xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 82431678fce5c893ef9c7418ad6d998ad4187de6)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/if_ether.h>
102 
103 #include <dev/wpi/if_wpireg.h>
104 #include <dev/wpi/if_wpivar.h>
105 
106 #define WPI_DEBUG
107 
108 #ifdef WPI_DEBUG
109 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111 #define	WPI_DEBUG_SET	(wpi_debug != 0)
112 
113 enum {
114 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
115 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
116 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
117 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
118 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
119 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
120 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
121 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
122 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
123 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
124 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
125 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
126 	WPI_DEBUG_ANY		= 0xffffffff
127 };
128 
129 static int wpi_debug = 1;
130 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
131 TUNABLE_INT("debug.wpi", &wpi_debug);
132 
133 #else
134 #define DPRINTF(x)
135 #define DPRINTFN(n, x)
136 #define WPI_DEBUG_SET	0
137 #endif
138 
139 struct wpi_ident {
140 	uint16_t	vendor;
141 	uint16_t	device;
142 	uint16_t	subdevice;
143 	const char	*name;
144 };
145 
146 static const struct wpi_ident wpi_ident_table[] = {
147 	/* The below entries support ABG regardless of the subid */
148 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
149 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150 	/* The below entries only support BG */
151 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
152 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
153 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
154 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
155 	{ 0, 0, 0, NULL }
156 };
157 
158 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
159 		    const char name[IFNAMSIZ], int unit, int opmode,
160 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
161 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
162 static void	wpi_vap_delete(struct ieee80211vap *);
163 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
164 		    void **, bus_size_t, bus_size_t, int);
165 static void	wpi_dma_contig_free(struct wpi_dma_info *);
166 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
167 static int	wpi_alloc_shared(struct wpi_softc *);
168 static void	wpi_free_shared(struct wpi_softc *);
169 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
170 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
173 		    int, int);
174 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
175 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
178 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179 static void	wpi_mem_lock(struct wpi_softc *);
180 static void	wpi_mem_unlock(struct wpi_softc *);
181 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184 		    const uint32_t *, int);
185 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186 static int	wpi_alloc_fwmem(struct wpi_softc *);
187 static void	wpi_free_fwmem(struct wpi_softc *);
188 static int	wpi_load_firmware(struct wpi_softc *);
189 static void	wpi_unload_firmware(struct wpi_softc *);
190 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192 		    struct wpi_rx_data *);
193 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_notif_intr(struct wpi_softc *);
196 static void	wpi_intr(void *);
197 static uint8_t	wpi_plcp_signal(int);
198 static void	wpi_watchdog(void *);
199 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
200 		    struct ieee80211_node *, int);
201 static void	wpi_start(struct ifnet *);
202 static void	wpi_start_locked(struct ifnet *);
203 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204 		    const struct ieee80211_bpf_params *);
205 static void	wpi_scan_start(struct ieee80211com *);
206 static void	wpi_scan_end(struct ieee80211com *);
207 static void	wpi_set_channel(struct ieee80211com *);
208 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
210 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
211 static void	wpi_read_eeprom(struct wpi_softc *,
212 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
213 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
214 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
215 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216 static int	wpi_wme_update(struct ieee80211com *);
217 static int	wpi_mrr_setup(struct wpi_softc *);
218 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220 #if 0
221 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222 #endif
223 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
225 static int	wpi_scan(struct wpi_softc *);
226 static int	wpi_config(struct wpi_softc *);
227 static void	wpi_stop_master(struct wpi_softc *);
228 static int	wpi_power_up(struct wpi_softc *);
229 static int	wpi_reset(struct wpi_softc *);
230 static void	wpi_hwreset(void *, int);
231 static void	wpi_rfreset(void *, int);
232 static void	wpi_hw_config(struct wpi_softc *);
233 static void	wpi_init(void *);
234 static void	wpi_init_locked(struct wpi_softc *, int);
235 static void	wpi_stop(struct wpi_softc *);
236 static void	wpi_stop_locked(struct wpi_softc *);
237 
238 static void	wpi_newassoc(struct ieee80211_node *, int);
239 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240 		    int);
241 static void	wpi_calib_timeout(void *);
242 static void	wpi_power_calibration(struct wpi_softc *, int);
243 static int	wpi_get_power_index(struct wpi_softc *,
244 		    struct wpi_power_group *, struct ieee80211_channel *, int);
245 #ifdef WPI_DEBUG
246 static const char *wpi_cmd_str(int);
247 #endif
248 static int wpi_probe(device_t);
249 static int wpi_attach(device_t);
250 static int wpi_detach(device_t);
251 static int wpi_shutdown(device_t);
252 static int wpi_suspend(device_t);
253 static int wpi_resume(device_t);
254 
255 
256 static device_method_t wpi_methods[] = {
257 	/* Device interface */
258 	DEVMETHOD(device_probe,		wpi_probe),
259 	DEVMETHOD(device_attach,	wpi_attach),
260 	DEVMETHOD(device_detach,	wpi_detach),
261 	DEVMETHOD(device_shutdown,	wpi_shutdown),
262 	DEVMETHOD(device_suspend,	wpi_suspend),
263 	DEVMETHOD(device_resume,	wpi_resume),
264 
265 	{ 0, 0 }
266 };
267 
268 static driver_t wpi_driver = {
269 	"wpi",
270 	wpi_methods,
271 	sizeof (struct wpi_softc)
272 };
273 
274 static devclass_t wpi_devclass;
275 
276 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277 
278 static const uint8_t wpi_ridx_to_plcp[] = {
279 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280 	/* R1-R4 (ral/ural is R4-R1) */
281 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282 	/* CCK: device-dependent */
283 	10, 20, 55, 110
284 };
285 static const uint8_t wpi_ridx_to_rate[] = {
286 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287 	2, 4, 11, 22 /*CCK */
288 };
289 
290 
291 static int
292 wpi_probe(device_t dev)
293 {
294 	const struct wpi_ident *ident;
295 
296 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297 		if (pci_get_vendor(dev) == ident->vendor &&
298 		    pci_get_device(dev) == ident->device) {
299 			device_set_desc(dev, ident->name);
300 			return 0;
301 		}
302 	}
303 	return ENXIO;
304 }
305 
306 /**
307  * Load the firmare image from disk to the allocated dma buffer.
308  * we also maintain the reference to the firmware pointer as there
309  * is times where we may need to reload the firmware but we are not
310  * in a context that can access the filesystem (ie taskq cause by restart)
311  *
312  * @return 0 on success, an errno on failure
313  */
314 static int
315 wpi_load_firmware(struct wpi_softc *sc)
316 {
317 	const struct firmware *fp;
318 	struct wpi_dma_info *dma = &sc->fw_dma;
319 	const struct wpi_firmware_hdr *hdr;
320 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322 	int error;
323 
324 	DPRINTFN(WPI_DEBUG_FIRMWARE,
325 	    ("Attempting Loading Firmware from wpi_fw module\n"));
326 
327 	WPI_UNLOCK(sc);
328 
329 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330 		device_printf(sc->sc_dev,
331 		    "could not load firmware image 'wpifw'\n");
332 		error = ENOENT;
333 		WPI_LOCK(sc);
334 		goto fail;
335 	}
336 
337 	fp = sc->fw_fp;
338 
339 	WPI_LOCK(sc);
340 
341 	/* Validate the firmware is minimum a particular version */
342 	if (fp->version < WPI_FW_MINVERSION) {
343 	    device_printf(sc->sc_dev,
344 			   "firmware version is too old. Need %d, got %d\n",
345 			   WPI_FW_MINVERSION,
346 			   fp->version);
347 	    error = ENXIO;
348 	    goto fail;
349 	}
350 
351 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352 		device_printf(sc->sc_dev,
353 		    "firmware file too short: %zu bytes\n", fp->datasize);
354 		error = ENXIO;
355 		goto fail;
356 	}
357 
358 	hdr = (const struct wpi_firmware_hdr *)fp->data;
359 
360 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362 
363 	rtextsz = le32toh(hdr->rtextsz);
364 	rdatasz = le32toh(hdr->rdatasz);
365 	itextsz = le32toh(hdr->itextsz);
366 	idatasz = le32toh(hdr->idatasz);
367 	btextsz = le32toh(hdr->btextsz);
368 
369 	/* check that all firmware segments are present */
370 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372 		device_printf(sc->sc_dev,
373 		    "firmware file too short: %zu bytes\n", fp->datasize);
374 		error = ENXIO; /* XXX appropriate error code? */
375 		goto fail;
376 	}
377 
378 	/* get pointers to firmware segments */
379 	rtext = (const uint8_t *)(hdr + 1);
380 	rdata = rtext + rtextsz;
381 	itext = rdata + rdatasz;
382 	idata = itext + itextsz;
383 	btext = idata + idatasz;
384 
385 	DPRINTFN(WPI_DEBUG_FIRMWARE,
386 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388 	     (le32toh(hdr->version) & 0xff000000) >> 24,
389 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
390 	     (le32toh(hdr->version) & 0x0000ffff),
391 	     rtextsz, rdatasz,
392 	     itextsz, idatasz, btextsz));
393 
394 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399 
400 	/* sanity checks */
401 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406 	    (btextsz & 3) != 0) {
407 		device_printf(sc->sc_dev, "firmware invalid\n");
408 		error = EINVAL;
409 		goto fail;
410 	}
411 
412 	/* copy initialization images into pre-allocated DMA-safe memory */
413 	memcpy(dma->vaddr, idata, idatasz);
414 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415 
416 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417 
418 	/* tell adapter where to find initialization images */
419 	wpi_mem_lock(sc);
420 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425 	wpi_mem_unlock(sc);
426 
427 	/* load firmware boot code */
428 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
430 	    goto fail;
431 	}
432 
433 	/* now press "execute" */
434 	WPI_WRITE(sc, WPI_RESET, 0);
435 
436 	/* wait at most one second for the first alive notification */
437 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438 		device_printf(sc->sc_dev,
439 		    "timeout waiting for adapter to initialize\n");
440 		goto fail;
441 	}
442 
443 	/* copy runtime images into pre-allocated DMA-sage memory */
444 	memcpy(dma->vaddr, rdata, rdatasz);
445 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447 
448 	/* tell adapter where to find runtime images */
449 	wpi_mem_lock(sc);
450 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455 	wpi_mem_unlock(sc);
456 
457 	/* wait at most one second for the first alive notification */
458 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459 		device_printf(sc->sc_dev,
460 		    "timeout waiting for adapter to initialize2\n");
461 		goto fail;
462 	}
463 
464 	DPRINTFN(WPI_DEBUG_FIRMWARE,
465 	    ("Firmware loaded to driver successfully\n"));
466 	return error;
467 fail:
468 	wpi_unload_firmware(sc);
469 	return error;
470 }
471 
472 /**
473  * Free the referenced firmware image
474  */
475 static void
476 wpi_unload_firmware(struct wpi_softc *sc)
477 {
478 
479 	if (sc->fw_fp) {
480 		WPI_UNLOCK(sc);
481 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482 		WPI_LOCK(sc);
483 		sc->fw_fp = NULL;
484 	}
485 }
486 
487 static int
488 wpi_attach(device_t dev)
489 {
490 	struct wpi_softc *sc = device_get_softc(dev);
491 	struct ifnet *ifp;
492 	struct ieee80211com *ic;
493 	int ac, error, supportsa = 1;
494 	uint32_t tmp;
495 	const struct wpi_ident *ident;
496 	uint8_t macaddr[IEEE80211_ADDR_LEN];
497 
498 	sc->sc_dev = dev;
499 
500 	if (bootverbose || WPI_DEBUG_SET)
501 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
502 
503 	/*
504 	 * Some card's only support 802.11b/g not a, check to see if
505 	 * this is one such card. A 0x0 in the subdevice table indicates
506 	 * the entire subdevice range is to be ignored.
507 	 */
508 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
509 		if (ident->subdevice &&
510 		    pci_get_subdevice(dev) == ident->subdevice) {
511 		    supportsa = 0;
512 		    break;
513 		}
514 	}
515 
516 	/* Create the tasks that can be queued */
517 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
518 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
519 
520 	WPI_LOCK_INIT(sc);
521 
522 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
523 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
524 
525 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
526 		device_printf(dev, "chip is in D%d power mode "
527 		    "-- setting to D0\n", pci_get_powerstate(dev));
528 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
529 	}
530 
531 	/* disable the retry timeout register */
532 	pci_write_config(dev, 0x41, 0, 1);
533 
534 	/* enable bus-mastering */
535 	pci_enable_busmaster(dev);
536 
537 	sc->mem_rid = PCIR_BAR(0);
538 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
539 	    RF_ACTIVE);
540 	if (sc->mem == NULL) {
541 		device_printf(dev, "could not allocate memory resource\n");
542 		error = ENOMEM;
543 		goto fail;
544 	}
545 
546 	sc->sc_st = rman_get_bustag(sc->mem);
547 	sc->sc_sh = rman_get_bushandle(sc->mem);
548 
549 	sc->irq_rid = 0;
550 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
551 	    RF_ACTIVE | RF_SHAREABLE);
552 	if (sc->irq == NULL) {
553 		device_printf(dev, "could not allocate interrupt resource\n");
554 		error = ENOMEM;
555 		goto fail;
556 	}
557 
558 	/*
559 	 * Allocate DMA memory for firmware transfers.
