1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071102" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #if (__FreeBSD_version > 700000) 79 #define WPI_CURRENT 80 #endif 81 82 #include <machine/bus.h> 83 #include <machine/resource.h> 84 #ifndef WPI_CURRENT 85 #include <machine/clock.h> 86 #endif 87 #include <sys/rman.h> 88 89 #include <dev/pci/pcireg.h> 90 #include <dev/pci/pcivar.h> 91 92 #include <net/bpf.h> 93 #include <net/if.h> 94 #include <net/if_arp.h> 95 #include <net/ethernet.h> 96 #include <net/if_dl.h> 97 #include <net/if_media.h> 98 #include <net/if_types.h> 99 100 #include <net80211/ieee80211_var.h> 101 #include <net80211/ieee80211_radiotap.h> 102 #include <net80211/ieee80211_regdomain.h> 103 104 #include <netinet/in.h> 105 #include <netinet/in_systm.h> 106 #include <netinet/in_var.h> 107 #include <netinet/ip.h> 108 #include <netinet/if_ether.h> 109 110 #include <dev/wpi/if_wpireg.h> 111 #include <dev/wpi/if_wpivar.h> 112 113 #define WPI_DEBUG 114 115 #ifdef WPI_DEBUG 116 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 117 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 118 119 enum { 120 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 121 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 122 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 123 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 124 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 125 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 126 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 127 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 128 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 129 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 130 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 131 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 132 WPI_DEBUG_ANY = 0xffffffff 133 }; 134 135 int wpi_debug = WPI_DEBUG_SCANNING | WPI_DEBUG_CMD | WPI_DEBUG_NOTIFY; 136 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 137 138 #else 139 #define DPRINTF(x) 140 #define DPRINTFN(n, x) 141 #endif 142 143 struct wpi_ident { 144 uint16_t vendor; 145 uint16_t device; 146 uint16_t subdevice; 147 const char *name; 148 }; 149 150 static const struct wpi_ident wpi_ident_table[] = { 151 /* The below entries support ABG regardless of the subid */ 152 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 153 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 154 /* The below entries only support BG */ 155 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB" }, 156 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB" }, 157 { 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB" }, 158 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB" }, 159 { 0, 0, 0, NULL } 160 }; 161 162 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 163 void **, bus_size_t, bus_size_t, int); 164 static void wpi_dma_contig_free(struct wpi_dma_info *); 165 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 166 static int wpi_alloc_shared(struct wpi_softc *); 167 static void wpi_free_shared(struct wpi_softc *); 168 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *); 169 static void wpi_free_rbuf(void *, void *); 170 static int wpi_alloc_rpool(struct wpi_softc *); 171 static void wpi_free_rpool(struct wpi_softc *); 172 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 173 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 174 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 175 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 176 int, int); 177 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 178 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 179 static struct ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *); 180 static int wpi_media_change(struct ifnet *); 181 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int); 182 static void wpi_mem_lock(struct wpi_softc *); 183 static void wpi_mem_unlock(struct wpi_softc *); 184 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 185 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 186 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 187 const uint32_t *, int); 188 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 189 static int wpi_alloc_fwmem(struct wpi_softc *); 190 static void wpi_free_fwmem(struct wpi_softc *); 191 static int wpi_load_firmware(struct wpi_softc *); 192 static void wpi_unload_firmware(struct wpi_softc *); 193 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 194 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 195 struct wpi_rx_data *); 196 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 197 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 198 static void wpi_notif_intr(struct wpi_softc *); 199 static void wpi_intr(void *); 200 static void wpi_ops(void *, int); 201 static uint8_t wpi_plcp_signal(int); 202 static int wpi_queue_cmd(struct wpi_softc *, int); 203 static void wpi_tick(void *); 204 #if 0 205 static void wpi_radio_on(void *, int); 206 static void wpi_radio_off(void *, int); 207 #endif 208 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 209 struct ieee80211_node *, int); 210 static void wpi_start(struct ifnet *); 211 static void wpi_scan_start(struct ieee80211com *); 212 static void wpi_scan_end(struct ieee80211com *); 213 static void wpi_set_channel(struct ieee80211com *); 214 static void wpi_scan_curchan(struct ieee80211com *, unsigned long); 215 static void wpi_scan_mindwell(struct ieee80211com *); 216 static void wpi_watchdog(struct ifnet *); 217 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 218 static void wpi_restart(void *, int); 219 static void wpi_read_eeprom(struct wpi_softc *); 220 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 221 static void wpi_read_eeprom_group(struct wpi_softc *, int); 222 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 223 static int wpi_wme_update(struct ieee80211com *); 224 static int wpi_mrr_setup(struct wpi_softc *); 225 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 226 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 227 #if 0 228 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 229 #endif 230 static int wpi_auth(struct wpi_softc *); 231 static int wpi_scan(struct wpi_softc *); 232 static int wpi_config(struct wpi_softc *); 233 static void wpi_stop_master(struct wpi_softc *); 234 static int wpi_power_up(struct wpi_softc *); 235 static int wpi_reset(struct wpi_softc *); 236 static void wpi_hw_config(struct wpi_softc *); 237 static void wpi_init(void *); 238 static void wpi_stop(struct wpi_softc *); 239 static void wpi_stop_locked(struct wpi_softc *); 240 static void wpi_iter_func(void *, struct ieee80211_node *); 241 242 static void wpi_newassoc(struct ieee80211_node *, int); 243 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 244 int); 245 static void wpi_calib_timeout(void *); 246 static void wpi_power_calibration(struct wpi_softc *, int); 247 static int wpi_get_power_index(struct wpi_softc *, 248 struct wpi_power_group *, struct ieee80211_channel *, int); 249 static const char *wpi_cmd_str(int); 250 static int wpi_probe(device_t); 251 static int wpi_attach(device_t); 252 static int wpi_detach(device_t); 253 static int wpi_shutdown(device_t); 254 static int wpi_suspend(device_t); 255 static int wpi_resume(device_t); 256 257 258 static device_method_t wpi_methods[] = { 259 /* Device interface */ 260 DEVMETHOD(device_probe, wpi_probe), 261 DEVMETHOD(device_attach, wpi_attach), 262 DEVMETHOD(device_detach, wpi_detach), 263 DEVMETHOD(device_shutdown, wpi_shutdown), 264 DEVMETHOD(device_suspend, wpi_suspend), 265 DEVMETHOD(device_resume, wpi_resume), 266 267 { 0, 0 } 268 }; 269 270 static driver_t wpi_driver = { 271 "wpi", 272 wpi_methods, 273 sizeof (struct wpi_softc) 274 }; 275 276 static devclass_t wpi_devclass; 277 278 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 279 280 static const uint8_t wpi_ridx_to_plcp[] = { 281 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 282 /* R1-R4 (ral/ural is R4-R1) */ 283 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 284 /* CCK: device-dependent */ 285 10, 20, 55, 110 286 }; 287 static const uint8_t wpi_ridx_to_rate[] = { 288 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 289 2, 4, 11, 22 /*CCK */ 290 }; 291 292 293 static int 294 wpi_probe(device_t dev) 295 { 296 const struct wpi_ident *ident; 297 298 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 299 if (pci_get_vendor(dev) == ident->vendor && 300 pci_get_device(dev) == ident->device) { 301 device_set_desc(dev, ident->name); 302 return 0; 303 } 304 } 305 return ENXIO; 306 } 307 308 /** 309 * Load the firmare image from disk to the allocated dma buffer. 310 * we also maintain the reference to the firmware pointer as there 311 * is times where we may need to reload the firmware but we are not 312 * in a context that can access the filesystem (ie taskq cause by restart) 313 * 314 * @return 0 on success, an errno on failure 315 */ 316 static int 317 wpi_load_firmware(struct wpi_softc *sc) 318 { 319 #ifdef WPI_CURRENT 320 const struct firmware *fp ; 321 #else 322 struct firmware *fp; 323 #endif 324 struct wpi_dma_info *dma = &sc->fw_dma; 325 const struct wpi_firmware_hdr *hdr; 326 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 327 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 328 int error; 329 WPI_LOCK_DECL; 330 331 DPRINTFN(WPI_DEBUG_FIRMWARE, 332 ("Attempting Loading Firmware from wpi_fw module\n")); 333 334 WPI_UNLOCK(sc); 335 336 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 337 device_printf(sc->sc_dev, 338 "could not load firmware image 'wpifw'\n"); 339 error = ENOENT; 340 WPI_LOCK(sc); 341 goto fail; 342 } 343 344 fp = sc->fw_fp; 345 346 WPI_LOCK(sc); 347 348 /* Validate the firmware is minimum a particular version */ 349 if (fp->version < WPI_FW_MINVERSION) { 350 device_printf(sc->sc_dev, 351 "firmware version is too old. Need %d, got %d\n", 352 WPI_FW_MINVERSION, 353 fp->version); 354 error = ENXIO; 355 goto fail; 356 } 357 358 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 359 device_printf(sc->sc_dev, 360 "firmware file too short: %zu bytes\n", fp->datasize); 361 error = ENXIO; 362 goto fail; 363 } 364 365 hdr = (const struct wpi_firmware_hdr *)fp->data; 366 367 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 368 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 369 370 rtextsz = le32toh(hdr->rtextsz); 371 rdatasz = le32toh(hdr->rdatasz); 372 itextsz = le32toh(hdr->itextsz); 373 idatasz = le32toh(hdr->idatasz); 374 btextsz = le32toh(hdr->btextsz); 375 376 /* check that all firmware segments are present */ 377 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 378 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 379 device_printf(sc->sc_dev, 380 "firmware file too short: %zu bytes\n", fp->datasize); 381 error = ENXIO; /* XXX appropriate error code? */ 382 goto fail; 383 } 384 385 /* get pointers to firmware segments */ 386 rtext = (const uint8_t *)(hdr + 1); 387 rdata = rtext + rtextsz; 388 itext = rdata + rdatasz; 389 idata = itext + itextsz; 390 btext = idata + idatasz; 391 392 DPRINTFN(WPI_DEBUG_FIRMWARE, 393 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 394 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 395 (le32toh(hdr->version) & 0xff000000) >> 24, 396 (le32toh(hdr->version) & 0x00ff0000) >> 16, 397 (le32toh(hdr->version) & 0x0000ffff), 398 rtextsz, rdatasz, 399 itextsz, idatasz, btextsz)); 400 401 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 402 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 403 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 404 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 405 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 406 407 /* sanity checks */ 408 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 409 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 410 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 411 idatasz > WPI_FW_INIT_DATA_MAXSZ || 412 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 413 (btextsz & 3) != 0) { 414 device_printf(sc->sc_dev, "firmware invalid\n"); 415 error = EINVAL; 416 goto fail; 417 } 418 419 /* copy initialization images into pre-allocated DMA-safe memory */ 420 memcpy(dma->vaddr, idata, idatasz); 421 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 422 423 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 424 425 /* tell adapter where to find initialization images */ 426 wpi_mem_lock(sc); 427 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 428 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 429 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 430 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 431 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 432 wpi_mem_unlock(sc); 433 434 /* load firmware boot code */ 435 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 436 device_printf(sc->sc_dev, "Failed to load microcode\n"); 437 goto fail; 438 } 439 440 /* now press "execute" */ 441 WPI_WRITE(sc, WPI_RESET, 0); 442 443 /* wait at most one second for the first alive notification */ 444 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 445 device_printf(sc->sc_dev, 446 "timeout waiting for adapter to initialize\n"); 447 goto fail; 448 } 449 450 /* copy runtime images into pre-allocated DMA-sage memory */ 451 memcpy(dma->vaddr, rdata, rdatasz); 452 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 453 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 454 455 /* tell adapter where to find runtime images */ 456 wpi_mem_lock(sc); 457 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 458 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 459 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 460 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 461 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 462 wpi_mem_unlock(sc); 463 464 /* wait at most one second for the first alive notification */ 465 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 466 device_printf(sc->sc_dev, 467 "timeout waiting for adapter to initialize2\n"); 468 goto fail; 469 } 470 471 DPRINTFN(WPI_DEBUG_FIRMWARE, 472 ("Firmware loaded to driver successfully\n")); 473 return error; 474 fail: 475 wpi_unload_firmware(sc); 476 return error; 477 } 478 479 /** 480 * Free the referenced firmware image 481 */ 482 static void 483 wpi_unload_firmware(struct wpi_softc *sc) 484 { 485 WPI_LOCK_DECL; 486 487 if (sc->fw_fp) { 488 WPI_UNLOCK(sc); 489 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 490 WPI_LOCK(sc); 491 sc->fw_fp = NULL; 492 } 493 } 494 495 static int 496 wpi_attach(device_t dev) 497 { 498 struct wpi_softc *sc = device_get_softc(dev); 499 struct ifnet *ifp; 500 struct ieee80211com *ic = &sc->sc_ic; 501 int ac, error, supportsa = 1; 502 uint32_t tmp; 503 const struct wpi_ident *ident; 504 505 sc->sc_dev = dev; 506 507 if (bootverbose || wpi_debug) 508 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 509 510 /* 511 * Some card's only support 802.11b/g not a, check to see if 512 * this is one such card. A 0x0 in the subdevice table indicates 513 * the entire subdevice range is to be ignored. 