xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 84eacaf728a102612d83861d73c3aaa353ca3dc2)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_done) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include "opt_wlan.h"
62 #include "opt_wpi.h"
63 
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79 
80 #include <machine/bus.h>
81 #include <machine/resource.h>
82 #include <sys/rman.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 
87 #include <net/bpf.h>
88 #include <net/if.h>
89 #include <net/if_var.h>
90 #include <net/if_arp.h>
91 #include <net/ethernet.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_types.h>
95 
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/if_ether.h>
100 #include <netinet/ip.h>
101 
102 #include <net80211/ieee80211_var.h>
103 #include <net80211/ieee80211_radiotap.h>
104 #include <net80211/ieee80211_regdomain.h>
105 #include <net80211/ieee80211_ratectl.h>
106 
107 #include <dev/wpi/if_wpireg.h>
108 #include <dev/wpi/if_wpivar.h>
109 #include <dev/wpi/if_wpi_debug.h>
110 
111 struct wpi_ident {
112 	uint16_t	vendor;
113 	uint16_t	device;
114 	uint16_t	subdevice;
115 	const char	*name;
116 };
117 
118 static const struct wpi_ident wpi_ident_table[] = {
119 	/* The below entries support ABG regardless of the subid */
120 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
122 	/* The below entries only support BG */
123 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
127 	{ 0, 0, 0, NULL }
128 };
129 
130 static int	wpi_probe(device_t);
131 static int	wpi_attach(device_t);
132 static void	wpi_radiotap_attach(struct wpi_softc *);
133 static void	wpi_sysctlattach(struct wpi_softc *);
134 static void	wpi_init_beacon(struct wpi_vap *);
135 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
136 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
137 		    const uint8_t [IEEE80211_ADDR_LEN],
138 		    const uint8_t [IEEE80211_ADDR_LEN]);
139 static void	wpi_vap_delete(struct ieee80211vap *);
140 static int	wpi_detach(device_t);
141 static int	wpi_shutdown(device_t);
142 static int	wpi_suspend(device_t);
143 static int	wpi_resume(device_t);
144 static int	wpi_nic_lock(struct wpi_softc *);
145 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
146 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
147 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
148 		    void **, bus_size_t, bus_size_t);
149 static void	wpi_dma_contig_free(struct wpi_dma_info *);
150 static int	wpi_alloc_shared(struct wpi_softc *);
151 static void	wpi_free_shared(struct wpi_softc *);
152 static int	wpi_alloc_fwmem(struct wpi_softc *);
153 static void	wpi_free_fwmem(struct wpi_softc *);
154 static int	wpi_alloc_rx_ring(struct wpi_softc *);
155 static void	wpi_update_rx_ring(struct wpi_softc *);
156 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
157 static void	wpi_reset_rx_ring(struct wpi_softc *);
158 static void	wpi_free_rx_ring(struct wpi_softc *);
159 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
160 		    uint8_t);
161 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
162 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
163 		    struct wpi_tx_ring *);
164 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
166 static int	wpi_read_eeprom(struct wpi_softc *,
167 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
168 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
169 static void	wpi_read_eeprom_band(struct wpi_softc *, uint8_t);
170 static int	wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
171 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
172 		    struct ieee80211_channel *);
173 static int	wpi_setregdomain(struct ieee80211com *,
174 		    struct ieee80211_regdomain *, int,
175 		    struct ieee80211_channel[]);
176 static int	wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
177 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
178 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
179 static void	wpi_node_free(struct ieee80211_node *);
180 static void	wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
181 		    const struct ieee80211_rx_stats *,
182 		    int, int);
183 static void	wpi_restore_node(void *, struct ieee80211_node *);
184 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
185 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
186 static void	wpi_calib_timeout(void *);
187 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
188 		    struct wpi_rx_data *);
189 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
190 		    struct wpi_rx_data *);
191 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
192 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
193 static void	wpi_notif_intr(struct wpi_softc *);
194 static void	wpi_wakeup_intr(struct wpi_softc *);
195 #ifdef WPI_DEBUG
196 static void	wpi_debug_registers(struct wpi_softc *);
197 #endif
198 static void	wpi_fatal_intr(struct wpi_softc *);
199 static void	wpi_intr(void *);
200 static void	wpi_free_txfrags(struct wpi_softc *, uint16_t);
201 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
202 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
203 		    struct ieee80211_node *);
204 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
205 		    struct ieee80211_node *,
206 		    const struct ieee80211_bpf_params *);
207 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208 		    const struct ieee80211_bpf_params *);
209 static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
210 static void	wpi_watchdog_rfkill(void *);
211 static void	wpi_scan_timeout(void *);
212 static void	wpi_tx_timeout(void *);
213 static void	wpi_parent(struct ieee80211com *);
214 static int	wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
215 		    int);
216 static int	wpi_mrr_setup(struct wpi_softc *);
217 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
218 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
219 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
220 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
221 static int	wpi_updateedca(struct ieee80211com *);
222 static void	wpi_set_promisc(struct wpi_softc *);
223 static void	wpi_update_promisc(struct ieee80211com *);
224 static void	wpi_update_mcast(struct ieee80211com *);
225 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
226 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
227 static void	wpi_power_calibration(struct wpi_softc *);
228 static int	wpi_set_txpower(struct wpi_softc *, int);
229 static int	wpi_get_power_index(struct wpi_softc *,
230 		    struct wpi_power_group *, uint8_t, int, int);
231 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
232 static int	wpi_send_btcoex(struct wpi_softc *);
233 static int	wpi_send_rxon(struct wpi_softc *, int, int);
234 static int	wpi_config(struct wpi_softc *);
235 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
236 		    struct ieee80211_channel *, uint8_t);
237 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
238 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
239 		    struct ieee80211_channel *);
240 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
241 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
242 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
243 static int	wpi_config_beacon(struct wpi_vap *);
244 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
245 static void	wpi_update_beacon(struct ieee80211vap *, int);
246 static void	wpi_newassoc(struct ieee80211_node *, int);
247 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
248 static int	wpi_load_key(struct ieee80211_node *,
249 		    const struct ieee80211_key *);
250 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
251 static int	wpi_set_global_keys(struct ieee80211_node *);
252 static int	wpi_del_key(struct ieee80211_node *,
253 		    const struct ieee80211_key *);
254 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
255 static int	wpi_process_key(struct ieee80211vap *,
256 		    const struct ieee80211_key *, int);
257 static int	wpi_key_set(struct ieee80211vap *,
258 		    const struct ieee80211_key *);
259 static int	wpi_key_delete(struct ieee80211vap *,
260 		    const struct ieee80211_key *);
261 static int	wpi_post_alive(struct wpi_softc *);
262 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
263 		    uint32_t);
264 static int	wpi_load_firmware(struct wpi_softc *);
265 static int	wpi_read_firmware(struct wpi_softc *);
266 static void	wpi_unload_firmware(struct wpi_softc *);
267 static int	wpi_clock_wait(struct wpi_softc *);
268 static int	wpi_apm_init(struct wpi_softc *);
269 static void	wpi_apm_stop_master(struct wpi_softc *);
270 static void	wpi_apm_stop(struct wpi_softc *);
271 static void	wpi_nic_config(struct wpi_softc *);
272 static int	wpi_hw_init(struct wpi_softc *);
273 static void	wpi_hw_stop(struct wpi_softc *);
274 static void	wpi_radio_on(void *, int);
275 static void	wpi_radio_off(void *, int);
276 static int	wpi_init(struct wpi_softc *);
277 static void	wpi_stop_locked(struct wpi_softc *);
278 static void	wpi_stop(struct wpi_softc *);
279 static void	wpi_scan_start(struct ieee80211com *);
280 static void	wpi_scan_end(struct ieee80211com *);
281 static void	wpi_set_channel(struct ieee80211com *);
282 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
283 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
284 static void	wpi_hw_reset(void *, int);
285 
286 static device_method_t wpi_methods[] = {
287 	/* Device interface */
288 	DEVMETHOD(device_probe,		wpi_probe),
289 	DEVMETHOD(device_attach,	wpi_attach),
290 	DEVMETHOD(device_detach,	wpi_detach),
291 	DEVMETHOD(device_shutdown,	wpi_shutdown),
292 	DEVMETHOD(device_suspend,	wpi_suspend),
293 	DEVMETHOD(device_resume,	wpi_resume),
294 
295 	DEVMETHOD_END
296 };
297 
298 static driver_t wpi_driver = {
299 	"wpi",
300 	wpi_methods,
301 	sizeof (struct wpi_softc)
302 };
303 static devclass_t wpi_devclass;
304 
305 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
306 
307 MODULE_VERSION(wpi, 1);
308 
309 MODULE_DEPEND(wpi, pci,  1, 1, 1);
310 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
311 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
312 
313 static int
314 wpi_probe(device_t dev)
315 {
316 	const struct wpi_ident *ident;
317 
318 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
319 		if (pci_get_vendor(dev) == ident->vendor &&
320 		    pci_get_device(dev) == ident->device) {
321 			device_set_desc(dev, ident->name);
322 			return (BUS_PROBE_DEFAULT);
323 		}
324 	}
325 	return ENXIO;
326 }
327 
328 static int
329 wpi_attach(device_t dev)
330 {
331 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
332 	struct ieee80211com *ic;
333 	uint8_t i;
334 	int error, rid;
335 #ifdef WPI_DEBUG
336 	int supportsa = 1;
337 	const struct wpi_ident *ident;
338 #endif
339 
340 	sc->sc_dev = dev;
341 
342 #ifdef WPI_DEBUG
343 	error = resource_int_value(device_get_name(sc->sc_dev),
344 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
345 	if (error != 0)
346 		sc->sc_debug = 0;
347 #else
348 	sc->sc_debug = 0;
349 #endif
350 
351 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
352 
353 	/*
354 	 * Get the offset of the PCI Express Capability Structure in PCI
355 	 * Configuration Space.
356 	 */
357 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
358 	if (error != 0) {
359 		device_printf(dev, "PCIe capability structure not found!\n");
360 		return error;
361 	}
362 
363 	/*
364 	 * Some card's only support 802.11b/g not a, check to see if
365 	 * this is one such card. A 0x0 in the subdevice table indicates
366 	 * the entire subdevice range is to be ignored.
367 	 */
368 #ifdef WPI_DEBUG
369 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
370 		if (ident->subdevice &&
371 		    pci_get_subdevice(dev) == ident->subdevice) {
372 		    supportsa = 0;
373 		    break;
374 		}
375 	}
376 #endif
377 
378 	/* Clear device-specific "PCI retry timeout" register (41h). */
379 	pci_write_config(dev, 0x41, 0, 1);
380 
381 	/* Enable bus-mastering. */
382 	pci_enable_busmaster(dev);
383 
384 	rid = PCIR_BAR(0);
385 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
386 	    RF_ACTIVE);
387 	if (sc->mem == NULL) {
388 		device_printf(dev, "can't map mem space\n");
389 		return ENOMEM;
390 	}
391 	sc->sc_st = rman_get_bustag(sc->mem);
392 	sc->sc_sh = rman_get_bushandle(sc->mem);
393 
394 	rid = 1;
395 	if (pci_alloc_msi(dev, &rid) == 0)
396 		rid = 1;
397 	else
398 		rid = 0;
399 	/* Install interrupt handler. */
400 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
401 	    (rid != 0 ? 0 : RF_SHAREABLE));
402 	if (sc->irq == NULL) {
403 		device_printf(dev, "can't map interrupt\n");
404 		error = ENOMEM;
405 		goto fail;
406 	}
407 
408 	WPI_LOCK_INIT(sc);
409 	WPI_TX_LOCK_INIT(sc);
410 	WPI_RXON_LOCK_INIT(sc);
411 	WPI_NT_LOCK_INIT(sc);
412 	WPI_TXQ_LOCK_INIT(sc);
413 	WPI_TXQ_STATE_LOCK_INIT(sc);
414 
415 	/* Allocate DMA memory for firmware transfers. */
416 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
417 		device_printf(dev,
418 		    "could not allocate memory for firmware, error %d\n",
419 		    error);
420 		goto fail;
421 	}
422 
423 	/* Allocate shared page. */
424 	if ((error = wpi_alloc_shared(sc)) != 0) {
425 		device_printf(dev, "could not allocate shared page\n");
426 		goto fail;
427 	}
428 
429 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
430 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
431 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
432 			device_printf(dev,
433 			    "could not allocate TX ring %d, error %d\n", i,
434 			    error);
435 			goto fail;
436 		}
437 	}
438 
439 	/* Allocate RX ring. */
440 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
441 		device_printf(dev, "could not allocate RX ring, error %d\n",
442 		    error);
443 		goto fail;
444 	}
445 
446 	/* Clear pending interrupts. */
447 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
448 
449 	ic = &sc->sc_ic;
450 	ic->ic_softc = sc;
451 	ic->ic_name = device_get_nameunit(dev);
452 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
453 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
454 
455 	/* Set device capabilities. */
456 	ic->ic_caps =
457 		  IEEE80211_C_STA		/* station mode supported */
458 		| IEEE80211_C_IBSS		/* IBSS mode supported */
459 		| IEEE80211_C_HOSTAP		/* Host access point mode */
460 		| IEEE80211_C_MONITOR		/* monitor mode supported */
461 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
462 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
463 		| IEEE80211_C_TXFRAG		/* handle tx frags */
464 		| IEEE80211_C_TXPMGT		/* tx power management */
465 		| IEEE80211_C_SHSLOT		/* short slot time supported */
466 		| IEEE80211_C_WPA		/* 802.11i */
467 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
468 		| IEEE80211_C_WME		/* 802.11e */
469 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
470 		;
471 
472 	ic->ic_cryptocaps =
473 		  IEEE80211_CRYPTO_AES_CCM;
474 
475 	/*
476 	 * Read in the eeprom and also setup the channels for
477 	 * net80211. We don't set the rates as net80211 does this for us
478 	 */
479 	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
480 		device_printf(dev, "could not read EEPROM, error %d\n",
481 		    error);
482 		goto fail;
483 	}
484 
485 #ifdef WPI_DEBUG
486 	if (bootverbose) {
487 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
488 		    sc->domain);
489 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
490 		    sc->type > 1 ? 'B': '?');
491 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
492 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
493 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
494 		    supportsa ? "does" : "does not");
495 
496 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
497 		   check what sc->rev really represents - benjsc 20070615 */
498 	}
499 #endif
500 
501 	ieee80211_ifattach(ic);
502 	ic->ic_vap_create = wpi_vap_create;
503 	ic->ic_vap_delete = wpi_vap_delete;
504 	ic->ic_parent = wpi_parent;
505 	ic->ic_raw_xmit = wpi_raw_xmit;
506 	ic->ic_transmit = wpi_transmit;
507 	ic->ic_node_alloc = wpi_node_alloc;
508 	sc->sc_node_free = ic->ic_node_free;
509 	ic->ic_node_free = wpi_node_free;
510 	ic->ic_wme.wme_update = wpi_updateedca;
511 	ic->ic_update_promisc = wpi_update_promisc;
512 	ic->ic_update_mcast = wpi_update_mcast;
513 	ic->ic_newassoc = wpi_newassoc;
514 	ic->ic_scan_start = wpi_scan_start;
515 	ic->ic_scan_end = wpi_scan_end;
516 	ic->ic_set_channel = wpi_set_channel;
517 	ic->ic_scan_curchan = wpi_scan_curchan;
518 	ic->ic_scan_mindwell = wpi_scan_mindwell;
519 	ic->ic_setregdomain = wpi_setregdomain;
520 
521 	sc->sc_update_rx_ring = wpi_update_rx_ring;
522 	sc->sc_update_tx_ring = wpi_update_tx_ring;
523 
524 	wpi_radiotap_attach(sc);
525 
526 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
527 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
528 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
529 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
530 	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
531 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
532 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
533 
534 	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
535 	    taskqueue_thread_enqueue, &sc->sc_tq);
536 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
537 	if (error != 0) {
538 		device_printf(dev, "can't start threads, error %d\n", error);
539 		goto fail;
540 	}
541 
542 	wpi_sysctlattach(sc);
543 
544 	/*
545 	 * Hook our interrupt after all initialization is complete.
546 	 */
547 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
548 	    NULL, wpi_intr, sc, &sc->sc_ih);
549 	if (error != 0) {
550 		device_printf(dev, "can't establish interrupt, error %d\n",
551 		    error);
552 		goto fail;
553 	}
554 
555 	if (bootverbose)
556 		ieee80211_announce(ic);
557 
558 #ifdef WPI_DEBUG
559 	if (sc->sc_debug & WPI_DEBUG_HW)
560 		ieee80211_announce_channels(ic);
561 #endif
562 
563 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
564 	return 0;
565 
566 fail:	wpi_detach(dev);
567 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
568 	return error;
569 }
570 
571 /*
572  * Attach the interface to 802.11 radiotap.
573  */
574 static void
575 wpi_radiotap_attach(struct wpi_softc *sc)
576 {
577 	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
578 	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
579 
580 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
581 	ieee80211_radiotap_attach(&sc->sc_ic,
582 	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
583 	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
584 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
585 }
586 
587 static void
588 wpi_sysctlattach(struct wpi_softc *sc)
589 {
590 #ifdef WPI_DEBUG
591 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
592 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
593 
594 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
595 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
596 		"control debugging printfs");
597 #endif
598 }
599 
600 static void
601 wpi_init_beacon(struct wpi_vap *wvp)
602 {
603 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
604 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
605 
606 	cmd->id = WPI_ID_BROADCAST;
607 	cmd->ofdm_mask = 0xff;
608 	cmd->cck_mask = 0x0f;
609 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
610 
611 	/*
612 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
613 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
614 	 */
615 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
616 
617 	bcn->code = WPI_CMD_SET_BEACON;
618 	bcn->ac = WPI_CMD_QUEUE_NUM;
619 	bcn->size = sizeof(struct wpi_cmd_beacon);
620 }
621 
622 static struct ieee80211vap *
623 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
624     enum ieee80211_opmode opmode, int flags,
625     const uint8_t bssid[IEEE80211_ADDR_LEN],
626     const uint8_t mac[IEEE80211_ADDR_LEN])
627 {
628 	struct wpi_vap *wvp;
629 	struct ieee80211vap *vap;
630 
631 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
632 		return NULL;
633 
634 	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
635 	vap = &wvp->wv_vap;
636 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
637 
638 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
639 		WPI_VAP_LOCK_INIT(wvp);
640 		wpi_init_beacon(wvp);
641 	}
642 
643 	/* Override with driver methods. */
644 	vap->iv_key_set = wpi_key_set;
645 	vap->iv_key_delete = wpi_key_delete;
646 	if (opmode == IEEE80211_M_IBSS) {
647 		wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
648 		vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
649 	}
650 	wvp->wv_newstate = vap->iv_newstate;
651 	vap->iv_newstate = wpi_newstate;
652 	vap->iv_update_beacon = wpi_update_beacon;
653 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
654 
655 	ieee80211_ratectl_init(vap);
656 	/* Complete setup. */
657 	ieee80211_vap_attach(vap, ieee80211_media_change,
658 	    ieee80211_media_status, mac);
659 	ic->ic_opmode = opmode;
660 	return vap;
661 }
662 
663 static void
664 wpi_vap_delete(struct ieee80211vap *vap)
665 {
666 	struct wpi_vap *wvp = WPI_VAP(vap);
667 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
668 	enum ieee80211_opmode opmode = vap->iv_opmode;
669 
670 	ieee80211_ratectl_deinit(vap);
671 	ieee80211_vap_detach(vap);
672 
673 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
674 		if (bcn->m != NULL)
675 			m_freem(bcn->m);
676 
677 		WPI_VAP_LOCK_DESTROY(wvp);
678 	}
679 
680 	free(wvp, M_80211_VAP);
681 }
682 
683 static int
684 wpi_detach(device_t dev)
685 {
686 	struct wpi_softc *sc = device_get_softc(dev);
687 	struct ieee80211com *ic = &sc->sc_ic;
688 	uint8_t qid;
689 
690 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
691 
692 	if (ic->ic_vap_create == wpi_vap_create) {
693 		ieee80211_draintask(ic, &sc->sc_radioon_task);
694 
695 		wpi_stop(sc);
696 
697 		if (sc->sc_tq != NULL) {
698 			taskqueue_drain_all(sc->sc_tq);
699 			taskqueue_free(sc->sc_tq);
700 		}
701 
702 		callout_drain(&sc->watchdog_rfkill);
703 		callout_drain(&sc->tx_timeout);
704 		callout_drain(&sc->scan_timeout);
705 		callout_drain(&sc->calib_to);
706 		ieee80211_ifdetach(ic);
707 	}
708 
709 	/* Uninstall interrupt handler. */
710 	if (sc->irq != NULL) {
711 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
712 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
713 		    sc->irq);
714 		pci_release_msi(dev);
715 	}
716 
717 	if (sc->txq[0].data_dmat) {
718 		/* Free DMA resources. */
719 		for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
720 			wpi_free_tx_ring(sc, &sc->txq[qid]);
721 
722 		wpi_free_rx_ring(sc);
723 		wpi_free_shared(sc);
724 	}
725 
726 	if (sc->fw_dma.tag)
727 		wpi_free_fwmem(sc);
728 
729 	if (sc->mem != NULL)
730 		bus_release_resource(dev, SYS_RES_MEMORY,
731 		    rman_get_rid(sc->mem), sc->mem);
732 
733 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
734 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
735 	WPI_TXQ_LOCK_DESTROY(sc);
736 	WPI_NT_LOCK_DESTROY(sc);
737 	WPI_RXON_LOCK_DESTROY(sc);
738 	WPI_TX_LOCK_DESTROY(sc);
739 	WPI_LOCK_DESTROY(sc);
740 	return 0;
741 }
742 
743 static int
744 wpi_shutdown(device_t dev)
745 {
746 	struct wpi_softc *sc = device_get_softc(dev);
747 
748 	wpi_stop(sc);
749 	return 0;
750 }
751 
752 static int
753 wpi_suspend(device_t dev)
754 {
755 	struct wpi_softc *sc = device_get_softc(dev);
756 	struct ieee80211com *ic = &sc->sc_ic;
757 
758 	ieee80211_suspend_all(ic);
759 	return 0;
760 }
761 
762 static int
763 wpi_resume(device_t dev)
764 {
765 	struct wpi_softc *sc = device_get_softc(dev);
766 	struct ieee80211com *ic = &sc->sc_ic;
767 
768 	/* Clear device-specific "PCI retry timeout" register (41h). */
769 	pci_write_config(dev, 0x41, 0, 1);
770 
771 	ieee80211_resume_all(ic);
772 	return 0;
773 }
774 
775 /*
776  * Grab exclusive access to NIC memory.
