xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 6e660824a82f590542932de52f128db584029893)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include "opt_wlan.h"
63 
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79 
80 #include <machine/bus.h>
81 #include <machine/resource.h>
82 #include <sys/rman.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 
87 #include <net/bpf.h>
88 #include <net/if.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_radiotap.h>
97 #include <net80211/ieee80211_regdomain.h>
98 #include <net80211/ieee80211_ratectl.h>
99 
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip.h>
104 #include <netinet/if_ether.h>
105 
106 #include <dev/wpi/if_wpireg.h>
107 #include <dev/wpi/if_wpivar.h>
108 
109 #define WPI_DEBUG
110 
111 #ifdef WPI_DEBUG
112 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
113 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
114 #define	WPI_DEBUG_SET	(wpi_debug != 0)
115 
116 enum {
117 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
118 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
119 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
120 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
121 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
122 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
123 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
124 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
125 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
126 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
127 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
128 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
129 	WPI_DEBUG_ANY		= 0xffffffff
130 };
131 
132 static int wpi_debug = 0;
133 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
134 TUNABLE_INT("debug.wpi", &wpi_debug);
135 
136 #else
137 #define DPRINTF(x)
138 #define DPRINTFN(n, x)
139 #define WPI_DEBUG_SET	0
140 #endif
141 
142 struct wpi_ident {
143 	uint16_t	vendor;
144 	uint16_t	device;
145 	uint16_t	subdevice;
146 	const char	*name;
147 };
148 
149 static const struct wpi_ident wpi_ident_table[] = {
150 	/* The below entries support ABG regardless of the subid */
151 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
152 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	/* The below entries only support BG */
154 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
155 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0, 0, 0, NULL }
159 };
160 
161 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
162 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
163 		    const uint8_t [IEEE80211_ADDR_LEN],
164 		    const uint8_t [IEEE80211_ADDR_LEN]);
165 static void	wpi_vap_delete(struct ieee80211vap *);
166 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
167 		    void **, bus_size_t, bus_size_t, int);
168 static void	wpi_dma_contig_free(struct wpi_dma_info *);
169 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
170 static int	wpi_alloc_shared(struct wpi_softc *);
171 static void	wpi_free_shared(struct wpi_softc *);
172 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
176 		    int, int);
177 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
178 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
180 static void	wpi_mem_lock(struct wpi_softc *);
181 static void	wpi_mem_unlock(struct wpi_softc *);
182 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
183 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
184 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
185 		    const uint32_t *, int);
186 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
187 static int	wpi_alloc_fwmem(struct wpi_softc *);
188 static void	wpi_free_fwmem(struct wpi_softc *);
189 static int	wpi_load_firmware(struct wpi_softc *);
190 static void	wpi_unload_firmware(struct wpi_softc *);
191 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
192 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
193 		    struct wpi_rx_data *);
194 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
196 static void	wpi_notif_intr(struct wpi_softc *);
197 static void	wpi_intr(void *);
198 static uint8_t	wpi_plcp_signal(int);
199 static void	wpi_watchdog(void *);
200 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
201 		    struct ieee80211_node *, int);
202 static void	wpi_start(struct ifnet *);
203 static void	wpi_start_locked(struct ifnet *);
204 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
205 		    const struct ieee80211_bpf_params *);
206 static void	wpi_scan_start(struct ieee80211com *);
207 static void	wpi_scan_end(struct ieee80211com *);
208 static void	wpi_set_channel(struct ieee80211com *);
209 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
210 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
211 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
212 static void	wpi_read_eeprom(struct wpi_softc *,
213 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
214 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
215 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
216 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
217 static int	wpi_wme_update(struct ieee80211com *);
218 static int	wpi_mrr_setup(struct wpi_softc *);
219 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
220 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
221 #if 0
222 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
223 #endif
224 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
225 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
226 static int	wpi_scan(struct wpi_softc *);
227 static int	wpi_config(struct wpi_softc *);
228 static void	wpi_stop_master(struct wpi_softc *);
229 static int	wpi_power_up(struct wpi_softc *);
230 static int	wpi_reset(struct wpi_softc *);
231 static void	wpi_hwreset(void *, int);
232 static void	wpi_rfreset(void *, int);
233 static void	wpi_hw_config(struct wpi_softc *);
234 static void	wpi_init(void *);
235 static void	wpi_init_locked(struct wpi_softc *, int);
236 static void	wpi_stop(struct wpi_softc *);
237 static void	wpi_stop_locked(struct wpi_softc *);
238 
239 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240 		    int);
241 static void	wpi_calib_timeout(void *);
242 static void	wpi_power_calibration(struct wpi_softc *, int);
243 static int	wpi_get_power_index(struct wpi_softc *,
244 		    struct wpi_power_group *, struct ieee80211_channel *, int);
245 #ifdef WPI_DEBUG
246 static const char *wpi_cmd_str(int);
247 #endif
248 static int wpi_probe(device_t);
249 static int wpi_attach(device_t);
250 static int wpi_detach(device_t);
251 static int wpi_shutdown(device_t);
252 static int wpi_suspend(device_t);
253 static int wpi_resume(device_t);
254 
255 
256 static device_method_t wpi_methods[] = {
257 	/* Device interface */
258 	DEVMETHOD(device_probe,		wpi_probe),
259 	DEVMETHOD(device_attach,	wpi_attach),
260 	DEVMETHOD(device_detach,	wpi_detach),
261 	DEVMETHOD(device_shutdown,	wpi_shutdown),
262 	DEVMETHOD(device_suspend,	wpi_suspend),
263 	DEVMETHOD(device_resume,	wpi_resume),
264 
265 	{ 0, 0 }
266 };
267 
268 static driver_t wpi_driver = {
269 	"wpi",
270 	wpi_methods,
271 	sizeof (struct wpi_softc)
272 };
273 
274 static devclass_t wpi_devclass;
275 
276 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277 
278 MODULE_VERSION(wpi, 1);
279 
280 static const uint8_t wpi_ridx_to_plcp[] = {
281 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
282 	/* R1-R4 (ral/ural is R4-R1) */
283 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
284 	/* CCK: device-dependent */
285 	10, 20, 55, 110
286 };
287 static const uint8_t wpi_ridx_to_rate[] = {
288 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
289 	2, 4, 11, 22 /*CCK */
290 };
291 
292 
293 static int
294 wpi_probe(device_t dev)
295 {
296 	const struct wpi_ident *ident;
297 
298 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
299 		if (pci_get_vendor(dev) == ident->vendor &&
300 		    pci_get_device(dev) == ident->device) {
301 			device_set_desc(dev, ident->name);
302 			return 0;
303 		}
304 	}
305 	return ENXIO;
306 }
307 
308 /**
309  * Load the firmare image from disk to the allocated dma buffer.
310  * we also maintain the reference to the firmware pointer as there
311  * is times where we may need to reload the firmware but we are not
312  * in a context that can access the filesystem (ie taskq cause by restart)
313  *
314  * @return 0 on success, an errno on failure
315  */
316 static int
317 wpi_load_firmware(struct wpi_softc *sc)
318 {
319 	const struct firmware *fp;
320 	struct wpi_dma_info *dma = &sc->fw_dma;
321 	const struct wpi_firmware_hdr *hdr;
322 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
323 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
324 	int error;
325 
326 	DPRINTFN(WPI_DEBUG_FIRMWARE,
327 	    ("Attempting Loading Firmware from wpi_fw module\n"));
328 
329 	WPI_UNLOCK(sc);
330 
331 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
332 		device_printf(sc->sc_dev,
333 		    "could not load firmware image 'wpifw'\n");
334 		error = ENOENT;
335 		WPI_LOCK(sc);
336 		goto fail;
337 	}
338 
339 	fp = sc->fw_fp;
340 
341 	WPI_LOCK(sc);
342 
343 	/* Validate the firmware is minimum a particular version */
344 	if (fp->version < WPI_FW_MINVERSION) {
345 	    device_printf(sc->sc_dev,
346 			   "firmware version is too old. Need %d, got %d\n",
347 			   WPI_FW_MINVERSION,
348 			   fp->version);
349 	    error = ENXIO;
350 	    goto fail;
351 	}
352 
353 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
354 		device_printf(sc->sc_dev,
355 		    "firmware file too short: %zu bytes\n", fp->datasize);
356 		error = ENXIO;
357 		goto fail;
358 	}
359 
360 	hdr = (const struct wpi_firmware_hdr *)fp->data;
361 
362 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
363 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
364 
365 	rtextsz = le32toh(hdr->rtextsz);
366 	rdatasz = le32toh(hdr->rdatasz);
367 	itextsz = le32toh(hdr->itextsz);
368 	idatasz = le32toh(hdr->idatasz);
369 	btextsz = le32toh(hdr->btextsz);
370 
371 	/* check that all firmware segments are present */
372 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
373 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
374 		device_printf(sc->sc_dev,
375 		    "firmware file too short: %zu bytes\n", fp->datasize);
376 		error = ENXIO; /* XXX appropriate error code? */
377 		goto fail;
378 	}
379 
380 	/* get pointers to firmware segments */
381 	rtext = (const uint8_t *)(hdr + 1);
382 	rdata = rtext + rtextsz;
383 	itext = rdata + rdatasz;
384 	idata = itext + itextsz;
385 	btext = idata + idatasz;
386 
387 	DPRINTFN(WPI_DEBUG_FIRMWARE,
388 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
389 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
390 	     (le32toh(hdr->version) & 0xff000000) >> 24,
391 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
392 	     (le32toh(hdr->version) & 0x0000ffff),
393 	     rtextsz, rdatasz,
394 	     itextsz, idatasz, btextsz));
395 
396 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
397 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
398 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
399 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
400 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
401 
402 	/* sanity checks */
403 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
404 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
405 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
406 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
407 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
408 	    (btextsz & 3) != 0) {
409 		device_printf(sc->sc_dev, "firmware invalid\n");
410 		error = EINVAL;
411 		goto fail;
412 	}
413 
414 	/* copy initialization images into pre-allocated DMA-safe memory */
415 	memcpy(dma->vaddr, idata, idatasz);
416 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
417 
418 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
419 
420 	/* tell adapter where to find initialization images */
421 	wpi_mem_lock(sc);
422 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
423 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
424 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
425 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
426 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
427 	wpi_mem_unlock(sc);
428 
429 	/* load firmware boot code */
430 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
431 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
432 	    goto fail;
433 	}
434 
435 	/* now press "execute" */
436 	WPI_WRITE(sc, WPI_RESET, 0);
437 
438 	/* wait at most one second for the first alive notification */
439 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
440 		device_printf(sc->sc_dev,
441 		    "timeout waiting for adapter to initialize\n");
442 		goto fail;
443 	}
444 
445 	/* copy runtime images into pre-allocated DMA-sage memory */
446 	memcpy(dma->vaddr, rdata, rdatasz);
447 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
448 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
449 
450 	/* tell adapter where to find runtime images */
451 	wpi_mem_lock(sc);
452 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
453 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
454 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
455 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
456 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
457 	wpi_mem_unlock(sc);
458 
459 	/* wait at most one second for the first alive notification */
460 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
461 		device_printf(sc->sc_dev,
462 		    "timeout waiting for adapter to initialize2\n");
463 		goto fail;
464 	}
465 
466 	DPRINTFN(WPI_DEBUG_FIRMWARE,
467 	    ("Firmware loaded to driver successfully\n"));
468 	return error;
469 fail:
470 	wpi_unload_firmware(sc);
471 	return error;
472 }
473 
474 /**
475  * Free the referenced firmware image
476  */
477 static void
478 wpi_unload_firmware(struct wpi_softc *sc)
479 {
480 
481 	if (sc->fw_fp) {
482 		WPI_UNLOCK(sc);
483 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
484 		WPI_LOCK(sc);
485 		sc->fw_fp = NULL;
486 	}
487 }
488 
489 static int
490 wpi_attach(device_t dev)
491 {
492 	struct wpi_softc *sc = device_get_softc(dev);
493 	struct ifnet *ifp;
494 	struct ieee80211com *ic;
495 	int ac, error, supportsa = 1;
496 	uint32_t tmp;
497 	const struct wpi_ident *ident;
498 	uint8_t macaddr[IEEE80211_ADDR_LEN];
499 
500 	sc->sc_dev = dev;
501 
502 	if (bootverbose || WPI_DEBUG_SET)
503 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
504 
505 	/*
506 	 * Some card's only support 802.11b/g not a, check to see if
507 	 * this is one such card. A 0x0 in the subdevice table indicates
508 	 * the entire subdevice range is to be ignored.
509 	 */
510 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
511 		if (ident->subdevice &&
512 		    pci_get_subdevice(dev) == ident->subdevice) {
513 		    supportsa = 0;
514 		    break;
515 		}
516 	}
517 
518 	/* Create the tasks that can be queued */
519 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
520 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
521 
522 	WPI_LOCK_INIT(sc);
523 
524 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
525 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
526 
527 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
528 		device_printf(dev, "chip is in D%d power mode "
529 		    "-- setting to D0\n", pci_get_powerstate(dev));
530 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
531 	}
532 
533 	/* disable the retry timeout register */
534 	pci_write_config(dev, 0x41, 0, 1);
535 
536 	/* enable bus-mastering */
537 	pci_enable_busmaster(dev);
538 
539 	sc->mem_rid = PCIR_BAR(0);
540 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
541 	    RF_ACTIVE);
542 	if (sc->mem == NULL) {
543 		device_printf(dev, "could not allocate memory resource\n");
544 		error = ENOMEM;
545 		goto fail;
546 	}
547 
548 	sc->sc_st = rman_get_bustag(sc->mem);
549 	sc->sc_sh = rman_get_bushandle(sc->mem);
550 
551 	sc->irq_rid = 0;
552 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
553 	    RF_ACTIVE | RF_SHAREABLE);
554 	if (sc->irq == NULL) {
555 		device_printf(dev, "could not allocate interrupt resource\n");
556 		error = ENOMEM;
557 		goto fail;
558 	}
559 
560 	/*
561 	 * Allocate DMA memory for firmware transfers.
