1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include "opt_wlan.h" 63 64 #include <sys/param.h> 65 #include <sys/sysctl.h> 66 #include <sys/sockio.h> 67 #include <sys/mbuf.h> 68 #include <sys/kernel.h> 69 #include <sys/socket.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/queue.h> 73 #include <sys/taskqueue.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/endian.h> 77 #include <sys/linker.h> 78 #include <sys/firmware.h> 79 80 #include <machine/bus.h> 81 #include <machine/resource.h> 82 #include <sys/rman.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 87 #include <net/bpf.h> 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/if_arp.h> 91 #include <net/ethernet.h> 92 #include <net/if_dl.h> 93 #include <net/if_media.h> 94 #include <net/if_types.h> 95 96 #include <net80211/ieee80211_var.h> 97 #include <net80211/ieee80211_radiotap.h> 98 #include <net80211/ieee80211_regdomain.h> 99 #include <net80211/ieee80211_ratectl.h> 100 101 #include <netinet/in.h> 102 #include <netinet/in_systm.h> 103 #include <netinet/in_var.h> 104 #include <netinet/ip.h> 105 #include <netinet/if_ether.h> 106 107 #include <dev/wpi/if_wpireg.h> 108 #include <dev/wpi/if_wpivar.h> 109 110 #define WPI_DEBUG 111 112 #ifdef WPI_DEBUG 113 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 114 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 115 #define WPI_DEBUG_SET (wpi_debug != 0) 116 117 enum { 118 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 119 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 120 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 121 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 122 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 123 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 124 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 125 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 126 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 127 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 128 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 129 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 130 WPI_DEBUG_ANY = 0xffffffff 131 }; 132 133 static int wpi_debug; 134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RWTUN, &wpi_debug, 0, "wpi debug level"); 135 136 #else 137 #define DPRINTF(x) 138 #define DPRINTFN(n, x) 139 #define WPI_DEBUG_SET 0 140 #endif 141 142 struct wpi_ident { 143 uint16_t vendor; 144 uint16_t device; 145 uint16_t subdevice; 146 const char *name; 147 }; 148 149 static const struct wpi_ident wpi_ident_table[] = { 150 /* The below entries support ABG regardless of the subid */ 151 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 152 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 153 /* The below entries only support BG */ 154 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 155 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 157 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 158 { 0, 0, 0, NULL } 159 }; 160 161 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 162 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 163 const uint8_t [IEEE80211_ADDR_LEN], 164 const uint8_t [IEEE80211_ADDR_LEN]); 165 static void wpi_vap_delete(struct ieee80211vap *); 166 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 167 void **, bus_size_t, bus_size_t, int); 168 static void wpi_dma_contig_free(struct wpi_dma_info *); 169 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 170 static int wpi_alloc_shared(struct wpi_softc *); 171 static void wpi_free_shared(struct wpi_softc *); 172 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 173 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 174 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 175 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 176 int, int); 177 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 178 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 179 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 180 static void wpi_mem_lock(struct wpi_softc *); 181 static void wpi_mem_unlock(struct wpi_softc *); 182 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 183 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 184 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 185 const uint32_t *, int); 186 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 187 static int wpi_alloc_fwmem(struct wpi_softc *); 188 static void wpi_free_fwmem(struct wpi_softc *); 189 static int wpi_load_firmware(struct wpi_softc *); 190 static void wpi_unload_firmware(struct wpi_softc *); 191 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 192 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 193 struct wpi_rx_data *); 194 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 195 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 196 static void wpi_notif_intr(struct wpi_softc *); 197 static void wpi_intr(void *); 198 static uint8_t wpi_plcp_signal(int); 199 static void wpi_watchdog(void *); 200 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 201 struct ieee80211_node *, int); 202 static void wpi_start(struct ifnet *); 203 static void wpi_start_locked(struct ifnet *); 204 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 205 const struct ieee80211_bpf_params *); 206 static void wpi_scan_start(struct ieee80211com *); 207 static void wpi_scan_end(struct ieee80211com *); 208 static void wpi_set_channel(struct ieee80211com *); 209 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 210 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 211 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 212 static void wpi_read_eeprom(struct wpi_softc *, 213 uint8_t macaddr[IEEE80211_ADDR_LEN]); 214 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 215 static void wpi_read_eeprom_group(struct wpi_softc *, int); 216 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 217 static int wpi_wme_update(struct ieee80211com *); 218 static int wpi_mrr_setup(struct wpi_softc *); 219 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 220 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 221 #if 0 222 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 223 #endif 224 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 225 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 226 static int wpi_scan(struct wpi_softc *); 227 static int wpi_config(struct wpi_softc *); 228 static void wpi_stop_master(struct wpi_softc *); 229 static int wpi_power_up(struct wpi_softc *); 230 static int wpi_reset(struct wpi_softc *); 231 static void wpi_hwreset(void *, int); 232 static void wpi_rfreset(void *, int); 233 static void wpi_hw_config(struct wpi_softc *); 234 static void wpi_init(void *); 235 static void wpi_init_locked(struct wpi_softc *, int); 236 static void wpi_stop(struct wpi_softc *); 237 static void wpi_stop_locked(struct wpi_softc *); 238 239 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 240 int); 241 static void wpi_calib_timeout(void *); 242 static void wpi_power_calibration(struct wpi_softc *, int); 243 static int wpi_get_power_index(struct wpi_softc *, 244 struct wpi_power_group *, struct ieee80211_channel *, int); 245 #ifdef WPI_DEBUG 246 static const char *wpi_cmd_str(int); 247 #endif 248 static int wpi_probe(device_t); 249 static int wpi_attach(device_t); 250 static int wpi_detach(device_t); 251 static int wpi_shutdown(device_t); 252 static int wpi_suspend(device_t); 253 static int wpi_resume(device_t); 254 255 static device_method_t wpi_methods[] = { 256 /* Device interface */ 257 DEVMETHOD(device_probe, wpi_probe), 258 DEVMETHOD(device_attach, wpi_attach), 259 DEVMETHOD(device_detach, wpi_detach), 260 DEVMETHOD(device_shutdown, wpi_shutdown), 261 DEVMETHOD(device_suspend, wpi_suspend), 262 DEVMETHOD(device_resume, wpi_resume), 263 264 DEVMETHOD_END 265 }; 266 267 static driver_t wpi_driver = { 268 "wpi", 269 wpi_methods, 270 sizeof (struct wpi_softc) 271 }; 272 273 static devclass_t wpi_devclass; 274 275 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL); 276 277 MODULE_VERSION(wpi, 1); 278 279 static const uint8_t wpi_ridx_to_plcp[] = { 280 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 281 /* R1-R4 (ral/ural is R4-R1) */ 282 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 283 /* CCK: device-dependent */ 284 10, 20, 55, 110 285 }; 286 287 static const uint8_t wpi_ridx_to_rate[] = { 288 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 289 2, 4, 11, 22 /*CCK */ 290 }; 291 292 static int 293 wpi_probe(device_t dev) 294 { 295 const struct wpi_ident *ident; 296 297 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 298 if (pci_get_vendor(dev) == ident->vendor && 299 pci_get_device(dev) == ident->device) { 300 device_set_desc(dev, ident->name); 301 return (BUS_PROBE_DEFAULT); 302 } 303 } 304 return ENXIO; 305 } 306 307 /** 308 * Load the firmare image from disk to the allocated dma buffer. 309 * we also maintain the reference to the firmware pointer as there 310 * is times where we may need to reload the firmware but we are not 311 * in a context that can access the filesystem (ie taskq cause by restart) 312 * 313 * @return 0 on success, an errno on failure 314 */ 315 static int 316 wpi_load_firmware(struct wpi_softc *sc) 317 { 318 const struct firmware *fp; 319 struct wpi_dma_info *dma = &sc->fw_dma; 320 const struct wpi_firmware_hdr *hdr; 321 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 322 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 323 int error; 324 325 DPRINTFN(WPI_DEBUG_FIRMWARE, 326 ("Attempting Loading Firmware from wpi_fw module\n")); 327 328 WPI_UNLOCK(sc); 329 330 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 331 device_printf(sc->sc_dev, 332 "could not load firmware image 'wpifw'\n"); 333 error = ENOENT; 334 WPI_LOCK(sc); 335 goto fail; 336 } 337 338 fp = sc->fw_fp; 339 340 WPI_LOCK(sc); 341 342 /* Validate the firmware is minimum a particular version */ 343 if (fp->version < WPI_FW_MINVERSION) { 344 device_printf(sc->sc_dev, 345 "firmware version is too old. Need %d, got %d\n", 346 WPI_FW_MINVERSION, 347 fp->version); 348 error = ENXIO; 349 goto fail; 350 } 351 352 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 353 device_printf(sc->sc_dev, 354 "firmware file too short: %zu bytes\n", fp->datasize); 355 error = ENXIO; 356 goto fail; 357 } 358 359 hdr = (const struct wpi_firmware_hdr *)fp->data; 360 361 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 362 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 363 364 rtextsz = le32toh(hdr->rtextsz); 365 rdatasz = le32toh(hdr->rdatasz); 366 itextsz = le32toh(hdr->itextsz); 367 idatasz = le32toh(hdr->idatasz); 368 btextsz = le32toh(hdr->btextsz); 369 370 /* check that all firmware segments are present */ 371 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 372 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 373 device_printf(sc->sc_dev, 374 "firmware file too short: %zu bytes\n", fp->datasize); 375 error = ENXIO; /* XXX appropriate error code? */ 376 goto fail; 377 } 378 379 /* get pointers to firmware segments */ 380 rtext = (const uint8_t *)(hdr + 1); 381 rdata = rtext + rtextsz; 382 itext = rdata + rdatasz; 383 idata = itext + itextsz; 384 btext = idata + idatasz; 385 386 DPRINTFN(WPI_DEBUG_FIRMWARE, 387 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 388 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 389 (le32toh(hdr->version) & 0xff000000) >> 24, 390 (le32toh(hdr->version) & 0x00ff0000) >> 16, 391 (le32toh(hdr->version) & 0x0000ffff), 392 rtextsz, rdatasz, 393 itextsz, idatasz, btextsz)); 394 395 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 396 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 397 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 398 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 399 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 400 401 /* sanity checks */ 402 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 403 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 404 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 405 idatasz > WPI_FW_INIT_DATA_MAXSZ || 406 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 407 (btextsz & 3) != 0) { 408 device_printf(sc->sc_dev, "firmware invalid\n"); 409 error = EINVAL; 410 goto fail; 411 } 412 413 /* copy initialization images into pre-allocated DMA-safe memory */ 414 memcpy(dma->vaddr, idata, idatasz); 415 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 416 417 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 418 419 /* tell adapter where to find initialization images */ 420 wpi_mem_lock(sc); 421 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 422 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 423 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 424 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 425 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 426 wpi_mem_unlock(sc); 427 428 /* load firmware boot code */ 429 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 430 device_printf(sc->sc_dev, "Failed to load microcode\n"); 431 goto fail; 432 } 433 434 /* now press "execute" */ 435 WPI_WRITE(sc, WPI_RESET, 0); 436 437 /* wait at most one second for the first alive notification */ 438 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 439 device_printf(sc->sc_dev, 440 "timeout waiting for adapter to initialize\n"); 441 goto fail; 442 } 443 444 /* copy runtime images into pre-allocated DMA-sage memory */ 445 memcpy(dma->vaddr, rdata, rdatasz); 446 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 447 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 448 449 /* tell adapter where to find runtime images */ 450 wpi_mem_lock(sc); 451 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 452 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 453 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 454 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 455 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 456 wpi_mem_unlock(sc); 457 458 /* wait at most one second for the first alive notification */ 459 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 460 device_printf(sc->sc_dev, 461 "timeout waiting for adapter to initialize2\n"); 462 goto fail; 463 } 464 465 DPRINTFN(WPI_DEBUG_FIRMWARE, 466 ("Firmware loaded to driver successfully\n")); 467 return error; 468 fail: 469 wpi_unload_firmware(sc); 470 return error; 471 } 472 473 /** 474 * Free the referenced firmware image 475 */ 476 static void 477 wpi_unload_firmware(struct wpi_softc *sc) 478 { 479 480 if (sc->fw_fp) { 481 WPI_UNLOCK(sc); 482 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 483 WPI_LOCK(sc); 484 sc->fw_fp = NULL; 485 } 486 } 487 488 static int 489 wpi_attach(device_t dev) 490 { 491 struct wpi_softc *sc = device_get_softc(dev); 492 struct ifnet *ifp; 493 struct ieee80211com *ic; 494 int ac, error, rid, supportsa = 1; 495 uint32_t tmp; 496 const struct wpi_ident *ident; 497 uint8_t macaddr[IEEE80211_ADDR_LEN]; 498 499 sc->sc_dev = dev; 500 501 if (bootverbose || WPI_DEBUG_SET) 502 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 503 504 /* 505 * Some card's only support 802.11b/g not a, check to see if 506 * this is one such card. A 0x0 in the subdevice table indicates 507 * the entire subdevice range is to be ignored. 