777  */
778 static int
779 wpi_nic_lock(struct wpi_softc *sc)
780 {
781 	int ntries;
782 
783 	/* Request exclusive access to NIC. */
784 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
785 
786 	/* Spin until we actually get the lock. */
787 	for (ntries = 0; ntries < 1000; ntries++) {
788 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
789 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
790 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
791 			return 0;
792 		DELAY(10);
793 	}
794 
795 	device_printf(sc->sc_dev, "could not lock memory\n");
796 
797 	return ETIMEDOUT;
798 }
799 
800 /*
801  * Release lock on NIC memory.
802  */
803 static __inline void
804 wpi_nic_unlock(struct wpi_softc *sc)
805 {
806 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
807 }
808 
809 static __inline uint32_t
810 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
811 {
812 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
813 	WPI_BARRIER_READ_WRITE(sc);
814 	return WPI_READ(sc, WPI_PRPH_RDATA);
815 }
816 
817 static __inline void
818 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
819 {
820 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
821 	WPI_BARRIER_WRITE(sc);
822 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
823 }
824 
825 static __inline void
826 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
827 {
828 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
829 }
830 
831 static __inline void
832 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
833 {
834 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
835 }
836 
837 static __inline void
838 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
839     const uint32_t *data, uint32_t count)
840 {
841 	for (; count != 0; count--, data++, addr += 4)
842 		wpi_prph_write(sc, addr, *data);
843 }
844 
845 static __inline uint32_t
846 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
847 {
848 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
849 	WPI_BARRIER_READ_WRITE(sc);
850 	return WPI_READ(sc, WPI_MEM_RDATA);
851 }
852 
853 static __inline void
854 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
855     int count)
856 {
857 	for (; count > 0; count--, addr += 4)
858 		*data++ = wpi_mem_read(sc, addr);
859 }
860 
861 static int
862 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
863 {
864 	uint8_t *out = data;
865 	uint32_t val;
866 	int error, ntries;
867 
868 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
869 
870 	if ((error = wpi_nic_lock(sc)) != 0)
871 		return error;
872 
873 	for (; count > 0; count -= 2, addr++) {
874 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
875 		for (ntries = 0; ntries < 10; ntries++) {
876 			val = WPI_READ(sc, WPI_EEPROM);
877 			if (val & WPI_EEPROM_READ_VALID)
878 				break;
879 			DELAY(5);
880 		}
881 		if (ntries == 10) {
882 			device_printf(sc->sc_dev,
883 			    "timeout reading ROM at 0x%x\n", addr);
884 			return ETIMEDOUT;
885 		}
886 		*out++= val >> 16;
887 		if (count > 1)
888 			*out ++= val >> 24;
889 	}
890 
891 	wpi_nic_unlock(sc);
892 
893 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
894 
895 	return 0;
896 }
897 
898 static void
899 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
900 {
901 	if (error != 0)
902 		return;
903 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
904 	*(bus_addr_t *)arg = segs[0].ds_addr;
905 }
906 
907 /*
908  * Allocates a contiguous block of dma memory of the requested size and
909  * alignment.
910  */
911 static int
912 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
913     void **kvap, bus_size_t size, bus_size_t alignment)
914 {
915 	int error;
916 
917 	dma->tag = NULL;
918 	dma->size = size;
919 
920 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
921 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
922 	    1, size, 0, NULL, NULL, &dma->tag);
923 	if (error != 0)
924 		goto fail;
925 
926 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
927 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
928 	if (error != 0)
929 		goto fail;
930 
931 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
932 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
933 	if (error != 0)
934 		goto fail;
935 
936 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
937 
938 	if (kvap != NULL)
939 		*kvap = dma->vaddr;
940 
941 	return 0;
942 
943 fail:	wpi_dma_contig_free(dma);
944 	return error;
945 }
946 
947 static void
948 wpi_dma_contig_free(struct wpi_dma_info *dma)
949 {
950 	if (dma->vaddr != NULL) {
951 		bus_dmamap_sync(dma->tag, dma->map,
952 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
953 		bus_dmamap_unload(dma->tag, dma->map);
954 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
955 		dma->vaddr = NULL;
956 	}
957 	if (dma->tag != NULL) {
958 		bus_dma_tag_destroy(dma->tag);
959 		dma->tag = NULL;
960 	}
961 }
962 
963 /*
964  * Allocate a shared page between host and NIC.
965  */
966 static int
967 wpi_alloc_shared(struct wpi_softc *sc)
968 {
969 	/* Shared buffer must be aligned on a 4KB boundary. */
970 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
971 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
972 }
973 
974 static void
975 wpi_free_shared(struct wpi_softc *sc)
976 {
977 	wpi_dma_contig_free(&sc->shared_dma);
978 }
979 
980 /*
981  * Allocate DMA-safe memory for firmware transfer.
982  */
983 static int
984 wpi_alloc_fwmem(struct wpi_softc *sc)
985 {
986 	/* Must be aligned on a 16-byte boundary. */
987 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
988 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
989 }
990 
991 static void
992 wpi_free_fwmem(struct wpi_softc *sc)
993 {
994 	wpi_dma_contig_free(&sc->fw_dma);
995 }
996 
997 static int
998 wpi_alloc_rx_ring(struct wpi_softc *sc)
999 {
1000 	struct wpi_rx_ring *ring = &sc->rxq;
1001 	bus_size_t size;
1002 	int i, error;
1003 
1004 	ring->cur = 0;
1005 	ring->update = 0;
1006 
1007 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1008 
1009 	/* Allocate RX descriptors (16KB aligned.) */
1010 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1011 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1012 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1013 	if (error != 0) {
1014 		device_printf(sc->sc_dev,
1015 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1016 		    __func__, error);
1017 		goto fail;
1018 	}
1019 
1020 	/* Create RX buffer DMA tag. */
1021 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1022 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1023 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
1024 	if (error != 0) {
1025 		device_printf(sc->sc_dev,
1026 		    "%s: could not create RX buf DMA tag, error %d\n",
1027 		    __func__, error);
1028 		goto fail;
1029 	}
1030 
1031 	/*
1032 	 * Allocate and map RX buffers.
1033 	 */
1034 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1035 		struct wpi_rx_data *data = &ring->data[i];
1036 		bus_addr_t paddr;
1037 
1038 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1039 		if (error != 0) {
1040 			device_printf(sc->sc_dev,
1041 			    "%s: could not create RX buf DMA map, error %d\n",
1042 			    __func__, error);
1043 			goto fail;
1044 		}
1045 
1046 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1047 		if (data->m == NULL) {
1048 			device_printf(sc->sc_dev,
1049 			    "%s: could not allocate RX mbuf\n", __func__);
1050 			error = ENOBUFS;
1051 			goto fail;
1052 		}
1053 
1054 		error = bus_dmamap_load(ring->data_dmat, data->map,
1055 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1056 		    &paddr, BUS_DMA_NOWAIT);
1057 		if (error != 0 && error != EFBIG) {
1058 			device_printf(sc->sc_dev,
1059 			    "%s: can't map mbuf (error %d)\n", __func__,
1060 			    error);
1061 			goto fail;
1062 		}
1063 
1064 		/* Set physical address of RX buffer. */
1065 		ring->desc[i] = htole32(paddr);
1066 	}
1067 
1068 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1069 	    BUS_DMASYNC_PREWRITE);
1070 
1071 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1072 
1073 	return 0;
1074 
1075 fail:	wpi_free_rx_ring(sc);
1076 
1077 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1078 
1079 	return error;
1080 }
1081 
1082 static void
1083 wpi_update_rx_ring(struct wpi_softc *sc)
1084 {
1085 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1086 }
1087 
1088 static void
1089 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1090 {
1091 	struct wpi_rx_ring *ring = &sc->rxq;
1092 
1093 	if (ring->update != 0) {
1094 		/* Wait for INT_WAKEUP event. */
1095 		return;
1096 	}
1097 
1098 	WPI_TXQ_LOCK(sc);
1099 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1100 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1101 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1102 		    __func__);
1103 		ring->update = 1;
1104 	} else {
1105 		wpi_update_rx_ring(sc);
1106 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1107 	}
1108 	WPI_TXQ_UNLOCK(sc);
1109 }
1110 
1111 static void
1112 wpi_reset_rx_ring(struct wpi_softc *sc)
1113 {
1114 	struct wpi_rx_ring *ring = &sc->rxq;
1115 	int ntries;
1116 
1117 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1118 
1119 	if (wpi_nic_lock(sc) == 0) {
1120 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1121 		for (ntries = 0; ntries < 1000; ntries++) {
1122 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1123 			    WPI_FH_RX_STATUS_IDLE)
1124 				break;
1125 			DELAY(10);
1126 		}
1127 		wpi_nic_unlock(sc);
1128 	}
1129 
1130 	ring->cur = 0;
1131 	ring->update = 0;
1132 }
1133 
1134 static void
1135 wpi_free_rx_ring(struct wpi_softc *sc)
1136 {
1137 	struct wpi_rx_ring *ring = &sc->rxq;
1138 	int i;
1139 
1140 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1141 
1142 	wpi_dma_contig_free(&ring->desc_dma);
1143 
1144 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1145 		struct wpi_rx_data *data = &ring->data[i];
1146 
1147 		if (data->m != NULL) {
1148 			bus_dmamap_sync(ring->data_dmat, data->map,
1149 			    BUS_DMASYNC_POSTREAD);
1150 			bus_dmamap_unload(ring->data_dmat, data->map);
1151 			m_freem(data->m);
1152 			data->m = NULL;
1153 		}
1154 		if (data->map != NULL)
1155 			bus_dmamap_destroy(ring->data_dmat, data->map);
1156 	}
1157 	if (ring->data_dmat != NULL) {
1158 		bus_dma_tag_destroy(ring->data_dmat);
1159 		ring->data_dmat = NULL;
1160 	}
1161 }
1162 
1163 static int
1164 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
1165 {
1166 	bus_addr_t paddr;
1167 	bus_size_t size;
1168 	int i, error;
1169 
1170 	ring->qid = qid;
1171 	ring->queued = 0;
1172 	ring->cur = 0;
1173 	ring->pending = 0;
1174 	ring->update = 0;
1175 
1176 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1177 
1178 	/* Allocate TX descriptors (16KB aligned.) */
1179 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1180 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1181 	    size, WPI_RING_DMA_ALIGN);
1182 	if (error != 0) {
1183 		device_printf(sc->sc_dev,
1184 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1185 		    __func__, error);
1186 		goto fail;
1187 	}
1188 
1189 	/* Update shared area with ring physical address. */
1190 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1191 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1192 	    BUS_DMASYNC_PREWRITE);
1193 
1194 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1195 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1196 	    size, 4);
1197 	if (error != 0) {
1198 		device_printf(sc->sc_dev,
1199 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1200 		    __func__, error);
1201 		goto fail;
1202 	}
1203 
1204 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1205 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1206 	    WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
1207 	if (error != 0) {
1208 		device_printf(sc->sc_dev,
1209 		    "%s: could not create TX buf DMA tag, error %d\n",
1210 		    __func__, error);
1211 		goto fail;
1212 	}
1213 
1214 	paddr = ring->cmd_dma.paddr;
1215 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1216 		struct wpi_tx_data *data = &ring->data[i];
1217 
1218 		data->cmd_paddr = paddr;
1219 		paddr += sizeof (struct wpi_tx_cmd);
1220 
1221 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1222 		if (error != 0) {
1223 			device_printf(sc->sc_dev,
1224 			    "%s: could not create TX buf DMA map, error %d\n",
1225 			    __func__, error);
1226 			goto fail;
1227 		}
1228 	}
1229 
1230 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1231 
1232 	return 0;
1233 
1234 fail:	wpi_free_tx_ring(sc, ring);
1235 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1236 	return error;
1237 }
1238 
1239 static void
1240 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1241 {
1242 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1243 }
1244 
1245 static void
1246 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1247 {
1248 
1249 	if (ring->update != 0) {
1250 		/* Wait for INT_WAKEUP event. */
1251 		return;
1252 	}
1253 
1254 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1255 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1256 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1257 		    __func__, ring->qid);
1258 		ring->update = 1;
1259 	} else {
1260 		wpi_update_tx_ring(sc, ring);
1261 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1262 	}
1263 }
1264 
1265 static void
1266 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1267 {
1268 	int i;
1269 
1270 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1271 
1272 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1273 		struct wpi_tx_data *data = &ring->data[i];
1274 
1275 		if (data->m != NULL) {
1276 			bus_dmamap_sync(ring->data_dmat, data->map,
1277 			    BUS_DMASYNC_POSTWRITE);
1278 			bus_dmamap_unload(ring->data_dmat, data->map);
1279 			m_freem(data->m);
1280 			data->m = NULL;
1281 		}
1282 		if (data->ni != NULL) {
1283 			ieee80211_free_node(data->ni);
1284 			data->ni = NULL;
1285 		}
1286 	}
1287 	/* Clear TX descriptors. */
1288 	memset(ring->desc, 0, ring->desc_dma.size);
1289 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1290 	    BUS_DMASYNC_PREWRITE);
1291 	ring->queued = 0;
1292 	ring->cur = 0;
1293 	ring->pending = 0;
1294 	ring->update = 0;
1295 }
1296 
1297 static void
1298 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1299 {
1300 	int i;
1301 
1302 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1303 
1304 	wpi_dma_contig_free(&ring->desc_dma);
1305 	wpi_dma_contig_free(&ring->cmd_dma);
1306 
1307 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1308 		struct wpi_tx_data *data = &ring->data[i];
1309 
1310 		if (data->m != NULL) {
1311 			bus_dmamap_sync(ring->data_dmat, data->map,
1312 			    BUS_DMASYNC_POSTWRITE);
1313 			bus_dmamap_unload(ring->data_dmat, data->map);
1314 			m_freem(data->m);
1315 		}
1316 		if (data->map != NULL)
1317 			bus_dmamap_destroy(ring->data_dmat, data->map);
1318 	}
1319 	if (ring->data_dmat != NULL) {
1320 		bus_dma_tag_destroy(ring->data_dmat);
1321 		ring->data_dmat = NULL;
1322 	}
1323 }
1324 
1325 /*
1326  * Extract various information from EEPROM.
1327  */
1328 static int
1329 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1330 {
1331 #define WPI_CHK(res) do {		\
1332 	if ((error = res) != 0)		\
1333 		goto fail;		\
1334 } while (0)
1335 	uint8_t i;
1336 	int error;
1337 
1338 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1339 
1340 	/* Adapter has to be powered on for EEPROM access to work. */
1341 	if ((error = wpi_apm_init(sc)) != 0) {
1342 		device_printf(sc->sc_dev,
1343 		    "%s: could not power ON adapter, error %d\n", __func__,
1344 		    error);
1345 		return error;
1346 	}
1347 
1348 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1349 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1350 		error = EIO;
1351 		goto fail;
1352 	}
1353 	/* Clear HW ownership of EEPROM. */
1354 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1355 
1356 	/* Read the hardware capabilities, revision and SKU type. */
1357 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1358 	    sizeof(sc->cap)));
1359 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1360 	    sizeof(sc->rev)));
1361 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1362 	    sizeof(sc->type)));
1363 
1364 	sc->rev = le16toh(sc->rev);
1365 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1366 	    sc->rev, sc->type);
1367 
1368 	/* Read the regulatory domain (4 ASCII characters.) */
1369 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1370 	    sizeof(sc->domain)));
1371 
1372 	/* Read MAC address. */
1373 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1374 	    IEEE80211_ADDR_LEN));
1375 
1376 	/* Read the list of authorized channels. */
1377 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1378 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1379 
1380 	/* Read the list of TX power groups. */
1381 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1382 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1383 
1384 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1385 
1386 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1387 	    __func__);
1388 
1389 	return error;
1390 #undef WPI_CHK
1391 }
1392 
1393 /*
1394  * Translate EEPROM flags to net80211.
1395  */
1396 static uint32_t
1397 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1398 {
1399 	uint32_t nflags;
1400 
1401 	nflags = 0;
1402 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1403 		nflags |= IEEE80211_CHAN_PASSIVE;
1404 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1405 		nflags |= IEEE80211_CHAN_NOADHOC;
1406 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1407 		nflags |= IEEE80211_CHAN_DFS;
1408 		/* XXX apparently IBSS may still be marked */
1409 		nflags |= IEEE80211_CHAN_NOADHOC;
1410 	}
1411 
1412 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1413 	if (nflags & IEEE80211_CHAN_NOADHOC)
1414 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1415 
1416 	return nflags;
1417 }
1418 
1419 static void
1420 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n)
1421 {
1422 	struct ieee80211com *ic = &sc->sc_ic;
1423 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1424 	const struct wpi_chan_band *band = &wpi_bands[n];
1425 	struct ieee80211_channel *c;
1426 	uint32_t nflags;
1427 	uint8_t chan, i;
1428 
1429 	for (i = 0; i < band->nchan; i++) {
1430 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1431 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1432 			    "Channel Not Valid: %d, band %d\n",
1433 			     band->chan[i],n);
1434 			continue;
1435 		}
1436 
1437 		chan = band->chan[i];
1438 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1439 
1440 		c = &ic->ic_channels[ic->ic_nchans++];
1441 		c->ic_ieee = chan;
1442 		c->ic_maxregpower = channels[i].maxpwr;
1443 		c->ic_maxpower = 2*c->ic_maxregpower;
1444 
1445 		if (n == 0) {	/* 2GHz band */
1446 			c->ic_freq = ieee80211_ieee2mhz(chan,
1447 			    IEEE80211_CHAN_G);
1448 
1449 			/* G =>'s B is supported */
1450 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1451 			c = &ic->ic_channels[ic->ic_nchans++];
1452 			c[0] = c[-1];
1453 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1454 		} else {	/* 5GHz band */
1455 			c->ic_freq = ieee80211_ieee2mhz(chan,
1456 			    IEEE80211_CHAN_A);
1457 
1458 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1459 		}
1460 
1461 		/* Save maximum allowed TX power for this channel. */
1462 		sc->maxpwr[chan] = channels[i].maxpwr;
1463 
1464 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1465 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1466 		    " offset %d\n", chan, c->ic_freq,
1467 		    channels[i].flags, sc->maxpwr[chan],
1468 		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1469 	}
1470 }
1471 
1472 /**
1473  * Read the eeprom to find out what channels are valid for the given
1474  * band and update net80211 with what we find.