562 	 */
563 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
564 		printf(": could not allocate firmware memory\n");
565 		error = ENOMEM;
566 		goto fail;
567 	}
568 
569 	/*
570 	 * Put adapter into a known state.
571 	 */
572 	if ((error = wpi_reset(sc)) != 0) {
573 		device_printf(dev, "could not reset adapter\n");
574 		goto fail;
575 	}
576 
577 	wpi_mem_lock(sc);
578 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
579 	if (bootverbose || WPI_DEBUG_SET)
580 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
581 
582 	wpi_mem_unlock(sc);
583 
584 	/* Allocate shared page */
585 	if ((error = wpi_alloc_shared(sc)) != 0) {
586 		device_printf(dev, "could not allocate shared page\n");
587 		goto fail;
588 	}
589 
590 	/* tx data queues  - 4 for QoS purposes */
591 	for (ac = 0; ac < WME_NUM_AC; ac++) {
592 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
593 		if (error != 0) {
594 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
595 		    goto fail;
596 		}
597 	}
598 
599 	/* command queue to talk to the card's firmware */
600 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
601 	if (error != 0) {
602 		device_printf(dev, "could not allocate command ring\n");
603 		goto fail;
604 	}
605 
606 	/* receive data queue */
607 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
608 	if (error != 0) {
609 		device_printf(dev, "could not allocate Rx ring\n");
610 		goto fail;
611 	}
612 
613 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
614 	if (ifp == NULL) {
615 		device_printf(dev, "can not if_alloc()\n");
616 		error = ENOMEM;
617 		goto fail;
618 	}
619 	ic = ifp->if_l2com;
620 
621 	ic->ic_ifp = ifp;
622 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
623 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
624 
625 	/* set device capabilities */
626 	ic->ic_caps =
627 		  IEEE80211_C_STA		/* station mode supported */
628 		| IEEE80211_C_MONITOR		/* monitor mode supported */
629 		| IEEE80211_C_TXPMGT		/* tx power management */
630 		| IEEE80211_C_SHSLOT		/* short slot time supported */
631 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
632 		| IEEE80211_C_WPA		/* 802.11i */
633 /* XXX looks like WME is partly supported? */
634 #if 0
635 		| IEEE80211_C_IBSS		/* IBSS mode support */
636 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
637 		| IEEE80211_C_WME		/* 802.11e */
638 		| IEEE80211_C_HOSTAP		/* Host access point mode */
639 #endif
640 		;
641 
642 	/*
643 	 * Read in the eeprom and also setup the channels for
644 	 * net80211. We don't set the rates as net80211 does this for us
645 	 */
646 	wpi_read_eeprom(sc, macaddr);
647 
648 	if (bootverbose || WPI_DEBUG_SET) {
649 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
650 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
651 			  sc->type > 1 ? 'B': '?');
652 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
653 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
654 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
655 			  supportsa ? "does" : "does not");
656 
657 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
658 	       what sc->rev really represents - benjsc 20070615 */
659 	}
660 
661 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
662 	ifp->if_softc = sc;
663 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
664 	ifp->if_init = wpi_init;
665 	ifp->if_ioctl = wpi_ioctl;
666 	ifp->if_start = wpi_start;
667 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
668 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
669 	IFQ_SET_READY(&ifp->if_snd);
670 
671 	ieee80211_ifattach(ic, macaddr);
672 	/* override default methods */
673 	ic->ic_raw_xmit = wpi_raw_xmit;
674 	ic->ic_wme.wme_update = wpi_wme_update;
675 	ic->ic_scan_start = wpi_scan_start;
676 	ic->ic_scan_end = wpi_scan_end;
677 	ic->ic_set_channel = wpi_set_channel;
678 	ic->ic_scan_curchan = wpi_scan_curchan;
679 	ic->ic_scan_mindwell = wpi_scan_mindwell;
680 
681 	ic->ic_vap_create = wpi_vap_create;
682 	ic->ic_vap_delete = wpi_vap_delete;
683 
684 	ieee80211_radiotap_attach(ic,
685 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
686 		WPI_TX_RADIOTAP_PRESENT,
687 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
688 		WPI_RX_RADIOTAP_PRESENT);
689 
690 	/*
691 	 * Hook our interrupt after all initialization is complete.
692 	 */
693 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
694 	    NULL, wpi_intr, sc, &sc->sc_ih);
695 	if (error != 0) {
696 		device_printf(dev, "could not set up interrupt\n");
697 		goto fail;
698 	}
699 
700 	if (bootverbose)
701 		ieee80211_announce(ic);
702 #ifdef XXX_DEBUG
703 	ieee80211_announce_channels(ic);
704 #endif
705 	return 0;
706 
707 fail:	wpi_detach(dev);
708 	return ENXIO;
709 }
710 
711 static int
712 wpi_detach(device_t dev)
713 {
714 	struct wpi_softc *sc = device_get_softc(dev);
715 	struct ifnet *ifp = sc->sc_ifp;
716 	struct ieee80211com *ic;
717 	int ac;
718 
719 	if (ifp != NULL) {
720 		ic = ifp->if_l2com;
721 
722 		ieee80211_draintask(ic, &sc->sc_restarttask);
723 		ieee80211_draintask(ic, &sc->sc_radiotask);
724 		wpi_stop(sc);
725 		callout_drain(&sc->watchdog_to);
726 		callout_drain(&sc->calib_to);
727 		ieee80211_ifdetach(ic);
728 	}
729 
730 	WPI_LOCK(sc);
731 	if (sc->txq[0].data_dmat) {
732 		for (ac = 0; ac < WME_NUM_AC; ac++)
733 			wpi_free_tx_ring(sc, &sc->txq[ac]);
734 
735 		wpi_free_tx_ring(sc, &sc->cmdq);
736 		wpi_free_rx_ring(sc, &sc->rxq);
737 		wpi_free_shared(sc);
738 	}
739 
740 	if (sc->fw_fp != NULL) {
741 		wpi_unload_firmware(sc);
742 	}
743 
744 	if (sc->fw_dma.tag)
745 		wpi_free_fwmem(sc);
746 	WPI_UNLOCK(sc);
747 
748 	if (sc->irq != NULL) {
749 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
750 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
751 	}
752 
753 	if (sc->mem != NULL)
754 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
755 
756 	if (ifp != NULL)
757 		if_free(ifp);
758 
759 	WPI_LOCK_DESTROY(sc);
760 
761 	return 0;
762 }
763 
764 static struct ieee80211vap *
765 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
766     enum ieee80211_opmode opmode, int flags,
767     const uint8_t bssid[IEEE80211_ADDR_LEN],
768     const uint8_t mac[IEEE80211_ADDR_LEN])
769 {
770 	struct wpi_vap *wvp;
771 	struct ieee80211vap *vap;
772 
773 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
774 		return NULL;
775 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
776 	    M_80211_VAP, M_NOWAIT | M_ZERO);
777 	if (wvp == NULL)
778 		return NULL;
779 	vap = &wvp->vap;
780 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
781 	/* override with driver methods */
782 	wvp->newstate = vap->iv_newstate;
783 	vap->iv_newstate = wpi_newstate;
784 
785 	ieee80211_ratectl_init(vap);
786 	/* complete setup */
787 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
788 	ic->ic_opmode = opmode;
789 	return vap;
790 }
791 
792 static void
793 wpi_vap_delete(struct ieee80211vap *vap)
794 {
795 	struct wpi_vap *wvp = WPI_VAP(vap);
796 
797 	ieee80211_ratectl_deinit(vap);
798 	ieee80211_vap_detach(vap);
799 	free(wvp, M_80211_VAP);
800 }
801 
802 static void
803 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
804 {
805 	if (error != 0)
806 		return;
807 
808 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
809 
810 	*(bus_addr_t *)arg = segs[0].ds_addr;
811 }
812 
813 /*
814  * Allocates a contiguous block of dma memory of the requested size and
815  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
816  * allocations greater than 4096 may fail. Hence if the requested alignment is
817  * greater we allocate 'alignment' size extra memory and shift the vaddr and
818  * paddr after the dma load. This bypasses the problem at the cost of a little
819  * more memory.
820  */
821 static int
822 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
823     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
824 {
825 	int error;
826 	bus_size_t align;
827 	bus_size_t reqsize;
828 
829 	DPRINTFN(WPI_DEBUG_DMA,
830 	    ("Size: %zd - alignment %zd\n", size, alignment));
831 
832 	dma->size = size;
833 	dma->tag = NULL;
834 
835 	if (alignment > 4096) {
836 		align = PAGE_SIZE;
837 		reqsize = size + alignment;
838 	} else {
839 		align = alignment;
840 		reqsize = size;
841 	}
842 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
843 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
844 	    NULL, NULL, reqsize,
845 	    1, reqsize, flags,
846 	    NULL, NULL, &dma->tag);
847 	if (error != 0) {
848 		device_printf(sc->sc_dev,
849 		    "could not create shared page DMA tag\n");
850 		goto fail;
851 	}
852 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
853 	    flags | BUS_DMA_ZERO, &dma->map);
854 	if (error != 0) {
855 		device_printf(sc->sc_dev,
856 		    "could not allocate shared page DMA memory\n");
857 		goto fail;
858 	}
859 
860 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
861 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
862 
863 	/* Save the original pointers so we can free all the memory */
864 	dma->paddr = dma->paddr_start;
865 	dma->vaddr = dma->vaddr_start;
866 
867 	/*
868 	 * Check the alignment and increment by 4096 until we get the
869 	 * requested alignment. Fail if can't obtain the alignment
870 	 * we requested.
871 	 */
872 	if ((dma->paddr & (alignment -1 )) != 0) {
873 		int i;
874 
875 		for (i = 0; i < alignment / 4096; i++) {
876 			if ((dma->paddr & (alignment - 1 )) == 0)
877 				break;
878 			dma->paddr += 4096;
879 			dma->vaddr += 4096;
880 		}
881 		if (i == alignment / 4096) {
882 			device_printf(sc->sc_dev,
883 			    "alignment requirement was not satisfied\n");
884 			goto fail;
885 		}
886 	}
887 
888 	if (error != 0) {
889 		device_printf(sc->sc_dev,
890 		    "could not load shared page DMA map\n");
891 		goto fail;
892 	}
893 
894 	if (kvap != NULL)
895 		*kvap = dma->vaddr;
896 
897 	return 0;
898 
899 fail:
900 	wpi_dma_contig_free(dma);
901 	return error;
902 }
903 
904 static void
905 wpi_dma_contig_free(struct wpi_dma_info *dma)
906 {
907 	if (dma->tag) {
908 		if (dma->map != NULL) {
909 			if (dma->paddr_start != 0) {
910 				bus_dmamap_sync(dma->tag, dma->map,
911 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
912 				bus_dmamap_unload(dma->tag, dma->map);
913 			}
914 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
915 		}
916 		bus_dma_tag_destroy(dma->tag);
917 	}
918 }
919 
920 /*
921  * Allocate a shared page between host and NIC.
922  */
923 static int
924 wpi_alloc_shared(struct wpi_softc *sc)
925 {
926 	int error;
927 
928 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
929 	    (void **)&sc->shared, sizeof (struct wpi_shared),
930 	    PAGE_SIZE,
931 	    BUS_DMA_NOWAIT);
932 
933 	if (error != 0) {
934 		device_printf(sc->sc_dev,
935 		    "could not allocate shared area DMA memory\n");
936 	}
937 
938 	return error;
939 }
940 
941 static void
942 wpi_free_shared(struct wpi_softc *sc)
943 {
944 	wpi_dma_contig_free(&sc->shared_dma);
945 }
946 
947 static int
948 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
949 {
950 
951 	int i, error;
952 
953 	ring->cur = 0;
954 
955 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
956 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
957 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
958 
959 	if (error != 0) {
960 		device_printf(sc->sc_dev,
961 		    "%s: could not allocate rx ring DMA memory, error %d\n",
962 		    __func__, error);
963 		goto fail;
964 	}
965 
966         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
967 	    BUS_SPACE_MAXADDR_32BIT,
968             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
969             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
970         if (error != 0) {
971                 device_printf(sc->sc_dev,
972 		    "%s: bus_dma_tag_create_failed, error %d\n",
973 		    __func__, error);
974                 goto fail;
975         }
976 
977 	/*
978 	 * Setup Rx buffers.