508 */ 509 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 510 if (ident->subdevice && 511 pci_get_subdevice(dev) == ident->subdevice) { 512 supportsa = 0; 513 break; 514 } 515 } 516 517 /* Create the tasks that can be queued */ 518 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc); 519 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc); 520 521 WPI_LOCK_INIT(sc); 522 523 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 524 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 525 526 /* disable the retry timeout register */ 527 pci_write_config(dev, 0x41, 0, 1); 528 529 /* enable bus-mastering */ 530 pci_enable_busmaster(dev); 531 532 rid = PCIR_BAR(0); 533 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 534 RF_ACTIVE); 535 if (sc->mem == NULL) { 536 device_printf(dev, "could not allocate memory resource\n"); 537 error = ENOMEM; 538 goto fail; 539 } 540 541 sc->sc_st = rman_get_bustag(sc->mem); 542 sc->sc_sh = rman_get_bushandle(sc->mem); 543 544 rid = 0; 545 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 546 RF_ACTIVE | RF_SHAREABLE); 547 if (sc->irq == NULL) { 548 device_printf(dev, "could not allocate interrupt resource\n"); 549 error = ENOMEM; 550 goto fail; 551 } 552 553 /* 554 * Allocate DMA memory for firmware transfers. 555 */ 556 if ((error = wpi_alloc_fwmem(sc)) != 0) { 557 printf(": could not allocate firmware memory\n"); 558 error = ENOMEM; 559 goto fail; 560 } 561 562 /* 563 * Put adapter into a known state. 564 */ 565 if ((error = wpi_reset(sc)) != 0) { 566 device_printf(dev, "could not reset adapter\n"); 567 goto fail; 568 } 569 570 wpi_mem_lock(sc); 571 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 572 if (bootverbose || WPI_DEBUG_SET) 573 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 574 575 wpi_mem_unlock(sc); 576 577 /* Allocate shared page */ 578 if ((error = wpi_alloc_shared(sc)) != 0) { 579 device_printf(dev, "could not allocate shared page\n"); 580 goto fail; 581 } 582 583 /* tx data queues - 4 for QoS purposes */ 584 for (ac = 0; ac < WME_NUM_AC; ac++) { 585 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 586 if (error != 0) { 587 device_printf(dev, "could not allocate Tx ring %d\n",ac); 588 goto fail; 589 } 590 } 591 592 /* command queue to talk to the card's firmware */ 593 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 594 if (error != 0) { 595 device_printf(dev, "could not allocate command ring\n"); 596 goto fail; 597 } 598 599 /* receive data queue */ 600 error = wpi_alloc_rx_ring(sc, &sc->rxq); 601 if (error != 0) { 602 device_printf(dev, "could not allocate Rx ring\n"); 603 goto fail; 604 } 605 606 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 607 if (ifp == NULL) { 608 device_printf(dev, "can not if_alloc()\n"); 609 error = ENOMEM; 610 goto fail; 611 } 612 ic = ifp->if_l2com; 613 614 ic->ic_ifp = ifp; 615 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 616 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 617 618 /* set device capabilities */ 619 ic->ic_caps = 620 IEEE80211_C_STA /* station mode supported */ 621 | IEEE80211_C_MONITOR /* monitor mode supported */ 622 | IEEE80211_C_TXPMGT /* tx power management */ 623 | IEEE80211_C_SHSLOT /* short slot time supported */ 624 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 625 | IEEE80211_C_WPA /* 802.11i */ 626 /* XXX looks like WME is partly supported? */ 627 #if 0 628 | IEEE80211_C_IBSS /* IBSS mode support */ 629 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 630 | IEEE80211_C_WME /* 802.11e */ 631 | IEEE80211_C_HOSTAP /* Host access point mode */ 632 #endif 633 ; 634 635 /* 636 * Read in the eeprom and also setup the channels for 637 * net80211. We don't set the rates as net80211 does this for us 638 */ 639 wpi_read_eeprom(sc, macaddr); 640 641 if (bootverbose || WPI_DEBUG_SET) { 642 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 643 device_printf(sc->sc_dev, "Hardware Type: %c\n", 644 sc->type > 1 ? 'B': '?'); 645 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 646 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 647 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 648 supportsa ? "does" : "does not"); 649 650 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 651 what sc->rev really represents - benjsc 20070615 */ 652 } 653 654 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 655 ifp->if_softc = sc; 656 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 657 ifp->if_init = wpi_init; 658 ifp->if_ioctl = wpi_ioctl; 659 ifp->if_start = wpi_start; 660 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 661 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 662 IFQ_SET_READY(&ifp->if_snd); 663 664 ieee80211_ifattach(ic, macaddr); 665 /* override default methods */ 666 ic->ic_raw_xmit = wpi_raw_xmit; 667 ic->ic_wme.wme_update = wpi_wme_update; 668 ic->ic_scan_start = wpi_scan_start; 669 ic->ic_scan_end = wpi_scan_end; 670 ic->ic_set_channel = wpi_set_channel; 671 ic->ic_scan_curchan = wpi_scan_curchan; 672 ic->ic_scan_mindwell = wpi_scan_mindwell; 673 674 ic->ic_vap_create = wpi_vap_create; 675 ic->ic_vap_delete = wpi_vap_delete; 676 677 ieee80211_radiotap_attach(ic, 678 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 679 WPI_TX_RADIOTAP_PRESENT, 680 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 681 WPI_RX_RADIOTAP_PRESENT); 682 683 /* 684 * Hook our interrupt after all initialization is complete. 685 */ 686 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 687 NULL, wpi_intr, sc, &sc->sc_ih); 688 if (error != 0) { 689 device_printf(dev, "could not set up interrupt\n"); 690 goto fail; 691 } 692 693 if (bootverbose) 694 ieee80211_announce(ic); 695 #ifdef XXX_DEBUG 696 ieee80211_announce_channels(ic); 697 #endif 698 return 0; 699 700 fail: wpi_detach(dev); 701 return ENXIO; 702 } 703 704 static int 705 wpi_detach(device_t dev) 706 { 707 struct wpi_softc *sc = device_get_softc(dev); 708 struct ifnet *ifp = sc->sc_ifp; 709 struct ieee80211com *ic; 710 int ac; 711 712 if (sc->irq != NULL) 713 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 714 715 if (ifp != NULL) { 716 ic = ifp->if_l2com; 717 718 ieee80211_draintask(ic, &sc->sc_restarttask); 719 ieee80211_draintask(ic, &sc->sc_radiotask); 720 wpi_stop(sc); 721 callout_drain(&sc->watchdog_to); 722 callout_drain(&sc->calib_to); 723 ieee80211_ifdetach(ic); 724 } 725 726 WPI_LOCK(sc); 727 if (sc->txq[0].data_dmat) { 728 for (ac = 0; ac < WME_NUM_AC; ac++) 729 wpi_free_tx_ring(sc, &sc->txq[ac]); 730 731 wpi_free_tx_ring(sc, &sc->cmdq); 732 wpi_free_rx_ring(sc, &sc->rxq); 733 wpi_free_shared(sc); 734 } 735 736 if (sc->fw_fp != NULL) { 737 wpi_unload_firmware(sc); 738 } 739 740 if (sc->fw_dma.tag) 741 wpi_free_fwmem(sc); 742 WPI_UNLOCK(sc); 743 744 if (sc->irq != NULL) 745 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), 746 sc->irq); 747 if (sc->mem != NULL) 748 bus_release_resource(dev, SYS_RES_MEMORY, 749 rman_get_rid(sc->mem), sc->mem); 750 751 if (ifp != NULL) 752 if_free(ifp); 753 754 WPI_LOCK_DESTROY(sc); 755 756 return 0; 757 } 758 759 static struct ieee80211vap * 760 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 761 enum ieee80211_opmode opmode, int flags, 762 const uint8_t bssid[IEEE80211_ADDR_LEN], 763 const uint8_t mac[IEEE80211_ADDR_LEN]) 764 { 765 struct wpi_vap *wvp; 766 struct ieee80211vap *vap; 767 768 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 769 return NULL; 770 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 771 M_80211_VAP, M_NOWAIT | M_ZERO); 772 if (wvp == NULL) 773 return NULL; 774 vap = &wvp->vap; 775 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 776 /* override with driver methods */ 777 wvp->newstate = vap->iv_newstate; 778 vap->iv_newstate = wpi_newstate; 779 780 ieee80211_ratectl_init(vap); 781 /* complete setup */ 782 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 783 ic->ic_opmode = opmode; 784 return vap; 785 } 786 787 static void 788 wpi_vap_delete(struct ieee80211vap *vap) 789 { 790 struct wpi_vap *wvp = WPI_VAP(vap); 791 792 ieee80211_ratectl_deinit(vap); 793 ieee80211_vap_detach(vap); 794 free(wvp, M_80211_VAP); 795 } 796 797 static void 798 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 799 { 800 if (error != 0) 801 return; 802 803 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 804 805 *(bus_addr_t *)arg = segs[0].ds_addr; 806 } 807 808 /* 809 * Allocates a contiguous block of dma memory of the requested size and 810 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 811 * allocations greater than 4096 may fail. Hence if the requested alignment is 812 * greater we allocate 'alignment' size extra memory and shift the vaddr and 813 * paddr after the dma load. This bypasses the problem at the cost of a little 814 * more memory. 815 */ 816 static int 817 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 818 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 819 { 820 int error; 821 bus_size_t align; 822 bus_size_t reqsize; 823 824 DPRINTFN(WPI_DEBUG_DMA, 825 ("Size: %zd - alignment %zd\n", size, alignment)); 826 827 dma->size = size; 828 dma->tag = NULL; 829 830 if (alignment > 4096) { 831 align = PAGE_SIZE; 832 reqsize = size + alignment; 833 } else { 834 align = alignment; 835 reqsize = size; 836 } 837 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 838 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 839 NULL, NULL, reqsize, 840 1, reqsize, flags, 841 NULL, NULL, &dma->tag); 842 if (error != 0) { 843 device_printf(sc->sc_dev, 844 "could not create shared page DMA tag\n"); 845 goto fail; 846 } 847 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 848 flags | BUS_DMA_ZERO, &dma->map); 849 if (error != 0) { 850 device_printf(sc->sc_dev, 851 "could not allocate shared page DMA memory\n"); 852 goto fail; 853 } 854 855 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 856 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 857 858 /* Save the original pointers so we can free all the memory */ 859 dma->paddr = dma->paddr_start; 860 dma->vaddr = dma->vaddr_start; 861 862 /* 863 * Check the alignment and increment by 4096 until we get the 864 * requested alignment. Fail if can't obtain the alignment 865 * we requested. 866 */ 867 if ((dma->paddr & (alignment -1 )) != 0) { 868 int i; 869 870 for (i = 0; i < alignment / 4096; i++) { 871 if ((dma->paddr & (alignment - 1 )) == 0) 872 break; 873 dma->paddr += 4096; 874 dma->vaddr += 4096; 875 } 876 if (i == alignment / 4096) { 877 device_printf(sc->sc_dev, 878 "alignment requirement was not satisfied\n"); 879 goto fail; 880 } 881 } 882 883 if (error != 0) { 884 device_printf(sc->sc_dev, 885 "could not load shared page DMA map\n"); 886 goto fail; 887 } 888 889 if (kvap != NULL) 890 *kvap = dma->vaddr; 891 892 return 0; 893 894 fail: 895 wpi_dma_contig_free(dma); 896 return error; 897 } 898 899 static void 900 wpi_dma_contig_free(struct wpi_dma_info *dma) 901 { 902 if (dma->tag) { 903 if (dma->vaddr_start != NULL) { 904 if (dma->paddr_start != 0) { 905 bus_dmamap_sync(dma->tag, dma->map, 906 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 907 bus_dmamap_unload(dma->tag, dma->map); 908 } 909 bus_dmamem_free(dma->tag, dma->vaddr_start, dma->map); 910 } 911 bus_dma_tag_destroy(dma->tag); 912 } 913 } 914 915 /* 916 * Allocate a shared page between host and NIC. 917 */ 918 static int 919 wpi_alloc_shared(struct wpi_softc *sc) 920 { 921 int error; 922 923 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 924 (void **)&sc->shared, sizeof (struct wpi_shared), 925 PAGE_SIZE, 926 BUS_DMA_NOWAIT); 927 928 if (error != 0) { 929 device_printf(sc->sc_dev, 930 "could not allocate shared area DMA memory\n"); 931 } 932 933 return error; 934 } 935 936 static void 937 wpi_free_shared(struct wpi_softc *sc) 938 { 939 wpi_dma_contig_free(&sc->shared_dma); 940 } 941 942 static int 943 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 944 { 945 946 int i, error; 947 948 ring->cur = 0; 949 950 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 951 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 952 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 953 954 if (error != 0) { 955 device_printf(sc->sc_dev, 956 "%s: could not allocate rx ring DMA memory, error %d\n", 957 __func__, error); 958 goto fail; 959 } 960 961 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 962 BUS_SPACE_MAXADDR_32BIT, 963 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 964 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 965 if (error != 0) { 966 device_printf(sc->sc_dev, 967 "%s: bus_dma_tag_create_failed, error %d\n", 968 __func__, error); 969 goto fail; 970 } 971 972 /* 973 * Setup Rx buffers. 