1475  */
1476 static int
1477 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
1478 {
1479 	struct ieee80211com *ic = &sc->sc_ic;
1480 	const struct wpi_chan_band *band = &wpi_bands[n];
1481 	int error;
1482 
1483 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1484 
1485 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1486 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1487 	if (error != 0) {
1488 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1489 		return error;
1490 	}
1491 
1492 	wpi_read_eeprom_band(sc, n);
1493 
1494 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1495 
1496 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1497 
1498 	return 0;
1499 }
1500 
1501 static struct wpi_eeprom_chan *
1502 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1503 {
1504 	int i, j;
1505 
1506 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1507 		for (i = 0; i < wpi_bands[j].nchan; i++)
1508 			if (wpi_bands[j].chan[i] == c->ic_ieee)
1509 				return &sc->eeprom_channels[j][i];
1510 
1511 	return NULL;
1512 }
1513 
1514 /*
1515  * Enforce flags read from EEPROM.
1516  */
1517 static int
1518 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1519     int nchan, struct ieee80211_channel chans[])
1520 {
1521 	struct wpi_softc *sc = ic->ic_softc;
1522 	int i;
1523 
1524 	for (i = 0; i < nchan; i++) {
1525 		struct ieee80211_channel *c = &chans[i];
1526 		struct wpi_eeprom_chan *channel;
1527 
1528 		channel = wpi_find_eeprom_channel(sc, c);
1529 		if (channel == NULL) {
1530 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1531 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1532 			return EINVAL;
1533 		}
1534 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1535 	}
1536 
1537 	return 0;
1538 }
1539 
1540 static int
1541 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
1542 {
1543 	struct wpi_power_group *group = &sc->groups[n];
1544 	struct wpi_eeprom_group rgroup;
1545 	int i, error;
1546 
1547 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1548 
1549 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1550 	    &rgroup, sizeof rgroup)) != 0) {
1551 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1552 		return error;
1553 	}
1554 
1555 	/* Save TX power group information. */
1556 	group->chan   = rgroup.chan;
1557 	group->maxpwr = rgroup.maxpwr;
1558 	/* Retrieve temperature at which the samples were taken. */
1559 	group->temp   = (int16_t)le16toh(rgroup.temp);
1560 
1561 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1562 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1563 	    group->maxpwr, group->temp);
1564 
1565 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1566 		group->samples[i].index = rgroup.samples[i].index;
1567 		group->samples[i].power = rgroup.samples[i].power;
1568 
1569 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1570 		    "\tsample %d: index=%d power=%d\n", i,
1571 		    group->samples[i].index, group->samples[i].power);
1572 	}
1573 
1574 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1575 
1576 	return 0;
1577 }
1578 
1579 static __inline uint8_t
1580 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1581 {
1582 	uint8_t newid = WPI_ID_IBSS_MIN;
1583 
1584 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1585 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1586 			sc->nodesmsk |= 1 << newid;
1587 			return newid;
1588 		}
1589 	}
1590 
1591 	return WPI_ID_UNDEFINED;
1592 }
1593 
1594 static __inline uint8_t
1595 wpi_add_node_entry_sta(struct wpi_softc *sc)
1596 {
1597 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1598 
1599 	return WPI_ID_BSS;
1600 }
1601 
1602 static __inline int
1603 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1604 {
1605 	if (id == WPI_ID_UNDEFINED)
1606 		return 0;
1607 
1608 	return (sc->nodesmsk >> id) & 1;
1609 }
1610 
1611 static __inline void
1612 wpi_clear_node_table(struct wpi_softc *sc)
1613 {
1614 	sc->nodesmsk = 0;
1615 }
1616 
1617 static __inline void
1618 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1619 {
1620 	sc->nodesmsk &= ~(1 << id);
1621 }
1622 
1623 static struct ieee80211_node *
1624 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1625 {
1626 	struct wpi_node *wn;
1627 
1628 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1629 	    M_NOWAIT | M_ZERO);
1630 
1631 	if (wn == NULL)
1632 		return NULL;
1633 
1634 	wn->id = WPI_ID_UNDEFINED;
1635 
1636 	return &wn->ni;
1637 }
1638 
1639 static void
1640 wpi_node_free(struct ieee80211_node *ni)
1641 {
1642 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1643 	struct wpi_node *wn = WPI_NODE(ni);
1644 
1645 	if (wn->id != WPI_ID_UNDEFINED) {
1646 		WPI_NT_LOCK(sc);
1647 		if (wpi_check_node_entry(sc, wn->id)) {
1648 			wpi_del_node_entry(sc, wn->id);
1649 			wpi_del_node(sc, ni);
1650 		}
1651 		WPI_NT_UNLOCK(sc);
1652 	}
1653 
1654 	sc->sc_node_free(ni);
1655 }
1656 
1657 static __inline int
1658 wpi_check_bss_filter(struct wpi_softc *sc)
1659 {
1660 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1661 }
1662 
1663 static void
1664 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1665     const struct ieee80211_rx_stats *rxs,
1666     int rssi, int nf)
1667 {
1668 	struct ieee80211vap *vap = ni->ni_vap;
1669 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1670 	struct wpi_vap *wvp = WPI_VAP(vap);
1671 	uint64_t ni_tstamp, rx_tstamp;
1672 
1673 	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1674 
1675 	if (vap->iv_state == IEEE80211_S_RUN &&
1676 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1677 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1678 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1679 		rx_tstamp = le64toh(sc->rx_tstamp);
1680 
1681 		if (ni_tstamp >= rx_tstamp) {
1682 			DPRINTF(sc, WPI_DEBUG_STATE,
1683 			    "ibss merge, tsf %ju tstamp %ju\n",
1684 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1685 			(void) ieee80211_ibss_merge(ni);
1686 		}
1687 	}
1688 }
1689 
1690 static void
1691 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1692 {
1693 	struct wpi_softc *sc = arg;
1694 	struct wpi_node *wn = WPI_NODE(ni);
1695 	int error;
1696 
1697 	WPI_NT_LOCK(sc);
1698 	if (wn->id != WPI_ID_UNDEFINED) {
1699 		wn->id = WPI_ID_UNDEFINED;
1700 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1701 			device_printf(sc->sc_dev,
1702 			    "%s: could not add IBSS node, error %d\n",
1703 			    __func__, error);
1704 		}
1705 	}
1706 	WPI_NT_UNLOCK(sc);
1707 }
1708 
1709 static void
1710 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1711 {
1712 	struct ieee80211com *ic = &sc->sc_ic;
1713 
1714 	/* Set group keys once. */
1715 	WPI_NT_LOCK(sc);
1716 	wvp->wv_gtk = 0;
1717 	WPI_NT_UNLOCK(sc);
1718 
1719 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1720 	ieee80211_crypto_reload_keys(ic);
1721 }
1722 
1723 /**
1724  * Called by net80211 when ever there is a change to 80211 state machine
1725  */
1726 static int
1727 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1728 {
1729 	struct wpi_vap *wvp = WPI_VAP(vap);
1730 	struct ieee80211com *ic = vap->iv_ic;
1731 	struct wpi_softc *sc = ic->ic_softc;
1732 	int error = 0;
1733 
1734 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1735 
1736 	WPI_TXQ_LOCK(sc);
1737 	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1738 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1739 		WPI_TXQ_UNLOCK(sc);
1740 
1741 		return ENXIO;
1742 	}
1743 	WPI_TXQ_UNLOCK(sc);
1744 
1745 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1746 		ieee80211_state_name[vap->iv_state],
1747 		ieee80211_state_name[nstate]);
1748 
1749 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1750 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1751 			device_printf(sc->sc_dev,
1752 			    "%s: could not set power saving level\n",
1753 			    __func__);
1754 			return error;
1755 		}
1756 
1757 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1758 	}
1759 
1760 	switch (nstate) {
1761 	case IEEE80211_S_SCAN:
1762 		WPI_RXON_LOCK(sc);
1763 		if (wpi_check_bss_filter(sc) != 0) {
1764 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1765 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1766 				device_printf(sc->sc_dev,
1767 				    "%s: could not send RXON\n", __func__);
1768 			}
1769 		}
1770 		WPI_RXON_UNLOCK(sc);
1771 		break;
1772 
1773 	case IEEE80211_S_ASSOC:
1774 		if (vap->iv_state != IEEE80211_S_RUN)
1775 			break;
1776 		/* FALLTHROUGH */
1777 	case IEEE80211_S_AUTH:
1778 		/*
1779 		 * NB: do not optimize AUTH -> AUTH state transmission -
1780 		 * this will break powersave with non-QoS AP!
1781 		 */
1782 
1783 		/*
1784 		 * The node must be registered in the firmware before auth.
1785 		 * Also the associd must be cleared on RUN -> ASSOC
1786 		 * transitions.
1787 		 */
1788 		if ((error = wpi_auth(sc, vap)) != 0) {
1789 			device_printf(sc->sc_dev,
1790 			    "%s: could not move to AUTH state, error %d\n",
1791 			    __func__, error);
1792 		}
1793 		break;
1794 
1795 	case IEEE80211_S_RUN:
1796 		/*
1797 		 * RUN -> RUN transition:
1798 		 * STA mode: Just restart the timers.
1799 		 * IBSS mode: Process IBSS merge.
1800 		 */
1801 		if (vap->iv_state == IEEE80211_S_RUN) {
1802 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1803 				WPI_RXON_LOCK(sc);
1804 				wpi_calib_timeout(sc);
1805 				WPI_RXON_UNLOCK(sc);
1806 				break;
1807 			} else {
1808 				/*
1809 				 * Drop the BSS_FILTER bit
1810 				 * (there is no another way to change bssid).
1811 				 */
1812 				WPI_RXON_LOCK(sc);
1813 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1814 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1815 					device_printf(sc->sc_dev,
1816 					    "%s: could not send RXON\n",
1817 					    __func__);
1818 				}
1819 				WPI_RXON_UNLOCK(sc);
1820 
1821 				/* Restore all what was lost. */
1822 				wpi_restore_node_table(sc, wvp);
1823 
1824 				/* XXX set conditionally? */
1825 				wpi_updateedca(ic);
1826 			}
1827 		}
1828 
1829 		/*
1830 		 * !RUN -> RUN requires setting the association id
1831 		 * which is done with a firmware cmd.  We also defer
1832 		 * starting the timers until that work is done.
1833 		 */
1834 		if ((error = wpi_run(sc, vap)) != 0) {
1835 			device_printf(sc->sc_dev,
1836 			    "%s: could not move to RUN state\n", __func__);
1837 		}
1838 		break;
1839 
1840 	default:
1841 		break;
1842 	}
1843 	if (error != 0) {
1844 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1845 		return error;
1846 	}
1847 
1848 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1849 
1850 	return wvp->wv_newstate(vap, nstate, arg);
1851 }
1852 
1853 static void
1854 wpi_calib_timeout(void *arg)
1855 {
1856 	struct wpi_softc *sc = arg;
1857 
1858 	if (wpi_check_bss_filter(sc) == 0)
1859 		return;
1860 
1861 	wpi_power_calibration(sc);
1862 
1863 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1864 }
1865 
1866 static __inline uint8_t
1867 rate2plcp(const uint8_t rate)
1868 {
1869 	switch (rate) {
1870 	case 12:	return 0xd;
1871 	case 18:	return 0xf;
1872 	case 24:	return 0x5;
1873 	case 36:	return 0x7;
1874 	case 48:	return 0x9;
1875 	case 72:	return 0xb;
1876 	case 96:	return 0x1;
1877 	case 108:	return 0x3;
1878 	case 2:		return 10;
1879 	case 4:		return 20;
1880 	case 11:	return 55;
1881 	case 22:	return 110;
1882 	default:	return 0;
1883 	}
1884 }
1885 
1886 static __inline uint8_t
1887 plcp2rate(const uint8_t plcp)
1888 {
1889 	switch (plcp) {
1890 	case 0xd:	return 12;
1891 	case 0xf:	return 18;
1892 	case 0x5:	return 24;
1893 	case 0x7:	return 36;
1894 	case 0x9:	return 48;
1895 	case 0xb:	return 72;
1896 	case 0x1:	return 96;
1897 	case 0x3:	return 108;
1898 	case 10:	return 2;
1899 	case 20:	return 4;
1900 	case 55:	return 11;
1901 	case 110:	return 22;
1902 	default:	return 0;
1903 	}
1904 }
1905 
1906 /* Quickly determine if a given rate is CCK or OFDM. */
1907 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1908 
1909 static void
1910 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1911     struct wpi_rx_data *data)
1912 {
1913 	struct ieee80211com *ic = &sc->sc_ic;
1914 	struct wpi_rx_ring *ring = &sc->rxq;
1915 	struct wpi_rx_stat *stat;
1916 	struct wpi_rx_head *head;
1917 	struct wpi_rx_tail *tail;
1918 	struct ieee80211_frame *wh;
1919 	struct ieee80211_node *ni;
1920 	struct mbuf *m, *m1;
1921 	bus_addr_t paddr;
1922 	uint32_t flags;
1923 	uint16_t len;
1924 	int error;
1925 
1926 	stat = (struct wpi_rx_stat *)(desc + 1);
1927 
1928 	if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
1929 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1930 		goto fail1;
1931 	}
1932 
1933 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1934 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1935 	len = le16toh(head->len);
1936 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1937 	flags = le32toh(tail->flags);
1938 
1939 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1940 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1941 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1942 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1943 
1944 	/* Discard frames with a bad FCS early. */
1945 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1946 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1947 		    __func__, flags);
1948 		goto fail1;
1949 	}
1950 	/* Discard frames that are too short. */
1951 	if (len < sizeof (struct ieee80211_frame_ack)) {
1952 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1953 		    __func__, len);
1954 		goto fail1;
1955 	}
1956 
1957 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1958 	if (__predict_false(m1 == NULL)) {
1959 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1960 		    __func__);
1961 		goto fail1;
1962 	}
1963 	bus_dmamap_unload(ring->data_dmat, data->map);
1964 
1965 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1966 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1967 	if (__predict_false(error != 0 && error != EFBIG)) {
1968 		device_printf(sc->sc_dev,
1969 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1970 		m_freem(m1);
1971 
1972 		/* Try to reload the old mbuf. */
1973 		error = bus_dmamap_load(ring->data_dmat, data->map,
1974 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1975 		    &paddr, BUS_DMA_NOWAIT);
1976 		if (error != 0 && error != EFBIG) {
1977 			panic("%s: could not load old RX mbuf", __func__);
1978 		}
1979 		/* Physical address may have changed. */
1980 		ring->desc[ring->cur] = htole32(paddr);
1981 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1982 		    BUS_DMASYNC_PREWRITE);
1983 		goto fail1;
1984 	}
1985 
1986 	m = data->m;
1987 	data->m = m1;
1988 	/* Update RX descriptor. */
1989 	ring->desc[ring->cur] = htole32(paddr);
1990 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1991 	    BUS_DMASYNC_PREWRITE);
1992 
1993 	/* Finalize mbuf. */
1994 	m->m_data = (caddr_t)(head + 1);
1995 	m->m_pkthdr.len = m->m_len = len;
1996 
1997 	/* Grab a reference to the source node. */
1998 	wh = mtod(m, struct ieee80211_frame *);
1999 
2000 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2001 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2002 		/* Check whether decryption was successful or not. */
2003 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2004 			DPRINTF(sc, WPI_DEBUG_RECV,
2005 			    "CCMP decryption failed 0x%x\n", flags);
2006 			goto fail2;
2007 		}
2008 		m->m_flags |= M_WEP;
2009 	}
2010 
2011 	if (len >= sizeof(struct ieee80211_frame_min))
2012 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2013 	else
2014 		ni = NULL;
2015 
2016 	sc->rx_tstamp = tail->tstamp;
2017 
2018 	if (ieee80211_radiotap_active(ic)) {
2019 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2020 
2021 		tap->wr_flags = 0;
2022 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2023 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2024 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2025 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2026 		tap->wr_tsft = tail->tstamp;
2027 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2028 		tap->wr_rate = plcp2rate(head->plcp);
2029 	}
2030 
2031 	WPI_UNLOCK(sc);
2032 
2033 	/* Send the frame to the 802.11 layer. */
2034 	if (ni != NULL) {
2035 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2036 		/* Node is no longer needed. */
2037 		ieee80211_free_node(ni);
2038 	} else
2039 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2040 
2041 	WPI_LOCK(sc);
2042 
2043 	return;
2044 
2045 fail2:	m_freem(m);
2046 
2047 fail1:	counter_u64_add(ic->ic_ierrors, 1);
2048 }
2049 
2050 static void
2051 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2052     struct wpi_rx_data *data)
2053 {
2054 	/* Ignore */
2055 }
2056 
2057 static void
2058 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2059 {
2060 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2061 	struct wpi_tx_data *data = &ring->data[desc->idx];
2062 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2063 	struct mbuf *m;
2064 	struct ieee80211_node *ni;
2065 	struct ieee80211vap *vap;
2066 	struct ieee80211com *ic;
2067 	uint32_t status = le32toh(stat->status);
2068 	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2069 
2070 	KASSERT(data->ni != NULL, ("no node"));
2071 	KASSERT(data->m != NULL, ("no mbuf"));
2072 
2073 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2074 
2075 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2076 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2077 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2078 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2079 
2080 	/* Unmap and free mbuf. */
2081 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2082 	bus_dmamap_unload(ring->data_dmat, data->map);
2083 	m = data->m, data->m = NULL;
2084 	ni = data->ni, data->ni = NULL;
2085 	vap = ni->ni_vap;
2086 	ic = vap->iv_ic;
2087 
2088 	/*
2089 	 * Update rate control statistics for the node.
2090 	 */
2091 	if (status & WPI_TX_STATUS_FAIL) {
2092 		ieee80211_ratectl_tx_complete(vap, ni,
2093 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2094 	} else
2095 		ieee80211_ratectl_tx_complete(vap, ni,
2096 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2097 
2098 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2099 
2100 	WPI_TXQ_STATE_LOCK(sc);
2101 	if (--ring->queued > 0)
2102 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2103 	else
2104 		callout_stop(&sc->tx_timeout);
2105 	WPI_TXQ_STATE_UNLOCK(sc);
2106 
2107 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2108 }
2109 
2110 /*
2111  * Process a "command done" firmware notification.  This is where we wakeup
2112  * processes waiting for a synchronous command completion.