514 */ 515 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 516 if (ident->subdevice && 517 pci_get_subdevice(dev) == ident->subdevice) { 518 supportsa = 0; 519 break; 520 } 521 } 522 523 #if __FreeBSD_version >= 700000 524 /* 525 * Create the taskqueues used by the driver. Primarily 526 * sc_tq handles most the task 527 */ 528 sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO, 529 taskqueue_thread_enqueue, &sc->sc_tq); 530 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 531 device_get_nameunit(dev)); 532 533 sc->sc_tq2 = taskqueue_create("wpi_taskq2", M_NOWAIT | M_ZERO, 534 taskqueue_thread_enqueue, &sc->sc_tq2); 535 taskqueue_start_threads(&sc->sc_tq2, 1, PI_NET, "%s taskq2", 536 device_get_nameunit(dev)); 537 #else 538 #error "Sorry, this driver is not yet ready for FreeBSD < 7.0" 539 #endif 540 541 /* Create the tasks that can be queued */ 542 #if 0 543 TASK_INIT(&sc->sc_radioontask, 0, wpi_radio_on, sc); 544 TASK_INIT(&sc->sc_radioofftask, 0, wpi_radio_off, sc); 545 #endif 546 TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc); 547 TASK_INIT(&sc->sc_restarttask, 0, wpi_restart, sc); 548 549 WPI_LOCK_INIT(sc); 550 WPI_CMD_LOCK_INIT(sc); 551 552 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 553 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 554 555 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 556 device_printf(dev, "chip is in D%d power mode " 557 "-- setting to D0\n", pci_get_powerstate(dev)); 558 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 559 } 560 561 /* disable the retry timeout register */ 562 pci_write_config(dev, 0x41, 0, 1); 563 564 /* enable bus-mastering */ 565 pci_enable_busmaster(dev); 566 567 sc->mem_rid = PCIR_BAR(0); 568 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 569 RF_ACTIVE); 570 if (sc->mem == NULL) { 571 device_printf(dev, "could not allocate memory resource\n"); 572 error = ENOMEM; 573 goto fail; 574 } 575 576 sc->sc_st = rman_get_bustag(sc->mem); 577 sc->sc_sh = rman_get_bushandle(sc->mem); 578 579 sc->irq_rid = 0; 580 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 581 RF_ACTIVE | RF_SHAREABLE); 582 if (sc->irq == NULL) { 583 device_printf(dev, "could not allocate interrupt resource\n"); 584 error = ENOMEM; 585 goto fail; 586 } 587 588 /* 589 * Allocate DMA memory for firmware transfers. 590 */ 591 if ((error = wpi_alloc_fwmem(sc)) != 0) { 592 printf(": could not allocate firmware memory\n"); 593 error = ENOMEM; 594 goto fail; 595 } 596 597 /* 598 * Put adapter into a known state. 599 */ 600 if ((error = wpi_reset(sc)) != 0) { 601 device_printf(dev, "could not reset adapter\n"); 602 goto fail; 603 } 604 605 wpi_mem_lock(sc); 606 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 607 if (bootverbose || wpi_debug) 608 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 609 610 wpi_mem_unlock(sc); 611 612 /* Allocate shared page */ 613 if ((error = wpi_alloc_shared(sc)) != 0) { 614 device_printf(dev, "could not allocate shared page\n"); 615 goto fail; 616 } 617 618 /* 619 * Allocate the receive buffer pool. The recieve buffers are 620 * WPI_RBUF_SIZE in length (3k) this is bigger than MCLBYTES 621 * hence we can't simply use a cluster and used mapped dma memory 622 * instead. 623 */ 624 if ((error = wpi_alloc_rpool(sc)) != 0) { 625 device_printf(dev, "could not allocate Rx buffers\n"); 626 goto fail; 627 } 628 629 /* tx data queues - 4 for QoS purposes */ 630 for (ac = 0; ac < WME_NUM_AC; ac++) { 631 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 632 if (error != 0) { 633 device_printf(dev, "could not allocate Tx ring %d\n",ac); 634 goto fail; 635 } 636 } 637 638 /* command queue to talk to the card's firmware */ 639 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 640 if (error != 0) { 641 device_printf(dev, "could not allocate command ring\n"); 642 goto fail; 643 } 644 645 /* receive data queue */ 646 error = wpi_alloc_rx_ring(sc, &sc->rxq); 647 if (error != 0) { 648 device_printf(dev, "could not allocate Rx ring\n"); 649 goto fail; 650 } 651 652 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 653 if (ifp == NULL) { 654 device_printf(dev, "can not if_alloc()\n"); 655 error = ENOMEM; 656 goto fail; 657 } 658 659 ic->ic_ifp = ifp; 660 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 661 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 662 ic->ic_state = IEEE80211_S_INIT; 663 664 /* set device capabilities */ 665 ic->ic_caps = 666 IEEE80211_C_WEP /* s/w WEP */ 667 | IEEE80211_C_MONITOR /* monitor mode supported */ 668 | IEEE80211_C_TXPMGT /* tx power management */ 669 | IEEE80211_C_SHSLOT /* short slot time supported */ 670 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 671 | IEEE80211_C_WPA /* 802.11i */ 672 /* XXX looks like WME is partly supported? */ 673 #if 0 674 | IEEE80211_C_IBSS /* IBSS mode support */ 675 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 676 | IEEE80211_C_WME /* 802.11e */ 677 | IEEE80211_C_HOSTAP /* Host access point mode */ 678 #endif 679 ; 680 681 /* 682 * Read in the eeprom and also setup the channels for 683 * net80211. We don't set the rates as net80211 does this for us 684 */ 685 wpi_read_eeprom(sc); 686 687 if (bootverbose || wpi_debug) { 688 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 689 device_printf(sc->sc_dev, "Hardware Type: %c\n", 690 sc->type > 1 ? 'B': '?'); 691 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 692 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 693 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 694 supportsa ? "does" : "does not"); 695 696 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 697 what sc->rev really represents - benjsc 20070615 */ 698 } 699 700 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 701 ifp->if_softc = sc; 702 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 703 ifp->if_init = wpi_init; 704 ifp->if_ioctl = wpi_ioctl; 705 ifp->if_start = wpi_start; 706 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 707 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 708 IFQ_SET_READY(&ifp->if_snd); 709 ieee80211_ifattach(ic); 710 711 /* override default methods */ 712 ic->ic_node_alloc = wpi_node_alloc; 713 ic->ic_newassoc = wpi_newassoc; 714 ic->ic_wme.wme_update = wpi_wme_update; 715 ic->ic_scan_start = wpi_scan_start; 716 ic->ic_scan_end = wpi_scan_end; 717 ic->ic_set_channel = wpi_set_channel; 718 ic->ic_scan_curchan = wpi_scan_curchan; 719 ic->ic_scan_mindwell = wpi_scan_mindwell; 720 721 /* override state transition machine */ 722 sc->sc_newstate = ic->ic_newstate; 723 ic->ic_newstate = wpi_newstate; 724 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status); 725 726 ieee80211_amrr_init(&sc->amrr, ic, 727 IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, 728 IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD); 729 730 /* whilst ieee80211_ifattach will listen for ieee80211 frames, 731 * we also want to listen for the lower level radio frames 732 */ 733 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 734 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap), 735 &sc->sc_drvbpf); 736 737 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 738 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 739 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 740 741 sc->sc_txtap_len = sizeof sc->sc_txtap; 742 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 743 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 744 745 /* 746 * Hook our interrupt after all initialization is complete. 747 */ 748 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE , 749 #ifdef WPI_CURRENT 750 NULL, 751 #endif 752 wpi_intr, sc, &sc->sc_ih); 753 if (error != 0) { 754 device_printf(dev, "could not set up interrupt\n"); 755 goto fail; 756 } 757 758 ieee80211_announce(ic); 759 #ifdef XXX_DEBUG 760 ieee80211_announce_channels(ic); 761 #endif 762 763 return 0; 764 765 fail: wpi_detach(dev); 766 return ENXIO; 767 } 768 769 static int 770 wpi_detach(device_t dev) 771 { 772 struct wpi_softc *sc = device_get_softc(dev); 773 struct ieee80211com *ic = &sc->sc_ic; 774 struct ifnet *ifp = ic->ic_ifp; 775 int ac; 776 WPI_LOCK_DECL; 777 778 if (ifp != NULL) { 779 wpi_stop(sc); 780 callout_drain(&sc->watchdog_to); 781 callout_drain(&sc->calib_to); 782 bpfdetach(ifp); 783 ieee80211_ifdetach(ic); 784 } 785 786 WPI_LOCK(sc); 787 if (sc->txq[0].data_dmat) { 788 for (ac = 0; ac < WME_NUM_AC; ac++) 789 wpi_free_tx_ring(sc, &sc->txq[ac]); 790 791 wpi_free_tx_ring(sc, &sc->cmdq); 792 wpi_free_rx_ring(sc, &sc->rxq); 793 wpi_free_rpool(sc); 794 wpi_free_shared(sc); 795 } 796 797 if (sc->fw_fp != NULL) { 798 wpi_unload_firmware(sc); 799 } 800 801 if (sc->fw_dma.tag) 802 wpi_free_fwmem(sc); 803 WPI_UNLOCK(sc); 804 805 if (sc->irq != NULL) { 806 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 807 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 808 } 809 810 if (sc->mem != NULL) 811 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 812 813 if (ifp != NULL) 814 if_free(ifp); 815 816 taskqueue_free(sc->sc_tq); 817 taskqueue_free(sc->sc_tq2); 818 819 WPI_LOCK_DESTROY(sc); 820 WPI_CMD_LOCK_DESTROY(sc); 821 822 return 0; 823 } 824 825 static void 826 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 827 { 828 if (error != 0) 829 return; 830 831 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 832 833 *(bus_addr_t *)arg = segs[0].ds_addr; 834 } 835 836 static int 837 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 838 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 839 { 840 int error; 841 int count = 0; 842 843 DPRINTFN(WPI_DEBUG_DMA, 844 ("Size: %zd - alignement %zd\n", size, alignment)); 845 846 dma->size = size; 847 dma->tag = NULL; 848 849 again: 850 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 851 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 852 NULL, NULL, size, 853 1, size, flags, 854 NULL, NULL, &dma->tag); 855 if (error != 0) { 856 device_printf(sc->sc_dev, 857 "could not create shared page DMA tag\n"); 858 goto fail; 859 } 860 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 861 flags | BUS_DMA_ZERO, &dma->map); 862 if (error != 0) { 863 device_printf(sc->sc_dev, 864 "could not allocate shared page DMA memory\n"); 865 goto fail; 866 } 867 868 /** 869 * Sadly FreeBSD can't always align on a 16k boundary, hence we give it 870 * 10 attempts increasing the size of the allocation by 4k each time. 871 * This should eventually align us on a 16k boundary at the cost 872 * of chewing up dma memory 873 */ 874 if ((((uintptr_t)dma->vaddr) & (alignment-1)) && count < 10) { 875 DPRINTFN(WPI_DEBUG_DMA, 876 ("Memory Unaligned, trying again: %d\n", count++)); 877 wpi_dma_contig_free(dma); 878 size += 4096; 879 goto again; 880 } 881 882 DPRINTFN(WPI_DEBUG_DMA,("Memory, allocated & %s Aligned!\n", 883 count == 10 ? "FAILED" : "")); 884 if (count == 10) { 885 device_printf(sc->sc_dev, "Unable to align memory\n"); 886 error = ENOMEM; 887 goto fail; 888 } 889 890 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, 891 size, wpi_dma_map_addr, &dma->paddr, flags); 892 893 if (error != 0) { 894 device_printf(sc->sc_dev, 895 "could not load shared page DMA map\n"); 896 goto fail; 897 } 898 899 if (kvap != NULL) 900 *kvap = dma->vaddr; 901 902 return 0; 903 904 fail: 905 wpi_dma_contig_free(dma); 906 return error; 907 } 908 909 static void 910 wpi_dma_contig_free(struct wpi_dma_info *dma) 911 { 912 if (dma->tag) { 913 if (dma->map != NULL) { 914 if (dma->paddr == 0) { 915 bus_dmamap_sync(dma->tag, dma->map, 916 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 917 bus_dmamap_unload(dma->tag, dma->map); 918 } 919 bus_dmamem_free(dma->tag, &dma->vaddr, dma->map); 920 } 921 bus_dma_tag_destroy(dma->tag); 922 } 923 } 924 925 /* 926 * Allocate a shared page between host and NIC. 927 */ 928 static int 929 wpi_alloc_shared(struct wpi_softc *sc) 930 { 931 int error; 932 933 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 934 (void **)&sc->shared, sizeof (struct wpi_shared), 935 PAGE_SIZE, 936 BUS_DMA_NOWAIT); 937 938 if (error != 0) { 939 device_printf(sc->sc_dev, 940 "could not allocate shared area DMA memory\n"); 941 } 942 943 return error; 944 } 945 946 static void 947 wpi_free_shared(struct wpi_softc *sc) 948 { 949 wpi_dma_contig_free(&sc->shared_dma); 950 } 951 952 struct wpi_rbuf * 953 wpi_alloc_rbuf(struct wpi_softc *sc) 954 { 955 struct wpi_rbuf *rbuf; 956 957 rbuf = SLIST_FIRST(&sc->rxq.freelist); 958 if (rbuf == NULL) 959 return NULL; 960 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 961 return rbuf; 962 } 963 964 /* 965 * This is called automatically by the network stack when the mbuf to which our 966 * Rx buffer is attached is freed. 