xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 721351876cd4d3a8a700f62d2061331fa951a488)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/if_ether.h>
102 
103 #include <dev/wpi/if_wpireg.h>
104 #include <dev/wpi/if_wpivar.h>
105 
106 #define WPI_DEBUG
107 
108 #ifdef WPI_DEBUG
109 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111 #define	WPI_DEBUG_SET	(wpi_debug != 0)
112 
113 enum {
114 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
115 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
116 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
117 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
118 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
119 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
120 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
121 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
122 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
123 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
124 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
125 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
126 	WPI_DEBUG_ANY		= 0xffffffff
127 };
128 
129 static int wpi_debug = 1;
130 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
131 TUNABLE_INT("debug.wpi", &wpi_debug);
132 
133 #else
134 #define DPRINTF(x)
135 #define DPRINTFN(n, x)
136 #define WPI_DEBUG_SET	0
137 #endif
138 
139 struct wpi_ident {
140 	uint16_t	vendor;
141 	uint16_t	device;
142 	uint16_t	subdevice;
143 	const char	*name;
144 };
145 
146 static const struct wpi_ident wpi_ident_table[] = {
147 	/* The below entries support ABG regardless of the subid */
148 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
149 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150 	/* The below entries only support BG */
151 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
152 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
153 	{ 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
154 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
155 	{ 0, 0, 0, NULL }
156 };
157 
158 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
159 		    const char name[IFNAMSIZ], int unit, int opmode,
160 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
161 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
162 static void	wpi_vap_delete(struct ieee80211vap *);
163 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
164 		    void **, bus_size_t, bus_size_t, int);
165 static void	wpi_dma_contig_free(struct wpi_dma_info *);
166 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
167 static int	wpi_alloc_shared(struct wpi_softc *);
168 static void	wpi_free_shared(struct wpi_softc *);
169 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
170 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
173 		    int, int);
174 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
175 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
178 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179 static void	wpi_mem_lock(struct wpi_softc *);
180 static void	wpi_mem_unlock(struct wpi_softc *);
181 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184 		    const uint32_t *, int);
185 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186 static int	wpi_alloc_fwmem(struct wpi_softc *);
187 static void	wpi_free_fwmem(struct wpi_softc *);
188 static int	wpi_load_firmware(struct wpi_softc *);
189 static void	wpi_unload_firmware(struct wpi_softc *);
190 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192 		    struct wpi_rx_data *);
193 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_bmiss(void *, int);
196 static void	wpi_notif_intr(struct wpi_softc *);
197 static void	wpi_intr(void *);
198 static void	wpi_ops(void *, int);
199 static uint8_t	wpi_plcp_signal(int);
200 static int	wpi_queue_cmd(struct wpi_softc *, int, int, int);
201 static void	wpi_watchdog(void *);
202 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
203 		    struct ieee80211_node *, int);
204 static void	wpi_start(struct ifnet *);
205 static void	wpi_start_locked(struct ifnet *);
206 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
207 		    const struct ieee80211_bpf_params *);
208 static void	wpi_scan_start(struct ieee80211com *);
209 static void	wpi_scan_end(struct ieee80211com *);
210 static void	wpi_set_channel(struct ieee80211com *);
211 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
212 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
213 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
214 static void	wpi_read_eeprom(struct wpi_softc *);
215 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
216 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
217 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
218 static int	wpi_wme_update(struct ieee80211com *);
219 static int	wpi_mrr_setup(struct wpi_softc *);
220 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
221 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
222 #if 0
223 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
224 #endif
225 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
226 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
227 static int	wpi_scan(struct wpi_softc *);
228 static int	wpi_config(struct wpi_softc *);
229 static void	wpi_stop_master(struct wpi_softc *);
230 static int	wpi_power_up(struct wpi_softc *);
231 static int	wpi_reset(struct wpi_softc *);
232 static void	wpi_hw_config(struct wpi_softc *);
233 static void	wpi_init(void *);
234 static void	wpi_init_locked(struct wpi_softc *, int);
235 static void	wpi_stop(struct wpi_softc *);
236 static void	wpi_stop_locked(struct wpi_softc *);
237 
238 static void	wpi_newassoc(struct ieee80211_node *, int);
239 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240 		    int);
241 static void	wpi_calib_timeout(void *);
242 static void	wpi_power_calibration(struct wpi_softc *, int);
243 static int	wpi_get_power_index(struct wpi_softc *,
244 		    struct wpi_power_group *, struct ieee80211_channel *, int);
245 #ifdef WPI_DEBUG
246 static const char *wpi_cmd_str(int);
247 #endif
248 static int wpi_probe(device_t);
249 static int wpi_attach(device_t);
250 static int wpi_detach(device_t);
251 static int wpi_shutdown(device_t);
252 static int wpi_suspend(device_t);
253 static int wpi_resume(device_t);
254 
255 
256 static device_method_t wpi_methods[] = {
257 	/* Device interface */
258 	DEVMETHOD(device_probe,		wpi_probe),
259 	DEVMETHOD(device_attach,	wpi_attach),
260 	DEVMETHOD(device_detach,	wpi_detach),
261 	DEVMETHOD(device_shutdown,	wpi_shutdown),
262 	DEVMETHOD(device_suspend,	wpi_suspend),
263 	DEVMETHOD(device_resume,	wpi_resume),
264 
265 	{ 0, 0 }
266 };
267 
268 static driver_t wpi_driver = {
269 	"wpi",
270 	wpi_methods,
271 	sizeof (struct wpi_softc)
272 };
273 
274 static devclass_t wpi_devclass;
275 
276 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277 
278 static const uint8_t wpi_ridx_to_plcp[] = {
279 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280 	/* R1-R4 (ral/ural is R4-R1) */
281 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282 	/* CCK: device-dependent */
283 	10, 20, 55, 110
284 };
285 static const uint8_t wpi_ridx_to_rate[] = {
286 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287 	2, 4, 11, 22 /*CCK */
288 };
289 
290 
291 static int
292 wpi_probe(device_t dev)
293 {
294 	const struct wpi_ident *ident;
295 
296 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297 		if (pci_get_vendor(dev) == ident->vendor &&
298 		    pci_get_device(dev) == ident->device) {
299 			device_set_desc(dev, ident->name);
300 			return 0;
301 		}
302 	}
303 	return ENXIO;
304 }
305 
306 /**
307  * Load the firmare image from disk to the allocated dma buffer.
308  * we also maintain the reference to the firmware pointer as there
309  * is times where we may need to reload the firmware but we are not
310  * in a context that can access the filesystem (ie taskq cause by restart)
311  *
312  * @return 0 on success, an errno on failure
313  */
314 static int
315 wpi_load_firmware(struct wpi_softc *sc)
316 {
317 	const struct firmware *fp;
318 	struct wpi_dma_info *dma = &sc->fw_dma;
319 	const struct wpi_firmware_hdr *hdr;
320 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322 	int error;
323 
324 	DPRINTFN(WPI_DEBUG_FIRMWARE,
325 	    ("Attempting Loading Firmware from wpi_fw module\n"));
326 
327 	WPI_UNLOCK(sc);
328 
329 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330 		device_printf(sc->sc_dev,
331 		    "could not load firmware image 'wpifw'\n");
332 		error = ENOENT;
333 		WPI_LOCK(sc);
334 		goto fail;
335 	}
336 
337 	fp = sc->fw_fp;
338 
339 	WPI_LOCK(sc);
340 
341 	/* Validate the firmware is minimum a particular version */
342 	if (fp->version < WPI_FW_MINVERSION) {
343 	    device_printf(sc->sc_dev,
344 			   "firmware version is too old. Need %d, got %d\n",
345 			   WPI_FW_MINVERSION,
346 			   fp->version);
347 	    error = ENXIO;
348 	    goto fail;
349 	}
350 
351 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352 		device_printf(sc->sc_dev,
353 		    "firmware file too short: %zu bytes\n", fp->datasize);
354 		error = ENXIO;
355 		goto fail;
356 	}
357 
358 	hdr = (const struct wpi_firmware_hdr *)fp->data;
359 
360 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362 
363 	rtextsz = le32toh(hdr->rtextsz);
364 	rdatasz = le32toh(hdr->rdatasz);
365 	itextsz = le32toh(hdr->itextsz);
366 	idatasz = le32toh(hdr->idatasz);
367 	btextsz = le32toh(hdr->btextsz);
368 
369 	/* check that all firmware segments are present */
370 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372 		device_printf(sc->sc_dev,
373 		    "firmware file too short: %zu bytes\n", fp->datasize);
374 		error = ENXIO; /* XXX appropriate error code? */
375 		goto fail;
376 	}
377 
378 	/* get pointers to firmware segments */
379 	rtext = (const uint8_t *)(hdr + 1);
380 	rdata = rtext + rtextsz;
381 	itext = rdata + rdatasz;
382 	idata = itext + itextsz;
383 	btext = idata + idatasz;
384 
385 	DPRINTFN(WPI_DEBUG_FIRMWARE,
386 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388 	     (le32toh(hdr->version) & 0xff000000) >> 24,
389 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
390 	     (le32toh(hdr->version) & 0x0000ffff),
391 	     rtextsz, rdatasz,
392 	     itextsz, idatasz, btextsz));
393 
394 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399 
400 	/* sanity checks */
401 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406 	    (btextsz & 3) != 0) {
407 		device_printf(sc->sc_dev, "firmware invalid\n");
408 		error = EINVAL;
409 		goto fail;
410 	}
411 
412 	/* copy initialization images into pre-allocated DMA-safe memory */
413 	memcpy(dma->vaddr, idata, idatasz);
414 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415 
416 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417 
418 	/* tell adapter where to find initialization images */
419 	wpi_mem_lock(sc);
420 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425 	wpi_mem_unlock(sc);
426 
427 	/* load firmware boot code */
428 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
430 	    goto fail;
431 	}
432 
433 	/* now press "execute" */
434 	WPI_WRITE(sc, WPI_RESET, 0);
435 
436 	/* wait at most one second for the first alive notification */
437 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438 		device_printf(sc->sc_dev,
439 		    "timeout waiting for adapter to initialize\n");
440 		goto fail;
441 	}
442 
443 	/* copy runtime images into pre-allocated DMA-sage memory */
444 	memcpy(dma->vaddr, rdata, rdatasz);
445 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447 
448 	/* tell adapter where to find runtime images */
449 	wpi_mem_lock(sc);
450 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455 	wpi_mem_unlock(sc);
456 
457 	/* wait at most one second for the first alive notification */
458 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459 		device_printf(sc->sc_dev,
460 		    "timeout waiting for adapter to initialize2\n");
461 		goto fail;
462 	}
463 
464 	DPRINTFN(WPI_DEBUG_FIRMWARE,
465 	    ("Firmware loaded to driver successfully\n"));
466 	return error;
467 fail:
468 	wpi_unload_firmware(sc);
469 	return error;
470 }
471 
472 /**
473  * Free the referenced firmware image
474  */
475 static void
476 wpi_unload_firmware(struct wpi_softc *sc)
477 {
478 
479 	if (sc->fw_fp) {
480 		WPI_UNLOCK(sc);
481 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482 		WPI_LOCK(sc);
483 		sc->fw_fp = NULL;
484 	}
485 }
486 
487 static int
488 wpi_attach(device_t dev)
489 {
490 	struct wpi_softc *sc = device_get_softc(dev);
491 	struct ifnet *ifp;
492 	struct ieee80211com *ic;
493 	int ac, error, supportsa = 1;
494 	uint32_t tmp;
495 	const struct wpi_ident *ident;
496 
497 	sc->sc_dev = dev;
498 
499 	if (bootverbose || WPI_DEBUG_SET)
500 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501 
502 	/*
503 	 * Some card's only support 802.11b/g not a, check to see if
504 	 * this is one such card. A 0x0 in the subdevice table indicates
505 	 * the entire subdevice range is to be ignored.
506 	 */
507 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508 		if (ident->subdevice &&
509 		    pci_get_subdevice(dev) == ident->subdevice) {
510 		    supportsa = 0;
511 		    break;
512 		}
513 	}
514 
515 	/*
516 	 * Create the taskqueues used by the driver. Primarily
517 	 * sc_tq handles most the task
518 	 */
519 	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
520 	    taskqueue_thread_enqueue, &sc->sc_tq);
521 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
522 	    device_get_nameunit(dev));
523 
524 	/* Create the tasks that can be queued */
525 	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
526 	TASK_INIT(&sc->sc_bmiss_task, 0, wpi_bmiss, sc);
527 
528 	WPI_LOCK_INIT(sc);
529 	WPI_CMD_LOCK_INIT(sc);
530 
531 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
532 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
533 
534 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
535 		device_printf(dev, "chip is in D%d power mode "
536 		    "-- setting to D0\n", pci_get_powerstate(dev));
537 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
538 	}
539 
540 	/* disable the retry timeout register */
541 	pci_write_config(dev, 0x41, 0, 1);
542 
543 	/* enable bus-mastering */
544 	pci_enable_busmaster(dev);
545 
546 	sc->mem_rid = PCIR_BAR(0);
547 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
548 	    RF_ACTIVE);
549 	if (sc->mem == NULL) {
550 		device_printf(dev, "could not allocate memory resource\n");
551 		error = ENOMEM;
552 		goto fail;
553 	}
554 
555 	sc->sc_st = rman_get_bustag(sc->mem);
556 	sc->sc_sh = rman_get_bushandle(sc->mem);
557 
558 	sc->irq_rid = 0;
559 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
560 	    RF_ACTIVE | RF_SHAREABLE);
561 	if (sc->irq == NULL) {
562 		device_printf(dev, "could not allocate interrupt resource\n");
563 		error = ENOMEM;
564 		goto fail;
565 	}
566 
567 	/*
568 	 * Allocate DMA memory for firmware transfers.