2113  */
2114 static void
2115 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2116 {
2117 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2118 	struct wpi_tx_data *data;
2119 	struct wpi_tx_cmd *cmd;
2120 
2121 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2122 				   "type %s len %d\n", desc->qid, desc->idx,
2123 				   desc->flags, wpi_cmd_str(desc->type),
2124 				   le32toh(desc->len));
2125 
2126 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2127 		return;	/* Not a command ack. */
2128 
2129 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2130 
2131 	data = &ring->data[desc->idx];
2132 	cmd = &ring->cmd[desc->idx];
2133 
2134 	/* If the command was mapped in an mbuf, free it. */
2135 	if (data->m != NULL) {
2136 		bus_dmamap_sync(ring->data_dmat, data->map,
2137 		    BUS_DMASYNC_POSTWRITE);
2138 		bus_dmamap_unload(ring->data_dmat, data->map);
2139 		m_freem(data->m);
2140 		data->m = NULL;
2141 	}
2142 
2143 	wakeup(cmd);
2144 
2145 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2146 		struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
2147 
2148 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2149 		    BUS_DMASYNC_POSTREAD);
2150 
2151 		WPI_TXQ_LOCK(sc);
2152 		if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
2153 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2154 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2155 		} else {
2156 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2157 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2158 		}
2159 		WPI_TXQ_UNLOCK(sc);
2160 	}
2161 }
2162 
2163 static void
2164 wpi_notif_intr(struct wpi_softc *sc)
2165 {
2166 	struct ieee80211com *ic = &sc->sc_ic;
2167 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2168 	uint32_t hw;
2169 
2170 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2171 	    BUS_DMASYNC_POSTREAD);
2172 
2173 	hw = le32toh(sc->shared->next) & 0xfff;
2174 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2175 
2176 	while (sc->rxq.cur != hw) {
2177 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2178 
2179 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2180 		struct wpi_rx_desc *desc;
2181 
2182 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2183 		    BUS_DMASYNC_POSTREAD);
2184 		desc = mtod(data->m, struct wpi_rx_desc *);
2185 
2186 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2187 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2188 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2189 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2190 
2191 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2192 			/* Reply to a command. */
2193 			wpi_cmd_done(sc, desc);
2194 		}
2195 
2196 		switch (desc->type) {
2197 		case WPI_RX_DONE:
2198 			/* An 802.11 frame has been received. */
2199 			wpi_rx_done(sc, desc, data);
2200 
2201 			if (__predict_false(sc->sc_running == 0)) {
2202 				/* wpi_stop() was called. */
2203 				return;
2204 			}
2205 
2206 			break;
2207 
2208 		case WPI_TX_DONE:
2209 			/* An 802.11 frame has been transmitted. */
2210 			wpi_tx_done(sc, desc);
2211 			break;
2212 
2213 		case WPI_RX_STATISTICS:
2214 		case WPI_BEACON_STATISTICS:
2215 			wpi_rx_statistics(sc, desc, data);
2216 			break;
2217 
2218 		case WPI_BEACON_MISSED:
2219 		{
2220 			struct wpi_beacon_missed *miss =
2221 			    (struct wpi_beacon_missed *)(desc + 1);
2222 			uint32_t expected, misses, received, threshold;
2223 
2224 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2225 			    BUS_DMASYNC_POSTREAD);
2226 
2227 			misses = le32toh(miss->consecutive);
2228 			expected = le32toh(miss->expected);
2229 			received = le32toh(miss->received);
2230 			threshold = MAX(2, vap->iv_bmissthreshold);
2231 
2232 			DPRINTF(sc, WPI_DEBUG_BMISS,
2233 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2234 			    __func__, misses, le32toh(miss->total), received,
2235 			    expected);
2236 
2237 			if (misses >= threshold ||
2238 			    (received == 0 && expected >= threshold)) {
2239 				WPI_RXON_LOCK(sc);
2240 				if (callout_pending(&sc->scan_timeout)) {
2241 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2242 					    0, 1);
2243 				}
2244 				WPI_RXON_UNLOCK(sc);
2245 				if (vap->iv_state == IEEE80211_S_RUN &&
2246 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2247 					ieee80211_beacon_miss(ic);
2248 			}
2249 
2250 			break;
2251 		}
2252 #ifdef WPI_DEBUG
2253 		case WPI_BEACON_SENT:
2254 		{
2255 			struct wpi_tx_stat *stat =
2256 			    (struct wpi_tx_stat *)(desc + 1);
2257 			uint64_t *tsf = (uint64_t *)(stat + 1);
2258 			uint32_t *mode = (uint32_t *)(tsf + 1);
2259 
2260 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2261 			    BUS_DMASYNC_POSTREAD);
2262 
2263 			DPRINTF(sc, WPI_DEBUG_BEACON,
2264 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2265 			    "duration %u, status %x, tsf %ju, mode %x\n",
2266 			    stat->rtsfailcnt, stat->ackfailcnt,
2267 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2268 			    le32toh(stat->status), le64toh(*tsf),
2269 			    le32toh(*mode));
2270 
2271 			break;
2272 		}
2273 #endif
2274 		case WPI_UC_READY:
2275 		{
2276 			struct wpi_ucode_info *uc =
2277 			    (struct wpi_ucode_info *)(desc + 1);
2278 
2279 			/* The microcontroller is ready. */
2280 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2281 			    BUS_DMASYNC_POSTREAD);
2282 			DPRINTF(sc, WPI_DEBUG_RESET,
2283 			    "microcode alive notification version=%d.%d "
2284 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2285 			    uc->subtype, le32toh(uc->valid));
2286 
2287 			if (le32toh(uc->valid) != 1) {
2288 				device_printf(sc->sc_dev,
2289 				    "microcontroller initialization failed\n");
2290 				wpi_stop_locked(sc);
2291 				return;
2292 			}
2293 			/* Save the address of the error log in SRAM. */
2294 			sc->errptr = le32toh(uc->errptr);
2295 			break;
2296 		}
2297 		case WPI_STATE_CHANGED:
2298 		{
2299 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2300 			    BUS_DMASYNC_POSTREAD);
2301 
2302 			uint32_t *status = (uint32_t *)(desc + 1);
2303 
2304 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2305 			    le32toh(*status));
2306 
2307 			if (le32toh(*status) & 1) {
2308 				WPI_NT_LOCK(sc);
2309 				wpi_clear_node_table(sc);
2310 				WPI_NT_UNLOCK(sc);
2311 				taskqueue_enqueue(sc->sc_tq,
2312 				    &sc->sc_radiooff_task);
2313 				return;
2314 			}
2315 			break;
2316 		}
2317 #ifdef WPI_DEBUG
2318 		case WPI_START_SCAN:
2319 		{
2320 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2321 			    BUS_DMASYNC_POSTREAD);
2322 
2323 			struct wpi_start_scan *scan =
2324 			    (struct wpi_start_scan *)(desc + 1);
2325 			DPRINTF(sc, WPI_DEBUG_SCAN,
2326 			    "%s: scanning channel %d status %x\n",
2327 			    __func__, scan->chan, le32toh(scan->status));
2328 
2329 			break;
2330 		}
2331 #endif
2332 		case WPI_STOP_SCAN:
2333 		{
2334 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2335 			    BUS_DMASYNC_POSTREAD);
2336 
2337 			struct wpi_stop_scan *scan =
2338 			    (struct wpi_stop_scan *)(desc + 1);
2339 
2340 			DPRINTF(sc, WPI_DEBUG_SCAN,
2341 			    "scan finished nchan=%d status=%d chan=%d\n",
2342 			    scan->nchan, scan->status, scan->chan);
2343 
2344 			WPI_RXON_LOCK(sc);
2345 			callout_stop(&sc->scan_timeout);
2346 			WPI_RXON_UNLOCK(sc);
2347 			if (scan->status == WPI_SCAN_ABORTED)
2348 				ieee80211_cancel_scan(vap);
2349 			else
2350 				ieee80211_scan_next(vap);
2351 			break;
2352 		}
2353 		}
2354 
2355 		if (sc->rxq.cur % 8 == 0) {
2356 			/* Tell the firmware what we have processed. */
2357 			sc->sc_update_rx_ring(sc);
2358 		}
2359 	}
2360 }
2361 
2362 /*
2363  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2364  * from power-down sleep mode.
2365  */
2366 static void
2367 wpi_wakeup_intr(struct wpi_softc *sc)
2368 {
2369 	int qid;
2370 
2371 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2372 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2373 
2374 	/* Wakeup RX and TX rings. */
2375 	if (sc->rxq.update) {
2376 		sc->rxq.update = 0;
2377 		wpi_update_rx_ring(sc);
2378 	}
2379 	WPI_TXQ_LOCK(sc);
2380 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2381 		struct wpi_tx_ring *ring = &sc->txq[qid];
2382 
2383 		if (ring->update) {
2384 			ring->update = 0;
2385 			wpi_update_tx_ring(sc, ring);
2386 		}
2387 	}
2388 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2389 	WPI_TXQ_UNLOCK(sc);
2390 }
2391 
2392 /*
2393  * This function prints firmware registers
2394  */
2395 #ifdef WPI_DEBUG
2396 static void
2397 wpi_debug_registers(struct wpi_softc *sc)
2398 {
2399 	size_t i;
2400 	static const uint32_t csr_tbl[] = {
2401 		WPI_HW_IF_CONFIG,
2402 		WPI_INT,
2403 		WPI_INT_MASK,
2404 		WPI_FH_INT,
2405 		WPI_GPIO_IN,
2406 		WPI_RESET,
2407 		WPI_GP_CNTRL,
2408 		WPI_EEPROM,
2409 		WPI_EEPROM_GP,
2410 		WPI_GIO,
2411 		WPI_UCODE_GP1,
2412 		WPI_UCODE_GP2,
2413 		WPI_GIO_CHICKEN,
2414 		WPI_ANA_PLL,
2415 		WPI_DBG_HPET_MEM,
2416 	};
2417 	static const uint32_t prph_tbl[] = {
2418 		WPI_APMG_CLK_CTRL,
2419 		WPI_APMG_PS,
2420 		WPI_APMG_PCI_STT,
2421 		WPI_APMG_RFKILL,
2422 	};
2423 
2424 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2425 
2426 	for (i = 0; i < nitems(csr_tbl); i++) {
2427 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2428 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2429 
2430 		if ((i + 1) % 2 == 0)
2431 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2432 	}
2433 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2434 
2435 	if (wpi_nic_lock(sc) == 0) {
2436 		for (i = 0; i < nitems(prph_tbl); i++) {
2437 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2438 			    wpi_get_prph_string(prph_tbl[i]),
2439 			    wpi_prph_read(sc, prph_tbl[i]));
2440 
2441 			if ((i + 1) % 2 == 0)
2442 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2443 		}
2444 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2445 		wpi_nic_unlock(sc);
2446 	} else {
2447 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2448 		    "Cannot access internal registers.\n");
2449 	}
2450 }
2451 #endif
2452 
2453 /*
2454  * Dump the error log of the firmware when a firmware panic occurs.  Although
2455  * we can't debug the firmware because it is neither open source nor free, it
2456  * can help us to identify certain classes of problems.
2457  */
2458 static void
2459 wpi_fatal_intr(struct wpi_softc *sc)
2460 {
2461 	struct wpi_fw_dump dump;
2462 	uint32_t i, offset, count;
2463 
2464 	/* Check that the error log address is valid. */
2465 	if (sc->errptr < WPI_FW_DATA_BASE ||
2466 	    sc->errptr + sizeof (dump) >
2467 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2468 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2469 		    sc->errptr);
2470 		return;
2471 	}
2472 	if (wpi_nic_lock(sc) != 0) {
2473 		printf("%s: could not read firmware error log\n", __func__);
2474 		return;
2475 	}
2476 	/* Read number of entries in the log. */
2477 	count = wpi_mem_read(sc, sc->errptr);
2478 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2479 		printf("%s: invalid count field (count = %u)\n", __func__,
2480 		    count);
2481 		wpi_nic_unlock(sc);
2482 		return;
2483 	}
2484 	/* Skip "count" field. */
2485 	offset = sc->errptr + sizeof (uint32_t);
2486 	printf("firmware error log (count = %u):\n", count);
2487 	for (i = 0; i < count; i++) {
2488 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2489 		    sizeof (dump) / sizeof (uint32_t));
2490 
2491 		printf("  error type = \"%s\" (0x%08X)\n",
2492 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2493 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2494 		    dump.desc);
2495 		printf("  error data      = 0x%08X\n",
2496 		    dump.data);
2497 		printf("  branch link     = 0x%08X%08X\n",
2498 		    dump.blink[0], dump.blink[1]);
2499 		printf("  interrupt link  = 0x%08X%08X\n",
2500 		    dump.ilink[0], dump.ilink[1]);
2501 		printf("  time            = %u\n", dump.time);
2502 
2503 		offset += sizeof (dump);
2504 	}
2505 	wpi_nic_unlock(sc);
2506 	/* Dump driver status (TX and RX rings) while we're here. */
2507 	printf("driver status:\n");
2508 	WPI_TXQ_LOCK(sc);
2509 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2510 		struct wpi_tx_ring *ring = &sc->txq[i];
2511 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2512 		    i, ring->qid, ring->cur, ring->queued);
2513 	}
2514 	WPI_TXQ_UNLOCK(sc);
2515 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2516 }
2517 
2518 static void
2519 wpi_intr(void *arg)
2520 {
2521 	struct wpi_softc *sc = arg;
2522 	uint32_t r1, r2;
2523 
2524 	WPI_LOCK(sc);
2525 
2526 	/* Disable interrupts. */
2527 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2528 
2529 	r1 = WPI_READ(sc, WPI_INT);
2530 
2531 	if (__predict_false(r1 == 0xffffffff ||
2532 			   (r1 & 0xfffffff0) == 0xa5a5a5a0))
2533 		goto end;	/* Hardware gone! */
2534 
2535 	r2 = WPI_READ(sc, WPI_FH_INT);
2536 
2537 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2538 	    r1, r2);
2539 
2540 	if (r1 == 0 && r2 == 0)
2541 		goto done;	/* Interrupt not for us. */
2542 
2543 	/* Acknowledge interrupts. */
2544 	WPI_WRITE(sc, WPI_INT, r1);
2545 	WPI_WRITE(sc, WPI_FH_INT, r2);
2546 
2547 	if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
2548 		device_printf(sc->sc_dev, "fatal firmware error\n");
2549 #ifdef WPI_DEBUG
2550 		wpi_debug_registers(sc);
2551 #endif
2552 		wpi_fatal_intr(sc);
2553 		DPRINTF(sc, WPI_DEBUG_HW,
2554 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2555 		    "(Hardware Error)");
2556 		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2557 		goto end;
2558 	}
2559 
2560 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2561 	    (r2 & WPI_FH_INT_RX))
2562 		wpi_notif_intr(sc);
2563 
2564 	if (r1 & WPI_INT_ALIVE)
2565 		wakeup(sc);	/* Firmware is alive. */
2566 
2567 	if (r1 & WPI_INT_WAKEUP)
2568 		wpi_wakeup_intr(sc);
2569 
2570 done:
2571 	/* Re-enable interrupts. */
2572 	if (__predict_true(sc->sc_running))
2573 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2574 
2575 end:	WPI_UNLOCK(sc);
2576 }
2577 
2578 static void
2579 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
2580 {
2581 	struct wpi_tx_ring *ring;
2582 	struct wpi_tx_data *data;
2583 	uint8_t cur;
2584 
2585 	WPI_TXQ_LOCK(sc);
2586 	ring = &sc->txq[ac];
2587 
2588 	while (ring->pending != 0) {
2589 		ring->pending--;
2590 		cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2591 		data = &ring->data[cur];
2592 
2593 		bus_dmamap_sync(ring->data_dmat, data->map,
2594 		    BUS_DMASYNC_POSTWRITE);
2595 		bus_dmamap_unload(ring->data_dmat, data->map);
2596 		m_freem(data->m);
2597 		data->m = NULL;
2598 
2599 		ieee80211_node_decref(data->ni);
2600 		data->ni = NULL;
2601 	}
2602 
2603 	WPI_TXQ_UNLOCK(sc);
2604 }
2605 
2606 static int
2607 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2608 {
2609 	struct ieee80211_frame *wh;
2610 	struct wpi_tx_cmd *cmd;
2611 	struct wpi_tx_data *data;
2612 	struct wpi_tx_desc *desc;
2613 	struct wpi_tx_ring *ring;
2614 	struct mbuf *m1;
2615 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2616 	uint8_t cur, pad;
2617 	uint16_t hdrlen;
2618 	int error, i, nsegs, totlen, frag;
2619 
2620 	WPI_TXQ_LOCK(sc);
2621 
2622 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2623 
2624 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2625 
2626 	if (__predict_false(sc->sc_running == 0)) {
2627 		/* wpi_stop() was called */
2628 		error = ENETDOWN;
2629 		goto end;
2630 	}
2631 
2632 	wh = mtod(buf->m, struct ieee80211_frame *);
2633 	hdrlen = ieee80211_anyhdrsize(wh);
2634 	totlen = buf->m->m_pkthdr.len;
2635 	frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
2636 
2637 	if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
2638 		error = EINVAL;
2639 		goto end;
2640 	}
2641 
2642 	if (hdrlen & 3) {
2643 		/* First segment length must be a multiple of 4. */
2644 		pad = 4 - (hdrlen & 3);
2645 	} else
2646 		pad = 0;
2647 
2648 	ring = &sc->txq[buf->ac];
2649 	cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2650 	desc = &ring->desc[cur];
2651 	data = &ring->data[cur];
2652 
2653 	/* Prepare TX firmware command. */
2654 	cmd = &ring->cmd[cur];
2655 	cmd->code = buf->code;
2656 	cmd->flags = 0;
2657 	cmd->qid = ring->qid;
2658 	cmd->idx = cur;
2659 
2660 	memcpy(cmd->data, buf->data, buf->size);
2661 
2662 	/* Save and trim IEEE802.11 header. */
2663 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2664 	m_adj(buf->m, hdrlen);
2665 
2666 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2667 	    segs, &nsegs, BUS_DMA_NOWAIT);
2668 	if (error != 0 && error != EFBIG) {
2669 		device_printf(sc->sc_dev,
2670 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2671 		goto end;
2672 	}
2673 	if (error != 0) {
2674 		/* Too many DMA segments, linearize mbuf. */
2675 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2676 		if (m1 == NULL) {
2677 			device_printf(sc->sc_dev,
2678 			    "%s: could not defrag mbuf\n", __func__);
2679 			error = ENOBUFS;
2680 			goto end;
2681 		}
2682 		buf->m = m1;
2683 
2684 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2685 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2686 		if (__predict_false(error != 0)) {
2687 			/* XXX fix this (applicable to the iwn(4) too) */
2688 			/*
2689 			 * NB: Do not return error;
2690 			 * original mbuf does not exist anymore.
2691 			 */
2692 			device_printf(sc->sc_dev,
2693 			    "%s: can't map mbuf (error %d)\n", __func__,
2694 			    error);
2695 			if (ring->qid < WPI_CMD_QUEUE_NUM) {
2696 				if_inc_counter(buf->ni->ni_vap->iv_ifp,
2697 				    IFCOUNTER_OERRORS, 1);
2698 				if (!frag)
2699 					ieee80211_free_node(buf->ni);
2700 			}
2701 			m_freem(buf->m);
2702 			error = 0;
2703 			goto end;
2704 		}
2705 	}
2706 
2707 	KASSERT(nsegs < WPI_MAX_SCATTER,
2708 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2709 	     nsegs, WPI_MAX_SCATTER));
2710 
2711 	data->m = buf->m;
2712 	data->ni = buf->ni;
2713 
2714 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2715 	    __func__, ring->qid, cur, totlen, nsegs);
2716 
2717 	/* Fill TX descriptor. */
2718 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2719 	/* First DMA segment is used by the TX command. */
2720 	desc->segs[0].addr = htole32(data->cmd_paddr);
2721 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2722 	/* Other DMA segments are for data payload. */
2723 	seg = &segs[0];
2724 	for (i = 1; i <= nsegs; i++) {
2725 		desc->segs[i].addr = htole32(seg->ds_addr);
2726 		desc->segs[i].len  = htole32(seg->ds_len);
2727 		seg++;
2728 	}
2729 
2730 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2731 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2732 	    BUS_DMASYNC_PREWRITE);
2733 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2734 	    BUS_DMASYNC_PREWRITE);
2735 
2736 	ring->pending += 1;
2737 
2738 	if (!frag) {
2739 		if (ring->qid < WPI_CMD_QUEUE_NUM) {
2740 			WPI_TXQ_STATE_LOCK(sc);
2741 			ring->queued += ring->pending;
2742 			callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
2743 			    sc);
2744 			WPI_TXQ_STATE_UNLOCK(sc);
2745 		}
2746 
2747 		/* Kick TX ring. */
2748 		ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2749 		ring->pending = 0;
2750 		sc->sc_update_tx_ring(sc, ring);
2751 	} else
2752 		ieee80211_node_incref(data->ni);
2753 
2754 end:	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
2755 	    __func__);
2756 
2757 	WPI_TXQ_UNLOCK(sc);
2758 
2759 	return (error);
2760 }
2761 
2762 /*
2763  * Construct the data packet for a transmit buffer.