979 	 */
980 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
981 		struct wpi_rx_data *data = &ring->data[i];
982 		struct mbuf *m;
983 		bus_addr_t paddr;
984 
985 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
986 		if (error != 0) {
987 			device_printf(sc->sc_dev,
988 			    "%s: bus_dmamap_create failed, error %d\n",
989 			    __func__, error);
990 			goto fail;
991 		}
992 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
993 		if (m == NULL) {
994 			device_printf(sc->sc_dev,
995 			   "%s: could not allocate rx mbuf\n", __func__);
996 			error = ENOMEM;
997 			goto fail;
998 		}
999 		/* map page */
1000 		error = bus_dmamap_load(ring->data_dmat, data->map,
1001 		    mtod(m, caddr_t), MJUMPAGESIZE,
1002 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1003 		if (error != 0 && error != EFBIG) {
1004 			device_printf(sc->sc_dev,
1005 			    "%s: bus_dmamap_load failed, error %d\n",
1006 			    __func__, error);
1007 			m_freem(m);
1008 			error = ENOMEM;	/* XXX unique code */
1009 			goto fail;
1010 		}
1011 		bus_dmamap_sync(ring->data_dmat, data->map,
1012 		    BUS_DMASYNC_PREWRITE);
1013 
1014 		data->m = m;
1015 		ring->desc[i] = htole32(paddr);
1016 	}
1017 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1018 	    BUS_DMASYNC_PREWRITE);
1019 	return 0;
1020 fail:
1021 	wpi_free_rx_ring(sc, ring);
1022 	return error;
1023 }
1024 
1025 static void
1026 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1027 {
1028 	int ntries;
1029 
1030 	wpi_mem_lock(sc);
1031 
1032 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1033 
1034 	for (ntries = 0; ntries < 100; ntries++) {
1035 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1036 			break;
1037 		DELAY(10);
1038 	}
1039 
1040 	wpi_mem_unlock(sc);
1041 
1042 #ifdef WPI_DEBUG
1043 	if (ntries == 100 && wpi_debug > 0)
1044 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1045 #endif
1046 
1047 	ring->cur = 0;
1048 }
1049 
1050 static void
1051 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1052 {
1053 	int i;
1054 
1055 	wpi_dma_contig_free(&ring->desc_dma);
1056 
1057 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1058 		struct wpi_rx_data *data = &ring->data[i];
1059 
1060 		if (data->m != NULL) {
1061 			bus_dmamap_sync(ring->data_dmat, data->map,
1062 			    BUS_DMASYNC_POSTREAD);
1063 			bus_dmamap_unload(ring->data_dmat, data->map);
1064 			m_freem(data->m);
1065 		}
1066 		if (data->map != NULL)
1067 			bus_dmamap_destroy(ring->data_dmat, data->map);
1068 	}
1069 }
1070 
1071 static int
1072 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1073 	int qid)
1074 {
1075 	struct wpi_tx_data *data;
1076 	int i, error;
1077 
1078 	ring->qid = qid;
1079 	ring->count = count;
1080 	ring->queued = 0;
1081 	ring->cur = 0;
1082 	ring->data = NULL;
1083 
1084 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1085 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1086 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1087 
1088 	if (error != 0) {
1089 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1090 	    goto fail;
1091 	}
1092 
1093 	/* update shared page with ring's base address */
1094 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1095 
1096 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1097 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1098 		BUS_DMA_NOWAIT);
1099 
1100 	if (error != 0) {
1101 		device_printf(sc->sc_dev,
1102 		    "could not allocate tx command DMA memory\n");
1103 		goto fail;
1104 	}
1105 
1106 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1107 	    M_NOWAIT | M_ZERO);
1108 	if (ring->data == NULL) {
1109 		device_printf(sc->sc_dev,
1110 		    "could not allocate tx data slots\n");
1111 		goto fail;
1112 	}
1113 
1114 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1115 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1116 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1117 	    &ring->data_dmat);
1118 	if (error != 0) {
1119 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1120 		goto fail;
1121 	}
1122 
1123 	for (i = 0; i < count; i++) {
1124 		data = &ring->data[i];
1125 
1126 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1127 		if (error != 0) {
1128 			device_printf(sc->sc_dev,
1129 			    "could not create tx buf DMA map\n");
1130 			goto fail;
1131 		}
1132 		bus_dmamap_sync(ring->data_dmat, data->map,
1133 		    BUS_DMASYNC_PREWRITE);
1134 	}
1135 
1136 	return 0;
1137 
1138 fail:
1139 	wpi_free_tx_ring(sc, ring);
1140 	return error;
1141 }
1142 
1143 static void
1144 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1145 {
1146 	struct wpi_tx_data *data;
1147 	int i, ntries;
1148 
1149 	wpi_mem_lock(sc);
1150 
1151 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1152 	for (ntries = 0; ntries < 100; ntries++) {
1153 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1154 			break;
1155 		DELAY(10);
1156 	}
1157 #ifdef WPI_DEBUG
1158 	if (ntries == 100 && wpi_debug > 0)
1159 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1160 		    ring->qid);
1161 #endif
1162 	wpi_mem_unlock(sc);
1163 
1164 	for (i = 0; i < ring->count; i++) {
1165 		data = &ring->data[i];
1166 
1167 		if (data->m != NULL) {
1168 			bus_dmamap_unload(ring->data_dmat, data->map);
1169 			m_freem(data->m);
1170 			data->m = NULL;
1171 		}
1172 	}
1173 
1174 	ring->queued = 0;
1175 	ring->cur = 0;
1176 }
1177 
1178 static void
1179 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180 {
1181 	struct wpi_tx_data *data;
1182 	int i;
1183 
1184 	wpi_dma_contig_free(&ring->desc_dma);
1185 	wpi_dma_contig_free(&ring->cmd_dma);
1186 
1187 	if (ring->data != NULL) {
1188 		for (i = 0; i < ring->count; i++) {
1189 			data = &ring->data[i];
1190 
1191 			if (data->m != NULL) {
1192 				bus_dmamap_sync(ring->data_dmat, data->map,
1193 				    BUS_DMASYNC_POSTWRITE);
1194 				bus_dmamap_unload(ring->data_dmat, data->map);
1195 				m_freem(data->m);
1196 				data->m = NULL;
1197 			}
1198 		}
1199 		free(ring->data, M_DEVBUF);
1200 	}
1201 
1202 	if (ring->data_dmat != NULL)
1203 		bus_dma_tag_destroy(ring->data_dmat);
1204 }
1205 
1206 static int
1207 wpi_shutdown(device_t dev)
1208 {
1209 	struct wpi_softc *sc = device_get_softc(dev);
1210 
1211 	WPI_LOCK(sc);
1212 	wpi_stop_locked(sc);
1213 	wpi_unload_firmware(sc);
1214 	WPI_UNLOCK(sc);
1215 
1216 	return 0;
1217 }
1218 
1219 static int
1220 wpi_suspend(device_t dev)
1221 {
1222 	struct wpi_softc *sc = device_get_softc(dev);
1223 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1224 
1225 	ieee80211_suspend_all(ic);
1226 	return 0;
1227 }
1228 
1229 static int
1230 wpi_resume(device_t dev)
1231 {
1232 	struct wpi_softc *sc = device_get_softc(dev);
1233 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1234 
1235 	pci_write_config(dev, 0x41, 0, 1);
1236 
1237 	ieee80211_resume_all(ic);
1238 	return 0;
1239 }
1240 
1241 /**
1242  * Called by net80211 when ever there is a change to 80211 state machine
1243  */
1244 static int
1245 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1246 {
1247 	struct wpi_vap *wvp = WPI_VAP(vap);
1248 	struct ieee80211com *ic = vap->iv_ic;
1249 	struct ifnet *ifp = ic->ic_ifp;
1250 	struct wpi_softc *sc = ifp->if_softc;
1251 	int error;
1252 
1253 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1254 		ieee80211_state_name[vap->iv_state],
1255 		ieee80211_state_name[nstate], sc->flags));
1256 
1257 	IEEE80211_UNLOCK(ic);
1258 	WPI_LOCK(sc);
1259 	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1260 		/*
1261 		 * On !INIT -> SCAN transitions, we need to clear any possible
1262 		 * knowledge about associations.
1263 		 */
1264 		error = wpi_config(sc);
1265 		if (error != 0) {
1266 			device_printf(sc->sc_dev,
1267 			    "%s: device config failed, error %d\n",
1268 			    __func__, error);
1269 		}
1270 	}
1271 	if (nstate == IEEE80211_S_AUTH ||
1272 	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1273 		/*
1274 		 * The node must be registered in the firmware before auth.
1275 		 * Also the associd must be cleared on RUN -> ASSOC
1276 		 * transitions.
1277 		 */
1278 		error = wpi_auth(sc, vap);
1279 		if (error != 0) {
1280 			device_printf(sc->sc_dev,
1281 			    "%s: could not move to auth state, error %d\n",
1282 			    __func__, error);
1283 		}
1284 	}
1285 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1286 		error = wpi_run(sc, vap);
1287 		if (error != 0) {
1288 			device_printf(sc->sc_dev,
1289 			    "%s: could not move to run state, error %d\n",
1290 			    __func__, error);
1291 		}
1292 	}
1293 	if (nstate == IEEE80211_S_RUN) {
1294 		/* RUN -> RUN transition; just restart the timers */
1295 		wpi_calib_timeout(sc);
1296 		/* XXX split out rate control timer */
1297 	}
1298 	WPI_UNLOCK(sc);
1299 	IEEE80211_LOCK(ic);
1300 	return wvp->newstate(vap, nstate, arg);
1301 }
1302 
1303 /*
1304  * Grab exclusive access to NIC memory.
1305  */
1306 static void
1307 wpi_mem_lock(struct wpi_softc *sc)
1308 {
1309 	int ntries;
1310 	uint32_t tmp;
1311 
1312 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1313 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1314 
1315 	/* spin until we actually get the lock */
1316 	for (ntries = 0; ntries < 100; ntries++) {
1317 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1318 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1319 			break;
1320 		DELAY(10);
1321 	}
1322 	if (ntries == 100)
1323 		device_printf(sc->sc_dev, "could not lock memory\n");
1324 }
1325 
1326 /*
1327  * Release lock on NIC memory.
1328  */
1329 static void
1330 wpi_mem_unlock(struct wpi_softc *sc)
1331 {
1332 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1333 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1334 }
1335 
1336 static uint32_t
1337 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1338 {
1339 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1340 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1341 }
1342 
1343 static void
1344 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1345 {
1346 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1347 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1348 }
1349 
1350 static void
1351 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1352     const uint32_t *data, int wlen)
1353 {
1354 	for (; wlen > 0; wlen--, data++, addr+=4)
1355 		wpi_mem_write(sc, addr, *data);
1356 }
1357 
1358 /*
1359  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1360  * using the traditional bit-bang method. Data is read up until len bytes have
1361  * been obtained.
1362  */
1363 static uint16_t
1364 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1365 {
1366 	int ntries;
1367 	uint32_t val;
1368 	uint8_t *out = data;
1369 
1370 	wpi_mem_lock(sc);
1371 
1372 	for (; len > 0; len -= 2, addr++) {
1373 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1374 
1375 		for (ntries = 0; ntries < 10; ntries++) {
1376 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1377 				break;
1378 			DELAY(5);
1379 		}
1380 
1381 		if (ntries == 10) {
1382 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1383 			return ETIMEDOUT;
1384 		}
1385 
1386 		*out++= val >> 16;
1387 		if (len > 1)
1388 			*out ++= val >> 24;
1389 	}
1390 
1391 	wpi_mem_unlock(sc);
1392 
1393 	return 0;
1394 }
1395 
1396 /*
1397  * The firmware text and data segments are transferred to the NIC using DMA.
1398  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1399  * where to find it.  Once the NIC has copied the firmware into its internal
1400  * memory, we can free our local copy in the driver.
