xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 #include <net80211/ieee80211_ratectl.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103 
104 #include <dev/wpi/if_wpireg.h>
105 #include <dev/wpi/if_wpivar.h>
106 
107 #define WPI_DEBUG
108 
109 #ifdef WPI_DEBUG
110 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
111 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
112 #define	WPI_DEBUG_SET	(wpi_debug != 0)
113 
114 enum {
115 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
116 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
117 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
118 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
119 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
120 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
121 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
122 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
123 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
124 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
125 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
126 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
127 	WPI_DEBUG_ANY		= 0xffffffff
128 };
129 
130 static int wpi_debug = 0;
131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132 TUNABLE_INT("debug.wpi", &wpi_debug);
133 
134 #else
135 #define DPRINTF(x)
136 #define DPRINTFN(n, x)
137 #define WPI_DEBUG_SET	0
138 #endif
139 
140 struct wpi_ident {
141 	uint16_t	vendor;
142 	uint16_t	device;
143 	uint16_t	subdevice;
144 	const char	*name;
145 };
146 
147 static const struct wpi_ident wpi_ident_table[] = {
148 	/* The below entries support ABG regardless of the subid */
149 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151 	/* The below entries only support BG */
152 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0, 0, 0, NULL }
157 };
158 
159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
161 		    const uint8_t [IEEE80211_ADDR_LEN],
162 		    const uint8_t [IEEE80211_ADDR_LEN]);
163 static void	wpi_vap_delete(struct ieee80211vap *);
164 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165 		    void **, bus_size_t, bus_size_t, int);
166 static void	wpi_dma_contig_free(struct wpi_dma_info *);
167 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168 static int	wpi_alloc_shared(struct wpi_softc *);
169 static void	wpi_free_shared(struct wpi_softc *);
170 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174 		    int, int);
175 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178 static void	wpi_mem_lock(struct wpi_softc *);
179 static void	wpi_mem_unlock(struct wpi_softc *);
180 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
181 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
182 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
183 		    const uint32_t *, int);
184 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
185 static int	wpi_alloc_fwmem(struct wpi_softc *);
186 static void	wpi_free_fwmem(struct wpi_softc *);
187 static int	wpi_load_firmware(struct wpi_softc *);
188 static void	wpi_unload_firmware(struct wpi_softc *);
189 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
190 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
191 		    struct wpi_rx_data *);
192 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
193 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void	wpi_notif_intr(struct wpi_softc *);
195 static void	wpi_intr(void *);
196 static uint8_t	wpi_plcp_signal(int);
197 static void	wpi_watchdog(void *);
198 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
199 		    struct ieee80211_node *, int);
200 static void	wpi_start(struct ifnet *);
201 static void	wpi_start_locked(struct ifnet *);
202 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
203 		    const struct ieee80211_bpf_params *);
204 static void	wpi_scan_start(struct ieee80211com *);
205 static void	wpi_scan_end(struct ieee80211com *);
206 static void	wpi_set_channel(struct ieee80211com *);
207 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
208 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
209 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
210 static void	wpi_read_eeprom(struct wpi_softc *,
211 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