569 	 */
570 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
571 		printf(": could not allocate firmware memory\n");
572 		error = ENOMEM;
573 		goto fail;
574 	}
575 
576 	/*
577 	 * Put adapter into a known state.
578 	 */
579 	if ((error = wpi_reset(sc)) != 0) {
580 		device_printf(dev, "could not reset adapter\n");
581 		goto fail;
582 	}
583 
584 	wpi_mem_lock(sc);
585 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
586 	if (bootverbose || WPI_DEBUG_SET)
587 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
588 
589 	wpi_mem_unlock(sc);
590 
591 	/* Allocate shared page */
592 	if ((error = wpi_alloc_shared(sc)) != 0) {
593 		device_printf(dev, "could not allocate shared page\n");
594 		goto fail;
595 	}
596 
597 	/* tx data queues  - 4 for QoS purposes */
598 	for (ac = 0; ac < WME_NUM_AC; ac++) {
599 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
600 		if (error != 0) {
601 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
602 		    goto fail;
603 		}
604 	}
605 
606 	/* command queue to talk to the card's firmware */
607 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
608 	if (error != 0) {
609 		device_printf(dev, "could not allocate command ring\n");
610 		goto fail;
611 	}
612 
613 	/* receive data queue */
614 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
615 	if (error != 0) {
616 		device_printf(dev, "could not allocate Rx ring\n");
617 		goto fail;
618 	}
619 
620 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
621 	if (ifp == NULL) {
622 		device_printf(dev, "can not if_alloc()\n");
623 		error = ENOMEM;
624 		goto fail;
625 	}
626 	ic = ifp->if_l2com;
627 
628 	ic->ic_ifp = ifp;
629 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
630 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
631 
632 	/* set device capabilities */
633 	ic->ic_caps =
634 		  IEEE80211_C_STA		/* station mode supported */
635 		| IEEE80211_C_MONITOR		/* monitor mode supported */
636 		| IEEE80211_C_TXPMGT		/* tx power management */
637 		| IEEE80211_C_SHSLOT		/* short slot time supported */
638 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
639 		| IEEE80211_C_WPA		/* 802.11i */
640 /* XXX looks like WME is partly supported? */
641 #if 0
642 		| IEEE80211_C_IBSS		/* IBSS mode support */
643 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
644 		| IEEE80211_C_WME		/* 802.11e */
645 		| IEEE80211_C_HOSTAP		/* Host access point mode */
646 #endif
647 		;
648 
649 	/*
650 	 * Read in the eeprom and also setup the channels for
651 	 * net80211. We don't set the rates as net80211 does this for us
652 	 */
653 	wpi_read_eeprom(sc);
654 
655 	if (bootverbose || WPI_DEBUG_SET) {
656 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
657 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
658 			  sc->type > 1 ? 'B': '?');
659 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
660 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
661 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
662 			  supportsa ? "does" : "does not");
663 
664 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
665 	       what sc->rev really represents - benjsc 20070615 */
666 	}
667 
668 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
669 	ifp->if_softc = sc;
670 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
671 	ifp->if_init = wpi_init;
672 	ifp->if_ioctl = wpi_ioctl;
673 	ifp->if_start = wpi_start;
674 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
675 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
676 	IFQ_SET_READY(&ifp->if_snd);
677 
678 	ieee80211_ifattach(ic);
679 	/* override default methods */
680 	ic->ic_node_alloc = wpi_node_alloc;
681 	ic->ic_newassoc = wpi_newassoc;
682 	ic->ic_raw_xmit = wpi_raw_xmit;
683 	ic->ic_wme.wme_update = wpi_wme_update;
684 	ic->ic_scan_start = wpi_scan_start;
685 	ic->ic_scan_end = wpi_scan_end;
686 	ic->ic_set_channel = wpi_set_channel;
687 	ic->ic_scan_curchan = wpi_scan_curchan;
688 	ic->ic_scan_mindwell = wpi_scan_mindwell;
689 
690 	ic->ic_vap_create = wpi_vap_create;
691 	ic->ic_vap_delete = wpi_vap_delete;
692 
693 	bpfattach(ifp, DLT_IEEE802_11_RADIO,
694 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
695 
696 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
697 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
698 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
699 
700 	sc->sc_txtap_len = sizeof sc->sc_txtap;
701 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
702 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
703 
704 	/*
705 	 * Hook our interrupt after all initialization is complete.
706 	 */
707 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
708 	    NULL, wpi_intr, sc, &sc->sc_ih);
709 	if (error != 0) {
710 		device_printf(dev, "could not set up interrupt\n");
711 		goto fail;
712 	}
713 
714 	if (bootverbose)
715 		ieee80211_announce(ic);
716 #ifdef XXX_DEBUG
717 	ieee80211_announce_channels(ic);
718 #endif
719 	return 0;
720 
721 fail:	wpi_detach(dev);
722 	return ENXIO;
723 }
724 
725 static int
726 wpi_detach(device_t dev)
727 {
728 	struct wpi_softc *sc = device_get_softc(dev);
729 	struct ifnet *ifp = sc->sc_ifp;
730 	struct ieee80211com *ic = ifp->if_l2com;
731 	int ac;
732 
733 	if (ifp != NULL) {
734 		wpi_stop(sc);
735 		callout_drain(&sc->watchdog_to);
736 		callout_drain(&sc->calib_to);
737 		bpfdetach(ifp);
738 		ieee80211_ifdetach(ic);
739 	}
740 
741 	WPI_LOCK(sc);
742 	if (sc->txq[0].data_dmat) {
743 		for (ac = 0; ac < WME_NUM_AC; ac++)
744 			wpi_free_tx_ring(sc, &sc->txq[ac]);
745 
746 		wpi_free_tx_ring(sc, &sc->cmdq);
747 		wpi_free_rx_ring(sc, &sc->rxq);
748 		wpi_free_shared(sc);
749 	}
750 
751 	if (sc->fw_fp != NULL) {
752 		wpi_unload_firmware(sc);
753 	}
754 
755 	if (sc->fw_dma.tag)
756 		wpi_free_fwmem(sc);
757 	WPI_UNLOCK(sc);
758 
759 	if (sc->irq != NULL) {
760 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
761 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
762 	}
763 
764 	if (sc->mem != NULL)
765 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
766 
767 	if (ifp != NULL)
768 		if_free(ifp);
769 
770 	taskqueue_free(sc->sc_tq);
771 
772 	WPI_LOCK_DESTROY(sc);
773 	WPI_CMD_LOCK_DESTROY(sc);
774 
775 	return 0;
776 }
777 
778 static struct ieee80211vap *
779 wpi_vap_create(struct ieee80211com *ic,
780 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
781 	const uint8_t bssid[IEEE80211_ADDR_LEN],
782 	const uint8_t mac[IEEE80211_ADDR_LEN])
783 {
784 	struct wpi_vap *wvp;
785 	struct ieee80211vap *vap;
786 
787 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
788 		return NULL;
789 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
790 	    M_80211_VAP, M_NOWAIT | M_ZERO);
791 	if (wvp == NULL)
792 		return NULL;
793 	vap = &wvp->vap;
794 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
795 	/* override with driver methods */
796 	wvp->newstate = vap->iv_newstate;
797 	vap->iv_newstate = wpi_newstate;
798 
799 	ieee80211_amrr_init(&wvp->amrr, vap,
800 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
801 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
802 	    500 /*ms*/);
803 
804 	/* complete setup */
805 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
806 	ic->ic_opmode = opmode;
807 	return vap;
808 }
809 
810 static void
811 wpi_vap_delete(struct ieee80211vap *vap)
812 {
813 	struct wpi_vap *wvp = WPI_VAP(vap);
814 
815 	ieee80211_amrr_cleanup(&wvp->amrr);
816 	ieee80211_vap_detach(vap);
817 	free(wvp, M_80211_VAP);
818 }
819 
820 static void
821 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
822 {
823 	if (error != 0)
824 		return;
825 
826 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
827 
828 	*(bus_addr_t *)arg = segs[0].ds_addr;
829 }
830 
831 /*
832  * Allocates a contiguous block of dma memory of the requested size and
833  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
834  * allocations greater than 4096 may fail. Hence if the requested alignment is
835  * greater we allocate 'alignment' size extra memory and shift the vaddr and
836  * paddr after the dma load. This bypasses the problem at the cost of a little
837  * more memory.
838  */
839 static int
840 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
841     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
842 {
843 	int error;
844 	bus_size_t align;
845 	bus_size_t reqsize;
846 
847 	DPRINTFN(WPI_DEBUG_DMA,
848 	    ("Size: %zd - alignment %zd\n", size, alignment));
849 
850 	dma->size = size;
851 	dma->tag = NULL;
852 
853 	if (alignment > 4096) {
854 		align = PAGE_SIZE;
855 		reqsize = size + alignment;
856 	} else {
857 		align = alignment;
858 		reqsize = size;
859 	}
860 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
861 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
862 	    NULL, NULL, reqsize,
863 	    1, reqsize, flags,
864 	    NULL, NULL, &dma->tag);
865 	if (error != 0) {
866 		device_printf(sc->sc_dev,
867 		    "could not create shared page DMA tag\n");
868 		goto fail;
869 	}
870 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
871 	    flags | BUS_DMA_ZERO, &dma->map);
872 	if (error != 0) {
873 		device_printf(sc->sc_dev,
874 		    "could not allocate shared page DMA memory\n");
875 		goto fail;
876 	}
877 
878 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
879 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
880 
881 	/* Save the original pointers so we can free all the memory */
882 	dma->paddr = dma->paddr_start;
883 	dma->vaddr = dma->vaddr_start;
884 
885 	/*
886 	 * Check the alignment and increment by 4096 until we get the
887 	 * requested alignment. Fail if can't obtain the alignment
888 	 * we requested.
889 	 */
890 	if ((dma->paddr & (alignment -1 )) != 0) {
891 		int i;
892 
893 		for (i = 0; i < alignment / 4096; i++) {
894 			if ((dma->paddr & (alignment - 1 )) == 0)
895 				break;
896 			dma->paddr += 4096;
897 			dma->vaddr += 4096;
898 		}
899 		if (i == alignment / 4096) {
900 			device_printf(sc->sc_dev,
901 			    "alignment requirement was not satisfied\n");
902 			goto fail;
903 		}
904 	}
905 
906 	if (error != 0) {
907 		device_printf(sc->sc_dev,
908 		    "could not load shared page DMA map\n");
909 		goto fail;
910 	}
911 
912 	if (kvap != NULL)
913 		*kvap = dma->vaddr;
914 
915 	return 0;
916 
917 fail:
918 	wpi_dma_contig_free(dma);
919 	return error;
920 }
921 
922 static void
923 wpi_dma_contig_free(struct wpi_dma_info *dma)
924 {
925 	if (dma->tag) {
926 		if (dma->map != NULL) {
927 			if (dma->paddr_start != 0) {
928 				bus_dmamap_sync(dma->tag, dma->map,
929 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
930 				bus_dmamap_unload(dma->tag, dma->map);
931 			}
932 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
933 		}
934 		bus_dma_tag_destroy(dma->tag);
935 	}
936 }
937 
938 /*
939  * Allocate a shared page between host and NIC.
940  */
941 static int
942 wpi_alloc_shared(struct wpi_softc *sc)
943 {
944 	int error;
945 
946 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
947 	    (void **)&sc->shared, sizeof (struct wpi_shared),
948 	    PAGE_SIZE,
949 	    BUS_DMA_NOWAIT);
950 
951 	if (error != 0) {
952 		device_printf(sc->sc_dev,
953 		    "could not allocate shared area DMA memory\n");
954 	}
955 
956 	return error;
957 }
958 
959 static void
960 wpi_free_shared(struct wpi_softc *sc)
961 {
962 	wpi_dma_contig_free(&sc->shared_dma);
963 }
964 
965 static int
966 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
967 {
968 
969 	int i, error;
970 
971 	ring->cur = 0;
972 
973 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
974 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
975 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
976 
977 	if (error != 0) {
978 		device_printf(sc->sc_dev,
979 		    "%s: could not allocate rx ring DMA memory, error %d\n",
980 		    __func__, error);
981 		goto fail;
982 	}
983 
984         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
985 	    BUS_SPACE_MAXADDR_32BIT,
986             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
987             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
988         if (error != 0) {
989                 device_printf(sc->sc_dev,
990 		    "%s: bus_dma_tag_create_failed, error %d\n",
991 		    __func__, error);
992                 goto fail;
993         }
994 
995 	/*
996 	 * Setup Rx buffers.
