firmware are loaded
55  * from host memory via dma to the card then told to execute. From this point
56  * on the majority of communications between the driver and the card goes
57  * via the firmware.
58  */
59 
60 #include "opt_wlan.h"
61 #include "opt_wpi.h"
62 
63 #include <sys/param.h>
64 #include <sys/sysctl.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/systm.h>
70 #include <sys/malloc.h>
71 #include <sys/queue.h>
72 #include <sys/taskqueue.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/endian.h>
76 #include <sys/linker.h>
77 #include <sys/firmware.h>
78 
79 #include <machine/bus.h>
80 #include <machine/resource.h>
81 #include <sys/rman.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/if_ether.h>
99 #include <netinet/ip.h>
100 
101 #include <net80211/ieee80211_var.h>
102 #include <net80211/ieee80211_radiotap.h>
103 #include <net80211/ieee80211_regdomain.h>
104 #include <net80211/ieee80211_ratectl.h>
105 
106 #include <dev/wpi/if_wpireg.h>
107 #include <dev/wpi/if_wpivar.h>
108 #include <dev/wpi/if_wpi_debug.h>
109 
110 struct wpi_ident {
111 	uint16_t	vendor;
112 	uint16_t	device;
113 	uint16_t	subdevice;
114 	const char	*name;
115 };
116 
117 static const struct wpi_ident wpi_ident_table[] = {
118 	/* The below entries support ABG regardless of the subid */
119 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	/* The below entries only support BG */
122 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0, 0, 0, NULL }
127 };
128 
129 static int	wpi_probe(device_t);
130 static int	wpi_attach(device_t);
131 static void	wpi_radiotap_attach(struct wpi_softc *);
132 static void	wpi_sysctlattach(struct wpi_softc *);
133 static void	wpi_init_beacon(struct wpi_vap *);
134 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136 		    const uint8_t [IEEE80211_ADDR_LEN],
137 		    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void	wpi_vap_delete(struct ieee80211vap *);
139 static int	wpi_detach(device_t);
140 static int	wpi_shutdown(device_t);
141 static int	wpi_suspend(device_t);
142 static int	wpi_resume(device_t);
143 static int	wpi_nic_lock(struct wpi_softc *);
144 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147 		    void **, bus_size_t, bus_size_t);
148 static void	wpi_dma_contig_free(struct wpi_dma_info *);
149 static int	wpi_alloc_shared(struct wpi_softc *);
150 static void	wpi_free_shared(struct wpi_softc *);
151 static int	wpi_alloc_fwmem(struct wpi_softc *);
152 static void	wpi_free_fwmem(struct wpi_softc *);
153 static int	wpi_alloc_rx_ring(struct wpi_softc *);
154 static void	wpi_update_rx_ring(struct wpi_softc *);
155 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
156 static void	wpi_reset_rx_ring(struct wpi_softc *);
157 static void	wpi_free_rx_ring(struct wpi_softc *);
158 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
159 		    uint8_t);
160 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
162 		    struct wpi_tx_ring *);
163 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
164 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165 static int	wpi_read_eeprom(struct wpi_softc *,
166 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
167 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
168 static void	wpi_read_eeprom_band(struct wpi_softc *, uint8_t);
169 static int	wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
170 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
171 		    struct ieee80211_channel *);
172 static int	wpi_setregdomain(struct ieee80211com *,
173 		    struct ieee80211_regdomain *, int,
174 		    struct ieee80211_channel[]);
175 static int	wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
176 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
178 static void	wpi_node_free(struct ieee80211_node *);
179 static void	wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
180 		    const struct ieee80211_rx_stats *,
181 		    int, int);
182 static void	wpi_restore_node(void *, struct ieee80211_node *);
183 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
184 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
185 static void	wpi_calib_timeout(void *);
186 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
187 		    struct wpi_rx_data *);
188 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
189 		    struct wpi_rx_data *);
190 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
191 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
192 static void	wpi_notif_intr(struct wpi_softc *);
193 static void	wpi_wakeup_intr(struct wpi_softc *);
194 #ifdef WPI_DEBUG
195 static void	wpi_debug_registers(struct wpi_softc *);
196 #endif
197 static void	wpi_fatal_intr(struct wpi_softc *);
198 static void	wpi_intr(void *);
199 static void	wpi_free_txfrags(struct wpi_softc *, uint16_t);
200 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
201 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
202 		    struct ieee80211_node *);
203 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
204 		    struct ieee80211_node *,
205 		    const struct ieee80211_bpf_params *);
206 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
207 		    const struct ieee80211_bpf_params *);
208 static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
209 static void	wpi_watchdog_rfkill(void *);
210 static void	wpi_scan_timeout(void *);
211 static void	wpi_tx_timeout(void *);
212 static void	wpi_parent(struct ieee80211com *);
213 static int	wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
214 		    int);
215 static int	wpi_mrr_setup(struct wpi_softc *);
216 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
217 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
218 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
219 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
220 static int	wpi_updateedca(struct ieee80211com *);
221 static void	wpi_set_promisc(struct wpi_softc *);
222 static void	wpi_update_promisc(struct ieee80211com *);
223 static void	wpi_update_mcast(struct ieee80211com *);
224 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
225 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
226 static void	wpi_power_calibration(struct wpi_softc *);
227 static int	wpi_set_txpower(struct wpi_softc *, int);
228 static int	wpi_get_power_index(struct wpi_softc *,
229 		    struct wpi_power_group *, uint8_t, int, int);
230 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
231 static int	wpi_send_btcoex(struct wpi_softc *);
232 static int	wpi_send_rxon(struct wpi_softc *, int, int);
233 static int	wpi_config(struct wpi_softc *);
234 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
235 		    struct ieee80211_channel *, uint8_t);
236 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
237 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
238 		    struct ieee80211_channel *);
239 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
240 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
241 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
242 static int	wpi_config_beacon(struct wpi_vap *);
243 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
244 static void	wpi_update_beacon(struct ieee80211vap *, int);
245 static void	wpi_newassoc(struct ieee80211_node *, int);
246 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
247 static int	wpi_load_key(struct ieee80211_node *,
248 		    const struct ieee80211_key *);
249 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
250 static int	wpi_set_global_keys(struct ieee80211_node *);
251 static int	wpi_del_key(struct ieee80211_node *,
252 		    const struct ieee80211_key *);
253 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
254 static int	wpi_process_key(struct ieee80211vap *,
255 		    const struct ieee80211_key *, int);
256 static int	wpi_key_set(struct ieee80211vap *,
257 		    const struct ieee80211_key *);
258 static int	wpi_key_delete(struct ieee80211vap *,
259 		    const struct ieee80211_key *);
260 static int	wpi_post_alive(struct wpi_softc *);
261 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
262 		    uint32_t);
263 static int	wpi_load_firmware(struct wpi_softc *);
264 static int	wpi_read_firmware(struct wpi_softc *);
265 static void	wpi_unload_firmware(struct wpi_softc *);
266 static int	wpi_clock_wait(struct wpi_softc *);
267 static int	wpi_apm_init(struct wpi_softc *);
268 static void	wpi_apm_stop_master(struct wpi_softc *);
269 static void	wpi_apm_stop(struct wpi_softc *);
270 static void	wpi_nic_config(struct wpi_softc *);
271 static int	wpi_hw_init(struct wpi_softc *);
272 static void	wpi_hw_stop(struct wpi_softc *);
273 static void	wpi_radio_on(void *, int);
274 static void	wpi_radio_off(void *, int);
275 static int	wpi_init(struct wpi_softc *);
276 static void	wpi_stop_locked(struct wpi_softc *);
277 static void	wpi_stop(struct wpi_softc *);
278 static void	wpi_scan_start(struct ieee80211com *);
279 static void	wpi_scan_end(struct ieee80211com *);
280 static void	wpi_set_channel(struct ieee80211com *);
281 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
282 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
283 static void	wpi_hw_reset(void *, int);
284 
285 static device_method_t wpi_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		wpi_probe),
288 	DEVMETHOD(device_attach,	wpi_attach),
289 	DEVMETHOD(device_detach,	wpi_detach),
290 	DEVMETHOD(device_shutdown,	wpi_shutdown),
291 	DEVMETHOD(device_suspend,	wpi_suspend),
292 	DEVMETHOD(device_resume,	wpi_resume),
293 
294 	DEVMETHOD_END
295 };
296 
297 static driver_t wpi_driver = {
298 	"wpi",
299 	wpi_methods,
300 	sizeof (struct wpi_softc)
301 };
302 static devclass_t wpi_devclass;
303 
304 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
305 
306 MODULE_VERSION(wpi, 1);
307 
308 MODULE_DEPEND(wpi, pci,  1, 1, 1);
309 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
310 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
311 
312 static int
313 wpi_probe(device_t dev)
314 {
315 	const struct wpi_ident *ident;
316 
317 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
318 		if (pci_get_vendor(dev) == ident->vendor &&
319 		    pci_get_device(dev) == ident->device) {
320 			device_set_desc(dev, ident->name);
321 			return (BUS_PROBE_DEFAULT);
322 		}
323 	}
324 	return ENXIO;
325 }
326 
327 static int
328 wpi_attach(device_t dev)
329 {
330 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
331 	struct ieee80211com *ic;
332 	uint8_t i;
333 	int error, rid;
334 #ifdef WPI_DEBUG
335 	int supportsa = 1;
336 	const struct wpi_ident *ident;
337 #endif
338 
339 	sc->sc_dev = dev;
340 
341 #ifdef WPI_DEBUG
342 	error = resource_int_value(device_get_name(sc->sc_dev),
343 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
344 	if (error != 0)
345 		sc->sc_debug = 0;
346 #else
347 	sc->sc_debug = 0;
348 #endif
349 
350 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
351 
352 	/*
353 	 * Get the offset of the PCI Express Capability Structure in PCI
354 	 * Configuration Space.
355 	 */
356 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
357 	if (error != 0) {
358 		device_printf(dev, "PCIe capability structure not found!\n");
359 		return error;
360 	}
361 
362 	/*
363 	 * Some card's only support 802.11b/g not a, check to see if
364 	 * this is one such card. A 0x0 in the subdevice table indicates
365 	 * the entire subdevice range is to be ignored.
366 	 */
367 #ifdef WPI_DEBUG
368 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
369 		if (ident->subdevice &&
370 		    pci_get_subdevice(dev) == ident->subdevice) {
371 		    supportsa = 0;
372 		    break;
373 		}
374 	}
375 #endif
376 
377 	/* Clear device-specific "PCI retry timeout" register (41h). */
378 	pci_write_config(dev, 0x41, 0, 1);
379 
380 	/* Enable bus-mastering. */
381 	pci_enable_busmaster(dev);
382 
383 	rid = PCIR_BAR(0);
384 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
385 	    RF_ACTIVE);
386 	if (sc->mem == NULL) {
387 		device_printf(dev, "can't map mem space\n");
388 		return ENOMEM;
389 	}
390 	sc->sc_st = rman_get_bustag(sc->mem);
391 	sc->sc_sh = rman_get_bushandle(sc->mem);
392 
393 	rid = 1;
394 	if (pci_alloc_msi(dev, &rid) == 0)
395 		rid = 1;
396 	else
397 		rid = 0;
398 	/* Install interrupt handler. */
399 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
400 	    (rid != 0 ? 0 : RF_SHAREABLE));
401 	if (sc->irq == NULL) {
402 		device_printf(dev, "can't map interrupt\n");
403 		error = ENOMEM;
404 		goto fail;
405 	}
406 
407 	WPI_LOCK_INIT(sc);
408 	WPI_TX_LOCK_INIT(sc);
409 	WPI_RXON_LOCK_INIT(sc);
410 	WPI_NT_LOCK_INIT(sc);
411 	WPI_TXQ_LOCK_INIT(sc);
412 	WPI_TXQ_STATE_LOCK_INIT(sc);
413 
414 	/* Allocate DMA memory for firmware transfers. */
415 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
416 		device_printf(dev,
417 		    "could not allocate memory for firmware, error %d\n",
418 		    error);
419 		goto fail;
420 	}
421 
422 	/* Allocate shared page. */
423 	if ((error = wpi_alloc_shared(sc)) != 0) {
424 		device_printf(dev, "could not allocate shared page\n");
425 		goto fail;
426 	}
427 
428 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
429 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
430 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
431 			device_printf(dev,
432 			    "could not allocate TX ring %d, error %d\n", i,
433 			    error);
434 			goto fail;
435 		}
436 	}
437 
438 	/* Allocate RX ring. */
439 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
440 		device_printf(dev, "could not allocate RX ring, error %d\n",
441 		    error);
442 		goto fail;
443 	}
444 
445 	/* Clear pending interrupts. */
446 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
447 
448 	ic = &sc->sc_ic;
449 	ic->ic_softc = sc;
450 	ic->ic_name = device_get_nameunit(dev);
451 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
452 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
453 
454 	/* Set device capabilities. */
455 	ic->ic_caps =
456 		  IEEE80211_C_STA		/* station mode supported */
457 		| IEEE80211_C_IBSS		/* IBSS mode supported */
458 		| IEEE80211_C_HOSTAP		/* Host access point mode */
459 		| IEEE80211_C_MONITOR		/* monitor mode supported */
460 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
461 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
462 		| IEEE80211_C_TXFRAG		/* handle tx frags */
463 		| IEEE80211_C_TXPMGT		/* tx power management */
464 		| IEEE80211_C_SHSLOT		/* short slot time supported */
465 		| IEEE80211_C_WPA		/* 802.11i */
466 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
467 		| IEEE80211_C_WME		/* 802.11e */
468 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
469 		;
470 
471 	ic->ic_cryptocaps =
472 		  IEEE80211_CRYPTO_AES_CCM;
473 
474 	/*
475 	 * Read in the eeprom and also setup the channels for
476 	 * net80211. We don't set the rates as net80211 does this for us
477 	 */
478 	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
479 		device_printf(dev, "could not read EEPROM, error %d\n",
480 		    error);
481 		goto fail;
482 	}
483 
484 #ifdef WPI_DEBUG
485 	if (bootverbose) {
486 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
487 		    sc->domain);
488 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
489 		    sc->type > 1 ? 'B': '?');
490 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
491 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
492 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
493 		    supportsa ? "does" : "does not");
494 
495 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
496 		   check what sc->rev really represents - benjsc 20070615 */
497 	}
498 #endif
499 
500 	ieee80211_ifattach(ic);
501 	ic->ic_vap_create = wpi_vap_create;
502 	ic->ic_vap_delete = wpi_vap_delete;
503 	ic->ic_parent = wpi_parent;
504 	ic->ic_raw_xmit = wpi_raw_xmit;
505 	ic->ic_transmit = wpi_transmit;
506 	ic->ic_node_alloc = wpi_node_alloc;
507 	sc->sc_node_free = ic->ic_node_free;
508 	ic->ic_node_free = wpi_node_free;
509 	ic->ic_wme.wme_update = wpi_updateedca;
510 	ic->ic_update_promisc = wpi_update_promisc;
511 	ic->ic_update_mcast = wpi_update_mcast;
512 	ic->ic_newassoc = wpi_newassoc;
513 	ic->ic_scan_start = wpi_scan_start;
514 	ic->ic_scan_end = wpi_scan_end;
515 	ic->ic_set_channel = wpi_set_channel;
516 	ic->ic_scan_curchan = wpi_scan_curchan;
517 	ic->ic_scan_mindwell = wpi_scan_mindwell;
518 	ic->ic_setregdomain = wpi_setregdomain;
519 
520 	sc->sc_update_rx_ring = wpi_update_rx_ring;
521 	sc->sc_update_tx_ring = wpi_update_tx_ring;
522 
523 	wpi_radiotap_attach(sc);
524 
525 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
526 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
527 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
528 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
529 	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
530 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
531 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
532 
533 	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
534 	    taskqueue_thread_enqueue, &sc->sc_tq);
535 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
536 	if (error != 0) {
537 		device_printf(dev, "can't start threads, error %d\n", error);
538 		goto fail;
539 	}
540 
541 	wpi_sysctlattach(sc);
542 
543 	/*
544 	 * Hook our interrupt after all initialization is complete.
545 	 */
546 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
547 	    NULL, wpi_intr, sc, &sc->sc_ih);
548 	if (error != 0) {
549 		device_printf(dev, "can't establish interrupt, error %d\n",
550 		    error);
551 		goto fail;
552 	}
553 
554 	if (bootverbose)
555 		ieee80211_announce(ic);
556 
557 #ifdef WPI_DEBUG
558 	if (sc->sc_debug & WPI_DEBUG_HW)
559 		ieee80211_announce_channels(ic);
560 #endif
561 
562 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
563 	return 0;
564 
565 fail:	wpi_detach(dev);
566 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
567 	return error;
568 }
569 
570 /*
571  * Attach the interface to 802.11 radiotap.
572  */
573 static void
574 wpi_radiotap_attach(struct wpi_softc *sc)
575 {
576 	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
577 	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
578 
579 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
580 	ieee80211_radiotap_attach(&sc->sc_ic,
581 	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
582 	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
583 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
584 }
585 
586 static void
587 wpi_sysctlattach(struct wpi_softc *sc)
588 {
589 #ifdef WPI_DEBUG
590 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
591 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
592 
593 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
594 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
595 		"control debugging printfs");
596 #endif
597 }
598 
599 static void
600 wpi_init_beacon(struct wpi_vap *wvp)
601 {
602 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
603 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
604 
605 	cmd->id = WPI_ID_BROADCAST;
606 	cmd->ofdm_mask = 0xff;
607 	cmd->cck_mask = 0x0f;
608 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
609 
610 	/*
611 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
612 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
613 	 */
614 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
615 
616 	bcn->code = WPI_CMD_SET_BEACON;
617 	bcn->ac = WPI_CMD_QUEUE_NUM;
618 	bcn->size = sizeof(struct wpi_cmd_beacon);
619 }
620 
621 static struct ieee80211vap *
622 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
623     enum ieee80211_opmode opmode, int flags,
624     const uint8_t bssid[IEEE80211_ADDR_LEN],
625     const uint8_t mac[IEEE80211_ADDR_LEN])
626 {
627 	struct wpi_vap *wvp;
628 	struct ieee80211vap *vap;
629 
630 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
631 		return NULL;
632 
633 	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
634 	vap = &wvp->wv_vap;
635 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
636 
637 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
638 		WPI_VAP_LOCK_INIT(wvp);
639 		wpi_init_beacon(wvp);
640 	}
641 
642 	/* Override with driver methods. */
643 	vap->iv_key_set = wpi_key_set;
644 	vap->iv_key_delete = wpi_key_delete;
645 	if (opmode == IEEE80211_M_IBSS) {
646 		wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
647 		vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
648 	}
649 	wvp->wv_newstate = vap->iv_newstate;
650 	vap->iv_newstate = wpi_newstate;
651 	vap->iv_update_beacon = wpi_update_beacon;
652 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
653 
654 	ieee80211_ratectl_init(vap);
655 	/* Complete setup. */
656 	ieee80211_vap_attach(vap, ieee80211_media_change,
657 	    ieee80211_media_status, mac);
658 	ic->ic_opmode = opmode;
659 	return vap;
660 }
661 
662 static void
663 wpi_vap_delete(struct ieee80211vap *vap)
664 {
665 	struct wpi_vap *wvp = WPI_VAP(vap);
666 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
667 	enum ieee80211_opmode opmode = vap->iv_opmode;
668 
669 	ieee80211_ratectl_deinit(vap);
670 	ieee80211_vap_detach(vap);
671 
672 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
673 		if (bcn->m != NULL)
674 			m_freem(bcn->m);
675 
676 		WPI_VAP_LOCK_DESTROY(wvp);
677 	}
678 
679 	free(wvp, M_80211_VAP);
680 }
681 
682 static int
683 wpi_detach(device_t dev)
684 {
685 	struct wpi_softc *sc = device_get_softc(dev);
686 	struct ieee80211com *ic = &sc->sc_ic;
687 	uint8_t qid;
688 
689 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
690 
691 	if (ic->ic_vap_create == wpi_vap_create) {
692 		ieee80211_draintask(ic, &sc->sc_radioon_task);
693 
694 		wpi_stop(sc);
695 
696 		if (sc->sc_tq != NULL) {
697 			taskqueue_drain_all(sc->sc_tq);
698 			taskqueue_free(sc->sc_tq);
699 		}
700 
701 		callout_drain(&sc->watchdog_rfkill);
702 		callout_drain(&sc->tx_timeout);
703 		callout_drain(&sc->scan_timeout);
704 		callout_drain(&sc->calib_to);
705 		ieee80211_ifdetach(ic);
706 	}
707 
708 	/* Uninstall interrupt handler. */
709 	if (sc->irq != NULL) {
710 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
711 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
712 		    sc->irq);
713 		pci_release_msi(dev);
714 	}
715 
716 	if (sc->txq[0].data_dmat) {
717 		/* Free DMA resources. */
718 		for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
719 			wpi_free_tx_ring(sc, &sc->txq[qid]);
720 
721 		wpi_free_rx_ring(sc);
722 		wpi_free_shared(sc);
723 	}
724 
725 	if (sc->fw_dma.tag)
726 		wpi_free_fwmem(sc);
727 
728 	if (sc->mem != NULL)
729 		bus_release_resource(dev, SYS_RES_MEMORY,
730 		    rman_get_rid(sc->mem), sc->mem);
731 
732 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
733 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
734 	WPI_TXQ_LOCK_DESTROY(sc);
735 	WPI_NT_LOCK_DESTROY(sc);
736 	WPI_RXON_LOCK_DESTROY(sc);
737 	WPI_TX_LOCK_DESTROY(sc);
738 	WPI_LOCK_DESTROY(sc);
739 	return 0;
740 }
741 
742 static int
743 wpi_shutdown(device_t dev)
744 {
745 	struct wpi_softc *sc = device_get_softc(dev);
746 
747 	wpi_stop(sc);
748 	return 0;
749 }
750 
751 static int
752 wpi_suspend(device_t dev)
753 {
754 	struct wpi_softc *sc = device_get_softc(dev);
755 	struct ieee80211com *ic = &sc->sc_ic;
756 
757 	ieee80211_suspend_all(ic);
758 	return 0;
759 }
760 
761 static int
762 wpi_resume(device_t dev)
763 {
764 	struct wpi_softc *sc = device_get_softc(dev);
765 	struct ieee80211com *ic = &sc->sc_ic;
766 
767 	/* Clear device-specific "PCI retry timeout" register (41h). */
768 	pci_write_config(dev, 0x41, 0, 1);
769 
770 	ieee80211_resume_all(ic);
771 	return 0;
772 }
773 
774 /*
775  * Grab exclusive access to NIC memory.