967 */ 968 static void 969 wpi_free_rbuf(void *buf, void *arg) 970 { 971 struct wpi_rbuf *rbuf = arg; 972 struct wpi_softc *sc = rbuf->sc; 973 WPI_LOCK_DECL; 974 975 WPI_LOCK(sc); 976 977 /* put the buffer back in the free list */ 978 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); 979 980 WPI_UNLOCK(sc); 981 } 982 983 static int 984 wpi_alloc_rpool(struct wpi_softc *sc) 985 { 986 struct wpi_rx_ring *ring = &sc->rxq; 987 struct wpi_rbuf *rbuf; 988 int i, error; 989 990 /* allocate a big chunk of DMA'able memory.. */ 991 error = wpi_dma_contig_alloc(sc, &ring->buf_dma, NULL, 992 WPI_RBUF_COUNT * WPI_RBUF_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT); 993 if (error != 0) { 994 device_printf(sc->sc_dev, 995 "could not allocate Rx buffers DMA memory\n"); 996 return error; 997 } 998 999 /* ..and split it into 3KB chunks */ 1000 SLIST_INIT(&ring->freelist); 1001 for (i = 0; i < WPI_RBUF_COUNT; i++) { 1002 rbuf = &ring->rbuf[i]; 1003 1004 rbuf->sc = sc; /* backpointer for callbacks */ 1005 rbuf->vaddr = ring->buf_dma.vaddr + i * WPI_RBUF_SIZE; 1006 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE; 1007 1008 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); 1009 } 1010 return 0; 1011 } 1012 1013 static void 1014 wpi_free_rpool(struct wpi_softc *sc) 1015 { 1016 wpi_dma_contig_free(&sc->rxq.buf_dma); 1017 } 1018 1019 static int 1020 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1021 { 1022 1023 struct wpi_rx_data *data; 1024 struct wpi_rbuf *rbuf; 1025 int i, error; 1026 1027 ring->cur = 0; 1028 1029 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1030 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 1031 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1032 1033 if (error != 0) { 1034 device_printf(sc->sc_dev, 1035 "could not allocate rx ring DMA memory\n"); 1036 goto fail; 1037 } 1038 1039 /* 1040 * Allocate Rx buffers. 1041 */ 1042 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1043 data = &ring->data[i]; 1044 1045 data->m = m_get(M_DONTWAIT, MT_HEADER); 1046 if (data->m == NULL) { 1047 device_printf(sc->sc_dev, 1048 "could not allocate rx mbuf\n"); 1049 error = ENOBUFS; 1050 goto fail; 1051 } 1052 1053 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) { 1054 m_freem(data->m); 1055 data->m = NULL; 1056 device_printf(sc->sc_dev, 1057 "could not allocate rx buffer\n"); 1058 error = ENOBUFS; 1059 goto fail; 1060 } 1061 1062 /* attach RxBuffer to mbuf */ 1063 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE,wpi_free_rbuf, 1064 rbuf,0,EXT_NET_DRV); 1065 1066 if ((data->m->m_flags & M_EXT) == 0) { 1067 m_freem(data->m); 1068 data->m = NULL; 1069 error = ENOBUFS; 1070 goto fail; 1071 } 1072 ring->desc[i] = htole32(rbuf->paddr); 1073 } 1074 1075 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1076 BUS_DMASYNC_PREWRITE); 1077 1078 return 0; 1079 1080 fail: 1081 wpi_free_rx_ring(sc, ring); 1082 return error; 1083 } 1084 1085 static void 1086 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1087 { 1088 int ntries; 1089 1090 wpi_mem_lock(sc); 1091 1092 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1093 1094 for (ntries = 0; ntries < 100; ntries++) { 1095 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1096 break; 1097 DELAY(10); 1098 } 1099 1100 wpi_mem_unlock(sc); 1101 1102 #ifdef WPI_DEBUG 1103 if (ntries == 100 && wpi_debug > 0) 1104 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1105 #endif 1106 1107 ring->cur = 0; 1108 } 1109 1110 static void 1111 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1112 { 1113 int i; 1114 1115 wpi_dma_contig_free(&ring->desc_dma); 1116 1117 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1118 if (ring->data[i].m != NULL) { 1119 m_freem(ring->data[i].m); 1120 ring->data[i].m = NULL; 1121 } 1122 } 1123 } 1124 1125 static int 1126 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1127 int qid) 1128 { 1129 struct wpi_tx_data *data; 1130 int i, error; 1131 1132 ring->qid = qid; 1133 ring->count = count; 1134 ring->queued = 0; 1135 ring->cur = 0; 1136 ring->data = NULL; 1137 1138 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1139 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1140 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1141 1142 if (error != 0) { 1143 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1144 goto fail; 1145 } 1146 1147 /* update shared page with ring's base address */ 1148 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1149 1150 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1151 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1152 BUS_DMA_NOWAIT); 1153 1154 if (error != 0) { 1155 device_printf(sc->sc_dev, 1156 "could not allocate tx command DMA memory\n"); 1157 goto fail; 1158 } 1159 1160 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1161 M_NOWAIT | M_ZERO); 1162 if (ring->data == NULL) { 1163 device_printf(sc->sc_dev, 1164 "could not allocate tx data slots\n"); 1165 goto fail; 1166 } 1167 1168 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1169 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1170 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1171 &ring->data_dmat); 1172 if (error != 0) { 1173 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1174 goto fail; 1175 } 1176 1177 for (i = 0; i < count; i++) { 1178 data = &ring->data[i]; 1179 1180 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1181 if (error != 0) { 1182 device_printf(sc->sc_dev, 1183 "could not create tx buf DMA map\n"); 1184 goto fail; 1185 } 1186 bus_dmamap_sync(ring->data_dmat, data->map, 1187 BUS_DMASYNC_PREWRITE); 1188 } 1189 1190 return 0; 1191 1192 fail: wpi_free_tx_ring(sc, ring); 1193 return error; 1194 } 1195 1196 static void 1197 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1198 { 1199 struct wpi_tx_data *data; 1200 int i, ntries; 1201 1202 wpi_mem_lock(sc); 1203 1204 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1205 for (ntries = 0; ntries < 100; ntries++) { 1206 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1207 break; 1208 DELAY(10); 1209 } 1210 #ifdef WPI_DEBUG 1211 if (ntries == 100 && wpi_debug > 0) { 1212 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1213 ring->qid); 1214 } 1215 #endif 1216 wpi_mem_unlock(sc); 1217 1218 for (i = 0; i < ring->count; i++) { 1219 data = &ring->data[i]; 1220 1221 if (data->m != NULL) { 1222 bus_dmamap_unload(ring->data_dmat, data->map); 1223 m_freem(data->m); 1224 data->m = NULL; 1225 } 1226 } 1227 1228 ring->queued = 0; 1229 ring->cur = 0; 1230 } 1231 1232 static void 1233 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1234 { 1235 struct wpi_tx_data *data; 1236 int i; 1237 1238 wpi_dma_contig_free(&ring->desc_dma); 1239 wpi_dma_contig_free(&ring->cmd_dma); 1240 1241 if (ring->data != NULL) { 1242 for (i = 0; i < ring->count; i++) { 1243 data = &ring->data[i]; 1244 1245 if (data->m != NULL) { 1246 bus_dmamap_sync(ring->data_dmat, data->map, 1247 BUS_DMASYNC_POSTWRITE); 1248 bus_dmamap_unload(ring->data_dmat, data->map); 1249 m_freem(data->m); 1250 data->m = NULL; 1251 } 1252 } 1253 free(ring->data, M_DEVBUF); 1254 } 1255 1256 if (ring->data_dmat != NULL) 1257 bus_dma_tag_destroy(ring->data_dmat); 1258 } 1259 1260 static int 1261 wpi_shutdown(device_t dev) 1262 { 1263 struct wpi_softc *sc = device_get_softc(dev); 1264 WPI_LOCK_DECL; 1265 1266 WPI_LOCK(sc); 1267 wpi_stop_locked(sc); 1268 wpi_unload_firmware(sc); 1269 WPI_UNLOCK(sc); 1270 1271 return 0; 1272 } 1273 1274 static int 1275 wpi_suspend(device_t dev) 1276 { 1277 struct wpi_softc *sc = device_get_softc(dev); 1278 1279 wpi_stop(sc); 1280 return 0; 1281 } 1282 1283 static int 1284 wpi_resume(device_t dev) 1285 { 1286 struct wpi_softc *sc = device_get_softc(dev); 1287 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1288 1289 pci_write_config(dev, 0x41, 0, 1); 1290 1291 if (ifp->if_flags & IFF_UP) { 1292 wpi_init(ifp->if_softc); 1293 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1294 wpi_start(ifp); 1295 } 1296 return 0; 1297 } 1298 1299 /* ARGSUSED */ 1300 static struct ieee80211_node * 1301 wpi_node_alloc(struct ieee80211_node_table *ic) 1302 { 1303 struct wpi_node *wn; 1304 1305 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT |M_ZERO); 1306 1307 return &wn->ni; 1308 } 1309 1310 static int 1311 wpi_media_change(struct ifnet *ifp) 1312 { 1313 int error; 1314 1315 error = ieee80211_media_change(ifp); 1316 if (error != ENETRESET) 1317 return error; 1318 1319 if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 1320 wpi_init(ifp->if_softc); 1321 1322 return 0; 1323 } 1324 1325 /** 1326 * Called by net80211 when ever there is a change to 80211 state machine 1327 */ 1328 static int 1329 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1330 { 1331 struct ifnet *ifp = ic->ic_ifp; 1332 struct wpi_softc *sc = ifp->if_softc; 1333 struct ieee80211_node *ni; 1334 int error; 1335 1336 callout_stop(&sc->calib_to); 1337 1338 switch (nstate) { 1339 case IEEE80211_S_SCAN: 1340 DPRINTF(("NEWSTATE:SCAN\n")); 1341 /* Scanning is handled in net80211 via the scan_start, 1342 * scan_end, scan_curchan functions. Hence all we do when 1343 * changing to the SCAN state is update the leds 1344 */ 1345 1346 /* make the link LED blink while we're scanning */ 1347 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 1348 break; 1349 1350 case IEEE80211_S_ASSOC: 1351 DPRINTF(("NEWSTATE:ASSOC\n")); 1352 if (ic->ic_state != IEEE80211_S_RUN) 1353 break; 1354 /* FALLTHROUGH */ 1355 1356 case IEEE80211_S_AUTH: 1357 DPRINTF(("NEWSTATE:AUTH\n")); 1358 sc->flags |= WPI_FLAG_AUTH; 1359 sc->config.associd = 0; 1360 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 1361 wpi_queue_cmd(sc,WPI_AUTH); 1362 DPRINTF(("END AUTH\n")); 1363 break; 1364 1365 case IEEE80211_S_RUN: 1366 DPRINTF(("NEWSTATE:RUN\n")); 1367 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 1368 /* link LED blinks while monitoring */ 1369 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 1370 break; 1371 } 1372 1373 #if 0 1374 if (ic->ic_opmode != IEEE80211_M_STA) { 1375 (void) wpi_auth(sc); /* XXX */ 1376 wpi_setup_beacon(sc, ic->ic_bss); 1377 } 1378 #endif 1379 1380 ni = ic->ic_bss; 1381 wpi_enable_tsf(sc, ni); 1382 1383 /* update adapter's configuration */ 1384 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 1385 /* short preamble/slot time are negotiated when associating */ 1386 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 1387 WPI_CONFIG_SHSLOT); 1388 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1389 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 1390 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1391 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 1392 sc->config.filter |= htole32(WPI_FILTER_BSS); 1393 #if 0 1394 if (ic->ic_opmode != IEEE80211_M_STA) 1395 sc->config.filter |= htole32(WPI_FILTER_BEACON); 1396 #endif 1397 1398 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 1399 1400 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 1401 sc->config.flags)); 1402 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 1403 sizeof (struct wpi_config), 1); 1404 if (error != 0) { 1405 device_printf(sc->sc_dev, 1406 "could not update configuration\n"); 1407 return error; 1408 } 1409 1410 if ((error = wpi_set_txpower(sc, ic->ic_bss->ni_chan, 1)) != 0) { 1411 device_printf(sc->sc_dev, 1412 "could set txpower\n"); 1413 return error; 1414 } 1415 1416 if (ic->ic_opmode == IEEE80211_M_STA) { 1417 /* fake a join to init the tx rate */ 1418 wpi_newassoc(ic->ic_bss, 1); 1419 } 1420 1421 /* start automatic rate control timer */ 1422 callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc); 1423 1424 /* link LED always on while associated */ 1425 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 1426 break; 1427 1428 case IEEE80211_S_INIT: 1429 DPRINTF(("NEWSTATE:INIT\n")); 1430 break; 1431 1432 default: 1433 break; 1434 } 1435 1436 return (*sc->sc_newstate)(ic, nstate, arg); 1437 } 1438 1439 /* 1440 * Grab exclusive access to NIC memory. 1441 */ 1442 static void 1443 wpi_mem_lock(struct wpi_softc *sc) 1444 { 1445 int ntries; 1446 uint32_t tmp; 1447 1448 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1449 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1450 1451 /* spin until we actually get the lock */ 1452 for (ntries = 0; ntries < 100; ntries++) { 1453 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1454 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1455 break; 1456 DELAY(10); 1457 } 1458 if (ntries == 100) 1459 device_printf(sc->sc_dev, "could not lock memory\n"); 1460 } 1461 1462 /* 1463 * Release lock on NIC memory. 1464 */ 1465 static void 1466 wpi_mem_unlock(struct wpi_softc *sc) 1467 { 1468 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1469 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1470 } 1471 1472 static uint32_t 1473 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1474 { 1475 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1476 return WPI_READ(sc, WPI_READ_MEM_DATA); 1477 } 1478 1479 static void 1480 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1481 { 1482 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1483 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1484 } 1485 1486 static void 1487 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1488 const uint32_t *data, int wlen) 1489 { 1490 for (; wlen > 0; wlen--, data++, addr+=4) 1491 wpi_mem_write(sc, addr, *data); 1492 } 1493 1494 /* 1495 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1496 * using the traditional bit-bang method. Data is read up until len bytes have 1497 * been obtained. 1498 */ 1499 static uint16_t 1500 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1501 { 1502 int ntries; 1503 uint32_t val; 1504 uint8_t *out = data; 1505 1506 wpi_mem_lock(sc); 1507 1508 for (; len > 0; len -= 2, addr++) { 1509 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1510 1511 for (ntries = 0; ntries < 10; ntries++) { 1512 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1513 break; 1514 DELAY(5); 1515 } 1516 1517 if (ntries == 10) { 1518 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1519 return ETIMEDOUT; 1520 } 1521 1522 *out++= val >> 16; 1523 if (len > 1) 1524 *out ++= val >> 24; 1525 } 1526 1527 wpi_mem_unlock(sc); 1528 1529 return 0; 1530 } 1531 1532 /* 1533 * The firmware text and data segments are transferred to the NIC using DMA. 1534 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1535 * where to find it. Once the NIC has copied the firmware into its internal 1536 * memory, we can free our local copy in the driver. 