997 	 */
998 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
999 		struct wpi_rx_data *data = &ring->data[i];
1000 		struct mbuf *m;
1001 		bus_addr_t paddr;
1002 
1003 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1004 		if (error != 0) {
1005 			device_printf(sc->sc_dev,
1006 			    "%s: bus_dmamap_create failed, error %d\n",
1007 			    __func__, error);
1008 			goto fail;
1009 		}
1010 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1011 		if (m == NULL) {
1012 			device_printf(sc->sc_dev,
1013 			   "%s: could not allocate rx mbuf\n", __func__);
1014 			error = ENOMEM;
1015 			goto fail;
1016 		}
1017 		/* map page */
1018 		error = bus_dmamap_load(ring->data_dmat, data->map,
1019 		    mtod(m, caddr_t), MJUMPAGESIZE,
1020 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1021 		if (error != 0 && error != EFBIG) {
1022 			device_printf(sc->sc_dev,
1023 			    "%s: bus_dmamap_load failed, error %d\n",
1024 			    __func__, error);
1025 			m_freem(m);
1026 			error = ENOMEM;	/* XXX unique code */
1027 			goto fail;
1028 		}
1029 		bus_dmamap_sync(ring->data_dmat, data->map,
1030 		    BUS_DMASYNC_PREWRITE);
1031 
1032 		data->m = m;
1033 		ring->desc[i] = htole32(paddr);
1034 	}
1035 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1036 	    BUS_DMASYNC_PREWRITE);
1037 	return 0;
1038 fail:
1039 	wpi_free_rx_ring(sc, ring);
1040 	return error;
1041 }
1042 
1043 static void
1044 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1045 {
1046 	int ntries;
1047 
1048 	wpi_mem_lock(sc);
1049 
1050 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1051 
1052 	for (ntries = 0; ntries < 100; ntries++) {
1053 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1054 			break;
1055 		DELAY(10);
1056 	}
1057 
1058 	wpi_mem_unlock(sc);
1059 
1060 #ifdef WPI_DEBUG
1061 	if (ntries == 100 && wpi_debug > 0)
1062 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1063 #endif
1064 
1065 	ring->cur = 0;
1066 }
1067 
1068 static void
1069 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1070 {
1071 	int i;
1072 
1073 	wpi_dma_contig_free(&ring->desc_dma);
1074 
1075 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1076 		if (ring->data[i].m != NULL)
1077 			m_freem(ring->data[i].m);
1078 }
1079 
1080 static int
1081 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1082 	int qid)
1083 {
1084 	struct wpi_tx_data *data;
1085 	int i, error;
1086 
1087 	ring->qid = qid;
1088 	ring->count = count;
1089 	ring->queued = 0;
1090 	ring->cur = 0;
1091 	ring->data = NULL;
1092 
1093 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1094 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1095 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1096 
1097 	if (error != 0) {
1098 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1099 	    goto fail;
1100 	}
1101 
1102 	/* update shared page with ring's base address */
1103 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1104 
1105 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1106 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1107 		BUS_DMA_NOWAIT);
1108 
1109 	if (error != 0) {
1110 		device_printf(sc->sc_dev,
1111 		    "could not allocate tx command DMA memory\n");
1112 		goto fail;
1113 	}
1114 
1115 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1116 	    M_NOWAIT | M_ZERO);
1117 	if (ring->data == NULL) {
1118 		device_printf(sc->sc_dev,
1119 		    "could not allocate tx data slots\n");
1120 		goto fail;
1121 	}
1122 
1123 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1124 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1125 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1126 	    &ring->data_dmat);
1127 	if (error != 0) {
1128 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1129 		goto fail;
1130 	}
1131 
1132 	for (i = 0; i < count; i++) {
1133 		data = &ring->data[i];
1134 
1135 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1136 		if (error != 0) {
1137 			device_printf(sc->sc_dev,
1138 			    "could not create tx buf DMA map\n");
1139 			goto fail;
1140 		}
1141 		bus_dmamap_sync(ring->data_dmat, data->map,
1142 		    BUS_DMASYNC_PREWRITE);
1143 	}
1144 
1145 	return 0;
1146 
1147 fail:
1148 	wpi_free_tx_ring(sc, ring);
1149 	return error;
1150 }
1151 
1152 static void
1153 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1154 {
1155 	struct wpi_tx_data *data;
1156 	int i, ntries;
1157 
1158 	wpi_mem_lock(sc);
1159 
1160 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1161 	for (ntries = 0; ntries < 100; ntries++) {
1162 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1163 			break;
1164 		DELAY(10);
1165 	}
1166 #ifdef WPI_DEBUG
1167 	if (ntries == 100 && wpi_debug > 0)
1168 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1169 		    ring->qid);
1170 #endif
1171 	wpi_mem_unlock(sc);
1172 
1173 	for (i = 0; i < ring->count; i++) {
1174 		data = &ring->data[i];
1175 
1176 		if (data->m != NULL) {
1177 			bus_dmamap_unload(ring->data_dmat, data->map);
1178 			m_freem(data->m);
1179 			data->m = NULL;
1180 		}
1181 	}
1182 
1183 	ring->queued = 0;
1184 	ring->cur = 0;
1185 }
1186 
1187 static void
1188 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1189 {
1190 	struct wpi_tx_data *data;
1191 	int i;
1192 
1193 	wpi_dma_contig_free(&ring->desc_dma);
1194 	wpi_dma_contig_free(&ring->cmd_dma);
1195 
1196 	if (ring->data != NULL) {
1197 		for (i = 0; i < ring->count; i++) {
1198 			data = &ring->data[i];
1199 
1200 			if (data->m != NULL) {
1201 				bus_dmamap_sync(ring->data_dmat, data->map,
1202 				    BUS_DMASYNC_POSTWRITE);
1203 				bus_dmamap_unload(ring->data_dmat, data->map);
1204 				m_freem(data->m);
1205 				data->m = NULL;
1206 			}
1207 		}
1208 		free(ring->data, M_DEVBUF);
1209 	}
1210 
1211 	if (ring->data_dmat != NULL)
1212 		bus_dma_tag_destroy(ring->data_dmat);
1213 }
1214 
1215 static int
1216 wpi_shutdown(device_t dev)
1217 {
1218 	struct wpi_softc *sc = device_get_softc(dev);
1219 
1220 	WPI_LOCK(sc);
1221 	wpi_stop_locked(sc);
1222 	wpi_unload_firmware(sc);
1223 	WPI_UNLOCK(sc);
1224 
1225 	return 0;
1226 }
1227 
1228 static int
1229 wpi_suspend(device_t dev)
1230 {
1231 	struct wpi_softc *sc = device_get_softc(dev);
1232 
1233 	wpi_stop(sc);
1234 	return 0;
1235 }
1236 
1237 static int
1238 wpi_resume(device_t dev)
1239 {
1240 	struct wpi_softc *sc = device_get_softc(dev);
1241 	struct ifnet *ifp = sc->sc_ifp;
1242 
1243 	pci_write_config(dev, 0x41, 0, 1);
1244 
1245 	if (ifp->if_flags & IFF_UP) {
1246 		wpi_init(ifp->if_softc);
1247 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1248 			wpi_start(ifp);
1249 	}
1250 	return 0;
1251 }
1252 
1253 /* ARGSUSED */
1254 static struct ieee80211_node *
1255 wpi_node_alloc(struct ieee80211vap *vap __unused,
1256 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1257 {
1258 	struct wpi_node *wn;
1259 
1260 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1261 
1262 	return &wn->ni;
1263 }
1264 
1265 /**
1266  * Called by net80211 when ever there is a change to 80211 state machine
1267  */
1268 static int
1269 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1270 {
1271 	struct wpi_vap *wvp = WPI_VAP(vap);
1272 	struct ieee80211com *ic = vap->iv_ic;
1273 	struct ifnet *ifp = ic->ic_ifp;
1274 	struct wpi_softc *sc = ifp->if_softc;
1275 	int error;
1276 
1277 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1278 		ieee80211_state_name[vap->iv_state],
1279 		ieee80211_state_name[nstate], sc->flags));
1280 
1281 	if (nstate == IEEE80211_S_AUTH) {
1282 		/* Delay the auth transition until we can update the firmware */
1283 		error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1284 		return (error != 0 ? error : EINPROGRESS);
1285 	}
1286 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1287 		/* set the association id first */
1288 		error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL);
1289 		return (error != 0 ? error : EINPROGRESS);
1290 	}
1291 	if (nstate == IEEE80211_S_RUN) {
1292 		/* RUN -> RUN transition; just restart the timers */
1293 		wpi_calib_timeout(sc);
1294 		/* XXX split out rate control timer */
1295 	}
1296 	return wvp->newstate(vap, nstate, arg);
1297 }
1298 
1299 /*
1300  * Grab exclusive access to NIC memory.
1301  */
1302 static void
1303 wpi_mem_lock(struct wpi_softc *sc)
1304 {
1305 	int ntries;
1306 	uint32_t tmp;
1307 
1308 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1309 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1310 
1311 	/* spin until we actually get the lock */
1312 	for (ntries = 0; ntries < 100; ntries++) {
1313 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1314 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1315 			break;
1316 		DELAY(10);
1317 	}
1318 	if (ntries == 100)
1319 		device_printf(sc->sc_dev, "could not lock memory\n");
1320 }
1321 
1322 /*
1323  * Release lock on NIC memory.
1324  */
1325 static void
1326 wpi_mem_unlock(struct wpi_softc *sc)
1327 {
1328 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1329 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1330 }
1331 
1332 static uint32_t
1333 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1334 {
1335 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1336 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1337 }
1338 
1339 static void
1340 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1341 {
1342 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1343 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1344 }
1345 
1346 static void
1347 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1348     const uint32_t *data, int wlen)
1349 {
1350 	for (; wlen > 0; wlen--, data++, addr+=4)
1351 		wpi_mem_write(sc, addr, *data);
1352 }
1353 
1354 /*
1355  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1356  * using the traditional bit-bang method. Data is read up until len bytes have
1357  * been obtained.
1358  */
1359 static uint16_t
1360 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1361 {
1362 	int ntries;
1363 	uint32_t val;
1364 	uint8_t *out = data;
1365 
1366 	wpi_mem_lock(sc);
1367 
1368 	for (; len > 0; len -= 2, addr++) {
1369 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1370 
1371 		for (ntries = 0; ntries < 10; ntries++) {
1372 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1373 				break;
1374 			DELAY(5);
1375 		}
1376 
1377 		if (ntries == 10) {
1378 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1379 			return ETIMEDOUT;
1380 		}
1381 
1382 		*out++= val >> 16;
1383 		if (len > 1)
1384 			*out ++= val >> 24;
1385 	}
1386 
1387 	wpi_mem_unlock(sc);
1388 
1389 	return 0;
1390 }
1391 
1392 /*
1393  * The firmware text and data segments are transferred to the NIC using DMA.
1394  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1395  * where to find it.  Once the NIC has copied the firmware into its internal
1396  * memory, we can free our local copy in the driver.
1397  */
1398 static int
1399 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1400 {
1401 	int error, ntries;
1402 
1403 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1404 
1405 	size /= sizeof(uint32_t);
1406 
1407 	wpi_mem_lock(sc);
1408 
1409 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1410 	    (const uint32_t *)fw, size);
1411 
1412 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1413 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1414 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1415 
1416 	/* run microcode */
1417 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1418 
1419 	/* wait while the adapter is busy copying the firmware */
1420 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1421 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1422 		DPRINTFN(WPI_DEBUG_HW,
1423 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1424 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1425 		if (status & WPI_TX_IDLE(6)) {
1426 			DPRINTFN(WPI_DEBUG_HW,
1427 			    ("Status Match! - ntries = %d\n", ntries));
1428 			break;
1429 		}
1430 		DELAY(10);
1431 	}
1432 	if (ntries == 1000) {
1433 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1434 		error = ETIMEDOUT;
1435 	}
1436 
1437 	/* start the microcode executing */
1438 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1439 
1440 	wpi_mem_unlock(sc);
1441 
1442 	return (error);
1443 }
1444 
1445 static void
1446 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1447 	struct wpi_rx_data *data)
1448 {
1449 	struct ifnet *ifp = sc->sc_ifp;
1450 	struct ieee80211com *ic = ifp->if_l2com;
1451 	struct wpi_rx_ring *ring = &sc->rxq;
1452 	struct wpi_rx_stat *stat;
1453 	struct wpi_rx_head *head;
1454 	struct wpi_rx_tail *tail;
1455 	struct ieee80211_node *ni;
1456 	struct mbuf *m, *mnew;
1457 	bus_addr_t paddr;
1458 	int error;
1459 
1460 	stat = (struct wpi_rx_stat *)(desc + 1);
1461 
1462 	if (stat->len > WPI_STAT_MAXLEN) {
1463 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1464 		ifp->if_ierrors++;
1465 		return;
1466 	}
1467 
1468 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1469 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1470 
1471 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1472 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1473 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1474 	    (uintmax_t)le64toh(tail->tstamp)));
1475 
1476 	/* XXX don't need mbuf, just dma buffer */
1477 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1478 	if (mnew == NULL) {
1479 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1480 		    __func__));
1481 		ic->ic_stats.is_rx_nobuf++;
1482 		ifp->if_ierrors++;
1483 		return;
1484 	}
1485 	error = bus_dmamap_load(ring->data_dmat, data->map,
1486 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1487 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1488 	if (error != 0 && error != EFBIG) {
1489 		device_printf(sc->sc_dev,
1490 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1491 		m_freem(mnew);
1492 		ic->ic_stats.is_rx_nobuf++;	/* XXX need stat */
1493 		ifp->if_ierrors++;
1494 		return;
1495 	}
1496 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1497 
1498 	/* finalize mbuf and swap in new one */
1499 	m = data->m;
1500 	m->m_pkthdr.rcvif = ifp;
1501 	m->m_data = (caddr_t)(head + 1);
1502 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1503 
1504 	data->m = mnew;
1505 	/* update Rx descriptor */
1506 	ring->desc[ring->cur] = htole32(paddr);
1507 
1508 	if (bpf_peers_present(ifp->if_bpf)) {
1509 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1510 
1511 		tap->wr_flags = 0;
1512 		tap->wr_chan_freq =
1513 			htole16(ic->ic_channels[head->chan].ic_freq);
1514 		tap->wr_chan_flags =
1515 			htole16(ic->ic_channels[head->chan].ic_flags);
1516 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1517 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1518 		tap->wr_tsft = tail->tstamp;
1519 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1520 		switch (head->rate) {
1521 		/* CCK rates */
1522 		case  10: tap->wr_rate =   2; break;
1523 		case  20: tap->wr_rate =   4; break;
1524 		case  55: tap->wr_rate =  11; break;
1525 		case 110: tap->wr_rate =  22; break;
1526 		/* OFDM rates */
1527 		case 0xd: tap->wr_rate =  12; break;
1528 		case 0xf: tap->wr_rate =  18; break;
1529 		case 0x5: tap->wr_rate =  24; break;
1530 		case 0x7: tap->wr_rate =  36; break;
1531 		case 0x9: tap->wr_rate =  48; break;
1532 		case 0xb: tap->wr_rate =  72; break;
1533 		case 0x1: tap->wr_rate =  96; break;
1534 		case 0x3: tap->wr_rate = 108; break;
1535 		/* unknown rate: should not happen */
1536 		default:  tap->wr_rate =   0;
1537 		}
1538 		if (le16toh(head->flags) & 0x4)
1539 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1540 
1541 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1542 	}
1543 
1544 	WPI_UNLOCK(sc);
1545 
1546 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1547 	if (ni != NULL) {
1548 		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1549 		ieee80211_free_node(ni);
1550 	} else
1551 		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1552 
1553 	WPI_LOCK(sc);
1554 }
1555 
1556 static void
1557 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1558 {
1559 	struct ifnet *ifp = sc->sc_ifp;
1560 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1561 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1562 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1563 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1564 
1565 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1566 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1567 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1568 	    le32toh(stat->status)));
1569 
1570 	/*
1571 	 * Update rate control statistics for the node.