776  */
777 static int
778 wpi_nic_lock(struct wpi_softc *sc)
779 {
780 	int ntries;
781 
782 	/* Request exclusive access to NIC. */
783 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
784 
785 	/* Spin until we actually get the lock. */
786 	for (ntries = 0; ntries < 1000; ntries++) {
787 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
788 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
789 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
790 			return 0;
791 		DELAY(10);
792 	}
793 
794 	device_printf(sc->sc_dev, "could not lock memory\n");
795 
796 	return ETIMEDOUT;
797 }
798 
799 /*
800  * Release lock on NIC memory.
801  */
802 static __inline void
803 wpi_nic_unlock(struct wpi_softc *sc)
804 {
805 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
806 }
807 
808 static __inline uint32_t
809 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
810 {
811 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
812 	WPI_BARRIER_READ_WRITE(sc);
813 	return WPI_READ(sc, WPI_PRPH_RDATA);
814 }
815 
816 static __inline void
817 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
818 {
819 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
820 	WPI_BARRIER_WRITE(sc);
821 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
822 }
823 
824 static __inline void
825 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
826 {
827 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
828 }
829 
830 static __inline void
831 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
832 {
833 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
834 }
835 
836 static __inline void
837 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
838     const uint32_t *data, uint32_t count)
839 {
840 	for (; count != 0; count--, data++, addr += 4)
841 		wpi_prph_write(sc, addr, *data);
842 }
843 
844 static __inline uint32_t
845 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
846 {
847 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
848 	WPI_BARRIER_READ_WRITE(sc);
849 	return WPI_READ(sc, WPI_MEM_RDATA);
850 }
851 
852 static __inline void
853 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
854     int count)
855 {
856 	for (; count > 0; count--, addr += 4)
857 		*data++ = wpi_mem_read(sc, addr);
858 }
859 
860 static int
861 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
862 {
863 	uint8_t *out = data;
864 	uint32_t val;
865 	int error, ntries;
866 
867 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
868 
869 	if ((error = wpi_nic_lock(sc)) != 0)
870 		return error;
871 
872 	for (; count > 0; count -= 2, addr++) {
873 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
874 		for (ntries = 0; ntries < 10; ntries++) {
875 			val = WPI_READ(sc, WPI_EEPROM);
876 			if (val & WPI_EEPROM_READ_VALID)
877 				break;
878 			DELAY(5);
879 		}
880 		if (ntries == 10) {
881 			device_printf(sc->sc_dev,
882 			    "timeout reading ROM at 0x%x\n", addr);
883 			return ETIMEDOUT;
884 		}
885 		*out++= val >> 16;
886 		if (count > 1)
887 			*out ++= val >> 24;
888 	}
889 
890 	wpi_nic_unlock(sc);
891 
892 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
893 
894 	return 0;
895 }
896 
897 static void
898 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
899 {
900 	if (error != 0)
901 		return;
902 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
903 	*(bus_addr_t *)arg = segs[0].ds_addr;
904 }
905 
906 /*
907  * Allocates a contiguous block of dma memory of the requested size and
908  * alignment.
909  */
910 static int
911 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
912     void **kvap, bus_size_t size, bus_size_t alignment)
913 {
914 	int error;
915 
916 	dma->tag = NULL;
917 	dma->size = size;
918 
919 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
920 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
921 	    1, size, 0, NULL, NULL, &dma->tag);
922 	if (error != 0)
923 		goto fail;
924 
925 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
926 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
927 	if (error != 0)
928 		goto fail;
929 
930 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
931 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
932 	if (error != 0)
933 		goto fail;
934 
935 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
936 
937 	if (kvap != NULL)
938 		*kvap = dma->vaddr;
939 
940 	return 0;
941 
942 fail:	wpi_dma_contig_free(dma);
943 	return error;
944 }
945 
946 static void
947 wpi_dma_contig_free(struct wpi_dma_info *dma)
948 {
949 	if (dma->vaddr != NULL) {
950 		bus_dmamap_sync(dma->tag, dma->map,
951 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
952 		bus_dmamap_unload(dma->tag, dma->map);
953 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
954 		dma->vaddr = NULL;
955 	}
956 	if (dma->tag != NULL) {
957 		bus_dma_tag_destroy(dma->tag);
958 		dma->tag = NULL;
959 	}
960 }
961 
962 /*
963  * Allocate a shared page between host and NIC.
964  */
965 static int
966 wpi_alloc_shared(struct wpi_softc *sc)
967 {
968 	/* Shared buffer must be aligned on a 4KB boundary. */
969 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
970 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
971 }
972 
973 static void
974 wpi_free_shared(struct wpi_softc *sc)
975 {
976 	wpi_dma_contig_free(&sc->shared_dma);
977 }
978 
979 /*
980  * Allocate DMA-safe memory for firmware transfer.
981  */
982 static int
983 wpi_alloc_fwmem(struct wpi_softc *sc)
984 {
985 	/* Must be aligned on a 16-byte boundary. */
986 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
987 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
988 }
989 
990 static void
991 wpi_free_fwmem(struct wpi_softc *sc)
992 {
993 	wpi_dma_contig_free(&sc->fw_dma);
994 }
995 
996 static int
997 wpi_alloc_rx_ring(struct wpi_softc *sc)
998 {
999 	struct wpi_rx_ring *ring = &sc->rxq;
1000 	bus_size_t size;
1001 	int i, error;
1002 
1003 	ring->cur = 0;
1004 	ring->update = 0;
1005 
1006 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1007 
1008 	/* Allocate RX descriptors (16KB aligned.) */
1009 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1010 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1011 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1012 	if (error != 0) {
1013 		device_printf(sc->sc_dev,
1014 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1015 		    __func__, error);
1016 		goto fail;
1017 	}
1018 
1019 	/* Create RX buffer DMA tag. */
1020 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1021 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1022 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
1023 	if (error != 0) {
1024 		device_printf(sc->sc_dev,
1025 		    "%s: could not create RX buf DMA tag, error %d\n",
1026 		    __func__, error);
1027 		goto fail;
1028 	}
1029 
1030 	/*
1031 	 * Allocate and map RX buffers.
1032 	 */
1033 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1034 		struct wpi_rx_data *data = &ring->data[i];
1035 		bus_addr_t paddr;
1036 
1037 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1038 		if (error != 0) {
1039 			device_printf(sc->sc_dev,
1040 			    "%s: could not create RX buf DMA map, error %d\n",
1041 			    __func__, error);
1042 			goto fail;
1043 		}
1044 
1045 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1046 		if (data->m == NULL) {
1047 			device_printf(sc->sc_dev,
1048 			    "%s: could not allocate RX mbuf\n", __func__);
1049 			error = ENOBUFS;
1050 			goto fail;
1051 		}
1052 
1053 		error = bus_dmamap_load(ring->data_dmat, data->map,
1054 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1055 		    &paddr, BUS_DMA_NOWAIT);
1056 		if (error != 0 && error != EFBIG) {
1057 			device_printf(sc->sc_dev,
1058 			    "%s: can't map mbuf (error %d)\n", __func__,
1059 			    error);
1060 			goto fail;
1061 		}
1062 
1063 		/* Set physical address of RX buffer. */
1064 		ring->desc[i] = htole32(paddr);
1065 	}
1066 
1067 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1068 	    BUS_DMASYNC_PREWRITE);
1069 
1070 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1071 
1072 	return 0;
1073 
1074 fail:	wpi_free_rx_ring(sc);
1075 
1076 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1077 
1078 	return error;
1079 }
1080 
1081 static void
1082 wpi_update_rx_ring(struct wpi_softc *sc)
1083 {
1084 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1085 }
1086 
1087 static void
1088 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1089 {
1090 	struct wpi_rx_ring *ring = &sc->rxq;
1091 
1092 	if (ring->update != 0) {
1093 		/* Wait for INT_WAKEUP event. */
1094 		return;
1095 	}
1096 
1097 	WPI_TXQ_LOCK(sc);
1098 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1099 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1100 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1101 		    __func__);
1102 		ring->update = 1;
1103 	} else {
1104 		wpi_update_rx_ring(sc);
1105 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1106 	}
1107 	WPI_TXQ_UNLOCK(sc);
1108 }
1109 
1110 static void
1111 wpi_reset_rx_ring(struct wpi_softc *sc)
1112 {
1113 	struct wpi_rx_ring *ring = &sc->rxq;
1114 	int ntries;
1115 
1116 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1117 
1118 	if (wpi_nic_lock(sc) == 0) {
1119 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1120 		for (ntries = 0; ntries < 1000; ntries++) {
1121 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1122 			    WPI_FH_RX_STATUS_IDLE)
1123 				break;
1124 			DELAY(10);
1125 		}
1126 		wpi_nic_unlock(sc);
1127 	}
1128 
1129 	ring->cur = 0;
1130 	ring->update = 0;
1131 }
1132 
1133 static void
1134 wpi_free_rx_ring(struct wpi_softc *sc)
1135 {
1136 	struct wpi_rx_ring *ring = &sc->rxq;
1137 	int i;
1138 
1139 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1140 
1141 	wpi_dma_contig_free(&ring->desc_dma);
1142 
1143 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1144 		struct wpi_rx_data *data = &ring->data[i];
1145 
1146 		if (data->m != NULL) {
1147 			bus_dmamap_sync(ring->data_dmat, data->map,
1148 			    BUS_DMASYNC_POSTREAD);
1149 			bus_dmamap_unload(ring->data_dmat, data->map);
1150 			m_freem(data->m);
1151 			data->m = NULL;
1152 		}
1153 		if (data->map != NULL)
1154 			bus_dmamap_destroy(ring->data_dmat, data->map);
1155 	}
1156 	if (ring->data_dmat != NULL) {
1157 		bus_dma_tag_destroy(ring->data_dmat);
1158 		ring->data_dmat = NULL;
1159 	}
1160 }
1161 
1162 static int
1163 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
1164 {
1165 	bus_addr_t paddr;
1166 	bus_size_t size;
1167 	int i, error;
1168 
1169 	ring->qid = qid;
1170 	ring->queued = 0;
1171 	ring->cur = 0;
1172 	ring->pending = 0;
1173 	ring->update = 0;
1174 
1175 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1176 
1177 	/* Allocate TX descriptors (16KB aligned.) */
1178 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1179 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1180 	    size, WPI_RING_DMA_ALIGN);
1181 	if (error != 0) {
1182 		device_printf(sc->sc_dev,
1183 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1184 		    __func__, error);
1185 		goto fail;
1186 	}
1187 
1188 	/* Update shared area with ring physical address. */
1189 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1190 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1191 	    BUS_DMASYNC_PREWRITE);
1192 
1193 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1194 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1195 	    size, 4);
1196 	if (error != 0) {
1197 		device_printf(sc->sc_dev,
1198 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1199 		    __func__, error);
1200 		goto fail;
1201 	}
1202 
1203 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1204 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1205 	    WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
1206 	if (error != 0) {
1207 		device_printf(sc->sc_dev,
1208 		    "%s: could not create TX buf DMA tag, error %d\n",
1209 		    __func__, error);
1210 		goto fail;
1211 	}
1212 
1213 	paddr = ring->cmd_dma.paddr;
1214 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1215 		struct wpi_tx_data *data = &ring->data[i];
1216 
1217 		data->cmd_paddr = paddr;
1218 		paddr += sizeof (struct wpi_tx_cmd);
1219 
1220 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1221 		if (error != 0) {
1222 			device_printf(sc->sc_dev,
1223 			    "%s: could not create TX buf DMA map, error %d\n",
1224 			    __func__, error);
1225 			goto fail;
1226 		}
1227 	}
1228 
1229 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1230 
1231 	return 0;
1232 
1233 fail:	wpi_free_tx_ring(sc, ring);
1234 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1235 	return error;
1236 }
1237 
1238 static void
1239 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1240 {
1241 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1242 }
1243 
1244 static void
1245 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1246 {
1247 
1248 	if (ring->update != 0) {
1249 		/* Wait for INT_WAKEUP event. */
1250 		return;
1251 	}
1252 
1253 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1254 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1255 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1256 		    __func__, ring->qid);
1257 		ring->update = 1;
1258 	} else {
1259 		wpi_update_tx_ring(sc, ring);
1260 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1261 	}
1262 }
1263 
1264 static void
1265 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1266 {
1267 	int i;
1268 
1269 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1270 
1271 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1272 		struct wpi_tx_data *data = &ring->data[i];
1273 
1274 		if (data->m != NULL) {
1275 			bus_dmamap_sync(ring->data_dmat, data->map,
1276 			    BUS_DMASYNC_POSTWRITE);
1277 			bus_dmamap_unload(ring->data_dmat, data->map);
1278 			m_freem(data->m);
1279 			data->m = NULL;
1280 		}
1281 		if (data->ni != NULL) {
1282 			ieee80211_free_node(data->ni);
1283 			data->ni = NULL;
1284 		}
1285 	}
1286 	/* Clear TX descriptors. */
1287 	memset(ring->desc, 0, ring->desc_dma.size);
1288 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1289 	    BUS_DMASYNC_PREWRITE);
1290 	ring->queued = 0;
1291 	ring->cur = 0;
1292 	ring->pending = 0;
1293 	ring->update = 0;
1294 }
1295 
1296 static void
1297 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1298 {
1299 	int i;
1300 
1301 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1302 
1303 	wpi_dma_contig_free(&ring->desc_dma);
1304 	wpi_dma_contig_free(&ring->cmd_dma);
1305 
1306 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1307 		struct wpi_tx_data *data = &ring->data[i];
1308 
1309 		if (data->m != NULL) {
1310 			bus_dmamap_sync(ring->data_dmat, data->map,
1311 			    BUS_DMASYNC_POSTWRITE);
1312 			bus_dmamap_unload(ring->data_dmat, data->map);
1313 			m_freem(data->m);
1314 		}
1315 		if (data->map != NULL)
1316 			bus_dmamap_destroy(ring->data_dmat, data->map);
1317 	}
1318 	if (ring->data_dmat != NULL) {
1319 		bus_dma_tag_destroy(ring->data_dmat);
1320 		ring->data_dmat = NULL;
1321 	}
1322 }
1323 
1324 /*
1325  * Extract various information from EEPROM.
1326  */
1327 static int
1328 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1329 {
1330 #define WPI_CHK(res) do {		\
1331 	if ((error = res) != 0)		\
1332 		goto fail;		\
1333 } while (0)
1334 	uint8_t i;
1335 	int error;
1336 
1337 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1338 
1339 	/* Adapter has to be powered on for EEPROM access to work. */
1340 	if ((error = wpi_apm_init(sc)) != 0) {
1341 		device_printf(sc->sc_dev,
1342 		    "%s: could not power ON adapter, error %d\n", __func__,
1343 		    error);
1344 		return error;
1345 	}
1346 
1347 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1348 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1349 		error = EIO;
1350 		goto fail;
1351 	}
1352 	/* Clear HW ownership of EEPROM. */
1353 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1354 
1355 	/* Read the hardware capabilities, revision and SKU type. */
1356 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1357 	    sizeof(sc->cap)));
1358 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1359 	    sizeof(sc->rev)));
1360 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1361 	    sizeof(sc->type)));
1362 
1363 	sc->rev = le16toh(sc->rev);
1364 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1365 	    sc->rev, sc->type);
1366 
1367 	/* Read the regulatory domain (4 ASCII characters.) */
1368 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1369 	    sizeof(sc->domain)));
1370 
1371 	/* Read MAC address. */
1372 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1373 	    IEEE80211_ADDR_LEN));
1374 
1375 	/* Read the list of authorized channels. */
1376 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1377 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1378 
1379 	/* Read the list of TX power groups. */
1380 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1381 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1382 
1383 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1384 
1385 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1386 	    __func__);
1387 
1388 	return error;
1389 #undef WPI_CHK
1390 }
1391 
1392 /*
1393  * Translate EEPROM flags to net80211.
1394  */
1395 static uint32_t
1396 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1397 {
1398 	uint32_t nflags;
1399 
1400 	nflags = 0;
1401 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1402 		nflags |= IEEE80211_CHAN_PASSIVE;
1403 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1404 		nflags |= IEEE80211_CHAN_NOADHOC;
1405 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1406 		nflags |= IEEE80211_CHAN_DFS;
1407 		/* XXX apparently IBSS may still be marked */
1408 		nflags |= IEEE80211_CHAN_NOADHOC;
1409 	}
1410 
1411 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1412 	if (nflags & IEEE80211_CHAN_NOADHOC)
1413 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1414 
1415 	return nflags;
1416 }
1417 
1418 static void
1419 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n)
1420 {
1421 	struct ieee80211com *ic = &sc->sc_ic;
1422 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1423 	const struct wpi_chan_band *band = &wpi_bands[n];
1424 	struct ieee80211_channel *c;
1425 	uint32_t nflags;
1426 	uint8_t chan, i;
1427 
1428 	for (i = 0; i < band->nchan; i++) {
1429 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1430 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1431 			    "Channel Not Valid: %d, band %d\n",
1432 			     band->chan[i],n);
1433 			continue;
1434 		}
1435 
1436 		chan = band->chan[i];
1437 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1438 
1439 		c = &ic->ic_channels[ic->ic_nchans++];
1440 		c->ic_ieee = chan;
1441 		c->ic_maxregpower = channels[i].maxpwr;
1442 		c->ic_maxpower = 2*c->ic_maxregpower;
1443 
1444 		if (n == 0) {	/* 2GHz band */
1445 			c->ic_freq = ieee80211_ieee2mhz(chan,
1446 			    IEEE80211_CHAN_G);
1447 
1448 			/* G =>'s B is supported */
1449 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1450 			c = &ic->ic_channels[ic->ic_nchans++];
1451 			c[0] = c[-1];
1452 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1453 		} else {	/* 5GHz band */
1454 			c->ic_freq = ieee80211_ieee2mhz(chan,
1455 			    IEEE80211_CHAN_A);
1456 
1457 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1458 		}
1459 
1460 		/* Save maximum allowed TX power for this channel. */
1461 		sc->maxpwr[chan] = channels[i].maxpwr;
1462 
1463 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1464 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1465 		    " offset %d\n", chan, c->ic_freq,
1466 		    channels[i].flags, sc->maxpwr[chan],
1467 		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1468 	}
1469 }
1470 
1471 /**
1472  * Read the eeprom to find out what channels are valid for the given
1473  * band and update net80211 with what we find.