974 */ 975 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 976 struct wpi_rx_data *data = &ring->data[i]; 977 struct mbuf *m; 978 bus_addr_t paddr; 979 980 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 981 if (error != 0) { 982 device_printf(sc->sc_dev, 983 "%s: bus_dmamap_create failed, error %d\n", 984 __func__, error); 985 goto fail; 986 } 987 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 988 if (m == NULL) { 989 device_printf(sc->sc_dev, 990 "%s: could not allocate rx mbuf\n", __func__); 991 error = ENOMEM; 992 goto fail; 993 } 994 /* map page */ 995 error = bus_dmamap_load(ring->data_dmat, data->map, 996 mtod(m, caddr_t), MJUMPAGESIZE, 997 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 998 if (error != 0 && error != EFBIG) { 999 device_printf(sc->sc_dev, 1000 "%s: bus_dmamap_load failed, error %d\n", 1001 __func__, error); 1002 m_freem(m); 1003 error = ENOMEM; /* XXX unique code */ 1004 goto fail; 1005 } 1006 bus_dmamap_sync(ring->data_dmat, data->map, 1007 BUS_DMASYNC_PREWRITE); 1008 1009 data->m = m; 1010 ring->desc[i] = htole32(paddr); 1011 } 1012 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1013 BUS_DMASYNC_PREWRITE); 1014 return 0; 1015 fail: 1016 wpi_free_rx_ring(sc, ring); 1017 return error; 1018 } 1019 1020 static void 1021 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1022 { 1023 int ntries; 1024 1025 wpi_mem_lock(sc); 1026 1027 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1028 1029 for (ntries = 0; ntries < 100; ntries++) { 1030 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1031 break; 1032 DELAY(10); 1033 } 1034 1035 wpi_mem_unlock(sc); 1036 1037 #ifdef WPI_DEBUG 1038 if (ntries == 100 && wpi_debug > 0) 1039 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1040 #endif 1041 1042 ring->cur = 0; 1043 } 1044 1045 static void 1046 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1047 { 1048 int i; 1049 1050 wpi_dma_contig_free(&ring->desc_dma); 1051 1052 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1053 struct wpi_rx_data *data = &ring->data[i]; 1054 1055 if (data->m != NULL) { 1056 bus_dmamap_sync(ring->data_dmat, data->map, 1057 BUS_DMASYNC_POSTREAD); 1058 bus_dmamap_unload(ring->data_dmat, data->map); 1059 m_freem(data->m); 1060 } 1061 if (data->map != NULL) 1062 bus_dmamap_destroy(ring->data_dmat, data->map); 1063 } 1064 } 1065 1066 static int 1067 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1068 int qid) 1069 { 1070 struct wpi_tx_data *data; 1071 int i, error; 1072 1073 ring->qid = qid; 1074 ring->count = count; 1075 ring->queued = 0; 1076 ring->cur = 0; 1077 ring->data = NULL; 1078 1079 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1080 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1081 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1082 1083 if (error != 0) { 1084 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1085 goto fail; 1086 } 1087 1088 /* update shared page with ring's base address */ 1089 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1090 1091 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1092 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1093 BUS_DMA_NOWAIT); 1094 1095 if (error != 0) { 1096 device_printf(sc->sc_dev, 1097 "could not allocate tx command DMA memory\n"); 1098 goto fail; 1099 } 1100 1101 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1102 M_NOWAIT | M_ZERO); 1103 if (ring->data == NULL) { 1104 device_printf(sc->sc_dev, 1105 "could not allocate tx data slots\n"); 1106 goto fail; 1107 } 1108 1109 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1110 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1111 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1112 &ring->data_dmat); 1113 if (error != 0) { 1114 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1115 goto fail; 1116 } 1117 1118 for (i = 0; i < count; i++) { 1119 data = &ring->data[i]; 1120 1121 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1122 if (error != 0) { 1123 device_printf(sc->sc_dev, 1124 "could not create tx buf DMA map\n"); 1125 goto fail; 1126 } 1127 bus_dmamap_sync(ring->data_dmat, data->map, 1128 BUS_DMASYNC_PREWRITE); 1129 } 1130 1131 return 0; 1132 1133 fail: 1134 wpi_free_tx_ring(sc, ring); 1135 return error; 1136 } 1137 1138 static void 1139 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1140 { 1141 struct wpi_tx_data *data; 1142 int i, ntries; 1143 1144 wpi_mem_lock(sc); 1145 1146 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1147 for (ntries = 0; ntries < 100; ntries++) { 1148 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1149 break; 1150 DELAY(10); 1151 } 1152 #ifdef WPI_DEBUG 1153 if (ntries == 100 && wpi_debug > 0) 1154 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1155 ring->qid); 1156 #endif 1157 wpi_mem_unlock(sc); 1158 1159 for (i = 0; i < ring->count; i++) { 1160 data = &ring->data[i]; 1161 1162 if (data->m != NULL) { 1163 bus_dmamap_unload(ring->data_dmat, data->map); 1164 m_freem(data->m); 1165 data->m = NULL; 1166 } 1167 } 1168 1169 ring->queued = 0; 1170 ring->cur = 0; 1171 } 1172 1173 static void 1174 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1175 { 1176 struct wpi_tx_data *data; 1177 int i; 1178 1179 wpi_dma_contig_free(&ring->desc_dma); 1180 wpi_dma_contig_free(&ring->cmd_dma); 1181 1182 if (ring->data != NULL) { 1183 for (i = 0; i < ring->count; i++) { 1184 data = &ring->data[i]; 1185 1186 if (data->m != NULL) { 1187 bus_dmamap_sync(ring->data_dmat, data->map, 1188 BUS_DMASYNC_POSTWRITE); 1189 bus_dmamap_unload(ring->data_dmat, data->map); 1190 m_freem(data->m); 1191 data->m = NULL; 1192 } 1193 } 1194 free(ring->data, M_DEVBUF); 1195 } 1196 1197 if (ring->data_dmat != NULL) 1198 bus_dma_tag_destroy(ring->data_dmat); 1199 } 1200 1201 static int 1202 wpi_shutdown(device_t dev) 1203 { 1204 struct wpi_softc *sc = device_get_softc(dev); 1205 1206 WPI_LOCK(sc); 1207 wpi_stop_locked(sc); 1208 wpi_unload_firmware(sc); 1209 WPI_UNLOCK(sc); 1210 1211 return 0; 1212 } 1213 1214 static int 1215 wpi_suspend(device_t dev) 1216 { 1217 struct wpi_softc *sc = device_get_softc(dev); 1218 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1219 1220 ieee80211_suspend_all(ic); 1221 return 0; 1222 } 1223 1224 static int 1225 wpi_resume(device_t dev) 1226 { 1227 struct wpi_softc *sc = device_get_softc(dev); 1228 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1229 1230 pci_write_config(dev, 0x41, 0, 1); 1231 1232 ieee80211_resume_all(ic); 1233 return 0; 1234 } 1235 1236 /** 1237 * Called by net80211 when ever there is a change to 80211 state machine 1238 */ 1239 static int 1240 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1241 { 1242 struct wpi_vap *wvp = WPI_VAP(vap); 1243 struct ieee80211com *ic = vap->iv_ic; 1244 struct ifnet *ifp = ic->ic_ifp; 1245 struct wpi_softc *sc = ifp->if_softc; 1246 int error; 1247 1248 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1249 ieee80211_state_name[vap->iv_state], 1250 ieee80211_state_name[nstate], sc->flags)); 1251 1252 IEEE80211_UNLOCK(ic); 1253 WPI_LOCK(sc); 1254 if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) { 1255 /* 1256 * On !INIT -> SCAN transitions, we need to clear any possible 1257 * knowledge about associations. 1258 */ 1259 error = wpi_config(sc); 1260 if (error != 0) { 1261 device_printf(sc->sc_dev, 1262 "%s: device config failed, error %d\n", 1263 __func__, error); 1264 } 1265 } 1266 if (nstate == IEEE80211_S_AUTH || 1267 (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) { 1268 /* 1269 * The node must be registered in the firmware before auth. 1270 * Also the associd must be cleared on RUN -> ASSOC 1271 * transitions. 1272 */ 1273 error = wpi_auth(sc, vap); 1274 if (error != 0) { 1275 device_printf(sc->sc_dev, 1276 "%s: could not move to auth state, error %d\n", 1277 __func__, error); 1278 } 1279 } 1280 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1281 error = wpi_run(sc, vap); 1282 if (error != 0) { 1283 device_printf(sc->sc_dev, 1284 "%s: could not move to run state, error %d\n", 1285 __func__, error); 1286 } 1287 } 1288 if (nstate == IEEE80211_S_RUN) { 1289 /* RUN -> RUN transition; just restart the timers */ 1290 wpi_calib_timeout(sc); 1291 /* XXX split out rate control timer */ 1292 } 1293 WPI_UNLOCK(sc); 1294 IEEE80211_LOCK(ic); 1295 return wvp->newstate(vap, nstate, arg); 1296 } 1297 1298 /* 1299 * Grab exclusive access to NIC memory. 1300 */ 1301 static void 1302 wpi_mem_lock(struct wpi_softc *sc) 1303 { 1304 int ntries; 1305 uint32_t tmp; 1306 1307 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1308 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1309 1310 /* spin until we actually get the lock */ 1311 for (ntries = 0; ntries < 100; ntries++) { 1312 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1313 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1314 break; 1315 DELAY(10); 1316 } 1317 if (ntries == 100) 1318 device_printf(sc->sc_dev, "could not lock memory\n"); 1319 } 1320 1321 /* 1322 * Release lock on NIC memory. 1323 */ 1324 static void 1325 wpi_mem_unlock(struct wpi_softc *sc) 1326 { 1327 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1328 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1329 } 1330 1331 static uint32_t 1332 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1333 { 1334 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1335 return WPI_READ(sc, WPI_READ_MEM_DATA); 1336 } 1337 1338 static void 1339 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1340 { 1341 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1342 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1343 } 1344 1345 static void 1346 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1347 const uint32_t *data, int wlen) 1348 { 1349 for (; wlen > 0; wlen--, data++, addr+=4) 1350 wpi_mem_write(sc, addr, *data); 1351 } 1352 1353 /* 1354 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1355 * using the traditional bit-bang method. Data is read up until len bytes have 1356 * been obtained. 1357 */ 1358 static uint16_t 1359 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1360 { 1361 int ntries; 1362 uint32_t val; 1363 uint8_t *out = data; 1364 1365 wpi_mem_lock(sc); 1366 1367 for (; len > 0; len -= 2, addr++) { 1368 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1369 1370 for (ntries = 0; ntries < 10; ntries++) { 1371 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1372 break; 1373 DELAY(5); 1374 } 1375 1376 if (ntries == 10) { 1377 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1378 return ETIMEDOUT; 1379 } 1380 1381 *out++= val >> 16; 1382 if (len > 1) 1383 *out ++= val >> 24; 1384 } 1385 1386 wpi_mem_unlock(sc); 1387 1388 return 0; 1389 } 1390 1391 /* 1392 * The firmware text and data segments are transferred to the NIC using DMA. 1393 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1394 * where to find it. Once the NIC has copied the firmware into its internal 1395 * memory, we can free our local copy in the driver. 1396 */ 1397 static int 1398 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1399 { 1400 int error, ntries; 1401 1402 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1403 1404 size /= sizeof(uint32_t); 1405 1406 wpi_mem_lock(sc); 1407 1408 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1409 (const uint32_t *)fw, size); 1410 1411 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1412 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1413 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1414 1415 /* run microcode */ 1416 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1417 1418 /* wait while the adapter is busy copying the firmware */ 1419 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1420 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1421 DPRINTFN(WPI_DEBUG_HW, 1422 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1423 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1424 if (status & WPI_TX_IDLE(6)) { 1425 DPRINTFN(WPI_DEBUG_HW, 1426 ("Status Match! - ntries = %d\n", ntries)); 1427 break; 1428 } 1429 DELAY(10); 1430 } 1431 if (ntries == 1000) { 1432 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1433 error = ETIMEDOUT; 1434 } 1435 1436 /* start the microcode executing */ 1437 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1438 1439 wpi_mem_unlock(sc); 1440 1441 return (error); 1442 } 1443 1444 static void 1445 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1446 struct wpi_rx_data *data) 1447 { 1448 struct ifnet *ifp = sc->sc_ifp; 1449 struct ieee80211com *ic = ifp->if_l2com; 1450 struct wpi_rx_ring *ring = &sc->rxq; 1451 struct wpi_rx_stat *stat; 1452 struct wpi_rx_head *head; 1453 struct wpi_rx_tail *tail; 1454 struct ieee80211_node *ni; 1455 struct mbuf *m, *mnew; 1456 bus_addr_t paddr; 1457 int error; 1458 1459 stat = (struct wpi_rx_stat *)(desc + 1); 1460 1461 if (stat->len > WPI_STAT_MAXLEN) { 1462 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1463 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1464 return; 1465 } 1466 1467 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 1468 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1469 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1470 1471 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1472 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1473 