1401  */
1402 static int
1403 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1404 {
1405 	int error, ntries;
1406 
1407 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1408 
1409 	size /= sizeof(uint32_t);
1410 
1411 	wpi_mem_lock(sc);
1412 
1413 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1414 	    (const uint32_t *)fw, size);
1415 
1416 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1417 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1418 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1419 
1420 	/* run microcode */
1421 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1422 
1423 	/* wait while the adapter is busy copying the firmware */
1424 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1425 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1426 		DPRINTFN(WPI_DEBUG_HW,
1427 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1428 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1429 		if (status & WPI_TX_IDLE(6)) {
1430 			DPRINTFN(WPI_DEBUG_HW,
1431 			    ("Status Match! - ntries = %d\n", ntries));
1432 			break;
1433 		}
1434 		DELAY(10);
1435 	}
1436 	if (ntries == 1000) {
1437 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1438 		error = ETIMEDOUT;
1439 	}
1440 
1441 	/* start the microcode executing */
1442 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1443 
1444 	wpi_mem_unlock(sc);
1445 
1446 	return (error);
1447 }
1448 
1449 static void
1450 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1451 	struct wpi_rx_data *data)
1452 {
1453 	struct ifnet *ifp = sc->sc_ifp;
1454 	struct ieee80211com *ic = ifp->if_l2com;
1455 	struct wpi_rx_ring *ring = &sc->rxq;
1456 	struct wpi_rx_stat *stat;
1457 	struct wpi_rx_head *head;
1458 	struct wpi_rx_tail *tail;
1459 	struct ieee80211_node *ni;
1460 	struct mbuf *m, *mnew;
1461 	bus_addr_t paddr;
1462 	int error;
1463 
1464 	stat = (struct wpi_rx_stat *)(desc + 1);
1465 
1466 	if (stat->len > WPI_STAT_MAXLEN) {
1467 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1468 		ifp->if_ierrors++;
1469 		return;
1470 	}
1471 
1472 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1473 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1474 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1475 
1476 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1477 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1478 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1479 	    (uintmax_t)le64toh(tail->tstamp)));
1480 
1481 	/* discard Rx frames with bad CRC early */
1482 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1483 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1484 		    le32toh(tail->flags)));
1485 		ifp->if_ierrors++;
1486 		return;
1487 	}
1488 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1489 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1490 		    le16toh(head->len)));
1491 		ifp->if_ierrors++;
1492 		return;
1493 	}
1494 
1495 	/* XXX don't need mbuf, just dma buffer */
1496 	mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1497 	if (mnew == NULL) {
1498 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1499 		    __func__));
1500 		ifp->if_ierrors++;
1501 		return;
1502 	}
1503 	bus_dmamap_unload(ring->data_dmat, data->map);
1504 
1505 	error = bus_dmamap_load(ring->data_dmat, data->map,
1506 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1507 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1508 	if (error != 0 && error != EFBIG) {
1509 		device_printf(sc->sc_dev,
1510 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1511 		m_freem(mnew);
1512 		ifp->if_ierrors++;
1513 		return;
1514 	}
1515 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1516 
1517 	/* finalize mbuf and swap in new one */
1518 	m = data->m;
1519 	m->m_pkthdr.rcvif = ifp;
1520 	m->m_data = (caddr_t)(head + 1);
1521 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1522 
1523 	data->m = mnew;
1524 	/* update Rx descriptor */
1525 	ring->desc[ring->cur] = htole32(paddr);
1526 
1527 	if (ieee80211_radiotap_active(ic)) {
1528 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1529 
1530 		tap->wr_flags = 0;
1531 		tap->wr_chan_freq =
1532 			htole16(ic->ic_channels[head->chan].ic_freq);
1533 		tap->wr_chan_flags =
1534 			htole16(ic->ic_channels[head->chan].ic_flags);
1535 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1536 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1537 		tap->wr_tsft = tail->tstamp;
1538 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1539 		switch (head->rate) {
1540 		/* CCK rates */
1541 		case  10: tap->wr_rate =   2; break;
1542 		case  20: tap->wr_rate =   4; break;
1543 		case  55: tap->wr_rate =  11; break;
1544 		case 110: tap->wr_rate =  22; break;
1545 		/* OFDM rates */
1546 		case 0xd: tap->wr_rate =  12; break;
1547 		case 0xf: tap->wr_rate =  18; break;
1548 		case 0x5: tap->wr_rate =  24; break;
1549 		case 0x7: tap->wr_rate =  36; break;
1550 		case 0x9: tap->wr_rate =  48; break;
1551 		case 0xb: tap->wr_rate =  72; break;
1552 		case 0x1: tap->wr_rate =  96; break;
1553 		case 0x3: tap->wr_rate = 108; break;
1554 		/* unknown rate: should not happen */
1555 		default:  tap->wr_rate =   0;
1556 		}
1557 		if (le16toh(head->flags) & 0x4)
1558 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1559 	}
1560 
1561 	WPI_UNLOCK(sc);
1562 
1563 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1564 	if (ni != NULL) {
1565 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1566 		ieee80211_free_node(ni);
1567 	} else
1568 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1569 
1570 	WPI_LOCK(sc);
1571 }
1572 
1573 static void
1574 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1575 {
1576 	struct ifnet *ifp = sc->sc_ifp;
1577 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1578 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1579 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1580 	struct ieee80211_node *ni = txdata->ni;
1581 	struct ieee80211vap *vap = ni->ni_vap;
1582 	int retrycnt = 0;
1583 
1584 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1585 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1586 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1587 	    le32toh(stat->status)));
1588 
1589 	/*
1590 	 * Update rate control statistics for the node.
1591 	 * XXX we should not count mgmt frames since they're always sent at
1592 	 * the lowest available bit-rate.
1593 	 * XXX frames w/o ACK shouldn't be used either
1594 	 */
1595 	if (stat->ntries > 0) {
1596 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1597 		retrycnt = 1;
1598 	}
1599 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1600 	    &retrycnt, NULL);
1601 
1602 	/* XXX oerrors should only count errors !maxtries */
1603 	if ((le32toh(stat->status) & 0xff) != 1)
1604 		ifp->if_oerrors++;
1605 	else
1606 		ifp->if_opackets++;
1607 
1608 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1609 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1610 	/* XXX handle M_TXCB? */
1611 	m_freem(txdata->m);
1612 	txdata->m = NULL;
1613 	ieee80211_free_node(txdata->ni);
1614 	txdata->ni = NULL;
1615 
1616 	ring->queued--;
1617 
1618 	sc->sc_tx_timer = 0;
1619 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1620 	wpi_start_locked(ifp);
1621 }
1622 
1623 static void
1624 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1625 {
1626 	struct wpi_tx_ring *ring = &sc->cmdq;
1627 	struct wpi_tx_data *data;
1628 
1629 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1630 				 "type=%s len=%d\n", desc->qid, desc->idx,
1631 				 desc->flags, wpi_cmd_str(desc->type),
1632 				 le32toh(desc->len)));
1633 
1634 	if ((desc->qid & 7) != 4)
1635 		return;	/* not a command ack */
1636 
1637 	data = &ring->data[desc->idx];
1638 
1639 	/* if the command was mapped in a mbuf, free it */
1640 	if (data->m != NULL) {
1641 		bus_dmamap_unload(ring->data_dmat, data->map);
1642 		m_freem(data->m);
1643 		data->m = NULL;
1644 	}
1645 
1646 	sc->flags &= ~WPI_FLAG_BUSY;
1647 	wakeup(&ring->cmd[desc->idx]);
1648 }
1649 
1650 static void
1651 wpi_notif_intr(struct wpi_softc *sc)
1652 {
1653 	struct ifnet *ifp = sc->sc_ifp;
1654 	struct ieee80211com *ic = ifp->if_l2com;
1655 	struct wpi_rx_desc *desc;
1656 	struct wpi_rx_data *data;
1657 	uint32_t hw;
1658 
1659 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1660 	    BUS_DMASYNC_POSTREAD);
1661 
1662 	hw = le32toh(sc->shared->next);
1663 	while (sc->rxq.cur != hw) {
1664 		data = &sc->rxq.data[sc->rxq.cur];
1665 
1666 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1667 		    BUS_DMASYNC_POSTREAD);
1668 		desc = (void *)data->m->m_ext.ext_buf;
1669 
1670 		DPRINTFN(WPI_DEBUG_NOTIFY,
1671 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1672 			  desc->qid,
1673 			  desc->idx,
1674 			  desc->flags,
1675 			  desc->type,
1676 			  le32toh(desc->len)));
1677 
1678 		if (!(desc->qid & 0x80))	/* reply to a command */
1679 			wpi_cmd_intr(sc, desc);
1680 
1681 		switch (desc->type) {
1682 		case WPI_RX_DONE:
1683 			/* a 802.11 frame was received */
1684 			wpi_rx_intr(sc, desc, data);
1685 			break;
1686 
1687 		case WPI_TX_DONE:
1688 			/* a 802.11 frame has been transmitted */
1689 			wpi_tx_intr(sc, desc);
1690 			break;
1691 
1692 		case WPI_UC_READY:
1693 		{
1694 			struct wpi_ucode_info *uc =
1695 				(struct wpi_ucode_info *)(desc + 1);
1696 
1697 			/* the microcontroller is ready */
1698 			DPRINTF(("microcode alive notification version %x "
1699 				"alive %x\n", le32toh(uc->version),
1700 				le32toh(uc->valid)));
1701 
1702 			if (le32toh(uc->valid) != 1) {
1703 				device_printf(sc->sc_dev,
1704 				    "microcontroller initialization failed\n");
1705 				wpi_stop_locked(sc);
1706 			}
1707 			break;
1708 		}
1709 		case WPI_STATE_CHANGED:
1710 		{
1711 			uint32_t *status = (uint32_t *)(desc + 1);
1712 
1713 			/* enabled/disabled notification */
1714 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1715 
1716 			if (le32toh(*status) & 1) {
1717 				device_printf(sc->sc_dev,
1718 				    "Radio transmitter is switched off\n");
1719 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1720 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1721 				/* Disable firmware commands */
1722 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1723 			}
1724 			break;
1725 		}
1726 		case WPI_START_SCAN:
1727 		{
1728 #ifdef WPI_DEBUG
1729 			struct wpi_start_scan *scan =
1730 				(struct wpi_start_scan *)(desc + 1);
1731 #endif
1732 
1733 			DPRINTFN(WPI_DEBUG_SCANNING,
1734 				 ("scanning channel %d status %x\n",
1735 			    scan->chan, le32toh(scan->status)));
1736 			break;
1737 		}
1738 		case WPI_STOP_SCAN:
1739 		{
1740 #ifdef WPI_DEBUG
1741 			struct wpi_stop_scan *scan =
1742 				(struct wpi_stop_scan *)(desc + 1);
1743 #endif
1744 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1745 
1746 			DPRINTFN(WPI_DEBUG_SCANNING,
1747 			    ("scan finished nchan=%d status=%d chan=%d\n",
1748 			     scan->nchan, scan->status, scan->chan));
1749 
1750 			sc->sc_scan_timer = 0;
1751 			ieee80211_scan_next(vap);
1752 			break;
1753 		}
1754 		case WPI_MISSED_BEACON:
1755 		{
1756 			struct wpi_missed_beacon *beacon =
1757 				(struct wpi_missed_beacon *)(desc + 1);
1758 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1759 
1760 			if (le32toh(beacon->consecutive) >=
1761 			    vap->iv_bmissthreshold) {
1762 				DPRINTF(("Beacon miss: %u >= %u\n",
1763 					 le32toh(beacon->consecutive),
1764 					 vap->iv_bmissthreshold));
1765 				ieee80211_beacon_miss(ic);
1766 			}
1767 			break;
1768 		}
1769 		}
1770 
1771 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1772 	}
1773 
1774 	/* tell the firmware what we have processed */
1775 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1776 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1777 }
1778 
1779 static void
1780 wpi_intr(void *arg)
1781 {
1782 	struct wpi_softc *sc = arg;
1783 	uint32_t r;
1784 
1785 	WPI_LOCK(sc);
1786 
1787 	r = WPI_READ(sc, WPI_INTR);
1788 	if (r == 0 || r == 0xffffffff) {
1789 		WPI_UNLOCK(sc);
1790 		return;
1791 	}
1792 
1793 	/* disable interrupts */
1794 	WPI_WRITE(sc, WPI_MASK, 0);
1795 	/* ack interrupts */
1796 	WPI_WRITE(sc, WPI_INTR, r);
1797 
1798 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1799 		struct ifnet *ifp = sc->sc_ifp;
1800 		struct ieee80211com *ic = ifp->if_l2com;
1801 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1802 
1803 		device_printf(sc->sc_dev, "fatal firmware error\n");
1804 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1805 				"(Hardware Error)"));
1806 		if (vap != NULL)
1807 			ieee80211_cancel_scan(vap);
1808 		ieee80211_runtask(ic, &sc->sc_restarttask);
1809 		sc->flags &= ~WPI_FLAG_BUSY;
1810 		WPI_UNLOCK(sc);
1811 		return;
1812 	}
1813 
1814 	if (r & WPI_RX_INTR)
1815 		wpi_notif_intr(sc);
1816 
1817 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1818 		wakeup(sc);
1819 
1820 	/* re-enable interrupts */
1821 	if (sc->sc_ifp->if_flags & IFF_UP)
1822 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1823 
1824 	WPI_UNLOCK(sc);
1825 }
1826 
1827 static uint8_t
1828 wpi_plcp_signal(int rate)
1829 {
1830 	switch (rate) {
1831 	/* CCK rates (returned values are device-dependent) */
1832 	case 2:		return 10;
1833 	case 4:		return 20;
1834 	case 11:	return 55;
1835 	case 22:	return 110;
1836 
1837 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1838 	/* R1-R4 (ral/ural is R4-R1) */
1839 	case 12:	return 0xd;
1840 	case 18:	return 0xf;
1841 	case 24:	return 0x5;
1842 	case 36:	return 0x7;
1843 	case 48:	return 0x9;
1844 	case 72:	return 0xb;
1845 	case 96:	return 0x1;
1846 	case 108:	return 0x3;
1847 
1848 	/* unsupported rates (should not get there) */
1849 	default:	return 0;
1850 	}
1851 }
1852 
1853 /* quickly determine if a given rate is CCK or OFDM */
1854 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1855 
1856 /*
1857  * Construct the data packet for a transmit buffer and acutally put
1858  * the buffer onto the transmit ring, kicking the card to process the
1859  * the buffer.