1474  */
1475 static int
1476 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
1477 {
1478 	struct ieee80211com *ic = &sc->sc_ic;
1479 	const struct wpi_chan_band *band = &wpi_bands[n];
1480 	int error;
1481 
1482 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1483 
1484 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1485 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1486 	if (error != 0) {
1487 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1488 		return error;
1489 	}
1490 
1491 	wpi_read_eeprom_band(sc, n);
1492 
1493 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1494 
1495 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1496 
1497 	return 0;
1498 }
1499 
1500 static struct wpi_eeprom_chan *
1501 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1502 {
1503 	int i, j;
1504 
1505 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1506 		for (i = 0; i < wpi_bands[j].nchan; i++)
1507 			if (wpi_bands[j].chan[i] == c->ic_ieee)
1508 				return &sc->eeprom_channels[j][i];
1509 
1510 	return NULL;
1511 }
1512 
1513 /*
1514  * Enforce flags read from EEPROM.
1515  */
1516 static int
1517 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1518     int nchan, struct ieee80211_channel chans[])
1519 {
1520 	struct wpi_softc *sc = ic->ic_softc;
1521 	int i;
1522 
1523 	for (i = 0; i < nchan; i++) {
1524 		struct ieee80211_channel *c = &chans[i];
1525 		struct wpi_eeprom_chan *channel;
1526 
1527 		channel = wpi_find_eeprom_channel(sc, c);
1528 		if (channel == NULL) {
1529 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1530 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1531 			return EINVAL;
1532 		}
1533 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 static int
1540 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
1541 {
1542 	struct wpi_power_group *group = &sc->groups[n];
1543 	struct wpi_eeprom_group rgroup;
1544 	int i, error;
1545 
1546 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1547 
1548 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1549 	    &rgroup, sizeof rgroup)) != 0) {
1550 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1551 		return error;
1552 	}
1553 
1554 	/* Save TX power group information. */
1555 	group->chan   = rgroup.chan;
1556 	group->maxpwr = rgroup.maxpwr;
1557 	/* Retrieve temperature at which the samples were taken. */
1558 	group->temp   = (int16_t)le16toh(rgroup.temp);
1559 
1560 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1561 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1562 	    group->maxpwr, group->temp);
1563 
1564 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1565 		group->samples[i].index = rgroup.samples[i].index;
1566 		group->samples[i].power = rgroup.samples[i].power;
1567 
1568 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1569 		    "\tsample %d: index=%d power=%d\n", i,
1570 		    group->samples[i].index, group->samples[i].power);
1571 	}
1572 
1573 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1574 
1575 	return 0;
1576 }
1577 
1578 static __inline uint8_t
1579 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1580 {
1581 	uint8_t newid = WPI_ID_IBSS_MIN;
1582 
1583 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1584 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1585 			sc->nodesmsk |= 1 << newid;
1586 			return newid;
1587 		}
1588 	}
1589 
1590 	return WPI_ID_UNDEFINED;
1591 }
1592 
1593 static __inline uint8_t
1594 wpi_add_node_entry_sta(struct wpi_softc *sc)
1595 {
1596 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1597 
1598 	return WPI_ID_BSS;
1599 }
1600 
1601 static __inline int
1602 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1603 {
1604 	if (id == WPI_ID_UNDEFINED)
1605 		return 0;
1606 
1607 	return (sc->nodesmsk >> id) & 1;
1608 }
1609 
1610 static __inline void
1611 wpi_clear_node_table(struct wpi_softc *sc)
1612 {
1613 	sc->nodesmsk = 0;
1614 }
1615 
1616 static __inline void
1617 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1618 {
1619 	sc->nodesmsk &= ~(1 << id);
1620 }
1621 
1622 static struct ieee80211_node *
1623 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1624 {
1625 	struct wpi_node *wn;
1626 
1627 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1628 	    M_NOWAIT | M_ZERO);
1629 
1630 	if (wn == NULL)
1631 		return NULL;
1632 
1633 	wn->id = WPI_ID_UNDEFINED;
1634 
1635 	return &wn->ni;
1636 }
1637 
1638 static void
1639 wpi_node_free(struct ieee80211_node *ni)
1640 {
1641 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1642 	struct wpi_node *wn = WPI_NODE(ni);
1643 
1644 	if (wn->id != WPI_ID_UNDEFINED) {
1645 		WPI_NT_LOCK(sc);
1646 		if (wpi_check_node_entry(sc, wn->id)) {
1647 			wpi_del_node_entry(sc, wn->id);
1648 			wpi_del_node(sc, ni);
1649 		}
1650 		WPI_NT_UNLOCK(sc);
1651 	}
1652 
1653 	sc->sc_node_free(ni);
1654 }
1655 
1656 static __inline int
1657 wpi_check_bss_filter(struct wpi_softc *sc)
1658 {
1659 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1660 }
1661 
1662 static void
1663 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1664     const struct ieee80211_rx_stats *rxs,
1665     int rssi, int nf)
1666 {
1667 	struct ieee80211vap *vap = ni->ni_vap;
1668 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1669 	struct wpi_vap *wvp = WPI_VAP(vap);
1670 	uint64_t ni_tstamp, rx_tstamp;
1671 
1672 	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1673 
1674 	if (vap->iv_state == IEEE80211_S_RUN &&
1675 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1676 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1677 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1678 		rx_tstamp = le64toh(sc->rx_tstamp);
1679 
1680 		if (ni_tstamp >= rx_tstamp) {
1681 			DPRINTF(sc, WPI_DEBUG_STATE,
1682 			    "ibss merge, tsf %ju tstamp %ju\n",
1683 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1684 			(void) ieee80211_ibss_merge(ni);
1685 		}
1686 	}
1687 }
1688 
1689 static void
1690 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1691 {
1692 	struct wpi_softc *sc = arg;
1693 	struct wpi_node *wn = WPI_NODE(ni);
1694 	int error;
1695 
1696 	WPI_NT_LOCK(sc);
1697 	if (wn->id != WPI_ID_UNDEFINED) {
1698 		wn->id = WPI_ID_UNDEFINED;
1699 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1700 			device_printf(sc->sc_dev,
1701 			    "%s: could not add IBSS node, error %d\n",
1702 			    __func__, error);
1703 		}
1704 	}
1705 	WPI_NT_UNLOCK(sc);
1706 }
1707 
1708 static void
1709 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1710 {
1711 	struct ieee80211com *ic = &sc->sc_ic;
1712 
1713 	/* Set group keys once. */
1714 	WPI_NT_LOCK(sc);
1715 	wvp->wv_gtk = 0;
1716 	WPI_NT_UNLOCK(sc);
1717 
1718 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1719 	ieee80211_crypto_reload_keys(ic);
1720 }
1721 
1722 /**
1723  * Called by net80211 when ever there is a change to 80211 state machine
1724  */
1725 static int
1726 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1727 {
1728 	struct wpi_vap *wvp = WPI_VAP(vap);
1729 	struct ieee80211com *ic = vap->iv_ic;
1730 	struct wpi_softc *sc = ic->ic_softc;
1731 	int error = 0;
1732 
1733 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1734 
1735 	WPI_TXQ_LOCK(sc);
1736 	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1737 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1738 		WPI_TXQ_UNLOCK(sc);
1739 
1740 		return ENXIO;
1741 	}
1742 	WPI_TXQ_UNLOCK(sc);
1743 
1744 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1745 		ieee80211_state_name[vap->iv_state],
1746 		ieee80211_state_name[nstate]);
1747 
1748 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1749 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1750 			device_printf(sc->sc_dev,
1751 			    "%s: could not set power saving level\n",
1752 			    __func__);
1753 			return error;
1754 		}
1755 
1756 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1757 	}
1758 
1759 	switch (nstate) {
1760 	case IEEE80211_S_SCAN:
1761 		WPI_RXON_LOCK(sc);
1762 		if (wpi_check_bss_filter(sc) != 0) {
1763 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1764 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1765 				device_printf(sc->sc_dev,
1766 				    "%s: could not send RXON\n", __func__);
1767 			}
1768 		}
1769 		WPI_RXON_UNLOCK(sc);
1770 		break;
1771 
1772 	case IEEE80211_S_ASSOC:
1773 		if (vap->iv_state != IEEE80211_S_RUN)
1774 			break;
1775 		/* FALLTHROUGH */
1776 	case IEEE80211_S_AUTH:
1777 		/*
1778 		 * NB: do not optimize AUTH -> AUTH state transmission -
1779 		 * this will break powersave with non-QoS AP!
1780 		 */
1781 
1782 		/*
1783 		 * The node must be registered in the firmware before auth.
1784 		 * Also the associd must be cleared on RUN -> ASSOC
1785 		 * transitions.
1786 		 */
1787 		if ((error = wpi_auth(sc, vap)) != 0) {
1788 			device_printf(sc->sc_dev,
1789 			    "%s: could not move to AUTH state, error %d\n",
1790 			    __func__, error);
1791 		}
1792 		break;
1793 
1794 	case IEEE80211_S_RUN:
1795 		/*
1796 		 * RUN -> RUN transition:
1797 		 * STA mode: Just restart the timers.
1798 		 * IBSS mode: Process IBSS merge.
1799 		 */
1800 		if (vap->iv_state == IEEE80211_S_RUN) {
1801 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1802 				WPI_RXON_LOCK(sc);
1803 				wpi_calib_timeout(sc);
1804 				WPI_RXON_UNLOCK(sc);
1805 				break;
1806 			} else {
1807 				/*
1808 				 * Drop the BSS_FILTER bit
1809 				 * (there is no another way to change bssid).
1810 				 */
1811 				WPI_RXON_LOCK(sc);
1812 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1813 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1814 					device_printf(sc->sc_dev,
1815 					    "%s: could not send RXON\n",
1816 					    __func__);
1817 				}
1818 				WPI_RXON_UNLOCK(sc);
1819 
1820 				/* Restore all what was lost. */
1821 				wpi_restore_node_table(sc, wvp);
1822 
1823 				/* XXX set conditionally? */
1824 				wpi_updateedca(ic);
1825 			}
1826 		}
1827 
1828 		/*
1829 		 * !RUN -> RUN requires setting the association id
1830 		 * which is done with a firmware cmd.  We also defer
1831 		 * starting the timers until that work is done.
1832 		 */
1833 		if ((error = wpi_run(sc, vap)) != 0) {
1834 			device_printf(sc->sc_dev,
1835 			    "%s: could not move to RUN state\n", __func__);
1836 		}
1837 		break;
1838 
1839 	default:
1840 		break;
1841 	}
1842 	if (error != 0) {
1843 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1844 		return error;
1845 	}
1846 
1847 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1848 
1849 	return wvp->wv_newstate(vap, nstate, arg);
1850 }
1851 
1852 static void
1853 wpi_calib_timeout(void *arg)
1854 {
1855 	struct wpi_softc *sc = arg;
1856 
1857 	if (wpi_check_bss_filter(sc) == 0)
1858 		return;
1859 
1860 	wpi_power_calibration(sc);
1861 
1862 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1863 }
1864 
1865 static __inline uint8_t
1866 rate2plcp(const uint8_t rate)
1867 {
1868 	switch (rate) {
1869 	case 12:	return 0xd;
1870 	case 18:	return 0xf;
1871 	case 24:	return 0x5;
1872 	case 36:	return 0x7;
1873 	case 48:	return 0x9;
1874 	case 72:	return 0xb;
1875 	case 96:	return 0x1;
1876 	case 108:	return 0x3;
1877 	case 2:		return 10;
1878 	case 4:		return 20;
1879 	case 11:	return 55;
1880 	case 22:	return 110;
1881 	default:	return 0;
1882 	}
1883 }
1884 
1885 static __inline uint8_t
1886 plcp2rate(const uint8_t plcp)
1887 {
1888 	switch (plcp) {
1889 	case 0xd:	return 12;
1890 	case 0xf:	return 18;
1891 	case 0x5:	return 24;
1892 	case 0x7:	return 36;
1893 	case 0x9:	return 48;
1894 	case 0xb:	return 72;
1895 	case 0x1:	return 96;
1896 	case 0x3:	return 108;
1897 	case 10:	return 2;
1898 	case 20:	return 4;
1899 	case 55:	return 11;
1900 	case 110:	return 22;
1901 	default:	return 0;
1902 	}
1903 }
1904 
1905 /* Quickly determine if a given rate is CCK or OFDM. */
1906 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1907 
1908 static void
1909 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1910     struct wpi_rx_data *data)
1911 {
1912 	struct ieee80211com *ic = &sc->sc_ic;
1913 	struct wpi_rx_ring *ring = &sc->rxq;
1914 	struct wpi_rx_stat *stat;
1915 	struct wpi_rx_head *head;
1916 	struct wpi_rx_tail *tail;
1917 	struct ieee80211_frame *wh;
1918 	struct ieee80211_node *ni;
1919 	struct mbuf *m, *m1;
1920 	bus_addr_t paddr;
1921 	uint32_t flags;
1922 	uint16_t len;
1923 	int error;
1924 
1925 	stat = (struct wpi_rx_stat *)(desc + 1);
1926 
1927 	if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
1928 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1929 		goto fail1;
1930 	}
1931 
1932 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1933 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1934 	len = le16toh(head->len);
1935 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1936 	flags = le32toh(tail->flags);
1937 
1938 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1939 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1940 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1941 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1942 
1943 	/* Discard frames with a bad FCS early. */
1944 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1945 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1946 		    __func__, flags);
1947 		goto fail1;
1948 	}
1949 	/* Discard frames that are too short. */
1950 	if (len < sizeof (struct ieee80211_frame_ack)) {
1951 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1952 		    __func__, len);
1953 		goto fail1;
1954 	}
1955 
1956 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1957 	if (__predict_false(m1 == NULL)) {
1958 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1959 		    __func__);
1960 		goto fail1;
1961 	}
1962 	bus_dmamap_unload(ring->data_dmat, data->map);
1963 
1964 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1965 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1966 	if (__predict_false(error != 0 && error != EFBIG)) {
1967 		device_printf(sc->sc_dev,
1968 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1969 		m_freem(m1);
1970 
1971 		/* Try to reload the old mbuf. */
1972 		error = bus_dmamap_load(ring->data_dmat, data->map,
1973 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1974 		    &paddr, BUS_DMA_NOWAIT);
1975 		if (error != 0 && error != EFBIG) {
1976 			panic("%s: could not load old RX mbuf", __func__);
1977 		}
1978 		/* Physical address may have changed. */
1979 		ring->desc[ring->cur] = htole32(paddr);
1980 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1981 		    BUS_DMASYNC_PREWRITE);
1982 		goto fail1;
1983 	}
1984 
1985 	m = data->m;
1986 	data->m = m1;
1987 	/* Update RX descriptor. */
1988 	ring->desc[ring->cur] = htole32(paddr);
1989 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1990 	    BUS_DMASYNC_PREWRITE);
1991 
1992 	/* Finalize mbuf. */
1993 	m->m_data = (caddr_t)(head + 1);
1994 	m->m_pkthdr.len = m->m_len = len;
1995 
1996 	/* Grab a reference to the source node. */
1997 	wh = mtod(m, struct ieee80211_frame *);
1998 
1999 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2000 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2001 		/* Check whether decryption was successful or not. */
2002 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2003 			DPRINTF(sc, WPI_DEBUG_RECV,
2004 			    "CCMP decryption failed 0x%x\n", flags);
2005 			goto fail2;
2006 		}
2007 		m->m_flags |= M_WEP;
2008 	}
2009 
2010 	if (len >= sizeof(struct ieee80211_frame_min))
2011 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2012 	else
2013 		ni = NULL;
2014 
2015 	sc->rx_tstamp = tail->tstamp;
2016 
2017 	if (ieee80211_radiotap_active(ic)) {
2018 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2019 
2020 		tap->wr_flags = 0;
2021 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2022 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2023 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2024 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2025 		tap->wr_tsft = tail->tstamp;
2026 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2027 		tap->wr_rate = plcp2rate(head->plcp);
2028 	}
2029 
2030 	WPI_UNLOCK(sc);
2031 
2032 	/* Send the frame to the 802.11 layer. */
2033 	if (ni != NULL) {
2034 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2035 		/* Node is no longer needed. */
2036 		ieee80211_free_node(ni);
2037 	} else
2038 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2039 
2040 	WPI_LOCK(sc);
2041 
2042 	return;
2043 
2044 fail2:	m_freem(m);
2045 
2046 fail1:	counter_u64_add(ic->ic_ierrors, 1);
2047 }
2048 
2049 static void
2050 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2051     struct wpi_rx_data *data)
2052 {
2053 	/* Ignore */
2054 }
2055 
2056 static void
2057 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2058 {
2059 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2060 	struct wpi_tx_data *data = &ring->data[desc->idx];
2061 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2062 	struct mbuf *m;
2063 	struct ieee80211_node *ni;
2064 	struct ieee80211vap *vap;
2065 	struct ieee80211com *ic;
2066 	uint32_t status = le32toh(stat->status);
2067 	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2068 
2069 	KASSERT(data->ni != NULL, ("no node"));
2070 	KASSERT(data->m != NULL, ("no mbuf"));
2071 
2072 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2073 
2074 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2075 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2076 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2077 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2078 
2079 	/* Unmap and free mbuf. */
2080 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2081 	bus_dmamap_unload(ring->data_dmat, data->map);
2082 	m = data->m, data->m = NULL;
2083 	ni = data->ni, data->ni = NULL;
2084 	vap = ni->ni_vap;
2085 	ic = vap->iv_ic;
2086 
2087 	/*
2088 	 * Update rate control statistics for the node.
2089 	 */
2090 	if (status & WPI_TX_STATUS_FAIL) {
2091 		ieee80211_ratectl_tx_complete(vap, ni,
2092 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2093 	} else
2094 		ieee80211_ratectl_tx_complete(vap, ni,
2095 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2096 
2097 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2098 
2099 	WPI_TXQ_STATE_LOCK(sc);
2100 	if (--ring->queued > 0)
2101 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2102 	else
2103 		callout_stop(&sc->tx_timeout);
2104 	WPI_TXQ_STATE_UNLOCK(sc);
2105 
2106 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2107 }
2108 
2109 /*
2110  * Process a "command done" firmware notification.  This is where we wakeup
2111  * processes waiting for a synchronous command completion.