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1474 (uintmax_t)le64toh(tail->tstamp))); 1475 1476 /* discard Rx frames with bad CRC early */ 1477 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1478 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1479 le32toh(tail->flags))); 1480 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1481 return; 1482 } 1483 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1484 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1485 le16toh(head->len))); 1486 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1487 return; 1488 } 1489 1490 /* XXX don't need mbuf, just dma buffer */ 1491 mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1492 if (mnew == NULL) { 1493 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1494 __func__)); 1495 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1496 return; 1497 } 1498 bus_dmamap_unload(ring->data_dmat, data->map); 1499 1500 error = bus_dmamap_load(ring->data_dmat, data->map, 1501 mtod(mnew, caddr_t), MJUMPAGESIZE, 1502 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1503 if (error != 0 && error != EFBIG) { 1504 device_printf(sc->sc_dev, 1505 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1506 m_freem(mnew); 1507 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1508 return; 1509 } 1510 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1511 1512 /* finalize mbuf and swap in new one */ 1513 m = data->m; 1514 m->m_pkthdr.rcvif = ifp; 1515 m->m_data = (caddr_t)(head + 1); 1516 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1517 1518 data->m = mnew; 1519 /* update Rx descriptor */ 1520 ring->desc[ring->cur] = htole32(paddr); 1521 1522 if (ieee80211_radiotap_active(ic)) { 1523 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1524 1525 tap->wr_flags = 0; 1526 tap->wr_chan_freq = 1527 htole16(ic->ic_channels[head->chan].ic_freq); 1528 tap->wr_chan_flags = 1529 htole16(ic->ic_channels[head->chan].ic_flags); 1530 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1531 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1532 tap->wr_tsft = tail->tstamp; 1533 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1534 switch (head->rate) { 1535 /* CCK rates */ 1536 case 10: tap->wr_rate = 2; break; 1537 case 20: tap->wr_rate = 4; break; 1538 case 55: tap->wr_rate = 11; break; 1539 case 110: tap->wr_rate = 22; break; 1540 /* OFDM rates */ 1541 case 0xd: tap->wr_rate = 12; break; 1542 case 0xf: tap->wr_rate = 18; break; 1543 case 0x5: tap->wr_rate = 24; break; 1544 case 0x7: tap->wr_rate = 36; break; 1545 case 0x9: tap->wr_rate = 48; break; 1546 case 0xb: tap->wr_rate = 72; break; 1547 case 0x1: tap->wr_rate = 96; break; 1548 case 0x3: tap->wr_rate = 108; break; 1549 /* unknown rate: should not happen */ 1550 default: tap->wr_rate = 0; 1551 } 1552 if (le16toh(head->flags) & 0x4) 1553 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1554 } 1555 1556 WPI_UNLOCK(sc); 1557 1558 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1559 if (ni != NULL) { 1560 (void) ieee80211_input(ni, m, stat->rssi, 0); 1561 ieee80211_free_node(ni); 1562 } else 1563 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1564 1565 WPI_LOCK(sc); 1566 } 1567 1568 static void 1569 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1570 { 1571 struct ifnet *ifp = sc->sc_ifp; 1572 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1573 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1574 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1575 struct ieee80211_node *ni = txdata->ni; 1576 struct ieee80211vap *vap = ni->ni_vap; 1577 int retrycnt = 0; 1578 1579 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1580 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1581 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1582 le32toh(stat->status))); 1583 1584 /* 1585 * Update rate control statistics for the node. 1586 * XXX we should not count mgmt frames since they're always sent at 1587 * the lowest available bit-rate. 1588 * XXX frames w/o ACK shouldn't be used either 1589 */ 1590 if (stat->ntries > 0) { 1591 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1592 retrycnt = 1; 1593 } 1594 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1595 &retrycnt, NULL); 1596 1597 /* XXX oerrors should only count errors !maxtries */ 1598 if ((le32toh(stat->status) & 0xff) != 1) 1599 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1600 else 1601 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1602 1603 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1604 bus_dmamap_unload(ring->data_dmat, txdata->map); 1605 /* XXX handle M_TXCB? */ 1606 m_freem(txdata->m); 1607 txdata->m = NULL; 1608 ieee80211_free_node(txdata->ni); 1609 txdata->ni = NULL; 1610 1611 ring->queued--; 1612 1613 sc->sc_tx_timer = 0; 1614 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1615 wpi_start_locked(ifp); 1616 } 1617 1618 static void 1619 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1620 { 1621 struct wpi_tx_ring *ring = &sc->cmdq; 1622 struct wpi_tx_data *data; 1623 1624 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1625 "type=%s len=%d\n", desc->qid, desc->idx, 1626 desc->flags, wpi_cmd_str(desc->type), 1627 le32toh(desc->len))); 1628 1629 if ((desc->qid & 7) != 4) 1630 return; /* not a command ack */ 1631 1632 data = &ring->data[desc->idx]; 1633 1634 /* if the command was mapped in a mbuf, free it */ 1635 if (data->m != NULL) { 1636 bus_dmamap_unload(ring->data_dmat, data->map); 1637 m_freem(data->m); 1638 data->m = NULL; 1639 } 1640 1641 sc->flags &= ~WPI_FLAG_BUSY; 1642 wakeup(&ring->cmd[desc->idx]); 1643 } 1644 1645 static void 1646 wpi_notif_intr(struct wpi_softc *sc) 1647 { 1648 struct ifnet *ifp = sc->sc_ifp; 1649 struct ieee80211com *ic = ifp->if_l2com; 1650 struct wpi_rx_desc *desc; 1651 struct wpi_rx_data *data; 1652 uint32_t hw; 1653 1654 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 1655 BUS_DMASYNC_POSTREAD); 1656 1657 hw = le32toh(sc->shared->next); 1658 while (sc->rxq.cur != hw) { 1659 data = &sc->rxq.data[sc->rxq.cur]; 1660 1661 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1662 BUS_DMASYNC_POSTREAD); 1663 desc = (void *)data->m->m_ext.ext_buf; 1664 1665 DPRINTFN(WPI_DEBUG_NOTIFY, 1666 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1667 desc->qid, 1668 desc->idx, 1669 desc->flags, 1670 desc->type, 1671 le32toh(desc->len))); 1672 1673 if (!(desc->qid & 0x80)) /* reply to a command */ 1674 wpi_cmd_intr(sc, desc); 1675 1676 switch (desc->type) { 1677 case WPI_RX_DONE: 1678 /* a 802.11 frame was received */ 1679 wpi_rx_intr(sc, desc, data); 1680 break; 1681 1682 case WPI_TX_DONE: 1683 /* a 802.11 frame has been transmitted */ 1684 wpi_tx_intr(sc, desc); 1685 break; 1686 1687 case WPI_UC_READY: 1688 { 1689 struct wpi_ucode_info *uc = 1690 (struct wpi_ucode_info *)(desc + 1); 1691 1692 /* the microcontroller is ready */ 1693 DPRINTF(("microcode alive notification version %x " 1694 "alive %x\n", le32toh(uc->version), 1695 le32toh(uc->valid))); 1696 1697 if (le32toh(uc->valid) != 1) { 1698 device_printf(sc->sc_dev, 1699 "microcontroller initialization failed\n"); 1700 wpi_stop_locked(sc); 1701 } 1702 break; 1703 } 1704 case WPI_STATE_CHANGED: 1705 { 1706 uint32_t *status = (uint32_t *)(desc + 1); 1707 1708 /* enabled/disabled notification */ 1709 DPRINTF(("state changed to %x\n", le32toh(*status))); 1710 1711 if (le32toh(*status) & 1) { 1712 device_printf(sc->sc_dev, 1713 "Radio transmitter is switched off\n"); 1714 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1715 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1716 /* Disable firmware commands */ 1717 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1718 } 1719 break; 1720 } 1721 case WPI_START_SCAN: 1722 { 1723 #ifdef WPI_DEBUG 1724 struct wpi_start_scan *scan = 1725 (struct wpi_start_scan *)(desc + 1); 1726 #endif 1727 1728 DPRINTFN(WPI_DEBUG_SCANNING, 1729 ("scanning channel %d status %x\n", 1730 scan->chan, le32toh(scan->status))); 1731 break; 1732 } 1733 case WPI_STOP_SCAN: 1734 { 1735 #ifdef WPI_DEBUG 1736 struct wpi_stop_scan *scan = 1737 (struct wpi_stop_scan *)(desc + 1); 1738 #endif 1739 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1740 1741 DPRINTFN(WPI_DEBUG_SCANNING, 1742 ("scan finished nchan=%d status=%d chan=%d\n", 1743 scan->nchan, scan->status, scan->chan)); 1744 1745 sc->sc_scan_timer = 0; 1746 ieee80211_scan_next(vap); 1747 break; 1748 } 1749 case WPI_MISSED_BEACON: 1750 { 1751 struct wpi_missed_beacon *beacon = 1752 (struct wpi_missed_beacon *)(desc + 1); 1753 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1754 1755 if (le32toh(beacon->consecutive) >= 1756 vap->iv_bmissthreshold) { 1757 DPRINTF(("Beacon miss: %u >= %u\n", 1758 le32toh(beacon->consecutive), 1759 vap->iv_bmissthreshold)); 1760 ieee80211_beacon_miss(ic); 1761 } 1762 break; 1763 } 1764 } 1765 1766 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1767 } 1768 1769 /* tell the firmware what we have processed */ 1770 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1771 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1772 } 1773 1774 static void 1775 wpi_intr(void *arg) 1776 { 1777 struct wpi_softc *sc = arg; 1778 uint32_t r; 1779 1780 WPI_LOCK(sc); 1781 1782 r = WPI_READ(sc, WPI_INTR); 1783 if (r == 0 || r == 0xffffffff) { 1784 WPI_UNLOCK(sc); 1785 return; 1786 } 1787 1788 /* disable interrupts */ 1789 WPI_WRITE(sc, WPI_MASK, 0); 1790 /* ack interrupts */ 1791 WPI_WRITE(sc, WPI_INTR, r); 1792 1793 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1794 struct ifnet *ifp = sc->sc_ifp; 1795 struct ieee80211com *ic = ifp->if_l2com; 1796 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1797 1798 device_printf(sc->sc_dev, "fatal firmware error\n"); 1799 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1800 "(Hardware Error)")); 1801 if (vap != NULL) 1802 ieee80211_cancel_scan(vap); 1803 ieee80211_runtask(ic, &sc->sc_restarttask); 1804 sc->flags &= ~WPI_FLAG_BUSY; 1805 WPI_UNLOCK(sc); 1806 return; 1807 } 1808 1809 if (r & WPI_RX_INTR) 1810 wpi_notif_intr(sc); 1811 1812 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1813 wakeup(sc); 1814 1815 /* re-enable interrupts */ 1816 if (sc->sc_ifp->if_flags & IFF_UP) 1817 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1818 1819 WPI_UNLOCK(sc); 1820 } 1821 1822 static uint8_t 1823 wpi_plcp_signal(int rate) 1824 { 1825 switch (rate) { 1826 /* CCK rates (returned values are device-dependent) */ 1827 case 2: return 10; 1828 case 4: return 20; 1829 case 11: return 55; 1830 case 22: return 110; 1831 1832 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1833 /* R1-R4 (ral/ural is R4-R1) */ 1834 case 12: return 0xd; 1835 case 18: return 0xf; 1836 case 24: return 0x5; 1837 case 36: return 0x7; 1838 case 48: return 0x9; 1839 case 72: return 0xb; 1840 case 96: return 0x1; 1841 case 108: return 0x3; 1842 1843 /* unsupported rates (should not get there) */ 1844 default: return 0; 1845 } 1846 } 1847 1848 /* quickly determine if a given rate is CCK or OFDM */ 1849 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1850 1851 /* 1852 * Construct the data packet for a transmit buffer and acutally put 1853 * the buffer onto the transmit ring, kicking the card to process the 1854 * the buffer. 1855 */ 1856 static int 1857 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1858 int ac) 1859 { 1860 struct ieee80211vap *vap = ni->ni_vap; 1861 struct ifnet *ifp = sc->sc_ifp; 1862 struct ieee80211com *ic = ifp->if_l2com; 1863 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1864 struct wpi_tx_ring *ring = &sc->txq[ac]; 1865 struct wpi_tx_desc *desc; 1866 struct wpi_tx_data *data; 1867 struct wpi_tx_cmd *cmd; 1868 struct wpi_cmd_data *tx; 1869 struct ieee80211_frame *wh; 1870 const struct ieee80211_txparam *tp; 1871 struct ieee80211_key *k; 1872 struct mbuf *mnew; 1873 int i, error, nsegs, rate, hdrlen, ismcast; 1874 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1875 1876 desc = &ring->desc[ring->cur]; 1877 data = &ring->data[ring->cur]; 1878 1879 wh = mtod(m0, struct ieee80211_frame *); 1880 1881 hdrlen = ieee80211_hdrsize(wh); 1882 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1883 1884 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1885 k = ieee80211_crypto_encap(ni, m0); 1886 if (k == NULL) { 1887 m_freem(m0); 1888 return ENOBUFS; 1889 } 1890 /* packet header may have moved, reset our local pointer */ 1891 wh = mtod(m0, struct ieee80211_frame *); 1892 } 1893 1894 cmd = &ring->cmd[ring->cur]; 1895 cmd->code = WPI_CMD_TX_DATA; 1896 cmd->flags = 0; 1897 cmd->qid = ring->qid; 1898 cmd->idx = ring->cur; 1899 1900 tx = (struct wpi_cmd_data *)cmd->data; 1901 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1902 tx->timeout = htole16(0); 1903 tx->ofdm_mask = 0xff; 1904 tx->cck_mask = 0x0f; 1905 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1906 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1907 tx->len = htole16(m0->m_pkthdr.len); 1908 1909 if (!ismcast) { 1910 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1911 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1912 tx->flags |= htole32(WPI_TX_NEED_ACK); 1913 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1914 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1915 tx->rts_ntries = 7; 1916 } 1917 } 1918 /* pick a rate */ 1919 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1920 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1921 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1922 /* tell h/w to set timestamp in probe responses */ 1923 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1924 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1925 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1926 