560 	 */
561 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
562 		printf(": could not allocate firmware memory\n");
563 		error = ENOMEM;
564 		goto fail;
565 	}
566 
567 	/*
568 	 * Put adapter into a known state.
569 	 */
570 	if ((error = wpi_reset(sc)) != 0) {
571 		device_printf(dev, "could not reset adapter\n");
572 		goto fail;
573 	}
574 
575 	wpi_mem_lock(sc);
576 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
577 	if (bootverbose || WPI_DEBUG_SET)
578 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
579 
580 	wpi_mem_unlock(sc);
581 
582 	/* Allocate shared page */
583 	if ((error = wpi_alloc_shared(sc)) != 0) {
584 		device_printf(dev, "could not allocate shared page\n");
585 		goto fail;
586 	}
587 
588 	/* tx data queues  - 4 for QoS purposes */
589 	for (ac = 0; ac < WME_NUM_AC; ac++) {
590 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
591 		if (error != 0) {
592 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
593 		    goto fail;
594 		}
595 	}
596 
597 	/* command queue to talk to the card's firmware */
598 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
599 	if (error != 0) {
600 		device_printf(dev, "could not allocate command ring\n");
601 		goto fail;
602 	}
603 
604 	/* receive data queue */
605 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
606 	if (error != 0) {
607 		device_printf(dev, "could not allocate Rx ring\n");
608 		goto fail;
609 	}
610 
611 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
612 	if (ifp == NULL) {
613 		device_printf(dev, "can not if_alloc()\n");
614 		error = ENOMEM;
615 		goto fail;
616 	}
617 	ic = ifp->if_l2com;
618 
619 	ic->ic_ifp = ifp;
620 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
621 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
622 
623 	/* set device capabilities */
624 	ic->ic_caps =
625 		  IEEE80211_C_STA		/* station mode supported */
626 		| IEEE80211_C_MONITOR		/* monitor mode supported */
627 		| IEEE80211_C_TXPMGT		/* tx power management */
628 		| IEEE80211_C_SHSLOT		/* short slot time supported */
629 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
630 		| IEEE80211_C_WPA		/* 802.11i */
631 /* XXX looks like WME is partly supported? */
632 #if 0
633 		| IEEE80211_C_IBSS		/* IBSS mode support */
634 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
635 		| IEEE80211_C_WME		/* 802.11e */
636 		| IEEE80211_C_HOSTAP		/* Host access point mode */
637 #endif
638 		;
639 
640 	/*
641 	 * Read in the eeprom and also setup the channels for
642 	 * net80211. We don't set the rates as net80211 does this for us
643 	 */
644 	wpi_read_eeprom(sc, macaddr);
645 
646 	if (bootverbose || WPI_DEBUG_SET) {
647 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
648 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
649 			  sc->type > 1 ? 'B': '?');
650 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
651 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
652 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
653 			  supportsa ? "does" : "does not");
654 
655 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
656 	       what sc->rev really represents - benjsc 20070615 */
657 	}
658 
659 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660 	ifp->if_softc = sc;
661 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662 	ifp->if_init = wpi_init;
663 	ifp->if_ioctl = wpi_ioctl;
664 	ifp->if_start = wpi_start;
665 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
666 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
667 	IFQ_SET_READY(&ifp->if_snd);
668 
669 	ieee80211_ifattach(ic, macaddr);
670 	/* override default methods */
671 	ic->ic_node_alloc = wpi_node_alloc;
672 	ic->ic_newassoc = wpi_newassoc;
673 	ic->ic_raw_xmit = wpi_raw_xmit;
674 	ic->ic_wme.wme_update = wpi_wme_update;
675 	ic->ic_scan_start = wpi_scan_start;
676 	ic->ic_scan_end = wpi_scan_end;
677 	ic->ic_set_channel = wpi_set_channel;
678 	ic->ic_scan_curchan = wpi_scan_curchan;
679 	ic->ic_scan_mindwell = wpi_scan_mindwell;
680 
681 	ic->ic_vap_create = wpi_vap_create;
682 	ic->ic_vap_delete = wpi_vap_delete;
683 
684 	bpfattach(ifp, DLT_IEEE802_11_RADIO,
685 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
686 
687 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
688 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
689 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
690 
691 	sc->sc_txtap_len = sizeof sc->sc_txtap;
692 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
693 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
694 
695 	/*
696 	 * Hook our interrupt after all initialization is complete.
697 	 */
698 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
699 	    NULL, wpi_intr, sc, &sc->sc_ih);
700 	if (error != 0) {
701 		device_printf(dev, "could not set up interrupt\n");
702 		goto fail;
703 	}
704 
705 	if (bootverbose)
706 		ieee80211_announce(ic);
707 #ifdef XXX_DEBUG
708 	ieee80211_announce_channels(ic);
709 #endif
710 	return 0;
711 
712 fail:	wpi_detach(dev);
713 	return ENXIO;
714 }
715 
716 static int
717 wpi_detach(device_t dev)
718 {
719 	struct wpi_softc *sc = device_get_softc(dev);
720 	struct ifnet *ifp = sc->sc_ifp;
721 	struct ieee80211com *ic = ifp->if_l2com;
722 	int ac;
723 
724 	ieee80211_draintask(ic, &sc->sc_restarttask);
725 	ieee80211_draintask(ic, &sc->sc_radiotask);
726 
727 	if (ifp != NULL) {
728 		wpi_stop(sc);
729 		callout_drain(&sc->watchdog_to);
730 		callout_drain(&sc->calib_to);
731 		bpfdetach(ifp);
732 		ieee80211_ifdetach(ic);
733 	}
734 
735 	WPI_LOCK(sc);
736 	if (sc->txq[0].data_dmat) {
737 		for (ac = 0; ac < WME_NUM_AC; ac++)
738 			wpi_free_tx_ring(sc, &sc->txq[ac]);
739 
740 		wpi_free_tx_ring(sc, &sc->cmdq);
741 		wpi_free_rx_ring(sc, &sc->rxq);
742 		wpi_free_shared(sc);
743 	}
744 
745 	if (sc->fw_fp != NULL) {
746 		wpi_unload_firmware(sc);
747 	}
748 
749 	if (sc->fw_dma.tag)
750 		wpi_free_fwmem(sc);
751 	WPI_UNLOCK(sc);
752 
753 	if (sc->irq != NULL) {
754 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
755 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
756 	}
757 
758 	if (sc->mem != NULL)
759 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
760 
761 	if (ifp != NULL)
762 		if_free(ifp);
763 
764 	WPI_LOCK_DESTROY(sc);
765 
766 	return 0;
767 }
768 
769 static struct ieee80211vap *
770 wpi_vap_create(struct ieee80211com *ic,
771 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
772 	const uint8_t bssid[IEEE80211_ADDR_LEN],
773 	const uint8_t mac[IEEE80211_ADDR_LEN])
774 {
775 	struct wpi_vap *wvp;
776 	struct ieee80211vap *vap;
777 
778 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
779 		return NULL;
780 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
781 	    M_80211_VAP, M_NOWAIT | M_ZERO);
782 	if (wvp == NULL)
783 		return NULL;
784 	vap = &wvp->vap;
785 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
786 	/* override with driver methods */
787 	wvp->newstate = vap->iv_newstate;
788 	vap->iv_newstate = wpi_newstate;
789 
790 	ieee80211_amrr_init(&wvp->amrr, vap,
791 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
792 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
793 	    500 /*ms*/);
794 
795 	/* complete setup */
796 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
797 	ic->ic_opmode = opmode;
798 	return vap;
799 }
800 
801 static void
802 wpi_vap_delete(struct ieee80211vap *vap)
803 {
804 	struct wpi_vap *wvp = WPI_VAP(vap);
805 
806 	ieee80211_amrr_cleanup(&wvp->amrr);
807 	ieee80211_vap_detach(vap);
808 	free(wvp, M_80211_VAP);
809 }
810 
811 static void
812 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
813 {
814 	if (error != 0)
815 		return;
816 
817 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
818 
819 	*(bus_addr_t *)arg = segs[0].ds_addr;
820 }
821 
822 /*
823  * Allocates a contiguous block of dma memory of the requested size and
824  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
825  * allocations greater than 4096 may fail. Hence if the requested alignment is
826  * greater we allocate 'alignment' size extra memory and shift the vaddr and
827  * paddr after the dma load. This bypasses the problem at the cost of a little
828  * more memory.
829  */
830 static int
831 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
832     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
833 {
834 	int error;
835 	bus_size_t align;
836 	bus_size_t reqsize;
837 
838 	DPRINTFN(WPI_DEBUG_DMA,
839 	    ("Size: %zd - alignment %zd\n", size, alignment));
840 
841 	dma->size = size;
842 	dma->tag = NULL;
843 
844 	if (alignment > 4096) {
845 		align = PAGE_SIZE;
846 		reqsize = size + alignment;
847 	} else {
848 		align = alignment;
849 		reqsize = size;
850 	}
851 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
852 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
853 	    NULL, NULL, reqsize,
854 	    1, reqsize, flags,
855 	    NULL, NULL, &dma->tag);
856 	if (error != 0) {
857 		device_printf(sc->sc_dev,
858 		    "could not create shared page DMA tag\n");
859 		goto fail;
860 	}
861 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
862 	    flags | BUS_DMA_ZERO, &dma->map);
863 	if (error != 0) {
864 		device_printf(sc->sc_dev,
865 		    "could not allocate shared page DMA memory\n");
866 		goto fail;
867 	}
868 
869 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
870 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
871 
872 	/* Save the original pointers so we can free all the memory */
873 	dma->paddr = dma->paddr_start;
874 	dma->vaddr = dma->vaddr_start;
875 
876 	/*
877 	 * Check the alignment and increment by 4096 until we get the
878 	 * requested alignment. Fail if can't obtain the alignment
879 	 * we requested.
880 	 */
881 	if ((dma->paddr & (alignment -1 )) != 0) {
882 		int i;
883 
884 		for (i = 0; i < alignment / 4096; i++) {
885 			if ((dma->paddr & (alignment - 1 )) == 0)
886 				break;
887 			dma->paddr += 4096;
888 			dma->vaddr += 4096;
889 		}
890 		if (i == alignment / 4096) {
891 			device_printf(sc->sc_dev,
892 			    "alignment requirement was not satisfied\n");
893 			goto fail;
894 		}
895 	}
896 
897 	if (error != 0) {
898 		device_printf(sc->sc_dev,
899 		    "could not load shared page DMA map\n");
900 		goto fail;
901 	}
902 
903 	if (kvap != NULL)
904 		*kvap = dma->vaddr;
905 
906 	return 0;
907 
908 fail:
909 	wpi_dma_contig_free(dma);
910 	return error;
911 }
912 
913 static void
914 wpi_dma_contig_free(struct wpi_dma_info *dma)
915 {
916 	if (dma->tag) {
917 		if (dma->map != NULL) {
918 			if (dma->paddr_start != 0) {
919 				bus_dmamap_sync(dma->tag, dma->map,
920 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
921 				bus_dmamap_unload(dma->tag, dma->map);
922 			}
923 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
924 		}
925 		bus_dma_tag_destroy(dma->tag);
926 	}
927 }
928 
929 /*
930  * Allocate a shared page between host and NIC.
931  */
932 static int
933 wpi_alloc_shared(struct wpi_softc *sc)
934 {
935 	int error;
936 
937 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
938 	    (void **)&sc->shared, sizeof (struct wpi_shared),
939 	    PAGE_SIZE,
940 	    BUS_DMA_NOWAIT);
941 
942 	if (error != 0) {
943 		device_printf(sc->sc_dev,
944 		    "could not allocate shared area DMA memory\n");
945 	}
946 
947 	return error;
948 }
949 
950 static void
951 wpi_free_shared(struct wpi_softc *sc)
952 {
953 	wpi_dma_contig_free(&sc->shared_dma);
954 }
955 
956 static int
957 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
958 {
959 
960 	int i, error;
961 
962 	ring->cur = 0;
963 
964 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
965 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
966 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
967 
968 	if (error != 0) {
969 		device_printf(sc->sc_dev,
970 		    "%s: could not allocate rx ring DMA memory, error %d\n",
971 		    __func__, error);
972 		goto fail;
973 	}
974 
975         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
976 	    BUS_SPACE_MAXADDR_32BIT,
977             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
978             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
979         if (error != 0) {
980                 device_printf(sc->sc_dev,
981 		    "%s: bus_dma_tag_create_failed, error %d\n",
982 		    __func__, error);
983                 goto fail;
984         }
985 
986 	/*
987 	 * Setup Rx buffers.