2764  */
2765 static int
2766 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2767 {
2768 	const struct ieee80211_txparam *tp;
2769 	struct ieee80211vap *vap = ni->ni_vap;
2770 	struct ieee80211com *ic = ni->ni_ic;
2771 	struct wpi_node *wn = WPI_NODE(ni);
2772 	struct ieee80211_channel *chan;
2773 	struct ieee80211_frame *wh;
2774 	struct ieee80211_key *k = NULL;
2775 	struct wpi_buf tx_data;
2776 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2777 	uint32_t flags;
2778 	uint16_t ac, qos;
2779 	uint8_t tid, type, rate;
2780 	int swcrypt, ismcast, totlen;
2781 
2782 	wh = mtod(m, struct ieee80211_frame *);
2783 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2784 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2785 	swcrypt = 1;
2786 
2787 	/* Select EDCA Access Category and TX ring for this frame. */
2788 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2789 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2790 		tid = qos & IEEE80211_QOS_TID;
2791 	} else {
2792 		qos = 0;
2793 		tid = 0;
2794 	}
2795 	ac = M_WME_GETAC(m);
2796 
2797 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2798 		ni->ni_chan : ic->ic_curchan;
2799 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2800 
2801 	/* Choose a TX rate index. */
2802 	if (type == IEEE80211_FC0_TYPE_MGT)
2803 		rate = tp->mgmtrate;
2804 	else if (ismcast)
2805 		rate = tp->mcastrate;
2806 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2807 		rate = tp->ucastrate;
2808 	else if (m->m_flags & M_EAPOL)
2809 		rate = tp->mgmtrate;
2810 	else {
2811 		/* XXX pass pktlen */
2812 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2813 		rate = ni->ni_txrate;
2814 	}
2815 
2816 	/* Encrypt the frame if need be. */
2817 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2818 		/* Retrieve key for TX. */
2819 		k = ieee80211_crypto_encap(ni, m);
2820 		if (k == NULL)
2821 			return (ENOBUFS);
2822 
2823 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2824 
2825 		/* 802.11 header may have moved. */
2826 		wh = mtod(m, struct ieee80211_frame *);
2827 	}
2828 	totlen = m->m_pkthdr.len;
2829 
2830 	if (ieee80211_radiotap_active_vap(vap)) {
2831 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2832 
2833 		tap->wt_flags = 0;
2834 		tap->wt_rate = rate;
2835 		if (k != NULL)
2836 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2837 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2838 			tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2839 
2840 		ieee80211_radiotap_tx(vap, m);
2841 	}
2842 
2843 	flags = 0;
2844 	if (!ismcast) {
2845 		/* Unicast frame, check if an ACK is expected. */
2846 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2847 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2848 			flags |= WPI_TX_NEED_ACK;
2849 	}
2850 
2851 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2852 		flags |= WPI_TX_AUTO_SEQ;
2853 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2854 		flags |= WPI_TX_MORE_FRAG;
2855 
2856 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2857 	if (!ismcast) {
2858 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2859 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2860 			flags |= WPI_TX_NEED_RTS;
2861 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2862 		    WPI_RATE_IS_OFDM(rate)) {
2863 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2864 				flags |= WPI_TX_NEED_CTS;
2865 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2866 				flags |= WPI_TX_NEED_RTS;
2867 		}
2868 
2869 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2870 			flags |= WPI_TX_FULL_TXOP;
2871 	}
2872 
2873 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2874 	if (type == IEEE80211_FC0_TYPE_MGT) {
2875 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2876 
2877 		/* Tell HW to set timestamp in probe responses. */
2878 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2879 			flags |= WPI_TX_INSERT_TSTAMP;
2880 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2881 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2882 			tx->timeout = htole16(3);
2883 		else
2884 			tx->timeout = htole16(2);
2885 	}
2886 
2887 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2888 		tx->id = WPI_ID_BROADCAST;
2889 	else {
2890 		if (wn->id == WPI_ID_UNDEFINED) {
2891 			device_printf(sc->sc_dev,
2892 			    "%s: undefined node id\n", __func__);
2893 			return (EINVAL);
2894 		}
2895 
2896 		tx->id = wn->id;
2897 	}
2898 
2899 	if (!swcrypt) {
2900 		switch (k->wk_cipher->ic_cipher) {
2901 		case IEEE80211_CIPHER_AES_CCM:
2902 			tx->security = WPI_CIPHER_CCMP;
2903 			break;
2904 
2905 		default:
2906 			break;
2907 		}
2908 
2909 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2910 	}
2911 
2912 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
2913 		struct mbuf *next = m->m_nextpkt;
2914 
2915 		tx->lnext = htole16(next->m_pkthdr.len);
2916 		tx->fnext = htole32(tx->security |
2917 				    (flags & WPI_TX_NEED_ACK) |
2918 				    WPI_NEXT_STA_ID(tx->id));
2919 	}
2920 
2921 	tx->len = htole16(totlen);
2922 	tx->flags = htole32(flags);
2923 	tx->plcp = rate2plcp(rate);
2924 	tx->tid = tid;
2925 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2926 	tx->ofdm_mask = 0xff;
2927 	tx->cck_mask = 0x0f;
2928 	tx->rts_ntries = 7;
2929 	tx->data_ntries = tp->maxretry;
2930 
2931 	tx_data.ni = ni;
2932 	tx_data.m = m;
2933 	tx_data.size = sizeof(struct wpi_cmd_data);
2934 	tx_data.code = WPI_CMD_TX_DATA;
2935 	tx_data.ac = ac;
2936 
2937 	return wpi_cmd2(sc, &tx_data);
2938 }
2939 
2940 static int
2941 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2942     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2943 {
2944 	struct ieee80211vap *vap = ni->ni_vap;
2945 	struct ieee80211_key *k = NULL;
2946 	struct ieee80211_frame *wh;
2947 	struct wpi_buf tx_data;
2948 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2949 	uint32_t flags;
2950 	uint8_t ac, type, rate;
2951 	int swcrypt, totlen;
2952 
2953 	wh = mtod(m, struct ieee80211_frame *);
2954 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2955 	swcrypt = 1;
2956 
2957 	ac = params->ibp_pri & 3;
2958 
2959 	/* Choose a TX rate index. */
2960 	rate = params->ibp_rate0;
2961 
2962 	flags = 0;
2963 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2964 		flags |= WPI_TX_AUTO_SEQ;
2965 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2966 		flags |= WPI_TX_NEED_ACK;
2967 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2968 		flags |= WPI_TX_NEED_RTS;
2969 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2970 		flags |= WPI_TX_NEED_CTS;
2971 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2972 		flags |= WPI_TX_FULL_TXOP;
2973 
2974 	/* Encrypt the frame if need be. */
2975 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2976 		/* Retrieve key for TX. */
2977 		k = ieee80211_crypto_encap(ni, m);
2978 		if (k == NULL)
2979 			return (ENOBUFS);
2980 
2981 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2982 
2983 		/* 802.11 header may have moved. */
2984 		wh = mtod(m, struct ieee80211_frame *);
2985 	}
2986 	totlen = m->m_pkthdr.len;
2987 
2988 	if (ieee80211_radiotap_active_vap(vap)) {
2989 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2990 
2991 		tap->wt_flags = 0;
2992 		tap->wt_rate = rate;
2993 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2994 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2995 
2996 		ieee80211_radiotap_tx(vap, m);
2997 	}
2998 
2999 	memset(tx, 0, sizeof (struct wpi_cmd_data));
3000 	if (type == IEEE80211_FC0_TYPE_MGT) {
3001 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3002 
3003 		/* Tell HW to set timestamp in probe responses. */
3004 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3005 			flags |= WPI_TX_INSERT_TSTAMP;
3006 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3007 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3008 			tx->timeout = htole16(3);
3009 		else
3010 			tx->timeout = htole16(2);
3011 	}
3012 
3013 	if (!swcrypt) {
3014 		switch (k->wk_cipher->ic_cipher) {
3015 		case IEEE80211_CIPHER_AES_CCM:
3016 			tx->security = WPI_CIPHER_CCMP;
3017 			break;
3018 
3019 		default:
3020 			break;
3021 		}
3022 
3023 		memcpy(tx->key, k->wk_key, k->wk_keylen);
3024 	}
3025 
3026 	tx->len = htole16(totlen);
3027 	tx->flags = htole32(flags);
3028 	tx->plcp = rate2plcp(rate);
3029 	tx->id = WPI_ID_BROADCAST;
3030 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3031 	tx->rts_ntries = params->ibp_try1;
3032 	tx->data_ntries = params->ibp_try0;
3033 
3034 	tx_data.ni = ni;
3035 	tx_data.m = m;
3036 	tx_data.size = sizeof(struct wpi_cmd_data);
3037 	tx_data.code = WPI_CMD_TX_DATA;
3038 	tx_data.ac = ac;
3039 
3040 	return wpi_cmd2(sc, &tx_data);
3041 }
3042 
3043 static __inline int
3044 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
3045 {
3046 	struct wpi_tx_ring *ring = &sc->txq[ac];
3047 	int retval;
3048 
3049 	WPI_TXQ_STATE_LOCK(sc);
3050 	retval = WPI_TX_RING_HIMARK - ring->queued;
3051 	WPI_TXQ_STATE_UNLOCK(sc);
3052 
3053 	return retval;
3054 }
3055 
3056 static int
3057 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3058     const struct ieee80211_bpf_params *params)
3059 {
3060 	struct ieee80211com *ic = ni->ni_ic;
3061 	struct wpi_softc *sc = ic->ic_softc;
3062 	uint16_t ac;
3063 	int error = 0;
3064 
3065 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3066 
3067 	ac = M_WME_GETAC(m);
3068 
3069 	WPI_TX_LOCK(sc);
3070 
3071 	/* NB: no fragments here */
3072 	if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
3073 		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3074 		goto unlock;
3075 	}
3076 
3077 	if (params == NULL) {
3078 		/*
3079 		 * Legacy path; interpret frame contents to decide
3080 		 * precisely how to send the frame.
3081 		 */
3082 		error = wpi_tx_data(sc, m, ni);
3083 	} else {
3084 		/*
3085 		 * Caller supplied explicit parameters to use in
3086 		 * sending the frame.
3087 		 */
3088 		error = wpi_tx_data_raw(sc, m, ni, params);
3089 	}
3090 
3091 unlock:	WPI_TX_UNLOCK(sc);
3092 
3093 	if (error != 0) {
3094 		m_freem(m);
3095 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3096 
3097 		return error;
3098 	}
3099 
3100 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3101 
3102 	return 0;
3103 }
3104 
3105 static int
3106 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3107 {
3108 	struct wpi_softc *sc = ic->ic_softc;
3109 	struct ieee80211_node *ni;
3110 	struct mbuf *mnext;
3111 	uint16_t ac;
3112 	int error, nmbufs;
3113 
3114 	WPI_TX_LOCK(sc);
3115 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3116 
3117 	/* Check if interface is up & running. */
3118 	if (__predict_false(sc->sc_running == 0)) {
3119 		error = ENXIO;
3120 		goto unlock;
3121 	}
3122 
3123 	nmbufs = 1;
3124 	for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
3125 		nmbufs++;
3126 
3127 	/* Check for available space. */
3128 	ac = M_WME_GETAC(m);
3129 	if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
3130 		error = ENOBUFS;
3131 		goto unlock;
3132 	}
3133 
3134 	error = 0;
3135 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3136 	do {
3137 		mnext = m->m_nextpkt;
3138 		if (wpi_tx_data(sc, m, ni) != 0) {
3139 			if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
3140 			    nmbufs);
3141 			wpi_free_txfrags(sc, ac);
3142 			ieee80211_free_mbuf(m);
3143 			ieee80211_free_node(ni);
3144 			break;
3145 		}
3146 	} while((m = mnext) != NULL);
3147 
3148 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3149 
3150 unlock:	WPI_TX_UNLOCK(sc);
3151 
3152 	return (error);
3153 }
3154 
3155 static void
3156 wpi_watchdog_rfkill(void *arg)
3157 {
3158 	struct wpi_softc *sc = arg;
3159 	struct ieee80211com *ic = &sc->sc_ic;
3160 
3161 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3162 
3163 	/* No need to lock firmware memory. */
3164 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3165 		/* Radio kill switch is still off. */
3166 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3167 		    sc);
3168 	} else
3169 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3170 }
3171 
3172 static void
3173 wpi_scan_timeout(void *arg)
3174 {
3175 	struct wpi_softc *sc = arg;
3176 	struct ieee80211com *ic = &sc->sc_ic;
3177 
3178 	ic_printf(ic, "scan timeout\n");
3179 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3180 }
3181 
3182 static void
3183 wpi_tx_timeout(void *arg)
3184 {
3185 	struct wpi_softc *sc = arg;
3186 	struct ieee80211com *ic = &sc->sc_ic;
3187 
3188 	ic_printf(ic, "device timeout\n");
3189 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3190 }
3191 
3192 static void
3193 wpi_parent(struct ieee80211com *ic)
3194 {
3195 	struct wpi_softc *sc = ic->ic_softc;
3196 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3197 
3198 	if (ic->ic_nrunning > 0) {
3199 		if (wpi_init(sc) == 0) {
3200 			ieee80211_notify_radio(ic, 1);
3201 			ieee80211_start_all(ic);
3202 		} else {
3203 			ieee80211_notify_radio(ic, 0);
3204 			ieee80211_stop(vap);
3205 		}
3206 	} else
3207 		wpi_stop(sc);
3208 }
3209 
3210 /*
3211  * Send a command to the firmware.
3212  */
3213 static int
3214 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
3215     int async)
3216 {
3217 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3218 	struct wpi_tx_desc *desc;
3219 	struct wpi_tx_data *data;
3220 	struct wpi_tx_cmd *cmd;
3221 	struct mbuf *m;
3222 	bus_addr_t paddr;
3223 	uint16_t totlen;
3224 	int error;
3225 
3226 	WPI_TXQ_LOCK(sc);
3227 
3228 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3229 
3230 	if (__predict_false(sc->sc_running == 0)) {
3231 		/* wpi_stop() was called */
3232 		if (code == WPI_CMD_SCAN)
3233 			error = ENETDOWN;
3234 		else
3235 			error = 0;
3236 
3237 		goto fail;
3238 	}
3239 
3240 	if (async == 0)
3241 		WPI_LOCK_ASSERT(sc);
3242 
3243 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
3244 	    __func__, wpi_cmd_str(code), size, async);
3245 
3246 	desc = &ring->desc[ring->cur];
3247 	data = &ring->data[ring->cur];
3248 	totlen = 4 + size;
3249 
3250 	if (size > sizeof cmd->data) {
3251 		/* Command is too large to fit in a descriptor. */
3252 		if (totlen > MCLBYTES) {
3253 			error = EINVAL;
3254 			goto fail;
3255 		}
3256 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3257 		if (m == NULL) {
3258 			error = ENOMEM;
3259 			goto fail;
3260 		}
3261 		cmd = mtod(m, struct wpi_tx_cmd *);
3262 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3263 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3264 		if (error != 0) {
3265 			m_freem(m);
3266 			goto fail;
3267 		}
3268 		data->m = m;
3269 	} else {
3270 		cmd = &ring->cmd[ring->cur];
3271 		paddr = data->cmd_paddr;
3272 	}
3273 
3274 	cmd->code = code;
3275 	cmd->flags = 0;
3276 	cmd->qid = ring->qid;
3277 	cmd->idx = ring->cur;
3278 	memcpy(cmd->data, buf, size);
3279 
3280 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3281 	desc->segs[0].addr = htole32(paddr);
3282 	desc->segs[0].len  = htole32(totlen);
3283 
3284 	if (size > sizeof cmd->data) {
3285 		bus_dmamap_sync(ring->data_dmat, data->map,
3286 		    BUS_DMASYNC_PREWRITE);
3287 	} else {
3288 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3289 		    BUS_DMASYNC_PREWRITE);
3290 	}
3291 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3292 	    BUS_DMASYNC_PREWRITE);
3293 
3294 	/* Kick command ring. */
3295 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3296 	sc->sc_update_tx_ring(sc, ring);
3297 
3298 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3299 
3300 	WPI_TXQ_UNLOCK(sc);
3301 
3302 	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3303 
3304 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3305 
3306 	WPI_TXQ_UNLOCK(sc);
3307 
3308 	return error;
3309 }
3310 
3311 /*
3312  * Configure HW multi-rate retries.
3313  */
3314 static int
3315 wpi_mrr_setup(struct wpi_softc *sc)
3316 {
3317 	struct ieee80211com *ic = &sc->sc_ic;
3318 	struct wpi_mrr_setup mrr;
3319 	uint8_t i;
3320 	int error;
3321 
3322 	/* CCK rates (not used with 802.11a). */
3323 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3324 		mrr.rates[i].flags = 0;
3325 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3326 		/* Fallback to the immediate lower CCK rate (if any.) */
3327 		mrr.rates[i].next =
3328 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3329 		/* Try twice at this rate before falling back to "next". */
3330 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3331 	}
3332 	/* OFDM rates (not used with 802.11b). */
3333 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3334 		mrr.rates[i].flags = 0;
3335 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3336 		/* Fallback to the immediate lower rate (if any.) */
3337 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3338 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3339 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3340 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3341 		    i - 1;
3342 		/* Try twice at this rate before falling back to "next". */
3343 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3344 	}
3345 	/* Setup MRR for control frames. */
3346 	mrr.which = htole32(WPI_MRR_CTL);
3347 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3348 	if (error != 0) {
3349 		device_printf(sc->sc_dev,
3350 		    "could not setup MRR for control frames\n");
3351 		return error;
3352 	}
3353 	/* Setup MRR for data frames. */
3354 	mrr.which = htole32(WPI_MRR_DATA);
3355 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3356 	if (error != 0) {
3357 		device_printf(sc->sc_dev,
3358 		    "could not setup MRR for data frames\n");
3359 		return error;
3360 	}
3361 	return 0;
3362 }
3363 
3364 static int
3365 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3366 {
3367 	struct ieee80211com *ic = ni->ni_ic;
3368 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3369 	struct wpi_node *wn = WPI_NODE(ni);
3370 	struct wpi_node_info node;
3371 	int error;
3372 
3373 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3374 
3375 	if (wn->id == WPI_ID_UNDEFINED)
3376 		return EINVAL;
3377 
3378 	memset(&node, 0, sizeof node);
3379 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3380 	node.id = wn->id;
3381 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3382 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3383 	node.action = htole32(WPI_ACTION_SET_RATE);
3384 	node.antenna = WPI_ANTENNA_BOTH;
3385 
3386 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3387 	    wn->id, ether_sprintf(ni->ni_macaddr));
3388 
3389 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3390 	if (error != 0) {
3391 		device_printf(sc->sc_dev,
3392 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3393 		    error);
3394 		return error;
3395 	}
3396 
3397 	if (wvp->wv_gtk != 0) {
3398 		error = wpi_set_global_keys(ni);
3399 		if (error != 0) {
3400 			device_printf(sc->sc_dev,
3401 			    "%s: error while setting global keys\n", __func__);
3402 			return ENXIO;
3403 		}
3404 	}
3405 
3406 	return 0;
3407 }
3408 
3409 /*
3410  * Broadcast node is used to send group-addressed and management frames.