2112  */
2113 static void
2114 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2115 {
2116 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2117 	struct wpi_tx_data *data;
2118 	struct wpi_tx_cmd *cmd;
2119 
2120 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2121 				   "type %s len %d\n", desc->qid, desc->idx,
2122 				   desc->flags, wpi_cmd_str(desc->type),
2123 				   le32toh(desc->len));
2124 
2125 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2126 		return;	/* Not a command ack. */
2127 
2128 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2129 
2130 	data = &ring->data[desc->idx];
2131 	cmd = &ring->cmd[desc->idx];
2132 
2133 	/* If the command was mapped in an mbuf, free it. */
2134 	if (data->m != NULL) {
2135 		bus_dmamap_sync(ring->data_dmat, data->map,
2136 		    BUS_DMASYNC_POSTWRITE);
2137 		bus_dmamap_unload(ring->data_dmat, data->map);
2138 		m_freem(data->m);
2139 		data->m = NULL;
2140 	}
2141 
2142 	wakeup(cmd);
2143 
2144 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2145 		struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
2146 
2147 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2148 		    BUS_DMASYNC_POSTREAD);
2149 
2150 		WPI_TXQ_LOCK(sc);
2151 		if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
2152 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2153 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2154 		} else {
2155 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2156 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2157 		}
2158 		WPI_TXQ_UNLOCK(sc);
2159 	}
2160 }
2161 
2162 static void
2163 wpi_notif_intr(struct wpi_softc *sc)
2164 {
2165 	struct ieee80211com *ic = &sc->sc_ic;
2166 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2167 	uint32_t hw;
2168 
2169 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2170 	    BUS_DMASYNC_POSTREAD);
2171 
2172 	hw = le32toh(sc->shared->next) & 0xfff;
2173 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2174 
2175 	while (sc->rxq.cur != hw) {
2176 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2177 
2178 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2179 		struct wpi_rx_desc *desc;
2180 
2181 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2182 		    BUS_DMASYNC_POSTREAD);
2183 		desc = mtod(data->m, struct wpi_rx_desc *);
2184 
2185 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2186 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2187 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2188 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2189 
2190 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2191 			/* Reply to a command. */
2192 			wpi_cmd_done(sc, desc);
2193 		}
2194 
2195 		switch (desc->type) {
2196 		case WPI_RX_DONE:
2197 			/* An 802.11 frame has been received. */
2198 			wpi_rx_done(sc, desc, data);
2199 
2200 			if (__predict_false(sc->sc_running == 0)) {
2201 				/* wpi_stop() was called. */
2202 				return;
2203 			}
2204 
2205 			break;
2206 
2207 		case WPI_TX_DONE:
2208 			/* An 802.11 frame has been transmitted. */
2209 			wpi_tx_done(sc, desc);
2210 			break;
2211 
2212 		case WPI_RX_STATISTICS:
2213 		case WPI_BEACON_STATISTICS:
2214 			wpi_rx_statistics(sc, desc, data);
2215 			break;
2216 
2217 		case WPI_BEACON_MISSED:
2218 		{
2219 			struct wpi_beacon_missed *miss =
2220 			    (struct wpi_beacon_missed *)(desc + 1);
2221 			uint32_t expected, misses, received, threshold;
2222 
2223 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2224 			    BUS_DMASYNC_POSTREAD);
2225 
2226 			misses = le32toh(miss->consecutive);
2227 			expected = le32toh(miss->expected);
2228 			received = le32toh(miss->received);
2229 			threshold = MAX(2, vap->iv_bmissthreshold);
2230 
2231 			DPRINTF(sc, WPI_DEBUG_BMISS,
2232 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2233 			    __func__, misses, le32toh(miss->total), received,
2234 			    expected);
2235 
2236 			if (misses >= threshold ||
2237 			    (received == 0 && expected >= threshold)) {
2238 				WPI_RXON_LOCK(sc);
2239 				if (callout_pending(&sc->scan_timeout)) {
2240 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2241 					    0, 1);
2242 				}
2243 				WPI_RXON_UNLOCK(sc);
2244 				if (vap->iv_state == IEEE80211_S_RUN &&
2245 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2246 					ieee80211_beacon_miss(ic);
2247 			}
2248 
2249 			break;
2250 		}
2251 #ifdef WPI_DEBUG
2252 		case WPI_BEACON_SENT:
2253 		{
2254 			struct wpi_tx_stat *stat =
2255 			    (struct wpi_tx_stat *)(desc + 1);
2256 			uint64_t *tsf = (uint64_t *)(stat + 1);
2257 			uint32_t *mode = (uint32_t *)(tsf + 1);
2258 
2259 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2260 			    BUS_DMASYNC_POSTREAD);
2261 
2262 			DPRINTF(sc, WPI_DEBUG_BEACON,
2263 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2264 			    "duration %u, status %x, tsf %ju, mode %x\n",
2265 			    stat->rtsfailcnt, stat->ackfailcnt,
2266 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2267 			    le32toh(stat->status), le64toh(*tsf),
2268 			    le32toh(*mode));
2269 
2270 			break;
2271 		}
2272 #endif
2273 		case WPI_UC_READY:
2274 		{
2275 			struct wpi_ucode_info *uc =
2276 			    (struct wpi_ucode_info *)(desc + 1);
2277 
2278 			/* The microcontroller is ready. */
2279 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2280 			    BUS_DMASYNC_POSTREAD);
2281 			DPRINTF(sc, WPI_DEBUG_RESET,
2282 			    "microcode alive notification version=%d.%d "
2283 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2284 			    uc->subtype, le32toh(uc->valid));
2285 
2286 			if (le32toh(uc->valid) != 1) {
2287 				device_printf(sc->sc_dev,
2288 				    "microcontroller initialization failed\n");
2289 				wpi_stop_locked(sc);
2290 				return;
2291 			}
2292 			/* Save the address of the error log in SRAM. */
2293 			sc->errptr = le32toh(uc->errptr);
2294 			break;
2295 		}
2296 		case WPI_STATE_CHANGED:
2297 		{
2298 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2299 			    BUS_DMASYNC_POSTREAD);
2300 
2301 			uint32_t *status = (uint32_t *)(desc + 1);
2302 
2303 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2304 			    le32toh(*status));
2305 
2306 			if (le32toh(*status) & 1) {
2307 				WPI_NT_LOCK(sc);
2308 				wpi_clear_node_table(sc);
2309 				WPI_NT_UNLOCK(sc);
2310 				taskqueue_enqueue(sc->sc_tq,
2311 				    &sc->sc_radiooff_task);
2312 				return;
2313 			}
2314 			break;
2315 		}
2316 #ifdef WPI_DEBUG
2317 		case WPI_START_SCAN:
2318 		{
2319 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2320 			    BUS_DMASYNC_POSTREAD);
2321 
2322 			struct wpi_start_scan *scan =
2323 			    (struct wpi_start_scan *)(desc + 1);
2324 			DPRINTF(sc, WPI_DEBUG_SCAN,
2325 			    "%s: scanning channel %d status %x\n",
2326 			    __func__, scan->chan, le32toh(scan->status));
2327 
2328 			break;
2329 		}
2330 #endif
2331 		case WPI_STOP_SCAN:
2332 		{
2333 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2334 			    BUS_DMASYNC_POSTREAD);
2335 
2336 			struct wpi_stop_scan *scan =
2337 			    (struct wpi_stop_scan *)(desc + 1);
2338 
2339 			DPRINTF(sc, WPI_DEBUG_SCAN,
2340 			    "scan finished nchan=%d status=%d chan=%d\n",
2341 			    scan->nchan, scan->status, scan->chan);
2342 
2343 			WPI_RXON_LOCK(sc);
2344 			callout_stop(&sc->scan_timeout);
2345 			WPI_RXON_UNLOCK(sc);
2346 			if (scan->status == WPI_SCAN_ABORTED)
2347 				ieee80211_cancel_scan(vap);
2348 			else
2349 				ieee80211_scan_next(vap);
2350 			break;
2351 		}
2352 		}
2353 
2354 		if (sc->rxq.cur % 8 == 0) {
2355 			/* Tell the firmware what we have processed. */
2356 			sc->sc_update_rx_ring(sc);
2357 		}
2358 	}
2359 }
2360 
2361 /*
2362  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2363  * from power-down sleep mode.
2364  */
2365 static void
2366 wpi_wakeup_intr(struct wpi_softc *sc)
2367 {
2368 	int qid;
2369 
2370 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2371 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2372 
2373 	/* Wakeup RX and TX rings. */
2374 	if (sc->rxq.update) {
2375 		sc->rxq.update = 0;
2376 		wpi_update_rx_ring(sc);
2377 	}
2378 	WPI_TXQ_LOCK(sc);
2379 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2380 		struct wpi_tx_ring *ring = &sc->txq[qid];
2381 
2382 		if (ring->update) {
2383 			ring->update = 0;
2384 			wpi_update_tx_ring(sc, ring);
2385 		}
2386 	}
2387 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2388 	WPI_TXQ_UNLOCK(sc);
2389 }
2390 
2391 /*
2392  * This function prints firmware registers
2393  */
2394 #ifdef WPI_DEBUG
2395 static void
2396 wpi_debug_registers(struct wpi_softc *sc)
2397 {
2398 	size_t i;
2399 	static const uint32_t csr_tbl[] = {
2400 		WPI_HW_IF_CONFIG,
2401 		WPI_INT,
2402 		WPI_INT_MASK,
2403 		WPI_FH_INT,
2404 		WPI_GPIO_IN,
2405 		WPI_RESET,
2406 		WPI_GP_CNTRL,
2407 		WPI_EEPROM,
2408 		WPI_EEPROM_GP,
2409 		WPI_GIO,
2410 		WPI_UCODE_GP1,
2411 		WPI_UCODE_GP2,
2412 		WPI_GIO_CHICKEN,
2413 		WPI_ANA_PLL,
2414 		WPI_DBG_HPET_MEM,
2415 	};
2416 	static const uint32_t prph_tbl[] = {
2417 		WPI_APMG_CLK_CTRL,
2418 		WPI_APMG_PS,
2419 		WPI_APMG_PCI_STT,
2420 		WPI_APMG_RFKILL,
2421 	};
2422 
2423 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2424 
2425 	for (i = 0; i < nitems(csr_tbl); i++) {
2426 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2427 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2428 
2429 		if ((i + 1) % 2 == 0)
2430 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2431 	}
2432 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2433 
2434 	if (wpi_nic_lock(sc) == 0) {
2435 		for (i = 0; i < nitems(prph_tbl); i++) {
2436 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2437 			    wpi_get_prph_string(prph_tbl[i]),
2438 			    wpi_prph_read(sc, prph_tbl[i]));
2439 
2440 			if ((i + 1) % 2 == 0)
2441 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2442 		}
2443 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2444 		wpi_nic_unlock(sc);
2445 	} else {
2446 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2447 		    "Cannot access internal registers.\n");
2448 	}
2449 }
2450 #endif
2451 
2452 /*
2453  * Dump the error log of the firmware when a firmware panic occurs.  Although
2454  * we can't debug the firmware because it is neither open source nor free, it
2455  * can help us to identify certain classes of problems.
2456  */
2457 static void
2458 wpi_fatal_intr(struct wpi_softc *sc)
2459 {
2460 	struct wpi_fw_dump dump;
2461 	uint32_t i, offset, count;
2462 
2463 	/* Check that the error log address is valid. */
2464 	if (sc->errptr < WPI_FW_DATA_BASE ||
2465 	    sc->errptr + sizeof (dump) >
2466 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2467 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2468 		    sc->errptr);
2469 		return;
2470 	}
2471 	if (wpi_nic_lock(sc) != 0) {
2472 		printf("%s: could not read firmware error log\n", __func__);
2473 		return;
2474 	}
2475 	/* Read number of entries in the log. */
2476 	count = wpi_mem_read(sc, sc->errptr);
2477 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2478 		printf("%s: invalid count field (count = %u)\n", __func__,
2479 		    count);
2480 		wpi_nic_unlock(sc);
2481 		return;
2482 	}
2483 	/* Skip "count" field. */
2484 	offset = sc->errptr + sizeof (uint32_t);
2485 	printf("firmware error log (count = %u):\n", count);
2486 	for (i = 0; i < count; i++) {
2487 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2488 		    sizeof (dump) / sizeof (uint32_t));
2489 
2490 		printf("  error type = \"%s\" (0x%08X)\n",
2491 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2492 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2493 		    dump.desc);
2494 		printf("  error data      = 0x%08X\n",
2495 		    dump.data);
2496 		printf("  branch link     = 0x%08X%08X\n",
2497 		    dump.blink[0], dump.blink[1]);
2498 		printf("  interrupt link  = 0x%08X%08X\n",
2499 		    dump.ilink[0], dump.ilink[1]);
2500 		printf("  time            = %u\n", dump.time);
2501 
2502 		offset += sizeof (dump);
2503 	}
2504 	wpi_nic_unlock(sc);
2505 	/* Dump driver status (TX and RX rings) while we're here. */
2506 	printf("driver status:\n");
2507 	WPI_TXQ_LOCK(sc);
2508 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2509 		struct wpi_tx_ring *ring = &sc->txq[i];
2510 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2511 		    i, ring->qid, ring->cur, ring->queued);
2512 	}
2513 	WPI_TXQ_UNLOCK(sc);
2514 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2515 }
2516 
2517 static void
2518 wpi_intr(void *arg)
2519 {
2520 	struct wpi_softc *sc = arg;
2521 	uint32_t r1, r2;
2522 
2523 	WPI_LOCK(sc);
2524 
2525 	/* Disable interrupts. */
2526 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2527 
2528 	r1 = WPI_READ(sc, WPI_INT);
2529 
2530 	if (__predict_false(r1 == 0xffffffff ||
2531 			   (r1 & 0xfffffff0) == 0xa5a5a5a0))
2532 		goto end;	/* Hardware gone! */
2533 
2534 	r2 = WPI_READ(sc, WPI_FH_INT);
2535 
2536 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2537 	    r1, r2);
2538 
2539 	if (r1 == 0 && r2 == 0)
2540 		goto done;	/* Interrupt not for us. */
2541 
2542 	/* Acknowledge interrupts. */
2543 	WPI_WRITE(sc, WPI_INT, r1);
2544 	WPI_WRITE(sc, WPI_FH_INT, r2);
2545 
2546 	if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
2547 		device_printf(sc->sc_dev, "fatal firmware error\n");
2548 #ifdef WPI_DEBUG
2549 		wpi_debug_registers(sc);
2550 #endif
2551 		wpi_fatal_intr(sc);
2552 		DPRINTF(sc, WPI_DEBUG_HW,
2553 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2554 		    "(Hardware Error)");
2555 		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2556 		goto end;
2557 	}
2558 
2559 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2560 	    (r2 & WPI_FH_INT_RX))
2561 		wpi_notif_intr(sc);
2562 
2563 	if (r1 & WPI_INT_ALIVE)
2564 		wakeup(sc);	/* Firmware is alive. */
2565 
2566 	if (r1 & WPI_INT_WAKEUP)
2567 		wpi_wakeup_intr(sc);
2568 
2569 done:
2570 	/* Re-enable interrupts. */
2571 	if (__predict_true(sc->sc_running))
2572 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2573 
2574 end:	WPI_UNLOCK(sc);
2575 }
2576 
2577 static void
2578 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
2579 {
2580 	struct wpi_tx_ring *ring;
2581 	struct wpi_tx_data *data;
2582 	uint8_t cur;
2583 
2584 	WPI_TXQ_LOCK(sc);
2585 	ring = &sc->txq[ac];
2586 
2587 	while (ring->pending != 0) {
2588 		ring->pending--;
2589 		cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2590 		data = &ring->data[cur];
2591 
2592 		bus_dmamap_sync(ring->data_dmat, data->map,
2593 		    BUS_DMASYNC_POSTWRITE);
2594 		bus_dmamap_unload(ring->data_dmat, data->map);
2595 		m_freem(data->m);
2596 		data->m = NULL;
2597 
2598 		ieee80211_node_decref(data->ni);
2599 		data->ni = NULL;
2600 	}
2601 
2602 	WPI_TXQ_UNLOCK(sc);
2603 }
2604 
2605 static int
2606 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2607 {
2608 	struct ieee80211_frame *wh;
2609 	struct wpi_tx_cmd *cmd;
2610 	struct wpi_tx_data *data;
2611 	struct wpi_tx_desc *desc;
2612 	struct wpi_tx_ring *ring;
2613 	struct mbuf *m1;
2614 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2615 	uint8_t cur, pad;
2616 	uint16_t hdrlen;
2617 	int error, i, nsegs, totlen, frag;
2618 
2619 	WPI_TXQ_LOCK(sc);
2620 
2621 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2622 
2623 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2624 
2625 	if (__predict_false(sc->sc_running == 0)) {
2626 		/* wpi_stop() was called */
2627 		error = ENETDOWN;
2628 		goto end;
2629 	}
2630 
2631 	wh = mtod(buf->m, struct ieee80211_frame *);
2632 	hdrlen = ieee80211_anyhdrsize(wh);
2633 	totlen = buf->m->m_pkthdr.len;
2634 	frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
2635 
2636 	if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
2637 		error = EINVAL;
2638 		goto end;
2639 	}
2640 
2641 	if (hdrlen & 3) {
2642 		/* First segment length must be a multiple of 4. */
2643 		pad = 4 - (hdrlen & 3);
2644 	} else
2645 		pad = 0;
2646 
2647 	ring = &sc->txq[buf->ac];
2648 	cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2649 	desc = &ring->desc[cur];
2650 	data = &ring->data[cur];
2651 
2652 	/* Prepare TX firmware command. */
2653 	cmd = &ring->cmd[cur];
2654 	cmd->code = buf->code;
2655 	cmd->flags = 0;
2656 	cmd->qid = ring->qid;
2657 	cmd->idx = cur;
2658 
2659 	memcpy(cmd->data, buf->data, buf->size);
2660 
2661 	/* Save and trim IEEE802.11 header. */
2662 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2663 	m_adj(buf->m, hdrlen);
2664 
2665 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2666 	    segs, &nsegs, BUS_DMA_NOWAIT);
2667 	if (error != 0 && error != EFBIG) {
2668 		device_printf(sc->sc_dev,
2669 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2670 		goto end;
2671 	}
2672 	if (error != 0) {
2673 		/* Too many DMA segments, linearize mbuf. */
2674 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2675 		if (m1 == NULL) {
2676 			device_printf(sc->sc_dev,
2677 			    "%s: could not defrag mbuf\n", __func__);
2678 			error = ENOBUFS;
2679 			goto end;
2680 		}
2681 		buf->m = m1;
2682 
2683 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2684 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2685 		if (__predict_false(error != 0)) {
2686 			/* XXX fix this (applicable to the iwn(4) too) */
2687 			/*
2688 			 * NB: Do not return error;
2689 			 * original mbuf does not exist anymore.
2690 			 */
2691 			device_printf(sc->sc_dev,
2692 			    "%s: can't map mbuf (error %d)\n", __func__,
2693 			    error);
2694 			if (ring->qid < WPI_CMD_QUEUE_NUM) {
2695 				if_inc_counter(buf->ni->ni_vap->iv_ifp,
2696 				    IFCOUNTER_OERRORS, 1);
2697 				if (!frag)
2698 					ieee80211_free_node(buf->ni);
2699 			}
2700 			m_freem(buf->m);
2701 			error = 0;
2702 			goto end;
2703 		}
2704 	}
2705 
2706 	KASSERT(nsegs < WPI_MAX_SCATTER,
2707 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2708 	     nsegs, WPI_MAX_SCATTER));
2709 
2710 	data->m = buf->m;
2711 	data->ni = buf->ni;
2712 
2713 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2714 	    __func__, ring->qid, cur, totlen, nsegs);
2715 
2716 	/* Fill TX descriptor. */
2717 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2718 	/* First DMA segment is used by the TX command. */
2719 	desc->segs[0].addr = htole32(data->cmd_paddr);
2720 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2721 	/* Other DMA segments are for data payload. */
2722 	seg = &segs[0];
2723 	for (i = 1; i <= nsegs; i++) {
2724 		desc->segs[i].addr = htole32(seg->ds_addr);
2725 		desc->segs[i].len  = htole32(seg->ds_len);
2726 		seg++;
2727 	}
2728 
2729 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2730 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2731 	    BUS_DMASYNC_PREWRITE);
2732 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2733 	    BUS_DMASYNC_PREWRITE);
2734 
2735 	ring->pending += 1;
2736 
2737 	if (!frag) {
2738 		if (ring->qid < WPI_CMD_QUEUE_NUM) {
2739 			WPI_TXQ_STATE_LOCK(sc);
2740 			ring->queued += ring->pending;
2741 			callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
2742 			    sc);
2743 			WPI_TXQ_STATE_UNLOCK(sc);
2744 		}
2745 
2746 		/* Kick TX ring. */
2747 		ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2748 		ring->pending = 0;
2749 		sc->sc_update_tx_ring(sc, ring);
2750 	} else
2751 		ieee80211_node_incref(data->ni);
2752 
2753 end:	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
2754 	    __func__);
2755 
2756 	WPI_TXQ_UNLOCK(sc);
2757 
2758 	return (error);
2759 }
2760 
2761 /*
2762  * Construct the data packet for a transmit buffer.