988 	 */
989 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
990 		struct wpi_rx_data *data = &ring->data[i];
991 		struct mbuf *m;
992 		bus_addr_t paddr;
993 
994 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
995 		if (error != 0) {
996 			device_printf(sc->sc_dev,
997 			    "%s: bus_dmamap_create failed, error %d\n",
998 			    __func__, error);
999 			goto fail;
1000 		}
1001 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1002 		if (m == NULL) {
1003 			device_printf(sc->sc_dev,
1004 			   "%s: could not allocate rx mbuf\n", __func__);
1005 			error = ENOMEM;
1006 			goto fail;
1007 		}
1008 		/* map page */
1009 		error = bus_dmamap_load(ring->data_dmat, data->map,
1010 		    mtod(m, caddr_t), MJUMPAGESIZE,
1011 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1012 		if (error != 0 && error != EFBIG) {
1013 			device_printf(sc->sc_dev,
1014 			    "%s: bus_dmamap_load failed, error %d\n",
1015 			    __func__, error);
1016 			m_freem(m);
1017 			error = ENOMEM;	/* XXX unique code */
1018 			goto fail;
1019 		}
1020 		bus_dmamap_sync(ring->data_dmat, data->map,
1021 		    BUS_DMASYNC_PREWRITE);
1022 
1023 		data->m = m;
1024 		ring->desc[i] = htole32(paddr);
1025 	}
1026 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1027 	    BUS_DMASYNC_PREWRITE);
1028 	return 0;
1029 fail:
1030 	wpi_free_rx_ring(sc, ring);
1031 	return error;
1032 }
1033 
1034 static void
1035 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1036 {
1037 	int ntries;
1038 
1039 	wpi_mem_lock(sc);
1040 
1041 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1042 
1043 	for (ntries = 0; ntries < 100; ntries++) {
1044 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1045 			break;
1046 		DELAY(10);
1047 	}
1048 
1049 	wpi_mem_unlock(sc);
1050 
1051 #ifdef WPI_DEBUG
1052 	if (ntries == 100 && wpi_debug > 0)
1053 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1054 #endif
1055 
1056 	ring->cur = 0;
1057 }
1058 
1059 static void
1060 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1061 {
1062 	int i;
1063 
1064 	wpi_dma_contig_free(&ring->desc_dma);
1065 
1066 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1067 		if (ring->data[i].m != NULL)
1068 			m_freem(ring->data[i].m);
1069 }
1070 
1071 static int
1072 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1073 	int qid)
1074 {
1075 	struct wpi_tx_data *data;
1076 	int i, error;
1077 
1078 	ring->qid = qid;
1079 	ring->count = count;
1080 	ring->queued = 0;
1081 	ring->cur = 0;
1082 	ring->data = NULL;
1083 
1084 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1085 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1086 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1087 
1088 	if (error != 0) {
1089 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1090 	    goto fail;
1091 	}
1092 
1093 	/* update shared page with ring's base address */
1094 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1095 
1096 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1097 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1098 		BUS_DMA_NOWAIT);
1099 
1100 	if (error != 0) {
1101 		device_printf(sc->sc_dev,
1102 		    "could not allocate tx command DMA memory\n");
1103 		goto fail;
1104 	}
1105 
1106 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1107 	    M_NOWAIT | M_ZERO);
1108 	if (ring->data == NULL) {
1109 		device_printf(sc->sc_dev,
1110 		    "could not allocate tx data slots\n");
1111 		goto fail;
1112 	}
1113 
1114 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1115 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1116 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1117 	    &ring->data_dmat);
1118 	if (error != 0) {
1119 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1120 		goto fail;
1121 	}
1122 
1123 	for (i = 0; i < count; i++) {
1124 		data = &ring->data[i];
1125 
1126 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1127 		if (error != 0) {
1128 			device_printf(sc->sc_dev,
1129 			    "could not create tx buf DMA map\n");
1130 			goto fail;
1131 		}
1132 		bus_dmamap_sync(ring->data_dmat, data->map,
1133 		    BUS_DMASYNC_PREWRITE);
1134 	}
1135 
1136 	return 0;
1137 
1138 fail:
1139 	wpi_free_tx_ring(sc, ring);
1140 	return error;
1141 }
1142 
1143 static void
1144 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1145 {
1146 	struct wpi_tx_data *data;
1147 	int i, ntries;
1148 
1149 	wpi_mem_lock(sc);
1150 
1151 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1152 	for (ntries = 0; ntries < 100; ntries++) {
1153 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1154 			break;
1155 		DELAY(10);
1156 	}
1157 #ifdef WPI_DEBUG
1158 	if (ntries == 100 && wpi_debug > 0)
1159 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1160 		    ring->qid);
1161 #endif
1162 	wpi_mem_unlock(sc);
1163 
1164 	for (i = 0; i < ring->count; i++) {
1165 		data = &ring->data[i];
1166 
1167 		if (data->m != NULL) {
1168 			bus_dmamap_unload(ring->data_dmat, data->map);
1169 			m_freem(data->m);
1170 			data->m = NULL;
1171 		}
1172 	}
1173 
1174 	ring->queued = 0;
1175 	ring->cur = 0;
1176 }
1177 
1178 static void
1179 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180 {
1181 	struct wpi_tx_data *data;
1182 	int i;
1183 
1184 	wpi_dma_contig_free(&ring->desc_dma);
1185 	wpi_dma_contig_free(&ring->cmd_dma);
1186 
1187 	if (ring->data != NULL) {
1188 		for (i = 0; i < ring->count; i++) {
1189 			data = &ring->data[i];
1190 
1191 			if (data->m != NULL) {
1192 				bus_dmamap_sync(ring->data_dmat, data->map,
1193 				    BUS_DMASYNC_POSTWRITE);
1194 				bus_dmamap_unload(ring->data_dmat, data->map);
1195 				m_freem(data->m);
1196 				data->m = NULL;
1197 			}
1198 		}
1199 		free(ring->data, M_DEVBUF);
1200 	}
1201 
1202 	if (ring->data_dmat != NULL)
1203 		bus_dma_tag_destroy(ring->data_dmat);
1204 }
1205 
1206 static int
1207 wpi_shutdown(device_t dev)
1208 {
1209 	struct wpi_softc *sc = device_get_softc(dev);
1210 
1211 	WPI_LOCK(sc);
1212 	wpi_stop_locked(sc);
1213 	wpi_unload_firmware(sc);
1214 	WPI_UNLOCK(sc);
1215 
1216 	return 0;
1217 }
1218 
1219 static int
1220 wpi_suspend(device_t dev)
1221 {
1222 	struct wpi_softc *sc = device_get_softc(dev);
1223 
1224 	wpi_stop(sc);
1225 	return 0;
1226 }
1227 
1228 static int
1229 wpi_resume(device_t dev)
1230 {
1231 	struct wpi_softc *sc = device_get_softc(dev);
1232 	struct ifnet *ifp = sc->sc_ifp;
1233 
1234 	pci_write_config(dev, 0x41, 0, 1);
1235 
1236 	if (ifp->if_flags & IFF_UP) {
1237 		wpi_init(ifp->if_softc);
1238 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1239 			wpi_start(ifp);
1240 	}
1241 	return 0;
1242 }
1243 
1244 /* ARGSUSED */
1245 static struct ieee80211_node *
1246 wpi_node_alloc(struct ieee80211vap *vap __unused,
1247 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1248 {
1249 	struct wpi_node *wn;
1250 
1251 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1252 
1253 	return &wn->ni;
1254 }
1255 
1256 /**
1257  * Called by net80211 when ever there is a change to 80211 state machine
1258  */
1259 static int
1260 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1261 {
1262 	struct wpi_vap *wvp = WPI_VAP(vap);
1263 	struct ieee80211com *ic = vap->iv_ic;
1264 	struct ifnet *ifp = ic->ic_ifp;
1265 	struct wpi_softc *sc = ifp->if_softc;
1266 	int error;
1267 
1268 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1269 		ieee80211_state_name[vap->iv_state],
1270 		ieee80211_state_name[nstate], sc->flags));
1271 
1272 	IEEE80211_UNLOCK(ic);
1273 	WPI_LOCK(sc);
1274 	if (nstate == IEEE80211_S_AUTH) {
1275 		/* The node must be registered in the firmware before auth */
1276 		error = wpi_auth(sc, vap);
1277 		if (error != 0) {
1278 			device_printf(sc->sc_dev,
1279 			    "%s: could not move to auth state, error %d\n",
1280 			    __func__, error);
1281 		}
1282 	}
1283 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1284 		error = wpi_run(sc, vap);
1285 		if (error != 0) {
1286 			device_printf(sc->sc_dev,
1287 			    "%s: could not move to run state, error %d\n",
1288 			    __func__, error);
1289 		}
1290 	}
1291 	if (nstate == IEEE80211_S_RUN) {
1292 		/* RUN -> RUN transition; just restart the timers */
1293 		wpi_calib_timeout(sc);
1294 		/* XXX split out rate control timer */
1295 	}
1296 	WPI_UNLOCK(sc);
1297 	IEEE80211_LOCK(ic);
1298 	return wvp->newstate(vap, nstate, arg);
1299 }
1300 
1301 /*
1302  * Grab exclusive access to NIC memory.
1303  */
1304 static void
1305 wpi_mem_lock(struct wpi_softc *sc)
1306 {
1307 	int ntries;
1308 	uint32_t tmp;
1309 
1310 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1311 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1312 
1313 	/* spin until we actually get the lock */
1314 	for (ntries = 0; ntries < 100; ntries++) {
1315 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1316 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1317 			break;
1318 		DELAY(10);
1319 	}
1320 	if (ntries == 100)
1321 		device_printf(sc->sc_dev, "could not lock memory\n");
1322 }
1323 
1324 /*
1325  * Release lock on NIC memory.
1326  */
1327 static void
1328 wpi_mem_unlock(struct wpi_softc *sc)
1329 {
1330 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1331 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1332 }
1333 
1334 static uint32_t
1335 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1336 {
1337 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1338 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1339 }
1340 
1341 static void
1342 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1343 {
1344 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1345 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1346 }
1347 
1348 static void
1349 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1350     const uint32_t *data, int wlen)
1351 {
1352 	for (; wlen > 0; wlen--, data++, addr+=4)
1353 		wpi_mem_write(sc, addr, *data);
1354 }
1355 
1356 /*
1357  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1358  * using the traditional bit-bang method. Data is read up until len bytes have
1359  * been obtained.
1360  */
1361 static uint16_t
1362 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1363 {
1364 	int ntries;
1365 	uint32_t val;
1366 	uint8_t *out = data;
1367 
1368 	wpi_mem_lock(sc);
1369 
1370 	for (; len > 0; len -= 2, addr++) {
1371 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1372 
1373 		for (ntries = 0; ntries < 10; ntries++) {
1374 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1375 				break;
1376 			DELAY(5);
1377 		}
1378 
1379 		if (ntries == 10) {
1380 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1381 			return ETIMEDOUT;
1382 		}
1383 
1384 		*out++= val >> 16;
1385 		if (len > 1)
1386 			*out ++= val >> 24;
1387 	}
1388 
1389 	wpi_mem_unlock(sc);
1390 
1391 	return 0;
1392 }
1393 
1394 /*
1395  * The firmware text and data segments are transferred to the NIC using DMA.
1396  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1397  * where to find it.  Once the NIC has copied the firmware into its internal
1398  * memory, we can free our local copy in the driver.