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1927 tx->timeout = htole16(3); 1928 else 1929 tx->timeout = htole16(2); 1930 rate = tp->mgmtrate; 1931 } else if (ismcast) { 1932 rate = tp->mcastrate; 1933 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1934 rate = tp->ucastrate; 1935 } else { 1936 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1937 rate = ni->ni_txrate; 1938 } 1939 tx->rate = wpi_plcp_signal(rate); 1940 1941 /* be very persistant at sending frames out */ 1942 #if 0 1943 tx->data_ntries = tp->maxretry; 1944 #else 1945 tx->data_ntries = 15; /* XXX way too high */ 1946 #endif 1947 1948 if (ieee80211_radiotap_active_vap(vap)) { 1949 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1950 tap->wt_flags = 0; 1951 tap->wt_rate = rate; 1952 tap->wt_hwqueue = ac; 1953 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 1954 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1955 1956 ieee80211_radiotap_tx(vap, m0); 1957 } 1958 1959 /* save and trim IEEE802.11 header */ 1960 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1961 m_adj(m0, hdrlen); 1962 1963 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1964 &nsegs, BUS_DMA_NOWAIT); 1965 if (error != 0 && error != EFBIG) { 1966 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1967 error); 1968 m_freem(m0); 1969 return error; 1970 } 1971 if (error != 0) { 1972 /* XXX use m_collapse */ 1973 mnew = m_defrag(m0, M_NOWAIT); 1974 if (mnew == NULL) { 1975 device_printf(sc->sc_dev, 1976 "could not defragment mbuf\n"); 1977 m_freem(m0); 1978 return ENOBUFS; 1979 } 1980 m0 = mnew; 1981 1982 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1983 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1984 if (error != 0) { 1985 device_printf(sc->sc_dev, 1986 "could not map mbuf (error %d)\n", error); 1987 m_freem(m0); 1988 return error; 1989 } 1990 } 1991 1992 data->m = m0; 1993 data->ni = ni; 1994 1995 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1996 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1997 1998 /* first scatter/gather segment is used by the tx data command */ 1999 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2000 (1 + nsegs) << 24); 2001 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2002 ring->cur * sizeof (struct wpi_tx_cmd)); 2003 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 2004 for (i = 1; i <= nsegs; i++) { 2005 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 2006 desc->segs[i].len = htole32(segs[i - 1].ds_len); 2007 } 2008 2009 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2010 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2011 BUS_DMASYNC_PREWRITE); 2012 2013 ring->queued++; 2014 2015 /* kick ring */ 2016 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2017 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2018 2019 return 0; 2020 } 2021 2022 /** 2023 * Process data waiting to be sent on the IFNET output queue 2024 */ 2025 static void 2026 wpi_start(struct ifnet *ifp) 2027 { 2028 struct wpi_softc *sc = ifp->if_softc; 2029 2030 WPI_LOCK(sc); 2031 wpi_start_locked(ifp); 2032 WPI_UNLOCK(sc); 2033 } 2034 2035 static void 2036 wpi_start_locked(struct ifnet *ifp) 2037 { 2038 struct wpi_softc *sc = ifp->if_softc; 2039 struct ieee80211_node *ni; 2040 struct mbuf *m; 2041 int ac; 2042 2043 WPI_LOCK_ASSERT(sc); 2044 2045 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2046 return; 2047 2048 for (;;) { 2049 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2050 if (m == NULL) 2051 break; 2052 ac = M_WME_GETAC(m); 2053 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2054 /* there is no place left in this ring */ 2055 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2056 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2057 break; 2058 } 2059 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2060 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2061 ieee80211_free_node(ni); 2062 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2063 break; 2064 } 2065 sc->sc_tx_timer = 5; 2066 } 2067 } 2068 2069 static int 2070 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2071 const struct ieee80211_bpf_params *params) 2072 { 2073 struct ieee80211com *ic = ni->ni_ic; 2074 struct ifnet *ifp = ic->ic_ifp; 2075 struct wpi_softc *sc = ifp->if_softc; 2076 2077 /* prevent management frames from being sent if we're not ready */ 2078 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2079 m_freem(m); 2080 ieee80211_free_node(ni); 2081 return ENETDOWN; 2082 } 2083 WPI_LOCK(sc); 2084 2085 /* management frames go into ring 0 */ 2086 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2087 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2088 m_freem(m); 2089 WPI_UNLOCK(sc); 2090 ieee80211_free_node(ni); 2091 return ENOBUFS; /* XXX */ 2092 } 2093 2094 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2095 if (wpi_tx_data(sc, m, ni, 0) != 0) 2096 goto bad; 2097 sc->sc_tx_timer = 5; 2098 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2099 2100 WPI_UNLOCK(sc); 2101 return 0; 2102 bad: 2103 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2104 WPI_UNLOCK(sc); 2105 ieee80211_free_node(ni); 2106 return EIO; /* XXX */ 2107 } 2108 2109 static int 2110 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2111 { 2112 struct wpi_softc *sc = ifp->if_softc; 2113 struct ieee80211com *ic = ifp->if_l2com; 2114 struct ifreq *ifr = (struct ifreq *) data; 2115 int error = 0, startall = 0; 2116 2117 switch (cmd) { 2118 case SIOCSIFFLAGS: 2119 WPI_LOCK(sc); 2120 if ((ifp->if_flags & IFF_UP)) { 2121 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2122 wpi_init_locked(sc, 0); 2123 startall = 1; 2124 } 2125 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2126 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2127 wpi_stop_locked(sc); 2128 WPI_UNLOCK(sc); 2129 if (startall) 2130 ieee80211_start_all(ic); 2131 break; 2132 case SIOCGIFMEDIA: 2133 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2134 break; 2135 case SIOCGIFADDR: 2136 error = ether_ioctl(ifp, cmd, data); 2137 break; 2138 default: 2139 error = EINVAL; 2140 break; 2141 } 2142 return error; 2143 } 2144 2145 /* 2146 * Extract various information from EEPROM. 2147 */ 2148 static void 2149 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2150 { 2151 int i; 2152 2153 /* read the hardware capabilities, revision and SKU type */ 2154 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2155 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2156 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2157 2158 /* read the regulatory domain */ 2159 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2160 2161 /* read in the hw MAC address */ 2162 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2163 2164 /* read the list of authorized channels */ 2165 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2166 wpi_read_eeprom_channels(sc,i); 2167 2168 /* read the power level calibration info for each group */ 2169 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2170 wpi_read_eeprom_group(sc,i); 2171 } 2172 2173 /* 2174 * Send a command to the firmware. 2175 */ 2176 static int 2177 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2178 { 2179 struct wpi_tx_ring *ring = &sc->cmdq; 2180 struct wpi_tx_desc *desc; 2181 struct wpi_tx_cmd *cmd; 2182 2183 #ifdef WPI_DEBUG 2184 if (!async) { 2185 WPI_LOCK_ASSERT(sc); 2186 } 2187 #endif 2188 2189 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2190 async)); 2191 2192 if (sc->flags & WPI_FLAG_BUSY) { 2193 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2194 __func__, code); 2195 return EAGAIN; 2196 } 2197 sc->flags|= WPI_FLAG_BUSY; 2198 2199 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2200 code, size)); 2201 2202 desc = &ring->desc[ring->cur]; 2203 cmd = &ring->cmd[ring->cur]; 2204 2205 cmd->code = code; 2206 cmd->flags = 0; 2207 cmd->qid = ring->qid; 2208 cmd->idx = ring->cur; 2209 memcpy(cmd->data, buf, size); 2210 2211 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2212 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2213 ring->cur * sizeof (struct wpi_tx_cmd)); 2214 desc->segs[0].len = htole32(4 + size); 2215 2216 /* kick cmd ring */ 2217 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2218 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2219 2220 if (async) { 2221 sc->flags &= ~ WPI_FLAG_BUSY; 2222 return 0; 2223 } 2224 2225 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2226 } 2227 2228 static int 2229 wpi_wme_update(struct ieee80211com *ic) 2230 { 2231 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2232 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2233 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2234 const struct wmeParams *wmep; 2235 struct wpi_wme_setup wme; 2236 int ac; 2237 2238 /* don't override default WME values if WME is not actually enabled */ 2239 if (!(ic->ic_flags & IEEE80211_F_WME)) 2240 return 0; 2241 2242 wme.flags = 0; 2243 for (ac = 0; ac < WME_NUM_AC; ac++) { 2244 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2245 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2246 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2247 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2248 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2249 2250 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2251 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2252 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2253 } 2254 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2255 #undef WPI_USEC 2256 #undef WPI_EXP2 2257 } 2258 2259 /* 2260 * Configure h/w multi-rate retries. 2261 */ 2262 static int 2263 wpi_mrr_setup(struct wpi_softc *sc) 2264 { 2265 struct ifnet *ifp = sc->sc_ifp; 2266 struct ieee80211com *ic = ifp->if_l2com; 2267 struct wpi_mrr_setup mrr; 2268 int i, error; 2269 2270 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2271 2272 /* CCK rates (not used with 802.11a) */ 2273 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2274 mrr.rates[i].flags = 0; 2275 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2276 /* fallback to the immediate lower CCK rate (if any) */ 2277 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2278 /* try one time at this rate before falling back to "next" */ 2279 mrr.rates[i].ntries = 1; 2280 } 2281 2282 /* OFDM rates (not used with 802.11b) */ 2283 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2284 mrr.rates[i].flags = 0; 2285 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2286 /* fallback to the immediate lower OFDM rate (if any) */ 2287 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2288 mrr.rates[i].next = (i == WPI_OFDM6) ? 2289 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2290 WPI_OFDM6 : WPI_CCK2) : 2291 i - 1; 2292 /* try one time at this rate before falling back to "next" */ 2293 mrr.rates[i].ntries = 1; 2294 } 2295 2296 /* setup MRR for control frames */ 2297 mrr.which = WPI_MRR_CTL; 2298 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2299 if (error != 0) { 2300 device_printf(sc->sc_dev, 2301 "could not setup MRR for control frames\n"); 2302 return error; 2303 } 2304 2305 /* setup MRR for data frames */ 2306 mrr.which = WPI_MRR_DATA; 2307 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2308 if (error != 0) { 2309 device_printf(sc->sc_dev, 2310 "could not setup MRR for data frames\n"); 2311 return error; 2312 } 2313 2314 return 0; 2315 } 2316 2317 static void 2318 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2319 { 2320 struct wpi_cmd_led led; 2321 2322 led.which = which; 2323 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2324 led.off = off; 2325 led.on = on; 2326 2327 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2328 } 2329 2330 static void 2331 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2332 { 2333 struct wpi_cmd_tsf tsf; 2334 uint64_t val, mod; 2335 2336 memset(&tsf, 0, sizeof tsf); 2337 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2338 tsf.bintval = htole16(ni->ni_intval); 2339 tsf.lintval = htole16(10); 2340 2341 /* compute remaining time until next beacon */ 2342 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2343 mod = le64toh(tsf.tstamp) % val; 2344 tsf.binitval = htole32((uint32_t)(val - mod)); 2345 2346 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2347 device_printf(sc->sc_dev, "could not enable TSF\n"); 2348 } 2349 2350 #if 0 2351 /* 2352 * Build a beacon frame that the firmware will broadcast periodically in 2353 * IBSS or HostAP modes. 