1537 */ 1538 static int 1539 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1540 { 1541 int error, ntries; 1542 1543 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1544 1545 size /= sizeof(uint32_t); 1546 1547 wpi_mem_lock(sc); 1548 1549 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1550 (const uint32_t *)fw, size); 1551 1552 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1553 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1554 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1555 1556 /* run microcode */ 1557 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1558 1559 /* wait while the adapter is busy copying the firmware */ 1560 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1561 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1562 DPRINTFN(WPI_DEBUG_HW, 1563 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1564 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1565 if (status & WPI_TX_IDLE(6)) { 1566 DPRINTFN(WPI_DEBUG_HW, 1567 ("Status Match! - ntries = %d\n", ntries)); 1568 break; 1569 } 1570 DELAY(10); 1571 } 1572 if (ntries == 1000) { 1573 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1574 error = ETIMEDOUT; 1575 } 1576 1577 /* start the microcode executing */ 1578 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1579 1580 wpi_mem_unlock(sc); 1581 1582 return (error); 1583 } 1584 1585 static void 1586 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1587 struct wpi_rx_data *data) 1588 { 1589 struct ieee80211com *ic = &sc->sc_ic; 1590 struct ifnet *ifp = ic->ic_ifp; 1591 struct wpi_rx_ring *ring = &sc->rxq; 1592 struct wpi_rx_stat *stat; 1593 struct wpi_rx_head *head; 1594 struct wpi_rx_tail *tail; 1595 struct wpi_rbuf *rbuf; 1596 struct ieee80211_frame *wh; 1597 struct ieee80211_node *ni; 1598 struct mbuf *m, *mnew; 1599 WPI_LOCK_DECL; 1600 1601 stat = (struct wpi_rx_stat *)(desc + 1); 1602 1603 if (stat->len > WPI_STAT_MAXLEN) { 1604 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1605 ifp->if_ierrors++; 1606 return; 1607 } 1608 1609 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1610 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1611 1612 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1613 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1614 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1615 (uintmax_t)le64toh(tail->tstamp))); 1616 1617 m = data->m; 1618 1619 /* finalize mbuf */ 1620 m->m_pkthdr.rcvif = ifp; 1621 m->m_data = (caddr_t)(head + 1); 1622 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1623 1624 if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) { 1625 mnew = m_gethdr(M_DONTWAIT,MT_DATA); 1626 if (mnew == NULL) { 1627 ifp->if_ierrors++; 1628 return; 1629 } 1630 1631 /* attach Rx buffer to mbuf */ 1632 MEXTADD(mnew,rbuf->vaddr,WPI_RBUF_SIZE, wpi_free_rbuf, rbuf, 0, 1633 EXT_NET_DRV); 1634 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); 1635 data->m = mnew; 1636 1637 /* update Rx descriptor */ 1638 ring->desc[ring->cur] = htole32(rbuf->paddr); 1639 } else { 1640 /* no free rbufs, copy frame */ 1641 m = m_dup(m, M_DONTWAIT); 1642 if (m == NULL) { 1643 /* no free mbufs either, drop frame */ 1644 ifp->if_ierrors++; 1645 return; 1646 } 1647 } 1648 1649 #ifndef WPI_CURRENT 1650 if (sc->sc_drvbpf != NULL) { 1651 #else 1652 if (bpf_peers_present(sc->sc_drvbpf)) { 1653 #endif 1654 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1655 1656 tap->wr_flags = 0; 1657 tap->wr_chan_freq = 1658 htole16(ic->ic_channels[head->chan].ic_freq); 1659 tap->wr_chan_flags = 1660 htole16(ic->ic_channels[head->chan].ic_flags); 1661 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1662 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1663 tap->wr_tsft = tail->tstamp; 1664 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1665 switch (head->rate) { 1666 /* CCK rates */ 1667 case 10: tap->wr_rate = 2; break; 1668 case 20: tap->wr_rate = 4; break; 1669 case 55: tap->wr_rate = 11; break; 1670 case 110: tap->wr_rate = 22; break; 1671 /* OFDM rates */ 1672 case 0xd: tap->wr_rate = 12; break; 1673 case 0xf: tap->wr_rate = 18; break; 1674 case 0x5: tap->wr_rate = 24; break; 1675 case 0x7: tap->wr_rate = 36; break; 1676 case 0x9: tap->wr_rate = 48; break; 1677 case 0xb: tap->wr_rate = 72; break; 1678 case 0x1: tap->wr_rate = 96; break; 1679 case 0x3: tap->wr_rate = 108; break; 1680 /* unknown rate: should not happen */ 1681 default: tap->wr_rate = 0; 1682 } 1683 if (le16toh(head->flags) & 0x4) 1684 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1685 1686 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1687 } 1688 1689 wh = mtod(m, struct ieee80211_frame *); 1690 WPI_UNLOCK(sc); 1691 1692 /* XXX frame length > sizeof(struct ieee80211_frame_min)? */ 1693 /* grab a reference to the source node */ 1694 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1695 1696 /* send the frame to the 802.11 layer */ 1697 ieee80211_input(ic, m, ni, stat->rssi, 0, 0); 1698 1699 /* release node reference */ 1700 ieee80211_free_node(ni); 1701 WPI_LOCK(sc); 1702 } 1703 1704 static void 1705 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1706 { 1707 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1708 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1709 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1710 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1711 struct wpi_node *wn = (struct wpi_node *)txdata->ni; 1712 1713 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1714 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1715 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1716 le32toh(stat->status))); 1717 1718 /* 1719 * Update rate control statistics for the node. 1720 * XXX we should not count mgmt frames since they're always sent at 1721 * the lowest available bit-rate. 1722 * XXX frames w/o ACK shouldn't be used either 1723 */ 1724 wn->amn.amn_txcnt++; 1725 if (stat->ntries > 0) { 1726 DPRINTFN(3, ("%d retries\n", stat->ntries)); 1727 wn->amn.amn_retrycnt++; 1728 } 1729 1730 /* XXX oerrors should only count errors !maxtries */ 1731 if ((le32toh(stat->status) & 0xff) != 1) 1732 ifp->if_oerrors++; 1733 else 1734 ifp->if_opackets++; 1735 1736 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1737 bus_dmamap_unload(ring->data_dmat, txdata->map); 1738 /* XXX handle M_TXCB? */ 1739 m_freem(txdata->m); 1740 txdata->m = NULL; 1741 ieee80211_free_node(txdata->ni); 1742 txdata->ni = NULL; 1743 1744 ring->queued--; 1745 1746 sc->sc_tx_timer = 0; 1747 sc->watchdog_cnt = 0; 1748 callout_stop(&sc->watchdog_to); 1749 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1750 wpi_start(ifp); 1751 } 1752 1753 static void 1754 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1755 { 1756 struct wpi_tx_ring *ring = &sc->cmdq; 1757 struct wpi_tx_data *data; 1758 1759 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1760 "type=%s len=%d\n", desc->qid, desc->idx, 1761 desc->flags, wpi_cmd_str(desc->type), 1762 le32toh(desc->len))); 1763 1764 if ((desc->qid & 7) != 4) 1765 return; /* not a command ack */ 1766 1767 data = &ring->data[desc->idx]; 1768 1769 /* if the command was mapped in a mbuf, free it */ 1770 if (data->m != NULL) { 1771 bus_dmamap_unload(ring->data_dmat, data->map); 1772 m_freem(data->m); 1773 data->m = NULL; 1774 } 1775 1776 sc->flags &= ~WPI_FLAG_BUSY; 1777 wakeup(&ring->cmd[desc->idx]); 1778 } 1779 1780 static void 1781 wpi_notif_intr(struct wpi_softc *sc) 1782 { 1783 struct ieee80211com *ic = &sc->sc_ic; 1784 struct wpi_rx_desc *desc; 1785 struct wpi_rx_data *data; 1786 uint32_t hw; 1787 1788 hw = le32toh(sc->shared->next); 1789 while (sc->rxq.cur != hw) { 1790 data = &sc->rxq.data[sc->rxq.cur]; 1791 desc = (void *)data->m->m_ext.ext_buf; 1792 1793 DPRINTFN(WPI_DEBUG_NOTIFY, 1794 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1795 desc->qid, 1796 desc->idx, 1797 desc->flags, 1798 desc->type, 1799 le32toh(desc->len))); 1800 1801 if (!(desc->qid & 0x80)) /* reply to a command */ 1802 wpi_cmd_intr(sc, desc); 1803 1804 /* XXX beacon miss handling? */ 1805 switch (desc->type) { 1806 case WPI_RX_DONE: 1807 /* a 802.11 frame was received */ 1808 wpi_rx_intr(sc, desc, data); 1809 break; 1810 1811 case WPI_TX_DONE: 1812 /* a 802.11 frame has been transmitted */ 1813 wpi_tx_intr(sc, desc); 1814 break; 1815 1816 case WPI_UC_READY: 1817 { 1818 struct wpi_ucode_info *uc = 1819 (struct wpi_ucode_info *)(desc + 1); 1820 1821 /* the microcontroller is ready */ 1822 DPRINTF(("microcode alive notification version %x " 1823 "alive %x\n", le32toh(uc->version), 1824 le32toh(uc->valid))); 1825 1826 if (le32toh(uc->valid) != 1) { 1827 device_printf(sc->sc_dev, 1828 "microcontroller initialization failed\n"); 1829 wpi_stop_locked(sc); 1830 } 1831 break; 1832 } 1833 case WPI_STATE_CHANGED: 1834 { 1835 uint32_t *status = (uint32_t *)(desc + 1); 1836 1837 /* enabled/disabled notification */ 1838 DPRINTF(("state changed to %x\n", le32toh(*status))); 1839 1840 if (le32toh(*status) & 1) { 1841 device_printf(sc->sc_dev, 1842 "Radio transmitter is switched off\n"); 1843 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1844 break; 1845 } 1846 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 1847 break; 1848 } 1849 case WPI_START_SCAN: 1850 { 1851 struct wpi_start_scan *scan = 1852 (struct wpi_start_scan *)(desc + 1); 1853 1854 DPRINTFN(WPI_DEBUG_SCANNING, 1855 ("scanning channel %d status %x\n", 1856 scan->chan, le32toh(scan->status))); 1857 1858 /* fix current channel */ 1859 ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; 1860 break; 1861 } 1862 case WPI_STOP_SCAN: 1863 { 1864 struct wpi_stop_scan *scan = 1865 (struct wpi_stop_scan *)(desc + 1); 1866 1867 DPRINTFN(WPI_DEBUG_SCANNING, 1868 ("scan finished nchan=%d status=%d chan=%d\n", 1869 scan->nchan, scan->status, scan->chan)); 1870 1871 wpi_queue_cmd(sc, WPI_SCAN_NEXT); 1872 break; 1873 } 1874 } 1875 1876 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1877 } 1878 1879 /* tell the firmware what we have processed */ 1880 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1881 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1882 1883 } 1884 1885 static void 1886 wpi_intr(void *arg) 1887 { 1888 struct wpi_softc *sc = arg; 1889 uint32_t r; 1890 WPI_LOCK_DECL; 1891 1892 WPI_LOCK(sc); 1893 1894 r = WPI_READ(sc, WPI_INTR); 1895 if (r == 0 || r == 0xffffffff) { 1896 WPI_UNLOCK(sc); 1897 return; 1898 } 1899 1900 /* disable interrupts */ 1901 WPI_WRITE(sc, WPI_MASK, 0); 1902 /* ack interrupts */ 1903 WPI_WRITE(sc, WPI_INTR, r); 1904 1905 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1906 device_printf(sc->sc_dev, "fatal firmware error\n"); 1907 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1908 "(Hardware Error)")); 1909 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 1910 sc->flags &= ~WPI_FLAG_BUSY; 1911 WPI_UNLOCK(sc); 1912 return; 1913 } 1914 1915 if (r & WPI_RX_INTR) 1916 wpi_notif_intr(sc); 1917 1918 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1919 wakeup(sc); 1920 1921 /* re-enable interrupts */ 1922 if (sc->sc_ifp->if_flags & IFF_UP) 1923 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1924 1925 WPI_UNLOCK(sc); 1926 } 1927 1928 static uint8_t 1929 wpi_plcp_signal(int rate) 1930 { 1931 switch (rate) { 1932 /* CCK rates (returned values are device-dependent) */ 1933 case 2: return 10; 1934 case 4: return 20; 1935 case 11: return 55; 1936 case 22: return 110; 1937 1938 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1939 /* R1-R4 (ral/ural is R4-R1) */ 1940 case 12: return 0xd; 1941 case 18: return 0xf; 1942 case 24: return 0x5; 1943 case 36: return 0x7; 1944 case 48: return 0x9; 1945 case 72: return 0xb; 1946 case 96: return 0x1; 1947 case 108: return 0x3; 1948 1949 /* unsupported rates (should not get there) */ 1950 default: return 0; 1951 } 1952 } 1953 1954 /* quickly determine if a given rate is CCK or OFDM */ 1955 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1956 1957 /* 1958 * Construct the data packet for a transmit buffer and acutally put 1959 * the buffer onto the transmit ring, kicking the card to process the 1960 * the buffer. 1961 */ 1962 static int 1963 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1964 int ac) 1965 { 1966 struct ieee80211com *ic = &sc->sc_ic; 1967 struct wpi_tx_ring *ring = &sc->txq[ac]; 1968 struct wpi_tx_desc *desc; 1969 struct wpi_tx_data *data; 1970 struct wpi_tx_cmd *cmd; 1971 struct wpi_cmd_data *tx; 1972 struct ieee80211_frame *wh; 1973 struct ieee80211_key *k; 1974 const struct chanAccParams *cap; 1975 struct mbuf *mnew; 1976 int i, error, nsegs, rate, hdrlen, noack = 0; 1977 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1978 1979 desc = &ring->desc[ring->cur]; 1980 data = &ring->data[ring->cur]; 1981 1982 wh = mtod(m0, struct ieee80211_frame *); 1983 1984 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1985 hdrlen = sizeof (struct ieee80211_qosframe); 1986 cap = &ic->ic_wme.wme_chanParams; 1987 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 1988 } else 1989 hdrlen = sizeof (struct ieee80211_frame); 1990 1991 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1992 if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) { 1993 m_freem(m0); 1994 return ENOBUFS; 1995 } 1996 1997 /* packet header may have moved, reset our local pointer */ 1998 wh = mtod(m0, struct ieee80211_frame *); 1999 } 2000 2001 /* pickup a rate */ 2002 if (IEEE80211_IS_MULTICAST(wh->i_addr1)|| 2003 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 2004 IEEE80211_FC0_TYPE_MGT)) { 2005 /* 2006 * mgmt/multicast frames are sent at the lowest available 2007 * bit-rate 2008 */ 2009 rate = ni->ni_rates.rs_rates[0]; 2010 } else { 2011 if (ic->ic_fixed_rate != -1) { 2012 rate = ic->ic_sup_rates[ic->ic_curmode]. 