1399  */
1400 static int
1401 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1402 {
1403 	int error, ntries;
1404 
1405 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1406 
1407 	size /= sizeof(uint32_t);
1408 
1409 	wpi_mem_lock(sc);
1410 
1411 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1412 	    (const uint32_t *)fw, size);
1413 
1414 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1415 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1416 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1417 
1418 	/* run microcode */
1419 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1420 
1421 	/* wait while the adapter is busy copying the firmware */
1422 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1423 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1424 		DPRINTFN(WPI_DEBUG_HW,
1425 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1426 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1427 		if (status & WPI_TX_IDLE(6)) {
1428 			DPRINTFN(WPI_DEBUG_HW,
1429 			    ("Status Match! - ntries = %d\n", ntries));
1430 			break;
1431 		}
1432 		DELAY(10);
1433 	}
1434 	if (ntries == 1000) {
1435 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1436 		error = ETIMEDOUT;
1437 	}
1438 
1439 	/* start the microcode executing */
1440 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1441 
1442 	wpi_mem_unlock(sc);
1443 
1444 	return (error);
1445 }
1446 
1447 static void
1448 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1449 	struct wpi_rx_data *data)
1450 {
1451 	struct ifnet *ifp = sc->sc_ifp;
1452 	struct ieee80211com *ic = ifp->if_l2com;
1453 	struct wpi_rx_ring *ring = &sc->rxq;
1454 	struct wpi_rx_stat *stat;
1455 	struct wpi_rx_head *head;
1456 	struct wpi_rx_tail *tail;
1457 	struct ieee80211_node *ni;
1458 	struct mbuf *m, *mnew;
1459 	bus_addr_t paddr;
1460 	int error;
1461 
1462 	stat = (struct wpi_rx_stat *)(desc + 1);
1463 
1464 	if (stat->len > WPI_STAT_MAXLEN) {
1465 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1466 		ifp->if_ierrors++;
1467 		return;
1468 	}
1469 
1470 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1471 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1472 
1473 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1474 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1475 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1476 	    (uintmax_t)le64toh(tail->tstamp)));
1477 
1478 	/* discard Rx frames with bad CRC early */
1479 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1480 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1481 		    le32toh(tail->flags)));
1482 		ifp->if_ierrors++;
1483 		return;
1484 	}
1485 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1486 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1487 		    le16toh(head->len)));
1488 		ifp->if_ierrors++;
1489 		return;
1490 	}
1491 
1492 	/* XXX don't need mbuf, just dma buffer */
1493 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1494 	if (mnew == NULL) {
1495 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1496 		    __func__));
1497 		ifp->if_ierrors++;
1498 		return;
1499 	}
1500 	error = bus_dmamap_load(ring->data_dmat, data->map,
1501 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1502 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1503 	if (error != 0 && error != EFBIG) {
1504 		device_printf(sc->sc_dev,
1505 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1506 		m_freem(mnew);
1507 		ifp->if_ierrors++;
1508 		return;
1509 	}
1510 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1511 
1512 	/* finalize mbuf and swap in new one */
1513 	m = data->m;
1514 	m->m_pkthdr.rcvif = ifp;
1515 	m->m_data = (caddr_t)(head + 1);
1516 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1517 
1518 	data->m = mnew;
1519 	/* update Rx descriptor */
1520 	ring->desc[ring->cur] = htole32(paddr);
1521 
1522 	if (bpf_peers_present(ifp->if_bpf)) {
1523 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1524 
1525 		tap->wr_flags = 0;
1526 		tap->wr_chan_freq =
1527 			htole16(ic->ic_channels[head->chan].ic_freq);
1528 		tap->wr_chan_flags =
1529 			htole16(ic->ic_channels[head->chan].ic_flags);
1530 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1531 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1532 		tap->wr_tsft = tail->tstamp;
1533 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1534 		switch (head->rate) {
1535 		/* CCK rates */
1536 		case  10: tap->wr_rate =   2; break;
1537 		case  20: tap->wr_rate =   4; break;
1538 		case  55: tap->wr_rate =  11; break;
1539 		case 110: tap->wr_rate =  22; break;
1540 		/* OFDM rates */
1541 		case 0xd: tap->wr_rate =  12; break;
1542 		case 0xf: tap->wr_rate =  18; break;
1543 		case 0x5: tap->wr_rate =  24; break;
1544 		case 0x7: tap->wr_rate =  36; break;
1545 		case 0x9: tap->wr_rate =  48; break;
1546 		case 0xb: tap->wr_rate =  72; break;
1547 		case 0x1: tap->wr_rate =  96; break;
1548 		case 0x3: tap->wr_rate = 108; break;
1549 		/* unknown rate: should not happen */
1550 		default:  tap->wr_rate =   0;
1551 		}
1552 		if (le16toh(head->flags) & 0x4)
1553 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1554 
1555 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1556 	}
1557 
1558 	WPI_UNLOCK(sc);
1559 
1560 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1561 	if (ni != NULL) {
1562 		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1563 		ieee80211_free_node(ni);
1564 	} else
1565 		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1566 
1567 	WPI_LOCK(sc);
1568 }
1569 
1570 static void
1571 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1572 {
1573 	struct ifnet *ifp = sc->sc_ifp;
1574 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1575 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1576 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1577 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1578 
1579 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1580 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1581 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1582 	    le32toh(stat->status)));
1583 
1584 	/*
1585 	 * Update rate control statistics for the node.
1586 	 * XXX we should not count mgmt frames since they're always sent at
1587 	 * the lowest available bit-rate.
1588 	 * XXX frames w/o ACK shouldn't be used either
1589 	 */
1590 	wn->amn.amn_txcnt++;
1591 	if (stat->ntries > 0) {
1592 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1593 		wn->amn.amn_retrycnt++;
1594 	}
1595 
1596 	/* XXX oerrors should only count errors !maxtries */
1597 	if ((le32toh(stat->status) & 0xff) != 1)
1598 		ifp->if_oerrors++;
1599 	else
1600 		ifp->if_opackets++;
1601 
1602 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1603 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1604 	/* XXX handle M_TXCB? */
1605 	m_freem(txdata->m);
1606 	txdata->m = NULL;
1607 	ieee80211_free_node(txdata->ni);
1608 	txdata->ni = NULL;
1609 
1610 	ring->queued--;
1611 
1612 	sc->sc_tx_timer = 0;
1613 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1614 	wpi_start_locked(ifp);
1615 }
1616 
1617 static void
1618 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1619 {
1620 	struct wpi_tx_ring *ring = &sc->cmdq;
1621 	struct wpi_tx_data *data;
1622 
1623 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1624 				 "type=%s len=%d\n", desc->qid, desc->idx,
1625 				 desc->flags, wpi_cmd_str(desc->type),
1626 				 le32toh(desc->len)));
1627 
1628 	if ((desc->qid & 7) != 4)
1629 		return;	/* not a command ack */
1630 
1631 	data = &ring->data[desc->idx];
1632 
1633 	/* if the command was mapped in a mbuf, free it */
1634 	if (data->m != NULL) {
1635 		bus_dmamap_unload(ring->data_dmat, data->map);
1636 		m_freem(data->m);
1637 		data->m = NULL;
1638 	}
1639 
1640 	sc->flags &= ~WPI_FLAG_BUSY;
1641 	wakeup(&ring->cmd[desc->idx]);
1642 }
1643 
1644 static void
1645 wpi_notif_intr(struct wpi_softc *sc)
1646 {
1647 	struct ifnet *ifp = sc->sc_ifp;
1648 	struct ieee80211com *ic = ifp->if_l2com;
1649 	struct wpi_rx_desc *desc;
1650 	struct wpi_rx_data *data;
1651 	uint32_t hw;
1652 
1653 	hw = le32toh(sc->shared->next);
1654 	while (sc->rxq.cur != hw) {
1655 		data = &sc->rxq.data[sc->rxq.cur];
1656 		desc = (void *)data->m->m_ext.ext_buf;
1657 
1658 		DPRINTFN(WPI_DEBUG_NOTIFY,
1659 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1660 			  desc->qid,
1661 			  desc->idx,
1662 			  desc->flags,
1663 			  desc->type,
1664 			  le32toh(desc->len)));
1665 
1666 		if (!(desc->qid & 0x80))	/* reply to a command */
1667 			wpi_cmd_intr(sc, desc);
1668 
1669 		switch (desc->type) {
1670 		case WPI_RX_DONE:
1671 			/* a 802.11 frame was received */
1672 			wpi_rx_intr(sc, desc, data);
1673 			break;
1674 
1675 		case WPI_TX_DONE:
1676 			/* a 802.11 frame has been transmitted */
1677 			wpi_tx_intr(sc, desc);
1678 			break;
1679 
1680 		case WPI_UC_READY:
1681 		{
1682 			struct wpi_ucode_info *uc =
1683 				(struct wpi_ucode_info *)(desc + 1);
1684 
1685 			/* the microcontroller is ready */
1686 			DPRINTF(("microcode alive notification version %x "
1687 				"alive %x\n", le32toh(uc->version),
1688 				le32toh(uc->valid)));
1689 
1690 			if (le32toh(uc->valid) != 1) {
1691 				device_printf(sc->sc_dev,
1692 				    "microcontroller initialization failed\n");
1693 				wpi_stop_locked(sc);
1694 			}
1695 			break;
1696 		}
1697 		case WPI_STATE_CHANGED:
1698 		{
1699 			uint32_t *status = (uint32_t *)(desc + 1);
1700 
1701 			/* enabled/disabled notification */
1702 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1703 
1704 			if (le32toh(*status) & 1) {
1705 				device_printf(sc->sc_dev,
1706 				    "Radio transmitter is switched off\n");
1707 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1708 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1709 				/* Disable firmware commands */
1710 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1711 			}
1712 			break;
1713 		}
1714 		case WPI_START_SCAN:
1715 		{
1716 #ifdef WPI_DEBUG
1717 			struct wpi_start_scan *scan =
1718 				(struct wpi_start_scan *)(desc + 1);
1719 #endif
1720 
1721 			DPRINTFN(WPI_DEBUG_SCANNING,
1722 				 ("scanning channel %d status %x\n",
1723 			    scan->chan, le32toh(scan->status)));
1724 			break;
1725 		}
1726 		case WPI_STOP_SCAN:
1727 		{
1728 #ifdef WPI_DEBUG
1729 			struct wpi_stop_scan *scan =
1730 				(struct wpi_stop_scan *)(desc + 1);
1731 #endif
1732 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1733 
1734 			DPRINTFN(WPI_DEBUG_SCANNING,
1735 			    ("scan finished nchan=%d status=%d chan=%d\n",
1736 			     scan->nchan, scan->status, scan->chan));
1737 
1738 			sc->sc_scan_timer = 0;
1739 			ieee80211_scan_next(vap);
1740 			break;
1741 		}
1742 		case WPI_MISSED_BEACON:
1743 		{
1744 			struct wpi_missed_beacon *beacon =
1745 				(struct wpi_missed_beacon *)(desc + 1);
1746 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1747 
1748 			if (le32toh(beacon->consecutive) >=
1749 			    vap->iv_bmissthreshold) {
1750 				DPRINTF(("Beacon miss: %u >= %u\n",
1751 					 le32toh(beacon->consecutive),
1752 					 vap->iv_bmissthreshold));
1753 				ieee80211_beacon_miss(ic);
1754 			}
1755 			break;
1756 		}
1757 		}
1758 
1759 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1760 	}
1761 
1762 	/* tell the firmware what we have processed */
1763 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1764 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1765 }
1766 
1767 static void
1768 wpi_intr(void *arg)
1769 {
1770 	struct wpi_softc *sc = arg;
1771 	uint32_t r;
1772 
1773 	WPI_LOCK(sc);
1774 
1775 	r = WPI_READ(sc, WPI_INTR);
1776 	if (r == 0 || r == 0xffffffff) {
1777 		WPI_UNLOCK(sc);
1778 		return;
1779 	}
1780 
1781 	/* disable interrupts */
1782 	WPI_WRITE(sc, WPI_MASK, 0);
1783 	/* ack interrupts */
1784 	WPI_WRITE(sc, WPI_INTR, r);
1785 
1786 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1787 		struct ifnet *ifp = sc->sc_ifp;
1788 		struct ieee80211com *ic = ifp->if_l2com;
1789 
1790 		device_printf(sc->sc_dev, "fatal firmware error\n");
1791 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1792 				"(Hardware Error)"));
1793 		ieee80211_runtask(ic, &sc->sc_restarttask);
1794 		sc->flags &= ~WPI_FLAG_BUSY;
1795 		WPI_UNLOCK(sc);
1796 		return;
1797 	}
1798 
1799 	if (r & WPI_RX_INTR)
1800 		wpi_notif_intr(sc);
1801 
1802 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1803 		wakeup(sc);
1804 
1805 	/* re-enable interrupts */
1806 	if (sc->sc_ifp->if_flags & IFF_UP)
1807 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1808 
1809 	WPI_UNLOCK(sc);
1810 }
1811 
1812 static uint8_t
1813 wpi_plcp_signal(int rate)
1814 {
1815 	switch (rate) {
1816 	/* CCK rates (returned values are device-dependent) */
1817 	case 2:		return 10;
1818 	case 4:		return 20;
1819 	case 11:	return 55;
1820 	case 22:	return 110;
1821 
1822 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1823 	/* R1-R4 (ral/ural is R4-R1) */
1824 	case 12:	return 0xd;
1825 	case 18:	return 0xf;
1826 	case 24:	return 0x5;
1827 	case 36:	return 0x7;
1828 	case 48:	return 0x9;
1829 	case 72:	return 0xb;
1830 	case 96:	return 0x1;
1831 	case 108:	return 0x3;
1832 
1833 	/* unsupported rates (should not get there) */
1834 	default:	return 0;
1835 	}
1836 }
1837 
1838 /* quickly determine if a given rate is CCK or OFDM */
1839 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1840 
1841 /*
1842  * Construct the data packet for a transmit buffer and acutally put
1843  * the buffer onto the transmit ring, kicking the card to process the
1844  * the buffer.