1572 	 * XXX we should not count mgmt frames since they're always sent at
1573 	 * the lowest available bit-rate.
1574 	 * XXX frames w/o ACK shouldn't be used either
1575 	 */
1576 	wn->amn.amn_txcnt++;
1577 	if (stat->ntries > 0) {
1578 		DPRINTFN(3, ("%d retries\n", stat->ntries));
1579 		wn->amn.amn_retrycnt++;
1580 	}
1581 
1582 	/* XXX oerrors should only count errors !maxtries */
1583 	if ((le32toh(stat->status) & 0xff) != 1)
1584 		ifp->if_oerrors++;
1585 	else
1586 		ifp->if_opackets++;
1587 
1588 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1589 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1590 	/* XXX handle M_TXCB? */
1591 	m_freem(txdata->m);
1592 	txdata->m = NULL;
1593 	ieee80211_free_node(txdata->ni);
1594 	txdata->ni = NULL;
1595 
1596 	ring->queued--;
1597 
1598 	sc->sc_tx_timer = 0;
1599 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1600 	wpi_start_locked(ifp);
1601 }
1602 
1603 static void
1604 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1605 {
1606 	struct wpi_tx_ring *ring = &sc->cmdq;
1607 	struct wpi_tx_data *data;
1608 
1609 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1610 				 "type=%s len=%d\n", desc->qid, desc->idx,
1611 				 desc->flags, wpi_cmd_str(desc->type),
1612 				 le32toh(desc->len)));
1613 
1614 	if ((desc->qid & 7) != 4)
1615 		return;	/* not a command ack */
1616 
1617 	data = &ring->data[desc->idx];
1618 
1619 	/* if the command was mapped in a mbuf, free it */
1620 	if (data->m != NULL) {
1621 		bus_dmamap_unload(ring->data_dmat, data->map);
1622 		m_freem(data->m);
1623 		data->m = NULL;
1624 	}
1625 
1626 	sc->flags &= ~WPI_FLAG_BUSY;
1627 	wakeup(&ring->cmd[desc->idx]);
1628 }
1629 
1630 static void
1631 wpi_bmiss(void *arg, int npending)
1632 {
1633 	struct wpi_softc *sc = arg;
1634 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1635 
1636 	ieee80211_beacon_miss(ic);
1637 }
1638 
1639 static void
1640 wpi_notif_intr(struct wpi_softc *sc)
1641 {
1642 	struct ifnet *ifp = sc->sc_ifp;
1643 	struct ieee80211com *ic = ifp->if_l2com;
1644 	struct wpi_rx_desc *desc;
1645 	struct wpi_rx_data *data;
1646 	uint32_t hw;
1647 
1648 	hw = le32toh(sc->shared->next);
1649 	while (sc->rxq.cur != hw) {
1650 		data = &sc->rxq.data[sc->rxq.cur];
1651 		desc = (void *)data->m->m_ext.ext_buf;
1652 
1653 		DPRINTFN(WPI_DEBUG_NOTIFY,
1654 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1655 			  desc->qid,
1656 			  desc->idx,
1657 			  desc->flags,
1658 			  desc->type,
1659 			  le32toh(desc->len)));
1660 
1661 		if (!(desc->qid & 0x80))	/* reply to a command */
1662 			wpi_cmd_intr(sc, desc);
1663 
1664 		switch (desc->type) {
1665 		case WPI_RX_DONE:
1666 			/* a 802.11 frame was received */
1667 			wpi_rx_intr(sc, desc, data);
1668 			break;
1669 
1670 		case WPI_TX_DONE:
1671 			/* a 802.11 frame has been transmitted */
1672 			wpi_tx_intr(sc, desc);
1673 			break;
1674 
1675 		case WPI_UC_READY:
1676 		{
1677 			struct wpi_ucode_info *uc =
1678 				(struct wpi_ucode_info *)(desc + 1);
1679 
1680 			/* the microcontroller is ready */
1681 			DPRINTF(("microcode alive notification version %x "
1682 				"alive %x\n", le32toh(uc->version),
1683 				le32toh(uc->valid)));
1684 
1685 			if (le32toh(uc->valid) != 1) {
1686 				device_printf(sc->sc_dev,
1687 				    "microcontroller initialization failed\n");
1688 				wpi_stop_locked(sc);
1689 			}
1690 			break;
1691 		}
1692 		case WPI_STATE_CHANGED:
1693 		{
1694 			uint32_t *status = (uint32_t *)(desc + 1);
1695 
1696 			/* enabled/disabled notification */
1697 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1698 
1699 			if (le32toh(*status) & 1) {
1700 				device_printf(sc->sc_dev,
1701 				    "Radio transmitter is switched off\n");
1702 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1703 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1704 				/* Disable firmware commands */
1705 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1706 			}
1707 			break;
1708 		}
1709 		case WPI_START_SCAN:
1710 		{
1711 #ifdef WPI_DEBUG
1712 			struct wpi_start_scan *scan =
1713 				(struct wpi_start_scan *)(desc + 1);
1714 #endif
1715 
1716 			DPRINTFN(WPI_DEBUG_SCANNING,
1717 				 ("scanning channel %d status %x\n",
1718 			    scan->chan, le32toh(scan->status)));
1719 			break;
1720 		}
1721 		case WPI_STOP_SCAN:
1722 		{
1723 #ifdef WPI_DEBUG
1724 			struct wpi_stop_scan *scan =
1725 				(struct wpi_stop_scan *)(desc + 1);
1726 #endif
1727 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1728 
1729 			DPRINTFN(WPI_DEBUG_SCANNING,
1730 			    ("scan finished nchan=%d status=%d chan=%d\n",
1731 			     scan->nchan, scan->status, scan->chan));
1732 
1733 			sc->sc_scan_timer = 0;
1734 			ieee80211_scan_next(vap);
1735 			break;
1736 		}
1737 		case WPI_MISSED_BEACON:
1738 		{
1739 			struct wpi_missed_beacon *beacon =
1740 				(struct wpi_missed_beacon *)(desc + 1);
1741 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1742 
1743 			if (le32toh(beacon->consecutive) >=
1744 			    vap->iv_bmissthreshold) {
1745 				DPRINTF(("Beacon miss: %u >= %u\n",
1746 					 le32toh(beacon->consecutive),
1747 					 vap->iv_bmissthreshold));
1748 				taskqueue_enqueue(taskqueue_swi,
1749 				    &sc->sc_bmiss_task);
1750 			}
1751 			break;
1752 		}
1753 		}
1754 
1755 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1756 	}
1757 
1758 	/* tell the firmware what we have processed */
1759 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1760 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1761 }
1762 
1763 static void
1764 wpi_intr(void *arg)
1765 {
1766 	struct wpi_softc *sc = arg;
1767 	uint32_t r;
1768 
1769 	WPI_LOCK(sc);
1770 
1771 	r = WPI_READ(sc, WPI_INTR);
1772 	if (r == 0 || r == 0xffffffff) {
1773 		WPI_UNLOCK(sc);
1774 		return;
1775 	}
1776 
1777 	/* disable interrupts */
1778 	WPI_WRITE(sc, WPI_MASK, 0);
1779 	/* ack interrupts */
1780 	WPI_WRITE(sc, WPI_INTR, r);
1781 
1782 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1783 		device_printf(sc->sc_dev, "fatal firmware error\n");
1784 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1785 				"(Hardware Error)"));
1786 		wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1787 		sc->flags &= ~WPI_FLAG_BUSY;
1788 		WPI_UNLOCK(sc);
1789 		return;
1790 	}
1791 
1792 	if (r & WPI_RX_INTR)
1793 		wpi_notif_intr(sc);
1794 
1795 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1796 		wakeup(sc);
1797 
1798 	/* re-enable interrupts */
1799 	if (sc->sc_ifp->if_flags & IFF_UP)
1800 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1801 
1802 	WPI_UNLOCK(sc);
1803 }
1804 
1805 static uint8_t
1806 wpi_plcp_signal(int rate)
1807 {
1808 	switch (rate) {
1809 	/* CCK rates (returned values are device-dependent) */
1810 	case 2:		return 10;
1811 	case 4:		return 20;
1812 	case 11:	return 55;
1813 	case 22:	return 110;
1814 
1815 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1816 	/* R1-R4 (ral/ural is R4-R1) */
1817 	case 12:	return 0xd;
1818 	case 18:	return 0xf;
1819 	case 24:	return 0x5;
1820 	case 36:	return 0x7;
1821 	case 48:	return 0x9;
1822 	case 72:	return 0xb;
1823 	case 96:	return 0x1;
1824 	case 108:	return 0x3;
1825 
1826 	/* unsupported rates (should not get there) */
1827 	default:	return 0;
1828 	}
1829 }
1830 
1831 /* quickly determine if a given rate is CCK or OFDM */
1832 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1833 
1834 /*
1835  * Construct the data packet for a transmit buffer and acutally put
1836  * the buffer onto the transmit ring, kicking the card to process the
1837  * the buffer.