2763  */
2764 static int
2765 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2766 {
2767 	const struct ieee80211_txparam *tp;
2768 	struct ieee80211vap *vap = ni->ni_vap;
2769 	struct ieee80211com *ic = ni->ni_ic;
2770 	struct wpi_node *wn = WPI_NODE(ni);
2771 	struct ieee80211_channel *chan;
2772 	struct ieee80211_frame *wh;
2773 	struct ieee80211_key *k = NULL;
2774 	struct wpi_buf tx_data;
2775 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2776 	uint32_t flags;
2777 	uint16_t ac, qos;
2778 	uint8_t tid, type, rate;
2779 	int swcrypt, ismcast, totlen;
2780 
2781 	wh = mtod(m, struct ieee80211_frame *);
2782 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2783 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2784 	swcrypt = 1;
2785 
2786 	/* Select EDCA Access Category and TX ring for this frame. */
2787 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2788 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2789 		tid = qos & IEEE80211_QOS_TID;
2790 	} else {
2791 		qos = 0;
2792 		tid = 0;
2793 	}
2794 	ac = M_WME_GETAC(m);
2795 
2796 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2797 		ni->ni_chan : ic->ic_curchan;
2798 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2799 
2800 	/* Choose a TX rate index. */
2801 	if (type == IEEE80211_FC0_TYPE_MGT)
2802 		rate = tp->mgmtrate;
2803 	else if (ismcast)
2804 		rate = tp->mcastrate;
2805 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2806 		rate = tp->ucastrate;
2807 	else if (m->m_flags & M_EAPOL)
2808 		rate = tp->mgmtrate;
2809 	else {
2810 		/* XXX pass pktlen */
2811 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2812 		rate = ni->ni_txrate;
2813 	}
2814 
2815 	/* Encrypt the frame if need be. */
2816 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2817 		/* Retrieve key for TX. */
2818 		k = ieee80211_crypto_encap(ni, m);
2819 		if (k == NULL)
2820 			return (ENOBUFS);
2821 
2822 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2823 
2824 		/* 802.11 header may have moved. */
2825 		wh = mtod(m, struct ieee80211_frame *);
2826 	}
2827 	totlen = m->m_pkthdr.len;
2828 
2829 	if (ieee80211_radiotap_active_vap(vap)) {
2830 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2831 
2832 		tap->wt_flags = 0;
2833 		tap->wt_rate = rate;
2834 		if (k != NULL)
2835 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2836 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2837 			tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2838 
2839 		ieee80211_radiotap_tx(vap, m);
2840 	}
2841 
2842 	flags = 0;
2843 	if (!ismcast) {
2844 		/* Unicast frame, check if an ACK is expected. */
2845 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2846 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2847 			flags |= WPI_TX_NEED_ACK;
2848 	}
2849 
2850 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2851 		flags |= WPI_TX_AUTO_SEQ;
2852 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2853 		flags |= WPI_TX_MORE_FRAG;
2854 
2855 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2856 	if (!ismcast) {
2857 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2858 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2859 			flags |= WPI_TX_NEED_RTS;
2860 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2861 		    WPI_RATE_IS_OFDM(rate)) {
2862 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2863 				flags |= WPI_TX_NEED_CTS;
2864 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2865 				flags |= WPI_TX_NEED_RTS;
2866 		}
2867 
2868 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2869 			flags |= WPI_TX_FULL_TXOP;
2870 	}
2871 
2872 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2873 	if (type == IEEE80211_FC0_TYPE_MGT) {
2874 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2875 
2876 		/* Tell HW to set timestamp in probe responses. */
2877 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2878 			flags |= WPI_TX_INSERT_TSTAMP;
2879 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2880 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2881 			tx->timeout = htole16(3);
2882 		else
2883 			tx->timeout = htole16(2);
2884 	}
2885 
2886 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2887 		tx->id = WPI_ID_BROADCAST;
2888 	else {
2889 		if (wn->id == WPI_ID_UNDEFINED) {
2890 			device_printf(sc->sc_dev,
2891 			    "%s: undefined node id\n", __func__);
2892 			return (EINVAL);
2893 		}
2894 
2895 		tx->id = wn->id;
2896 	}
2897 
2898 	if (!swcrypt) {
2899 		switch (k->wk_cipher->ic_cipher) {
2900 		case IEEE80211_CIPHER_AES_CCM:
2901 			tx->security = WPI_CIPHER_CCMP;
2902 			break;
2903 
2904 		default:
2905 			break;
2906 		}
2907 
2908 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2909 	}
2910 
2911 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
2912 		struct mbuf *next = m->m_nextpkt;
2913 
2914 		tx->lnext = htole16(next->m_pkthdr.len);
2915 		tx->fnext = htole32(tx->security |
2916 				    (flags & WPI_TX_NEED_ACK) |
2917 				    WPI_NEXT_STA_ID(tx->id));
2918 	}
2919 
2920 	tx->len = htole16(totlen);
2921 	tx->flags = htole32(flags);
2922 	tx->plcp = rate2plcp(rate);
2923 	tx->tid = tid;
2924 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2925 	tx->ofdm_mask = 0xff;
2926 	tx->cck_mask = 0x0f;
2927 	tx->rts_ntries = 7;
2928 	tx->data_ntries = tp->maxretry;
2929 
2930 	tx_data.ni = ni;
2931 	tx_data.m = m;
2932 	tx_data.size = sizeof(struct wpi_cmd_data);
2933 	tx_data.code = WPI_CMD_TX_DATA;
2934 	tx_data.ac = ac;
2935 
2936 	return wpi_cmd2(sc, &tx_data);
2937 }
2938 
2939 static int
2940 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2941     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2942 {
2943 	struct ieee80211vap *vap = ni->ni_vap;
2944 	struct ieee80211_key *k = NULL;
2945 	struct ieee80211_frame *wh;
2946 	struct wpi_buf tx_data;
2947 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2948 	uint32_t flags;
2949 	uint8_t ac, type, rate;
2950 	int swcrypt, totlen;
2951 
2952 	wh = mtod(m, struct ieee80211_frame *);
2953 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2954 	swcrypt = 1;
2955 
2956 	ac = params->ibp_pri & 3;
2957 
2958 	/* Choose a TX rate index. */
2959 	rate = params->ibp_rate0;
2960 
2961 	flags = 0;
2962 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2963 		flags |= WPI_TX_AUTO_SEQ;
2964 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2965 		flags |= WPI_TX_NEED_ACK;
2966 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2967 		flags |= WPI_TX_NEED_RTS;
2968 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2969 		flags |= WPI_TX_NEED_CTS;
2970 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2971 		flags |= WPI_TX_FULL_TXOP;
2972 
2973 	/* Encrypt the frame if need be. */
2974 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2975 		/* Retrieve key for TX. */
2976 		k = ieee80211_crypto_encap(ni, m);
2977 		if (k == NULL)
2978 			return (ENOBUFS);
2979 
2980 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2981 
2982 		/* 802.11 header may have moved. */
2983 		wh = mtod(m, struct ieee80211_frame *);
2984 	}
2985 	totlen = m->m_pkthdr.len;
2986 
2987 	if (ieee80211_radiotap_active_vap(vap)) {
2988 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2989 
2990 		tap->wt_flags = 0;
2991 		tap->wt_rate = rate;
2992 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2993 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2994 
2995 		ieee80211_radiotap_tx(vap, m);
2996 	}
2997 
2998 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2999 	if (type == IEEE80211_FC0_TYPE_MGT) {
3000 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3001 
3002 		/* Tell HW to set timestamp in probe responses. */
3003 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3004 			flags |= WPI_TX_INSERT_TSTAMP;
3005 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3006 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3007 			tx->timeout = htole16(3);
3008 		else
3009 			tx->timeout = htole16(2);
3010 	}
3011 
3012 	if (!swcrypt) {
3013 		switch (k->wk_cipher->ic_cipher) {
3014 		case IEEE80211_CIPHER_AES_CCM:
3015 			tx->security = WPI_CIPHER_CCMP;
3016 			break;
3017 
3018 		default:
3019 			break;
3020 		}
3021 
3022 		memcpy(tx->key, k->wk_key, k->wk_keylen);
3023 	}
3024 
3025 	tx->len = htole16(totlen);
3026 	tx->flags = htole32(flags);
3027 	tx->plcp = rate2plcp(rate);
3028 	tx->id = WPI_ID_BROADCAST;
3029 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3030 	tx->rts_ntries = params->ibp_try1;
3031 	tx->data_ntries = params->ibp_try0;
3032 
3033 	tx_data.ni = ni;
3034 	tx_data.m = m;
3035 	tx_data.size = sizeof(struct wpi_cmd_data);
3036 	tx_data.code = WPI_CMD_TX_DATA;
3037 	tx_data.ac = ac;
3038 
3039 	return wpi_cmd2(sc, &tx_data);
3040 }
3041 
3042 static __inline int
3043 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
3044 {
3045 	struct wpi_tx_ring *ring = &sc->txq[ac];
3046 	int retval;
3047 
3048 	WPI_TXQ_STATE_LOCK(sc);
3049 	retval = WPI_TX_RING_HIMARK - ring->queued;
3050 	WPI_TXQ_STATE_UNLOCK(sc);
3051 
3052 	return retval;
3053 }
3054 
3055 static int
3056 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3057     const struct ieee80211_bpf_params *params)
3058 {
3059 	struct ieee80211com *ic = ni->ni_ic;
3060 	struct wpi_softc *sc = ic->ic_softc;
3061 	uint16_t ac;
3062 	int error = 0;
3063 
3064 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3065 
3066 	ac = M_WME_GETAC(m);
3067 
3068 	WPI_TX_LOCK(sc);
3069 
3070 	/* NB: no fragments here */
3071 	if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
3072 		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3073 		goto unlock;
3074 	}
3075 
3076 	if (params == NULL) {
3077 		/*
3078 		 * Legacy path; interpret frame contents to decide
3079 		 * precisely how to send the frame.
3080 		 */
3081 		error = wpi_tx_data(sc, m, ni);
3082 	} else {
3083 		/*
3084 		 * Caller supplied explicit parameters to use in
3085 		 * sending the frame.
3086 		 */
3087 		error = wpi_tx_data_raw(sc, m, ni, params);
3088 	}
3089 
3090 unlock:	WPI_TX_UNLOCK(sc);
3091 
3092 	if (error != 0) {
3093 		m_freem(m);
3094 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3095 
3096 		return error;
3097 	}
3098 
3099 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3100 
3101 	return 0;
3102 }
3103 
3104 static int
3105 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3106 {
3107 	struct wpi_softc *sc = ic->ic_softc;
3108 	struct ieee80211_node *ni;
3109 	struct mbuf *mnext;
3110 	uint16_t ac;
3111 	int error, nmbufs;
3112 
3113 	WPI_TX_LOCK(sc);
3114 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3115 
3116 	/* Check if interface is up & running. */
3117 	if (__predict_false(sc->sc_running == 0)) {
3118 		error = ENXIO;
3119 		goto unlock;
3120 	}
3121 
3122 	nmbufs = 1;
3123 	for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
3124 		nmbufs++;
3125 
3126 	/* Check for available space. */
3127 	ac = M_WME_GETAC(m);
3128 	if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
3129 		error = ENOBUFS;
3130 		goto unlock;
3131 	}
3132 
3133 	error = 0;
3134 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3135 	do {
3136 		mnext = m->m_nextpkt;
3137 		if (wpi_tx_data(sc, m, ni) != 0) {
3138 			if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
3139 			    nmbufs);
3140 			wpi_free_txfrags(sc, ac);
3141 			ieee80211_free_mbuf(m);
3142 			ieee80211_free_node(ni);
3143 			break;
3144 		}
3145 	} while((m = mnext) != NULL);
3146 
3147 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3148 
3149 unlock:	WPI_TX_UNLOCK(sc);
3150 
3151 	return (error);
3152 }
3153 
3154 static void
3155 wpi_watchdog_rfkill(void *arg)
3156 {
3157 	struct wpi_softc *sc = arg;
3158 	struct ieee80211com *ic = &sc->sc_ic;
3159 
3160 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3161 
3162 	/* No need to lock firmware memory. */
3163 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3164 		/* Radio kill switch is still off. */
3165 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3166 		    sc);
3167 	} else
3168 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3169 }
3170 
3171 static void
3172 wpi_scan_timeout(void *arg)
3173 {
3174 	struct wpi_softc *sc = arg;
3175 	struct ieee80211com *ic = &sc->sc_ic;
3176 
3177 	ic_printf(ic, "scan timeout\n");
3178 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3179 }
3180 
3181 static void
3182 wpi_tx_timeout(void *arg)
3183 {
3184 	struct wpi_softc *sc = arg;
3185 	struct ieee80211com *ic = &sc->sc_ic;
3186 
3187 	ic_printf(ic, "device timeout\n");
3188 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3189 }
3190 
3191 static void
3192 wpi_parent(struct ieee80211com *ic)
3193 {
3194 	struct wpi_softc *sc = ic->ic_softc;
3195 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3196 
3197 	if (ic->ic_nrunning > 0) {
3198 		if (wpi_init(sc) == 0) {
3199 			ieee80211_notify_radio(ic, 1);
3200 			ieee80211_start_all(ic);
3201 		} else {
3202 			ieee80211_notify_radio(ic, 0);
3203 			ieee80211_stop(vap);
3204 		}
3205 	} else
3206 		wpi_stop(sc);
3207 }
3208 
3209 /*
3210  * Send a command to the firmware.
3211  */
3212 static int
3213 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
3214     int async)
3215 {
3216 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3217 	struct wpi_tx_desc *desc;
3218 	struct wpi_tx_data *data;
3219 	struct wpi_tx_cmd *cmd;
3220 	struct mbuf *m;
3221 	bus_addr_t paddr;
3222 	uint16_t totlen;
3223 	int error;
3224 
3225 	WPI_TXQ_LOCK(sc);
3226 
3227 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3228 
3229 	if (__predict_false(sc->sc_running == 0)) {
3230 		/* wpi_stop() was called */
3231 		if (code == WPI_CMD_SCAN)
3232 			error = ENETDOWN;
3233 		else
3234 			error = 0;
3235 
3236 		goto fail;
3237 	}
3238 
3239 	if (async == 0)
3240 		WPI_LOCK_ASSERT(sc);
3241 
3242 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
3243 	    __func__, wpi_cmd_str(code), size, async);
3244 
3245 	desc = &ring->desc[ring->cur];
3246 	data = &ring->data[ring->cur];
3247 	totlen = 4 + size;
3248 
3249 	if (size > sizeof cmd->data) {
3250 		/* Command is too large to fit in a descriptor. */
3251 		if (totlen > MCLBYTES) {
3252 			error = EINVAL;
3253 			goto fail;
3254 		}
3255 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3256 		if (m == NULL) {
3257 			error = ENOMEM;
3258 			goto fail;
3259 		}
3260 		cmd = mtod(m, struct wpi_tx_cmd *);
3261 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3262 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3263 		if (error != 0) {
3264 			m_freem(m);
3265 			goto fail;
3266 		}
3267 		data->m = m;
3268 	} else {
3269 		cmd = &ring->cmd[ring->cur];
3270 		paddr = data->cmd_paddr;
3271 	}
3272 
3273 	cmd->code = code;
3274 	cmd->flags = 0;
3275 	cmd->qid = ring->qid;
3276 	cmd->idx = ring->cur;
3277 	memcpy(cmd->data, buf, size);
3278 
3279 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3280 	desc->segs[0].addr = htole32(paddr);
3281 	desc->segs[0].len  = htole32(totlen);
3282 
3283 	if (size > sizeof cmd->data) {
3284 		bus_dmamap_sync(ring->data_dmat, data->map,
3285 		    BUS_DMASYNC_PREWRITE);
3286 	} else {
3287 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3288 		    BUS_DMASYNC_PREWRITE);
3289 	}
3290 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3291 	    BUS_DMASYNC_PREWRITE);
3292 
3293 	/* Kick command ring. */
3294 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3295 	sc->sc_update_tx_ring(sc, ring);
3296 
3297 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3298 
3299 	WPI_TXQ_UNLOCK(sc);
3300 
3301 	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3302 
3303 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3304 
3305 	WPI_TXQ_UNLOCK(sc);
3306 
3307 	return error;
3308 }
3309 
3310 /*
3311  * Configure HW multi-rate retries.
3312  */
3313 static int
3314 wpi_mrr_setup(struct wpi_softc *sc)
3315 {
3316 	struct ieee80211com *ic = &sc->sc_ic;
3317 	struct wpi_mrr_setup mrr;
3318 	uint8_t i;
3319 	int error;
3320 
3321 	/* CCK rates (not used with 802.11a). */
3322 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3323 		mrr.rates[i].flags = 0;
3324 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3325 		/* Fallback to the immediate lower CCK rate (if any.) */
3326 		mrr.rates[i].next =
3327 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3328 		/* Try twice at this rate before falling back to "next". */
3329 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3330 	}
3331 	/* OFDM rates (not used with 802.11b). */
3332 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3333 		mrr.rates[i].flags = 0;
3334 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3335 		/* Fallback to the immediate lower rate (if any.) */
3336 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3337 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3338 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3339 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3340 		    i - 1;
3341 		/* Try twice at this rate before falling back to "next". */
3342 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3343 	}
3344 	/* Setup MRR for control frames. */
3345 	mrr.which = htole32(WPI_MRR_CTL);
3346 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3347 	if (error != 0) {
3348 		device_printf(sc->sc_dev,
3349 		    "could not setup MRR for control frames\n");
3350 		return error;
3351 	}
3352 	/* Setup MRR for data frames. */
3353 	mrr.which = htole32(WPI_MRR_DATA);
3354 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3355 	if (error != 0) {
3356 		device_printf(sc->sc_dev,
3357 		    "could not setup MRR for data frames\n");
3358 		return error;
3359 	}
3360 	return 0;
3361 }
3362 
3363 static int
3364 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3365 {
3366 	struct ieee80211com *ic = ni->ni_ic;
3367 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3368 	struct wpi_node *wn = WPI_NODE(ni);
3369 	struct wpi_node_info node;
3370 	int error;
3371 
3372 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3373 
3374 	if (wn->id == WPI_ID_UNDEFINED)
3375 		return EINVAL;
3376 
3377 	memset(&node, 0, sizeof node);
3378 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3379 	node.id = wn->id;
3380 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3381 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3382 	node.action = htole32(WPI_ACTION_SET_RATE);
3383 	node.antenna = WPI_ANTENNA_BOTH;
3384 
3385 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3386 	    wn->id, ether_sprintf(ni->ni_macaddr));
3387 
3388 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3389 	if (error != 0) {
3390 		device_printf(sc->sc_dev,
3391 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3392 		    error);
3393 		return error;
3394 	}
3395 
3396 	if (wvp->wv_gtk != 0) {
3397 		error = wpi_set_global_keys(ni);
3398 		if (error != 0) {
3399 			device_printf(sc->sc_dev,
3400 			    "%s: error while setting global keys\n", __func__);
3401 			return ENXIO;
3402 		}
3403 	}
3404 
3405 	return 0;
3406 }
3407 
3408 /*
3409  * Broadcast node is used to send group-addressed and management frames.