1845  */
1846 static int
1847 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1848 	int ac)
1849 {
1850 	struct ieee80211vap *vap = ni->ni_vap;
1851 	struct ifnet *ifp = sc->sc_ifp;
1852 	struct ieee80211com *ic = ifp->if_l2com;
1853 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1854 	struct wpi_tx_ring *ring = &sc->txq[ac];
1855 	struct wpi_tx_desc *desc;
1856 	struct wpi_tx_data *data;
1857 	struct wpi_tx_cmd *cmd;
1858 	struct wpi_cmd_data *tx;
1859 	struct ieee80211_frame *wh;
1860 	const struct ieee80211_txparam *tp;
1861 	struct ieee80211_key *k;
1862 	struct mbuf *mnew;
1863 	int i, error, nsegs, rate, hdrlen, ismcast;
1864 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1865 
1866 	desc = &ring->desc[ring->cur];
1867 	data = &ring->data[ring->cur];
1868 
1869 	wh = mtod(m0, struct ieee80211_frame *);
1870 
1871 	hdrlen = ieee80211_hdrsize(wh);
1872 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1873 
1874 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1875 		k = ieee80211_crypto_encap(ni, m0);
1876 		if (k == NULL) {
1877 			m_freem(m0);
1878 			return ENOBUFS;
1879 		}
1880 		/* packet header may have moved, reset our local pointer */
1881 		wh = mtod(m0, struct ieee80211_frame *);
1882 	}
1883 
1884 	cmd = &ring->cmd[ring->cur];
1885 	cmd->code = WPI_CMD_TX_DATA;
1886 	cmd->flags = 0;
1887 	cmd->qid = ring->qid;
1888 	cmd->idx = ring->cur;
1889 
1890 	tx = (struct wpi_cmd_data *)cmd->data;
1891 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1892 	tx->timeout = htole16(0);
1893 	tx->ofdm_mask = 0xff;
1894 	tx->cck_mask = 0x0f;
1895 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1896 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1897 	tx->len = htole16(m0->m_pkthdr.len);
1898 
1899 	if (!ismcast) {
1900 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1901 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1902 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1903 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1904 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1905 			tx->rts_ntries = 7;
1906 		}
1907 	}
1908 	/* pick a rate */
1909 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1910 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1911 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1912 		/* tell h/w to set timestamp in probe responses */
1913 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1914 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1915 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1916 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1917 			tx->timeout = htole16(3);
1918 		else
1919 			tx->timeout = htole16(2);
1920 		rate = tp->mgmtrate;
1921 	} else if (ismcast) {
1922 		rate = tp->mcastrate;
1923 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1924 		rate = tp->ucastrate;
1925 	} else {
1926 		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1927 		rate = ni->ni_txrate;
1928 	}
1929 	tx->rate = wpi_plcp_signal(rate);
1930 
1931 	/* be very persistant at sending frames out */
1932 #if 0
1933 	tx->data_ntries = tp->maxretry;
1934 #else
1935 	tx->data_ntries = 15;		/* XXX way too high */
1936 #endif
1937 
1938 	if (bpf_peers_present(ifp->if_bpf)) {
1939 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1940 		tap->wt_flags = 0;
1941 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1942 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1943 		tap->wt_rate = rate;
1944 		tap->wt_hwqueue = ac;
1945 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1946 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1947 
1948 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1949 	}
1950 
1951 	/* save and trim IEEE802.11 header */
1952 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1953 	m_adj(m0, hdrlen);
1954 
1955 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1956 	    &nsegs, BUS_DMA_NOWAIT);
1957 	if (error != 0 && error != EFBIG) {
1958 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1959 		    error);
1960 		m_freem(m0);
1961 		return error;
1962 	}
1963 	if (error != 0) {
1964 		/* XXX use m_collapse */
1965 		mnew = m_defrag(m0, M_DONTWAIT);
1966 		if (mnew == NULL) {
1967 			device_printf(sc->sc_dev,
1968 			    "could not defragment mbuf\n");
1969 			m_freem(m0);
1970 			return ENOBUFS;
1971 		}
1972 		m0 = mnew;
1973 
1974 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1975 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1976 		if (error != 0) {
1977 			device_printf(sc->sc_dev,
1978 			    "could not map mbuf (error %d)\n", error);
1979 			m_freem(m0);
1980 			return error;
1981 		}
1982 	}
1983 
1984 	data->m = m0;
1985 	data->ni = ni;
1986 
1987 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1988 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1989 
1990 	/* first scatter/gather segment is used by the tx data command */
1991 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1992 	    (1 + nsegs) << 24);
1993 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1994 	    ring->cur * sizeof (struct wpi_tx_cmd));
1995 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1996 	for (i = 1; i <= nsegs; i++) {
1997 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1998 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1999 	}
2000 
2001 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2002 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2003 	    BUS_DMASYNC_PREWRITE);
2004 
2005 	ring->queued++;
2006 
2007 	/* kick ring */
2008 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2009 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2010 
2011 	return 0;
2012 }
2013 
2014 /**
2015  * Process data waiting to be sent on the IFNET output queue
2016  */
2017 static void
2018 wpi_start(struct ifnet *ifp)
2019 {
2020 	struct wpi_softc *sc = ifp->if_softc;
2021 
2022 	WPI_LOCK(sc);
2023 	wpi_start_locked(ifp);
2024 	WPI_UNLOCK(sc);
2025 }
2026 
2027 static void
2028 wpi_start_locked(struct ifnet *ifp)
2029 {
2030 	struct wpi_softc *sc = ifp->if_softc;
2031 	struct ieee80211_node *ni;
2032 	struct mbuf *m;
2033 	int ac;
2034 
2035 	WPI_LOCK_ASSERT(sc);
2036 
2037 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2038 		return;
2039 
2040 	for (;;) {
2041 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2042 		if (m == NULL)
2043 			break;
2044 		ac = M_WME_GETAC(m);
2045 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2046 			/* there is no place left in this ring */
2047 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2048 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2049 			break;
2050 		}
2051 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2052 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2053 			ieee80211_free_node(ni);
2054 			ifp->if_oerrors++;
2055 			break;
2056 		}
2057 		sc->sc_tx_timer = 5;
2058 	}
2059 }
2060 
2061 static int
2062 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2063 	const struct ieee80211_bpf_params *params)
2064 {
2065 	struct ieee80211com *ic = ni->ni_ic;
2066 	struct ifnet *ifp = ic->ic_ifp;
2067 	struct wpi_softc *sc = ifp->if_softc;
2068 
2069 	/* prevent management frames from being sent if we're not ready */
2070 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2071 		m_freem(m);
2072 		ieee80211_free_node(ni);
2073 		return ENETDOWN;
2074 	}
2075 	WPI_LOCK(sc);
2076 
2077 	/* management frames go into ring 0 */
2078 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2079 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2080 		m_freem(m);
2081 		WPI_UNLOCK(sc);
2082 		ieee80211_free_node(ni);
2083 		return ENOBUFS;		/* XXX */
2084 	}
2085 
2086 	ifp->if_opackets++;
2087 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2088 		goto bad;
2089 	sc->sc_tx_timer = 5;
2090 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2091 
2092 	WPI_UNLOCK(sc);
2093 	return 0;
2094 bad:
2095 	ifp->if_oerrors++;
2096 	WPI_UNLOCK(sc);
2097 	ieee80211_free_node(ni);
2098 	return EIO;		/* XXX */
2099 }
2100 
2101 static int
2102 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2103 {
2104 	struct wpi_softc *sc = ifp->if_softc;
2105 	struct ieee80211com *ic = ifp->if_l2com;
2106 	struct ifreq *ifr = (struct ifreq *) data;
2107 	int error = 0, startall = 0;
2108 
2109 	switch (cmd) {
2110 	case SIOCSIFFLAGS:
2111 		WPI_LOCK(sc);
2112 		if ((ifp->if_flags & IFF_UP)) {
2113 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2114 				wpi_init_locked(sc, 0);
2115 				startall = 1;
2116 			}
2117 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2118 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2119 			wpi_stop_locked(sc);
2120 		WPI_UNLOCK(sc);
2121 		if (startall)
2122 			ieee80211_start_all(ic);
2123 		break;
2124 	case SIOCGIFMEDIA:
2125 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2126 		break;
2127 	case SIOCGIFADDR:
2128 		error = ether_ioctl(ifp, cmd, data);
2129 		break;
2130 	default:
2131 		error = EINVAL;
2132 		break;
2133 	}
2134 	return error;
2135 }
2136 
2137 /*
2138  * Extract various information from EEPROM.
2139  */
2140 static void
2141 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2142 {
2143 	int i;
2144 
2145 	/* read the hardware capabilities, revision and SKU type */
2146 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2147 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2148 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2149 
2150 	/* read the regulatory domain */
2151 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2152 
2153 	/* read in the hw MAC address */
2154 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2155 
2156 	/* read the list of authorized channels */
2157 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2158 		wpi_read_eeprom_channels(sc,i);
2159 
2160 	/* read the power level calibration info for each group */
2161 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2162 		wpi_read_eeprom_group(sc,i);
2163 }
2164 
2165 /*
2166  * Send a command to the firmware.
2167  */
2168 static int
2169 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2170 {
2171 	struct wpi_tx_ring *ring = &sc->cmdq;
2172 	struct wpi_tx_desc *desc;
2173 	struct wpi_tx_cmd *cmd;
2174 
2175 #ifdef WPI_DEBUG
2176 	if (!async) {
2177 		WPI_LOCK_ASSERT(sc);
2178 	}
2179 #endif
2180 
2181 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2182 		    async));
2183 
2184 	if (sc->flags & WPI_FLAG_BUSY) {
2185 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2186 		    __func__, code);
2187 		return EAGAIN;
2188 	}
2189 	sc->flags|= WPI_FLAG_BUSY;
2190 
2191 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2192 	    code, size));
2193 
2194 	desc = &ring->desc[ring->cur];
2195 	cmd = &ring->cmd[ring->cur];
2196 
2197 	cmd->code = code;
2198 	cmd->flags = 0;
2199 	cmd->qid = ring->qid;
2200 	cmd->idx = ring->cur;
2201 	memcpy(cmd->data, buf, size);
2202 
2203 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2204 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2205 		ring->cur * sizeof (struct wpi_tx_cmd));
2206 	desc->segs[0].len  = htole32(4 + size);
2207 
2208 	/* kick cmd ring */
2209 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2210 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2211 
2212 	if (async) {
2213 		sc->flags &= ~ WPI_FLAG_BUSY;
2214 		return 0;
2215 	}
2216 
2217 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2218 }
2219 
2220 static int
2221 wpi_wme_update(struct ieee80211com *ic)
2222 {
2223 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2224 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2225 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2226 	const struct wmeParams *wmep;
2227 	struct wpi_wme_setup wme;
2228 	int ac;
2229 
2230 	/* don't override default WME values if WME is not actually enabled */
2231 	if (!(ic->ic_flags & IEEE80211_F_WME))
2232 		return 0;
2233 
2234 	wme.flags = 0;
2235 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2236 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2237 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2238 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2239 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2240 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2241 
2242 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2243 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2244 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2245 	}
2246 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2247 #undef WPI_USEC
2248 #undef WPI_EXP2
2249 }
2250 
2251 /*
2252  * Configure h/w multi-rate retries.
2253  */
2254 static int
2255 wpi_mrr_setup(struct wpi_softc *sc)
2256 {
2257 	struct ifnet *ifp = sc->sc_ifp;
2258 	struct ieee80211com *ic = ifp->if_l2com;
2259 	struct wpi_mrr_setup mrr;
2260 	int i, error;
2261 
2262 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2263 
2264 	/* CCK rates (not used with 802.11a) */
2265 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2266 		mrr.rates[i].flags = 0;
2267 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2268 		/* fallback to the immediate lower CCK rate (if any) */
2269 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2270 		/* try one time at this rate before falling back to "next" */
2271 		mrr.rates[i].ntries = 1;
2272 	}
2273 
2274 	/* OFDM rates (not used with 802.11b) */
2275 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2276 		mrr.rates[i].flags = 0;
2277 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2278 		/* fallback to the immediate lower OFDM rate (if any) */
2279 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2280 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2281 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2282 			WPI_OFDM6 : WPI_CCK2) :
2283 		    i - 1;
2284 		/* try one time at this rate before falling back to "next" */
2285 		mrr.rates[i].ntries = 1;
2286 	}
2287 
2288 	/* setup MRR for control frames */
2289 	mrr.which = htole32(WPI_MRR_CTL);
2290 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2291 	if (error != 0) {
2292 		device_printf(sc->sc_dev,
2293 		    "could not setup MRR for control frames\n");
2294 		return error;
2295 	}
2296 
2297 	/* setup MRR for data frames */
2298 	mrr.which = htole32(WPI_MRR_DATA);
2299 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2300 	if (error != 0) {
2301 		device_printf(sc->sc_dev,
2302 		    "could not setup MRR for data frames\n");
2303 		return error;
2304 	}
2305 
2306 	return 0;
2307 }
2308 
2309 static void
2310 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2311 {
2312 	struct wpi_cmd_led led;
2313 
2314 	led.which = which;
2315 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2316 	led.off = off;
2317 	led.on = on;
2318 
2319 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2320 }
2321 
2322 static void
2323 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2324 {
2325 	struct wpi_cmd_tsf tsf;
2326 	uint64_t val, mod;
2327 
2328 	memset(&tsf, 0, sizeof tsf);
2329 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2330 	tsf.bintval = htole16(ni->ni_intval);
2331 	tsf.lintval = htole16(10);
2332 
2333 	/* compute remaining time until next beacon */
2334 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2335 	mod = le64toh(tsf.tstamp) % val;
2336 	tsf.binitval = htole32((uint32_t)(val - mod));
2337 
2338 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2339 		device_printf(sc->sc_dev, "could not enable TSF\n");
2340 }
2341 
2342 #if 0
2343 /*
2344  * Build a beacon frame that the firmware will broadcast periodically in
2345  * IBSS or HostAP modes.