3411  */
3412 static int
3413 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3414 {
3415 	struct ieee80211com *ic = &sc->sc_ic;
3416 	struct wpi_node_info node;
3417 
3418 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3419 
3420 	memset(&node, 0, sizeof node);
3421 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3422 	node.id = WPI_ID_BROADCAST;
3423 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3424 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3425 	node.action = htole32(WPI_ACTION_SET_RATE);
3426 	node.antenna = WPI_ANTENNA_BOTH;
3427 
3428 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3429 
3430 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3431 }
3432 
3433 static int
3434 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3435 {
3436 	struct wpi_node *wn = WPI_NODE(ni);
3437 	int error;
3438 
3439 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3440 
3441 	wn->id = wpi_add_node_entry_sta(sc);
3442 
3443 	if ((error = wpi_add_node(sc, ni)) != 0) {
3444 		wpi_del_node_entry(sc, wn->id);
3445 		wn->id = WPI_ID_UNDEFINED;
3446 		return error;
3447 	}
3448 
3449 	return 0;
3450 }
3451 
3452 static int
3453 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3454 {
3455 	struct wpi_node *wn = WPI_NODE(ni);
3456 	int error;
3457 
3458 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3459 	    ("the node %d was added before", wn->id));
3460 
3461 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3462 
3463 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3464 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3465 		return ENOMEM;
3466 	}
3467 
3468 	if ((error = wpi_add_node(sc, ni)) != 0) {
3469 		wpi_del_node_entry(sc, wn->id);
3470 		wn->id = WPI_ID_UNDEFINED;
3471 		return error;
3472 	}
3473 
3474 	return 0;
3475 }
3476 
3477 static void
3478 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3479 {
3480 	struct wpi_node *wn = WPI_NODE(ni);
3481 	struct wpi_cmd_del_node node;
3482 	int error;
3483 
3484 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3485 
3486 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3487 
3488 	memset(&node, 0, sizeof node);
3489 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3490 	node.count = 1;
3491 
3492 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3493 	    wn->id, ether_sprintf(ni->ni_macaddr));
3494 
3495 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3496 	if (error != 0) {
3497 		device_printf(sc->sc_dev,
3498 		    "%s: could not delete node %u, error %d\n", __func__,
3499 		    wn->id, error);
3500 	}
3501 }
3502 
3503 static int
3504 wpi_updateedca(struct ieee80211com *ic)
3505 {
3506 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3507 	struct wpi_softc *sc = ic->ic_softc;
3508 	struct wpi_edca_params cmd;
3509 	int aci, error;
3510 
3511 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3512 
3513 	memset(&cmd, 0, sizeof cmd);
3514 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3515 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3516 		const struct wmeParams *ac =
3517 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3518 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3519 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3520 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3521 		cmd.ac[aci].txoplimit =
3522 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3523 
3524 		DPRINTF(sc, WPI_DEBUG_EDCA,
3525 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3526 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3527 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3528 		    cmd.ac[aci].txoplimit);
3529 	}
3530 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3531 
3532 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3533 
3534 	return error;
3535 #undef WPI_EXP2
3536 }
3537 
3538 static void
3539 wpi_set_promisc(struct wpi_softc *sc)
3540 {
3541 	struct ieee80211com *ic = &sc->sc_ic;
3542 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3543 	uint32_t promisc_filter;
3544 
3545 	promisc_filter = WPI_FILTER_CTL;
3546 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3547 		promisc_filter |= WPI_FILTER_PROMISC;
3548 
3549 	if (ic->ic_promisc > 0)
3550 		sc->rxon.filter |= htole32(promisc_filter);
3551 	else
3552 		sc->rxon.filter &= ~htole32(promisc_filter);
3553 }
3554 
3555 static void
3556 wpi_update_promisc(struct ieee80211com *ic)
3557 {
3558 	struct wpi_softc *sc = ic->ic_softc;
3559 
3560 	WPI_LOCK(sc);
3561 	if (sc->sc_running == 0) {
3562 		WPI_UNLOCK(sc);
3563 		return;
3564 	}
3565 	WPI_UNLOCK(sc);
3566 
3567 	WPI_RXON_LOCK(sc);
3568 	wpi_set_promisc(sc);
3569 
3570 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3571 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3572 		    __func__);
3573 	}
3574 	WPI_RXON_UNLOCK(sc);
3575 }
3576 
3577 static void
3578 wpi_update_mcast(struct ieee80211com *ic)
3579 {
3580 	/* Ignore */
3581 }
3582 
3583 static void
3584 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3585 {
3586 	struct wpi_cmd_led led;
3587 
3588 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3589 
3590 	led.which = which;
3591 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3592 	led.off = off;
3593 	led.on = on;
3594 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3595 }
3596 
3597 static int
3598 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3599 {
3600 	struct wpi_cmd_timing cmd;
3601 	uint64_t val, mod;
3602 
3603 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3604 
3605 	memset(&cmd, 0, sizeof cmd);
3606 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3607 	cmd.bintval = htole16(ni->ni_intval);
3608 	cmd.lintval = htole16(10);
3609 
3610 	/* Compute remaining time until next beacon. */
3611 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3612 	mod = le64toh(cmd.tstamp) % val;
3613 	cmd.binitval = htole32((uint32_t)(val - mod));
3614 
3615 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3616 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3617 
3618 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3619 }
3620 
3621 /*
3622  * This function is called periodically (every 60 seconds) to adjust output
3623  * power to temperature changes.
3624  */
3625 static void
3626 wpi_power_calibration(struct wpi_softc *sc)
3627 {
3628 	int temp;
3629 
3630 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3631 
3632 	/* Update sensor data. */
3633 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3634 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3635 
3636 	/* Sanity-check read value. */
3637 	if (temp < -260 || temp > 25) {
3638 		/* This can't be correct, ignore. */
3639 		DPRINTF(sc, WPI_DEBUG_TEMP,
3640 		    "out-of-range temperature reported: %d\n", temp);
3641 		return;
3642 	}
3643 
3644 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3645 
3646 	/* Adjust Tx power if need be. */
3647 	if (abs(temp - sc->temp) <= 6)
3648 		return;
3649 
3650 	sc->temp = temp;
3651 
3652 	if (wpi_set_txpower(sc, 1) != 0) {
3653 		/* just warn, too bad for the automatic calibration... */
3654 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3655 	}
3656 }
3657 
3658 /*
3659  * Set TX power for current channel.
3660  */
3661 static int
3662 wpi_set_txpower(struct wpi_softc *sc, int async)
3663 {
3664 	struct wpi_power_group *group;
3665 	struct wpi_cmd_txpower cmd;
3666 	uint8_t chan;
3667 	int idx, is_chan_5ghz, i;
3668 
3669 	/* Retrieve current channel from last RXON. */
3670 	chan = sc->rxon.chan;
3671 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3672 
3673 	/* Find the TX power group to which this channel belongs. */
3674 	if (is_chan_5ghz) {
3675 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3676 			if (chan <= group->chan)
3677 				break;
3678 	} else
3679 		group = &sc->groups[0];
3680 
3681 	memset(&cmd, 0, sizeof cmd);
3682 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3683 	cmd.chan = htole16(chan);
3684 
3685 	/* Set TX power for all OFDM and CCK rates. */
3686 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3687 		/* Retrieve TX power for this channel/rate. */
3688 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3689 
3690 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3691 
3692 		if (is_chan_5ghz) {
3693 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3694 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3695 		} else {
3696 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3697 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3698 		}
3699 		DPRINTF(sc, WPI_DEBUG_TEMP,
3700 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3701 	}
3702 
3703 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3704 }
3705 
3706 /*
3707  * Determine Tx power index for a given channel/rate combination.
3708  * This takes into account the regulatory information from EEPROM and the
3709  * current temperature.
3710  */
3711 static int
3712 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3713     uint8_t chan, int is_chan_5ghz, int ridx)
3714 {
3715 /* Fixed-point arithmetic division using a n-bit fractional part. */
3716 #define fdivround(a, b, n)	\
3717 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3718 
3719 /* Linear interpolation. */
3720 #define interpolate(x, x1, y1, x2, y2, n)	\
3721 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3722 
3723 	struct wpi_power_sample *sample;
3724 	int pwr, idx;
3725 
3726 	/* Default TX power is group maximum TX power minus 3dB. */
3727 	pwr = group->maxpwr / 2;
3728 
3729 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3730 	switch (ridx) {
3731 	case WPI_RIDX_OFDM36:
3732 		pwr -= is_chan_5ghz ?  5 : 0;
3733 		break;
3734 	case WPI_RIDX_OFDM48:
3735 		pwr -= is_chan_5ghz ? 10 : 7;
3736 		break;
3737 	case WPI_RIDX_OFDM54:
3738 		pwr -= is_chan_5ghz ? 12 : 9;
3739 		break;
3740 	}
3741 
3742 	/* Never exceed the channel maximum allowed TX power. */
3743 	pwr = min(pwr, sc->maxpwr[chan]);
3744 
3745 	/* Retrieve TX power index into gain tables from samples. */
3746 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3747 		if (pwr > sample[1].power)
3748 			break;
3749 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3750 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3751 	    sample[1].power, sample[1].index, 19);
3752 
3753 	/*-
3754 	 * Adjust power index based on current temperature:
3755 	 * - if cooler than factory-calibrated: decrease output power
3756 	 * - if warmer than factory-calibrated: increase output power
3757 	 */
3758 	idx -= (sc->temp - group->temp) * 11 / 100;
3759 
3760 	/* Decrease TX power for CCK rates (-5dB). */
3761 	if (ridx >= WPI_RIDX_CCK1)
3762 		idx += 10;
3763 
3764 	/* Make sure idx stays in a valid range. */
3765 	if (idx < 0)
3766 		return 0;
3767 	if (idx > WPI_MAX_PWR_INDEX)
3768 		return WPI_MAX_PWR_INDEX;
3769 	return idx;
3770 
3771 #undef interpolate
3772 #undef fdivround
3773 }
3774 
3775 /*
3776  * Set STA mode power saving level (between 0 and 5).
3777  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3778  */
3779 static int
3780 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3781 {
3782 	struct wpi_pmgt_cmd cmd;
3783 	const struct wpi_pmgt *pmgt;
3784 	uint32_t max, reg;
3785 	uint8_t skip_dtim;
3786 	int i;
3787 
3788 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3789 	    "%s: dtim=%d, level=%d, async=%d\n",
3790 	    __func__, dtim, level, async);
3791 
3792 	/* Select which PS parameters to use. */
3793 	if (dtim <= 10)
3794 		pmgt = &wpi_pmgt[0][level];
3795 	else
3796 		pmgt = &wpi_pmgt[1][level];
3797 
3798 	memset(&cmd, 0, sizeof cmd);
3799 	if (level != 0)	/* not CAM */
3800 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3801 	/* Retrieve PCIe Active State Power Management (ASPM). */
3802 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
3803 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
3804 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3805 
3806 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3807 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3808 
3809 	if (dtim == 0) {
3810 		dtim = 1;
3811 		skip_dtim = 0;
3812 	} else
3813 		skip_dtim = pmgt->skip_dtim;
3814 
3815 	if (skip_dtim != 0) {
3816 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3817 		max = pmgt->intval[4];
3818 		if (max == (uint32_t)-1)
3819 			max = dtim * (skip_dtim + 1);
3820 		else if (max > dtim)
3821 			max = (max / dtim) * dtim;
3822 	} else
3823 		max = dtim;
3824 
3825 	for (i = 0; i < 5; i++)
3826 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3827 
3828 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3829 }
3830 
3831 static int
3832 wpi_send_btcoex(struct wpi_softc *sc)
3833 {
3834 	struct wpi_bluetooth cmd;
3835 
3836 	memset(&cmd, 0, sizeof cmd);
3837 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3838 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3839 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3840 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3841 	    __func__);
3842 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3843 }
3844 
3845 static int
3846 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3847 {
3848 	int error;
3849 
3850 	if (async)
3851 		WPI_RXON_LOCK_ASSERT(sc);
3852 
3853 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3854 		struct wpi_assoc rxon_assoc;
3855 
3856 		rxon_assoc.flags = sc->rxon.flags;
3857 		rxon_assoc.filter = sc->rxon.filter;
3858 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3859 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3860 		rxon_assoc.reserved = 0;
3861 
3862 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3863 		    sizeof (struct wpi_assoc), async);
3864 		if (error != 0) {
3865 			device_printf(sc->sc_dev,
3866 			    "RXON_ASSOC command failed, error %d\n", error);
3867 			return error;
3868 		}
3869 	} else {
3870 		if (async) {
3871 			WPI_NT_LOCK(sc);
3872 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3873 			    sizeof (struct wpi_rxon), async);
3874 			if (error == 0)
3875 				wpi_clear_node_table(sc);
3876 			WPI_NT_UNLOCK(sc);
3877 		} else {
3878 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3879 			    sizeof (struct wpi_rxon), async);
3880 			if (error == 0)
3881 				wpi_clear_node_table(sc);
3882 		}
3883 
3884 		if (error != 0) {
3885 			device_printf(sc->sc_dev,
3886 			    "RXON command failed, error %d\n", error);
3887 			return error;
3888 		}
3889 
3890 		/* Add broadcast node. */
3891 		error = wpi_add_broadcast_node(sc, async);
3892 		if (error != 0) {
3893 			device_printf(sc->sc_dev,
3894 			    "could not add broadcast node, error %d\n", error);
3895 			return error;
3896 		}
3897 	}
3898 
3899 	/* Configuration has changed, set Tx power accordingly. */
3900 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3901 		device_printf(sc->sc_dev,
3902 		    "%s: could not set TX power, error %d\n", __func__, error);
3903 		return error;
3904 	}
3905 
3906 	return 0;
3907 }
3908 
3909 /**
3910  * Configure the card to listen to a particular channel, this transisions the
3911  * card in to being able to receive frames from remote devices.
3912  */
3913 static int
3914 wpi_config(struct wpi_softc *sc)
3915 {
3916 	struct ieee80211com *ic = &sc->sc_ic;
3917 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3918 	struct ieee80211_channel *c = ic->ic_curchan;
3919 	int error;
3920 
3921 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3922 
3923 	/* Set power saving level to CAM during initialization. */
3924 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3925 		device_printf(sc->sc_dev,
3926 		    "%s: could not set power saving level\n", __func__);
3927 		return error;
3928 	}
3929 
3930 	/* Configure bluetooth coexistence. */
3931 	if ((error = wpi_send_btcoex(sc)) != 0) {
3932 		device_printf(sc->sc_dev,
3933 		    "could not configure bluetooth coexistence\n");
3934 		return error;
3935 	}
3936 
3937 	/* Configure adapter. */
3938 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3939 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3940 
3941 	/* Set default channel. */
3942 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3943 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3944 	if (IEEE80211_IS_CHAN_2GHZ(c))
3945 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3946 
3947 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3948 	switch (ic->ic_opmode) {
3949 	case IEEE80211_M_STA:
3950 		sc->rxon.mode = WPI_MODE_STA;
3951 		break;
3952 	case IEEE80211_M_IBSS:
3953 		sc->rxon.mode = WPI_MODE_IBSS;
3954 		sc->rxon.filter |= WPI_FILTER_BEACON;
3955 		break;
3956 	case IEEE80211_M_HOSTAP:
3957 		/* XXX workaround for beaconing */
3958 		sc->rxon.mode = WPI_MODE_IBSS;
3959 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3960 		break;
3961 	case IEEE80211_M_AHDEMO:
3962 		sc->rxon.mode = WPI_MODE_HOSTAP;
3963 		break;
3964 	case IEEE80211_M_MONITOR:
3965 		sc->rxon.mode = WPI_MODE_MONITOR;
3966 		break;
3967 	default:
3968 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3969 		    ic->ic_opmode);
3970 		return EINVAL;
3971 	}
3972 	sc->rxon.filter = htole32(sc->rxon.filter);
3973 	wpi_set_promisc(sc);
3974 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3975 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3976 
3977 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3978 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3979 		    __func__);
3980 		return error;
3981 	}
3982 
3983 	/* Setup rate scalling. */
3984 	if ((error = wpi_mrr_setup(sc)) != 0) {
3985 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3986 		    error);
3987 		return error;
3988 	}
3989 
3990 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3991 
3992 	return 0;
3993 }
3994 
3995 static uint16_t
3996 wpi_get_active_dwell_time(struct wpi_softc *sc,
3997     struct ieee80211_channel *c, uint8_t n_probes)
3998 {
3999 	/* No channel? Default to 2GHz settings. */
4000 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
4001 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
4002 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
4003 	}
4004 
4005 	/* 5GHz dwell time. */
4006 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4007 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4008 }
4009 
4010 /*
4011  * Limit the total dwell time.
4012  *
4013  * Returns the dwell time in milliseconds.
4014  */
4015 static uint16_t
4016 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4017 {
4018 	struct ieee80211com *ic = &sc->sc_ic;
4019 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4020 	uint16_t bintval = 0;
4021 
4022 	/* bintval is in TU (1.024mS) */
4023 	if (vap != NULL)
4024 		bintval = vap->iv_bss->ni_intval;
4025 
4026 	/*
4027 	 * If it's non-zero, we should calculate the minimum of
4028 	 * it and the DWELL_BASE.
4029 	 *
4030 	 * XXX Yes, the math should take into account that bintval
4031 	 * is 1.024mS, not 1mS..
4032 	 */
4033 	if (bintval > 0) {
4034 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4035 		    bintval);
4036 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4037 	}
4038 
4039 	/* No association context? Default. */
4040 	return dwell_time;
4041 }
4042 
4043 static uint16_t
4044 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4045 {
4046 	uint16_t passive;
4047 
4048 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4049 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4050 	else
4051 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4052 
4053 	/* Clamp to the beacon interval if we're associated. */
4054 	return (wpi_limit_dwell(sc, passive));
4055 }
4056 
4057 static uint32_t
4058 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4059 {
4060 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4061 	uint32_t nbeacons = time / bintval;
4062 
4063 	if (mod > WPI_PAUSE_MAX_TIME)
4064 		mod = WPI_PAUSE_MAX_TIME;
4065 
4066 	return WPI_PAUSE_SCAN(nbeacons, mod);
4067 }
4068 
4069 /*
4070  * Send a scan request to the firmware.
4071  */
4072 static int
4073 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4074 {
4075 	struct ieee80211com *ic = &sc->sc_ic;
4076 	struct ieee80211_scan_state *ss = ic->ic_scan;
4077 	struct ieee80211vap *vap = ss->ss_vap;
4078 	struct wpi_scan_hdr *hdr;
4079 	struct wpi_cmd_data *tx;
4080 	struct wpi_scan_essid *essids;
4081 	struct wpi_scan_chan *chan;
4082 	struct ieee80211_frame *wh;
4083 	struct ieee80211_rateset *rs;
4084 	uint16_t bintval, buflen, dwell_active, dwell_passive;
4085 	uint8_t *buf, *frm, i, nssid;
4086 	int bgscan, error;
4087 
4088 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4089 
4090 	/*
4091 	 * We are absolutely not allowed to send a scan command when another
4092 	 * scan command is pending.
4093 	 */
4094 	if (callout_pending(&sc->scan_timeout)) {
4095 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4096 		    __func__);
4097 		error = EAGAIN;
4098 		goto fail;
4099 	}
4100 
4101 	bgscan = wpi_check_bss_filter(sc);
4102 	bintval = vap->iv_bss->ni_intval;
4103 	if (bgscan != 0 &&
4104 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4105 		error = EOPNOTSUPP;
4106 		goto fail;
4107 	}
4108 
4109 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4110 	if (buf == NULL) {
4111 		device_printf(sc->sc_dev,
4112 		    "%s: could not allocate buffer for scan command\n",
4113 		    __func__);
4114 		error = ENOMEM;
4115 		goto fail;
4116 	}
4117 	hdr = (struct wpi_scan_hdr *)buf;
4118 
4119 	/*
4120 	 * Move to the next channel if no packets are received within 10 msecs
4121 	 * after sending the probe request.
4122 	 */
4123 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4124 	hdr->quiet_threshold = htole16(1);
4125 
4126 	if (bgscan != 0) {
4127 		/*
4128 		 * Max needs to be greater than active and passive and quiet!
4129 		 * It's also in microseconds!
4130 		 */
4131 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4132 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4133 		    bintval));
4134 	}
4135 
4136 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4137 
4138 	tx = (struct wpi_cmd_data *)(hdr + 1);
4139 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4140 	tx->id = WPI_ID_BROADCAST;
4141 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4142 
4143 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4144 		/* Send probe requests at 6Mbps. */
4145 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4146 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4147 	} else {
4148 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4149 		/* Send probe requests at 1Mbps. */
4150 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4151 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4152 	}
4153 
4154 	essids = (struct wpi_scan_essid *)(tx + 1);
4155 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4156 	for (i = 0; i < nssid; i++) {
4157 		essids[i].id = IEEE80211_ELEMID_SSID;
4158 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4159 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4160 #ifdef WPI_DEBUG
4161 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4162 			printf("Scanning Essid: ");
4163 			ieee80211_print_essid(essids[i].data, essids[i].len);
4164 			printf("\n");
4165 		}
4166 #endif
4167 	}
4168 
4169 	/*
4170 	 * Build a probe request frame.  Most of the following code is a
4171 	 * copy & paste of what is done in net80211.