1838  */
1839 static int
1840 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1841 	int ac)
1842 {
1843 	struct ieee80211vap *vap = ni->ni_vap;
1844 	struct ifnet *ifp = sc->sc_ifp;
1845 	struct ieee80211com *ic = ifp->if_l2com;
1846 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1847 	struct wpi_tx_ring *ring = &sc->txq[ac];
1848 	struct wpi_tx_desc *desc;
1849 	struct wpi_tx_data *data;
1850 	struct wpi_tx_cmd *cmd;
1851 	struct wpi_cmd_data *tx;
1852 	struct ieee80211_frame *wh;
1853 	const struct ieee80211_txparam *tp;
1854 	struct ieee80211_key *k;
1855 	struct mbuf *mnew;
1856 	int i, error, nsegs, rate, hdrlen, ismcast;
1857 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1858 
1859 	desc = &ring->desc[ring->cur];
1860 	data = &ring->data[ring->cur];
1861 
1862 	wh = mtod(m0, struct ieee80211_frame *);
1863 
1864 	hdrlen = ieee80211_hdrsize(wh);
1865 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1866 
1867 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1868 		k = ieee80211_crypto_encap(ni, m0);
1869 		if (k == NULL) {
1870 			m_freem(m0);
1871 			return ENOBUFS;
1872 		}
1873 		/* packet header may have moved, reset our local pointer */
1874 		wh = mtod(m0, struct ieee80211_frame *);
1875 	}
1876 
1877 	cmd = &ring->cmd[ring->cur];
1878 	cmd->code = WPI_CMD_TX_DATA;
1879 	cmd->flags = 0;
1880 	cmd->qid = ring->qid;
1881 	cmd->idx = ring->cur;
1882 
1883 	tx = (struct wpi_cmd_data *)cmd->data;
1884 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1885 	tx->timeout = htole16(0);
1886 	tx->ofdm_mask = 0xff;
1887 	tx->cck_mask = 0x0f;
1888 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1889 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1890 	tx->len = htole16(m0->m_pkthdr.len);
1891 
1892 	if (!ismcast) {
1893 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1894 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1895 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1896 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1897 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1898 			tx->rts_ntries = 7;
1899 		}
1900 	}
1901 	/* pick a rate */
1902 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1903 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1904 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1905 		/* tell h/w to set timestamp in probe responses */
1906 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1907 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1908 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1909 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1910 			tx->timeout = htole16(3);
1911 		else
1912 			tx->timeout = htole16(2);
1913 		rate = tp->mgmtrate;
1914 	} else if (ismcast) {
1915 		rate = tp->mcastrate;
1916 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1917 		rate = tp->ucastrate;
1918 	} else {
1919 		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1920 		rate = ni->ni_txrate;
1921 	}
1922 	tx->rate = wpi_plcp_signal(rate);
1923 
1924 	/* be very persistant at sending frames out */
1925 #if 0
1926 	tx->data_ntries = tp->maxretry;
1927 #else
1928 	tx->data_ntries = 15;		/* XXX way too high */
1929 #endif
1930 
1931 	if (bpf_peers_present(ifp->if_bpf)) {
1932 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1933 		tap->wt_flags = 0;
1934 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1935 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1936 		tap->wt_rate = rate;
1937 		tap->wt_hwqueue = ac;
1938 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1939 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1940 
1941 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1942 	}
1943 
1944 	/* save and trim IEEE802.11 header */
1945 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1946 	m_adj(m0, hdrlen);
1947 
1948 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1949 	    &nsegs, BUS_DMA_NOWAIT);
1950 	if (error != 0 && error != EFBIG) {
1951 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1952 		    error);
1953 		m_freem(m0);
1954 		return error;
1955 	}
1956 	if (error != 0) {
1957 		/* XXX use m_collapse */
1958 		mnew = m_defrag(m0, M_DONTWAIT);
1959 		if (mnew == NULL) {
1960 			device_printf(sc->sc_dev,
1961 			    "could not defragment mbuf\n");
1962 			m_freem(m0);
1963 			return ENOBUFS;
1964 		}
1965 		m0 = mnew;
1966 
1967 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1968 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1969 		if (error != 0) {
1970 			device_printf(sc->sc_dev,
1971 			    "could not map mbuf (error %d)\n", error);
1972 			m_freem(m0);
1973 			return error;
1974 		}
1975 	}
1976 
1977 	data->m = m0;
1978 	data->ni = ni;
1979 
1980 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1981 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1982 
1983 	/* first scatter/gather segment is used by the tx data command */
1984 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1985 	    (1 + nsegs) << 24);
1986 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1987 	    ring->cur * sizeof (struct wpi_tx_cmd));
1988 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1989 	for (i = 1; i <= nsegs; i++) {
1990 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1991 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1992 	}
1993 
1994 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1995 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1996 	    BUS_DMASYNC_PREWRITE);
1997 
1998 	ring->queued++;
1999 
2000 	/* kick ring */
2001 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2002 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2003 
2004 	return 0;
2005 }
2006 
2007 /**
2008  * Process data waiting to be sent on the IFNET output queue
2009  */
2010 static void
2011 wpi_start(struct ifnet *ifp)
2012 {
2013 	struct wpi_softc *sc = ifp->if_softc;
2014 
2015 	WPI_LOCK(sc);
2016 	wpi_start_locked(ifp);
2017 	WPI_UNLOCK(sc);
2018 }
2019 
2020 static void
2021 wpi_start_locked(struct ifnet *ifp)
2022 {
2023 	struct wpi_softc *sc = ifp->if_softc;
2024 	struct ieee80211_node *ni;
2025 	struct mbuf *m;
2026 	int ac;
2027 
2028 	WPI_LOCK_ASSERT(sc);
2029 
2030 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2031 		return;
2032 
2033 	for (;;) {
2034 		IFQ_POLL(&ifp->if_snd, m);
2035 		if (m == NULL)
2036 			break;
2037 		/* no QoS encapsulation for EAPOL frames */
2038 		ac = M_WME_GETAC(m);
2039 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2040 			/* there is no place left in this ring */
2041 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2042 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2043 			break;
2044 		}
2045 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2046 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2047 		m = ieee80211_encap(ni, m);
2048 		if (m == NULL) {
2049 			ieee80211_free_node(ni);
2050 			ifp->if_oerrors++;
2051 			continue;
2052 		}
2053 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2054 			ieee80211_free_node(ni);
2055 			ifp->if_oerrors++;
2056 			break;
2057 		}
2058 		sc->sc_tx_timer = 5;
2059 	}
2060 }
2061 
2062 static int
2063 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2064 	const struct ieee80211_bpf_params *params)
2065 {
2066 	struct ieee80211com *ic = ni->ni_ic;
2067 	struct ifnet *ifp = ic->ic_ifp;
2068 	struct wpi_softc *sc = ifp->if_softc;
2069 
2070 	/* prevent management frames from being sent if we're not ready */
2071 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2072 		m_freem(m);
2073 		ieee80211_free_node(ni);
2074 		return ENETDOWN;
2075 	}
2076 	WPI_LOCK(sc);
2077 
2078 	/* management frames go into ring 0 */
2079 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2080 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2081 		m_freem(m);
2082 		WPI_UNLOCK(sc);
2083 		ieee80211_free_node(ni);
2084 		return ENOBUFS;		/* XXX */
2085 	}
2086 
2087 	ifp->if_opackets++;
2088 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2089 		goto bad;
2090 	sc->sc_tx_timer = 5;
2091 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2092 
2093 	WPI_UNLOCK(sc);
2094 	return 0;
2095 bad:
2096 	ifp->if_oerrors++;
2097 	WPI_UNLOCK(sc);
2098 	ieee80211_free_node(ni);
2099 	return EIO;		/* XXX */
2100 }
2101 
2102 static int
2103 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2104 {
2105 	struct wpi_softc *sc = ifp->if_softc;
2106 	struct ieee80211com *ic = ifp->if_l2com;
2107 	struct ifreq *ifr = (struct ifreq *) data;
2108 	int error = 0, startall = 0;
2109 
2110 	switch (cmd) {
2111 	case SIOCSIFFLAGS:
2112 		WPI_LOCK(sc);
2113 		if ((ifp->if_flags & IFF_UP)) {
2114 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2115 				wpi_init_locked(sc, 0);
2116 				startall = 1;
2117 			}
2118 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2119 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2120 			wpi_stop_locked(sc);
2121 		WPI_UNLOCK(sc);
2122 		if (startall)
2123 			ieee80211_start_all(ic);
2124 		break;
2125 	case SIOCGIFMEDIA:
2126 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2127 		break;
2128 	case SIOCGIFADDR:
2129 		error = ether_ioctl(ifp, cmd, data);
2130 		break;
2131 	default:
2132 		error = EINVAL;
2133 		break;
2134 	}
2135 	return error;
2136 }
2137 
2138 /*
2139  * Extract various information from EEPROM.
2140  */
2141 static void
2142 wpi_read_eeprom(struct wpi_softc *sc)
2143 {
2144 	struct ifnet *ifp = sc->sc_ifp;
2145 	struct ieee80211com *ic = ifp->if_l2com;
2146 	int i;
2147 
2148 	/* read the hardware capabilities, revision and SKU type */
2149 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2150 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2151 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2152 
2153 	/* read the regulatory domain */
2154 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2155 
2156 	/* read in the hw MAC address */
2157 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2158 
2159 	/* read the list of authorized channels */
2160 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2161 		wpi_read_eeprom_channels(sc,i);
2162 
2163 	/* read the power level calibration info for each group */
2164 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2165 		wpi_read_eeprom_group(sc,i);
2166 }
2167 
2168 /*
2169  * Send a command to the firmware.
2170  */
2171 static int
2172 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2173 {
2174 	struct wpi_tx_ring *ring = &sc->cmdq;
2175 	struct wpi_tx_desc *desc;
2176 	struct wpi_tx_cmd *cmd;
2177 
2178 #ifdef WPI_DEBUG
2179 	if (!async) {
2180 		WPI_LOCK_ASSERT(sc);
2181 	}
2182 #endif
2183 
2184 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2185 		    async));
2186 
2187 	if (sc->flags & WPI_FLAG_BUSY) {
2188 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2189 		    __func__, code);
2190 		return EAGAIN;
2191 	}
2192 	sc->flags|= WPI_FLAG_BUSY;
2193 
2194 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2195 	    code, size));
2196 
2197 	desc = &ring->desc[ring->cur];
2198 	cmd = &ring->cmd[ring->cur];
2199 
2200 	cmd->code = code;
2201 	cmd->flags = 0;
2202 	cmd->qid = ring->qid;
2203 	cmd->idx = ring->cur;
2204 	memcpy(cmd->data, buf, size);
2205 
2206 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2207 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2208 		ring->cur * sizeof (struct wpi_tx_cmd));
2209 	desc->segs[0].len  = htole32(4 + size);
2210 
2211 	/* kick cmd ring */
2212 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2213 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2214 
2215 	if (async) {
2216 		sc->flags &= ~ WPI_FLAG_BUSY;
2217 		return 0;
2218 	}
2219 
2220 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2221 }
2222 
2223 static int
2224 wpi_wme_update(struct ieee80211com *ic)
2225 {
2226 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2227 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2228 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2229 	const struct wmeParams *wmep;
2230 	struct wpi_wme_setup wme;
2231 	int ac;
2232 
2233 	/* don't override default WME values if WME is not actually enabled */
2234 	if (!(ic->ic_flags & IEEE80211_F_WME))
2235 		return 0;
2236 
2237 	wme.flags = 0;
2238 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2239 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2240 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2241 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2242 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2243 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2244 
2245 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2246 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2247 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2248 	}
2249 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2250 #undef WPI_USEC
2251 #undef WPI_EXP2
2252 }
2253 
2254 /*
2255  * Configure h/w multi-rate retries.
2256  */
2257 static int
2258 wpi_mrr_setup(struct wpi_softc *sc)
2259 {
2260 	struct ifnet *ifp = sc->sc_ifp;
2261 	struct ieee80211com *ic = ifp->if_l2com;
2262 	struct wpi_mrr_setup mrr;
2263 	int i, error;
2264 
2265 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2266 
2267 	/* CCK rates (not used with 802.11a) */
2268 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2269 		mrr.rates[i].flags = 0;
2270 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2271 		/* fallback to the immediate lower CCK rate (if any) */
2272 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2273 		/* try one time at this rate before falling back to "next" */
2274 		mrr.rates[i].ntries = 1;
2275 	}
2276 
2277 	/* OFDM rates (not used with 802.11b) */
2278 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2279 		mrr.rates[i].flags = 0;
2280 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2281 		/* fallback to the immediate lower OFDM rate (if any) */
2282 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2283 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2284 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2285 			WPI_OFDM6 : WPI_CCK2) :
2286 		    i - 1;
2287 		/* try one time at this rate before falling back to "next" */
2288 		mrr.rates[i].ntries = 1;
2289 	}
2290 
2291 	/* setup MRR for control frames */
2292 	mrr.which = htole32(WPI_MRR_CTL);
2293 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2294 	if (error != 0) {
2295 		device_printf(sc->sc_dev,
2296 		    "could not setup MRR for control frames\n");
2297 		return error;
2298 	}
2299 
2300 	/* setup MRR for data frames */
2301 	mrr.which = htole32(WPI_MRR_DATA);
2302 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2303 	if (error != 0) {
2304 		device_printf(sc->sc_dev,
2305 		    "could not setup MRR for data frames\n");
2306 		return error;
2307 	}
2308 
2309 	return 0;
2310 }
2311 
2312 static void
2313 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2314 {
2315 	struct wpi_cmd_led led;
2316 
2317 	led.which = which;
2318 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2319 	led.off = off;
2320 	led.on = on;
2321 
2322 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2323 }
2324 
2325 static void
2326 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2327 {
2328 	struct wpi_cmd_tsf tsf;
2329 	uint64_t val, mod;
2330 
2331 	memset(&tsf, 0, sizeof tsf);
2332 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2333 	tsf.bintval = htole16(ni->ni_intval);
2334 	tsf.lintval = htole16(10);
2335 
2336 	/* compute remaining time until next beacon */
2337 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2338 	mod = le64toh(tsf.tstamp) % val;
2339 	tsf.binitval = htole32((uint32_t)(val - mod));
2340 
2341 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2342 		device_printf(sc->sc_dev, "could not enable TSF\n");
2343 }
2344 
2345 #if 0
2346 /*
2347  * Build a beacon frame that the firmware will broadcast periodically in
2348  * IBSS or HostAP modes.
2349  */
2350 static int
2351 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2352 {
2353 	struct ifnet *ifp = sc->sc_ifp;
2354 	struct ieee80211com *ic = ifp->if_l2com;
2355 	struct wpi_tx_ring *ring = &sc->cmdq;
2356 	struct wpi_tx_desc *desc;
2357 	struct wpi_tx_data *data;
2358 	struct wpi_tx_cmd *cmd;
2359 	struct wpi_cmd_beacon *bcn;
2360 	struct ieee80211_beacon_offsets bo;
2361 	struct mbuf *m0;
2362 	bus_addr_t physaddr;
2363 	int error;
2364 
2365 	desc = &ring->desc[ring->cur];
2366 	data = &ring->data[ring->cur];
2367 
2368 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2369 	if (m0 == NULL) {
2370 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2371 		return ENOMEM;
2372 	}
2373 
2374 	cmd = &ring->cmd[ring->cur];
2375 	cmd->code = WPI_CMD_SET_BEACON;
2376 	cmd->flags = 0;
2377 	cmd->qid = ring->qid;
2378 	cmd->idx = ring->cur;
2379 
2380 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2381 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2382 	bcn->id = WPI_ID_BROADCAST;
2383 	bcn->ofdm_mask = 0xff;
2384 	bcn->cck_mask = 0x0f;
2385 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2386 	bcn->len = htole16(m0->m_pkthdr.len);
2387 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2388 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2389 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2390 
2391 	/* save and trim IEEE802.11 header */
2392 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2393 	m_adj(m0, sizeof (struct ieee80211_frame));
2394 
2395 	/* assume beacon frame is contiguous */
2396 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2397 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2398 	if (error != 0) {
2399 		device_printf(sc->sc_dev, "could not map beacon\n");
2400 		m_freem(m0);
2401 		return error;
2402 	}
2403 
2404 	data->m = m0;
2405 
2406 	/* first scatter/gather segment is used by the beacon command */
2407 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2408 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2409 		ring->cur * sizeof (struct wpi_tx_cmd));
2410 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2411 	desc->segs[1].addr = htole32(physaddr);
2412 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2413 
2414 	/* kick cmd ring */
2415 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2416 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2417 
2418 	return 0;
2419 }
2420 #endif
2421 
2422 static int
2423 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2424 {
2425 	struct ieee80211com *ic = vap->iv_ic;
2426 	struct ieee80211_node *ni = vap->iv_bss;
2427 	struct wpi_node_info node;
2428 	int error;
2429 
2430 
2431 	/* update adapter's configuration */
2432 	sc->config.associd = 0;
2433 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2434 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2435 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2436 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2437 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2438 		    WPI_CONFIG_24GHZ);
2439 	}
2440 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2441 		sc->config.cck_mask  = 0;
2442 		sc->config.ofdm_mask = 0x15;
2443 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2444 		sc->config.cck_mask  = 0x03;
2445 		sc->config.ofdm_mask = 0;
2446 	} else {
2447 		/* XXX assume 802.11b/g */
2448 		sc->config.cck_mask  = 0x0f;
2449 		sc->config.ofdm_mask = 0x15;
2450 	}
2451 
2452 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2453 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2454 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2455 		sizeof (struct wpi_config), 1);
2456 	if (error != 0) {
2457 		device_printf(sc->sc_dev, "could not configure\n");
2458 		return error;
2459 	}
2460 
2461 	/* configuration has changed, set Tx power accordingly */
2462 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2463 		device_printf(sc->sc_dev, "could not set Tx power\n");
2464 		return error;
2465 	}
2466 
2467 	/* add default node */
2468 	memset(&node, 0, sizeof node);
2469 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2470 	node.id = WPI_ID_BSS;
2471 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2472 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2473 	node.action = htole32(WPI_ACTION_SET_RATE);
2474 	node.antenna = WPI_ANTENNA_BOTH;
2475 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2476 	if (error != 0)
2477 		device_printf(sc->sc_dev, "could not add BSS node\n");
2478 
2479 	return (error);
2480 }
2481 
2482 static int
2483 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2484 {
2485 	struct ieee80211com *ic = vap->iv_ic;
2486 	struct ieee80211_node *ni = vap->iv_bss;
2487 	int error;
2488 
2489 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2490 		/* link LED blinks while monitoring */
2491 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2492 		return 0;
2493 	}
2494 
2495 	wpi_enable_tsf(sc, ni);
2496 
2497 	/* update adapter's configuration */
2498 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2499 	/* short preamble/slot time are negotiated when associating */
2500 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2501 	    WPI_CONFIG_SHSLOT);
2502 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2503 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2504 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2505 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2506 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2507 
2508 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2509 
2510 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2511 		    sc->config.flags));
2512 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2513 		    wpi_config), 1);
2514 	if (error != 0) {
2515 		device_printf(sc->sc_dev, "could not update configuration\n");
2516 		return error;
2517 	}
2518 
2519 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2520 	if (error != 0) {
2521 		device_printf(sc->sc_dev, "could set txpower\n");
2522 		return error;
2523 	}
2524 
2525 	if (vap->iv_opmode == IEEE80211_M_STA) {
2526 		/* fake a join to init the tx rate */
2527 		wpi_newassoc(ni, 1);
2528 	}
2529 
2530 	/* link LED always on while associated */
2531 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2532 
2533 	/* start automatic rate control timer */
2534 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2535 
2536 	return (error);
2537 }
2538 
2539 /*
2540  * Send a scan request to the firmware.  Since this command is huge, we map it
2541  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2542  * much of this code is similar to that in wpi_cmd but because we must manually
2543  * construct the probe & channels, we duplicate what's needed here. XXX In the
2544  * future, this function should be modified to use wpi_cmd to help cleanup the
2545  * code base.