2346  */
2347 static int
2348 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2349 {
2350 	struct ifnet *ifp = sc->sc_ifp;
2351 	struct ieee80211com *ic = ifp->if_l2com;
2352 	struct wpi_tx_ring *ring = &sc->cmdq;
2353 	struct wpi_tx_desc *desc;
2354 	struct wpi_tx_data *data;
2355 	struct wpi_tx_cmd *cmd;
2356 	struct wpi_cmd_beacon *bcn;
2357 	struct ieee80211_beacon_offsets bo;
2358 	struct mbuf *m0;
2359 	bus_addr_t physaddr;
2360 	int error;
2361 
2362 	desc = &ring->desc[ring->cur];
2363 	data = &ring->data[ring->cur];
2364 
2365 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2366 	if (m0 == NULL) {
2367 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2368 		return ENOMEM;
2369 	}
2370 
2371 	cmd = &ring->cmd[ring->cur];
2372 	cmd->code = WPI_CMD_SET_BEACON;
2373 	cmd->flags = 0;
2374 	cmd->qid = ring->qid;
2375 	cmd->idx = ring->cur;
2376 
2377 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2378 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2379 	bcn->id = WPI_ID_BROADCAST;
2380 	bcn->ofdm_mask = 0xff;
2381 	bcn->cck_mask = 0x0f;
2382 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2383 	bcn->len = htole16(m0->m_pkthdr.len);
2384 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2385 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2386 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2387 
2388 	/* save and trim IEEE802.11 header */
2389 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2390 	m_adj(m0, sizeof (struct ieee80211_frame));
2391 
2392 	/* assume beacon frame is contiguous */
2393 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2394 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2395 	if (error != 0) {
2396 		device_printf(sc->sc_dev, "could not map beacon\n");
2397 		m_freem(m0);
2398 		return error;
2399 	}
2400 
2401 	data->m = m0;
2402 
2403 	/* first scatter/gather segment is used by the beacon command */
2404 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2405 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2406 		ring->cur * sizeof (struct wpi_tx_cmd));
2407 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2408 	desc->segs[1].addr = htole32(physaddr);
2409 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2410 
2411 	/* kick cmd ring */
2412 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2413 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2414 
2415 	return 0;
2416 }
2417 #endif
2418 
2419 static int
2420 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2421 {
2422 	struct ieee80211com *ic = vap->iv_ic;
2423 	struct ieee80211_node *ni = vap->iv_bss;
2424 	struct wpi_node_info node;
2425 	int error;
2426 
2427 
2428 	/* update adapter's configuration */
2429 	sc->config.associd = 0;
2430 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2431 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2432 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2433 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2434 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2435 		    WPI_CONFIG_24GHZ);
2436 	}
2437 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2438 		sc->config.cck_mask  = 0;
2439 		sc->config.ofdm_mask = 0x15;
2440 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2441 		sc->config.cck_mask  = 0x03;
2442 		sc->config.ofdm_mask = 0;
2443 	} else {
2444 		/* XXX assume 802.11b/g */
2445 		sc->config.cck_mask  = 0x0f;
2446 		sc->config.ofdm_mask = 0x15;
2447 	}
2448 
2449 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2450 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2451 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2452 		sizeof (struct wpi_config), 1);
2453 	if (error != 0) {
2454 		device_printf(sc->sc_dev, "could not configure\n");
2455 		return error;
2456 	}
2457 
2458 	/* configuration has changed, set Tx power accordingly */
2459 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2460 		device_printf(sc->sc_dev, "could not set Tx power\n");
2461 		return error;
2462 	}
2463 
2464 	/* add default node */
2465 	memset(&node, 0, sizeof node);
2466 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2467 	node.id = WPI_ID_BSS;
2468 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2469 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2470 	node.action = htole32(WPI_ACTION_SET_RATE);
2471 	node.antenna = WPI_ANTENNA_BOTH;
2472 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2473 	if (error != 0)
2474 		device_printf(sc->sc_dev, "could not add BSS node\n");
2475 
2476 	return (error);
2477 }
2478 
2479 static int
2480 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2481 {
2482 	struct ieee80211com *ic = vap->iv_ic;
2483 	struct ieee80211_node *ni = vap->iv_bss;
2484 	int error;
2485 
2486 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2487 		/* link LED blinks while monitoring */
2488 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2489 		return 0;
2490 	}
2491 
2492 	wpi_enable_tsf(sc, ni);
2493 
2494 	/* update adapter's configuration */
2495 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2496 	/* short preamble/slot time are negotiated when associating */
2497 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2498 	    WPI_CONFIG_SHSLOT);
2499 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2500 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2501 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2502 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2503 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2504 
2505 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2506 
2507 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2508 		    sc->config.flags));
2509 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2510 		    wpi_config), 1);
2511 	if (error != 0) {
2512 		device_printf(sc->sc_dev, "could not update configuration\n");
2513 		return error;
2514 	}
2515 
2516 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2517 	if (error != 0) {
2518 		device_printf(sc->sc_dev, "could set txpower\n");
2519 		return error;
2520 	}
2521 
2522 	/* link LED always on while associated */
2523 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2524 
2525 	/* start automatic rate control timer */
2526 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2527 
2528 	return (error);
2529 }
2530 
2531 /*
2532  * Send a scan request to the firmware.  Since this command is huge, we map it
2533  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2534  * much of this code is similar to that in wpi_cmd but because we must manually
2535  * construct the probe & channels, we duplicate what's needed here. XXX In the
2536  * future, this function should be modified to use wpi_cmd to help cleanup the
2537  * code base.
2538  */
2539 static int
2540 wpi_scan(struct wpi_softc *sc)
2541 {
2542 	struct ifnet *ifp = sc->sc_ifp;
2543 	struct ieee80211com *ic = ifp->if_l2com;
2544 	struct ieee80211_scan_state *ss = ic->ic_scan;
2545 	struct wpi_tx_ring *ring = &sc->cmdq;
2546 	struct wpi_tx_desc *desc;
2547 	struct wpi_tx_data *data;
2548 	struct wpi_tx_cmd *cmd;
2549 	struct wpi_scan_hdr *hdr;
2550 	struct wpi_scan_chan *chan;
2551 	struct ieee80211_frame *wh;
2552 	struct ieee80211_rateset *rs;
2553 	struct ieee80211_channel *c;
2554 	enum ieee80211_phymode mode;
2555 	uint8_t *frm;
2556 	int nrates, pktlen, error, i, nssid;
2557 	bus_addr_t physaddr;
2558 
2559 	desc = &ring->desc[ring->cur];
2560 	data = &ring->data[ring->cur];
2561 
2562 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2563 	if (data->m == NULL) {
2564 		device_printf(sc->sc_dev,
2565 		    "could not allocate mbuf for scan command\n");
2566 		return ENOMEM;
2567 	}
2568 
2569 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2570 	cmd->code = WPI_CMD_SCAN;
2571 	cmd->flags = 0;
2572 	cmd->qid = ring->qid;
2573 	cmd->idx = ring->cur;
2574 
2575 	hdr = (struct wpi_scan_hdr *)cmd->data;
2576 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2577 
2578 	/*
2579 	 * Move to the next channel if no packets are received within 5 msecs
2580 	 * after sending the probe request (this helps to reduce the duration
2581 	 * of active scans).
2582 	 */
2583 	hdr->quiet = htole16(5);
2584 	hdr->threshold = htole16(1);
2585 
2586 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2587 		/* send probe requests at 6Mbps */
2588 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2589 
2590 		/* Enable crc checking */
2591 		hdr->promotion = htole16(1);
2592 	} else {
2593 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2594 		/* send probe requests at 1Mbps */
2595 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2596 	}
2597 	hdr->tx.id = WPI_ID_BROADCAST;
2598 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2599 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2600 
2601 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2602 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2603 	for (i = 0; i < nssid; i++) {
2604 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2605 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2606 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2607 		    hdr->scan_essids[i].esslen);
2608 #ifdef WPI_DEBUG
2609 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2610 			printf("Scanning Essid: ");
2611 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2612 			    hdr->scan_essids[i].esslen);
2613 			printf("\n");
2614 		}
2615 #endif
2616 	}
2617 
2618 	/*
2619 	 * Build a probe request frame.  Most of the following code is a
2620 	 * copy & paste of what is done in net80211.
2621 	 */
2622 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2623 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2624 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2625 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2626 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2627 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2628 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2629 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2630 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2631 
2632 	frm = (uint8_t *)(wh + 1);
2633 
2634 	/* add essid IE, the hardware will fill this in for us */
2635 	*frm++ = IEEE80211_ELEMID_SSID;
2636 	*frm++ = 0;
2637 
2638 	mode = ieee80211_chan2mode(ic->ic_curchan);
2639 	rs = &ic->ic_sup_rates[mode];
2640 
2641 	/* add supported rates IE */
2642 	*frm++ = IEEE80211_ELEMID_RATES;
2643 	nrates = rs->rs_nrates;
2644 	if (nrates > IEEE80211_RATE_SIZE)
2645 		nrates = IEEE80211_RATE_SIZE;
2646 	*frm++ = nrates;
2647 	memcpy(frm, rs->rs_rates, nrates);
2648 	frm += nrates;
2649 
2650 	/* add supported xrates IE */
2651 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2652 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2653 		*frm++ = IEEE80211_ELEMID_XRATES;
2654 		*frm++ = nrates;
2655 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2656 		frm += nrates;
2657 	}
2658 
2659 	/* setup length of probe request */
2660 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2661 
2662 	/*
2663 	 * Construct information about the channel that we
2664 	 * want to scan. The firmware expects this to be directly
2665 	 * after the scan probe request
2666 	 */
2667 	c = ic->ic_curchan;
2668 	chan = (struct wpi_scan_chan *)frm;
2669 	chan->chan = ieee80211_chan2ieee(ic, c);
2670 	chan->flags = 0;
2671 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2672 		chan->flags |= WPI_CHAN_ACTIVE;
2673 		if (nssid != 0)
2674 			chan->flags |= WPI_CHAN_DIRECT;
2675 	}
2676 	chan->gain_dsp = 0x6e; /* Default level */
2677 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2678 		chan->active = htole16(10);
2679 		chan->passive = htole16(ss->ss_maxdwell);
2680 		chan->gain_radio = 0x3b;
2681 	} else {
2682 		chan->active = htole16(20);
2683 		chan->passive = htole16(ss->ss_maxdwell);
2684 		chan->gain_radio = 0x28;
2685 	}
2686 
2687 	DPRINTFN(WPI_DEBUG_SCANNING,
2688 	    ("Scanning %u Passive: %d\n",
2689 	     chan->chan,
2690 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2691 
2692 	hdr->nchan++;
2693 	chan++;
2694 
2695 	frm += sizeof (struct wpi_scan_chan);
2696 #if 0
2697 	// XXX All Channels....
2698 	for (c  = &ic->ic_channels[1];
2699 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2700 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2701 			continue;
2702 
2703 		chan->chan = ieee80211_chan2ieee(ic, c);
2704 		chan->flags = 0;
2705 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2706 		    chan->flags |= WPI_CHAN_ACTIVE;
2707 		    if (ic->ic_des_ssid[0].len != 0)
2708 			chan->flags |= WPI_CHAN_DIRECT;
2709 		}
2710 		chan->gain_dsp = 0x6e; /* Default level */
2711 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2712 			chan->active = htole16(10);
2713 			chan->passive = htole16(110);
2714 			chan->gain_radio = 0x3b;
2715 		} else {
2716 			chan->active = htole16(20);
2717 			chan->passive = htole16(120);
2718 			chan->gain_radio = 0x28;
2719 		}
2720 
2721 		DPRINTFN(WPI_DEBUG_SCANNING,
2722 			 ("Scanning %u Passive: %d\n",
2723 			  chan->chan,
2724 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2725 
2726 		hdr->nchan++;
2727 		chan++;
2728 
2729 		frm += sizeof (struct wpi_scan_chan);
2730 	}
2731 #endif
2732 
2733 	hdr->len = htole16(frm - (uint8_t *)hdr);
2734 	pktlen = frm - (uint8_t *)cmd;
2735 
2736 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2737 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2738 	if (error != 0) {
2739 		device_printf(sc->sc_dev, "could not map scan command\n");
2740 		m_freem(data->m);
2741 		data->m = NULL;
2742 		return error;
2743 	}
2744 
2745 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2746 	desc->segs[0].addr = htole32(physaddr);
2747 	desc->segs[0].len  = htole32(pktlen);
2748 
2749 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2750 	    BUS_DMASYNC_PREWRITE);
2751 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2752 
2753 	/* kick cmd ring */
2754 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2755 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2756 
2757 	sc->sc_scan_timer = 5;
2758 	return 0;	/* will be notified async. of failure/success */
2759 }
2760 
2761 /**
2762  * Configure the card to listen to a particular channel, this transisions the
2763  * card in to being able to receive frames from remote devices.