4172 	 */
4173 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4174 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4175 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4176 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4177 	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4178 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4179 	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4180 
4181 	frm = (uint8_t *)(wh + 1);
4182 	frm = ieee80211_add_ssid(frm, NULL, 0);
4183 	frm = ieee80211_add_rates(frm, rs);
4184 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4185 		frm = ieee80211_add_xrates(frm, rs);
4186 
4187 	/* Set length of probe request. */
4188 	tx->len = htole16(frm - (uint8_t *)wh);
4189 
4190 	/*
4191 	 * Construct information about the channel that we
4192 	 * want to scan. The firmware expects this to be directly
4193 	 * after the scan probe request
4194 	 */
4195 	chan = (struct wpi_scan_chan *)frm;
4196 	chan->chan = ieee80211_chan2ieee(ic, c);
4197 	chan->flags = 0;
4198 	if (nssid) {
4199 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4200 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4201 	} else
4202 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4203 
4204 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4205 		chan->flags |= WPI_CHAN_ACTIVE;
4206 
4207 	/*
4208 	 * Calculate the active/passive dwell times.
4209 	 */
4210 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4211 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4212 
4213 	/* Make sure they're valid. */
4214 	if (dwell_active > dwell_passive)
4215 		dwell_active = dwell_passive;
4216 
4217 	chan->active = htole16(dwell_active);
4218 	chan->passive = htole16(dwell_passive);
4219 
4220 	chan->dsp_gain = 0x6e;  /* Default level */
4221 
4222 	if (IEEE80211_IS_CHAN_5GHZ(c))
4223 		chan->rf_gain = 0x3b;
4224 	else
4225 		chan->rf_gain = 0x28;
4226 
4227 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4228 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4229 
4230 	hdr->nchan++;
4231 
4232 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4233 		/* XXX Force probe request transmission. */
4234 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4235 
4236 		chan++;
4237 
4238 		/* Reduce unnecessary delay. */
4239 		chan->flags = 0;
4240 		chan->passive = chan->active = hdr->quiet_time;
4241 
4242 		hdr->nchan++;
4243 	}
4244 
4245 	chan++;
4246 
4247 	buflen = (uint8_t *)chan - buf;
4248 	hdr->len = htole16(buflen);
4249 
4250 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4251 	    hdr->nchan);
4252 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4253 	free(buf, M_DEVBUF);
4254 
4255 	if (error != 0)
4256 		goto fail;
4257 
4258 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4259 
4260 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4261 
4262 	return 0;
4263 
4264 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4265 
4266 	return error;
4267 }
4268 
4269 static int
4270 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4271 {
4272 	struct ieee80211com *ic = vap->iv_ic;
4273 	struct ieee80211_node *ni = vap->iv_bss;
4274 	struct ieee80211_channel *c = ni->ni_chan;
4275 	int error;
4276 
4277 	WPI_RXON_LOCK(sc);
4278 
4279 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4280 
4281 	/* Update adapter configuration. */
4282 	sc->rxon.associd = 0;
4283 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4284 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4285 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4286 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4287 	if (IEEE80211_IS_CHAN_2GHZ(c))
4288 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4289 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4290 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4291 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4292 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4293 	if (IEEE80211_IS_CHAN_A(c)) {
4294 		sc->rxon.cck_mask  = 0;
4295 		sc->rxon.ofdm_mask = 0x15;
4296 	} else if (IEEE80211_IS_CHAN_B(c)) {
4297 		sc->rxon.cck_mask  = 0x03;
4298 		sc->rxon.ofdm_mask = 0;
4299 	} else {
4300 		/* Assume 802.11b/g. */
4301 		sc->rxon.cck_mask  = 0x0f;
4302 		sc->rxon.ofdm_mask = 0x15;
4303 	}
4304 
4305 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4306 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4307 	    sc->rxon.ofdm_mask);
4308 
4309 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4310 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4311 		    __func__);
4312 	}
4313 
4314 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4315 
4316 	WPI_RXON_UNLOCK(sc);
4317 
4318 	return error;
4319 }
4320 
4321 static int
4322 wpi_config_beacon(struct wpi_vap *wvp)
4323 {
4324 	struct ieee80211vap *vap = &wvp->wv_vap;
4325 	struct ieee80211com *ic = vap->iv_ic;
4326 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4327 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4328 	struct wpi_softc *sc = ic->ic_softc;
4329 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4330 	struct ieee80211_tim_ie *tie;
4331 	struct mbuf *m;
4332 	uint8_t *ptr;
4333 	int error;
4334 
4335 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4336 
4337 	WPI_VAP_LOCK_ASSERT(wvp);
4338 
4339 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4340 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4341 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4342 
4343 	/* XXX seems to be unused */
4344 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4345 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4346 		ptr = mtod(bcn->m, uint8_t *);
4347 
4348 		cmd->tim = htole16(bo->bo_tim - ptr);
4349 		cmd->timsz = tie->tim_len;
4350 	}
4351 
4352 	/* Necessary for recursion in ieee80211_beacon_update(). */
4353 	m = bcn->m;
4354 	bcn->m = m_dup(m, M_NOWAIT);
4355 	if (bcn->m == NULL) {
4356 		device_printf(sc->sc_dev,
4357 		    "%s: could not copy beacon frame\n", __func__);
4358 		error = ENOMEM;
4359 		goto end;
4360 	}
4361 
4362 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4363 		device_printf(sc->sc_dev,
4364 		    "%s: could not update beacon frame, error %d", __func__,
4365 		    error);
4366 		m_freem(bcn->m);
4367 	}
4368 
4369 	/* Restore mbuf. */
4370 end:	bcn->m = m;
4371 
4372 	return error;
4373 }
4374 
4375 static int
4376 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4377 {
4378 	struct ieee80211vap *vap = ni->ni_vap;
4379 	struct wpi_vap *wvp = WPI_VAP(vap);
4380 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4381 	struct mbuf *m;
4382 	int error;
4383 
4384 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4385 
4386 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4387 		return EINVAL;
4388 
4389 	m = ieee80211_beacon_alloc(ni);
4390 	if (m == NULL) {
4391 		device_printf(sc->sc_dev,
4392 		    "%s: could not allocate beacon frame\n", __func__);
4393 		return ENOMEM;
4394 	}
4395 
4396 	WPI_VAP_LOCK(wvp);
4397 	if (bcn->m != NULL)
4398 		m_freem(bcn->m);
4399 
4400 	bcn->m = m;
4401 
4402 	error = wpi_config_beacon(wvp);
4403 	WPI_VAP_UNLOCK(wvp);
4404 
4405 	return error;
4406 }
4407 
4408 static void
4409 wpi_update_beacon(struct ieee80211vap *vap, int item)
4410 {
4411 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4412 	struct wpi_vap *wvp = WPI_VAP(vap);
4413 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4414 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4415 	struct ieee80211_node *ni = vap->iv_bss;
4416 	int mcast = 0;
4417 
4418 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4419 
4420 	WPI_VAP_LOCK(wvp);
4421 	if (bcn->m == NULL) {
4422 		bcn->m = ieee80211_beacon_alloc(ni);
4423 		if (bcn->m == NULL) {
4424 			device_printf(sc->sc_dev,
4425 			    "%s: could not allocate beacon frame\n", __func__);
4426 
4427 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4428 			    __func__);
4429 
4430 			WPI_VAP_UNLOCK(wvp);
4431 			return;
4432 		}
4433 	}
4434 	WPI_VAP_UNLOCK(wvp);
4435 
4436 	if (item == IEEE80211_BEACON_TIM)
4437 		mcast = 1;	/* TODO */
4438 
4439 	setbit(bo->bo_flags, item);
4440 	ieee80211_beacon_update(ni, bcn->m, mcast);
4441 
4442 	WPI_VAP_LOCK(wvp);
4443 	wpi_config_beacon(wvp);
4444 	WPI_VAP_UNLOCK(wvp);
4445 
4446 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4447 }
4448 
4449 static void
4450 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4451 {
4452 	struct ieee80211vap *vap = ni->ni_vap;
4453 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4454 	struct wpi_node *wn = WPI_NODE(ni);
4455 	int error;
4456 
4457 	WPI_NT_LOCK(sc);
4458 
4459 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4460 
4461 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4462 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4463 			device_printf(sc->sc_dev,
4464 			    "%s: could not add IBSS node, error %d\n",
4465 			    __func__, error);
4466 		}
4467 	}
4468 	WPI_NT_UNLOCK(sc);
4469 }
4470 
4471 static int
4472 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4473 {
4474 	struct ieee80211com *ic = vap->iv_ic;
4475 	struct ieee80211_node *ni = vap->iv_bss;
4476 	struct ieee80211_channel *c = ni->ni_chan;
4477 	int error;
4478 
4479 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4480 
4481 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4482 		/* Link LED blinks while monitoring. */
4483 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4484 		return 0;
4485 	}
4486 
4487 	/* XXX kernel panic workaround */
4488 	if (c == IEEE80211_CHAN_ANYC) {
4489 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4490 		    __func__);
4491 		return EINVAL;
4492 	}
4493 
4494 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4495 		device_printf(sc->sc_dev,
4496 		    "%s: could not set timing, error %d\n", __func__, error);
4497 		return error;
4498 	}
4499 
4500 	/* Update adapter configuration. */
4501 	WPI_RXON_LOCK(sc);
4502 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4503 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4504 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4505 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4506 	if (IEEE80211_IS_CHAN_2GHZ(c))
4507 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4508 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4509 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4510 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4511 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4512 	if (IEEE80211_IS_CHAN_A(c)) {
4513 		sc->rxon.cck_mask  = 0;
4514 		sc->rxon.ofdm_mask = 0x15;
4515 	} else if (IEEE80211_IS_CHAN_B(c)) {
4516 		sc->rxon.cck_mask  = 0x03;
4517 		sc->rxon.ofdm_mask = 0;
4518 	} else {
4519 		/* Assume 802.11b/g. */
4520 		sc->rxon.cck_mask  = 0x0f;
4521 		sc->rxon.ofdm_mask = 0x15;
4522 	}
4523 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4524 
4525 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4526 	    sc->rxon.chan, sc->rxon.flags);
4527 
4528 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4529 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4530 		    __func__);
4531 		return error;
4532 	}
4533 
4534 	/* Start periodic calibration timer. */
4535 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4536 
4537 	WPI_RXON_UNLOCK(sc);
4538 
4539 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4540 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4541 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4542 			device_printf(sc->sc_dev,
4543 			    "%s: could not setup beacon, error %d\n", __func__,
4544 			    error);
4545 			return error;
4546 		}
4547 	}
4548 
4549 	if (vap->iv_opmode == IEEE80211_M_STA) {
4550 		/* Add BSS node. */
4551 		WPI_NT_LOCK(sc);
4552 		error = wpi_add_sta_node(sc, ni);
4553 		WPI_NT_UNLOCK(sc);
4554 		if (error != 0) {
4555 			device_printf(sc->sc_dev,
4556 			    "%s: could not add BSS node, error %d\n", __func__,
4557 			    error);
4558 			return error;
4559 		}
4560 	}
4561 
4562 	/* Link LED always on while associated. */
4563 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4564 
4565 	/* Enable power-saving mode if requested by user. */
4566 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4567 	    vap->iv_opmode != IEEE80211_M_IBSS)
4568 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4569 
4570 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4571 
4572 	return 0;
4573 }
4574 
4575 static int
4576 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4577 {
4578 	const struct ieee80211_cipher *cip = k->wk_cipher;
4579 	struct ieee80211vap *vap = ni->ni_vap;
4580 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4581 	struct wpi_node *wn = WPI_NODE(ni);
4582 	struct wpi_node_info node;
4583 	uint16_t kflags;
4584 	int error;
4585 
4586 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4587 
4588 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4589 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4590 		    __func__);
4591 		return 0;
4592 	}
4593 
4594 	switch (cip->ic_cipher) {
4595 	case IEEE80211_CIPHER_AES_CCM:
4596 		kflags = WPI_KFLAG_CCMP;
4597 		break;
4598 
4599 	default:
4600 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4601 		    cip->ic_cipher);
4602 		return 0;
4603 	}
4604 
4605 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4606 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4607 		kflags |= WPI_KFLAG_MULTICAST;
4608 
4609 	memset(&node, 0, sizeof node);
4610 	node.id = wn->id;
4611 	node.control = WPI_NODE_UPDATE;
4612 	node.flags = WPI_FLAG_KEY_SET;
4613 	node.kflags = htole16(kflags);
4614 	memcpy(node.key, k->wk_key, k->wk_keylen);
4615 again:
4616 	DPRINTF(sc, WPI_DEBUG_KEY,
4617 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4618 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4619 	    node.id, ether_sprintf(ni->ni_macaddr));
4620 
4621 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4622 	if (error != 0) {
4623 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4624 		    error);
4625 		return !error;
4626 	}
4627 
4628 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4629 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4630 		kflags |= WPI_KFLAG_MULTICAST;
4631 		node.kflags = htole16(kflags);
4632 
4633 		goto again;
4634 	}
4635 
4636 	return 1;
4637 }
4638 
4639 static void
4640 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4641 {
4642 	const struct ieee80211_key *k = arg;
4643 	struct ieee80211vap *vap = ni->ni_vap;
4644 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4645 	struct wpi_node *wn = WPI_NODE(ni);
4646 	int error;
4647 
4648 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4649 		return;
4650 
4651 	WPI_NT_LOCK(sc);
4652 	error = wpi_load_key(ni, k);
4653 	WPI_NT_UNLOCK(sc);
4654 
4655 	if (error == 0) {
4656 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4657 		    __func__);
4658 	}
4659 }
4660 
4661 static int
4662 wpi_set_global_keys(struct ieee80211_node *ni)
4663 {
4664 	struct ieee80211vap *vap = ni->ni_vap;
4665 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4666 	int error = 1;
4667 
4668 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4669 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4670 			error = wpi_load_key(ni, wk);
4671 
4672 	return !error;
4673 }
4674 
4675 static int
4676 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4677 {
4678 	struct ieee80211vap *vap = ni->ni_vap;
4679 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4680 	struct wpi_node *wn = WPI_NODE(ni);
4681 	struct wpi_node_info node;
4682 	uint16_t kflags;
4683 	int error;
4684 
4685 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4686 
4687 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4688 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4689 		return 1;	/* Nothing to do. */
4690 	}
4691 
4692 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4693 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4694 		kflags |= WPI_KFLAG_MULTICAST;
4695 
4696 	memset(&node, 0, sizeof node);
4697 	node.id = wn->id;
4698 	node.control = WPI_NODE_UPDATE;
4699 	node.flags = WPI_FLAG_KEY_SET;
4700 	node.kflags = htole16(kflags);
4701 again:
4702 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4703 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4704 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4705 
4706 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4707 	if (error != 0) {
4708 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4709 		    error);
4710 		return !error;
4711 	}
4712 
4713 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4714 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4715 		kflags |= WPI_KFLAG_MULTICAST;
4716 		node.kflags = htole16(kflags);
4717 
4718 		goto again;
4719 	}
4720 
4721 	return 1;
4722 }
4723 
4724 static void
4725 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4726 {
4727 	const struct ieee80211_key *k = arg;
4728 	struct ieee80211vap *vap = ni->ni_vap;
4729 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4730 	struct wpi_node *wn = WPI_NODE(ni);
4731 	int error;
4732 
4733 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4734 		return;
4735 
4736 	WPI_NT_LOCK(sc);
4737 	error = wpi_del_key(ni, k);
4738 	WPI_NT_UNLOCK(sc);
4739 
4740 	if (error == 0) {
4741 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4742 		    __func__);
4743 	}
4744 }
4745 
4746 static int
4747 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4748     int set)
4749 {
4750 	struct ieee80211com *ic = vap->iv_ic;
4751 	struct wpi_softc *sc = ic->ic_softc;
4752 	struct wpi_vap *wvp = WPI_VAP(vap);
4753 	struct ieee80211_node *ni;
4754 	int error, ni_ref = 0;
4755 
4756 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4757 
4758 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4759 		/* Not for us. */
4760 		return 1;
4761 	}
4762 
4763 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4764 		/* XMIT keys are handled in wpi_tx_data(). */
4765 		return 1;
4766 	}
4767 
4768 	/* Handle group keys. */
4769 	if (&vap->iv_nw_keys[0] <= k &&
4770 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4771 		WPI_NT_LOCK(sc);
4772 		if (set)
4773 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4774 		else
4775 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4776 		WPI_NT_UNLOCK(sc);
4777 
4778 		if (vap->iv_state == IEEE80211_S_RUN) {
4779 			ieee80211_iterate_nodes(&ic->ic_sta,
4780 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4781 			    __DECONST(void *, k));
4782 		}
4783 
4784 		return 1;
4785 	}
4786 
4787 	switch (vap->iv_opmode) {
4788 	case IEEE80211_M_STA:
4789 		ni = vap->iv_bss;
4790 		break;
4791 
4792 	case IEEE80211_M_IBSS:
4793 	case IEEE80211_M_AHDEMO:
4794 	case IEEE80211_M_HOSTAP:
4795 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4796 		if (ni == NULL)
4797 			return 0;	/* should not happen */
4798 
4799 		ni_ref = 1;
4800 		break;
4801 
4802 	default:
4803 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4804 		    vap->iv_opmode);
4805 		return 0;
4806 	}
4807 
4808 	WPI_NT_LOCK(sc);
4809 	if (set)
4810 		error = wpi_load_key(ni, k);
4811 	else
4812 		error = wpi_del_key(ni, k);
4813 	WPI_NT_UNLOCK(sc);
4814 
4815 	if (ni_ref)
4816 		ieee80211_node_decref(ni);
4817 
4818 	return error;
4819 }
4820 
4821 static int
4822 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4823 {
4824 	return wpi_process_key(vap, k, 1);
4825 }
4826 
4827 static int
4828 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4829 {
4830 	return wpi_process_key(vap, k, 0);
4831 }
4832 
4833 /*
4834  * This function is called after the runtime firmware notifies us of its
4835  * readiness (called in a process context).
4836  */
4837 static int
4838 wpi_post_alive(struct wpi_softc *sc)
4839 {
4840 	int ntries, error;
4841 
4842 	/* Check (again) that the radio is not disabled. */
4843 	if ((error = wpi_nic_lock(sc)) != 0)
4844 		return error;
4845 
4846 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4847 
4848 	/* NB: Runtime firmware must be up and running. */
4849 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4850 		device_printf(sc->sc_dev,
4851 		    "RF switch: radio disabled (%s)\n", __func__);
4852 		wpi_nic_unlock(sc);
4853 		return EPERM;   /* :-) */
4854 	}
4855 	wpi_nic_unlock(sc);
4856 
4857 	/* Wait for thermal sensor to calibrate. */
4858 	for (ntries = 0; ntries < 1000; ntries++) {
4859 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4860 			break;
4861 		DELAY(10);
4862 	}
4863 
4864 	if (ntries == 1000) {
4865 		device_printf(sc->sc_dev,
4866 		    "timeout waiting for thermal sensor calibration\n");
4867 		return ETIMEDOUT;
4868 	}
4869 
4870 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4871 	return 0;
4872 }
4873 
4874 /*
4875  * The firmware boot code is small and is intended to be copied directly into
4876  * the NIC internal memory (no DMA transfer).