212 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
213 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
214 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
215 static int	wpi_wme_update(struct ieee80211com *);
216 static int	wpi_mrr_setup(struct wpi_softc *);
217 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
218 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
219 #if 0
220 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
221 #endif
222 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
223 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
224 static int	wpi_scan(struct wpi_softc *);
225 static int	wpi_config(struct wpi_softc *);
226 static void	wpi_stop_master(struct wpi_softc *);
227 static int	wpi_power_up(struct wpi_softc *);
228 static int	wpi_reset(struct wpi_softc *);
229 static void	wpi_hwreset(void *, int);
230 static void	wpi_rfreset(void *, int);
231 static void	wpi_hw_config(struct wpi_softc *);
232 static void	wpi_init(void *);
233 static void	wpi_init_locked(struct wpi_softc *, int);
234 static void	wpi_stop(struct wpi_softc *);
235 static void	wpi_stop_locked(struct wpi_softc *);
236 
237 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
238 		    int);
239 static void	wpi_calib_timeout(void *);
240 static void	wpi_power_calibration(struct wpi_softc *, int);
241 static int	wpi_get_power_index(struct wpi_softc *,
242 		    struct wpi_power_group *, struct ieee80211_channel *, int);
243 #ifdef WPI_DEBUG
244 static const char *wpi_cmd_str(int);
245 #endif
246 static int wpi_probe(device_t);
247 static int wpi_attach(device_t);
248 static int wpi_detach(device_t);
249 static int wpi_shutdown(device_t);
250 static int wpi_suspend(device_t);
251 static int wpi_resume(device_t);
252 
253 
254 static device_method_t wpi_methods[] = {
255 	/* Device interface */
256 	DEVMETHOD(device_probe,		wpi_probe),
257 	DEVMETHOD(device_attach,	wpi_attach),
258 	DEVMETHOD(device_detach,	wpi_detach),
259 	DEVMETHOD(device_shutdown,	wpi_shutdown),
260 	DEVMETHOD(device_suspend,	wpi_suspend),
261 	DEVMETHOD(device_resume,	wpi_resume),
262 
263 	{ 0, 0 }
264 };
265 
266 static driver_t wpi_driver = {
267 	"wpi",
268 	wpi_methods,
269 	sizeof (struct wpi_softc)
270 };
271 
272 static devclass_t wpi_devclass;
273 
274 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
275 
276 MODULE_VERSION(wpi, 1);
277 
278 static const uint8_t wpi_ridx_to_plcp[] = {
279 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280 	/* R1-R4 (ral/ural is R4-R1) */
281 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282 	/* CCK: device-dependent */
283 	10, 20, 55, 110
284 };
285 static const uint8_t wpi_ridx_to_rate[] = {
286 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287 	2, 4, 11, 22 /*CCK */
288 };
289 
290 
291 static int
292 wpi_probe(device_t dev)
293 {
294 	const struct wpi_ident *ident;
295 
296 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297 		if (pci_get_vendor(dev) == ident->vendor &&
298 		    pci_get_device(dev) == ident->device) {
299 			device_set_desc(dev, ident->name);
300 			return 0;
301 		}
302 	}
303 	return ENXIO;
304 }
305 
306 /**
307  * Load the firmare image from disk to the allocated dma buffer.
308  * we also maintain the reference to the firmware pointer as there
309  * is times where we may need to reload the firmware but we are not
310  * in a context that can access the filesystem (ie taskq cause by restart)
311  *
312  * @return 0 on success, an errno on failure
313  */
314 static int
315 wpi_load_firmware(struct wpi_softc *sc)
316 {
317 	const struct firmware *fp;
318 	struct wpi_dma_info *dma = &sc->fw_dma;
319 	const struct wpi_firmware_hdr *hdr;
320 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322 	int error;
323 
324 	DPRINTFN(WPI_DEBUG_FIRMWARE,
325 	    ("Attempting Loading Firmware from wpi_fw module\n"));
326 
327 	WPI_UNLOCK(sc);
328 
329 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330 		device_printf(sc->sc_dev,
331 		    "could not load firmware image 'wpifw'\n");
332 		error = ENOENT;
333 		WPI_LOCK(sc);
334 		goto fail;
335 	}
336 
337 	fp = sc->fw_fp;
338 
339 	WPI_LOCK(sc);
340 
341 	/* Validate the firmware is minimum a particular version */
342 	if (fp->version < WPI_FW_MINVERSION) {