2546  */
2547 static int
2548 wpi_scan(struct wpi_softc *sc)
2549 {
2550 	struct ifnet *ifp = sc->sc_ifp;
2551 	struct ieee80211com *ic = ifp->if_l2com;
2552 	struct ieee80211_scan_state *ss = ic->ic_scan;
2553 	struct wpi_tx_ring *ring = &sc->cmdq;
2554 	struct wpi_tx_desc *desc;
2555 	struct wpi_tx_data *data;
2556 	struct wpi_tx_cmd *cmd;
2557 	struct wpi_scan_hdr *hdr;
2558 	struct wpi_scan_chan *chan;
2559 	struct ieee80211_frame *wh;
2560 	struct ieee80211_rateset *rs;
2561 	struct ieee80211_channel *c;
2562 	enum ieee80211_phymode mode;
2563 	uint8_t *frm;
2564 	int nrates, pktlen, error, i, nssid;
2565 	bus_addr_t physaddr;
2566 
2567 	desc = &ring->desc[ring->cur];
2568 	data = &ring->data[ring->cur];
2569 
2570 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2571 	if (data->m == NULL) {
2572 		device_printf(sc->sc_dev,
2573 		    "could not allocate mbuf for scan command\n");
2574 		return ENOMEM;
2575 	}
2576 
2577 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2578 	cmd->code = WPI_CMD_SCAN;
2579 	cmd->flags = 0;
2580 	cmd->qid = ring->qid;
2581 	cmd->idx = ring->cur;
2582 
2583 	hdr = (struct wpi_scan_hdr *)cmd->data;
2584 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2585 
2586 	/*
2587 	 * Move to the next channel if no packets are received within 5 msecs
2588 	 * after sending the probe request (this helps to reduce the duration
2589 	 * of active scans).
2590 	 */
2591 	hdr->quiet = htole16(5);
2592 	hdr->threshold = htole16(1);
2593 
2594 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2595 		/* send probe requests at 6Mbps */
2596 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2597 
2598 		/* Enable crc checking */
2599 		hdr->promotion = htole16(1);
2600 	} else {
2601 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2602 		/* send probe requests at 1Mbps */
2603 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2604 	}
2605 	hdr->tx.id = WPI_ID_BROADCAST;
2606 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2607 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2608 
2609 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2610 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2611 	for (i = 0; i < nssid; i++) {
2612 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2613 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2614 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2615 		    hdr->scan_essids[i].esslen);
2616 #ifdef WPI_DEBUG
2617 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2618 			printf("Scanning Essid: ");
2619 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2620 			    hdr->scan_essids[i].esslen);
2621 			printf("\n");
2622 		}
2623 #endif
2624 	}
2625 
2626 	/*
2627 	 * Build a probe request frame.  Most of the following code is a
2628 	 * copy & paste of what is done in net80211.
2629 	 */
2630 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2631 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2632 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2633 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2634 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2635 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2636 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2637 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2638 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2639 
2640 	frm = (uint8_t *)(wh + 1);
2641 
2642 	/* add essid IE, the hardware will fill this in for us */
2643 	*frm++ = IEEE80211_ELEMID_SSID;
2644 	*frm++ = 0;
2645 
2646 	mode = ieee80211_chan2mode(ic->ic_curchan);
2647 	rs = &ic->ic_sup_rates[mode];
2648 
2649 	/* add supported rates IE */
2650 	*frm++ = IEEE80211_ELEMID_RATES;
2651 	nrates = rs->rs_nrates;
2652 	if (nrates > IEEE80211_RATE_SIZE)
2653 		nrates = IEEE80211_RATE_SIZE;
2654 	*frm++ = nrates;
2655 	memcpy(frm, rs->rs_rates, nrates);
2656 	frm += nrates;
2657 
2658 	/* add supported xrates IE */
2659 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2660 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2661 		*frm++ = IEEE80211_ELEMID_XRATES;
2662 		*frm++ = nrates;
2663 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2664 		frm += nrates;
2665 	}
2666 
2667 	/* setup length of probe request */
2668 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2669 
2670 	/*
2671 	 * Construct information about the channel that we
2672 	 * want to scan. The firmware expects this to be directly
2673 	 * after the scan probe request
2674 	 */
2675 	c = ic->ic_curchan;
2676 	chan = (struct wpi_scan_chan *)frm;
2677 	chan->chan = ieee80211_chan2ieee(ic, c);
2678 	chan->flags = 0;
2679 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2680 		chan->flags |= WPI_CHAN_ACTIVE;
2681 		if (nssid != 0)
2682 			chan->flags |= WPI_CHAN_DIRECT;
2683 	}
2684 	chan->gain_dsp = 0x6e; /* Default level */
2685 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2686 		chan->active = htole16(10);
2687 		chan->passive = htole16(ss->ss_maxdwell);
2688 		chan->gain_radio = 0x3b;
2689 	} else {
2690 		chan->active = htole16(20);
2691 		chan->passive = htole16(ss->ss_maxdwell);
2692 		chan->gain_radio = 0x28;
2693 	}
2694 
2695 	DPRINTFN(WPI_DEBUG_SCANNING,
2696 	    ("Scanning %u Passive: %d\n",
2697 	     chan->chan,
2698 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2699 
2700 	hdr->nchan++;
2701 	chan++;
2702 
2703 	frm += sizeof (struct wpi_scan_chan);
2704 #if 0
2705 	// XXX All Channels....
2706 	for (c  = &ic->ic_channels[1];
2707 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2708 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2709 			continue;
2710 
2711 		chan->chan = ieee80211_chan2ieee(ic, c);
2712 		chan->flags = 0;
2713 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2714 		    chan->flags |= WPI_CHAN_ACTIVE;
2715 		    if (ic->ic_des_ssid[0].len != 0)
2716 			chan->flags |= WPI_CHAN_DIRECT;
2717 		}
2718 		chan->gain_dsp = 0x6e; /* Default level */
2719 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2720 			chan->active = htole16(10);
2721 			chan->passive = htole16(110);
2722 			chan->gain_radio = 0x3b;
2723 		} else {
2724 			chan->active = htole16(20);
2725 			chan->passive = htole16(120);
2726 			chan->gain_radio = 0x28;
2727 		}
2728 
2729 		DPRINTFN(WPI_DEBUG_SCANNING,
2730 			 ("Scanning %u Passive: %d\n",
2731 			  chan->chan,
2732 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2733 
2734 		hdr->nchan++;
2735 		chan++;
2736 
2737 		frm += sizeof (struct wpi_scan_chan);
2738 	}
2739 #endif
2740 
2741 	hdr->len = htole16(frm - (uint8_t *)hdr);
2742 	pktlen = frm - (uint8_t *)cmd;
2743 
2744 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2745 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2746 	if (error != 0) {
2747 		device_printf(sc->sc_dev, "could not map scan command\n");
2748 		m_freem(data->m);
2749 		data->m = NULL;
2750 		return error;
2751 	}
2752 
2753 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2754 	desc->segs[0].addr = htole32(physaddr);
2755 	desc->segs[0].len  = htole32(pktlen);
2756 
2757 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2758 	    BUS_DMASYNC_PREWRITE);
2759 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2760 
2761 	/* kick cmd ring */
2762 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2763 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2764 
2765 	sc->sc_scan_timer = 5;
2766 	return 0;	/* will be notified async. of failure/success */
2767 }
2768 
2769 /**
2770  * Configure the card to listen to a particular channel, this transisions the
2771  * card in to being able to receive frames from remote devices.