2354 */ 2355 static int 2356 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2357 { 2358 struct ifnet *ifp = sc->sc_ifp; 2359 struct ieee80211com *ic = ifp->if_l2com; 2360 struct wpi_tx_ring *ring = &sc->cmdq; 2361 struct wpi_tx_desc *desc; 2362 struct wpi_tx_data *data; 2363 struct wpi_tx_cmd *cmd; 2364 struct wpi_cmd_beacon *bcn; 2365 struct ieee80211_beacon_offsets bo; 2366 struct mbuf *m0; 2367 bus_addr_t physaddr; 2368 int error; 2369 2370 desc = &ring->desc[ring->cur]; 2371 data = &ring->data[ring->cur]; 2372 2373 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2374 if (m0 == NULL) { 2375 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2376 return ENOMEM; 2377 } 2378 2379 cmd = &ring->cmd[ring->cur]; 2380 cmd->code = WPI_CMD_SET_BEACON; 2381 cmd->flags = 0; 2382 cmd->qid = ring->qid; 2383 cmd->idx = ring->cur; 2384 2385 bcn = (struct wpi_cmd_beacon *)cmd->data; 2386 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2387 bcn->id = WPI_ID_BROADCAST; 2388 bcn->ofdm_mask = 0xff; 2389 bcn->cck_mask = 0x0f; 2390 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2391 bcn->len = htole16(m0->m_pkthdr.len); 2392 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2393 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2394 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2395 2396 /* save and trim IEEE802.11 header */ 2397 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2398 m_adj(m0, sizeof (struct ieee80211_frame)); 2399 2400 /* assume beacon frame is contiguous */ 2401 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2402 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2403 if (error != 0) { 2404 device_printf(sc->sc_dev, "could not map beacon\n"); 2405 m_freem(m0); 2406 return error; 2407 } 2408 2409 data->m = m0; 2410 2411 /* first scatter/gather segment is used by the beacon command */ 2412 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2413 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2414 ring->cur * sizeof (struct wpi_tx_cmd)); 2415 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2416 desc->segs[1].addr = htole32(physaddr); 2417 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2418 2419 /* kick cmd ring */ 2420 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2421 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2422 2423 return 0; 2424 } 2425 #endif 2426 2427 static int 2428 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2429 { 2430 struct ieee80211com *ic = vap->iv_ic; 2431 struct ieee80211_node *ni = vap->iv_bss; 2432 struct wpi_node_info node; 2433 int error; 2434 2435 2436 /* update adapter's configuration */ 2437 sc->config.associd = 0; 2438 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2439 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2440 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2441 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2442 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2443 WPI_CONFIG_24GHZ); 2444 } else { 2445 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO | 2446 WPI_CONFIG_24GHZ); 2447 } 2448 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2449 sc->config.cck_mask = 0; 2450 sc->config.ofdm_mask = 0x15; 2451 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2452 sc->config.cck_mask = 0x03; 2453 sc->config.ofdm_mask = 0; 2454 } else { 2455 /* XXX assume 802.11b/g */ 2456 sc->config.cck_mask = 0x0f; 2457 sc->config.ofdm_mask = 0x15; 2458 } 2459 2460 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2461 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2462 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2463 sizeof (struct wpi_config), 1); 2464 if (error != 0) { 2465 device_printf(sc->sc_dev, "could not configure\n"); 2466 return error; 2467 } 2468 2469 /* configuration has changed, set Tx power accordingly */ 2470 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2471 device_printf(sc->sc_dev, "could not set Tx power\n"); 2472 return error; 2473 } 2474 2475 /* add default node */ 2476 memset(&node, 0, sizeof node); 2477 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2478 node.id = WPI_ID_BSS; 2479 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2480 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2481 node.action = htole32(WPI_ACTION_SET_RATE); 2482 node.antenna = WPI_ANTENNA_BOTH; 2483 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2484 if (error != 0) 2485 device_printf(sc->sc_dev, "could not add BSS node\n"); 2486 2487 return (error); 2488 } 2489 2490 static int 2491 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2492 { 2493 struct ieee80211com *ic = vap->iv_ic; 2494 struct ieee80211_node *ni = vap->iv_bss; 2495 int error; 2496 2497 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2498 /* link LED blinks while monitoring */ 2499 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2500 return 0; 2501 } 2502 2503 wpi_enable_tsf(sc, ni); 2504 2505 /* update adapter's configuration */ 2506 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2507 /* short preamble/slot time are negotiated when associating */ 2508 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2509 WPI_CONFIG_SHSLOT); 2510 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2511 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2512 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2513 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2514 sc->config.filter |= htole32(WPI_FILTER_BSS); 2515 2516 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2517 2518 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2519 sc->config.flags)); 2520 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2521 wpi_config), 1); 2522 if (error != 0) { 2523 device_printf(sc->sc_dev, "could not update configuration\n"); 2524 return error; 2525 } 2526 2527 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2528 if (error != 0) { 2529 device_printf(sc->sc_dev, "could set txpower\n"); 2530 return error; 2531 } 2532 2533 /* link LED always on while associated */ 2534 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2535 2536 /* start automatic rate control timer */ 2537 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2538 2539 return (error); 2540 } 2541 2542 /* 2543 * Send a scan request to the firmware. Since this command is huge, we map it 2544 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2545 * much of this code is similar to that in wpi_cmd but because we must manually 2546 * construct the probe & channels, we duplicate what's needed here. XXX In the 2547 * future, this function should be modified to use wpi_cmd to help cleanup the 2548 * code base. 2549 */ 2550 static int 2551 wpi_scan(struct wpi_softc *sc) 2552 { 2553 struct ifnet *ifp = sc->sc_ifp; 2554 struct ieee80211com *ic = ifp->if_l2com; 2555 struct ieee80211_scan_state *ss = ic->ic_scan; 2556 struct wpi_tx_ring *ring = &sc->cmdq; 2557 struct wpi_tx_desc *desc; 2558 struct wpi_tx_data *data; 2559 struct wpi_tx_cmd *cmd; 2560 struct wpi_scan_hdr *hdr; 2561 struct wpi_scan_chan *chan; 2562 struct ieee80211_frame *wh; 2563 struct ieee80211_rateset *rs; 2564 struct ieee80211_channel *c; 2565 enum ieee80211_phymode mode; 2566 uint8_t *frm; 2567 int nrates, pktlen, error, i, nssid; 2568 bus_addr_t physaddr; 2569 2570 desc = &ring->desc[ring->cur]; 2571 data = &ring->data[ring->cur]; 2572 2573 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2574 if (data->m == NULL) { 2575 device_printf(sc->sc_dev, 2576 "could not allocate mbuf for scan command\n"); 2577 return ENOMEM; 2578 } 2579 2580 cmd = mtod(data->m, struct wpi_tx_cmd *); 2581 cmd->code = WPI_CMD_SCAN; 2582 cmd->flags = 0; 2583 cmd->qid = ring->qid; 2584 cmd->idx = ring->cur; 2585 2586 hdr = (struct wpi_scan_hdr *)cmd->data; 2587 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2588 2589 /* 2590 * Move to the next channel if no packets are received within 5 msecs 2591 * after sending the probe request (this helps to reduce the duration 2592 * of active scans). 2593 */ 2594 hdr->quiet = htole16(5); 2595 hdr->threshold = htole16(1); 2596 2597 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2598 /* send probe requests at 6Mbps */ 2599 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2600 2601 /* Enable crc checking */ 2602 hdr->promotion = htole16(1); 2603 } else { 2604 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2605 /* send probe requests at 1Mbps */ 2606 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2607 } 2608 hdr->tx.id = WPI_ID_BROADCAST; 2609 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2610 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2611 2612 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2613 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2614 for (i = 0; i < nssid; i++) { 2615 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2616 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2617 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2618 hdr->scan_essids[i].esslen); 2619 #ifdef WPI_DEBUG 2620 if (wpi_debug & WPI_DEBUG_SCANNING) { 2621 printf("Scanning Essid: "); 2622 ieee80211_print_essid(hdr->scan_essids[i].essid, 2623 hdr->scan_essids[i].esslen); 2624 printf("\n"); 2625 } 2626 #endif 2627 } 2628 2629 /* 2630 * Build a probe request frame. Most of the following code is a 2631 * copy & paste of what is done in net80211. 2632 */ 2633 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2634 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2635 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2636 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2637 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2638 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2639 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2640 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2641 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2642 2643 frm = (uint8_t *)(wh + 1); 2644 2645 /* add essid IE, the hardware will fill this in for us */ 2646 *frm++ = IEEE80211_ELEMID_SSID; 2647 *frm++ = 0; 2648 2649 mode = ieee80211_chan2mode(ic->ic_curchan); 2650 rs = &ic->ic_sup_rates[mode]; 2651 2652 /* add supported rates IE */ 2653 *frm++ = IEEE80211_ELEMID_RATES; 2654 nrates = rs->rs_nrates; 2655 if (nrates > IEEE80211_RATE_SIZE) 2656 nrates = IEEE80211_RATE_SIZE; 2657 *frm++ = nrates; 2658 memcpy(frm, rs->rs_rates, nrates); 2659 frm += nrates; 2660 2661 /* add supported xrates IE */ 2662 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2663 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2664 *frm++ = IEEE80211_ELEMID_XRATES; 2665 *frm++ = nrates; 2666 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2667 frm += nrates; 2668 } 2669 2670 /* setup length of probe request */ 2671 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2672 2673 /* 2674 * Construct information about the channel that we 2675 * want to scan. The firmware expects this to be directly 2676 * after the scan probe request 2677 */ 2678 c = ic->ic_curchan; 2679 chan = (struct wpi_scan_chan *)frm; 2680 chan->chan = ieee80211_chan2ieee(ic, c); 2681 chan->flags = 0; 2682 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2683 chan->flags |= WPI_CHAN_ACTIVE; 2684 if (nssid != 0) 2685 chan->flags |= WPI_CHAN_DIRECT; 2686 } 2687 chan->gain_dsp = 0x6e; /* Default level */ 2688 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2689 chan->active = htole16(10); 2690 chan->passive = htole16(ss->ss_maxdwell); 2691 chan->gain_radio = 0x3b; 2692 } else { 2693 chan->active = htole16(20); 2694 chan->passive = htole16(ss->ss_maxdwell); 2695 chan->gain_radio = 0x28; 2696 } 2697 2698 DPRINTFN(WPI_DEBUG_SCANNING, 2699 ("Scanning %u Passive: %d\n", 2700 chan->chan, 2701 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2702 2703 hdr->nchan++; 2704 chan++; 2705 2706 frm += sizeof (struct wpi_scan_chan); 2707 #if 0 2708 // XXX All Channels.... 2709 for (c = &ic->ic_channels[1]; 2710 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2711 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2712 continue; 2713 2714 chan->chan = ieee80211_chan2ieee(ic, c); 2715 chan->flags = 0; 2716 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2717 chan->flags |= WPI_CHAN_ACTIVE; 2718 if (ic->ic_des_ssid[0].len != 0) 2719 chan->flags |= WPI_CHAN_DIRECT; 2720 } 2721 chan->gain_dsp = 0x6e; /* Default level */ 2722 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2723 chan->active = htole16(10); 2724 chan->passive = htole16(110); 2725 chan->gain_radio = 0x3b; 2726 } else { 2727 chan->active = htole16(20); 2728 chan->passive = htole16(120); 2729 chan->gain_radio = 0x28; 2730 } 2731 2732 DPRINTFN(WPI_DEBUG_SCANNING, 2733 ("Scanning %u Passive: %d\n", 2734 chan->chan, 2735 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2736 2737 hdr->nchan++; 2738 chan++; 2739 2740 frm += sizeof (struct wpi_scan_chan); 2741 } 2742 #endif 2743 2744 hdr->len = htole16(frm - (uint8_t *)hdr); 2745 pktlen = frm - (uint8_t *)cmd; 2746 2747 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2748 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2749 if (error != 0) { 2750 device_printf(sc->sc_dev, "could not map scan command\n"); 2751 m_freem(data->m); 2752 data->m = NULL; 2753 return error; 2754 } 2755 2756 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2757 desc->segs[0].addr = htole32(physaddr); 2758 desc->segs[0].len = htole32(pktlen); 2759 2760 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2761 BUS_DMASYNC_PREWRITE); 2762 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2763 2764 /* kick cmd ring */ 2765 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2766 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2767 2768 sc->sc_scan_timer = 5; 2769 return 0; /* will be notified async. of failure/success */ 2770 } 2771 2772 /** 2773 * Configure the card to listen to a particular channel, this transisions the 2774 * card in to being able to receive frames from remote devices. 