1860  */
1861 static int
1862 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1863 	int ac)
1864 {
1865 	struct ieee80211vap *vap = ni->ni_vap;
1866 	struct ifnet *ifp = sc->sc_ifp;
1867 	struct ieee80211com *ic = ifp->if_l2com;
1868 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1869 	struct wpi_tx_ring *ring = &sc->txq[ac];
1870 	struct wpi_tx_desc *desc;
1871 	struct wpi_tx_data *data;
1872 	struct wpi_tx_cmd *cmd;
1873 	struct wpi_cmd_data *tx;
1874 	struct ieee80211_frame *wh;
1875 	const struct ieee80211_txparam *tp;
1876 	struct ieee80211_key *k;
1877 	struct mbuf *mnew;
1878 	int i, error, nsegs, rate, hdrlen, ismcast;
1879 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1880 
1881 	desc = &ring->desc[ring->cur];
1882 	data = &ring->data[ring->cur];
1883 
1884 	wh = mtod(m0, struct ieee80211_frame *);
1885 
1886 	hdrlen = ieee80211_hdrsize(wh);
1887 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1888 
1889 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1890 		k = ieee80211_crypto_encap(ni, m0);
1891 		if (k == NULL) {
1892 			m_freem(m0);
1893 			return ENOBUFS;
1894 		}
1895 		/* packet header may have moved, reset our local pointer */
1896 		wh = mtod(m0, struct ieee80211_frame *);
1897 	}
1898 
1899 	cmd = &ring->cmd[ring->cur];
1900 	cmd->code = WPI_CMD_TX_DATA;
1901 	cmd->flags = 0;
1902 	cmd->qid = ring->qid;
1903 	cmd->idx = ring->cur;
1904 
1905 	tx = (struct wpi_cmd_data *)cmd->data;
1906 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1907 	tx->timeout = htole16(0);
1908 	tx->ofdm_mask = 0xff;
1909 	tx->cck_mask = 0x0f;
1910 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1911 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1912 	tx->len = htole16(m0->m_pkthdr.len);
1913 
1914 	if (!ismcast) {
1915 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1916 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1917 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1918 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1919 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1920 			tx->rts_ntries = 7;
1921 		}
1922 	}
1923 	/* pick a rate */
1924 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1925 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1926 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1927 		/* tell h/w to set timestamp in probe responses */
1928 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1929 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1930 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1931 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1932 			tx->timeout = htole16(3);
1933 		else
1934 			tx->timeout = htole16(2);
1935 		rate = tp->mgmtrate;
1936 	} else if (ismcast) {
1937 		rate = tp->mcastrate;
1938 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1939 		rate = tp->ucastrate;
1940 	} else {
1941 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1942 		rate = ni->ni_txrate;
1943 	}
1944 	tx->rate = wpi_plcp_signal(rate);
1945 
1946 	/* be very persistant at sending frames out */
1947 #if 0
1948 	tx->data_ntries = tp->maxretry;
1949 #else
1950 	tx->data_ntries = 15;		/* XXX way too high */
1951 #endif
1952 
1953 	if (ieee80211_radiotap_active_vap(vap)) {
1954 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1955 		tap->wt_flags = 0;
1956 		tap->wt_rate = rate;
1957 		tap->wt_hwqueue = ac;
1958 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1959 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1960 
1961 		ieee80211_radiotap_tx(vap, m0);
1962 	}
1963 
1964 	/* save and trim IEEE802.11 header */
1965 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1966 	m_adj(m0, hdrlen);
1967 
1968 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1969 	    &nsegs, BUS_DMA_NOWAIT);
1970 	if (error != 0 && error != EFBIG) {
1971 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1972 		    error);
1973 		m_freem(m0);
1974 		return error;
1975 	}
1976 	if (error != 0) {
1977 		/* XXX use m_collapse */
1978 		mnew = m_defrag(m0, M_NOWAIT);
1979 		if (mnew == NULL) {
1980 			device_printf(sc->sc_dev,
1981 			    "could not defragment mbuf\n");
1982 			m_freem(m0);
1983 			return ENOBUFS;
1984 		}
1985 		m0 = mnew;
1986 
1987 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1988 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1989 		if (error != 0) {
1990 			device_printf(sc->sc_dev,
1991 			    "could not map mbuf (error %d)\n", error);
1992 			m_freem(m0);
1993 			return error;
1994 		}
1995 	}
1996 
1997 	data->m = m0;
1998 	data->ni = ni;
1999 
2000 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2001 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2002 
2003 	/* first scatter/gather segment is used by the tx data command */
2004 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2005 	    (1 + nsegs) << 24);
2006 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2007 	    ring->cur * sizeof (struct wpi_tx_cmd));
2008 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2009 	for (i = 1; i <= nsegs; i++) {
2010 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2011 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2012 	}
2013 
2014 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2015 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2016 	    BUS_DMASYNC_PREWRITE);
2017 
2018 	ring->queued++;
2019 
2020 	/* kick ring */
2021 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2022 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2023 
2024 	return 0;
2025 }
2026 
2027 /**
2028  * Process data waiting to be sent on the IFNET output queue
2029  */
2030 static void
2031 wpi_start(struct ifnet *ifp)
2032 {
2033 	struct wpi_softc *sc = ifp->if_softc;
2034 
2035 	WPI_LOCK(sc);
2036 	wpi_start_locked(ifp);
2037 	WPI_UNLOCK(sc);
2038 }
2039 
2040 static void
2041 wpi_start_locked(struct ifnet *ifp)
2042 {
2043 	struct wpi_softc *sc = ifp->if_softc;
2044 	struct ieee80211_node *ni;
2045 	struct mbuf *m;
2046 	int ac;
2047 
2048 	WPI_LOCK_ASSERT(sc);
2049 
2050 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2051 		return;
2052 
2053 	for (;;) {
2054 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2055 		if (m == NULL)
2056 			break;
2057 		ac = M_WME_GETAC(m);
2058 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2059 			/* there is no place left in this ring */
2060 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2061 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2062 			break;
2063 		}
2064 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2065 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2066 			ieee80211_free_node(ni);
2067 			ifp->if_oerrors++;
2068 			break;
2069 		}
2070 		sc->sc_tx_timer = 5;
2071 	}
2072 }
2073 
2074 static int
2075 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2076 	const struct ieee80211_bpf_params *params)
2077 {
2078 	struct ieee80211com *ic = ni->ni_ic;
2079 	struct ifnet *ifp = ic->ic_ifp;
2080 	struct wpi_softc *sc = ifp->if_softc;
2081 
2082 	/* prevent management frames from being sent if we're not ready */
2083 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2084 		m_freem(m);
2085 		ieee80211_free_node(ni);
2086 		return ENETDOWN;
2087 	}
2088 	WPI_LOCK(sc);
2089 
2090 	/* management frames go into ring 0 */
2091 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2092 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2093 		m_freem(m);
2094 		WPI_UNLOCK(sc);
2095 		ieee80211_free_node(ni);
2096 		return ENOBUFS;		/* XXX */
2097 	}
2098 
2099 	ifp->if_opackets++;
2100 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2101 		goto bad;
2102 	sc->sc_tx_timer = 5;
2103 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2104 
2105 	WPI_UNLOCK(sc);
2106 	return 0;
2107 bad:
2108 	ifp->if_oerrors++;
2109 	WPI_UNLOCK(sc);
2110 	ieee80211_free_node(ni);
2111 	return EIO;		/* XXX */
2112 }
2113 
2114 static int
2115 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2116 {
2117 	struct wpi_softc *sc = ifp->if_softc;
2118 	struct ieee80211com *ic = ifp->if_l2com;
2119 	struct ifreq *ifr = (struct ifreq *) data;
2120 	int error = 0, startall = 0;
2121 
2122 	switch (cmd) {
2123 	case SIOCSIFFLAGS:
2124 		WPI_LOCK(sc);
2125 		if ((ifp->if_flags & IFF_UP)) {
2126 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2127 				wpi_init_locked(sc, 0);
2128 				startall = 1;
2129 			}
2130 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2131 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2132 			wpi_stop_locked(sc);
2133 		WPI_UNLOCK(sc);
2134 		if (startall)
2135 			ieee80211_start_all(ic);
2136 		break;
2137 	case SIOCGIFMEDIA:
2138 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2139 		break;
2140 	case SIOCGIFADDR:
2141 		error = ether_ioctl(ifp, cmd, data);
2142 		break;
2143 	default:
2144 		error = EINVAL;
2145 		break;
2146 	}
2147 	return error;
2148 }
2149 
2150 /*
2151  * Extract various information from EEPROM.
2152  */
2153 static void
2154 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2155 {
2156 	int i;
2157 
2158 	/* read the hardware capabilities, revision and SKU type */
2159 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2160 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2161 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2162 
2163 	/* read the regulatory domain */
2164 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2165 
2166 	/* read in the hw MAC address */
2167 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2168 
2169 	/* read the list of authorized channels */
2170 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2171 		wpi_read_eeprom_channels(sc,i);
2172 
2173 	/* read the power level calibration info for each group */
2174 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2175 		wpi_read_eeprom_group(sc,i);
2176 }
2177 
2178 /*
2179  * Send a command to the firmware.
2180  */
2181 static int
2182 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2183 {
2184 	struct wpi_tx_ring *ring = &sc->cmdq;
2185 	struct wpi_tx_desc *desc;
2186 	struct wpi_tx_cmd *cmd;
2187 
2188 #ifdef WPI_DEBUG
2189 	if (!async) {
2190 		WPI_LOCK_ASSERT(sc);
2191 	}
2192 #endif
2193 
2194 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2195 		    async));
2196 
2197 	if (sc->flags & WPI_FLAG_BUSY) {
2198 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2199 		    __func__, code);
2200 		return EAGAIN;
2201 	}
2202 	sc->flags|= WPI_FLAG_BUSY;
2203 
2204 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2205 	    code, size));
2206 
2207 	desc = &ring->desc[ring->cur];
2208 	cmd = &ring->cmd[ring->cur];
2209 
2210 	cmd->code = code;
2211 	cmd->flags = 0;
2212 	cmd->qid = ring->qid;
2213 	cmd->idx = ring->cur;
2214 	memcpy(cmd->data, buf, size);
2215 
2216 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2217 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2218 		ring->cur * sizeof (struct wpi_tx_cmd));
2219 	desc->segs[0].len  = htole32(4 + size);
2220 
2221 	/* kick cmd ring */
2222 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2223 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2224 
2225 	if (async) {
2226 		sc->flags &= ~ WPI_FLAG_BUSY;
2227 		return 0;
2228 	}
2229 
2230 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2231 }
2232 
2233 static int
2234 wpi_wme_update(struct ieee80211com *ic)
2235 {
2236 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2237 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2238 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2239 	const struct wmeParams *wmep;
2240 	struct wpi_wme_setup wme;
2241 	int ac;
2242 
2243 	/* don't override default WME values if WME is not actually enabled */
2244 	if (!(ic->ic_flags & IEEE80211_F_WME))
2245 		return 0;
2246 
2247 	wme.flags = 0;
2248 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2249 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2250 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2251 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2252 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2253 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2254 
2255 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2256 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2257 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2258 	}
2259 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2260 #undef WPI_USEC
2261 #undef WPI_EXP2
2262 }
2263 
2264 /*
2265  * Configure h/w multi-rate retries.
2266  */
2267 static int
2268 wpi_mrr_setup(struct wpi_softc *sc)
2269 {
2270 	struct ifnet *ifp = sc->sc_ifp;
2271 	struct ieee80211com *ic = ifp->if_l2com;
2272 	struct wpi_mrr_setup mrr;
2273 	int i, error;
2274 
2275 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2276 
2277 	/* CCK rates (not used with 802.11a) */
2278 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2279 		mrr.rates[i].flags = 0;
2280 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2281 		/* fallback to the immediate lower CCK rate (if any) */
2282 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2283 		/* try one time at this rate before falling back to "next" */
2284 		mrr.rates[i].ntries = 1;
2285 	}
2286 
2287 	/* OFDM rates (not used with 802.11b) */
2288 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2289 		mrr.rates[i].flags = 0;
2290 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2291 		/* fallback to the immediate lower OFDM rate (if any) */
2292 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2293 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2294 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2295 			WPI_OFDM6 : WPI_CCK2) :
2296 		    i - 1;
2297 		/* try one time at this rate before falling back to "next" */
2298 		mrr.rates[i].ntries = 1;
2299 	}
2300 
2301 	/* setup MRR for control frames */
2302 	mrr.which = WPI_MRR_CTL;
2303 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2304 	if (error != 0) {
2305 		device_printf(sc->sc_dev,
2306 		    "could not setup MRR for control frames\n");
2307 		return error;
2308 	}
2309 
2310 	/* setup MRR for data frames */
2311 	mrr.which = WPI_MRR_DATA;
2312 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2313 	if (error != 0) {
2314 		device_printf(sc->sc_dev,
2315 		    "could not setup MRR for data frames\n");
2316 		return error;
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 static void
2323 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2324 {
2325 	struct wpi_cmd_led led;
2326 
2327 	led.which = which;
2328 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2329 	led.off = off;
2330 	led.on = on;
2331 
2332 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2333 }
2334 
2335 static void
2336 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2337 {
2338 	struct wpi_cmd_tsf tsf;
2339 	uint64_t val, mod;
2340 
2341 	memset(&tsf, 0, sizeof tsf);
2342 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2343 	tsf.bintval = htole16(ni->ni_intval);
2344 	tsf.lintval = htole16(10);
2345 
2346 	/* compute remaining time until next beacon */
2347 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2348 	mod = le64toh(tsf.tstamp) % val;
2349 	tsf.binitval = htole32((uint32_t)(val - mod));
2350 
2351 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2352 		device_printf(sc->sc_dev, "could not enable TSF\n");
2353 }
2354 
2355 #if 0
2356 /*
2357  * Build a beacon frame that the firmware will broadcast periodically in
2358  * IBSS or HostAP modes.