2013 rs_rates[ic->ic_fixed_rate]; 2014 } else 2015 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2016 } 2017 rate &= IEEE80211_RATE_VAL; 2018 2019 #ifndef WPI_CURRENT 2020 if (sc->sc_drvbpf != NULL) { 2021 #else 2022 if (bpf_peers_present(sc->sc_drvbpf)) { 2023 #endif 2024 2025 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 2026 2027 tap->wt_flags = 0; 2028 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 2029 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 2030 tap->wt_rate = rate; 2031 tap->wt_hwqueue = ac; 2032 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2033 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2034 2035 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2036 } 2037 2038 cmd = &ring->cmd[ring->cur]; 2039 cmd->code = WPI_CMD_TX_DATA; 2040 cmd->flags = 0; 2041 cmd->qid = ring->qid; 2042 cmd->idx = ring->cur; 2043 2044 tx = (struct wpi_cmd_data *)cmd->data; 2045 tx->flags = 0; 2046 2047 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2048 tx->flags |= htole32(WPI_TX_NEED_ACK); 2049 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 2050 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP); 2051 } 2052 2053 tx->flags |= htole32(WPI_TX_AUTO_SEQ); 2054 2055 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST : 2056 WPI_ID_BSS; 2057 2058 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 2059 IEEE80211_FC0_TYPE_MGT) { 2060 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2061 /* tell h/w to set timestamp in probe responses */ 2062 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2063 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 2064 2065 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2066 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2067 tx->timeout = htole16(3); 2068 else 2069 tx->timeout = htole16(2); 2070 } else 2071 tx->timeout = htole16(0); 2072 2073 tx->rate = wpi_plcp_signal(rate); 2074 2075 /* be very persistant at sending frames out */ 2076 tx->rts_ntries = 7; 2077 tx->data_ntries = 15; 2078 2079 tx->ofdm_mask = 0xff; 2080 tx->cck_mask = 0x0f; 2081 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 2082 2083 tx->len = htole16(m0->m_pkthdr.len); 2084 2085 /* save and trim IEEE802.11 header */ 2086 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 2087 m_adj(m0, hdrlen); 2088 2089 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 2090 &nsegs, BUS_DMA_NOWAIT); 2091 if (error != 0 && error != EFBIG) { 2092 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 2093 error); 2094 m_freem(m0); 2095 return error; 2096 } 2097 if (error != 0) { 2098 /* XXX use ath_defrag */ 2099 mnew = m_defrag(m0, M_DONTWAIT); 2100 if (mnew == NULL) { 2101 device_printf(sc->sc_dev, 2102 "could not defragment mbuf\n"); 2103 m_freem(m0); 2104 return ENOBUFS; 2105 } 2106 m0 = mnew; 2107 2108 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 2109 m0, segs, &nsegs, BUS_DMA_NOWAIT); 2110 if (error != 0) { 2111 device_printf(sc->sc_dev, 2112 "could not map mbuf (error %d)\n", error); 2113 m_freem(m0); 2114 return error; 2115 } 2116 } 2117 2118 data->m = m0; 2119 data->ni = ni; 2120 2121 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 2122 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 2123 2124 /* first scatter/gather segment is used by the tx data command */ 2125 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2126 (1 + nsegs) << 24); 2127 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2128 ring->cur * sizeof (struct wpi_tx_cmd)); 2129 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 2130 for (i = 1; i <= nsegs; i++) { 2131 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 2132 desc->segs[i].len = htole32(segs[i - 1].ds_len); 2133 } 2134 2135 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2136 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2137 BUS_DMASYNC_PREWRITE); 2138 2139 ring->queued++; 2140 2141 /* kick ring */ 2142 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2143 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2144 2145 return 0; 2146 } 2147 2148 /** 2149 * Process data waiting to be sent on the IFNET output queue 2150 */ 2151 static void 2152 wpi_start(struct ifnet *ifp) 2153 { 2154 struct wpi_softc *sc = ifp->if_softc; 2155 struct ieee80211com *ic = &sc->sc_ic; 2156 struct ieee80211_node *ni; 2157 struct ether_header *eh; 2158 struct mbuf *m0; 2159 int ac; 2160 WPI_LOCK_DECL; 2161 2162 WPI_LOCK(sc); 2163 2164 for (;;) { 2165 IF_POLL(&ic->ic_mgtq, m0); 2166 if (m0 != NULL) { 2167 IF_DEQUEUE(&ic->ic_mgtq, m0); 2168 2169 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2170 m0->m_pkthdr.rcvif = NULL; 2171 2172 /* management frames go into ring 0 */ 2173 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2174 ifp->if_oerrors++; 2175 continue; 2176 } 2177 2178 if (wpi_tx_data(sc, m0, ni, 0) != 0) { 2179 ifp->if_oerrors++; 2180 break; 2181 } 2182 } else { 2183 if (ic->ic_state != IEEE80211_S_RUN) 2184 break; 2185 2186 IFQ_POLL(&ifp->if_snd, m0); 2187 if (m0 == NULL) 2188 break; 2189 2190 /* 2191 * Cancel any background scan. 2192 */ 2193 if (ic->ic_flags & IEEE80211_F_SCAN) 2194 ieee80211_cancel_scan(ic); 2195 2196 if (m0->m_len < sizeof (*eh) && 2197 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) { 2198 ifp->if_oerrors++; 2199 continue; 2200 } 2201 eh = mtod(m0, struct ether_header *); 2202 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2203 if (ni == NULL) { 2204 m_freem(m0); 2205 ifp->if_oerrors++; 2206 continue; 2207 } 2208 2209 /* classify mbuf so we can find which tx ring to use */ 2210 if (ieee80211_classify(ic, m0, ni) != 0) { 2211 m_freem(m0); 2212 ieee80211_free_node(ni); 2213 ifp->if_oerrors++; 2214 continue; 2215 } 2216 2217 /* no QoS encapsulation for EAPOL frames */ 2218 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 2219 M_WME_GETAC(m0) : WME_AC_BE; 2220 2221 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2222 /* there is no place left in this ring */ 2223 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 2224 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2225 break; 2226 } 2227 2228 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 2229 BPF_MTAP(ifp, m0); 2230 2231 m0 = ieee80211_encap(ic, m0, ni); 2232 if (m0 == NULL) { 2233 ieee80211_free_node(ni); 2234 ifp->if_oerrors++; 2235 continue; 2236 } 2237 2238 #ifndef WPI_CURRENT 2239 if (ic->ic_rawbpf != NULL) 2240 #else 2241 if (bpf_peers_present(ic->ic_rawbpf)) 2242 #endif 2243 bpf_mtap(ic->ic_rawbpf, m0); 2244 2245 if (wpi_tx_data(sc, m0, ni, ac) != 0) { 2246 ieee80211_free_node(ni); 2247 ifp->if_oerrors++; 2248 break; 2249 } 2250 } 2251 2252 sc->sc_tx_timer = 5; 2253 sc->watchdog_cnt = 5; 2254 ic->ic_lastdata = ticks; 2255 } 2256 2257 WPI_UNLOCK(sc); 2258 } 2259 2260 static void 2261 wpi_watchdog(struct ifnet *ifp) 2262 { 2263 struct wpi_softc *sc = ifp->if_softc; 2264 WPI_LOCK_DECL; 2265 2266 WPI_LOCK(sc); 2267 2268 DPRINTFN(WPI_DEBUG_WATCHDOG, ("watchdog_cnt: %d\n", sc->watchdog_cnt)); 2269 2270 if (sc->watchdog_cnt == 0 || --sc->watchdog_cnt) 2271 goto done; 2272 2273 if (--sc->sc_tx_timer != 0) { 2274 device_printf(sc->sc_dev,"device timeout\n"); 2275 ifp->if_oerrors++; 2276 taskqueue_enqueue(sc->sc_tq2, &sc->sc_restarttask); 2277 } 2278 done: 2279 WPI_UNLOCK(sc); 2280 } 2281 2282 static int 2283 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2284 { 2285 struct wpi_softc *sc = ifp->if_softc; 2286 struct ieee80211com *ic = &sc->sc_ic; 2287 int error = 0; 2288 WPI_LOCK_DECL; 2289 2290 WPI_LOCK(sc); 2291 2292 switch (cmd) { 2293 case SIOCSIFFLAGS: 2294 if ((ifp->if_flags & IFF_UP)) { 2295 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2296 wpi_init(sc); 2297 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2298 wpi_stop_locked(sc); 2299 break; 2300 default: 2301 WPI_UNLOCK(sc); 2302 error = ieee80211_ioctl(ic, cmd, data); 2303 WPI_LOCK(sc); 2304 } 2305 2306 if (error == ENETRESET) { 2307 if ((ifp->if_flags & IFF_UP) && 2308 (ifp->if_drv_flags & IFF_DRV_RUNNING) && 2309 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2310 wpi_init(sc); 2311 error = 0; 2312 } 2313 2314 WPI_UNLOCK(sc); 2315 2316 return error; 2317 } 2318 2319 /* 2320 * Extract various information from EEPROM. 2321 */ 2322 static void 2323 wpi_read_eeprom(struct wpi_softc *sc) 2324 { 2325 struct ieee80211com *ic = &sc->sc_ic; 2326 int i; 2327 2328 /* read the hardware capabilities, revision and SKU type */ 2329 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2330 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2331 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2332 2333 /* read the regulatory domain */ 2334 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2335 2336 /* read in the hw MAC address */ 2337 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 2338 2339 /* read the list of authorized channels */ 2340 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2341 wpi_read_eeprom_channels(sc,i); 2342 2343 /* read the power level calibration info for each group */ 2344 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2345 wpi_read_eeprom_group(sc,i); 2346 } 2347 2348 /* 2349 * Send a command to the firmware. 2350 */ 2351 static int 2352 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2353 { 2354 struct wpi_tx_ring *ring = &sc->cmdq; 2355 struct wpi_tx_desc *desc; 2356 struct wpi_tx_cmd *cmd; 2357 2358 #ifdef WPI_DEBUG 2359 if (!async) { 2360 WPI_LOCK_ASSERT(sc); 2361 } 2362 #endif 2363 2364 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2365 async)); 2366 2367 if (sc->flags & WPI_FLAG_BUSY) { 2368 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2369 __func__, code); 2370 return EAGAIN; 2371 } 2372 sc->flags|= WPI_FLAG_BUSY; 2373 2374 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2375 code, size)); 2376 2377 desc = &ring->desc[ring->cur]; 2378 cmd = &ring->cmd[ring->cur]; 2379 2380 cmd->code = code; 2381 cmd->flags = 0; 2382 cmd->qid = ring->qid; 2383 cmd->idx = ring->cur; 2384 memcpy(cmd->data, buf, size); 2385 2386 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2387 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2388 ring->cur * sizeof (struct wpi_tx_cmd)); 2389 desc->segs[0].len = htole32(4 + size); 2390 2391 /* kick cmd ring */ 2392 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2393 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2394 2395 if (async) { 2396 sc->flags &= ~ WPI_FLAG_BUSY; 2397 return 0; 2398 } 2399 2400 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2401 } 2402 2403 static int 2404 wpi_wme_update(struct ieee80211com *ic) 2405 { 2406 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2407 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2408 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2409 const struct wmeParams *wmep; 2410 struct wpi_wme_setup wme; 2411 int ac; 2412 2413 /* don't override default WME values if WME is not actually enabled */ 2414 if (!(ic->ic_flags & IEEE80211_F_WME)) 2415 return 0; 2416 2417 wme.flags = 0; 2418 for (ac = 0; ac < WME_NUM_AC; ac++) { 2419 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2420 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2421 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2422 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2423 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2424 2425 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2426 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2427 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2428 } 2429 2430 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2431 #undef WPI_USEC 2432 #undef WPI_EXP2 2433 } 2434 2435 /* 2436 * Configure h/w multi-rate retries. 2437 */ 2438 static int 2439 wpi_mrr_setup(struct wpi_softc *sc) 2440 { 2441 struct ieee80211com *ic = &sc->sc_ic; 2442 struct wpi_mrr_setup mrr; 2443 int i, error; 2444 2445 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2446 2447 /* CCK rates (not used with 802.11a) */ 2448 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2449 mrr.rates[i].flags = 0; 2450 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2451 /* fallback to the immediate lower CCK rate (if any) */ 2452 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2453 /* try one time at this rate before falling back to "next" */ 2454 mrr.rates[i].ntries = 1; 2455 } 2456 2457 /* OFDM rates (not used with 802.11b) */ 2458 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2459 mrr.rates[i].flags = 0; 2460 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2461 /* fallback to the immediate lower OFDM rate (if any) */ 2462 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2463 mrr.rates[i].next = (i == WPI_OFDM6) ? 2464 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2465 WPI_OFDM6 : WPI_CCK2) : 2466 i - 1; 2467 /* try one time at this rate before falling back to "next" */ 2468 mrr.rates[i].ntries = 1; 2469 } 2470 2471 /* setup MRR for control frames */ 2472 mrr.which = htole32(WPI_MRR_CTL); 2473 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2474 if (error != 0) { 2475 device_printf(sc->sc_dev, 2476 "could not setup MRR for control frames\n"); 2477 return error; 2478 } 2479 2480 /* setup MRR for data frames */ 2481 mrr.which = htole32(WPI_MRR_DATA); 2482 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2483 if (error != 0) { 2484 device_printf(sc->sc_dev, 2485 "could not setup MRR for data frames\n"); 2486 return error; 2487 } 2488 2489 return 0; 2490 } 2491 2492 static void 2493 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2494 { 2495 struct wpi_cmd_led led; 2496 2497 led.which = which; 2498 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2499 led.off = off; 2500 led.on = on; 2501 2502 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2503 } 2504 2505 static void 2506 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2507 { 2508 struct wpi_cmd_tsf tsf; 2509 uint64_t val, mod; 2510 2511 memset(&tsf, 0, sizeof tsf); 2512 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2513 tsf.bintval = htole16(ni->ni_intval); 2514 tsf.lintval = htole16(10); 2515 2516 /* compute remaining time until next beacon */ 2517 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2518 mod = le64toh(tsf.tstamp) % val; 2519 tsf.binitval = htole32((uint32_t)(val - mod)); 2520 2521 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2522 device_printf(sc->sc_dev, "could not enable TSF\n"); 2523 } 2524 2525 #if 0 2526 /* 2527 * Build a beacon frame that the firmware will broadcast periodically in 2528 * IBSS or HostAP modes. 