3410  */
3411 static int
3412 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3413 {
3414 	struct ieee80211com *ic = &sc->sc_ic;
3415 	struct wpi_node_info node;
3416 
3417 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3418 
3419 	memset(&node, 0, sizeof node);
3420 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3421 	node.id = WPI_ID_BROADCAST;
3422 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3423 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3424 	node.action = htole32(WPI_ACTION_SET_RATE);
3425 	node.antenna = WPI_ANTENNA_BOTH;
3426 
3427 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3428 
3429 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3430 }
3431 
3432 static int
3433 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3434 {
3435 	struct wpi_node *wn = WPI_NODE(ni);
3436 	int error;
3437 
3438 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3439 
3440 	wn->id = wpi_add_node_entry_sta(sc);
3441 
3442 	if ((error = wpi_add_node(sc, ni)) != 0) {
3443 		wpi_del_node_entry(sc, wn->id);
3444 		wn->id = WPI_ID_UNDEFINED;
3445 		return error;
3446 	}
3447 
3448 	return 0;
3449 }
3450 
3451 static int
3452 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3453 {
3454 	struct wpi_node *wn = WPI_NODE(ni);
3455 	int error;
3456 
3457 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3458 	    ("the node %d was added before", wn->id));
3459 
3460 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3461 
3462 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3463 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3464 		return ENOMEM;
3465 	}
3466 
3467 	if ((error = wpi_add_node(sc, ni)) != 0) {
3468 		wpi_del_node_entry(sc, wn->id);
3469 		wn->id = WPI_ID_UNDEFINED;
3470 		return error;
3471 	}
3472 
3473 	return 0;
3474 }
3475 
3476 static void
3477 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3478 {
3479 	struct wpi_node *wn = WPI_NODE(ni);
3480 	struct wpi_cmd_del_node node;
3481 	int error;
3482 
3483 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3484 
3485 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3486 
3487 	memset(&node, 0, sizeof node);
3488 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3489 	node.count = 1;
3490 
3491 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3492 	    wn->id, ether_sprintf(ni->ni_macaddr));
3493 
3494 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3495 	if (error != 0) {
3496 		device_printf(sc->sc_dev,
3497 		    "%s: could not delete node %u, error %d\n", __func__,
3498 		    wn->id, error);
3499 	}
3500 }
3501 
3502 static int
3503 wpi_updateedca(struct ieee80211com *ic)
3504 {
3505 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3506 	struct wpi_softc *sc = ic->ic_softc;
3507 	struct wpi_edca_params cmd;
3508 	int aci, error;
3509 
3510 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3511 
3512 	memset(&cmd, 0, sizeof cmd);
3513 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3514 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3515 		const struct wmeParams *ac =
3516 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3517 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3518 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3519 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3520 		cmd.ac[aci].txoplimit =
3521 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3522 
3523 		DPRINTF(sc, WPI_DEBUG_EDCA,
3524 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3525 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3526 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3527 		    cmd.ac[aci].txoplimit);
3528 	}
3529 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3530 
3531 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3532 
3533 	return error;
3534 #undef WPI_EXP2
3535 }
3536 
3537 static void
3538 wpi_set_promisc(struct wpi_softc *sc)
3539 {
3540 	struct ieee80211com *ic = &sc->sc_ic;
3541 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3542 	uint32_t promisc_filter;
3543 
3544 	promisc_filter = WPI_FILTER_CTL;
3545 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3546 		promisc_filter |= WPI_FILTER_PROMISC;
3547 
3548 	if (ic->ic_promisc > 0)
3549 		sc->rxon.filter |= htole32(promisc_filter);
3550 	else
3551 		sc->rxon.filter &= ~htole32(promisc_filter);
3552 }
3553 
3554 static void
3555 wpi_update_promisc(struct ieee80211com *ic)
3556 {
3557 	struct wpi_softc *sc = ic->ic_softc;
3558 
3559 	WPI_RXON_LOCK(sc);
3560 	wpi_set_promisc(sc);
3561 
3562 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3563 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3564 		    __func__);
3565 	}
3566 	WPI_RXON_UNLOCK(sc);
3567 }
3568 
3569 static void
3570 wpi_update_mcast(struct ieee80211com *ic)
3571 {
3572 	/* Ignore */
3573 }
3574 
3575 static void
3576 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3577 {
3578 	struct wpi_cmd_led led;
3579 
3580 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3581 
3582 	led.which = which;
3583 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3584 	led.off = off;
3585 	led.on = on;
3586 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3587 }
3588 
3589 static int
3590 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3591 {
3592 	struct wpi_cmd_timing cmd;
3593 	uint64_t val, mod;
3594 
3595 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3596 
3597 	memset(&cmd, 0, sizeof cmd);
3598 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3599 	cmd.bintval = htole16(ni->ni_intval);
3600 	cmd.lintval = htole16(10);
3601 
3602 	/* Compute remaining time until next beacon. */
3603 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3604 	mod = le64toh(cmd.tstamp) % val;
3605 	cmd.binitval = htole32((uint32_t)(val - mod));
3606 
3607 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3608 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3609 
3610 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3611 }
3612 
3613 /*
3614  * This function is called periodically (every 60 seconds) to adjust output
3615  * power to temperature changes.
3616  */
3617 static void
3618 wpi_power_calibration(struct wpi_softc *sc)
3619 {
3620 	int temp;
3621 
3622 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3623 
3624 	/* Update sensor data. */
3625 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3626 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3627 
3628 	/* Sanity-check read value. */
3629 	if (temp < -260 || temp > 25) {
3630 		/* This can't be correct, ignore. */
3631 		DPRINTF(sc, WPI_DEBUG_TEMP,
3632 		    "out-of-range temperature reported: %d\n", temp);
3633 		return;
3634 	}
3635 
3636 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3637 
3638 	/* Adjust Tx power if need be. */
3639 	if (abs(temp - sc->temp) <= 6)
3640 		return;
3641 
3642 	sc->temp = temp;
3643 
3644 	if (wpi_set_txpower(sc, 1) != 0) {
3645 		/* just warn, too bad for the automatic calibration... */
3646 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3647 	}
3648 }
3649 
3650 /*
3651  * Set TX power for current channel.
3652  */
3653 static int
3654 wpi_set_txpower(struct wpi_softc *sc, int async)
3655 {
3656 	struct wpi_power_group *group;
3657 	struct wpi_cmd_txpower cmd;
3658 	uint8_t chan;
3659 	int idx, is_chan_5ghz, i;
3660 
3661 	/* Retrieve current channel from last RXON. */
3662 	chan = sc->rxon.chan;
3663 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3664 
3665 	/* Find the TX power group to which this channel belongs. */
3666 	if (is_chan_5ghz) {
3667 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3668 			if (chan <= group->chan)
3669 				break;
3670 	} else
3671 		group = &sc->groups[0];
3672 
3673 	memset(&cmd, 0, sizeof cmd);
3674 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3675 	cmd.chan = htole16(chan);
3676 
3677 	/* Set TX power for all OFDM and CCK rates. */
3678 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3679 		/* Retrieve TX power for this channel/rate. */
3680 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3681 
3682 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3683 
3684 		if (is_chan_5ghz) {
3685 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3686 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3687 		} else {
3688 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3689 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3690 		}
3691 		DPRINTF(sc, WPI_DEBUG_TEMP,
3692 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3693 	}
3694 
3695 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3696 }
3697 
3698 /*
3699  * Determine Tx power index for a given channel/rate combination.
3700  * This takes into account the regulatory information from EEPROM and the
3701  * current temperature.
3702  */
3703 static int
3704 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3705     uint8_t chan, int is_chan_5ghz, int ridx)
3706 {
3707 /* Fixed-point arithmetic division using a n-bit fractional part. */
3708 #define fdivround(a, b, n)	\
3709 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3710 
3711 /* Linear interpolation. */
3712 #define interpolate(x, x1, y1, x2, y2, n)	\
3713 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3714 
3715 	struct wpi_power_sample *sample;
3716 	int pwr, idx;
3717 
3718 	/* Default TX power is group maximum TX power minus 3dB. */
3719 	pwr = group->maxpwr / 2;
3720 
3721 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3722 	switch (ridx) {
3723 	case WPI_RIDX_OFDM36:
3724 		pwr -= is_chan_5ghz ?  5 : 0;
3725 		break;
3726 	case WPI_RIDX_OFDM48:
3727 		pwr -= is_chan_5ghz ? 10 : 7;
3728 		break;
3729 	case WPI_RIDX_OFDM54:
3730 		pwr -= is_chan_5ghz ? 12 : 9;
3731 		break;
3732 	}
3733 
3734 	/* Never exceed the channel maximum allowed TX power. */
3735 	pwr = min(pwr, sc->maxpwr[chan]);
3736 
3737 	/* Retrieve TX power index into gain tables from samples. */
3738 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3739 		if (pwr > sample[1].power)
3740 			break;
3741 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3742 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3743 	    sample[1].power, sample[1].index, 19);
3744 
3745 	/*-
3746 	 * Adjust power index based on current temperature:
3747 	 * - if cooler than factory-calibrated: decrease output power
3748 	 * - if warmer than factory-calibrated: increase output power
3749 	 */
3750 	idx -= (sc->temp - group->temp) * 11 / 100;
3751 
3752 	/* Decrease TX power for CCK rates (-5dB). */
3753 	if (ridx >= WPI_RIDX_CCK1)
3754 		idx += 10;
3755 
3756 	/* Make sure idx stays in a valid range. */
3757 	if (idx < 0)
3758 		return 0;
3759 	if (idx > WPI_MAX_PWR_INDEX)
3760 		return WPI_MAX_PWR_INDEX;
3761 	return idx;
3762 
3763 #undef interpolate
3764 #undef fdivround
3765 }
3766 
3767 /*
3768  * Set STA mode power saving level (between 0 and 5).
3769  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3770  */
3771 static int
3772 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3773 {
3774 	struct wpi_pmgt_cmd cmd;
3775 	const struct wpi_pmgt *pmgt;
3776 	uint32_t max, reg;
3777 	uint8_t skip_dtim;
3778 	int i;
3779 
3780 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3781 	    "%s: dtim=%d, level=%d, async=%d\n",
3782 	    __func__, dtim, level, async);
3783 
3784 	/* Select which PS parameters to use. */
3785 	if (dtim <= 10)
3786 		pmgt = &wpi_pmgt[0][level];
3787 	else
3788 		pmgt = &wpi_pmgt[1][level];
3789 
3790 	memset(&cmd, 0, sizeof cmd);
3791 	if (level != 0)	/* not CAM */
3792 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3793 	/* Retrieve PCIe Active State Power Management (ASPM). */
3794 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3795 	if (!(reg & 0x1))	/* L0s Entry disabled. */
3796 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3797 
3798 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3799 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3800 
3801 	if (dtim == 0) {
3802 		dtim = 1;
3803 		skip_dtim = 0;
3804 	} else
3805 		skip_dtim = pmgt->skip_dtim;
3806 
3807 	if (skip_dtim != 0) {
3808 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3809 		max = pmgt->intval[4];
3810 		if (max == (uint32_t)-1)
3811 			max = dtim * (skip_dtim + 1);
3812 		else if (max > dtim)
3813 			max = (max / dtim) * dtim;
3814 	} else
3815 		max = dtim;
3816 
3817 	for (i = 0; i < 5; i++)
3818 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3819 
3820 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3821 }
3822 
3823 static int
3824 wpi_send_btcoex(struct wpi_softc *sc)
3825 {
3826 	struct wpi_bluetooth cmd;
3827 
3828 	memset(&cmd, 0, sizeof cmd);
3829 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3830 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3831 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3832 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3833 	    __func__);
3834 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3835 }
3836 
3837 static int
3838 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3839 {
3840 	int error;
3841 
3842 	if (async)
3843 		WPI_RXON_LOCK_ASSERT(sc);
3844 
3845 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3846 		struct wpi_assoc rxon_assoc;
3847 
3848 		rxon_assoc.flags = sc->rxon.flags;
3849 		rxon_assoc.filter = sc->rxon.filter;
3850 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3851 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3852 		rxon_assoc.reserved = 0;
3853 
3854 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3855 		    sizeof (struct wpi_assoc), async);
3856 		if (error != 0) {
3857 			device_printf(sc->sc_dev,
3858 			    "RXON_ASSOC command failed, error %d\n", error);
3859 			return error;
3860 		}
3861 	} else {
3862 		if (async) {
3863 			WPI_NT_LOCK(sc);
3864 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3865 			    sizeof (struct wpi_rxon), async);
3866 			if (error == 0)
3867 				wpi_clear_node_table(sc);
3868 			WPI_NT_UNLOCK(sc);
3869 		} else {
3870 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3871 			    sizeof (struct wpi_rxon), async);
3872 			if (error == 0)
3873 				wpi_clear_node_table(sc);
3874 		}
3875 
3876 		if (error != 0) {
3877 			device_printf(sc->sc_dev,
3878 			    "RXON command failed, error %d\n", error);
3879 			return error;
3880 		}
3881 
3882 		/* Add broadcast node. */
3883 		error = wpi_add_broadcast_node(sc, async);
3884 		if (error != 0) {
3885 			device_printf(sc->sc_dev,
3886 			    "could not add broadcast node, error %d\n", error);
3887 			return error;
3888 		}
3889 	}
3890 
3891 	/* Configuration has changed, set Tx power accordingly. */
3892 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3893 		device_printf(sc->sc_dev,
3894 		    "%s: could not set TX power, error %d\n", __func__, error);
3895 		return error;
3896 	}
3897 
3898 	return 0;
3899 }
3900 
3901 /**
3902  * Configure the card to listen to a particular channel, this transisions the
3903  * card in to being able to receive frames from remote devices.
3904  */
3905 static int
3906 wpi_config(struct wpi_softc *sc)
3907 {
3908 	struct ieee80211com *ic = &sc->sc_ic;
3909 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3910 	struct ieee80211_channel *c = ic->ic_curchan;
3911 	int error;
3912 
3913 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3914 
3915 	/* Set power saving level to CAM during initialization. */
3916 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3917 		device_printf(sc->sc_dev,
3918 		    "%s: could not set power saving level\n", __func__);
3919 		return error;
3920 	}
3921 
3922 	/* Configure bluetooth coexistence. */
3923 	if ((error = wpi_send_btcoex(sc)) != 0) {
3924 		device_printf(sc->sc_dev,
3925 		    "could not configure bluetooth coexistence\n");
3926 		return error;
3927 	}
3928 
3929 	/* Configure adapter. */
3930 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3931 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3932 
3933 	/* Set default channel. */
3934 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3935 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3936 	if (IEEE80211_IS_CHAN_2GHZ(c))
3937 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3938 
3939 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3940 	switch (ic->ic_opmode) {
3941 	case IEEE80211_M_STA:
3942 		sc->rxon.mode = WPI_MODE_STA;
3943 		break;
3944 	case IEEE80211_M_IBSS:
3945 		sc->rxon.mode = WPI_MODE_IBSS;
3946 		sc->rxon.filter |= WPI_FILTER_BEACON;
3947 		break;
3948 	case IEEE80211_M_HOSTAP:
3949 		/* XXX workaround for beaconing */
3950 		sc->rxon.mode = WPI_MODE_IBSS;
3951 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3952 		break;
3953 	case IEEE80211_M_AHDEMO:
3954 		sc->rxon.mode = WPI_MODE_HOSTAP;
3955 		break;
3956 	case IEEE80211_M_MONITOR:
3957 		sc->rxon.mode = WPI_MODE_MONITOR;
3958 		break;
3959 	default:
3960 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3961 		    ic->ic_opmode);
3962 		return EINVAL;
3963 	}
3964 	sc->rxon.filter = htole32(sc->rxon.filter);
3965 	wpi_set_promisc(sc);
3966 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3967 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3968 
3969 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3970 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3971 		    __func__);
3972 		return error;
3973 	}
3974 
3975 	/* Setup rate scalling. */
3976 	if ((error = wpi_mrr_setup(sc)) != 0) {
3977 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3978 		    error);
3979 		return error;
3980 	}
3981 
3982 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3983 
3984 	return 0;
3985 }
3986 
3987 static uint16_t
3988 wpi_get_active_dwell_time(struct wpi_softc *sc,
3989     struct ieee80211_channel *c, uint8_t n_probes)
3990 {
3991 	/* No channel? Default to 2GHz settings. */
3992 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3993 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3994 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3995 	}
3996 
3997 	/* 5GHz dwell time. */
3998 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3999 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4000 }
4001 
4002 /*
4003  * Limit the total dwell time.
4004  *
4005  * Returns the dwell time in milliseconds.
4006  */
4007 static uint16_t
4008 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4009 {
4010 	struct ieee80211com *ic = &sc->sc_ic;
4011 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4012 	uint16_t bintval = 0;
4013 
4014 	/* bintval is in TU (1.024mS) */
4015 	if (vap != NULL)
4016 		bintval = vap->iv_bss->ni_intval;
4017 
4018 	/*
4019 	 * If it's non-zero, we should calculate the minimum of
4020 	 * it and the DWELL_BASE.
4021 	 *
4022 	 * XXX Yes, the math should take into account that bintval
4023 	 * is 1.024mS, not 1mS..
4024 	 */
4025 	if (bintval > 0) {
4026 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4027 		    bintval);
4028 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4029 	}
4030 
4031 	/* No association context? Default. */
4032 	return dwell_time;
4033 }
4034 
4035 static uint16_t
4036 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4037 {
4038 	uint16_t passive;
4039 
4040 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4041 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4042 	else
4043 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4044 
4045 	/* Clamp to the beacon interval if we're associated. */
4046 	return (wpi_limit_dwell(sc, passive));
4047 }
4048 
4049 static uint32_t
4050 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4051 {
4052 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4053 	uint32_t nbeacons = time / bintval;
4054 
4055 	if (mod > WPI_PAUSE_MAX_TIME)
4056 		mod = WPI_PAUSE_MAX_TIME;
4057 
4058 	return WPI_PAUSE_SCAN(nbeacons, mod);
4059 }
4060 
4061 /*
4062  * Send a scan request to the firmware.
4063  */
4064 static int
4065 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4066 {
4067 	struct ieee80211com *ic = &sc->sc_ic;
4068 	struct ieee80211_scan_state *ss = ic->ic_scan;
4069 	struct ieee80211vap *vap = ss->ss_vap;
4070 	struct wpi_scan_hdr *hdr;
4071 	struct wpi_cmd_data *tx;
4072 	struct wpi_scan_essid *essids;
4073 	struct wpi_scan_chan *chan;
4074 	struct ieee80211_frame *wh;
4075 	struct ieee80211_rateset *rs;
4076 	uint16_t bintval, buflen, dwell_active, dwell_passive;
4077 	uint8_t *buf, *frm, i, nssid;
4078 	int bgscan, error;
4079 
4080 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4081 
4082 	/*
4083 	 * We are absolutely not allowed to send a scan command when another
4084 	 * scan command is pending.
4085 	 */
4086 	if (callout_pending(&sc->scan_timeout)) {
4087 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4088 		    __func__);
4089 		error = EAGAIN;
4090 		goto fail;
4091 	}
4092 
4093 	bgscan = wpi_check_bss_filter(sc);
4094 	bintval = vap->iv_bss->ni_intval;
4095 	if (bgscan != 0 &&
4096 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4097 		error = EOPNOTSUPP;
4098 		goto fail;
4099 	}
4100 
4101 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4102 	if (buf == NULL) {
4103 		device_printf(sc->sc_dev,
4104 		    "%s: could not allocate buffer for scan command\n",
4105 		    __func__);
4106 		error = ENOMEM;
4107 		goto fail;
4108 	}
4109 	hdr = (struct wpi_scan_hdr *)buf;
4110 
4111 	/*
4112 	 * Move to the next channel if no packets are received within 10 msecs
4113 	 * after sending the probe request.
4114 	 */
4115 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4116 	hdr->quiet_threshold = htole16(1);
4117 
4118 	if (bgscan != 0) {
4119 		/*
4120 		 * Max needs to be greater than active and passive and quiet!
4121 		 * It's also in microseconds!
4122 		 */
4123 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4124 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4125 		    bintval));
4126 	}
4127 
4128 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4129 
4130 	tx = (struct wpi_cmd_data *)(hdr + 1);
4131 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4132 	tx->id = WPI_ID_BROADCAST;
4133 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4134 
4135 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4136 		/* Send probe requests at 6Mbps. */
4137 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4138 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4139 	} else {
4140 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4141 		/* Send probe requests at 1Mbps. */
4142 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4143 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4144 	}
4145 
4146 	essids = (struct wpi_scan_essid *)(tx + 1);
4147 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4148 	for (i = 0; i < nssid; i++) {
4149 		essids[i].id = IEEE80211_ELEMID_SSID;
4150 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4151 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4152 #ifdef WPI_DEBUG
4153 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4154 			printf("Scanning Essid: ");
4155 			ieee80211_print_essid(essids[i].data, essids[i].len);
4156 			printf("\n");
4157 		}
4158 #endif
4159 	}
4160 
4161 	/*
4162 	 * Build a probe request frame.  Most of the following code is a
4163 	 * copy & paste of what is done in net80211.