2775 */ 2776 static int 2777 wpi_config(struct wpi_softc *sc) 2778 { 2779 struct ifnet *ifp = sc->sc_ifp; 2780 struct ieee80211com *ic = ifp->if_l2com; 2781 struct wpi_power power; 2782 struct wpi_bluetooth bluetooth; 2783 struct wpi_node_info node; 2784 int error; 2785 2786 /* set power mode */ 2787 memset(&power, 0, sizeof power); 2788 power.flags = htole32(WPI_POWER_CAM|0x8); 2789 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2790 if (error != 0) { 2791 device_printf(sc->sc_dev, "could not set power mode\n"); 2792 return error; 2793 } 2794 2795 /* configure bluetooth coexistence */ 2796 memset(&bluetooth, 0, sizeof bluetooth); 2797 bluetooth.flags = 3; 2798 bluetooth.lead = 0xaa; 2799 bluetooth.kill = 1; 2800 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2801 0); 2802 if (error != 0) { 2803 device_printf(sc->sc_dev, 2804 "could not configure bluetooth coexistence\n"); 2805 return error; 2806 } 2807 2808 /* configure adapter */ 2809 memset(&sc->config, 0, sizeof (struct wpi_config)); 2810 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2811 /*set default channel*/ 2812 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2813 sc->config.flags = htole32(WPI_CONFIG_TSF); 2814 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2815 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2816 WPI_CONFIG_24GHZ); 2817 } 2818 sc->config.filter = 0; 2819 switch (ic->ic_opmode) { 2820 case IEEE80211_M_STA: 2821 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2822 sc->config.mode = WPI_MODE_STA; 2823 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2824 break; 2825 case IEEE80211_M_IBSS: 2826 case IEEE80211_M_AHDEMO: 2827 sc->config.mode = WPI_MODE_IBSS; 2828 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2829 WPI_FILTER_MULTICAST); 2830 break; 2831 case IEEE80211_M_HOSTAP: 2832 sc->config.mode = WPI_MODE_HOSTAP; 2833 break; 2834 case IEEE80211_M_MONITOR: 2835 sc->config.mode = WPI_MODE_MONITOR; 2836 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2837 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2838 break; 2839 default: 2840 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2841 return EINVAL; 2842 } 2843 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2844 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2845 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2846 sizeof (struct wpi_config), 0); 2847 if (error != 0) { 2848 device_printf(sc->sc_dev, "configure command failed\n"); 2849 return error; 2850 } 2851 2852 /* configuration has changed, set Tx power accordingly */ 2853 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2854 device_printf(sc->sc_dev, "could not set Tx power\n"); 2855 return error; 2856 } 2857 2858 /* add broadcast node */ 2859 memset(&node, 0, sizeof node); 2860 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2861 node.id = WPI_ID_BROADCAST; 2862 node.rate = wpi_plcp_signal(2); 2863 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2864 if (error != 0) { 2865 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2866 return error; 2867 } 2868 2869 /* Setup rate scalling */ 2870 error = wpi_mrr_setup(sc); 2871 if (error != 0) { 2872 device_printf(sc->sc_dev, "could not setup MRR\n"); 2873 return error; 2874 } 2875 2876 return 0; 2877 } 2878 2879 static void 2880 wpi_stop_master(struct wpi_softc *sc) 2881 { 2882 uint32_t tmp; 2883 int ntries; 2884 2885 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2886 2887 tmp = WPI_READ(sc, WPI_RESET); 2888 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2889 2890 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2891 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2892 return; /* already asleep */ 2893 2894 for (ntries = 0; ntries < 100; ntries++) { 2895 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2896 break; 2897 DELAY(10); 2898 } 2899 if (ntries == 100) { 2900 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2901 } 2902 } 2903 2904 static int 2905 wpi_power_up(struct wpi_softc *sc) 2906 { 2907 uint32_t tmp; 2908 int ntries; 2909 2910 wpi_mem_lock(sc); 2911 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2912 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2913 wpi_mem_unlock(sc); 2914 2915 for (ntries = 0; ntries < 5000; ntries++) { 2916 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2917 break; 2918 DELAY(10); 2919 } 2920 if (ntries == 5000) { 2921 device_printf(sc->sc_dev, 2922 "timeout waiting for NIC to power up\n"); 2923 return ETIMEDOUT; 2924 } 2925 return 0; 2926 } 2927 2928 static int 2929 wpi_reset(struct wpi_softc *sc) 2930 { 2931 uint32_t tmp; 2932 int ntries; 2933 2934 DPRINTFN(WPI_DEBUG_HW, 2935 ("Resetting the card - clearing any uploaded firmware\n")); 2936 2937 /* clear any pending interrupts */ 2938 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2939 2940 tmp = WPI_READ(sc, WPI_PLL_CTL); 2941 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2942 2943 tmp = WPI_READ(sc, WPI_CHICKEN); 2944 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2945 2946 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2947 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2948 2949 /* wait for clock stabilization */ 2950 for (ntries = 0; ntries < 25000; ntries++) { 2951 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2952 break; 2953 DELAY(10); 2954 } 2955 if (ntries == 25000) { 2956 device_printf(sc->sc_dev, 2957 "timeout waiting for clock stabilization\n"); 2958 return ETIMEDOUT; 2959 } 2960 2961 /* initialize EEPROM */ 2962 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2963 2964 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2965 device_printf(sc->sc_dev, "EEPROM not found\n"); 2966 return EIO; 2967 } 2968 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2969 2970 return 0; 2971 } 2972 2973 static void 2974 wpi_hw_config(struct wpi_softc *sc) 2975 { 2976 uint32_t rev, hw; 2977 2978 /* voodoo from the Linux "driver".. */ 2979 hw = WPI_READ(sc, WPI_HWCONFIG); 2980 2981 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2982 if ((rev & 0xc0) == 0x40) 2983 hw |= WPI_HW_ALM_MB; 2984 else if (!(rev & 0x80)) 2985 hw |= WPI_HW_ALM_MM; 2986 2987 if (sc->cap == 0x80) 2988 hw |= WPI_HW_SKU_MRC; 2989 2990 hw &= ~WPI_HW_REV_D; 2991 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2992 hw |= WPI_HW_REV_D; 2993 2994 if (sc->type > 1) 2995 hw |= WPI_HW_TYPE_B; 2996 2997 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2998 } 2999 3000 static void 3001 wpi_rfkill_resume(struct wpi_softc *sc) 3002 { 3003 struct ifnet *ifp = sc->sc_ifp; 3004 struct ieee80211com *ic = ifp->if_l2com; 3005 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3006 int ntries; 3007 3008 /* enable firmware again */ 3009 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3010 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3011 3012 /* wait for thermal sensors to calibrate */ 3013 for (ntries = 0; ntries < 1000; ntries++) { 3014 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3015 break; 3016 DELAY(10); 3017 } 3018 3019 if (ntries == 1000) { 3020 device_printf(sc->sc_dev, 3021 "timeout waiting for thermal calibration\n"); 3022 return; 3023 } 3024 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3025 3026 if (wpi_config(sc) != 0) { 3027 device_printf(sc->sc_dev, "device config failed\n"); 3028 return; 3029 } 3030 3031 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3032 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3033 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3034 3035 if (vap != NULL) { 3036 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3037 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3038 ieee80211_beacon_miss(ic); 3039 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3040 } else 3041 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3042 } else { 3043 ieee80211_scan_next(vap); 3044 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3045 } 3046 } 3047 3048 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3049 } 3050 3051 static void 3052 wpi_init_locked(struct wpi_softc *sc, int force) 3053 { 3054 struct ifnet *ifp = sc->sc_ifp; 3055 uint32_t tmp; 3056 int ntries, qid; 3057 3058 wpi_stop_locked(sc); 3059 (void)wpi_reset(sc); 3060 3061 wpi_mem_lock(sc); 3062 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3063 DELAY(20); 3064 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3065 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3066 wpi_mem_unlock(sc); 3067 3068 (void)wpi_power_up(sc); 3069 wpi_hw_config(sc); 3070 3071 /* init Rx ring */ 3072 wpi_mem_lock(sc); 3073 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3074 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3075 offsetof(struct wpi_shared, next)); 3076 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3077 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3078 wpi_mem_unlock(sc); 3079 3080 /* init Tx rings */ 3081 wpi_mem_lock(sc); 3082 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3083 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3084 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3085 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3086 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3087 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3088 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3089 3090 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3091 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3092 3093 for (qid = 0; qid < 6; qid++) { 3094 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3095 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3096 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3097 } 3098 wpi_mem_unlock(sc); 3099 3100 /* clear "radio off" and "disable command" bits (reversed logic) */ 3101 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3102 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3103 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3104 3105 /* clear any pending interrupts */ 3106 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3107 3108 /* enable interrupts */ 3109 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3110 3111 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3112 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3113 3114 if ((wpi_load_firmware(sc)) != 0) { 3115 device_printf(sc->sc_dev, 3116 "A problem occurred loading the firmware to the driver\n"); 3117 return; 3118 } 3119 3120 /* At this point the firmware is up and running. If the hardware 3121 * RF switch is turned off thermal calibration will fail, though 3122 * the card is still happy to continue to accept commands, catch 3123 * this case and schedule a task to watch for it to be turned on. 3124 */ 3125 wpi_mem_lock(sc); 3126 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3127 wpi_mem_unlock(sc); 3128 3129 if (!(tmp & 0x1)) { 3130 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3131 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3132 goto out; 3133 } 3134 3135 /* wait for thermal sensors to calibrate */ 3136 for (ntries = 0; ntries < 1000; ntries++) { 3137 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3138 break; 3139 DELAY(10); 3140 } 3141 3142 if (ntries == 1000) { 3143 device_printf(sc->sc_dev, 3144 "timeout waiting for thermal sensors calibration\n"); 3145 return; 3146 } 3147 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3148 3149 if (wpi_config(sc) != 0) { 3150 device_printf(sc->sc_dev, "device config failed\n"); 3151 return; 3152 } 3153 3154 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3155 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3156 out: 3157 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3158 } 3159 3160 static void 3161 wpi_init(void *arg) 3162 { 3163 struct wpi_softc *sc = arg; 3164 struct ifnet *ifp = sc->sc_ifp; 3165 struct ieee80211com *ic = ifp->if_l2com; 3166 3167 WPI_LOCK(sc); 3168 wpi_init_locked(sc, 0); 3169 WPI_UNLOCK(sc); 3170 3171 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3172 ieee80211_start_all(ic); /* start all vaps */ 3173 } 3174 3175 static void 3176 wpi_stop_locked(struct wpi_softc *sc) 3177 { 3178 struct ifnet *ifp = sc->sc_ifp; 3179 uint32_t tmp; 3180 int ac; 3181 3182 sc->sc_tx_timer = 0; 3183 sc->sc_scan_timer = 0; 3184 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3185 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3186 callout_stop(&sc->watchdog_to); 3187 callout_stop(&sc->calib_to); 3188 3189 /* disable interrupts */ 3190 WPI_WRITE(sc, WPI_MASK, 0); 3191 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3192 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3193 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3194 3195 wpi_mem_lock(sc); 3196 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3197 wpi_mem_unlock(sc); 3198 3199 /* reset all Tx rings */ 3200 for (ac = 0; ac < 4; ac++) 3201 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3202 wpi_reset_tx_ring(sc, &sc->cmdq); 3203 3204 /* reset Rx ring */ 3205 wpi_reset_rx_ring(sc, &sc->rxq); 3206 3207 wpi_mem_lock(sc); 3208 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3209 wpi_mem_unlock(sc); 3210 3211 DELAY(5); 3212 3213 wpi_stop_master(sc); 3214 3215 tmp = WPI_READ(sc, WPI_RESET); 3216 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3217 sc->flags &= ~WPI_FLAG_BUSY; 3218 } 3219 3220 static void 3221 wpi_stop(struct wpi_softc *sc) 3222 { 3223 WPI_LOCK(sc); 3224 wpi_stop_locked(sc); 3225 WPI_UNLOCK(sc); 3226 } 3227 3228 static void 3229 wpi_calib_timeout(void *arg) 3230 { 3231 struct wpi_softc *sc = arg; 3232 struct ifnet *ifp = sc->sc_ifp; 3233 struct ieee80211com *ic = ifp->if_l2com; 3234 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3235 int temp; 3236 3237 if (vap->iv_state != IEEE80211_S_RUN) 3238 return; 3239 3240 /* update sensor data */ 3241 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3242 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3243 3244 wpi_power_calibration(sc, temp); 3245 3246 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3247 } 3248 3249 /* 3250 * This function is called periodically (every 60 seconds) to adjust output 3251 * power to temperature changes. 