2764  */
2765 static int
2766 wpi_config(struct wpi_softc *sc)
2767 {
2768 	struct ifnet *ifp = sc->sc_ifp;
2769 	struct ieee80211com *ic = ifp->if_l2com;
2770 	struct wpi_power power;
2771 	struct wpi_bluetooth bluetooth;
2772 	struct wpi_node_info node;
2773 	int error;
2774 
2775 	/* set power mode */
2776 	memset(&power, 0, sizeof power);
2777 	power.flags = htole32(WPI_POWER_CAM|0x8);
2778 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2779 	if (error != 0) {
2780 		device_printf(sc->sc_dev, "could not set power mode\n");
2781 		return error;
2782 	}
2783 
2784 	/* configure bluetooth coexistence */
2785 	memset(&bluetooth, 0, sizeof bluetooth);
2786 	bluetooth.flags = 3;
2787 	bluetooth.lead = 0xaa;
2788 	bluetooth.kill = 1;
2789 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2790 	    0);
2791 	if (error != 0) {
2792 		device_printf(sc->sc_dev,
2793 		    "could not configure bluetooth coexistence\n");
2794 		return error;
2795 	}
2796 
2797 	/* configure adapter */
2798 	memset(&sc->config, 0, sizeof (struct wpi_config));
2799 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2800 	/*set default channel*/
2801 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2802 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2803 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2804 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2805 		    WPI_CONFIG_24GHZ);
2806 	}
2807 	sc->config.filter = 0;
2808 	switch (ic->ic_opmode) {
2809 	case IEEE80211_M_STA:
2810 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2811 		sc->config.mode = WPI_MODE_STA;
2812 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2813 		break;
2814 	case IEEE80211_M_IBSS:
2815 	case IEEE80211_M_AHDEMO:
2816 		sc->config.mode = WPI_MODE_IBSS;
2817 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2818 					     WPI_FILTER_MULTICAST);
2819 		break;
2820 	case IEEE80211_M_HOSTAP:
2821 		sc->config.mode = WPI_MODE_HOSTAP;
2822 		break;
2823 	case IEEE80211_M_MONITOR:
2824 		sc->config.mode = WPI_MODE_MONITOR;
2825 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2826 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2827 		break;
2828 	}
2829 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2830 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2831 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2832 		sizeof (struct wpi_config), 0);
2833 	if (error != 0) {
2834 		device_printf(sc->sc_dev, "configure command failed\n");
2835 		return error;
2836 	}
2837 
2838 	/* configuration has changed, set Tx power accordingly */
2839 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2840 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2841 	    return error;
2842 	}
2843 
2844 	/* add broadcast node */
2845 	memset(&node, 0, sizeof node);
2846 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2847 	node.id = WPI_ID_BROADCAST;
2848 	node.rate = wpi_plcp_signal(2);
2849 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2850 	if (error != 0) {
2851 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2852 		return error;
2853 	}
2854 
2855 	/* Setup rate scalling */
2856 	error = wpi_mrr_setup(sc);
2857 	if (error != 0) {
2858 		device_printf(sc->sc_dev, "could not setup MRR\n");
2859 		return error;
2860 	}
2861 
2862 	return 0;
2863 }
2864 
2865 static void
2866 wpi_stop_master(struct wpi_softc *sc)
2867 {
2868 	uint32_t tmp;
2869 	int ntries;
2870 
2871 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2872 
2873 	tmp = WPI_READ(sc, WPI_RESET);
2874 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2875 
2876 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2877 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2878 		return;	/* already asleep */
2879 
2880 	for (ntries = 0; ntries < 100; ntries++) {
2881 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2882 			break;
2883 		DELAY(10);
2884 	}
2885 	if (ntries == 100) {
2886 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2887 	}
2888 }
2889 
2890 static int
2891 wpi_power_up(struct wpi_softc *sc)
2892 {
2893 	uint32_t tmp;
2894 	int ntries;
2895 
2896 	wpi_mem_lock(sc);
2897 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2898 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2899 	wpi_mem_unlock(sc);
2900 
2901 	for (ntries = 0; ntries < 5000; ntries++) {
2902 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2903 			break;
2904 		DELAY(10);
2905 	}
2906 	if (ntries == 5000) {
2907 		device_printf(sc->sc_dev,
2908 		    "timeout waiting for NIC to power up\n");
2909 		return ETIMEDOUT;
2910 	}
2911 	return 0;
2912 }
2913 
2914 static int
2915 wpi_reset(struct wpi_softc *sc)
2916 {
2917 	uint32_t tmp;
2918 	int ntries;
2919 
2920 	DPRINTFN(WPI_DEBUG_HW,
2921 	    ("Resetting the card - clearing any uploaded firmware\n"));
2922 
2923 	/* clear any pending interrupts */
2924 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2925 
2926 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2927 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2928 
2929 	tmp = WPI_READ(sc, WPI_CHICKEN);
2930 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2931 
2932 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2933 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2934 
2935 	/* wait for clock stabilization */
2936 	for (ntries = 0; ntries < 25000; ntries++) {
2937 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2938 			break;
2939 		DELAY(10);
2940 	}
2941 	if (ntries == 25000) {
2942 		device_printf(sc->sc_dev,
2943 		    "timeout waiting for clock stabilization\n");
2944 		return ETIMEDOUT;
2945 	}
2946 
2947 	/* initialize EEPROM */
2948 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2949 
2950 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2951 		device_printf(sc->sc_dev, "EEPROM not found\n");
2952 		return EIO;
2953 	}
2954 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2955 
2956 	return 0;
2957 }
2958 
2959 static void
2960 wpi_hw_config(struct wpi_softc *sc)
2961 {
2962 	uint32_t rev, hw;
2963 
2964 	/* voodoo from the Linux "driver".. */
2965 	hw = WPI_READ(sc, WPI_HWCONFIG);
2966 
2967 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2968 	if ((rev & 0xc0) == 0x40)
2969 		hw |= WPI_HW_ALM_MB;
2970 	else if (!(rev & 0x80))
2971 		hw |= WPI_HW_ALM_MM;
2972 
2973 	if (sc->cap == 0x80)
2974 		hw |= WPI_HW_SKU_MRC;
2975 
2976 	hw &= ~WPI_HW_REV_D;
2977 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2978 		hw |= WPI_HW_REV_D;
2979 
2980 	if (sc->type > 1)
2981 		hw |= WPI_HW_TYPE_B;
2982 
2983 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2984 }
2985 
2986 static void
2987 wpi_rfkill_resume(struct wpi_softc *sc)
2988 {
2989 	struct ifnet *ifp = sc->sc_ifp;
2990 	struct ieee80211com *ic = ifp->if_l2com;
2991 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2992 	int ntries;
2993 
2994 	/* enable firmware again */
2995 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2996 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2997 
2998 	/* wait for thermal sensors to calibrate */
2999 	for (ntries = 0; ntries < 1000; ntries++) {
3000 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3001 			break;
3002 		DELAY(10);
3003 	}
3004 
3005 	if (ntries == 1000) {
3006 		device_printf(sc->sc_dev,
3007 		    "timeout waiting for thermal calibration\n");
3008 		WPI_UNLOCK(sc);
3009 		return;
3010 	}
3011 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3012 
3013 	if (wpi_config(sc) != 0) {
3014 		device_printf(sc->sc_dev, "device config failed\n");
3015 		WPI_UNLOCK(sc);
3016 		return;
3017 	}
3018 
3019 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3020 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3021 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3022 
3023 	if (vap != NULL) {
3024 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3025 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3026 				ieee80211_beacon_miss(ic);
3027 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3028 			} else
3029 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3030 		} else {
3031 			ieee80211_scan_next(vap);
3032 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3033 		}
3034 	}
3035 
3036 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3037 }
3038 
3039 static void
3040 wpi_init_locked(struct wpi_softc *sc, int force)
3041 {
3042 	struct ifnet *ifp = sc->sc_ifp;
3043 	uint32_t tmp;
3044 	int ntries, qid;
3045 
3046 	wpi_stop_locked(sc);
3047 	(void)wpi_reset(sc);
3048 
3049 	wpi_mem_lock(sc);
3050 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3051 	DELAY(20);
3052 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3053 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3054 	wpi_mem_unlock(sc);
3055 
3056 	(void)wpi_power_up(sc);
3057 	wpi_hw_config(sc);
3058 
3059 	/* init Rx ring */
3060 	wpi_mem_lock(sc);
3061 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3062 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3063 	    offsetof(struct wpi_shared, next));
3064 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3065 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3066 	wpi_mem_unlock(sc);
3067 
3068 	/* init Tx rings */
3069 	wpi_mem_lock(sc);
3070 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3071 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3072 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3073 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3074 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3075 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3076 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3077 
3078 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3079 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3080 
3081 	for (qid = 0; qid < 6; qid++) {
3082 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3083 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3084 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3085 	}
3086 	wpi_mem_unlock(sc);
3087 
3088 	/* clear "radio off" and "disable command" bits (reversed logic) */
3089 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3090 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3091 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3092 
3093 	/* clear any pending interrupts */
3094 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3095 
3096 	/* enable interrupts */
3097 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3098 
3099 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3100 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3101 
3102 	if ((wpi_load_firmware(sc)) != 0) {
3103 	    device_printf(sc->sc_dev,
3104 		"A problem occurred loading the firmware to the driver\n");
3105 	    return;
3106 	}
3107 
3108 	/* At this point the firmware is up and running. If the hardware
3109 	 * RF switch is turned off thermal calibration will fail, though
3110 	 * the card is still happy to continue to accept commands, catch
3111 	 * this case and schedule a task to watch for it to be turned on.
3112 	 */
3113 	wpi_mem_lock(sc);
3114 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3115 	wpi_mem_unlock(sc);
3116 
3117 	if (!(tmp & 0x1)) {
3118 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3119 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3120 		goto out;
3121 	}
3122 
3123 	/* wait for thermal sensors to calibrate */
3124 	for (ntries = 0; ntries < 1000; ntries++) {
3125 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3126 			break;
3127 		DELAY(10);
3128 	}
3129 
3130 	if (ntries == 1000) {
3131 		device_printf(sc->sc_dev,
3132 		    "timeout waiting for thermal sensors calibration\n");
3133 		return;
3134 	}
3135 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3136 
3137 	if (wpi_config(sc) != 0) {
3138 		device_printf(sc->sc_dev, "device config failed\n");
3139 		return;
3140 	}
3141 
3142 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3143 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3144 out:
3145 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3146 }
3147 
3148 static void
3149 wpi_init(void *arg)
3150 {
3151 	struct wpi_softc *sc = arg;
3152 	struct ifnet *ifp = sc->sc_ifp;
3153 	struct ieee80211com *ic = ifp->if_l2com;
3154 
3155 	WPI_LOCK(sc);
3156 	wpi_init_locked(sc, 0);
3157 	WPI_UNLOCK(sc);
3158 
3159 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3160 		ieee80211_start_all(ic);		/* start all vaps */
3161 }
3162 
3163 static void
3164 wpi_stop_locked(struct wpi_softc *sc)
3165 {
3166 	struct ifnet *ifp = sc->sc_ifp;
3167 	uint32_t tmp;
3168 	int ac;
3169 
3170 	sc->sc_tx_timer = 0;
3171 	sc->sc_scan_timer = 0;
3172 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3173 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3174 	callout_stop(&sc->watchdog_to);
3175 	callout_stop(&sc->calib_to);
3176 
3177 
3178 	/* disable interrupts */
3179 	WPI_WRITE(sc, WPI_MASK, 0);
3180 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3181 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3182 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3183 
3184 	wpi_mem_lock(sc);
3185 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3186 	wpi_mem_unlock(sc);
3187 
3188 	/* reset all Tx rings */
3189 	for (ac = 0; ac < 4; ac++)
3190 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3191 	wpi_reset_tx_ring(sc, &sc->cmdq);
3192 
3193 	/* reset Rx ring */
3194 	wpi_reset_rx_ring(sc, &sc->rxq);
3195 
3196 	wpi_mem_lock(sc);
3197 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3198 	wpi_mem_unlock(sc);
3199 
3200 	DELAY(5);
3201 
3202 	wpi_stop_master(sc);
3203 
3204 	tmp = WPI_READ(sc, WPI_RESET);
3205 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3206 	sc->flags &= ~WPI_FLAG_BUSY;
3207 }
3208 
3209 static void
3210 wpi_stop(struct wpi_softc *sc)
3211 {
3212 	WPI_LOCK(sc);
3213 	wpi_stop_locked(sc);
3214 	WPI_UNLOCK(sc);
3215 }
3216 
3217 static void
3218 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3219 {
3220 	struct ieee80211vap *vap = ni->ni_vap;
3221 	struct wpi_vap *wvp = WPI_VAP(vap);
3222 
3223 	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3224 }
3225 
3226 static void
3227 wpi_calib_timeout(void *arg)
3228 {
3229 	struct wpi_softc *sc = arg;
3230 	struct ifnet *ifp = sc->sc_ifp;
3231 	struct ieee80211com *ic = ifp->if_l2com;
3232 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3233 	int temp;
3234 
3235 	if (vap->iv_state != IEEE80211_S_RUN)
3236 		return;
3237 
3238 	/* update sensor data */
3239 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3240 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3241 
3242 	wpi_power_calibration(sc, temp);
3243 
3244 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3245 }
3246 
3247 /*
3248  * This function is called periodically (every 60 seconds) to adjust output
3249  * power to temperature changes.
3250  */
3251 static void
3252 wpi_power_calibration(struct wpi_softc *sc, int temp)
3253 {
3254 	struct ifnet *ifp = sc->sc_ifp;
3255 	struct ieee80211com *ic = ifp->if_l2com;
3256 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3257 
3258 	/* sanity-check read value */
3259 	if (temp < -260 || temp > 25) {
3260 		/* this can't be correct, ignore */
3261 		DPRINTFN(WPI_DEBUG_TEMP,
3262 		    ("out-of-range temperature reported: %d\n", temp));
3263 		return;
3264 	}
3265 
3266 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3267 
3268 	/* adjust Tx power if need be */
3269 	if (abs(temp - sc->temp) <= 6)
3270 		return;
3271 
3272 	sc->temp = temp;
3273 
3274 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3275 		/* just warn, too bad for the automatic calibration... */
3276 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3277 	}
3278 }
3279 
3280 /**
3281  * Read the eeprom to find out what channels are valid for the given
3282  * band and update net80211 with what we find.