4164 	 */
4165 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4166 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4167 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4168 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4169 	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4170 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4171 	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4172 
4173 	frm = (uint8_t *)(wh + 1);
4174 	frm = ieee80211_add_ssid(frm, NULL, 0);
4175 	frm = ieee80211_add_rates(frm, rs);
4176 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4177 		frm = ieee80211_add_xrates(frm, rs);
4178 
4179 	/* Set length of probe request. */
4180 	tx->len = htole16(frm - (uint8_t *)wh);
4181 
4182 	/*
4183 	 * Construct information about the channel that we
4184 	 * want to scan. The firmware expects this to be directly
4185 	 * after the scan probe request
4186 	 */
4187 	chan = (struct wpi_scan_chan *)frm;
4188 	chan->chan = ieee80211_chan2ieee(ic, c);
4189 	chan->flags = 0;
4190 	if (nssid) {
4191 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4192 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4193 	} else
4194 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4195 
4196 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4197 		chan->flags |= WPI_CHAN_ACTIVE;
4198 
4199 	/*
4200 	 * Calculate the active/passive dwell times.
4201 	 */
4202 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4203 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4204 
4205 	/* Make sure they're valid. */
4206 	if (dwell_active > dwell_passive)
4207 		dwell_active = dwell_passive;
4208 
4209 	chan->active = htole16(dwell_active);
4210 	chan->passive = htole16(dwell_passive);
4211 
4212 	chan->dsp_gain = 0x6e;  /* Default level */
4213 
4214 	if (IEEE80211_IS_CHAN_5GHZ(c))
4215 		chan->rf_gain = 0x3b;
4216 	else
4217 		chan->rf_gain = 0x28;
4218 
4219 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4220 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4221 
4222 	hdr->nchan++;
4223 
4224 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4225 		/* XXX Force probe request transmission. */
4226 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4227 
4228 		chan++;
4229 
4230 		/* Reduce unnecessary delay. */
4231 		chan->flags = 0;
4232 		chan->passive = chan->active = hdr->quiet_time;
4233 
4234 		hdr->nchan++;
4235 	}
4236 
4237 	chan++;
4238 
4239 	buflen = (uint8_t *)chan - buf;
4240 	hdr->len = htole16(buflen);
4241 
4242 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4243 	    hdr->nchan);
4244 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4245 	free(buf, M_DEVBUF);
4246 
4247 	if (error != 0)
4248 		goto fail;
4249 
4250 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4251 
4252 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4253 
4254 	return 0;
4255 
4256 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4257 
4258 	return error;
4259 }
4260 
4261 static int
4262 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4263 {
4264 	struct ieee80211com *ic = vap->iv_ic;
4265 	struct ieee80211_node *ni = vap->iv_bss;
4266 	struct ieee80211_channel *c = ni->ni_chan;
4267 	int error;
4268 
4269 	WPI_RXON_LOCK(sc);
4270 
4271 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4272 
4273 	/* Update adapter configuration. */
4274 	sc->rxon.associd = 0;
4275 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4276 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4277 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4278 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4279 	if (IEEE80211_IS_CHAN_2GHZ(c))
4280 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4281 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4282 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4283 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4284 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4285 	if (IEEE80211_IS_CHAN_A(c)) {
4286 		sc->rxon.cck_mask  = 0;
4287 		sc->rxon.ofdm_mask = 0x15;
4288 	} else if (IEEE80211_IS_CHAN_B(c)) {
4289 		sc->rxon.cck_mask  = 0x03;
4290 		sc->rxon.ofdm_mask = 0;
4291 	} else {
4292 		/* Assume 802.11b/g. */
4293 		sc->rxon.cck_mask  = 0x0f;
4294 		sc->rxon.ofdm_mask = 0x15;
4295 	}
4296 
4297 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4298 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4299 	    sc->rxon.ofdm_mask);
4300 
4301 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4302 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4303 		    __func__);
4304 	}
4305 
4306 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4307 
4308 	WPI_RXON_UNLOCK(sc);
4309 
4310 	return error;
4311 }
4312 
4313 static int
4314 wpi_config_beacon(struct wpi_vap *wvp)
4315 {
4316 	struct ieee80211vap *vap = &wvp->wv_vap;
4317 	struct ieee80211com *ic = vap->iv_ic;
4318 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4319 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4320 	struct wpi_softc *sc = ic->ic_softc;
4321 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4322 	struct ieee80211_tim_ie *tie;
4323 	struct mbuf *m;
4324 	uint8_t *ptr;
4325 	int error;
4326 
4327 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4328 
4329 	WPI_VAP_LOCK_ASSERT(wvp);
4330 
4331 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4332 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4333 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4334 
4335 	/* XXX seems to be unused */
4336 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4337 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4338 		ptr = mtod(bcn->m, uint8_t *);
4339 
4340 		cmd->tim = htole16(bo->bo_tim - ptr);
4341 		cmd->timsz = tie->tim_len;
4342 	}
4343 
4344 	/* Necessary for recursion in ieee80211_beacon_update(). */
4345 	m = bcn->m;
4346 	bcn->m = m_dup(m, M_NOWAIT);
4347 	if (bcn->m == NULL) {
4348 		device_printf(sc->sc_dev,
4349 		    "%s: could not copy beacon frame\n", __func__);
4350 		error = ENOMEM;
4351 		goto end;
4352 	}
4353 
4354 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4355 		device_printf(sc->sc_dev,
4356 		    "%s: could not update beacon frame, error %d", __func__,
4357 		    error);
4358 		m_freem(bcn->m);
4359 	}
4360 
4361 	/* Restore mbuf. */
4362 end:	bcn->m = m;
4363 
4364 	return error;
4365 }
4366 
4367 static int
4368 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4369 {
4370 	struct ieee80211vap *vap = ni->ni_vap;
4371 	struct wpi_vap *wvp = WPI_VAP(vap);
4372 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4373 	struct mbuf *m;
4374 	int error;
4375 
4376 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4377 
4378 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4379 		return EINVAL;
4380 
4381 	m = ieee80211_beacon_alloc(ni);
4382 	if (m == NULL) {
4383 		device_printf(sc->sc_dev,
4384 		    "%s: could not allocate beacon frame\n", __func__);
4385 		return ENOMEM;
4386 	}
4387 
4388 	WPI_VAP_LOCK(wvp);
4389 	if (bcn->m != NULL)
4390 		m_freem(bcn->m);
4391 
4392 	bcn->m = m;
4393 
4394 	error = wpi_config_beacon(wvp);
4395 	WPI_VAP_UNLOCK(wvp);
4396 
4397 	return error;
4398 }
4399 
4400 static void
4401 wpi_update_beacon(struct ieee80211vap *vap, int item)
4402 {
4403 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4404 	struct wpi_vap *wvp = WPI_VAP(vap);
4405 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4406 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4407 	struct ieee80211_node *ni = vap->iv_bss;
4408 	int mcast = 0;
4409 
4410 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4411 
4412 	WPI_VAP_LOCK(wvp);
4413 	if (bcn->m == NULL) {
4414 		bcn->m = ieee80211_beacon_alloc(ni);
4415 		if (bcn->m == NULL) {
4416 			device_printf(sc->sc_dev,
4417 			    "%s: could not allocate beacon frame\n", __func__);
4418 
4419 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4420 			    __func__);
4421 
4422 			WPI_VAP_UNLOCK(wvp);
4423 			return;
4424 		}
4425 	}
4426 	WPI_VAP_UNLOCK(wvp);
4427 
4428 	if (item == IEEE80211_BEACON_TIM)
4429 		mcast = 1;	/* TODO */
4430 
4431 	setbit(bo->bo_flags, item);
4432 	ieee80211_beacon_update(ni, bcn->m, mcast);
4433 
4434 	WPI_VAP_LOCK(wvp);
4435 	wpi_config_beacon(wvp);
4436 	WPI_VAP_UNLOCK(wvp);
4437 
4438 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4439 }
4440 
4441 static void
4442 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4443 {
4444 	struct ieee80211vap *vap = ni->ni_vap;
4445 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4446 	struct wpi_node *wn = WPI_NODE(ni);
4447 	int error;
4448 
4449 	WPI_NT_LOCK(sc);
4450 
4451 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4452 
4453 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4454 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4455 			device_printf(sc->sc_dev,
4456 			    "%s: could not add IBSS node, error %d\n",
4457 			    __func__, error);
4458 		}
4459 	}
4460 	WPI_NT_UNLOCK(sc);
4461 }
4462 
4463 static int
4464 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4465 {
4466 	struct ieee80211com *ic = vap->iv_ic;
4467 	struct ieee80211_node *ni = vap->iv_bss;
4468 	struct ieee80211_channel *c = ni->ni_chan;
4469 	int error;
4470 
4471 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4472 
4473 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4474 		/* Link LED blinks while monitoring. */
4475 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4476 		return 0;
4477 	}
4478 
4479 	/* XXX kernel panic workaround */
4480 	if (c == IEEE80211_CHAN_ANYC) {
4481 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4482 		    __func__);
4483 		return EINVAL;
4484 	}
4485 
4486 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4487 		device_printf(sc->sc_dev,
4488 		    "%s: could not set timing, error %d\n", __func__, error);
4489 		return error;
4490 	}
4491 
4492 	/* Update adapter configuration. */
4493 	WPI_RXON_LOCK(sc);
4494 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4495 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4496 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4497 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4498 	if (IEEE80211_IS_CHAN_2GHZ(c))
4499 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4500 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4501 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4502 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4503 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4504 	if (IEEE80211_IS_CHAN_A(c)) {
4505 		sc->rxon.cck_mask  = 0;
4506 		sc->rxon.ofdm_mask = 0x15;
4507 	} else if (IEEE80211_IS_CHAN_B(c)) {
4508 		sc->rxon.cck_mask  = 0x03;
4509 		sc->rxon.ofdm_mask = 0;
4510 	} else {
4511 		/* Assume 802.11b/g. */
4512 		sc->rxon.cck_mask  = 0x0f;
4513 		sc->rxon.ofdm_mask = 0x15;
4514 	}
4515 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4516 
4517 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4518 	    sc->rxon.chan, sc->rxon.flags);
4519 
4520 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4521 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4522 		    __func__);
4523 		return error;
4524 	}
4525 
4526 	/* Start periodic calibration timer. */
4527 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4528 
4529 	WPI_RXON_UNLOCK(sc);
4530 
4531 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4532 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4533 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4534 			device_printf(sc->sc_dev,
4535 			    "%s: could not setup beacon, error %d\n", __func__,
4536 			    error);
4537 			return error;
4538 		}
4539 	}
4540 
4541 	if (vap->iv_opmode == IEEE80211_M_STA) {
4542 		/* Add BSS node. */
4543 		WPI_NT_LOCK(sc);
4544 		error = wpi_add_sta_node(sc, ni);
4545 		WPI_NT_UNLOCK(sc);
4546 		if (error != 0) {
4547 			device_printf(sc->sc_dev,
4548 			    "%s: could not add BSS node, error %d\n", __func__,
4549 			    error);
4550 			return error;
4551 		}
4552 	}
4553 
4554 	/* Link LED always on while associated. */
4555 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4556 
4557 	/* Enable power-saving mode if requested by user. */
4558 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4559 	    vap->iv_opmode != IEEE80211_M_IBSS)
4560 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4561 
4562 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4563 
4564 	return 0;
4565 }
4566 
4567 static int
4568 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4569 {
4570 	const struct ieee80211_cipher *cip = k->wk_cipher;
4571 	struct ieee80211vap *vap = ni->ni_vap;
4572 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4573 	struct wpi_node *wn = WPI_NODE(ni);
4574 	struct wpi_node_info node;
4575 	uint16_t kflags;
4576 	int error;
4577 
4578 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4579 
4580 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4581 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4582 		    __func__);
4583 		return 0;
4584 	}
4585 
4586 	switch (cip->ic_cipher) {
4587 	case IEEE80211_CIPHER_AES_CCM:
4588 		kflags = WPI_KFLAG_CCMP;
4589 		break;
4590 
4591 	default:
4592 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4593 		    cip->ic_cipher);
4594 		return 0;
4595 	}
4596 
4597 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4598 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4599 		kflags |= WPI_KFLAG_MULTICAST;
4600 
4601 	memset(&node, 0, sizeof node);
4602 	node.id = wn->id;
4603 	node.control = WPI_NODE_UPDATE;
4604 	node.flags = WPI_FLAG_KEY_SET;
4605 	node.kflags = htole16(kflags);
4606 	memcpy(node.key, k->wk_key, k->wk_keylen);
4607 again:
4608 	DPRINTF(sc, WPI_DEBUG_KEY,
4609 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4610 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4611 	    node.id, ether_sprintf(ni->ni_macaddr));
4612 
4613 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4614 	if (error != 0) {
4615 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4616 		    error);
4617 		return !error;
4618 	}
4619 
4620 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4621 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4622 		kflags |= WPI_KFLAG_MULTICAST;
4623 		node.kflags = htole16(kflags);
4624 
4625 		goto again;
4626 	}
4627 
4628 	return 1;
4629 }
4630 
4631 static void
4632 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4633 {
4634 	const struct ieee80211_key *k = arg;
4635 	struct ieee80211vap *vap = ni->ni_vap;
4636 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4637 	struct wpi_node *wn = WPI_NODE(ni);
4638 	int error;
4639 
4640 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4641 		return;
4642 
4643 	WPI_NT_LOCK(sc);
4644 	error = wpi_load_key(ni, k);
4645 	WPI_NT_UNLOCK(sc);
4646 
4647 	if (error == 0) {
4648 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4649 		    __func__);
4650 	}
4651 }
4652 
4653 static int
4654 wpi_set_global_keys(struct ieee80211_node *ni)
4655 {
4656 	struct ieee80211vap *vap = ni->ni_vap;
4657 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4658 	int error = 1;
4659 
4660 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4661 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4662 			error = wpi_load_key(ni, wk);
4663 
4664 	return !error;
4665 }
4666 
4667 static int
4668 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4669 {
4670 	struct ieee80211vap *vap = ni->ni_vap;
4671 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4672 	struct wpi_node *wn = WPI_NODE(ni);
4673 	struct wpi_node_info node;
4674 	uint16_t kflags;
4675 	int error;
4676 
4677 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4678 
4679 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4680 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4681 		return 1;	/* Nothing to do. */
4682 	}
4683 
4684 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4685 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4686 		kflags |= WPI_KFLAG_MULTICAST;
4687 
4688 	memset(&node, 0, sizeof node);
4689 	node.id = wn->id;
4690 	node.control = WPI_NODE_UPDATE;
4691 	node.flags = WPI_FLAG_KEY_SET;
4692 	node.kflags = htole16(kflags);
4693 again:
4694 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4695 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4696 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4697 
4698 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4699 	if (error != 0) {
4700 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4701 		    error);
4702 		return !error;
4703 	}
4704 
4705 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4706 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4707 		kflags |= WPI_KFLAG_MULTICAST;
4708 		node.kflags = htole16(kflags);
4709 
4710 		goto again;
4711 	}
4712 
4713 	return 1;
4714 }
4715 
4716 static void
4717 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4718 {
4719 	const struct ieee80211_key *k = arg;
4720 	struct ieee80211vap *vap = ni->ni_vap;
4721 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4722 	struct wpi_node *wn = WPI_NODE(ni);
4723 	int error;
4724 
4725 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4726 		return;
4727 
4728 	WPI_NT_LOCK(sc);
4729 	error = wpi_del_key(ni, k);
4730 	WPI_NT_UNLOCK(sc);
4731 
4732 	if (error == 0) {
4733 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4734 		    __func__);
4735 	}
4736 }
4737 
4738 static int
4739 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4740     int set)
4741 {
4742 	struct ieee80211com *ic = vap->iv_ic;
4743 	struct wpi_softc *sc = ic->ic_softc;
4744 	struct wpi_vap *wvp = WPI_VAP(vap);
4745 	struct ieee80211_node *ni;
4746 	int error, ni_ref = 0;
4747 
4748 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4749 
4750 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4751 		/* Not for us. */
4752 		return 1;
4753 	}
4754 
4755 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4756 		/* XMIT keys are handled in wpi_tx_data(). */
4757 		return 1;
4758 	}
4759 
4760 	/* Handle group keys. */
4761 	if (&vap->iv_nw_keys[0] <= k &&
4762 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4763 		WPI_NT_LOCK(sc);
4764 		if (set)
4765 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4766 		else
4767 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4768 		WPI_NT_UNLOCK(sc);
4769 
4770 		if (vap->iv_state == IEEE80211_S_RUN) {
4771 			ieee80211_iterate_nodes(&ic->ic_sta,
4772 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4773 			    __DECONST(void *, k));
4774 		}
4775 
4776 		return 1;
4777 	}
4778 
4779 	switch (vap->iv_opmode) {
4780 	case IEEE80211_M_STA:
4781 		ni = vap->iv_bss;
4782 		break;
4783 
4784 	case IEEE80211_M_IBSS:
4785 	case IEEE80211_M_AHDEMO:
4786 	case IEEE80211_M_HOSTAP:
4787 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4788 		if (ni == NULL)
4789 			return 0;	/* should not happen */
4790 
4791 		ni_ref = 1;
4792 		break;
4793 
4794 	default:
4795 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4796 		    vap->iv_opmode);
4797 		return 0;
4798 	}
4799 
4800 	WPI_NT_LOCK(sc);
4801 	if (set)
4802 		error = wpi_load_key(ni, k);
4803 	else
4804 		error = wpi_del_key(ni, k);
4805 	WPI_NT_UNLOCK(sc);
4806 
4807 	if (ni_ref)
4808 		ieee80211_node_decref(ni);
4809 
4810 	return error;
4811 }
4812 
4813 static int
4814 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4815 {
4816 	return wpi_process_key(vap, k, 1);
4817 }
4818 
4819 static int
4820 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4821 {
4822 	return wpi_process_key(vap, k, 0);
4823 }
4824 
4825 /*
4826  * This function is called after the runtime firmware notifies us of its
4827  * readiness (called in a process context).
4828  */
4829 static int
4830 wpi_post_alive(struct wpi_softc *sc)
4831 {
4832 	int ntries, error;
4833 
4834 	/* Check (again) that the radio is not disabled. */
4835 	if ((error = wpi_nic_lock(sc)) != 0)
4836 		return error;
4837 
4838 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4839 
4840 	/* NB: Runtime firmware must be up and running. */
4841 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4842 		device_printf(sc->sc_dev,
4843 		    "RF switch: radio disabled (%s)\n", __func__);
4844 		wpi_nic_unlock(sc);
4845 		return EPERM;   /* :-) */
4846 	}
4847 	wpi_nic_unlock(sc);
4848 
4849 	/* Wait for thermal sensor to calibrate. */
4850 	for (ntries = 0; ntries < 1000; ntries++) {
4851 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4852 			break;
4853 		DELAY(10);
4854 	}
4855 
4856 	if (ntries == 1000) {
4857 		device_printf(sc->sc_dev,
4858 		    "timeout waiting for thermal sensor calibration\n");
4859 		return ETIMEDOUT;
4860 	}
4861 
4862 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4863 	return 0;
4864 }
4865 
4866 /*
4867  * The firmware boot code is small and is intended to be copied directly into
4868  * the NIC internal memory (no DMA transfer).