2359  */
2360 static int
2361 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2362 {
2363 	struct ifnet *ifp = sc->sc_ifp;
2364 	struct ieee80211com *ic = ifp->if_l2com;
2365 	struct wpi_tx_ring *ring = &sc->cmdq;
2366 	struct wpi_tx_desc *desc;
2367 	struct wpi_tx_data *data;
2368 	struct wpi_tx_cmd *cmd;
2369 	struct wpi_cmd_beacon *bcn;
2370 	struct ieee80211_beacon_offsets bo;
2371 	struct mbuf *m0;
2372 	bus_addr_t physaddr;
2373 	int error;
2374 
2375 	desc = &ring->desc[ring->cur];
2376 	data = &ring->data[ring->cur];
2377 
2378 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2379 	if (m0 == NULL) {
2380 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2381 		return ENOMEM;
2382 	}
2383 
2384 	cmd = &ring->cmd[ring->cur];
2385 	cmd->code = WPI_CMD_SET_BEACON;
2386 	cmd->flags = 0;
2387 	cmd->qid = ring->qid;
2388 	cmd->idx = ring->cur;
2389 
2390 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2391 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2392 	bcn->id = WPI_ID_BROADCAST;
2393 	bcn->ofdm_mask = 0xff;
2394 	bcn->cck_mask = 0x0f;
2395 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2396 	bcn->len = htole16(m0->m_pkthdr.len);
2397 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2398 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2399 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2400 
2401 	/* save and trim IEEE802.11 header */
2402 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2403 	m_adj(m0, sizeof (struct ieee80211_frame));
2404 
2405 	/* assume beacon frame is contiguous */
2406 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2407 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2408 	if (error != 0) {
2409 		device_printf(sc->sc_dev, "could not map beacon\n");
2410 		m_freem(m0);
2411 		return error;
2412 	}
2413 
2414 	data->m = m0;
2415 
2416 	/* first scatter/gather segment is used by the beacon command */
2417 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2418 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2419 		ring->cur * sizeof (struct wpi_tx_cmd));
2420 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2421 	desc->segs[1].addr = htole32(physaddr);
2422 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2423 
2424 	/* kick cmd ring */
2425 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2426 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2427 
2428 	return 0;
2429 }
2430 #endif
2431 
2432 static int
2433 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2434 {
2435 	struct ieee80211com *ic = vap->iv_ic;
2436 	struct ieee80211_node *ni = vap->iv_bss;
2437 	struct wpi_node_info node;
2438 	int error;
2439 
2440 
2441 	/* update adapter's configuration */
2442 	sc->config.associd = 0;
2443 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2444 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2445 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2446 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2447 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2448 		    WPI_CONFIG_24GHZ);
2449 	} else {
2450 		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2451 		    WPI_CONFIG_24GHZ);
2452 	}
2453 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2454 		sc->config.cck_mask  = 0;
2455 		sc->config.ofdm_mask = 0x15;
2456 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2457 		sc->config.cck_mask  = 0x03;
2458 		sc->config.ofdm_mask = 0;
2459 	} else {
2460 		/* XXX assume 802.11b/g */
2461 		sc->config.cck_mask  = 0x0f;
2462 		sc->config.ofdm_mask = 0x15;
2463 	}
2464 
2465 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2466 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2467 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2468 		sizeof (struct wpi_config), 1);
2469 	if (error != 0) {
2470 		device_printf(sc->sc_dev, "could not configure\n");
2471 		return error;
2472 	}
2473 
2474 	/* configuration has changed, set Tx power accordingly */
2475 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2476 		device_printf(sc->sc_dev, "could not set Tx power\n");
2477 		return error;
2478 	}
2479 
2480 	/* add default node */
2481 	memset(&node, 0, sizeof node);
2482 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2483 	node.id = WPI_ID_BSS;
2484 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2485 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2486 	node.action = htole32(WPI_ACTION_SET_RATE);
2487 	node.antenna = WPI_ANTENNA_BOTH;
2488 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2489 	if (error != 0)
2490 		device_printf(sc->sc_dev, "could not add BSS node\n");
2491 
2492 	return (error);
2493 }
2494 
2495 static int
2496 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2497 {
2498 	struct ieee80211com *ic = vap->iv_ic;
2499 	struct ieee80211_node *ni = vap->iv_bss;
2500 	int error;
2501 
2502 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2503 		/* link LED blinks while monitoring */
2504 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2505 		return 0;
2506 	}
2507 
2508 	wpi_enable_tsf(sc, ni);
2509 
2510 	/* update adapter's configuration */
2511 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2512 	/* short preamble/slot time are negotiated when associating */
2513 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2514 	    WPI_CONFIG_SHSLOT);
2515 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2516 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2517 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2518 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2519 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2520 
2521 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2522 
2523 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2524 		    sc->config.flags));
2525 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2526 		    wpi_config), 1);
2527 	if (error != 0) {
2528 		device_printf(sc->sc_dev, "could not update configuration\n");
2529 		return error;
2530 	}
2531 
2532 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2533 	if (error != 0) {
2534 		device_printf(sc->sc_dev, "could set txpower\n");
2535 		return error;
2536 	}
2537 
2538 	/* link LED always on while associated */
2539 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2540 
2541 	/* start automatic rate control timer */
2542 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2543 
2544 	return (error);
2545 }
2546 
2547 /*
2548  * Send a scan request to the firmware.  Since this command is huge, we map it
2549  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2550  * much of this code is similar to that in wpi_cmd but because we must manually
2551  * construct the probe & channels, we duplicate what's needed here. XXX In the
2552  * future, this function should be modified to use wpi_cmd to help cleanup the
2553  * code base.
2554  */
2555 static int
2556 wpi_scan(struct wpi_softc *sc)
2557 {
2558 	struct ifnet *ifp = sc->sc_ifp;
2559 	struct ieee80211com *ic = ifp->if_l2com;
2560 	struct ieee80211_scan_state *ss = ic->ic_scan;
2561 	struct wpi_tx_ring *ring = &sc->cmdq;
2562 	struct wpi_tx_desc *desc;
2563 	struct wpi_tx_data *data;
2564 	struct wpi_tx_cmd *cmd;
2565 	struct wpi_scan_hdr *hdr;
2566 	struct wpi_scan_chan *chan;
2567 	struct ieee80211_frame *wh;
2568 	struct ieee80211_rateset *rs;
2569 	struct ieee80211_channel *c;
2570 	enum ieee80211_phymode mode;
2571 	uint8_t *frm;
2572 	int nrates, pktlen, error, i, nssid;
2573 	bus_addr_t physaddr;
2574 
2575 	desc = &ring->desc[ring->cur];
2576 	data = &ring->data[ring->cur];
2577 
2578 	data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2579 	if (data->m == NULL) {
2580 		device_printf(sc->sc_dev,
2581 		    "could not allocate mbuf for scan command\n");
2582 		return ENOMEM;
2583 	}
2584 
2585 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2586 	cmd->code = WPI_CMD_SCAN;
2587 	cmd->flags = 0;
2588 	cmd->qid = ring->qid;
2589 	cmd->idx = ring->cur;
2590 
2591 	hdr = (struct wpi_scan_hdr *)cmd->data;
2592 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2593 
2594 	/*
2595 	 * Move to the next channel if no packets are received within 5 msecs
2596 	 * after sending the probe request (this helps to reduce the duration
2597 	 * of active scans).
2598 	 */
2599 	hdr->quiet = htole16(5);
2600 	hdr->threshold = htole16(1);
2601 
2602 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2603 		/* send probe requests at 6Mbps */
2604 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2605 
2606 		/* Enable crc checking */
2607 		hdr->promotion = htole16(1);
2608 	} else {
2609 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2610 		/* send probe requests at 1Mbps */
2611 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2612 	}
2613 	hdr->tx.id = WPI_ID_BROADCAST;
2614 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2615 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2616 
2617 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2618 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2619 	for (i = 0; i < nssid; i++) {
2620 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2621 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2622 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2623 		    hdr->scan_essids[i].esslen);
2624 #ifdef WPI_DEBUG
2625 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2626 			printf("Scanning Essid: ");
2627 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2628 			    hdr->scan_essids[i].esslen);
2629 			printf("\n");
2630 		}
2631 #endif
2632 	}
2633 
2634 	/*
2635 	 * Build a probe request frame.  Most of the following code is a
2636 	 * copy & paste of what is done in net80211.
2637 	 */
2638 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2639 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2640 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2641 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2642 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2643 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2644 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2645 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2646 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2647 
2648 	frm = (uint8_t *)(wh + 1);
2649 
2650 	/* add essid IE, the hardware will fill this in for us */
2651 	*frm++ = IEEE80211_ELEMID_SSID;
2652 	*frm++ = 0;
2653 
2654 	mode = ieee80211_chan2mode(ic->ic_curchan);
2655 	rs = &ic->ic_sup_rates[mode];
2656 
2657 	/* add supported rates IE */
2658 	*frm++ = IEEE80211_ELEMID_RATES;
2659 	nrates = rs->rs_nrates;
2660 	if (nrates > IEEE80211_RATE_SIZE)
2661 		nrates = IEEE80211_RATE_SIZE;
2662 	*frm++ = nrates;
2663 	memcpy(frm, rs->rs_rates, nrates);
2664 	frm += nrates;
2665 
2666 	/* add supported xrates IE */
2667 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2668 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2669 		*frm++ = IEEE80211_ELEMID_XRATES;
2670 		*frm++ = nrates;
2671 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2672 		frm += nrates;
2673 	}
2674 
2675 	/* setup length of probe request */
2676 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2677 
2678 	/*
2679 	 * Construct information about the channel that we
2680 	 * want to scan. The firmware expects this to be directly
2681 	 * after the scan probe request
2682 	 */
2683 	c = ic->ic_curchan;
2684 	chan = (struct wpi_scan_chan *)frm;
2685 	chan->chan = ieee80211_chan2ieee(ic, c);
2686 	chan->flags = 0;
2687 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2688 		chan->flags |= WPI_CHAN_ACTIVE;
2689 		if (nssid != 0)
2690 			chan->flags |= WPI_CHAN_DIRECT;
2691 	}
2692 	chan->gain_dsp = 0x6e; /* Default level */
2693 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2694 		chan->active = htole16(10);
2695 		chan->passive = htole16(ss->ss_maxdwell);
2696 		chan->gain_radio = 0x3b;
2697 	} else {
2698 		chan->active = htole16(20);
2699 		chan->passive = htole16(ss->ss_maxdwell);
2700 		chan->gain_radio = 0x28;
2701 	}
2702 
2703 	DPRINTFN(WPI_DEBUG_SCANNING,
2704 	    ("Scanning %u Passive: %d\n",
2705 	     chan->chan,
2706 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2707 
2708 	hdr->nchan++;
2709 	chan++;
2710 
2711 	frm += sizeof (struct wpi_scan_chan);
2712 #if 0
2713 	// XXX All Channels....
2714 	for (c  = &ic->ic_channels[1];
2715 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2716 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2717 			continue;
2718 
2719 		chan->chan = ieee80211_chan2ieee(ic, c);
2720 		chan->flags = 0;
2721 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2722 		    chan->flags |= WPI_CHAN_ACTIVE;
2723 		    if (ic->ic_des_ssid[0].len != 0)
2724 			chan->flags |= WPI_CHAN_DIRECT;
2725 		}
2726 		chan->gain_dsp = 0x6e; /* Default level */
2727 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2728 			chan->active = htole16(10);
2729 			chan->passive = htole16(110);
2730 			chan->gain_radio = 0x3b;
2731 		} else {
2732 			chan->active = htole16(20);
2733 			chan->passive = htole16(120);
2734 			chan->gain_radio = 0x28;
2735 		}
2736 
2737 		DPRINTFN(WPI_DEBUG_SCANNING,
2738 			 ("Scanning %u Passive: %d\n",
2739 			  chan->chan,
2740 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2741 
2742 		hdr->nchan++;
2743 		chan++;
2744 
2745 		frm += sizeof (struct wpi_scan_chan);
2746 	}
2747 #endif
2748 
2749 	hdr->len = htole16(frm - (uint8_t *)hdr);
2750 	pktlen = frm - (uint8_t *)cmd;
2751 
2752 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2753 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2754 	if (error != 0) {
2755 		device_printf(sc->sc_dev, "could not map scan command\n");
2756 		m_freem(data->m);
2757 		data->m = NULL;
2758 		return error;
2759 	}
2760 
2761 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2762 	desc->segs[0].addr = htole32(physaddr);
2763 	desc->segs[0].len  = htole32(pktlen);
2764 
2765 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2766 	    BUS_DMASYNC_PREWRITE);
2767 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2768 
2769 	/* kick cmd ring */
2770 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2771 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2772 
2773 	sc->sc_scan_timer = 5;
2774 	return 0;	/* will be notified async. of failure/success */
2775 }
2776 
2777 /**
2778  * Configure the card to listen to a particular channel, this transisions the
2779  * card in to being able to receive frames from remote devices.