3283  */
3284 static void
3285 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3286 {
3287 	struct ifnet *ifp = sc->sc_ifp;
3288 	struct ieee80211com *ic = ifp->if_l2com;
3289 	const struct wpi_chan_band *band = &wpi_bands[n];
3290 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3291 	struct ieee80211_channel *c;
3292 	int chan, i, passive;
3293 
3294 	wpi_read_prom_data(sc, band->addr, channels,
3295 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3296 
3297 	for (i = 0; i < band->nchan; i++) {
3298 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3299 			DPRINTFN(WPI_DEBUG_HW,
3300 			    ("Channel Not Valid: %d, band %d\n",
3301 			     band->chan[i],n));
3302 			continue;
3303 		}
3304 
3305 		passive = 0;
3306 		chan = band->chan[i];
3307 		c = &ic->ic_channels[ic->ic_nchans++];
3308 
3309 		/* is active scan allowed on this channel? */
3310 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3311 			passive = IEEE80211_CHAN_PASSIVE;
3312 		}
3313 
3314 		if (n == 0) {	/* 2GHz band */
3315 			c->ic_ieee = chan;
3316 			c->ic_freq = ieee80211_ieee2mhz(chan,
3317 			    IEEE80211_CHAN_2GHZ);
3318 			c->ic_flags = IEEE80211_CHAN_B | passive;
3319 
3320 			c = &ic->ic_channels[ic->ic_nchans++];
3321 			c->ic_ieee = chan;
3322 			c->ic_freq = ieee80211_ieee2mhz(chan,
3323 			    IEEE80211_CHAN_2GHZ);
3324 			c->ic_flags = IEEE80211_CHAN_G | passive;
3325 
3326 		} else {	/* 5GHz band */
3327 			/*
3328 			 * Some 3945ABG adapters support channels 7, 8, 11
3329 			 * and 12 in the 2GHz *and* 5GHz bands.
3330 			 * Because of limitations in our net80211(9) stack,
3331 			 * we can't support these channels in 5GHz band.
3332 			 * XXX not true; just need to map to proper frequency
3333 			 */
3334 			if (chan <= 14)
3335 				continue;
3336 
3337 			c->ic_ieee = chan;
3338 			c->ic_freq = ieee80211_ieee2mhz(chan,
3339 			    IEEE80211_CHAN_5GHZ);
3340 			c->ic_flags = IEEE80211_CHAN_A | passive;
3341 		}
3342 
3343 		/* save maximum allowed power for this channel */
3344 		sc->maxpwr[chan] = channels[i].maxpwr;
3345 
3346 #if 0
3347 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3348 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3349 		//ic->ic_channels[chan].ic_minpower...
3350 		//ic->ic_channels[chan].ic_maxregtxpower...
3351 #endif
3352 
3353 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3354 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3355 		    channels[i].flags, sc->maxpwr[chan],
3356 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3357 		    ic->ic_nchans));
3358 	}
3359 }
3360 
3361 static void
3362 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3363 {
3364 	struct wpi_power_group *group = &sc->groups[n];
3365 	struct wpi_eeprom_group rgroup;
3366 	int i;
3367 
3368 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3369 	    sizeof rgroup);
3370 
3371 	/* save power group information */
3372 	group->chan   = rgroup.chan;
3373 	group->maxpwr = rgroup.maxpwr;
3374 	/* temperature at which the samples were taken */
3375 	group->temp   = (int16_t)le16toh(rgroup.temp);
3376 
3377 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3378 		    group->chan, group->maxpwr, group->temp));
3379 
3380 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3381 		group->samples[i].index = rgroup.samples[i].index;
3382 		group->samples[i].power = rgroup.samples[i].power;
3383 
3384 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3385 			    group->samples[i].index, group->samples[i].power));
3386 	}
3387 }
3388 
3389 /*
3390  * Update Tx power to match what is defined for channel `c'.
3391  */
3392 static int
3393 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3394 {
3395 	struct ifnet *ifp = sc->sc_ifp;
3396 	struct ieee80211com *ic = ifp->if_l2com;
3397 	struct wpi_power_group *group;
3398 	struct wpi_cmd_txpower txpower;
3399 	u_int chan;
3400 	int i;
3401 
3402 	/* get channel number */
3403 	chan = ieee80211_chan2ieee(ic, c);
3404 
3405 	/* find the power group to which this channel belongs */
3406 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3407 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3408 			if (chan <= group->chan)
3409 				break;
3410 	} else
3411 		group = &sc->groups[0];
3412 
3413 	memset(&txpower, 0, sizeof txpower);
3414 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3415 	txpower.channel = htole16(chan);
3416 
3417 	/* set Tx power for all OFDM and CCK rates */
3418 	for (i = 0; i <= 11 ; i++) {
3419 		/* retrieve Tx power for this channel/rate combination */
3420 		int idx = wpi_get_power_index(sc, group, c,
3421 		    wpi_ridx_to_rate[i]);
3422 
3423 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3424 
3425 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3426 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3427 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3428 		} else {
3429 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3430 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3431 		}
3432 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3433 			    chan, wpi_ridx_to_rate[i], idx));
3434 	}
3435 
3436 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3437 }
3438 
3439 /*
3440  * Determine Tx power index for a given channel/rate combination.
3441  * This takes into account the regulatory information from EEPROM and the
3442  * current temperature.
3443  */
3444 static int
3445 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3446     struct ieee80211_channel *c, int rate)
3447 {
3448 /* fixed-point arithmetic division using a n-bit fractional part */
3449 #define fdivround(a, b, n)      \
3450 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3451 
3452 /* linear interpolation */
3453 #define interpolate(x, x1, y1, x2, y2, n)       \
3454 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3455 
3456 	struct ifnet *ifp = sc->sc_ifp;
3457 	struct ieee80211com *ic = ifp->if_l2com;
3458 	struct wpi_power_sample *sample;
3459 	int pwr, idx;
3460 	u_int chan;
3461 
3462 	/* get channel number */
3463 	chan = ieee80211_chan2ieee(ic, c);
3464 
3465 	/* default power is group's maximum power - 3dB */
3466 	pwr = group->maxpwr / 2;
3467 
3468 	/* decrease power for highest OFDM rates to reduce distortion */
3469 	switch (rate) {
3470 		case 72:	/* 36Mb/s */
3471 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3472 			break;
3473 		case 96:	/* 48Mb/s */
3474 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3475 			break;
3476 		case 108:	/* 54Mb/s */
3477 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3478 			break;
3479 	}
3480 
3481 	/* never exceed channel's maximum allowed Tx power */
3482 	pwr = min(pwr, sc->maxpwr[chan]);
3483 
3484 	/* retrieve power index into gain tables from samples */
3485 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3486 		if (pwr > sample[1].power)
3487 			break;
3488 	/* fixed-point linear interpolation using a 19-bit fractional part */
3489 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3490 	    sample[1].power, sample[1].index, 19);
3491 
3492 	/*
3493 	 *  Adjust power index based on current temperature
3494 	 *	- if colder than factory-calibrated: decreate output power
3495 	 *	- if warmer than factory-calibrated: increase output power
3496 	 */
3497 	idx -= (sc->temp - group->temp) * 11 / 100;
3498 
3499 	/* decrease power for CCK rates (-5dB) */
3500 	if (!WPI_RATE_IS_OFDM(rate))
3501 		idx += 10;
3502 
3503 	/* keep power index in a valid range */
3504 	if (idx < 0)
3505 		return 0;
3506 	if (idx > WPI_MAX_PWR_INDEX)
3507 		return WPI_MAX_PWR_INDEX;
3508 	return idx;
3509 
3510 #undef interpolate
3511 #undef fdivround
3512 }
3513 
3514 /**
3515  * Called by net80211 framework to indicate that a scan
3516  * is starting. This function doesn't actually do the scan,
3517  * wpi_scan_curchan starts things off. This function is more
3518  * of an early warning from the framework we should get ready
3519  * for the scan.
3520  */
3521 static void
3522 wpi_scan_start(struct ieee80211com *ic)
3523 {
3524 	struct ifnet *ifp = ic->ic_ifp;
3525 	struct wpi_softc *sc = ifp->if_softc;
3526 
3527 	WPI_LOCK(sc);
3528 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3529 	WPI_UNLOCK(sc);
3530 }
3531 
3532 /**
3533  * Called by the net80211 framework, indicates that the
3534  * scan has ended. If there is a scan in progress on the card
3535  * then it should be aborted.
3536  */
3537 static void
3538 wpi_scan_end(struct ieee80211com *ic)
3539 {
3540 	/* XXX ignore */
3541 }
3542 
3543 /**
3544  * Called by the net80211 framework to indicate to the driver
3545  * that the channel should be changed
3546  */
3547 static void
3548 wpi_set_channel(struct ieee80211com *ic)
3549 {
3550 	struct ifnet *ifp = ic->ic_ifp;
3551 	struct wpi_softc *sc = ifp->if_softc;
3552 	int error;
3553 
3554 	/*
3555 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3556 	 * are already taken care of by their respective firmware commands.
3557 	 */
3558 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3559 		error = wpi_config(sc);
3560 		if (error != 0)
3561 			device_printf(sc->sc_dev,
3562 			    "error %d settting channel\n", error);
3563 	}
3564 }
3565 
3566 /**
3567  * Called by net80211 to indicate that we need to scan the current
3568  * channel. The channel is previously be set via the wpi_set_channel
3569  * callback.
3570  */
3571 static void
3572 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3573 {
3574 	struct ieee80211vap *vap = ss->ss_vap;
3575 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3576 	struct wpi_softc *sc = ifp->if_softc;
3577 
3578 	WPI_LOCK(sc);
3579 	if (wpi_scan(sc))
3580 		ieee80211_cancel_scan(vap);
3581 	WPI_UNLOCK(sc);
3582 }
3583 
3584 /**
3585  * Called by the net80211 framework to indicate
3586  * the minimum dwell time has been met, terminate the scan.
3587  * We don't actually terminate the scan as the firmware will notify
3588  * us when it's finished and we have no way to interrupt it.
3589  */
3590 static void
3591 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3592 {
3593 	/* NB: don't try to abort scan; wait for firmware to finish */
3594 }
3595 
3596 static void
3597 wpi_hwreset(void *arg, int pending)
3598 {
3599 	struct wpi_softc *sc = arg;
3600 
3601 	WPI_LOCK(sc);
3602 	wpi_init_locked(sc, 0);
3603 	WPI_UNLOCK(sc);
3604 }
3605 
3606 static void
3607 wpi_rfreset(void *arg, int pending)
3608 {
3609 	struct wpi_softc *sc = arg;
3610 
3611 	WPI_LOCK(sc);
3612 	wpi_rfkill_resume(sc);
3613 	WPI_UNLOCK(sc);
3614 }
3615 
3616 /*
3617  * Allocate DMA-safe memory for firmware transfer.
3618  */
3619 static int
3620 wpi_alloc_fwmem(struct wpi_softc *sc)
3621 {
3622 	/* allocate enough contiguous space to store text and data */
3623 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3624 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3625 	    BUS_DMA_NOWAIT);
3626 }
3627 
3628 static void
3629 wpi_free_fwmem(struct wpi_softc *sc)
3630 {
3631 	wpi_dma_contig_free(&sc->fw_dma);
3632 }
3633 
3634 /**
3635  * Called every second, wpi_watchdog used by the watch dog timer
3636  * to check that the card is still alive
3637  */
3638 static void
3639 wpi_watchdog(void *arg)
3640 {
3641 	struct wpi_softc *sc = arg;
3642 	struct ifnet *ifp = sc->sc_ifp;
3643 	struct ieee80211com *ic = ifp->if_l2com;
3644 	uint32_t tmp;
3645 
3646 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3647 
3648 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3649 		/* No need to lock firmware memory */
3650 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3651 
3652 		if ((tmp & 0x1) == 0) {
3653 			/* Radio kill switch is still off */
3654 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3655 			return;
3656 		}
3657 
3658 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3659 		ieee80211_runtask(ic, &sc->sc_radiotask);
3660 		return;
3661 	}
3662 
3663 	if (sc->sc_tx_timer > 0) {
3664 		if (--sc->sc_tx_timer == 0) {
3665 			device_printf(sc->sc_dev,"device timeout\n");
3666 			ifp->if_oerrors++;
3667 			ieee80211_runtask(ic, &sc->sc_restarttask);
3668 		}
3669 	}
3670 	if (sc->sc_scan_timer > 0) {
3671 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3672 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3673 			device_printf(sc->sc_dev,"scan timeout\n");
3674 			ieee80211_cancel_scan(vap);
3675 			ieee80211_runtask(ic, &sc->sc_restarttask);
3676 		}
3677 	}
3678 
3679 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3680 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3681 }
3682 
3683 #ifdef WPI_DEBUG
3684 static const char *wpi_cmd_str(int cmd)
3685 {
3686 	switch (cmd) {
3687 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3688 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3689 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3690 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3691 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3692 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3693 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3694 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3695 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3696 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3697 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3698 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3699 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3700 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3701 
3702 	default:
3703 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3704 		return "UNKNOWN CMD";	/* Make the compiler happy */
3705 	}
3706 }
3707 #endif
3708 
3709 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3710 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3711 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3712 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3713