4869  */
4870 static int
4871 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
4872 {
4873 	int error, ntries;
4874 
4875 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4876 
4877 	size /= sizeof (uint32_t);
4878 
4879 	if ((error = wpi_nic_lock(sc)) != 0)
4880 		return error;
4881 
4882 	/* Copy microcode image into NIC memory. */
4883 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4884 	    (const uint32_t *)ucode, size);
4885 
4886 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4887 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4888 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4889 
4890 	/* Start boot load now. */
4891 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4892 
4893 	/* Wait for transfer to complete. */
4894 	for (ntries = 0; ntries < 1000; ntries++) {
4895 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4896 		DPRINTF(sc, WPI_DEBUG_HW,
4897 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4898 		    WPI_FH_TX_STATUS_IDLE(6),
4899 		    status & WPI_FH_TX_STATUS_IDLE(6));
4900 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4901 			DPRINTF(sc, WPI_DEBUG_HW,
4902 			    "Status Match! - ntries = %d\n", ntries);
4903 			break;
4904 		}
4905 		DELAY(10);
4906 	}
4907 	if (ntries == 1000) {
4908 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4909 		    __func__);
4910 		wpi_nic_unlock(sc);
4911 		return ETIMEDOUT;
4912 	}
4913 
4914 	/* Enable boot after power up. */
4915 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4916 
4917 	wpi_nic_unlock(sc);
4918 	return 0;
4919 }
4920 
4921 static int
4922 wpi_load_firmware(struct wpi_softc *sc)
4923 {
4924 	struct wpi_fw_info *fw = &sc->fw;
4925 	struct wpi_dma_info *dma = &sc->fw_dma;
4926 	int error;
4927 
4928 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4929 
4930 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4931 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4932 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4933 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4934 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4935 
4936 	/* Tell adapter where to find initialization sections. */
4937 	if ((error = wpi_nic_lock(sc)) != 0)
4938 		return error;
4939 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4940 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4941 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4942 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4943 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4944 	wpi_nic_unlock(sc);
4945 
4946 	/* Load firmware boot code. */
4947 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4948 	if (error != 0) {
4949 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4950 		    __func__);
4951 		return error;
4952 	}
4953 
4954 	/* Now press "execute". */
4955 	WPI_WRITE(sc, WPI_RESET, 0);
4956 
4957 	/* Wait at most one second for first alive notification. */
4958 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4959 		device_printf(sc->sc_dev,
4960 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4961 		    __func__, error);
4962 		return error;
4963 	}
4964 
4965 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4966 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4967 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4968 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4969 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4970 
4971 	/* Tell adapter where to find runtime sections. */
4972 	if ((error = wpi_nic_lock(sc)) != 0)
4973 		return error;
4974 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4975 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4976 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4977 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4978 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4979 	    WPI_FW_UPDATED | fw->main.textsz);
4980 	wpi_nic_unlock(sc);
4981 
4982 	return 0;
4983 }
4984 
4985 static int
4986 wpi_read_firmware(struct wpi_softc *sc)
4987 {
4988 	const struct firmware *fp;
4989 	struct wpi_fw_info *fw = &sc->fw;
4990 	const struct wpi_firmware_hdr *hdr;
4991 	int error;
4992 
4993 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4994 
4995 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4996 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4997 
4998 	WPI_UNLOCK(sc);
4999 	fp = firmware_get(WPI_FW_NAME);
5000 	WPI_LOCK(sc);
5001 
5002 	if (fp == NULL) {
5003 		device_printf(sc->sc_dev,
5004 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5005 		return EINVAL;
5006 	}
5007 
5008 	sc->fw_fp = fp;
5009 
5010 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5011 		device_printf(sc->sc_dev,
5012 		    "firmware file too short: %zu bytes\n", fp->datasize);
5013 		error = EINVAL;
5014 		goto fail;
5015 	}
5016 
5017 	fw->size = fp->datasize;
5018 	fw->data = (const uint8_t *)fp->data;
5019 
5020 	/* Extract firmware header information. */
5021 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5022 
5023 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5024 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5025 
5026 	fw->main.textsz = le32toh(hdr->rtextsz);
5027 	fw->main.datasz = le32toh(hdr->rdatasz);
5028 	fw->init.textsz = le32toh(hdr->itextsz);
5029 	fw->init.datasz = le32toh(hdr->idatasz);
5030 	fw->boot.textsz = le32toh(hdr->btextsz);
5031 	fw->boot.datasz = 0;
5032 
5033 	/* Sanity-check firmware header. */
5034 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5035 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5036 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5037 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5038 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5039 	    (fw->boot.textsz & 3) != 0) {
5040 		device_printf(sc->sc_dev, "invalid firmware header\n");
5041 		error = EINVAL;
5042 		goto fail;
5043 	}
5044 
5045 	/* Check that all firmware sections fit. */
5046 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5047 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5048 		device_printf(sc->sc_dev,
5049 		    "firmware file too short: %zu bytes\n", fw->size);
5050 		error = EINVAL;
5051 		goto fail;
5052 	}
5053 
5054 	/* Get pointers to firmware sections. */
5055 	fw->main.text = (const uint8_t *)(hdr + 1);
5056 	fw->main.data = fw->main.text + fw->main.textsz;
5057 	fw->init.text = fw->main.data + fw->main.datasz;
5058 	fw->init.data = fw->init.text + fw->init.textsz;
5059 	fw->boot.text = fw->init.data + fw->init.datasz;
5060 
5061 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5062 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5063 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5064 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5065 	    fw->main.textsz, fw->main.datasz,
5066 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5067 
5068 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5069 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5070 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5071 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5072 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5073 
5074 	return 0;
5075 
5076 fail:	wpi_unload_firmware(sc);
5077 	return error;
5078 }
5079 
5080 /**
5081  * Free the referenced firmware image
5082  */
5083 static void
5084 wpi_unload_firmware(struct wpi_softc *sc)
5085 {
5086 	if (sc->fw_fp != NULL) {
5087 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5088 		sc->fw_fp = NULL;
5089 	}
5090 }
5091 
5092 static int
5093 wpi_clock_wait(struct wpi_softc *sc)
5094 {
5095 	int ntries;
5096 
5097 	/* Set "initialization complete" bit. */
5098 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5099 
5100 	/* Wait for clock stabilization. */
5101 	for (ntries = 0; ntries < 2500; ntries++) {
5102 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5103 			return 0;
5104 		DELAY(100);
5105 	}
5106 	device_printf(sc->sc_dev,
5107 	    "%s: timeout waiting for clock stabilization\n", __func__);
5108 
5109 	return ETIMEDOUT;
5110 }
5111 
5112 static int
5113 wpi_apm_init(struct wpi_softc *sc)
5114 {
5115 	uint32_t reg;
5116 	int error;
5117 
5118 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5119 
5120 	/* Disable L0s exit timer (NMI bug workaround). */
5121 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5122 	/* Don't wait for ICH L0s (ICH bug workaround). */
5123 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5124 
5125 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5126 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5127 
5128 	/* Retrieve PCIe Active State Power Management (ASPM). */
5129 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5130 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5131 	if (reg & 0x02)	/* L1 Entry enabled. */
5132 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5133 	else
5134 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5135 
5136 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5137 
5138 	/* Wait for clock stabilization before accessing prph. */
5139 	if ((error = wpi_clock_wait(sc)) != 0)
5140 		return error;
5141 
5142 	if ((error = wpi_nic_lock(sc)) != 0)
5143 		return error;
5144 	/* Cleanup. */
5145 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5146 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5147 
5148 	/* Enable DMA and BSM (Bootstrap State Machine). */
5149 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5150 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5151 	DELAY(20);
5152 	/* Disable L1-Active. */
5153 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5154 	wpi_nic_unlock(sc);
5155 
5156 	return 0;
5157 }
5158 
5159 static void
5160 wpi_apm_stop_master(struct wpi_softc *sc)
5161 {
5162 	int ntries;
5163 
5164 	/* Stop busmaster DMA activity. */
5165 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5166 
5167 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5168 	    WPI_GP_CNTRL_MAC_PS)
5169 		return; /* Already asleep. */
5170 
5171 	for (ntries = 0; ntries < 100; ntries++) {
5172 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5173 			return;
5174 		DELAY(10);
5175 	}
5176 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5177 	    __func__);
5178 }
5179 
5180 static void
5181 wpi_apm_stop(struct wpi_softc *sc)
5182 {
5183 	wpi_apm_stop_master(sc);
5184 
5185 	/* Reset the entire device. */
5186 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5187 	DELAY(10);
5188 	/* Clear "initialization complete" bit. */
5189 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5190 }
5191 
5192 static void
5193 wpi_nic_config(struct wpi_softc *sc)
5194 {
5195 	uint32_t rev;
5196 
5197 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5198 
5199 	/* voodoo from the Linux "driver".. */
5200 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5201 	if ((rev & 0xc0) == 0x40)
5202 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5203 	else if (!(rev & 0x80))
5204 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5205 
5206 	if (sc->cap == 0x80)
5207 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5208 
5209 	if ((sc->rev & 0xf0) == 0xd0)
5210 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5211 	else
5212 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5213 
5214 	if (sc->type > 1)
5215 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5216 }
5217 
5218 static int
5219 wpi_hw_init(struct wpi_softc *sc)
5220 {
5221 	uint8_t chnl;
5222 	int ntries, error;
5223 
5224 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5225 
5226 	/* Clear pending interrupts. */
5227 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5228 
5229 	if ((error = wpi_apm_init(sc)) != 0) {
5230 		device_printf(sc->sc_dev,
5231 		    "%s: could not power ON adapter, error %d\n", __func__,
5232 		    error);
5233 		return error;
5234 	}
5235 
5236 	/* Select VMAIN power source. */
5237 	if ((error = wpi_nic_lock(sc)) != 0)
5238 		return error;
5239 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5240 	wpi_nic_unlock(sc);
5241 	/* Spin until VMAIN gets selected. */
5242 	for (ntries = 0; ntries < 5000; ntries++) {
5243 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5244 			break;
5245 		DELAY(10);
5246 	}
5247 	if (ntries == 5000) {
5248 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5249 		return ETIMEDOUT;
5250 	}
5251 
5252 	/* Perform adapter initialization. */
5253 	wpi_nic_config(sc);
5254 
5255 	/* Initialize RX ring. */
5256 	if ((error = wpi_nic_lock(sc)) != 0)
5257 		return error;
5258 	/* Set physical address of RX ring. */
5259 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5260 	/* Set physical address of RX read pointer. */
5261 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5262 	    offsetof(struct wpi_shared, next));
5263 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5264 	/* Enable RX. */
5265 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5266 	    WPI_FH_RX_CONFIG_DMA_ENA |
5267 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5268 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5269 	    WPI_FH_RX_CONFIG_MAXFRAG |
5270 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5271 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5272 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5273 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5274 	wpi_nic_unlock(sc);
5275 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5276 
5277 	/* Initialize TX rings. */
5278 	if ((error = wpi_nic_lock(sc)) != 0)
5279 		return error;
5280 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5281 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5282 	/* Enable all 6 TX rings. */
5283 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5284 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5285 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5286 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5287 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5288 	/* Set physical address of TX rings. */
5289 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5290 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5291 
5292 	/* Enable all DMA channels. */
5293 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5294 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5295 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5296 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5297 	}
5298 	wpi_nic_unlock(sc);
5299 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5300 
5301 	/* Clear "radio off" and "commands blocked" bits. */
5302 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5303 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5304 
5305 	/* Clear pending interrupts. */
5306 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5307 	/* Enable interrupts. */
5308 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5309 
5310 	/* _Really_ make sure "radio off" bit is cleared! */
5311 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5312 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5313 
5314 	if ((error = wpi_load_firmware(sc)) != 0) {
5315 		device_printf(sc->sc_dev,
5316 		    "%s: could not load firmware, error %d\n", __func__,
5317 		    error);
5318 		return error;
5319 	}
5320 	/* Wait at most one second for firmware alive notification. */
5321 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5322 		device_printf(sc->sc_dev,
5323 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5324 		    __func__, error);
5325 		return error;
5326 	}
5327 
5328 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5329 
5330 	/* Do post-firmware initialization. */
5331 	return wpi_post_alive(sc);
5332 }
5333 
5334 static void
5335 wpi_hw_stop(struct wpi_softc *sc)
5336 {
5337 	uint8_t chnl, qid;
5338 	int ntries;
5339 
5340 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5341 
5342 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5343 		wpi_nic_lock(sc);
5344 
5345 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5346 
5347 	/* Disable interrupts. */
5348 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5349 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5350 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5351 
5352 	/* Make sure we no longer hold the NIC lock. */
5353 	wpi_nic_unlock(sc);
5354 
5355 	if (wpi_nic_lock(sc) == 0) {
5356 		/* Stop TX scheduler. */
5357 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5358 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5359 
5360 		/* Stop all DMA channels. */
5361 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5362 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5363 			for (ntries = 0; ntries < 200; ntries++) {
5364 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5365 				    WPI_FH_TX_STATUS_IDLE(chnl))
5366 					break;
5367 				DELAY(10);
5368 			}
5369 		}
5370 		wpi_nic_unlock(sc);
5371 	}
5372 
5373 	/* Stop RX ring. */
5374 	wpi_reset_rx_ring(sc);
5375 
5376 	/* Reset all TX rings. */
5377 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
5378 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5379 
5380 	if (wpi_nic_lock(sc) == 0) {
5381 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5382 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5383 		wpi_nic_unlock(sc);
5384 	}
5385 	DELAY(5);
5386 	/* Power OFF adapter. */
5387 	wpi_apm_stop(sc);
5388 }
5389 
5390 static void
5391 wpi_radio_on(void *arg0, int pending)
5392 {
5393 	struct wpi_softc *sc = arg0;
5394 	struct ieee80211com *ic = &sc->sc_ic;
5395 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5396 
5397 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5398 
5399 	WPI_LOCK(sc);
5400 	callout_stop(&sc->watchdog_rfkill);
5401 	WPI_UNLOCK(sc);
5402 
5403 	if (vap != NULL)
5404 		ieee80211_init(vap);
5405 }
5406 
5407 static void
5408 wpi_radio_off(void *arg0, int pending)
5409 {
5410 	struct wpi_softc *sc = arg0;
5411 	struct ieee80211com *ic = &sc->sc_ic;
5412 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5413 
5414 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5415 
5416 	ieee80211_notify_radio(ic, 0);
5417 	wpi_stop(sc);
5418 	if (vap != NULL)
5419 		ieee80211_stop(vap);
5420 
5421 	WPI_LOCK(sc);
5422 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5423 	WPI_UNLOCK(sc);
5424 }
5425 
5426 static int
5427 wpi_init(struct wpi_softc *sc)
5428 {
5429 	int error = 0;
5430 
5431 	WPI_LOCK(sc);
5432 
5433 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5434 
5435 	if (sc->sc_running != 0)
5436 		goto end;
5437 
5438 	/* Check that the radio is not disabled by hardware switch. */
5439 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5440 		device_printf(sc->sc_dev,
5441 		    "RF switch: radio disabled (%s)\n", __func__);
5442 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5443 		    sc);
5444 		error = EINPROGRESS;
5445 		goto end;
5446 	}
5447 
5448 	/* Read firmware images from the filesystem. */
5449 	if ((error = wpi_read_firmware(sc)) != 0) {
5450 		device_printf(sc->sc_dev,
5451 		    "%s: could not read firmware, error %d\n", __func__,
5452 		    error);
5453 		goto end;
5454 	}
5455 
5456 	sc->sc_running = 1;
5457 
5458 	/* Initialize hardware and upload firmware. */
5459 	error = wpi_hw_init(sc);
5460 	wpi_unload_firmware(sc);
5461 	if (error != 0) {
5462 		device_printf(sc->sc_dev,
5463 		    "%s: could not initialize hardware, error %d\n", __func__,
5464 		    error);
5465 		goto fail;
5466 	}
5467 
5468 	/* Configure adapter now that it is ready. */
5469 	if ((error = wpi_config(sc)) != 0) {
5470 		device_printf(sc->sc_dev,
5471 		    "%s: could not configure device, error %d\n", __func__,
5472 		    error);
5473 		goto fail;
5474 	}
5475 
5476 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5477 
5478 	WPI_UNLOCK(sc);
5479 
5480 	return 0;
5481 
5482 fail:	wpi_stop_locked(sc);
5483 
5484 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5485 	WPI_UNLOCK(sc);
5486 
5487 	return error;
5488 }
5489 
5490 static void
5491 wpi_stop_locked(struct wpi_softc *sc)
5492 {
5493 
5494 	WPI_LOCK_ASSERT(sc);
5495 
5496 	if (sc->sc_running == 0)
5497 		return;
5498 
5499 	WPI_TX_LOCK(sc);
5500 	WPI_TXQ_LOCK(sc);
5501 	sc->sc_running = 0;
5502 	WPI_TXQ_UNLOCK(sc);
5503 	WPI_TX_UNLOCK(sc);
5504 
5505 	WPI_TXQ_STATE_LOCK(sc);
5506 	callout_stop(&sc->tx_timeout);
5507 	WPI_TXQ_STATE_UNLOCK(sc);
5508 
5509 	WPI_RXON_LOCK(sc);
5510 	callout_stop(&sc->scan_timeout);
5511 	callout_stop(&sc->calib_to);
5512 	WPI_RXON_UNLOCK(sc);
5513 
5514 	/* Power OFF hardware. */
5515 	wpi_hw_stop(sc);
5516 }
5517 
5518 static void
5519 wpi_stop(struct wpi_softc *sc)
5520 {
5521 	WPI_LOCK(sc);
5522 	wpi_stop_locked(sc);
5523 	WPI_UNLOCK(sc);
5524 }
5525 
5526 /*
5527  * Callback from net80211 to start a scan.
5528  */
5529 static void
5530 wpi_scan_start(struct ieee80211com *ic)
5531 {
5532 	struct wpi_softc *sc = ic->ic_softc;
5533 
5534 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5535 }
5536 
5537 /*
5538  * Callback from net80211 to terminate a scan.
5539  */
5540 static void
5541 wpi_scan_end(struct ieee80211com *ic)
5542 {
5543 	struct wpi_softc *sc = ic->ic_softc;
5544 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5545 
5546 	if (vap->iv_state == IEEE80211_S_RUN)
5547 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5548 }
5549 
5550 /**
5551  * Called by the net80211 framework to indicate to the driver
5552  * that the channel should be changed
5553  */
5554 static void
5555 wpi_set_channel(struct ieee80211com *ic)
5556 {
5557 	const struct ieee80211_channel *c = ic->ic_curchan;
5558 	struct wpi_softc *sc = ic->ic_softc;
5559 	int error;
5560 
5561 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5562 
5563 	WPI_LOCK(sc);
5564 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5565 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5566 	WPI_UNLOCK(sc);
5567 	WPI_TX_LOCK(sc);
5568 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5569 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5570 	WPI_TX_UNLOCK(sc);
5571 
5572 	/*
5573 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5574 	 * are already taken care of by their respective firmware commands.
5575 	 */
5576 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5577 		WPI_RXON_LOCK(sc);
5578 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5579 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5580 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5581 			    WPI_RXON_24GHZ);
5582 		} else {
5583 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5584 			    WPI_RXON_24GHZ);
5585 		}
5586 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5587 			device_printf(sc->sc_dev,
5588 			    "%s: error %d setting channel\n", __func__,
5589 			    error);
5590 		WPI_RXON_UNLOCK(sc);
5591 	}
5592 }
5593 
5594 /**
5595  * Called by net80211 to indicate that we need to scan the current
5596  * channel. The channel is previously be set via the wpi_set_channel
5597  * callback.
5598  */
5599 static void
5600 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5601 {
5602 	struct ieee80211vap *vap = ss->ss_vap;
5603 	struct ieee80211com *ic = vap->iv_ic;
5604 	struct wpi_softc *sc = ic->ic_softc;
5605 	int error;
5606 
5607 	WPI_RXON_LOCK(sc);
5608 	error = wpi_scan(sc, ic->ic_curchan);
5609 	WPI_RXON_UNLOCK(sc);
5610 	if (error != 0)
5611 		ieee80211_cancel_scan(vap);
5612 }
5613 
5614 /**
5615  * Called by the net80211 framework to indicate
5616  * the minimum dwell time has been met, terminate the scan.
5617  * We don't actually terminate the scan as the firmware will notify
5618  * us when it's finished and we have no way to interrupt it.
5619  */
5620 static void
5621 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5622 {
5623 	/* NB: don't try to abort scan; wait for firmware to finish */
5624 }
5625 
5626 static void
5627 wpi_hw_reset(void *arg, int pending)
5628 {
5629 	struct wpi_softc *sc = arg;
5630 	struct ieee80211com *ic = &sc->sc_ic;
5631 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5632 
5633 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5634 
5635 	ieee80211_notify_radio(ic, 0);
5636 	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5637 		ieee80211_cancel_scan(vap);
5638 
5639 	wpi_stop(sc);
5640 	if (vap != NULL) {
5641 		ieee80211_stop(vap);
5642 		ieee80211_init(vap);
5643 	}
5644 }
5645