2529 */ 2530 static int 2531 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2532 { 2533 struct ieee80211com *ic = &sc->sc_ic; 2534 struct wpi_tx_ring *ring = &sc->cmdq; 2535 struct wpi_tx_desc *desc; 2536 struct wpi_tx_data *data; 2537 struct wpi_tx_cmd *cmd; 2538 struct wpi_cmd_beacon *bcn; 2539 struct ieee80211_beacon_offsets bo; 2540 struct mbuf *m0; 2541 bus_addr_t physaddr; 2542 int error; 2543 2544 desc = &ring->desc[ring->cur]; 2545 data = &ring->data[ring->cur]; 2546 2547 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2548 if (m0 == NULL) { 2549 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2550 return ENOMEM; 2551 } 2552 2553 cmd = &ring->cmd[ring->cur]; 2554 cmd->code = WPI_CMD_SET_BEACON; 2555 cmd->flags = 0; 2556 cmd->qid = ring->qid; 2557 cmd->idx = ring->cur; 2558 2559 bcn = (struct wpi_cmd_beacon *)cmd->data; 2560 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2561 bcn->id = WPI_ID_BROADCAST; 2562 bcn->ofdm_mask = 0xff; 2563 bcn->cck_mask = 0x0f; 2564 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2565 bcn->len = htole16(m0->m_pkthdr.len); 2566 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2567 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2568 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2569 2570 /* save and trim IEEE802.11 header */ 2571 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2572 m_adj(m0, sizeof (struct ieee80211_frame)); 2573 2574 /* assume beacon frame is contiguous */ 2575 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2576 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2577 if (error != 0) { 2578 device_printf(sc->sc_dev, "could not map beacon\n"); 2579 m_freem(m0); 2580 return error; 2581 } 2582 2583 data->m = m0; 2584 2585 /* first scatter/gather segment is used by the beacon command */ 2586 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2587 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2588 ring->cur * sizeof (struct wpi_tx_cmd)); 2589 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2590 desc->segs[1].addr = htole32(physaddr); 2591 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2592 2593 /* kick cmd ring */ 2594 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2595 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2596 2597 return 0; 2598 } 2599 #endif 2600 2601 static int 2602 wpi_auth(struct wpi_softc *sc) 2603 { 2604 struct ieee80211com *ic = &sc->sc_ic; 2605 struct ieee80211_node *ni = ic->ic_bss; 2606 struct wpi_node_info node; 2607 int error; 2608 2609 /* update adapter's configuration */ 2610 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2611 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2612 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2613 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2614 WPI_CONFIG_24GHZ); 2615 } 2616 switch (ic->ic_curmode) { 2617 case IEEE80211_MODE_11A: 2618 sc->config.cck_mask = 0; 2619 sc->config.ofdm_mask = 0x15; 2620 break; 2621 case IEEE80211_MODE_11B: 2622 sc->config.cck_mask = 0x03; 2623 sc->config.ofdm_mask = 0; 2624 break; 2625 default: /* assume 802.11b/g */ 2626 sc->config.cck_mask = 0x0f; 2627 sc->config.ofdm_mask = 0x15; 2628 } 2629 2630 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2631 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2632 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2633 sizeof (struct wpi_config), 1); 2634 if (error != 0) { 2635 device_printf(sc->sc_dev, "could not configure\n"); 2636 return error; 2637 } 2638 2639 /* configuration has changed, set Tx power accordingly */ 2640 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2641 device_printf(sc->sc_dev, "could not set Tx power\n"); 2642 return error; 2643 } 2644 2645 /* add default node */ 2646 memset(&node, 0, sizeof node); 2647 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2648 node.id = WPI_ID_BSS; 2649 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2650 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2651 node.action = htole32(WPI_ACTION_SET_RATE); 2652 node.antenna = WPI_ANTENNA_BOTH; 2653 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2654 if (error != 0) { 2655 device_printf(sc->sc_dev, "could not add BSS node\n"); 2656 return error; 2657 } 2658 2659 sc->flags &= ~WPI_FLAG_AUTH; 2660 2661 return 0; 2662 } 2663 2664 /* 2665 * Send a scan request to the firmware. Since this command is huge, we map it 2666 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2667 * much of this code is similar to that in wpi_cmd but because we must manually 2668 * construct the probe & channels, we duplicate what's needed here. XXX In the 2669 * future, this function should be modified to use wpi_cmd to help cleanup the 2670 * code base. 2671 */ 2672 static int 2673 wpi_scan(struct wpi_softc *sc) 2674 { 2675 struct ieee80211com *ic = &sc->sc_ic; 2676 struct wpi_tx_ring *ring = &sc->cmdq; 2677 struct wpi_tx_desc *desc; 2678 struct wpi_tx_data *data; 2679 struct wpi_tx_cmd *cmd; 2680 struct wpi_scan_hdr *hdr; 2681 struct wpi_scan_chan *chan; 2682 struct ieee80211_frame *wh; 2683 struct ieee80211_rateset *rs; 2684 struct ieee80211_channel *c; 2685 enum ieee80211_phymode mode; 2686 uint8_t *frm; 2687 int nrates, pktlen, error; 2688 bus_addr_t physaddr; 2689 struct ifnet *ifp = ic->ic_ifp; 2690 2691 desc = &ring->desc[ring->cur]; 2692 data = &ring->data[ring->cur]; 2693 2694 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2695 if (data->m == NULL) { 2696 device_printf(sc->sc_dev, 2697 "could not allocate mbuf for scan command\n"); 2698 return ENOMEM; 2699 } 2700 2701 cmd = mtod(data->m, struct wpi_tx_cmd *); 2702 cmd->code = WPI_CMD_SCAN; 2703 cmd->flags = 0; 2704 cmd->qid = ring->qid; 2705 cmd->idx = ring->cur; 2706 2707 hdr = (struct wpi_scan_hdr *)cmd->data; 2708 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2709 2710 /* 2711 * Move to the next channel if no packets are received within 5 msecs 2712 * after sending the probe request (this helps to reduce the duration 2713 * of active scans). 2714 */ 2715 hdr->quiet = htole16(5); 2716 hdr->threshold = htole16(1); 2717 2718 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2719 /* send probe requests at 6Mbps */ 2720 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2721 2722 /* Enable crc checking */ 2723 hdr->promotion = htole16(1); 2724 } else { 2725 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2726 /* send probe requests at 1Mbps */ 2727 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2728 } 2729 hdr->tx.id = WPI_ID_BROADCAST; 2730 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2731 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2732 2733 /*XXX Need to cater for multiple essids */ 2734 memset(&hdr->scan_essids[0], 0, 4 * sizeof(hdr->scan_essids[0])); 2735 hdr->scan_essids[0].id = IEEE80211_ELEMID_SSID; 2736 hdr->scan_essids[0].esslen = ic->ic_des_ssid[0].len; 2737 memcpy(hdr->scan_essids[0].essid, ic->ic_des_ssid[0].ssid, 2738 ic->ic_des_ssid[0].len); 2739 2740 if (wpi_debug & WPI_DEBUG_SCANNING) { 2741 printf("Scanning Essid: "); 2742 ieee80211_print_essid(ic->ic_des_ssid[0].ssid, 2743 ic->ic_des_ssid[0].len); 2744 printf("\n"); 2745 } 2746 2747 /* 2748 * Build a probe request frame. Most of the following code is a 2749 * copy & paste of what is done in net80211. 2750 */ 2751 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2752 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2753 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2754 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2755 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2756 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2757 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2758 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2759 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2760 2761 frm = (uint8_t *)(wh + 1); 2762 2763 /* add essid IE, the hardware will fill this in for us */ 2764 *frm++ = IEEE80211_ELEMID_SSID; 2765 *frm++ = 0; 2766 2767 mode = ieee80211_chan2mode(ic->ic_curchan); 2768 rs = &ic->ic_sup_rates[mode]; 2769 2770 /* add supported rates IE */ 2771 *frm++ = IEEE80211_ELEMID_RATES; 2772 nrates = rs->rs_nrates; 2773 if (nrates > IEEE80211_RATE_SIZE) 2774 nrates = IEEE80211_RATE_SIZE; 2775 *frm++ = nrates; 2776 memcpy(frm, rs->rs_rates, nrates); 2777 frm += nrates; 2778 2779 /* add supported xrates IE */ 2780 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2781 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2782 *frm++ = IEEE80211_ELEMID_XRATES; 2783 *frm++ = nrates; 2784 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2785 frm += nrates; 2786 } 2787 2788 /* setup length of probe request */ 2789 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2790 2791 /* 2792 * Construct information about the channel that we 2793 * want to scan. The firmware expects this to be directly 2794 * after the scan probe request 2795 */ 2796 c = ic->ic_curchan; 2797 chan = (struct wpi_scan_chan *)frm; 2798 chan->chan = ieee80211_chan2ieee(ic, c); 2799 chan->flags = 0; 2800 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2801 chan->flags |= WPI_CHAN_ACTIVE; 2802 if (ic->ic_des_ssid[0].len != 0) 2803 chan->flags |= WPI_CHAN_DIRECT; 2804 } 2805 chan->gain_dsp = 0x6e; /* Default level */ 2806 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2807 chan->active = htole16(10); 2808 chan->passive = htole16(sc->maxdwell); 2809 chan->gain_radio = 0x3b; 2810 } else { 2811 chan->active = htole16(20); 2812 chan->passive = htole16(sc->maxdwell); 2813 chan->gain_radio = 0x28; 2814 } 2815 2816 DPRINTFN(WPI_DEBUG_SCANNING, 2817 ("Scanning %u Passive: %d\n", 2818 chan->chan, 2819 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2820 2821 hdr->nchan++; 2822 chan++; 2823 2824 frm += sizeof (struct wpi_scan_chan); 2825 #if 0 2826 // XXX All Channels.... 2827 for (c = &ic->ic_channels[1]; 2828 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2829 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2830 continue; 2831 2832 chan->chan = ieee80211_chan2ieee(ic, c); 2833 chan->flags = 0; 2834 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2835 chan->flags |= WPI_CHAN_ACTIVE; 2836 if (ic->ic_des_ssid[0].len != 0) 2837 chan->flags |= WPI_CHAN_DIRECT; 2838 } 2839 chan->gain_dsp = 0x6e; /* Default level */ 2840 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2841 chan->active = htole16(10); 2842 chan->passive = htole16(110); 2843 chan->gain_radio = 0x3b; 2844 } else { 2845 chan->active = htole16(20); 2846 chan->passive = htole16(120); 2847 chan->gain_radio = 0x28; 2848 } 2849 2850 DPRINTFN(WPI_DEBUG_SCANNING, 2851 ("Scanning %u Passive: %d\n", 2852 chan->chan, 2853 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2854 2855 hdr->nchan++; 2856 chan++; 2857 2858 frm += sizeof (struct wpi_scan_chan); 2859 } 2860 #endif 2861 2862 hdr->len = htole16(frm - (uint8_t *)hdr); 2863 pktlen = frm - (uint8_t *)cmd; 2864 2865 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2866 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2867 if (error != 0) { 2868 device_printf(sc->sc_dev, "could not map scan command\n"); 2869 m_freem(data->m); 2870 data->m = NULL; 2871 return error; 2872 } 2873 2874 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2875 desc->segs[0].addr = htole32(physaddr); 2876 desc->segs[0].len = htole32(pktlen); 2877 2878 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2879 BUS_DMASYNC_PREWRITE); 2880 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2881 2882 /* kick cmd ring */ 2883 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2884 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2885 2886 return 0; /* will be notified async. of failure/success */ 2887 } 2888 2889 /** 2890 * Configure the card to listen to a particular channel, this transisions the 2891 * card in to being able to receive frames from remote devices. 