2772  */
2773 static int
2774 wpi_config(struct wpi_softc *sc)
2775 {
2776 	struct ifnet *ifp = sc->sc_ifp;
2777 	struct ieee80211com *ic = ifp->if_l2com;
2778 	struct wpi_power power;
2779 	struct wpi_bluetooth bluetooth;
2780 	struct wpi_node_info node;
2781 	int error;
2782 
2783 	/* set power mode */
2784 	memset(&power, 0, sizeof power);
2785 	power.flags = htole32(WPI_POWER_CAM|0x8);
2786 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2787 	if (error != 0) {
2788 		device_printf(sc->sc_dev, "could not set power mode\n");
2789 		return error;
2790 	}
2791 
2792 	/* configure bluetooth coexistence */
2793 	memset(&bluetooth, 0, sizeof bluetooth);
2794 	bluetooth.flags = 3;
2795 	bluetooth.lead = 0xaa;
2796 	bluetooth.kill = 1;
2797 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2798 	    0);
2799 	if (error != 0) {
2800 		device_printf(sc->sc_dev,
2801 		    "could not configure bluetooth coexistence\n");
2802 		return error;
2803 	}
2804 
2805 	/* configure adapter */
2806 	memset(&sc->config, 0, sizeof (struct wpi_config));
2807 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2808 	/*set default channel*/
2809 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2810 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2811 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2812 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2813 		    WPI_CONFIG_24GHZ);
2814 	}
2815 	sc->config.filter = 0;
2816 	switch (ic->ic_opmode) {
2817 	case IEEE80211_M_STA:
2818 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2819 		sc->config.mode = WPI_MODE_STA;
2820 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2821 		break;
2822 	case IEEE80211_M_IBSS:
2823 	case IEEE80211_M_AHDEMO:
2824 		sc->config.mode = WPI_MODE_IBSS;
2825 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2826 					     WPI_FILTER_MULTICAST);
2827 		break;
2828 	case IEEE80211_M_HOSTAP:
2829 		sc->config.mode = WPI_MODE_HOSTAP;
2830 		break;
2831 	case IEEE80211_M_MONITOR:
2832 		sc->config.mode = WPI_MODE_MONITOR;
2833 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2834 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2835 		break;
2836 	}
2837 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2838 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2839 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2840 		sizeof (struct wpi_config), 0);
2841 	if (error != 0) {
2842 		device_printf(sc->sc_dev, "configure command failed\n");
2843 		return error;
2844 	}
2845 
2846 	/* configuration has changed, set Tx power accordingly */
2847 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2848 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2849 	    return error;
2850 	}
2851 
2852 	/* add broadcast node */
2853 	memset(&node, 0, sizeof node);
2854 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2855 	node.id = WPI_ID_BROADCAST;
2856 	node.rate = wpi_plcp_signal(2);
2857 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2858 	if (error != 0) {
2859 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2860 		return error;
2861 	}
2862 
2863 	/* Setup rate scalling */
2864 	error = wpi_mrr_setup(sc);
2865 	if (error != 0) {
2866 		device_printf(sc->sc_dev, "could not setup MRR\n");
2867 		return error;
2868 	}
2869 
2870 	return 0;
2871 }
2872 
2873 static void
2874 wpi_stop_master(struct wpi_softc *sc)
2875 {
2876 	uint32_t tmp;
2877 	int ntries;
2878 
2879 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2880 
2881 	tmp = WPI_READ(sc, WPI_RESET);
2882 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2883 
2884 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2885 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2886 		return;	/* already asleep */
2887 
2888 	for (ntries = 0; ntries < 100; ntries++) {
2889 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2890 			break;
2891 		DELAY(10);
2892 	}
2893 	if (ntries == 100) {
2894 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2895 	}
2896 }
2897 
2898 static int
2899 wpi_power_up(struct wpi_softc *sc)
2900 {
2901 	uint32_t tmp;
2902 	int ntries;
2903 
2904 	wpi_mem_lock(sc);
2905 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2906 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2907 	wpi_mem_unlock(sc);
2908 
2909 	for (ntries = 0; ntries < 5000; ntries++) {
2910 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2911 			break;
2912 		DELAY(10);
2913 	}
2914 	if (ntries == 5000) {
2915 		device_printf(sc->sc_dev,
2916 		    "timeout waiting for NIC to power up\n");
2917 		return ETIMEDOUT;
2918 	}
2919 	return 0;
2920 }
2921 
2922 static int
2923 wpi_reset(struct wpi_softc *sc)
2924 {
2925 	uint32_t tmp;
2926 	int ntries;
2927 
2928 	DPRINTFN(WPI_DEBUG_HW,
2929 	    ("Resetting the card - clearing any uploaded firmware\n"));
2930 
2931 	/* clear any pending interrupts */
2932 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2933 
2934 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2935 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2936 
2937 	tmp = WPI_READ(sc, WPI_CHICKEN);
2938 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2939 
2940 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2941 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2942 
2943 	/* wait for clock stabilization */
2944 	for (ntries = 0; ntries < 25000; ntries++) {
2945 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2946 			break;
2947 		DELAY(10);
2948 	}
2949 	if (ntries == 25000) {
2950 		device_printf(sc->sc_dev,
2951 		    "timeout waiting for clock stabilization\n");
2952 		return ETIMEDOUT;
2953 	}
2954 
2955 	/* initialize EEPROM */
2956 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2957 
2958 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2959 		device_printf(sc->sc_dev, "EEPROM not found\n");
2960 		return EIO;
2961 	}
2962 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2963 
2964 	return 0;
2965 }
2966 
2967 static void
2968 wpi_hw_config(struct wpi_softc *sc)
2969 {
2970 	uint32_t rev, hw;
2971 
2972 	/* voodoo from the Linux "driver".. */
2973 	hw = WPI_READ(sc, WPI_HWCONFIG);
2974 
2975 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2976 	if ((rev & 0xc0) == 0x40)
2977 		hw |= WPI_HW_ALM_MB;
2978 	else if (!(rev & 0x80))
2979 		hw |= WPI_HW_ALM_MM;
2980 
2981 	if (sc->cap == 0x80)
2982 		hw |= WPI_HW_SKU_MRC;
2983 
2984 	hw &= ~WPI_HW_REV_D;
2985 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2986 		hw |= WPI_HW_REV_D;
2987 
2988 	if (sc->type > 1)
2989 		hw |= WPI_HW_TYPE_B;
2990 
2991 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2992 }
2993 
2994 static void
2995 wpi_rfkill_resume(struct wpi_softc *sc)
2996 {
2997 	struct ifnet *ifp = sc->sc_ifp;
2998 	struct ieee80211com *ic = ifp->if_l2com;
2999 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3000 	int ntries;
3001 
3002 	/* enable firmware again */
3003 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3004 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3005 
3006 	/* wait for thermal sensors to calibrate */
3007 	for (ntries = 0; ntries < 1000; ntries++) {
3008 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3009 			break;
3010 		DELAY(10);
3011 	}
3012 
3013 	if (ntries == 1000) {
3014 		device_printf(sc->sc_dev,
3015 		    "timeout waiting for thermal calibration\n");
3016 		WPI_UNLOCK(sc);
3017 		return;
3018 	}
3019 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3020 
3021 	if (wpi_config(sc) != 0) {
3022 		device_printf(sc->sc_dev, "device config failed\n");
3023 		WPI_UNLOCK(sc);
3024 		return;
3025 	}
3026 
3027 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3028 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3029 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3030 
3031 	if (vap != NULL) {
3032 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3033 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3034 				taskqueue_enqueue(taskqueue_swi,
3035 				    &sc->sc_bmiss_task);
3036 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3037 			} else
3038 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3039 		} else {
3040 			ieee80211_scan_next(vap);
3041 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3042 		}
3043 	}
3044 
3045 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3046 }
3047 
3048 static void
3049 wpi_init_locked(struct wpi_softc *sc, int force)
3050 {
3051 	struct ifnet *ifp = sc->sc_ifp;
3052 	uint32_t tmp;
3053 	int ntries, qid;
3054 
3055 	wpi_stop_locked(sc);
3056 	(void)wpi_reset(sc);
3057 
3058 	wpi_mem_lock(sc);
3059 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3060 	DELAY(20);
3061 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3062 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3063 	wpi_mem_unlock(sc);
3064 
3065 	(void)wpi_power_up(sc);
3066 	wpi_hw_config(sc);
3067 
3068 	/* init Rx ring */
3069 	wpi_mem_lock(sc);
3070 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3071 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3072 	    offsetof(struct wpi_shared, next));
3073 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3074 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3075 	wpi_mem_unlock(sc);
3076 
3077 	/* init Tx rings */
3078 	wpi_mem_lock(sc);
3079 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3080 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3081 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3082 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3083 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3084 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3085 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3086 
3087 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3088 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3089 
3090 	for (qid = 0; qid < 6; qid++) {
3091 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3092 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3093 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3094 	}
3095 	wpi_mem_unlock(sc);
3096 
3097 	/* clear "radio off" and "disable command" bits (reversed logic) */
3098 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3099 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3100 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3101 
3102 	/* clear any pending interrupts */
3103 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3104 
3105 	/* enable interrupts */
3106 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3107 
3108 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3109 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3110 
3111 	if ((wpi_load_firmware(sc)) != 0) {
3112 	    device_printf(sc->sc_dev,
3113 		"A problem occurred loading the firmware to the driver\n");
3114 	    return;
3115 	}
3116 
3117 	/* At this point the firmware is up and running. If the hardware
3118 	 * RF switch is turned off thermal calibration will fail, though
3119 	 * the card is still happy to continue to accept commands, catch
3120 	 * this case and schedule a task to watch for it to be turned on.
3121 	 */
3122 	wpi_mem_lock(sc);
3123 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3124 	wpi_mem_unlock(sc);
3125 
3126 	if (!(tmp & 0x1)) {
3127 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3128 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3129 		goto out;
3130 	}
3131 
3132 	/* wait for thermal sensors to calibrate */
3133 	for (ntries = 0; ntries < 1000; ntries++) {
3134 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3135 			break;
3136 		DELAY(10);
3137 	}
3138 
3139 	if (ntries == 1000) {
3140 		device_printf(sc->sc_dev,
3141 		    "timeout waiting for thermal sensors calibration\n");
3142 		return;
3143 	}
3144 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3145 
3146 	if (wpi_config(sc) != 0) {
3147 		device_printf(sc->sc_dev, "device config failed\n");
3148 		return;
3149 	}
3150 
3151 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3152 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3153 out:
3154 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3155 }
3156 
3157 static void
3158 wpi_init(void *arg)
3159 {
3160 	struct wpi_softc *sc = arg;
3161 	struct ifnet *ifp = sc->sc_ifp;
3162 	struct ieee80211com *ic = ifp->if_l2com;
3163 
3164 	WPI_LOCK(sc);
3165 	wpi_init_locked(sc, 0);
3166 	WPI_UNLOCK(sc);
3167 
3168 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3169 		ieee80211_start_all(ic);		/* start all vaps */
3170 }
3171 
3172 static void
3173 wpi_stop_locked(struct wpi_softc *sc)
3174 {
3175 	struct ifnet *ifp = sc->sc_ifp;
3176 	uint32_t tmp;
3177 	int ac;
3178 
3179 	sc->sc_tx_timer = 0;
3180 	sc->sc_scan_timer = 0;
3181 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3182 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3183 	callout_stop(&sc->watchdog_to);
3184 	callout_stop(&sc->calib_to);
3185 
3186 
3187 	/* disable interrupts */
3188 	WPI_WRITE(sc, WPI_MASK, 0);
3189 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3190 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3191 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3192 
3193 	/* Clear any commands left in the command buffer */
3194 	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3195 	memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3196 	sc->sc_cmd_cur = 0;
3197 	sc->sc_cmd_next = 0;
3198 
3199 	wpi_mem_lock(sc);
3200 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3201 	wpi_mem_unlock(sc);
3202 
3203 	/* reset all Tx rings */
3204 	for (ac = 0; ac < 4; ac++)
3205 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3206 	wpi_reset_tx_ring(sc, &sc->cmdq);
3207 
3208 	/* reset Rx ring */
3209 	wpi_reset_rx_ring(sc, &sc->rxq);
3210 
3211 	wpi_mem_lock(sc);
3212 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3213 	wpi_mem_unlock(sc);
3214 
3215 	DELAY(5);
3216 
3217 	wpi_stop_master(sc);
3218 
3219 	tmp = WPI_READ(sc, WPI_RESET);
3220 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3221 	sc->flags &= ~WPI_FLAG_BUSY;
3222 }
3223 
3224 static void
3225 wpi_stop(struct wpi_softc *sc)
3226 {
3227 	WPI_LOCK(sc);
3228 	wpi_stop_locked(sc);
3229 	WPI_UNLOCK(sc);
3230 }
3231 
3232 static void
3233 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3234 {
3235 	struct ieee80211vap *vap = ni->ni_vap;
3236 	struct wpi_vap *wvp = WPI_VAP(vap);
3237 
3238 	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3239 }
3240 
3241 static void
3242 wpi_calib_timeout(void *arg)
3243 {
3244 	struct wpi_softc *sc = arg;
3245 	struct ifnet *ifp = sc->sc_ifp;
3246 	struct ieee80211com *ic = ifp->if_l2com;
3247 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3248 	int temp;
3249 
3250 	if (vap->iv_state != IEEE80211_S_RUN)
3251 		return;
3252 
3253 	/* update sensor data */
3254 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3255 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3256 
3257 	wpi_power_calibration(sc, temp);
3258 
3259 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3260 }
3261 
3262 /*
3263  * This function is called periodically (every 60 seconds) to adjust output
3264  * power to temperature changes.
3265  */
3266 static void
3267 wpi_power_calibration(struct wpi_softc *sc, int temp)
3268 {
3269 	struct ifnet *ifp = sc->sc_ifp;
3270 	struct ieee80211com *ic = ifp->if_l2com;
3271 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3272 
3273 	/* sanity-check read value */
3274 	if (temp < -260 || temp > 25) {
3275 		/* this can't be correct, ignore */
3276 		DPRINTFN(WPI_DEBUG_TEMP,
3277 		    ("out-of-range temperature reported: %d\n", temp));
3278 		return;
3279 	}
3280 
3281 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3282 
3283 	/* adjust Tx power if need be */
3284 	if (abs(temp - sc->temp) <= 6)
3285 		return;
3286 
3287 	sc->temp = temp;
3288 
3289 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3290 		/* just warn, too bad for the automatic calibration... */
3291 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3292 	}
3293 }
3294 
3295 /**
3296  * Read the eeprom to find out what channels are valid for the given
3297  * band and update net80211 with what we find.
3298  */
3299 static void
3300 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3301 {
3302 	struct ifnet *ifp = sc->sc_ifp;
3303 	struct ieee80211com *ic = ifp->if_l2com;
3304 	const struct wpi_chan_band *band = &wpi_bands[n];
3305 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3306 	struct ieee80211_channel *c;
3307 	int chan, i, passive;
3308 
3309 	wpi_read_prom_data(sc, band->addr, channels,
3310 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3311 
3312 	for (i = 0; i < band->nchan; i++) {
3313 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3314 			DPRINTFN(WPI_DEBUG_HW,
3315 			    ("Channel Not Valid: %d, band %d\n",
3316 			     band->chan[i],n));
3317 			continue;
3318 		}
3319 
3320 		passive = 0;
3321 		chan = band->chan[i];
3322 		c = &ic->ic_channels[ic->ic_nchans++];
3323 
3324 		/* is active scan allowed on this channel? */
3325 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3326 			passive = IEEE80211_CHAN_PASSIVE;
3327 		}
3328 
3329 		if (n == 0) {	/* 2GHz band */
3330 			c->ic_ieee = chan;
3331 			c->ic_freq = ieee80211_ieee2mhz(chan,
3332 			    IEEE80211_CHAN_2GHZ);
3333 			c->ic_flags = IEEE80211_CHAN_B | passive;
3334 
3335 			c = &ic->ic_channels[ic->ic_nchans++];
3336 			c->ic_ieee = chan;
3337 			c->ic_freq = ieee80211_ieee2mhz(chan,
3338 			    IEEE80211_CHAN_2GHZ);
3339 			c->ic_flags = IEEE80211_CHAN_G | passive;
3340 
3341 		} else {	/* 5GHz band */
3342 			/*
3343 			 * Some 3945ABG adapters support channels 7, 8, 11
3344 			 * and 12 in the 2GHz *and* 5GHz bands.
3345 			 * Because of limitations in our net80211(9) stack,
3346 			 * we can't support these channels in 5GHz band.
3347 			 * XXX not true; just need to map to proper frequency
3348 			 */
3349 			if (chan <= 14)
3350 				continue;
3351 
3352 			c->ic_ieee = chan;
3353 			c->ic_freq = ieee80211_ieee2mhz(chan,
3354 			    IEEE80211_CHAN_5GHZ);
3355 			c->ic_flags = IEEE80211_CHAN_A | passive;
3356 		}
3357 
3358 		/* save maximum allowed power for this channel */
3359 		sc->maxpwr[chan] = channels[i].maxpwr;
3360 
3361 #if 0
3362 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3363 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3364 		//ic->ic_channels[chan].ic_minpower...
3365 		//ic->ic_channels[chan].ic_maxregtxpower...