4877  */
4878 static int
4879 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
4880 {
4881 	int error, ntries;
4882 
4883 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4884 
4885 	size /= sizeof (uint32_t);
4886 
4887 	if ((error = wpi_nic_lock(sc)) != 0)
4888 		return error;
4889 
4890 	/* Copy microcode image into NIC memory. */
4891 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4892 	    (const uint32_t *)ucode, size);
4893 
4894 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4895 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4896 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4897 
4898 	/* Start boot load now. */
4899 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4900 
4901 	/* Wait for transfer to complete. */
4902 	for (ntries = 0; ntries < 1000; ntries++) {
4903 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4904 		DPRINTF(sc, WPI_DEBUG_HW,
4905 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4906 		    WPI_FH_TX_STATUS_IDLE(6),
4907 		    status & WPI_FH_TX_STATUS_IDLE(6));
4908 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4909 			DPRINTF(sc, WPI_DEBUG_HW,
4910 			    "Status Match! - ntries = %d\n", ntries);
4911 			break;
4912 		}
4913 		DELAY(10);
4914 	}
4915 	if (ntries == 1000) {
4916 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4917 		    __func__);
4918 		wpi_nic_unlock(sc);
4919 		return ETIMEDOUT;
4920 	}
4921 
4922 	/* Enable boot after power up. */
4923 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4924 
4925 	wpi_nic_unlock(sc);
4926 	return 0;
4927 }
4928 
4929 static int
4930 wpi_load_firmware(struct wpi_softc *sc)
4931 {
4932 	struct wpi_fw_info *fw = &sc->fw;
4933 	struct wpi_dma_info *dma = &sc->fw_dma;
4934 	int error;
4935 
4936 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4937 
4938 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4939 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4940 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4941 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4942 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4943 
4944 	/* Tell adapter where to find initialization sections. */
4945 	if ((error = wpi_nic_lock(sc)) != 0)
4946 		return error;
4947 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4948 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4949 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4950 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4951 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4952 	wpi_nic_unlock(sc);
4953 
4954 	/* Load firmware boot code. */
4955 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4956 	if (error != 0) {
4957 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4958 		    __func__);
4959 		return error;
4960 	}
4961 
4962 	/* Now press "execute". */
4963 	WPI_WRITE(sc, WPI_RESET, 0);
4964 
4965 	/* Wait at most one second for first alive notification. */
4966 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4967 		device_printf(sc->sc_dev,
4968 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4969 		    __func__, error);
4970 		return error;
4971 	}
4972 
4973 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4974 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4975 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4976 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4977 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4978 
4979 	/* Tell adapter where to find runtime sections. */
4980 	if ((error = wpi_nic_lock(sc)) != 0)
4981 		return error;
4982 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4983 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4984 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4985 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4986 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4987 	    WPI_FW_UPDATED | fw->main.textsz);
4988 	wpi_nic_unlock(sc);
4989 
4990 	return 0;
4991 }
4992 
4993 static int
4994 wpi_read_firmware(struct wpi_softc *sc)
4995 {
4996 	const struct firmware *fp;
4997 	struct wpi_fw_info *fw = &sc->fw;
4998 	const struct wpi_firmware_hdr *hdr;
4999 	int error;
5000 
5001 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5002 
5003 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5004 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5005 
5006 	WPI_UNLOCK(sc);
5007 	fp = firmware_get(WPI_FW_NAME);
5008 	WPI_LOCK(sc);
5009 
5010 	if (fp == NULL) {
5011 		device_printf(sc->sc_dev,
5012 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5013 		return EINVAL;
5014 	}
5015 
5016 	sc->fw_fp = fp;
5017 
5018 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5019 		device_printf(sc->sc_dev,
5020 		    "firmware file too short: %zu bytes\n", fp->datasize);
5021 		error = EINVAL;
5022 		goto fail;
5023 	}
5024 
5025 	fw->size = fp->datasize;
5026 	fw->data = (const uint8_t *)fp->data;
5027 
5028 	/* Extract firmware header information. */
5029 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5030 
5031 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5032 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5033 
5034 	fw->main.textsz = le32toh(hdr->rtextsz);
5035 	fw->main.datasz = le32toh(hdr->rdatasz);
5036 	fw->init.textsz = le32toh(hdr->itextsz);
5037 	fw->init.datasz = le32toh(hdr->idatasz);
5038 	fw->boot.textsz = le32toh(hdr->btextsz);
5039 	fw->boot.datasz = 0;
5040 
5041 	/* Sanity-check firmware header. */
5042 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5043 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5044 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5045 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5046 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5047 	    (fw->boot.textsz & 3) != 0) {
5048 		device_printf(sc->sc_dev, "invalid firmware header\n");
5049 		error = EINVAL;
5050 		goto fail;
5051 	}
5052 
5053 	/* Check that all firmware sections fit. */
5054 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5055 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5056 		device_printf(sc->sc_dev,
5057 		    "firmware file too short: %zu bytes\n", fw->size);
5058 		error = EINVAL;
5059 		goto fail;
5060 	}
5061 
5062 	/* Get pointers to firmware sections. */
5063 	fw->main.text = (const uint8_t *)(hdr + 1);
5064 	fw->main.data = fw->main.text + fw->main.textsz;
5065 	fw->init.text = fw->main.data + fw->main.datasz;
5066 	fw->init.data = fw->init.text + fw->init.textsz;
5067 	fw->boot.text = fw->init.data + fw->init.datasz;
5068 
5069 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5070 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5071 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5072 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5073 	    fw->main.textsz, fw->main.datasz,
5074 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5075 
5076 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5077 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5078 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5079 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5080 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5081 
5082 	return 0;
5083 
5084 fail:	wpi_unload_firmware(sc);
5085 	return error;
5086 }
5087 
5088 /**
5089  * Free the referenced firmware image
5090  */
5091 static void
5092 wpi_unload_firmware(struct wpi_softc *sc)
5093 {
5094 	if (sc->fw_fp != NULL) {
5095 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5096 		sc->fw_fp = NULL;
5097 	}
5098 }
5099 
5100 static int
5101 wpi_clock_wait(struct wpi_softc *sc)
5102 {
5103 	int ntries;
5104 
5105 	/* Set "initialization complete" bit. */
5106 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5107 
5108 	/* Wait for clock stabilization. */
5109 	for (ntries = 0; ntries < 2500; ntries++) {
5110 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5111 			return 0;
5112 		DELAY(100);
5113 	}
5114 	device_printf(sc->sc_dev,
5115 	    "%s: timeout waiting for clock stabilization\n", __func__);
5116 
5117 	return ETIMEDOUT;
5118 }
5119 
5120 static int
5121 wpi_apm_init(struct wpi_softc *sc)
5122 {
5123 	uint32_t reg;
5124 	int error;
5125 
5126 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5127 
5128 	/* Disable L0s exit timer (NMI bug workaround). */
5129 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5130 	/* Don't wait for ICH L0s (ICH bug workaround). */
5131 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5132 
5133 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5134 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5135 
5136 	/* Retrieve PCIe Active State Power Management (ASPM). */
5137 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
5138 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5139 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
5140 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5141 	else
5142 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5143 
5144 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5145 
5146 	/* Wait for clock stabilization before accessing prph. */
5147 	if ((error = wpi_clock_wait(sc)) != 0)
5148 		return error;
5149 
5150 	if ((error = wpi_nic_lock(sc)) != 0)
5151 		return error;
5152 	/* Cleanup. */
5153 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5154 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5155 
5156 	/* Enable DMA and BSM (Bootstrap State Machine). */
5157 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5158 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5159 	DELAY(20);
5160 	/* Disable L1-Active. */
5161 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5162 	wpi_nic_unlock(sc);
5163 
5164 	return 0;
5165 }
5166 
5167 static void
5168 wpi_apm_stop_master(struct wpi_softc *sc)
5169 {
5170 	int ntries;
5171 
5172 	/* Stop busmaster DMA activity. */
5173 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5174 
5175 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5176 	    WPI_GP_CNTRL_MAC_PS)
5177 		return; /* Already asleep. */
5178 
5179 	for (ntries = 0; ntries < 100; ntries++) {
5180 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5181 			return;
5182 		DELAY(10);
5183 	}
5184 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5185 	    __func__);
5186 }
5187 
5188 static void
5189 wpi_apm_stop(struct wpi_softc *sc)
5190 {
5191 	wpi_apm_stop_master(sc);
5192 
5193 	/* Reset the entire device. */
5194 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5195 	DELAY(10);
5196 	/* Clear "initialization complete" bit. */
5197 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5198 }
5199 
5200 static void
5201 wpi_nic_config(struct wpi_softc *sc)
5202 {
5203 	uint32_t rev;
5204 
5205 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5206 
5207 	/* voodoo from the Linux "driver".. */
5208 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5209 	if ((rev & 0xc0) == 0x40)
5210 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5211 	else if (!(rev & 0x80))
5212 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5213 
5214 	if (sc->cap == 0x80)
5215 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5216 
5217 	if ((sc->rev & 0xf0) == 0xd0)
5218 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5219 	else
5220 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5221 
5222 	if (sc->type > 1)
5223 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5224 }
5225 
5226 static int
5227 wpi_hw_init(struct wpi_softc *sc)
5228 {
5229 	uint8_t chnl;
5230 	int ntries, error;
5231 
5232 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5233 
5234 	/* Clear pending interrupts. */
5235 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5236 
5237 	if ((error = wpi_apm_init(sc)) != 0) {
5238 		device_printf(sc->sc_dev,
5239 		    "%s: could not power ON adapter, error %d\n", __func__,
5240 		    error);
5241 		return error;
5242 	}
5243 
5244 	/* Select VMAIN power source. */
5245 	if ((error = wpi_nic_lock(sc)) != 0)
5246 		return error;
5247 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5248 	wpi_nic_unlock(sc);
5249 	/* Spin until VMAIN gets selected. */
5250 	for (ntries = 0; ntries < 5000; ntries++) {
5251 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5252 			break;
5253 		DELAY(10);
5254 	}
5255 	if (ntries == 5000) {
5256 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5257 		return ETIMEDOUT;
5258 	}
5259 
5260 	/* Perform adapter initialization. */
5261 	wpi_nic_config(sc);
5262 
5263 	/* Initialize RX ring. */
5264 	if ((error = wpi_nic_lock(sc)) != 0)
5265 		return error;
5266 	/* Set physical address of RX ring. */
5267 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5268 	/* Set physical address of RX read pointer. */
5269 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5270 	    offsetof(struct wpi_shared, next));
5271 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5272 	/* Enable RX. */
5273 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5274 	    WPI_FH_RX_CONFIG_DMA_ENA |
5275 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5276 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5277 	    WPI_FH_RX_CONFIG_MAXFRAG |
5278 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5279 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5280 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5281 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5282 	wpi_nic_unlock(sc);
5283 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5284 
5285 	/* Initialize TX rings. */
5286 	if ((error = wpi_nic_lock(sc)) != 0)
5287 		return error;
5288 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5289 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5290 	/* Enable all 6 TX rings. */
5291 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5292 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5293 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5294 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5295 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5296 	/* Set physical address of TX rings. */
5297 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5298 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5299 
5300 	/* Enable all DMA channels. */
5301 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5302 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5303 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5304 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5305 	}
5306 	wpi_nic_unlock(sc);
5307 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5308 
5309 	/* Clear "radio off" and "commands blocked" bits. */
5310 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5311 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5312 
5313 	/* Clear pending interrupts. */
5314 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5315 	/* Enable interrupts. */
5316 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5317 
5318 	/* _Really_ make sure "radio off" bit is cleared! */
5319 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5320 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5321 
5322 	if ((error = wpi_load_firmware(sc)) != 0) {
5323 		device_printf(sc->sc_dev,
5324 		    "%s: could not load firmware, error %d\n", __func__,
5325 		    error);
5326 		return error;
5327 	}
5328 	/* Wait at most one second for firmware alive notification. */
5329 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5330 		device_printf(sc->sc_dev,
5331 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5332 		    __func__, error);
5333 		return error;
5334 	}
5335 
5336 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5337 
5338 	/* Do post-firmware initialization. */
5339 	return wpi_post_alive(sc);
5340 }
5341 
5342 static void
5343 wpi_hw_stop(struct wpi_softc *sc)
5344 {
5345 	uint8_t chnl, qid;
5346 	int ntries;
5347 
5348 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5349 
5350 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5351 		wpi_nic_lock(sc);
5352 
5353 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5354 
5355 	/* Disable interrupts. */
5356 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5357 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5358 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5359 
5360 	/* Make sure we no longer hold the NIC lock. */
5361 	wpi_nic_unlock(sc);
5362 
5363 	if (wpi_nic_lock(sc) == 0) {
5364 		/* Stop TX scheduler. */
5365 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5366 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5367 
5368 		/* Stop all DMA channels. */
5369 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5370 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5371 			for (ntries = 0; ntries < 200; ntries++) {
5372 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5373 				    WPI_FH_TX_STATUS_IDLE(chnl))
5374 					break;
5375 				DELAY(10);
5376 			}
5377 		}
5378 		wpi_nic_unlock(sc);
5379 	}
5380 
5381 	/* Stop RX ring. */
5382 	wpi_reset_rx_ring(sc);
5383 
5384 	/* Reset all TX rings. */
5385 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
5386 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5387 
5388 	if (wpi_nic_lock(sc) == 0) {
5389 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5390 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5391 		wpi_nic_unlock(sc);
5392 	}
5393 	DELAY(5);
5394 	/* Power OFF adapter. */
5395 	wpi_apm_stop(sc);
5396 }
5397 
5398 static void
5399 wpi_radio_on(void *arg0, int pending)
5400 {
5401 	struct wpi_softc *sc = arg0;
5402 	struct ieee80211com *ic = &sc->sc_ic;
5403 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5404 
5405 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5406 
5407 	WPI_LOCK(sc);
5408 	callout_stop(&sc->watchdog_rfkill);
5409 	WPI_UNLOCK(sc);
5410 
5411 	if (vap != NULL)
5412 		ieee80211_init(vap);
5413 }
5414 
5415 static void
5416 wpi_radio_off(void *arg0, int pending)
5417 {
5418 	struct wpi_softc *sc = arg0;
5419 	struct ieee80211com *ic = &sc->sc_ic;
5420 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5421 
5422 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5423 
5424 	ieee80211_notify_radio(ic, 0);
5425 	wpi_stop(sc);
5426 	if (vap != NULL)
5427 		ieee80211_stop(vap);
5428 
5429 	WPI_LOCK(sc);
5430 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5431 	WPI_UNLOCK(sc);
5432 }
5433 
5434 static int
5435 wpi_init(struct wpi_softc *sc)
5436 {
5437 	int error = 0;
5438 
5439 	WPI_LOCK(sc);
5440 
5441 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5442 
5443 	if (sc->sc_running != 0)
5444 		goto end;
5445 
5446 	/* Check that the radio is not disabled by hardware switch. */
5447 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5448 		device_printf(sc->sc_dev,
5449 		    "RF switch: radio disabled (%s)\n", __func__);
5450 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5451 		    sc);
5452 		error = EINPROGRESS;
5453 		goto end;
5454 	}
5455 
5456 	/* Read firmware images from the filesystem. */
5457 	if ((error = wpi_read_firmware(sc)) != 0) {
5458 		device_printf(sc->sc_dev,
5459 		    "%s: could not read firmware, error %d\n", __func__,
5460 		    error);
5461 		goto end;
5462 	}
5463 
5464 	sc->sc_running = 1;
5465 
5466 	/* Initialize hardware and upload firmware. */
5467 	error = wpi_hw_init(sc);
5468 	wpi_unload_firmware(sc);
5469 	if (error != 0) {
5470 		device_printf(sc->sc_dev,
5471 		    "%s: could not initialize hardware, error %d\n", __func__,
5472 		    error);
5473 		goto fail;
5474 	}
5475 
5476 	/* Configure adapter now that it is ready. */
5477 	if ((error = wpi_config(sc)) != 0) {
5478 		device_printf(sc->sc_dev,
5479 		    "%s: could not configure device, error %d\n", __func__,
5480 		    error);
5481 		goto fail;
5482 	}
5483 
5484 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5485 
5486 	WPI_UNLOCK(sc);
5487 
5488 	return 0;
5489 
5490 fail:	wpi_stop_locked(sc);
5491 
5492 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5493 	WPI_UNLOCK(sc);
5494 
5495 	return error;
5496 }
5497 
5498 static void
5499 wpi_stop_locked(struct wpi_softc *sc)
5500 {
5501 
5502 	WPI_LOCK_ASSERT(sc);
5503 
5504 	if (sc->sc_running == 0)
5505 		return;
5506 
5507 	WPI_TX_LOCK(sc);
5508 	WPI_TXQ_LOCK(sc);
5509 	sc->sc_running = 0;
5510 	WPI_TXQ_UNLOCK(sc);
5511 	WPI_TX_UNLOCK(sc);
5512 
5513 	WPI_TXQ_STATE_LOCK(sc);
5514 	callout_stop(&sc->tx_timeout);
5515 	WPI_TXQ_STATE_UNLOCK(sc);
5516 
5517 	WPI_RXON_LOCK(sc);
5518 	callout_stop(&sc->scan_timeout);
5519 	callout_stop(&sc->calib_to);
5520 	WPI_RXON_UNLOCK(sc);
5521 
5522 	/* Power OFF hardware. */
5523 	wpi_hw_stop(sc);
5524 }
5525 
5526 static void
5527 wpi_stop(struct wpi_softc *sc)
5528 {
5529 	WPI_LOCK(sc);
5530 	wpi_stop_locked(sc);
5531 	WPI_UNLOCK(sc);
5532 }
5533 
5534 /*
5535  * Callback from net80211 to start a scan.
5536  */
5537 static void
5538 wpi_scan_start(struct ieee80211com *ic)
5539 {
5540 	struct wpi_softc *sc = ic->ic_softc;
5541 
5542 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5543 }
5544 
5545 /*
5546  * Callback from net80211 to terminate a scan.
5547  */
5548 static void
5549 wpi_scan_end(struct ieee80211com *ic)
5550 {
5551 	struct wpi_softc *sc = ic->ic_softc;
5552 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5553 
5554 	if (vap->iv_state == IEEE80211_S_RUN)
5555 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5556 }
5557 
5558 /**
5559  * Called by the net80211 framework to indicate to the driver
5560  * that the channel should be changed
5561  */
5562 static void
5563 wpi_set_channel(struct ieee80211com *ic)
5564 {
5565 	const struct ieee80211_channel *c = ic->ic_curchan;
5566 	struct wpi_softc *sc = ic->ic_softc;
5567 	int error;
5568 
5569 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5570 
5571 	WPI_LOCK(sc);
5572 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5573 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5574 	WPI_UNLOCK(sc);
5575 	WPI_TX_LOCK(sc);
5576 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5577 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5578 	WPI_TX_UNLOCK(sc);
5579 
5580 	/*
5581 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5582 	 * are already taken care of by their respective firmware commands.
5583 	 */
5584 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5585 		WPI_RXON_LOCK(sc);
5586 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5587 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5588 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5589 			    WPI_RXON_24GHZ);
5590 		} else {
5591 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5592 			    WPI_RXON_24GHZ);
5593 		}
5594 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5595 			device_printf(sc->sc_dev,
5596 			    "%s: error %d setting channel\n", __func__,
5597 			    error);
5598 		WPI_RXON_UNLOCK(sc);
5599 	}
5600 }
5601 
5602 /**
5603  * Called by net80211 to indicate that we need to scan the current
5604  * channel. The channel is previously be set via the wpi_set_channel
5605  * callback.
5606  */
5607 static void
5608 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5609 {
5610 	struct ieee80211vap *vap = ss->ss_vap;
5611 	struct ieee80211com *ic = vap->iv_ic;
5612 	struct wpi_softc *sc = ic->ic_softc;
5613 	int error;
5614 
5615 	WPI_RXON_LOCK(sc);
5616 	error = wpi_scan(sc, ic->ic_curchan);
5617 	WPI_RXON_UNLOCK(sc);
5618 	if (error != 0)
5619 		ieee80211_cancel_scan(vap);
5620 }
5621 
5622 /**
5623  * Called by the net80211 framework to indicate
5624  * the minimum dwell time has been met, terminate the scan.
5625  * We don't actually terminate the scan as the firmware will notify
5626  * us when it's finished and we have no way to interrupt it.
5627  */
5628 static void
5629 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5630 {
5631 	/* NB: don't try to abort scan; wait for firmware to finish */
5632 }
5633 
5634 static void
5635 wpi_hw_reset(void *arg, int pending)
5636 {
5637 	struct wpi_softc *sc = arg;
5638 	struct ieee80211com *ic = &sc->sc_ic;
5639 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5640 
5641 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5642 
5643 	ieee80211_notify_radio(ic, 0);
5644 	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5645 		ieee80211_cancel_scan(vap);
5646 
5647 	wpi_stop(sc);
5648 	if (vap != NULL) {
5649 		ieee80211_stop(vap);
5650 		ieee80211_init(vap);
5651 	}
5652 }
5653