2892 */ 2893 static int 2894 wpi_config(struct wpi_softc *sc) 2895 { 2896 struct ieee80211com *ic = &sc->sc_ic; 2897 struct ifnet *ifp = ic->ic_ifp; 2898 struct wpi_power power; 2899 struct wpi_bluetooth bluetooth; 2900 struct wpi_node_info node; 2901 int error; 2902 2903 /* set power mode */ 2904 memset(&power, 0, sizeof power); 2905 power.flags = htole32(WPI_POWER_CAM|0x8); 2906 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2907 if (error != 0) { 2908 device_printf(sc->sc_dev, "could not set power mode\n"); 2909 return error; 2910 } 2911 2912 /* configure bluetooth coexistence */ 2913 memset(&bluetooth, 0, sizeof bluetooth); 2914 bluetooth.flags = 3; 2915 bluetooth.lead = 0xaa; 2916 bluetooth.kill = 1; 2917 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2918 0); 2919 if (error != 0) { 2920 device_printf(sc->sc_dev, 2921 "could not configure bluetooth coexistence\n"); 2922 return error; 2923 } 2924 2925 /* configure adapter */ 2926 memset(&sc->config, 0, sizeof (struct wpi_config)); 2927 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); 2928 /*set default channel*/ 2929 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2930 sc->config.flags = htole32(WPI_CONFIG_TSF); 2931 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2932 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2933 WPI_CONFIG_24GHZ); 2934 } 2935 sc->config.filter = 0; 2936 switch (ic->ic_opmode) { 2937 case IEEE80211_M_STA: 2938 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2939 sc->config.mode = WPI_MODE_STA; 2940 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2941 break; 2942 case IEEE80211_M_IBSS: 2943 case IEEE80211_M_AHDEMO: 2944 sc->config.mode = WPI_MODE_IBSS; 2945 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2946 WPI_FILTER_MULTICAST); 2947 break; 2948 case IEEE80211_M_HOSTAP: 2949 sc->config.mode = WPI_MODE_HOSTAP; 2950 break; 2951 case IEEE80211_M_MONITOR: 2952 sc->config.mode = WPI_MODE_MONITOR; 2953 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2954 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2955 break; 2956 } 2957 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2958 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2959 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2960 sizeof (struct wpi_config), 0); 2961 if (error != 0) { 2962 device_printf(sc->sc_dev, "configure command failed\n"); 2963 return error; 2964 } 2965 2966 /* configuration has changed, set Tx power accordingly */ 2967 if ((error = wpi_set_txpower(sc, ic->ic_curchan,0)) != 0) { 2968 device_printf(sc->sc_dev, "could not set Tx power\n"); 2969 return error; 2970 } 2971 2972 /* add broadcast node */ 2973 memset(&node, 0, sizeof node); 2974 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2975 node.id = WPI_ID_BROADCAST; 2976 node.rate = wpi_plcp_signal(2); 2977 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2978 if (error != 0) { 2979 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2980 return error; 2981 } 2982 2983 /* Setup rate scalling */ 2984 error = wpi_mrr_setup(sc); 2985 if (error != 0) { 2986 device_printf(sc->sc_dev, "could not setup MRR\n"); 2987 return error; 2988 } 2989 2990 return 0; 2991 } 2992 2993 static void 2994 wpi_stop_master(struct wpi_softc *sc) 2995 { 2996 uint32_t tmp; 2997 int ntries; 2998 2999 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 3000 3001 tmp = WPI_READ(sc, WPI_RESET); 3002 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 3003 3004 tmp = WPI_READ(sc, WPI_GPIO_CTL); 3005 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 3006 return; /* already asleep */ 3007 3008 for (ntries = 0; ntries < 100; ntries++) { 3009 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 3010 break; 3011 DELAY(10); 3012 } 3013 if (ntries == 100) { 3014 device_printf(sc->sc_dev, "timeout waiting for master\n"); 3015 } 3016 } 3017 3018 static int 3019 wpi_power_up(struct wpi_softc *sc) 3020 { 3021 uint32_t tmp; 3022 int ntries; 3023 3024 wpi_mem_lock(sc); 3025 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 3026 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 3027 wpi_mem_unlock(sc); 3028 3029 for (ntries = 0; ntries < 5000; ntries++) { 3030 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 3031 break; 3032 DELAY(10); 3033 } 3034 if (ntries == 5000) { 3035 device_printf(sc->sc_dev, 3036 "timeout waiting for NIC to power up\n"); 3037 return ETIMEDOUT; 3038 } 3039 return 0; 3040 } 3041 3042 static int 3043 wpi_reset(struct wpi_softc *sc) 3044 { 3045 uint32_t tmp; 3046 int ntries; 3047 3048 DPRINTFN(WPI_DEBUG_HW, 3049 ("Resetting the card - clearing any uploaded firmware\n")); 3050 3051 /* clear any pending interrupts */ 3052 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3053 3054 tmp = WPI_READ(sc, WPI_PLL_CTL); 3055 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 3056 3057 tmp = WPI_READ(sc, WPI_CHICKEN); 3058 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 3059 3060 tmp = WPI_READ(sc, WPI_GPIO_CTL); 3061 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 3062 3063 /* wait for clock stabilization */ 3064 for (ntries = 0; ntries < 25000; ntries++) { 3065 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 3066 break; 3067 DELAY(10); 3068 } 3069 if (ntries == 25000) { 3070 device_printf(sc->sc_dev, 3071 "timeout waiting for clock stabilization\n"); 3072 return ETIMEDOUT; 3073 } 3074 3075 /* initialize EEPROM */ 3076 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 3077 3078 if ((tmp & WPI_EEPROM_VERSION) == 0) { 3079 device_printf(sc->sc_dev, "EEPROM not found\n"); 3080 return EIO; 3081 } 3082 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 3083 3084 return 0; 3085 } 3086 3087 static void 3088 wpi_hw_config(struct wpi_softc *sc) 3089 { 3090 uint32_t rev, hw; 3091 3092 /* voodoo from the Linux "driver".. */ 3093 hw = WPI_READ(sc, WPI_HWCONFIG); 3094 3095 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 3096 if ((rev & 0xc0) == 0x40) 3097 hw |= WPI_HW_ALM_MB; 3098 else if (!(rev & 0x80)) 3099 hw |= WPI_HW_ALM_MM; 3100 3101 if (sc->cap == 0x80) 3102 hw |= WPI_HW_SKU_MRC; 3103 3104 hw &= ~WPI_HW_REV_D; 3105 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 3106 hw |= WPI_HW_REV_D; 3107 3108 if (sc->type > 1) 3109 hw |= WPI_HW_TYPE_B; 3110 3111 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3112 } 3113 3114 static void 3115 wpi_init(void *arg) 3116 { 3117 struct wpi_softc *sc = arg; 3118 struct ieee80211com *ic = &sc->sc_ic; 3119 struct ifnet *ifp = ic->ic_ifp; 3120 uint32_t tmp; 3121 int ntries, error, qid; 3122 WPI_LOCK_DECL; 3123 3124 WPI_LOCK(sc); 3125 3126 wpi_stop_locked(sc); 3127 (void)wpi_reset(sc); 3128 3129 wpi_mem_lock(sc); 3130 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3131 DELAY(20); 3132 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3133 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3134 wpi_mem_unlock(sc); 3135 3136 (void)wpi_power_up(sc); 3137 wpi_hw_config(sc); 3138 3139 /* init Rx ring */ 3140 wpi_mem_lock(sc); 3141 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3142 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3143 offsetof(struct wpi_shared, next)); 3144 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3145 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3146 wpi_mem_unlock(sc); 3147 3148 /* init Tx rings */ 3149 wpi_mem_lock(sc); 3150 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3151 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3152 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3153 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3154 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3155 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3156 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3157 3158 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3159 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3160 3161 for (qid = 0; qid < 6; qid++) { 3162 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3163 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3164 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3165 } 3166 wpi_mem_unlock(sc); 3167 3168 /* clear "radio off" and "disable command" bits (reversed logic) */ 3169 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3170 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3171 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3172 3173 /* clear any pending interrupts */ 3174 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3175 3176 /* enable interrupts */ 3177 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3178 3179 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3180 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3181 3182 if ((error = wpi_load_firmware(sc)) != 0) { 3183 device_printf(sc->sc_dev, 3184 "A problem occurred loading the firmware to the driver\n"); 3185 return; 3186 } 3187 3188 /* At this point the firmware is up and running. If the hardware 3189 * RF switch is turned off thermal calibration will fail, though 3190 * the card is still happy to continue to accept commands, catch 3191 * this case and record the hw is disabled. 3192 */ 3193 wpi_mem_lock(sc); 3194 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3195 wpi_mem_unlock(sc); 3196 3197 if (!(tmp & 0x1)) { 3198 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3199 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3200 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3201 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3202 return; 3203 } 3204 3205 /* wait for thermal sensors to calibrate */ 3206 for (ntries = 0; ntries < 1000; ntries++) { 3207 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3208 break; 3209 DELAY(10); 3210 } 3211 3212 if (ntries == 1000) { 3213 device_printf(sc->sc_dev, 3214 "timeout waiting for thermal sensors calibration\n"); 3215 error = ETIMEDOUT; 3216 return; 3217 } 3218 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3219 3220 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3221 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3222 callout_reset(&sc->watchdog_to, hz, wpi_tick, sc); 3223 WPI_UNLOCK(sc); 3224 3225 if (ic->ic_opmode == IEEE80211_M_MONITOR) 3226 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 3227 else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 3228 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 3229 } 3230 3231 static void 3232 wpi_stop(struct wpi_softc *sc) 3233 { 3234 WPI_LOCK_DECL; 3235 3236 WPI_LOCK(sc); 3237 wpi_stop_locked(sc); 3238 WPI_UNLOCK(sc); 3239 3240 } 3241 static void 3242 wpi_stop_locked(struct wpi_softc *sc) 3243 3244 { 3245 struct ieee80211com *ic = &sc->sc_ic; 3246 struct ifnet *ifp = ic->ic_ifp; 3247 uint32_t tmp; 3248 int ac; 3249 3250 sc->watchdog_cnt = sc->sc_tx_timer = 0; 3251 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3252 3253 /* disable interrupts */ 3254 WPI_WRITE(sc, WPI_MASK, 0); 3255 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3256 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3257 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3258 3259 /* Clear any commands left in the command buffer */ 3260 memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd)); 3261 3262 wpi_mem_lock(sc); 3263 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3264 wpi_mem_unlock(sc); 3265 3266 /* reset all Tx rings */ 3267 for (ac = 0; ac < 4; ac++) 3268 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3269 wpi_reset_tx_ring(sc, &sc->cmdq); 3270 3271 /* reset Rx ring */ 3272 wpi_reset_rx_ring(sc, &sc->rxq); 3273 3274 wpi_mem_lock(sc); 3275 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3276 wpi_mem_unlock(sc); 3277 3278 DELAY(5); 3279 3280 wpi_stop_master(sc); 3281 3282 tmp = WPI_READ(sc, WPI_RESET); 3283 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3284 sc->flags &= ~WPI_FLAG_BUSY; 3285 3286 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 3287 } 3288 3289 static void 3290 wpi_iter_func(void *arg, struct ieee80211_node *ni) 3291 { 3292 struct wpi_softc *sc = arg; 3293 struct wpi_node *wn = (struct wpi_node *)ni; 3294 3295 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 3296 } 3297 3298 static void 3299 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3300 { 3301 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc; 3302 int i; 3303 3304 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn); 3305 3306 for (i = ni->ni_rates.rs_nrates - 1; 3307 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 3308 i--); 3309 ni->ni_txrate = i; 3310 } 3311 3312 static void 3313 wpi_calib_timeout(void *arg) 3314 { 3315 struct wpi_softc *sc = arg; 3316 struct ieee80211com *ic = &sc->sc_ic; 3317 int temp; 3318 WPI_LOCK_DECL; 3319 3320 /* automatic rate control triggered every 500ms */ 3321 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 3322 WPI_LOCK(sc); 3323 if (ic->ic_opmode == IEEE80211_M_STA) 3324 wpi_iter_func(sc, ic->ic_bss); 3325 else 3326 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc); 3327 WPI_UNLOCK(sc); 3328 } 3329 3330 /* update sensor data */ 3331 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3332 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3333 #if 0 3334 //XXX Used by OpenBSD Sensor Framework 3335 sc->sensor.value = temp + 260; 3336 #endif 3337 3338 /* automatic power calibration every 60s */ 3339 if (++sc->calib_cnt >= 120) { 3340 wpi_power_calibration(sc, temp); 3341 sc->calib_cnt = 0; 3342 } 3343 3344 callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc); 3345 } 3346 3347 /* 3348 * This function is called periodically (every 60 seconds) to adjust output 3349 * power to temperature changes. 3350 */ 3351 static void 3352 wpi_power_calibration(struct wpi_softc *sc, int temp) 3353 { 3354 /* sanity-check read value */ 3355 if (temp < -260 || temp > 25) { 3356 /* this can't be correct, ignore */ 3357 DPRINTFN(WPI_DEBUG_TEMP, 3358 ("out-of-range temperature reported: %d\n", temp)); 3359 return; 3360 } 3361 3362 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3363 3364 /* adjust Tx power if need be */ 3365 if (abs(temp - sc->temp) <= 6) 3366 return; 3367 3368 sc->temp = temp; 3369 3370 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan,1) != 0) { 3371 /* just warn, too bad for the automatic calibration... */ 3372 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3373 } 3374 } 3375 3376 /** 3377 * Read the eeprom to find out what channels are valid for the given 3378 * band and update net80211 with what we find. 3379 */ 3380 static void 3381 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3382 { 3383 struct ieee80211com *ic = &sc->sc_ic; 3384 const struct wpi_chan_band *band = &wpi_bands[n]; 3385 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3386 int chan, i, offset, passive; 3387 3388 wpi_read_prom_data(sc, band->addr, channels, 3389 band->nchan * sizeof (struct wpi_eeprom_chan)); 3390 3391 for (i = 0; i < band->nchan; i++) { 3392 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3393 DPRINTFN(WPI_DEBUG_HW, 3394 ("Channel Not Valid: %d, band %d\n", 3395 band->chan[i],n)); 3396 continue; 3397 } 3398 3399 passive = 0; 3400 chan = band->chan[i]; 3401 offset = ic->ic_nchans; 3402 3403 /* is active scan allowed on this channel? */ 3404 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3405 passive = IEEE80211_CHAN_PASSIVE; 3406 } 3407 3408 if (n == 0) { /* 2GHz band */ 3409 ic->ic_channels[offset].ic_ieee = chan; 3410 ic->ic_channels[offset].ic_freq = 3411 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 3412 ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive; 3413 offset++; 3414 ic->ic_channels[offset].ic_ieee = chan; 3415 ic->ic_channels[offset].ic_freq = 3416 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 3417 ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive; 3418 offset++; 3419 3420 } else { /* 5GHz band */ 3421 /* 3422 * Some 3945ABG adapters support channels 7, 8, 11 3423 * and 12 in the 2GHz *and* 5GHz bands. 