3252 */ 3253 static void 3254 wpi_power_calibration(struct wpi_softc *sc, int temp) 3255 { 3256 struct ifnet *ifp = sc->sc_ifp; 3257 struct ieee80211com *ic = ifp->if_l2com; 3258 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3259 3260 /* sanity-check read value */ 3261 if (temp < -260 || temp > 25) { 3262 /* this can't be correct, ignore */ 3263 DPRINTFN(WPI_DEBUG_TEMP, 3264 ("out-of-range temperature reported: %d\n", temp)); 3265 return; 3266 } 3267 3268 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3269 3270 /* adjust Tx power if need be */ 3271 if (abs(temp - sc->temp) <= 6) 3272 return; 3273 3274 sc->temp = temp; 3275 3276 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3277 /* just warn, too bad for the automatic calibration... */ 3278 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3279 } 3280 } 3281 3282 /** 3283 * Read the eeprom to find out what channels are valid for the given 3284 * band and update net80211 with what we find. 3285 */ 3286 static void 3287 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3288 { 3289 struct ifnet *ifp = sc->sc_ifp; 3290 struct ieee80211com *ic = ifp->if_l2com; 3291 const struct wpi_chan_band *band = &wpi_bands[n]; 3292 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3293 struct ieee80211_channel *c; 3294 int chan, i, passive; 3295 3296 wpi_read_prom_data(sc, band->addr, channels, 3297 band->nchan * sizeof (struct wpi_eeprom_chan)); 3298 3299 for (i = 0; i < band->nchan; i++) { 3300 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3301 DPRINTFN(WPI_DEBUG_HW, 3302 ("Channel Not Valid: %d, band %d\n", 3303 band->chan[i],n)); 3304 continue; 3305 } 3306 3307 passive = 0; 3308 chan = band->chan[i]; 3309 c = &ic->ic_channels[ic->ic_nchans++]; 3310 3311 /* is active scan allowed on this channel? */ 3312 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3313 passive = IEEE80211_CHAN_PASSIVE; 3314 } 3315 3316 if (n == 0) { /* 2GHz band */ 3317 c->ic_ieee = chan; 3318 c->ic_freq = ieee80211_ieee2mhz(chan, 3319 IEEE80211_CHAN_2GHZ); 3320 c->ic_flags = IEEE80211_CHAN_B | passive; 3321 3322 c = &ic->ic_channels[ic->ic_nchans++]; 3323 c->ic_ieee = chan; 3324 c->ic_freq = ieee80211_ieee2mhz(chan, 3325 IEEE80211_CHAN_2GHZ); 3326 c->ic_flags = IEEE80211_CHAN_G | passive; 3327 3328 } else { /* 5GHz band */ 3329 /* 3330 * Some 3945ABG adapters support channels 7, 8, 11 3331 * and 12 in the 2GHz *and* 5GHz bands. 3332 * Because of limitations in our net80211(9) stack, 3333 * we can't support these channels in 5GHz band. 3334 * XXX not true; just need to map to proper frequency 3335 */ 3336 if (chan <= 14) 3337 continue; 3338 3339 c->ic_ieee = chan; 3340 c->ic_freq = ieee80211_ieee2mhz(chan, 3341 IEEE80211_CHAN_5GHZ); 3342 c->ic_flags = IEEE80211_CHAN_A | passive; 3343 } 3344 3345 /* save maximum allowed power for this channel */ 3346 sc->maxpwr[chan] = channels[i].maxpwr; 3347 3348 #if 0 3349 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3350 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3351 //ic->ic_channels[chan].ic_minpower... 3352 //ic->ic_channels[chan].ic_maxregtxpower... 3353 #endif 3354 3355 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3356 " passive=%d, offset %d\n", chan, c->ic_freq, 3357 channels[i].flags, sc->maxpwr[chan], 3358 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3359 ic->ic_nchans)); 3360 } 3361 } 3362 3363 static void 3364 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3365 { 3366 struct wpi_power_group *group = &sc->groups[n]; 3367 struct wpi_eeprom_group rgroup; 3368 int i; 3369 3370 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3371 sizeof rgroup); 3372 3373 /* save power group information */ 3374 group->chan = rgroup.chan; 3375 group->maxpwr = rgroup.maxpwr; 3376 /* temperature at which the samples were taken */ 3377 group->temp = (int16_t)le16toh(rgroup.temp); 3378 3379 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3380 group->chan, group->maxpwr, group->temp)); 3381 3382 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3383 group->samples[i].index = rgroup.samples[i].index; 3384 group->samples[i].power = rgroup.samples[i].power; 3385 3386 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3387 group->samples[i].index, group->samples[i].power)); 3388 } 3389 } 3390 3391 /* 3392 * Update Tx power to match what is defined for channel `c'. 3393 */ 3394 static int 3395 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3396 { 3397 struct ifnet *ifp = sc->sc_ifp; 3398 struct ieee80211com *ic = ifp->if_l2com; 3399 struct wpi_power_group *group; 3400 struct wpi_cmd_txpower txpower; 3401 u_int chan; 3402 int i; 3403 3404 /* get channel number */ 3405 chan = ieee80211_chan2ieee(ic, c); 3406 3407 /* find the power group to which this channel belongs */ 3408 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3409 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3410 if (chan <= group->chan) 3411 break; 3412 } else 3413 group = &sc->groups[0]; 3414 3415 memset(&txpower, 0, sizeof txpower); 3416 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3417 txpower.channel = htole16(chan); 3418 3419 /* set Tx power for all OFDM and CCK rates */ 3420 for (i = 0; i <= 11 ; i++) { 3421 /* retrieve Tx power for this channel/rate combination */ 3422 int idx = wpi_get_power_index(sc, group, c, 3423 wpi_ridx_to_rate[i]); 3424 3425 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3426 3427 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3428 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3429 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3430 } else { 3431 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3432 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3433 } 3434 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3435 chan, wpi_ridx_to_rate[i], idx)); 3436 } 3437 3438 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3439 } 3440 3441 /* 3442 * Determine Tx power index for a given channel/rate combination. 3443 * This takes into account the regulatory information from EEPROM and the 3444 * current temperature. 3445 */ 3446 static int 3447 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3448 struct ieee80211_channel *c, int rate) 3449 { 3450 /* fixed-point arithmetic division using a n-bit fractional part */ 3451 #define fdivround(a, b, n) \ 3452 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3453 3454 /* linear interpolation */ 3455 #define interpolate(x, x1, y1, x2, y2, n) \ 3456 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3457 3458 struct ifnet *ifp = sc->sc_ifp; 3459 struct ieee80211com *ic = ifp->if_l2com; 3460 struct wpi_power_sample *sample; 3461 int pwr, idx; 3462 u_int chan; 3463 3464 /* get channel number */ 3465 chan = ieee80211_chan2ieee(ic, c); 3466 3467 /* default power is group's maximum power - 3dB */ 3468 pwr = group->maxpwr / 2; 3469 3470 /* decrease power for highest OFDM rates to reduce distortion */ 3471 switch (rate) { 3472 case 72: /* 36Mb/s */ 3473 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3474 break; 3475 case 96: /* 48Mb/s */ 3476 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3477 break; 3478 case 108: /* 54Mb/s */ 3479 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3480 break; 3481 } 3482 3483 /* never exceed channel's maximum allowed Tx power */ 3484 pwr = min(pwr, sc->maxpwr[chan]); 3485 3486 /* retrieve power index into gain tables from samples */ 3487 for (sample = group->samples; sample < &group->samples[3]; sample++) 3488 if (pwr > sample[1].power) 3489 break; 3490 /* fixed-point linear interpolation using a 19-bit fractional part */ 3491 idx = interpolate(pwr, sample[0].power, sample[0].index, 3492 sample[1].power, sample[1].index, 19); 3493 3494 /* 3495 * Adjust power index based on current temperature 3496 * - if colder than factory-calibrated: decreate output power 3497 * - if warmer than factory-calibrated: increase output power 3498 */ 3499 idx -= (sc->temp - group->temp) * 11 / 100; 3500 3501 /* decrease power for CCK rates (-5dB) */ 3502 if (!WPI_RATE_IS_OFDM(rate)) 3503 idx += 10; 3504 3505 /* keep power index in a valid range */ 3506 if (idx < 0) 3507 return 0; 3508 if (idx > WPI_MAX_PWR_INDEX) 3509 return WPI_MAX_PWR_INDEX; 3510 return idx; 3511 3512 #undef interpolate 3513 #undef fdivround 3514 } 3515 3516 /** 3517 * Called by net80211 framework to indicate that a scan 3518 * is starting. This function doesn't actually do the scan, 3519 * wpi_scan_curchan starts things off. This function is more 3520 * of an early warning from the framework we should get ready 3521 * for the scan. 3522 */ 3523 static void 3524 wpi_scan_start(struct ieee80211com *ic) 3525 { 3526 struct ifnet *ifp = ic->ic_ifp; 3527 struct wpi_softc *sc = ifp->if_softc; 3528 3529 WPI_LOCK(sc); 3530 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3531 WPI_UNLOCK(sc); 3532 } 3533 3534 /** 3535 * Called by the net80211 framework, indicates that the 3536 * scan has ended. If there is a scan in progress on the card 3537 * then it should be aborted. 3538 */ 3539 static void 3540 wpi_scan_end(struct ieee80211com *ic) 3541 { 3542 /* XXX ignore */ 3543 } 3544 3545 /** 3546 * Called by the net80211 framework to indicate to the driver 3547 * that the channel should be changed 3548 */ 3549 static void 3550 wpi_set_channel(struct ieee80211com *ic) 3551 { 3552 struct ifnet *ifp = ic->ic_ifp; 3553 struct wpi_softc *sc = ifp->if_softc; 3554 int error; 3555 3556 /* 3557 * Only need to set the channel in Monitor mode. AP scanning and auth 3558 * are already taken care of by their respective firmware commands. 3559 */ 3560 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3561 WPI_LOCK(sc); 3562 error = wpi_config(sc); 3563 WPI_UNLOCK(sc); 3564 if (error != 0) 3565 device_printf(sc->sc_dev, 3566 "error %d settting channel\n", error); 3567 } 3568 } 3569 3570 /** 3571 * Called by net80211 to indicate that we need to scan the current 3572 * channel. The channel is previously be set via the wpi_set_channel 3573 * callback. 3574 */ 3575 static void 3576 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3577 { 3578 struct ieee80211vap *vap = ss->ss_vap; 3579 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3580 struct wpi_softc *sc = ifp->if_softc; 3581 3582 WPI_LOCK(sc); 3583 if (wpi_scan(sc)) 3584 ieee80211_cancel_scan(vap); 3585 WPI_UNLOCK(sc); 3586 } 3587 3588 /** 3589 * Called by the net80211 framework to indicate 3590 * the minimum dwell time has been met, terminate the scan. 3591 * We don't actually terminate the scan as the firmware will notify 3592 * us when it's finished and we have no way to interrupt it. 3593 */ 3594 static void 3595 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3596 { 3597 /* NB: don't try to abort scan; wait for firmware to finish */ 3598 } 3599 3600 static void 3601 wpi_hwreset(void *arg, int pending) 3602 { 3603 struct wpi_softc *sc = arg; 3604 3605 WPI_LOCK(sc); 3606 wpi_init_locked(sc, 0); 3607 WPI_UNLOCK(sc); 3608 } 3609 3610 static void 3611 wpi_rfreset(void *arg, int pending) 3612 { 3613 struct wpi_softc *sc = arg; 3614 3615 WPI_LOCK(sc); 3616 wpi_rfkill_resume(sc); 3617 WPI_UNLOCK(sc); 3618 } 3619 3620 /* 3621 * Allocate DMA-safe memory for firmware transfer. 3622 */ 3623 static int 3624 wpi_alloc_fwmem(struct wpi_softc *sc) 3625 { 3626 /* allocate enough contiguous space to store text and data */ 3627 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3628 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3629 BUS_DMA_NOWAIT); 3630 } 3631 3632 static void 3633 wpi_free_fwmem(struct wpi_softc *sc) 3634 { 3635 wpi_dma_contig_free(&sc->fw_dma); 3636 } 3637 3638 /** 3639 * Called every second, wpi_watchdog used by the watch dog timer 3640 * to check that the card is still alive 3641 */ 3642 static void 3643 wpi_watchdog(void *arg) 3644 { 3645 struct wpi_softc *sc = arg; 3646 struct ifnet *ifp = sc->sc_ifp; 3647 struct ieee80211com *ic = ifp->if_l2com; 3648 uint32_t tmp; 3649 3650 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3651 3652 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3653 /* No need to lock firmware memory */ 3654 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3655 3656 if ((tmp & 0x1) == 0) { 3657 /* Radio kill switch is still off */ 3658 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3659 return; 3660 } 3661 3662 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3663 ieee80211_runtask(ic, &sc->sc_radiotask); 3664 return; 3665 } 3666 3667 if (sc->sc_tx_timer > 0) { 3668 if (--sc->sc_tx_timer == 0) { 3669 device_printf(sc->sc_dev,"device timeout\n"); 3670 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3671 ieee80211_runtask(ic, &sc->sc_restarttask); 3672 } 3673 } 3674 if (sc->sc_scan_timer > 0) { 3675 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3676 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3677 device_printf(sc->sc_dev,"scan timeout\n"); 3678 ieee80211_cancel_scan(vap); 3679 ieee80211_runtask(ic, &sc->sc_restarttask); 3680 } 3681 } 3682 3683 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3684 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3685 } 3686 3687 #ifdef WPI_DEBUG 3688 static const char *wpi_cmd_str(int cmd) 3689 { 3690 switch (cmd) { 3691 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3692 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3693 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3694 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3695 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3696 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3697 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3698 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3699 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3700 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3701 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3702 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3703 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3704 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3705 3706 default: 3707 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3708 return "UNKNOWN CMD"; /* Make the compiler happy */ 3709 } 3710 } 3711 #endif 3712 3713 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3714 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3715 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3716