3366 #endif
3367 
3368 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3369 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3370 		    channels[i].flags, sc->maxpwr[chan],
3371 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3372 		    ic->ic_nchans));
3373 	}
3374 }
3375 
3376 static void
3377 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3378 {
3379 	struct wpi_power_group *group = &sc->groups[n];
3380 	struct wpi_eeprom_group rgroup;
3381 	int i;
3382 
3383 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3384 	    sizeof rgroup);
3385 
3386 	/* save power group information */
3387 	group->chan   = rgroup.chan;
3388 	group->maxpwr = rgroup.maxpwr;
3389 	/* temperature at which the samples were taken */
3390 	group->temp   = (int16_t)le16toh(rgroup.temp);
3391 
3392 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3393 		    group->chan, group->maxpwr, group->temp));
3394 
3395 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3396 		group->samples[i].index = rgroup.samples[i].index;
3397 		group->samples[i].power = rgroup.samples[i].power;
3398 
3399 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3400 			    group->samples[i].index, group->samples[i].power));
3401 	}
3402 }
3403 
3404 /*
3405  * Update Tx power to match what is defined for channel `c'.
3406  */
3407 static int
3408 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3409 {
3410 	struct ifnet *ifp = sc->sc_ifp;
3411 	struct ieee80211com *ic = ifp->if_l2com;
3412 	struct wpi_power_group *group;
3413 	struct wpi_cmd_txpower txpower;
3414 	u_int chan;
3415 	int i;
3416 
3417 	/* get channel number */
3418 	chan = ieee80211_chan2ieee(ic, c);
3419 
3420 	/* find the power group to which this channel belongs */
3421 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3422 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3423 			if (chan <= group->chan)
3424 				break;
3425 	} else
3426 		group = &sc->groups[0];
3427 
3428 	memset(&txpower, 0, sizeof txpower);
3429 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3430 	txpower.channel = htole16(chan);
3431 
3432 	/* set Tx power for all OFDM and CCK rates */
3433 	for (i = 0; i <= 11 ; i++) {
3434 		/* retrieve Tx power for this channel/rate combination */
3435 		int idx = wpi_get_power_index(sc, group, c,
3436 		    wpi_ridx_to_rate[i]);
3437 
3438 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3439 
3440 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3441 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3442 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3443 		} else {
3444 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3445 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3446 		}
3447 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3448 			    chan, wpi_ridx_to_rate[i], idx));
3449 	}
3450 
3451 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3452 }
3453 
3454 /*
3455  * Determine Tx power index for a given channel/rate combination.
3456  * This takes into account the regulatory information from EEPROM and the
3457  * current temperature.
3458  */
3459 static int
3460 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3461     struct ieee80211_channel *c, int rate)
3462 {
3463 /* fixed-point arithmetic division using a n-bit fractional part */
3464 #define fdivround(a, b, n)      \
3465 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3466 
3467 /* linear interpolation */
3468 #define interpolate(x, x1, y1, x2, y2, n)       \
3469 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3470 
3471 	struct ifnet *ifp = sc->sc_ifp;
3472 	struct ieee80211com *ic = ifp->if_l2com;
3473 	struct wpi_power_sample *sample;
3474 	int pwr, idx;
3475 	u_int chan;
3476 
3477 	/* get channel number */
3478 	chan = ieee80211_chan2ieee(ic, c);
3479 
3480 	/* default power is group's maximum power - 3dB */
3481 	pwr = group->maxpwr / 2;
3482 
3483 	/* decrease power for highest OFDM rates to reduce distortion */
3484 	switch (rate) {
3485 		case 72:	/* 36Mb/s */
3486 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3487 			break;
3488 		case 96:	/* 48Mb/s */
3489 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3490 			break;
3491 		case 108:	/* 54Mb/s */
3492 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3493 			break;
3494 	}
3495 
3496 	/* never exceed channel's maximum allowed Tx power */
3497 	pwr = min(pwr, sc->maxpwr[chan]);
3498 
3499 	/* retrieve power index into gain tables from samples */
3500 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3501 		if (pwr > sample[1].power)
3502 			break;
3503 	/* fixed-point linear interpolation using a 19-bit fractional part */
3504 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3505 	    sample[1].power, sample[1].index, 19);
3506 
3507 	/*
3508 	 *  Adjust power index based on current temperature
3509 	 *	- if colder than factory-calibrated: decreate output power
3510 	 *	- if warmer than factory-calibrated: increase output power
3511 	 */
3512 	idx -= (sc->temp - group->temp) * 11 / 100;
3513 
3514 	/* decrease power for CCK rates (-5dB) */
3515 	if (!WPI_RATE_IS_OFDM(rate))
3516 		idx += 10;
3517 
3518 	/* keep power index in a valid range */
3519 	if (idx < 0)
3520 		return 0;
3521 	if (idx > WPI_MAX_PWR_INDEX)
3522 		return WPI_MAX_PWR_INDEX;
3523 	return idx;
3524 
3525 #undef interpolate
3526 #undef fdivround
3527 }
3528 
3529 /**
3530  * Called by net80211 framework to indicate that a scan
3531  * is starting. This function doesn't actually do the scan,
3532  * wpi_scan_curchan starts things off. This function is more
3533  * of an early warning from the framework we should get ready
3534  * for the scan.
3535  */
3536 static void
3537 wpi_scan_start(struct ieee80211com *ic)
3538 {
3539 	struct ifnet *ifp = ic->ic_ifp;
3540 	struct wpi_softc *sc = ifp->if_softc;
3541 
3542 	wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3543 }
3544 
3545 /**
3546  * Called by the net80211 framework, indicates that the
3547  * scan has ended. If there is a scan in progress on the card
3548  * then it should be aborted.
3549  */
3550 static void
3551 wpi_scan_end(struct ieee80211com *ic)
3552 {
3553 	struct ifnet *ifp = ic->ic_ifp;
3554 	struct wpi_softc *sc = ifp->if_softc;
3555 
3556 	wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3557 }
3558 
3559 /**
3560  * Called by the net80211 framework to indicate to the driver
3561  * that the channel should be changed
3562  */
3563 static void
3564 wpi_set_channel(struct ieee80211com *ic)
3565 {
3566 	struct ifnet *ifp = ic->ic_ifp;
3567 	struct wpi_softc *sc = ifp->if_softc;
3568 
3569 	/*
3570 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3571 	 * are already taken care of by their respective firmware commands.
3572 	 */
3573 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3574 		wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3575 }
3576 
3577 /**
3578  * Called by net80211 to indicate that we need to scan the current
3579  * channel. The channel is previously be set via the wpi_set_channel
3580  * callback.
3581  */
3582 static void
3583 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3584 {
3585 	struct ieee80211vap *vap = ss->ss_vap;
3586 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3587 	struct wpi_softc *sc = ifp->if_softc;
3588 
3589 	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3590 }
3591 
3592 /**
3593  * Called by the net80211 framework to indicate
3594  * the minimum dwell time has been met, terminate the scan.
3595  * We don't actually terminate the scan as the firmware will notify
3596  * us when it's finished and we have no way to interrupt it.
3597  */
3598 static void
3599 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3600 {
3601 	/* NB: don't try to abort scan; wait for firmware to finish */
3602 }
3603 
3604 /**
3605  * The ops function is called to perform some actual work.
3606  * because we can't sleep from any of the ic callbacks, we queue an
3607  * op task with wpi_queue_cmd and have the taskqueue process that task.
3608  * The task that gets cued is a op task, which ends up calling this function.
3609  */
3610 static void
3611 wpi_ops(void *arg0, int pending)
3612 {
3613 	struct wpi_softc *sc = arg0;
3614 	struct ifnet *ifp = sc->sc_ifp;
3615 	struct ieee80211com *ic = ifp->if_l2com;
3616 	int cmd, arg, error;
3617 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3618 
3619 again:
3620 	WPI_CMD_LOCK(sc);
3621 	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3622 	arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3623 
3624 	if (cmd == 0) {
3625 		/* No more commands to process */
3626 		WPI_CMD_UNLOCK(sc);
3627 		return;
3628 	}
3629 	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3630 	sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3631 	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3632 	WPI_CMD_UNLOCK(sc);
3633 	WPI_LOCK(sc);
3634 
3635 	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3636 
3637 	switch (cmd) {
3638 	case WPI_RESTART:
3639 		wpi_init_locked(sc, 0);
3640 		WPI_UNLOCK(sc);
3641 		return;
3642 
3643 	case WPI_RF_RESTART:
3644 		wpi_rfkill_resume(sc);
3645 		WPI_UNLOCK(sc);
3646 		return;
3647 	}
3648 
3649 	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3650 		WPI_UNLOCK(sc);
3651 		return;
3652 	}
3653 
3654 	switch (cmd) {
3655 	case WPI_SCAN_START:
3656 		/* make the link LED blink while we're scanning */
3657 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3658 		sc->flags |= WPI_FLAG_SCANNING;
3659 		break;
3660 
3661 	case WPI_SCAN_STOP:
3662 		sc->flags &= ~WPI_FLAG_SCANNING;
3663 		break;
3664 
3665 	case WPI_SCAN_CURCHAN:
3666 		if (wpi_scan(sc))
3667 			ieee80211_cancel_scan(vap);
3668 		break;
3669 
3670 	case WPI_SET_CHAN:
3671 		error = wpi_config(sc);
3672 		if (error != 0)
3673 			device_printf(sc->sc_dev,
3674 			    "error %d settting channel\n", error);
3675 		break;
3676 
3677 	case WPI_AUTH:
3678 		/* The node must be registered in the firmware before auth */
3679 		error = wpi_auth(sc, vap);
3680 		WPI_UNLOCK(sc);
3681 		if (error != 0) {
3682 			device_printf(sc->sc_dev,
3683 			    "%s: could not move to auth state, error %d\n",
3684 			    __func__, error);
3685 			return;
3686 		}
3687 		IEEE80211_LOCK(ic);
3688 		WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg);
3689 		if (vap->iv_newstate_cb != NULL)
3690 			vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg);
3691 		IEEE80211_UNLOCK(ic);
3692 		goto again;
3693 
3694 	case WPI_RUN:
3695 		error = wpi_run(sc, vap);
3696 		WPI_UNLOCK(sc);
3697 		if (error != 0) {
3698 			device_printf(sc->sc_dev,
3699 			    "%s: could not move to run state, error %d\n",
3700 			    __func__, error);
3701 			return;
3702 		}
3703 		IEEE80211_LOCK(ic);
3704 		WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg);
3705 		if (vap->iv_newstate_cb != NULL)
3706 			vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg);
3707 		IEEE80211_UNLOCK(ic);
3708 		goto again;
3709 	}
3710 	WPI_UNLOCK(sc);
3711 
3712 	/* Take another pass */
3713 	goto again;
3714 }
3715 
3716 /**
3717  * queue a command for later execution in a different thread.
3718  * This is needed as the net80211 callbacks do not allow
3719  * sleeping, since we need to sleep to confirm commands have
3720  * been processed by the firmware, we must defer execution to
3721  * a sleep enabled thread.
3722  */
3723 static int
3724 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3725 {
3726 	WPI_CMD_LOCK(sc);
3727 
3728 	if (flush) {
3729 		memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3730 		memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3731 		sc->sc_cmd_cur = 0;
3732 		sc->sc_cmd_next = 0;
3733 	}
3734 
3735 	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3736 		WPI_CMD_UNLOCK(sc);
3737 		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3738 		return (EBUSY);
3739 	}
3740 
3741 	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3742 	sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3743 	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3744 
3745 	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3746 
3747 	WPI_CMD_UNLOCK(sc);
3748 
3749 	return 0;
3750 }
3751 
3752 /*
3753  * Allocate DMA-safe memory for firmware transfer.
3754  */
3755 static int
3756 wpi_alloc_fwmem(struct wpi_softc *sc)
3757 {
3758 	/* allocate enough contiguous space to store text and data */
3759 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3760 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3761 	    BUS_DMA_NOWAIT);
3762 }
3763 
3764 static void
3765 wpi_free_fwmem(struct wpi_softc *sc)
3766 {
3767 	wpi_dma_contig_free(&sc->fw_dma);
3768 }
3769 
3770 /**
3771  * Called every second, wpi_watchdog used by the watch dog timer
3772  * to check that the card is still alive
3773  */
3774 static void
3775 wpi_watchdog(void *arg)
3776 {
3777 	struct wpi_softc *sc = arg;
3778 	struct ifnet *ifp = sc->sc_ifp;
3779 	uint32_t tmp;
3780 
3781 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3782 
3783 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3784 		/* No need to lock firmware memory */
3785 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3786 
3787 		if ((tmp & 0x1) == 0) {
3788 			/* Radio kill switch is still off */
3789 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3790 			return;
3791 		}
3792 
3793 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3794 		wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3795 		return;
3796 	}
3797 
3798 	if (sc->sc_tx_timer > 0) {
3799 		if (--sc->sc_tx_timer == 0) {
3800 			device_printf(sc->sc_dev,"device timeout\n");
3801 			ifp->if_oerrors++;
3802 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3803 		}
3804 	}
3805 	if (sc->sc_scan_timer > 0) {
3806 		struct ifnet *ifp = sc->sc_ifp;
3807 		struct ieee80211com *ic = ifp->if_l2com;
3808 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3809 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3810 			device_printf(sc->sc_dev,"scan timeout\n");
3811 			ieee80211_cancel_scan(vap);
3812 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3813 		}
3814 	}
3815 
3816 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3817 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3818 }
3819 
3820 #ifdef WPI_DEBUG
3821 static const char *wpi_cmd_str(int cmd)
3822 {
3823 	switch (cmd) {
3824 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3825 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3826 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3827 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3828 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3829 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3830 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3831 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3832 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3833 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3834 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3835 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3836 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3837 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3838 
3839 	default:
3840 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3841 		return "UNKNOWN CMD";	/* Make the compiler happy */
3842 	}
3843 }
3844 #endif
3845 
3846 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3847 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3848 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3849 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3850