2780  */
2781 static int
2782 wpi_config(struct wpi_softc *sc)
2783 {
2784 	struct ifnet *ifp = sc->sc_ifp;
2785 	struct ieee80211com *ic = ifp->if_l2com;
2786 	struct wpi_power power;
2787 	struct wpi_bluetooth bluetooth;
2788 	struct wpi_node_info node;
2789 	int error;
2790 
2791 	/* set power mode */
2792 	memset(&power, 0, sizeof power);
2793 	power.flags = htole32(WPI_POWER_CAM|0x8);
2794 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2795 	if (error != 0) {
2796 		device_printf(sc->sc_dev, "could not set power mode\n");
2797 		return error;
2798 	}
2799 
2800 	/* configure bluetooth coexistence */
2801 	memset(&bluetooth, 0, sizeof bluetooth);
2802 	bluetooth.flags = 3;
2803 	bluetooth.lead = 0xaa;
2804 	bluetooth.kill = 1;
2805 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2806 	    0);
2807 	if (error != 0) {
2808 		device_printf(sc->sc_dev,
2809 		    "could not configure bluetooth coexistence\n");
2810 		return error;
2811 	}
2812 
2813 	/* configure adapter */
2814 	memset(&sc->config, 0, sizeof (struct wpi_config));
2815 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2816 	/*set default channel*/
2817 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2818 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2819 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2820 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2821 		    WPI_CONFIG_24GHZ);
2822 	}
2823 	sc->config.filter = 0;
2824 	switch (ic->ic_opmode) {
2825 	case IEEE80211_M_STA:
2826 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2827 		sc->config.mode = WPI_MODE_STA;
2828 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2829 		break;
2830 	case IEEE80211_M_IBSS:
2831 	case IEEE80211_M_AHDEMO:
2832 		sc->config.mode = WPI_MODE_IBSS;
2833 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2834 					     WPI_FILTER_MULTICAST);
2835 		break;
2836 	case IEEE80211_M_HOSTAP:
2837 		sc->config.mode = WPI_MODE_HOSTAP;
2838 		break;
2839 	case IEEE80211_M_MONITOR:
2840 		sc->config.mode = WPI_MODE_MONITOR;
2841 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2842 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2843 		break;
2844 	default:
2845 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2846 		return EINVAL;
2847 	}
2848 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2849 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2850 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2851 		sizeof (struct wpi_config), 0);
2852 	if (error != 0) {
2853 		device_printf(sc->sc_dev, "configure command failed\n");
2854 		return error;
2855 	}
2856 
2857 	/* configuration has changed, set Tx power accordingly */
2858 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2859 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2860 	    return error;
2861 	}
2862 
2863 	/* add broadcast node */
2864 	memset(&node, 0, sizeof node);
2865 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2866 	node.id = WPI_ID_BROADCAST;
2867 	node.rate = wpi_plcp_signal(2);
2868 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2869 	if (error != 0) {
2870 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2871 		return error;
2872 	}
2873 
2874 	/* Setup rate scalling */
2875 	error = wpi_mrr_setup(sc);
2876 	if (error != 0) {
2877 		device_printf(sc->sc_dev, "could not setup MRR\n");
2878 		return error;
2879 	}
2880 
2881 	return 0;
2882 }
2883 
2884 static void
2885 wpi_stop_master(struct wpi_softc *sc)
2886 {
2887 	uint32_t tmp;
2888 	int ntries;
2889 
2890 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2891 
2892 	tmp = WPI_READ(sc, WPI_RESET);
2893 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2894 
2895 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2896 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2897 		return;	/* already asleep */
2898 
2899 	for (ntries = 0; ntries < 100; ntries++) {
2900 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2901 			break;
2902 		DELAY(10);
2903 	}
2904 	if (ntries == 100) {
2905 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2906 	}
2907 }
2908 
2909 static int
2910 wpi_power_up(struct wpi_softc *sc)
2911 {
2912 	uint32_t tmp;
2913 	int ntries;
2914 
2915 	wpi_mem_lock(sc);
2916 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2917 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2918 	wpi_mem_unlock(sc);
2919 
2920 	for (ntries = 0; ntries < 5000; ntries++) {
2921 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2922 			break;
2923 		DELAY(10);
2924 	}
2925 	if (ntries == 5000) {
2926 		device_printf(sc->sc_dev,
2927 		    "timeout waiting for NIC to power up\n");
2928 		return ETIMEDOUT;
2929 	}
2930 	return 0;
2931 }
2932 
2933 static int
2934 wpi_reset(struct wpi_softc *sc)
2935 {
2936 	uint32_t tmp;
2937 	int ntries;
2938 
2939 	DPRINTFN(WPI_DEBUG_HW,
2940 	    ("Resetting the card - clearing any uploaded firmware\n"));
2941 
2942 	/* clear any pending interrupts */
2943 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2944 
2945 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2946 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2947 
2948 	tmp = WPI_READ(sc, WPI_CHICKEN);
2949 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2950 
2951 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2952 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2953 
2954 	/* wait for clock stabilization */
2955 	for (ntries = 0; ntries < 25000; ntries++) {
2956 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2957 			break;
2958 		DELAY(10);
2959 	}
2960 	if (ntries == 25000) {
2961 		device_printf(sc->sc_dev,
2962 		    "timeout waiting for clock stabilization\n");
2963 		return ETIMEDOUT;
2964 	}
2965 
2966 	/* initialize EEPROM */
2967 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2968 
2969 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2970 		device_printf(sc->sc_dev, "EEPROM not found\n");
2971 		return EIO;
2972 	}
2973 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2974 
2975 	return 0;
2976 }
2977 
2978 static void
2979 wpi_hw_config(struct wpi_softc *sc)
2980 {
2981 	uint32_t rev, hw;
2982 
2983 	/* voodoo from the Linux "driver".. */
2984 	hw = WPI_READ(sc, WPI_HWCONFIG);
2985 
2986 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2987 	if ((rev & 0xc0) == 0x40)
2988 		hw |= WPI_HW_ALM_MB;
2989 	else if (!(rev & 0x80))
2990 		hw |= WPI_HW_ALM_MM;
2991 
2992 	if (sc->cap == 0x80)
2993 		hw |= WPI_HW_SKU_MRC;
2994 
2995 	hw &= ~WPI_HW_REV_D;
2996 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2997 		hw |= WPI_HW_REV_D;
2998 
2999 	if (sc->type > 1)
3000 		hw |= WPI_HW_TYPE_B;
3001 
3002 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3003 }
3004 
3005 static void
3006 wpi_rfkill_resume(struct wpi_softc *sc)
3007 {
3008 	struct ifnet *ifp = sc->sc_ifp;
3009 	struct ieee80211com *ic = ifp->if_l2com;
3010 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3011 	int ntries;
3012 
3013 	/* enable firmware again */
3014 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3015 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3016 
3017 	/* wait for thermal sensors to calibrate */
3018 	for (ntries = 0; ntries < 1000; ntries++) {
3019 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3020 			break;
3021 		DELAY(10);
3022 	}
3023 
3024 	if (ntries == 1000) {
3025 		device_printf(sc->sc_dev,
3026 		    "timeout waiting for thermal calibration\n");
3027 		return;
3028 	}
3029 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3030 
3031 	if (wpi_config(sc) != 0) {
3032 		device_printf(sc->sc_dev, "device config failed\n");
3033 		return;
3034 	}
3035 
3036 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3037 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3038 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3039 
3040 	if (vap != NULL) {
3041 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3042 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3043 				ieee80211_beacon_miss(ic);
3044 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3045 			} else
3046 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3047 		} else {
3048 			ieee80211_scan_next(vap);
3049 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3050 		}
3051 	}
3052 
3053 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3054 }
3055 
3056 static void
3057 wpi_init_locked(struct wpi_softc *sc, int force)
3058 {
3059 	struct ifnet *ifp = sc->sc_ifp;
3060 	uint32_t tmp;
3061 	int ntries, qid;
3062 
3063 	wpi_stop_locked(sc);
3064 	(void)wpi_reset(sc);
3065 
3066 	wpi_mem_lock(sc);
3067 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3068 	DELAY(20);
3069 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3070 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3071 	wpi_mem_unlock(sc);
3072 
3073 	(void)wpi_power_up(sc);
3074 	wpi_hw_config(sc);
3075 
3076 	/* init Rx ring */
3077 	wpi_mem_lock(sc);
3078 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3079 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3080 	    offsetof(struct wpi_shared, next));
3081 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3082 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3083 	wpi_mem_unlock(sc);
3084 
3085 	/* init Tx rings */
3086 	wpi_mem_lock(sc);
3087 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3088 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3089 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3090 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3091 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3092 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3093 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3094 
3095 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3096 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3097 
3098 	for (qid = 0; qid < 6; qid++) {
3099 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3100 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3101 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3102 	}
3103 	wpi_mem_unlock(sc);
3104 
3105 	/* clear "radio off" and "disable command" bits (reversed logic) */
3106 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3107 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3108 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3109 
3110 	/* clear any pending interrupts */
3111 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3112 
3113 	/* enable interrupts */
3114 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3115 
3116 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3117 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3118 
3119 	if ((wpi_load_firmware(sc)) != 0) {
3120 	    device_printf(sc->sc_dev,
3121 		"A problem occurred loading the firmware to the driver\n");
3122 	    return;
3123 	}
3124 
3125 	/* At this point the firmware is up and running. If the hardware
3126 	 * RF switch is turned off thermal calibration will fail, though
3127 	 * the card is still happy to continue to accept commands, catch
3128 	 * this case and schedule a task to watch for it to be turned on.
3129 	 */
3130 	wpi_mem_lock(sc);
3131 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3132 	wpi_mem_unlock(sc);
3133 
3134 	if (!(tmp & 0x1)) {
3135 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3136 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3137 		goto out;
3138 	}
3139 
3140 	/* wait for thermal sensors to calibrate */
3141 	for (ntries = 0; ntries < 1000; ntries++) {
3142 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3143 			break;
3144 		DELAY(10);
3145 	}
3146 
3147 	if (ntries == 1000) {
3148 		device_printf(sc->sc_dev,
3149 		    "timeout waiting for thermal sensors calibration\n");
3150 		return;
3151 	}
3152 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3153 
3154 	if (wpi_config(sc) != 0) {
3155 		device_printf(sc->sc_dev, "device config failed\n");
3156 		return;
3157 	}
3158 
3159 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3160 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3161 out:
3162 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3163 }
3164 
3165 static void
3166 wpi_init(void *arg)
3167 {
3168 	struct wpi_softc *sc = arg;
3169 	struct ifnet *ifp = sc->sc_ifp;
3170 	struct ieee80211com *ic = ifp->if_l2com;
3171 
3172 	WPI_LOCK(sc);
3173 	wpi_init_locked(sc, 0);
3174 	WPI_UNLOCK(sc);
3175 
3176 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3177 		ieee80211_start_all(ic);		/* start all vaps */
3178 }
3179 
3180 static void
3181 wpi_stop_locked(struct wpi_softc *sc)
3182 {
3183 	struct ifnet *ifp = sc->sc_ifp;
3184 	uint32_t tmp;
3185 	int ac;
3186 
3187 	sc->sc_tx_timer = 0;
3188 	sc->sc_scan_timer = 0;
3189 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3190 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3191 	callout_stop(&sc->watchdog_to);
3192 	callout_stop(&sc->calib_to);
3193 
3194 
3195 	/* disable interrupts */
3196 	WPI_WRITE(sc, WPI_MASK, 0);
3197 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3198 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3199 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3200 
3201 	wpi_mem_lock(sc);
3202 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3203 	wpi_mem_unlock(sc);
3204 
3205 	/* reset all Tx rings */
3206 	for (ac = 0; ac < 4; ac++)
3207 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3208 	wpi_reset_tx_ring(sc, &sc->cmdq);
3209 
3210 	/* reset Rx ring */
3211 	wpi_reset_rx_ring(sc, &sc->rxq);
3212 
3213 	wpi_mem_lock(sc);
3214 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3215 	wpi_mem_unlock(sc);
3216 
3217 	DELAY(5);
3218 
3219 	wpi_stop_master(sc);
3220 
3221 	tmp = WPI_READ(sc, WPI_RESET);
3222 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3223 	sc->flags &= ~WPI_FLAG_BUSY;
3224 }
3225 
3226 static void
3227 wpi_stop(struct wpi_softc *sc)
3228 {
3229 	WPI_LOCK(sc);
3230 	wpi_stop_locked(sc);
3231 	WPI_UNLOCK(sc);
3232 }
3233 
3234 static void
3235 wpi_calib_timeout(void *arg)
3236 {
3237 	struct wpi_softc *sc = arg;
3238 	struct ifnet *ifp = sc->sc_ifp;
3239 	struct ieee80211com *ic = ifp->if_l2com;
3240 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3241 	int temp;
3242 
3243 	if (vap->iv_state != IEEE80211_S_RUN)
3244 		return;
3245 
3246 	/* update sensor data */
3247 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3248 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3249 
3250 	wpi_power_calibration(sc, temp);
3251 
3252 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3253 }
3254 
3255 /*
3256  * This function is called periodically (every 60 seconds) to adjust output
3257  * power to temperature changes.
3258  */
3259 static void
3260 wpi_power_calibration(struct wpi_softc *sc, int temp)
3261 {
3262 	struct ifnet *ifp = sc->sc_ifp;
3263 	struct ieee80211com *ic = ifp->if_l2com;
3264 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3265 
3266 	/* sanity-check read value */
3267 	if (temp < -260 || temp > 25) {
3268 		/* this can't be correct, ignore */
3269 		DPRINTFN(WPI_DEBUG_TEMP,
3270 		    ("out-of-range temperature reported: %d\n", temp));
3271 		return;
3272 	}
3273 
3274 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3275 
3276 	/* adjust Tx power if need be */
3277 	if (abs(temp - sc->temp) <= 6)
3278 		return;
3279 
3280 	sc->temp = temp;
3281 
3282 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3283 		/* just warn, too bad for the automatic calibration... */
3284 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3285 	}
3286 }
3287 
3288 /**
3289  * Read the eeprom to find out what channels are valid for the given
3290  * band and update net80211 with what we find.