3424 * Because of limitations in our net80211(9) stack, 3425 * we can't support these channels in 5GHz band. 3426 * XXX not true; just need to map to proper frequency 3427 */ 3428 if (chan <= 14) 3429 continue; 3430 3431 ic->ic_channels[offset].ic_ieee = chan; 3432 ic->ic_channels[offset].ic_freq = 3433 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 3434 ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive; 3435 offset++; 3436 } 3437 3438 /* save maximum allowed power for this channel */ 3439 sc->maxpwr[chan] = channels[i].maxpwr; 3440 3441 ic->ic_nchans = offset; 3442 3443 #if 0 3444 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3445 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3446 //ic->ic_channels[chan].ic_minpower... 3447 //ic->ic_channels[chan].ic_maxregtxpower... 3448 #endif 3449 3450 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n", 3451 chan, channels[i].flags, sc->maxpwr[chan], offset)); 3452 } 3453 } 3454 3455 static void 3456 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3457 { 3458 struct wpi_power_group *group = &sc->groups[n]; 3459 struct wpi_eeprom_group rgroup; 3460 int i; 3461 3462 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3463 sizeof rgroup); 3464 3465 /* save power group information */ 3466 group->chan = rgroup.chan; 3467 group->maxpwr = rgroup.maxpwr; 3468 /* temperature at which the samples were taken */ 3469 group->temp = (int16_t)le16toh(rgroup.temp); 3470 3471 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3472 group->chan, group->maxpwr, group->temp)); 3473 3474 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3475 group->samples[i].index = rgroup.samples[i].index; 3476 group->samples[i].power = rgroup.samples[i].power; 3477 3478 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3479 group->samples[i].index, group->samples[i].power)); 3480 } 3481 } 3482 3483 /* 3484 * Update Tx power to match what is defined for channel `c'. 3485 */ 3486 static int 3487 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3488 { 3489 struct ieee80211com *ic = &sc->sc_ic; 3490 struct wpi_power_group *group; 3491 struct wpi_cmd_txpower txpower; 3492 u_int chan; 3493 int i; 3494 3495 /* get channel number */ 3496 chan = ieee80211_chan2ieee(ic, c); 3497 3498 /* find the power group to which this channel belongs */ 3499 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3500 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3501 if (chan <= group->chan) 3502 break; 3503 } else 3504 group = &sc->groups[0]; 3505 3506 memset(&txpower, 0, sizeof txpower); 3507 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3508 txpower.channel = htole16(chan); 3509 3510 /* set Tx power for all OFDM and CCK rates */ 3511 for (i = 0; i <= 11 ; i++) { 3512 /* retrieve Tx power for this channel/rate combination */ 3513 int idx = wpi_get_power_index(sc, group, c, 3514 wpi_ridx_to_rate[i]); 3515 3516 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3517 3518 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3519 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3520 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3521 } else { 3522 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3523 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3524 } 3525 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3526 chan, wpi_ridx_to_rate[i], idx)); 3527 } 3528 3529 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3530 } 3531 3532 /* 3533 * Determine Tx power index for a given channel/rate combination. 3534 * This takes into account the regulatory information from EEPROM and the 3535 * current temperature. 3536 */ 3537 static int 3538 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3539 struct ieee80211_channel *c, int rate) 3540 { 3541 /* fixed-point arithmetic division using a n-bit fractional part */ 3542 #define fdivround(a, b, n) \ 3543 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3544 3545 /* linear interpolation */ 3546 #define interpolate(x, x1, y1, x2, y2, n) \ 3547 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3548 3549 struct ieee80211com *ic = &sc->sc_ic; 3550 struct wpi_power_sample *sample; 3551 int pwr, idx; 3552 u_int chan; 3553 3554 /* get channel number */ 3555 chan = ieee80211_chan2ieee(ic, c); 3556 3557 /* default power is group's maximum power - 3dB */ 3558 pwr = group->maxpwr / 2; 3559 3560 /* decrease power for highest OFDM rates to reduce distortion */ 3561 switch (rate) { 3562 case 72: /* 36Mb/s */ 3563 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3564 break; 3565 case 96: /* 48Mb/s */ 3566 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3567 break; 3568 case 108: /* 54Mb/s */ 3569 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3570 break; 3571 } 3572 3573 /* never exceed channel's maximum allowed Tx power */ 3574 pwr = min(pwr, sc->maxpwr[chan]); 3575 3576 /* retrieve power index into gain tables from samples */ 3577 for (sample = group->samples; sample < &group->samples[3]; sample++) 3578 if (pwr > sample[1].power) 3579 break; 3580 /* fixed-point linear interpolation using a 19-bit fractional part */ 3581 idx = interpolate(pwr, sample[0].power, sample[0].index, 3582 sample[1].power, sample[1].index, 19); 3583 3584 /* 3585 * Adjust power index based on current temperature 3586 * - if colder than factory-calibrated: decreate output power 3587 * - if warmer than factory-calibrated: increase output power 3588 */ 3589 idx -= (sc->temp - group->temp) * 11 / 100; 3590 3591 /* decrease power for CCK rates (-5dB) */ 3592 if (!WPI_RATE_IS_OFDM(rate)) 3593 idx += 10; 3594 3595 /* keep power index in a valid range */ 3596 if (idx < 0) 3597 return 0; 3598 if (idx > WPI_MAX_PWR_INDEX) 3599 return WPI_MAX_PWR_INDEX; 3600 return idx; 3601 3602 #undef interpolate 3603 #undef fdivround 3604 } 3605 3606 #if 0 3607 static void 3608 wpi_radio_on(void *arg, int pending) 3609 { 3610 struct wpi_softc *sc = arg; 3611 3612 device_printf(sc->sc_dev, "radio turned on\n"); 3613 } 3614 3615 static void 3616 wpi_radio_off(void *arg, int pending) 3617 { 3618 struct wpi_softc *sc = arg; 3619 3620 device_printf(sc->sc_dev, "radio turned off\n"); 3621 } 3622 #endif 3623 3624 /** 3625 * Called by net80211 framework to indicate that a scan 3626 * is starting. This function doesn't actually do the scan, 3627 * wpi_scan_curchan starts things off. This function is more 3628 * of an early warning from the framework we should get ready 3629 * for the scan. 3630 */ 3631 static void 3632 wpi_scan_start(struct ieee80211com *ic) 3633 { 3634 struct ifnet *ifp = ic->ic_ifp; 3635 struct wpi_softc *sc = ifp->if_softc; 3636 3637 wpi_queue_cmd(sc, WPI_SCAN_START); 3638 } 3639 3640 /** 3641 * Called by the net80211 framework, indicates that the 3642 * scan has ended. If there is a scan in progress on the card 3643 * then it should be aborted. 3644 */ 3645 static void 3646 wpi_scan_end(struct ieee80211com *ic) 3647 { 3648 struct ifnet *ifp = ic->ic_ifp; 3649 struct wpi_softc *sc = ifp->if_softc; 3650 3651 wpi_queue_cmd(sc, WPI_SCAN_STOP); 3652 } 3653 3654 /** 3655 * Called by the net80211 framework to indicate to the driver 3656 * that the channel should be changed 3657 */ 3658 static void 3659 wpi_set_channel(struct ieee80211com *ic) 3660 { 3661 struct ifnet *ifp = ic->ic_ifp; 3662 struct wpi_softc *sc = ifp->if_softc; 3663 3664 wpi_queue_cmd(sc, WPI_SET_CHAN); 3665 } 3666 3667 /** 3668 * Called by net80211 to indicate that we need to scan the current 3669 * channel. The channel is previously be set via the wpi_set_channel 3670 * callback. 3671 */ 3672 static void 3673 wpi_scan_curchan(struct ieee80211com *ic, unsigned long maxdwell) 3674 { 3675 struct ifnet *ifp = ic->ic_ifp; 3676 struct wpi_softc *sc = ifp->if_softc; 3677 3678 sc->maxdwell = maxdwell; 3679 3680 wpi_queue_cmd(sc, WPI_SCAN_CURCHAN); 3681 } 3682 3683 /** 3684 * Called by the net80211 framework to indicate 3685 * the minimum dwell time has been met, terminate the scan. 3686 * We don't actually terminate the scan as the firmware will notify 3687 * us when it's finished and we have no way to interrupt it. 3688 */ 3689 static void 3690 wpi_scan_mindwell(struct ieee80211com *ic) 3691 { 3692 /* NB: don't try to abort scan; wait for firmware to finish */ 3693 } 3694 3695 /** 3696 * The ops function is called to perform some actual work. 3697 * because we can't sleep from any of the ic callbacks, we queue an 3698 * op task with wpi_queue_cmd and have the taskqueue process that task. 3699 * The task that gets cued is a op task, which ends up calling this function. 3700 */ 3701 static void 3702 wpi_ops(void *arg, int pending) 3703 { 3704 struct wpi_softc *sc = arg; 3705 struct ieee80211com *ic = &sc->sc_ic; 3706 WPI_LOCK_DECL; 3707 int cmd; 3708 3709 again: 3710 WPI_CMD_LOCK(sc); 3711 cmd = sc->sc_cmd[sc->sc_cmd_cur]; 3712 3713 if (cmd == 0) { 3714 /* No more commands to process */ 3715 WPI_CMD_UNLOCK(sc); 3716 return; 3717 } 3718 sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */ 3719 sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS; 3720 WPI_CMD_UNLOCK(sc); 3721 WPI_LOCK(sc); 3722 3723 if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3724 WPI_UNLOCK(sc); 3725 return; 3726 } 3727 3728 { 3729 const char *name[]={"SCAN_START", "SCAN_CURCHAN",0,"STOP",0,0,0,"CHAN", 3730 0,0,0,0,0,0,"AUTH",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"NEXT"}; 3731 DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d %s\n", cmd, name[cmd-1])); 3732 } 3733 3734 switch (cmd) { 3735 case WPI_SCAN_START: 3736 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3737 DPRINTF(("HERER\n")); 3738 ieee80211_cancel_scan(ic); 3739 } else 3740 sc->flags |= WPI_FLAG_SCANNING; 3741 break; 3742 3743 case WPI_SCAN_STOP: 3744 sc->flags &= ~WPI_FLAG_SCANNING; 3745 break; 3746 3747 case WPI_SCAN_NEXT: 3748 DPRINTF(("NEXT\n")); 3749 WPI_UNLOCK(sc); 3750 ieee80211_scan_next(ic); 3751 WPI_LOCK(sc); 3752 break; 3753 3754 case WPI_SCAN_CURCHAN: 3755 if (wpi_scan(sc)) 3756 ieee80211_cancel_scan(ic); 3757 break; 3758 3759 case WPI_SET_CHAN: 3760 if (sc->flags&WPI_FLAG_AUTH) { 3761 DPRINTF(("Authenticating, not changing channel\n")); 3762 break; 3763 } 3764 if (wpi_config(sc)) { 3765 DPRINTF(("Scan cancelled\n")); 3766 WPI_UNLOCK(sc); 3767 ieee80211_cancel_scan(ic); 3768 WPI_LOCK(sc); 3769 sc->flags &= ~WPI_FLAG_SCANNING; 3770 wpi_restart(sc,0); 3771 WPI_UNLOCK(sc); 3772 return; 3773 } 3774 break; 3775 3776 case WPI_AUTH: 3777 if (wpi_auth(sc) != 0) { 3778 device_printf(sc->sc_dev, 3779 "could not send authentication request\n"); 3780 wpi_stop_locked(sc); 3781 WPI_UNLOCK(sc); 3782 return; 3783 } 3784 WPI_UNLOCK(sc); 3785 ieee80211_node_authorize(ic->ic_bss); 3786 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); 3787 WPI_LOCK(sc); 3788 break; 3789 } 3790 WPI_UNLOCK(sc); 3791 3792 /* Take another pass */ 3793 goto again; 3794 } 3795 3796 /** 3797 * queue a command for later execution in a different thread. 3798 * This is needed as the net80211 callbacks do not allow 3799 * sleeping, since we need to sleep to confirm commands have 3800 * been processed by the firmware, we must defer execution to 3801 * a sleep enabled thread. 3802 */ 3803 static int 3804 wpi_queue_cmd(struct wpi_softc *sc, int cmd) 3805 { 3806 WPI_CMD_LOCK(sc); 3807 3808 if (sc->sc_cmd[sc->sc_cmd_next] != 0) { 3809 WPI_CMD_UNLOCK(sc); 3810 DPRINTF(("%s: command %d dropped\n", __func__, cmd)); 3811 return (EBUSY); 3812 } 3813 3814 sc->sc_cmd[sc->sc_cmd_next] = cmd; 3815 sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS; 3816 3817 taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask); 3818 3819 WPI_CMD_UNLOCK(sc); 3820 3821 return 0; 3822 } 3823 3824 static void 3825 wpi_restart(void * arg, int pending) 3826 { 3827 #if 0 3828 struct wpi_softc *sc = arg; 3829 struct ieee80211com *ic = &sc->sc_ic; 3830 WPI_LOCK_DECL; 3831 3832 DPRINTF(("Device failed, restarting device\n")); 3833 WPI_LOCK(sc); 3834 wpi_stop(sc); 3835 wpi_init(sc); 3836 WPI_UNLOCK(sc); 3837 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 3838 #endif 3839 } 3840 3841 /* 3842 * Allocate DMA-safe memory for firmware transfer. 3843 */ 3844 static int 3845 wpi_alloc_fwmem(struct wpi_softc *sc) 3846 { 3847 /* allocate enough contiguous space to store text and data */ 3848 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3849 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3850 BUS_DMA_NOWAIT); 3851 } 3852 3853 static void 3854 wpi_free_fwmem(struct wpi_softc *sc) 3855 { 3856 wpi_dma_contig_free(&sc->fw_dma); 3857 } 3858 3859 /** 3860 * Called every second, wpi_tick used by the watch dog timer 3861 * to check that the card is still alive 3862 */ 3863 static void 3864 wpi_tick(void *arg) 3865 { 3866 struct wpi_softc *sc = arg; 3867 3868 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3869 3870 wpi_watchdog(sc->sc_ifp); 3871 callout_reset(&sc->watchdog_to, hz, wpi_tick, sc); 3872 } 3873 3874 #ifdef WPI_DEBUG 3875 static const char *wpi_cmd_str(int cmd) 3876 { 3877 switch(cmd) { 3878 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3879 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3880 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3881 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3882 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3883 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3884 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3885 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3886 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3887 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3888 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3889 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3890 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3891 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3892 3893 default: 3894 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3895 return "UNKNOWN CMD"; // Make the compiler happy 3896 } 3897 } 3898 #endif 3899 3900 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3901 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3902 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3903 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3904