3291  */
3292 static void
3293 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3294 {
3295 	struct ifnet *ifp = sc->sc_ifp;
3296 	struct ieee80211com *ic = ifp->if_l2com;
3297 	const struct wpi_chan_band *band = &wpi_bands[n];
3298 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3299 	struct ieee80211_channel *c;
3300 	int chan, i, passive;
3301 
3302 	wpi_read_prom_data(sc, band->addr, channels,
3303 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3304 
3305 	for (i = 0; i < band->nchan; i++) {
3306 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3307 			DPRINTFN(WPI_DEBUG_HW,
3308 			    ("Channel Not Valid: %d, band %d\n",
3309 			     band->chan[i],n));
3310 			continue;
3311 		}
3312 
3313 		passive = 0;
3314 		chan = band->chan[i];
3315 		c = &ic->ic_channels[ic->ic_nchans++];
3316 
3317 		/* is active scan allowed on this channel? */
3318 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3319 			passive = IEEE80211_CHAN_PASSIVE;
3320 		}
3321 
3322 		if (n == 0) {	/* 2GHz band */
3323 			c->ic_ieee = chan;
3324 			c->ic_freq = ieee80211_ieee2mhz(chan,
3325 			    IEEE80211_CHAN_2GHZ);
3326 			c->ic_flags = IEEE80211_CHAN_B | passive;
3327 
3328 			c = &ic->ic_channels[ic->ic_nchans++];
3329 			c->ic_ieee = chan;
3330 			c->ic_freq = ieee80211_ieee2mhz(chan,
3331 			    IEEE80211_CHAN_2GHZ);
3332 			c->ic_flags = IEEE80211_CHAN_G | passive;
3333 
3334 		} else {	/* 5GHz band */
3335 			/*
3336 			 * Some 3945ABG adapters support channels 7, 8, 11
3337 			 * and 12 in the 2GHz *and* 5GHz bands.
3338 			 * Because of limitations in our net80211(9) stack,
3339 			 * we can't support these channels in 5GHz band.
3340 			 * XXX not true; just need to map to proper frequency
3341 			 */
3342 			if (chan <= 14)
3343 				continue;
3344 
3345 			c->ic_ieee = chan;
3346 			c->ic_freq = ieee80211_ieee2mhz(chan,
3347 			    IEEE80211_CHAN_5GHZ);
3348 			c->ic_flags = IEEE80211_CHAN_A | passive;
3349 		}
3350 
3351 		/* save maximum allowed power for this channel */
3352 		sc->maxpwr[chan] = channels[i].maxpwr;
3353 
3354 #if 0
3355 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3356 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3357 		//ic->ic_channels[chan].ic_minpower...
3358 		//ic->ic_channels[chan].ic_maxregtxpower...
3359 #endif
3360 
3361 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3362 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3363 		    channels[i].flags, sc->maxpwr[chan],
3364 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3365 		    ic->ic_nchans));
3366 	}
3367 }
3368 
3369 static void
3370 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3371 {
3372 	struct wpi_power_group *group = &sc->groups[n];
3373 	struct wpi_eeprom_group rgroup;
3374 	int i;
3375 
3376 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3377 	    sizeof rgroup);
3378 
3379 	/* save power group information */
3380 	group->chan   = rgroup.chan;
3381 	group->maxpwr = rgroup.maxpwr;
3382 	/* temperature at which the samples were taken */
3383 	group->temp   = (int16_t)le16toh(rgroup.temp);
3384 
3385 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3386 		    group->chan, group->maxpwr, group->temp));
3387 
3388 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3389 		group->samples[i].index = rgroup.samples[i].index;
3390 		group->samples[i].power = rgroup.samples[i].power;
3391 
3392 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3393 			    group->samples[i].index, group->samples[i].power));
3394 	}
3395 }
3396 
3397 /*
3398  * Update Tx power to match what is defined for channel `c'.
3399  */
3400 static int
3401 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3402 {
3403 	struct ifnet *ifp = sc->sc_ifp;
3404 	struct ieee80211com *ic = ifp->if_l2com;
3405 	struct wpi_power_group *group;
3406 	struct wpi_cmd_txpower txpower;
3407 	u_int chan;
3408 	int i;
3409 
3410 	/* get channel number */
3411 	chan = ieee80211_chan2ieee(ic, c);
3412 
3413 	/* find the power group to which this channel belongs */
3414 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3415 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3416 			if (chan <= group->chan)
3417 				break;
3418 	} else
3419 		group = &sc->groups[0];
3420 
3421 	memset(&txpower, 0, sizeof txpower);
3422 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3423 	txpower.channel = htole16(chan);
3424 
3425 	/* set Tx power for all OFDM and CCK rates */
3426 	for (i = 0; i <= 11 ; i++) {
3427 		/* retrieve Tx power for this channel/rate combination */
3428 		int idx = wpi_get_power_index(sc, group, c,
3429 		    wpi_ridx_to_rate[i]);
3430 
3431 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3432 
3433 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3434 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3435 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3436 		} else {
3437 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3438 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3439 		}
3440 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3441 			    chan, wpi_ridx_to_rate[i], idx));
3442 	}
3443 
3444 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3445 }
3446 
3447 /*
3448  * Determine Tx power index for a given channel/rate combination.
3449  * This takes into account the regulatory information from EEPROM and the
3450  * current temperature.
3451  */
3452 static int
3453 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3454     struct ieee80211_channel *c, int rate)
3455 {
3456 /* fixed-point arithmetic division using a n-bit fractional part */
3457 #define fdivround(a, b, n)      \
3458 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3459 
3460 /* linear interpolation */
3461 #define interpolate(x, x1, y1, x2, y2, n)       \
3462 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3463 
3464 	struct ifnet *ifp = sc->sc_ifp;
3465 	struct ieee80211com *ic = ifp->if_l2com;
3466 	struct wpi_power_sample *sample;
3467 	int pwr, idx;
3468 	u_int chan;
3469 
3470 	/* get channel number */
3471 	chan = ieee80211_chan2ieee(ic, c);
3472 
3473 	/* default power is group's maximum power - 3dB */
3474 	pwr = group->maxpwr / 2;
3475 
3476 	/* decrease power for highest OFDM rates to reduce distortion */
3477 	switch (rate) {
3478 		case 72:	/* 36Mb/s */
3479 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3480 			break;
3481 		case 96:	/* 48Mb/s */
3482 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3483 			break;
3484 		case 108:	/* 54Mb/s */
3485 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3486 			break;
3487 	}
3488 
3489 	/* never exceed channel's maximum allowed Tx power */
3490 	pwr = min(pwr, sc->maxpwr[chan]);
3491 
3492 	/* retrieve power index into gain tables from samples */
3493 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3494 		if (pwr > sample[1].power)
3495 			break;
3496 	/* fixed-point linear interpolation using a 19-bit fractional part */
3497 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3498 	    sample[1].power, sample[1].index, 19);
3499 
3500 	/*
3501 	 *  Adjust power index based on current temperature
3502 	 *	- if colder than factory-calibrated: decreate output power
3503 	 *	- if warmer than factory-calibrated: increase output power
3504 	 */
3505 	idx -= (sc->temp - group->temp) * 11 / 100;
3506 
3507 	/* decrease power for CCK rates (-5dB) */
3508 	if (!WPI_RATE_IS_OFDM(rate))
3509 		idx += 10;
3510 
3511 	/* keep power index in a valid range */
3512 	if (idx < 0)
3513 		return 0;
3514 	if (idx > WPI_MAX_PWR_INDEX)
3515 		return WPI_MAX_PWR_INDEX;
3516 	return idx;
3517 
3518 #undef interpolate
3519 #undef fdivround
3520 }
3521 
3522 /**
3523  * Called by net80211 framework to indicate that a scan
3524  * is starting. This function doesn't actually do the scan,
3525  * wpi_scan_curchan starts things off. This function is more
3526  * of an early warning from the framework we should get ready
3527  * for the scan.
3528  */
3529 static void
3530 wpi_scan_start(struct ieee80211com *ic)
3531 {
3532 	struct ifnet *ifp = ic->ic_ifp;
3533 	struct wpi_softc *sc = ifp->if_softc;
3534 
3535 	WPI_LOCK(sc);
3536 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3537 	WPI_UNLOCK(sc);
3538 }
3539 
3540 /**
3541  * Called by the net80211 framework, indicates that the
3542  * scan has ended. If there is a scan in progress on the card
3543  * then it should be aborted.
3544  */
3545 static void
3546 wpi_scan_end(struct ieee80211com *ic)
3547 {
3548 	/* XXX ignore */
3549 }
3550 
3551 /**
3552  * Called by the net80211 framework to indicate to the driver
3553  * that the channel should be changed
3554  */
3555 static void
3556 wpi_set_channel(struct ieee80211com *ic)
3557 {
3558 	struct ifnet *ifp = ic->ic_ifp;
3559 	struct wpi_softc *sc = ifp->if_softc;
3560 	int error;
3561 
3562 	/*
3563 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3564 	 * are already taken care of by their respective firmware commands.
3565 	 */
3566 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3567 		WPI_LOCK(sc);
3568 		error = wpi_config(sc);
3569 		WPI_UNLOCK(sc);
3570 		if (error != 0)
3571 			device_printf(sc->sc_dev,
3572 			    "error %d settting channel\n", error);
3573 	}
3574 }
3575 
3576 /**
3577  * Called by net80211 to indicate that we need to scan the current
3578  * channel. The channel is previously be set via the wpi_set_channel
3579  * callback.
3580  */
3581 static void
3582 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3583 {
3584 	struct ieee80211vap *vap = ss->ss_vap;
3585 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3586 	struct wpi_softc *sc = ifp->if_softc;
3587 
3588 	WPI_LOCK(sc);
3589 	if (wpi_scan(sc))
3590 		ieee80211_cancel_scan(vap);
3591 	WPI_UNLOCK(sc);
3592 }
3593 
3594 /**
3595  * Called by the net80211 framework to indicate
3596  * the minimum dwell time has been met, terminate the scan.
3597  * We don't actually terminate the scan as the firmware will notify
3598  * us when it's finished and we have no way to interrupt it.
3599  */
3600 static void
3601 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3602 {
3603 	/* NB: don't try to abort scan; wait for firmware to finish */
3604 }
3605 
3606 static void
3607 wpi_hwreset(void *arg, int pending)
3608 {
3609 	struct wpi_softc *sc = arg;
3610 
3611 	WPI_LOCK(sc);
3612 	wpi_init_locked(sc, 0);
3613 	WPI_UNLOCK(sc);
3614 }
3615 
3616 static void
3617 wpi_rfreset(void *arg, int pending)
3618 {
3619 	struct wpi_softc *sc = arg;
3620 
3621 	WPI_LOCK(sc);
3622 	wpi_rfkill_resume(sc);
3623 	WPI_UNLOCK(sc);
3624 }
3625 
3626 /*
3627  * Allocate DMA-safe memory for firmware transfer.
3628  */
3629 static int
3630 wpi_alloc_fwmem(struct wpi_softc *sc)
3631 {
3632 	/* allocate enough contiguous space to store text and data */
3633 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3634 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3635 	    BUS_DMA_NOWAIT);
3636 }
3637 
3638 static void
3639 wpi_free_fwmem(struct wpi_softc *sc)
3640 {
3641 	wpi_dma_contig_free(&sc->fw_dma);
3642 }
3643 
3644 /**
3645  * Called every second, wpi_watchdog used by the watch dog timer
3646  * to check that the card is still alive
3647  */
3648 static void
3649 wpi_watchdog(void *arg)
3650 {
3651 	struct wpi_softc *sc = arg;
3652 	struct ifnet *ifp = sc->sc_ifp;
3653 	struct ieee80211com *ic = ifp->if_l2com;
3654 	uint32_t tmp;
3655 
3656 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3657 
3658 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3659 		/* No need to lock firmware memory */
3660 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3661 
3662 		if ((tmp & 0x1) == 0) {
3663 			/* Radio kill switch is still off */
3664 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3665 			return;
3666 		}
3667 
3668 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3669 		ieee80211_runtask(ic, &sc->sc_radiotask);
3670 		return;
3671 	}
3672 
3673 	if (sc->sc_tx_timer > 0) {
3674 		if (--sc->sc_tx_timer == 0) {
3675 			device_printf(sc->sc_dev,"device timeout\n");
3676 			ifp->if_oerrors++;
3677 			ieee80211_runtask(ic, &sc->sc_restarttask);
3678 		}
3679 	}
3680 	if (sc->sc_scan_timer > 0) {
3681 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3682 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3683 			device_printf(sc->sc_dev,"scan timeout\n");
3684 			ieee80211_cancel_scan(vap);
3685 			ieee80211_runtask(ic, &sc->sc_restarttask);
3686 		}
3687 	}
3688 
3689 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3690 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3691 }
3692 
3693 #ifdef WPI_DEBUG
3694 static const char *wpi_cmd_str(int cmd)
3695 {
3696 	switch (cmd) {
3697 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3698 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3699 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3700 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3701 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3702 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3703 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3704 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3705 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3706 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3707 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3708 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3709 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3710 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3711 
3712 	default:
3713 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3714 		return "UNKNOWN CMD";	/* Make the compiler happy */
3715 	}
3716 }
3717 #endif
3718 
3719 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3720 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3721 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3722