343 	    device_printf(sc->sc_dev,
344 			   "firmware version is too old. Need %d, got %d\n",
345 			   WPI_FW_MINVERSION,
346 			   fp->version);
347 	    error = ENXIO;
348 	    goto fail;
349 	}
350 
351 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352 		device_printf(sc->sc_dev,
353 		    "firmware file too short: %zu bytes\n", fp->datasize);
354 		error = ENXIO;
355 		goto fail;
356 	}
357 
358 	hdr = (const struct wpi_firmware_hdr *)fp->data;
359 
360 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362 
363 	rtextsz = le32toh(hdr->rtextsz);
364 	rdatasz = le32toh(hdr->rdatasz);
365 	itextsz = le32toh(hdr->itextsz);
366 	idatasz = le32toh(hdr->idatasz);
367 	btextsz = le32toh(hdr->btextsz);
368 
369 	/* check that all firmware segments are present */
370 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372 		device_printf(sc->sc_dev,
373 		    "firmware file too short: %zu bytes\n", fp->datasize);
374 		error = ENXIO; /* XXX appropriate error code? */
375 		goto fail;
376 	}
377 
378 	/* get pointers to firmware segments */
379 	rtext = (const uint8_t *)(hdr + 1);
380 	rdata = rtext + rtextsz;
381 	itext = rdata + rdatasz;
382 	idata = itext + itextsz;
383 	btext = idata + idatasz;
384 
385 	DPRINTFN(WPI_DEBUG_FIRMWARE,
386 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388 	     (le32toh(hdr->version) & 0xff000000) >> 24,
389 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
390 	     (le32toh(hdr->version) & 0x0000ffff),
391 	     rtextsz, rdatasz,
392 	     itextsz, idatasz, btextsz));
393 
394 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399 
400 	/* sanity checks */
401 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406 	    (btextsz & 3) != 0) {
407 		device_printf(sc->sc_dev, "firmware invalid\n");
408 		error = EINVAL;
409 		goto fail;
410 	}
411 
412 	/* copy initialization images into pre-allocated DMA-safe memory */
413 	memcpy(dma->vaddr, idata, idatasz);
414 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415 
416 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417 
418 	/* tell adapter where to find initialization images */
419 	wpi_mem_lock(sc);
420 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425 	wpi_mem_unlock(sc);
426 
427 	/* load firmware boot code */
428 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
430 	    goto fail;
431 	}
432 
433 	/* now press "execute" */
434 	WPI_WRITE(sc, WPI_RESET, 0);
435 
436 	/* wait at most one second for the first alive notification */
437 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438 		device_printf(sc->sc_dev,
439 		    "timeout waiting for adapter to initialize\n");
440 		goto fail;
441 	}
442 
443 	/* copy runtime images into pre-allocated DMA-sage memory */
444 	memcpy(dma->vaddr, rdata, rdatasz);
445 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447 
448 	/* tell adapter where to find runtime images */
449 	wpi_mem_lock(sc);
450 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455 	wpi_mem_unlock(sc);
456 
457 	/* wait at most one second for the first alive notification */
458 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459 		device_printf(sc->sc_dev,
460 		    "timeout waiting for adapter to initialize2\n");
461 		goto fail;
462 	}
463 
464 	DPRINTFN(WPI_DEBUG_FIRMWARE,
465 	    ("Firmware loaded to driver successfully\n"));
466 	return error;
467 fail:
468 	wpi_unload_firmware(sc);
469 	return error;
470 }
471 
472 /**
473  * Free the referenced firmware image
474  */
475 static void
476 wpi_unload_firmware(struct wpi_softc *sc)
477 {
478 
479 	if (sc->fw_fp) {
480 		WPI_UNLOCK(sc);
481 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482 		WPI_LOCK(sc);
483 		sc->fw_fp = NULL;
484 	}
485 }
486 
487 static int
488 wpi_attach(device_t dev)
489 {
490 	struct wpi_softc *sc = device_get_softc(dev);
491 	struct ifnet *ifp;
492 	struct ieee80211com *ic;
493 	int ac, error, supportsa = 1;
494 	uint32_t tmp;
495 	const struct wpi_ident *ident;
496 	uint8_t macaddr[IEEE80211_ADDR_LEN];
497 
498 	sc->sc_dev = dev;
499 
500 	if (bootverbose || WPI_DEBUG_SET)
501 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
502 
503 	/*
504 	 * Some card's only support 802.11b/g not a, check to see if
505 	 * this is one such card. A 0x0 in the subdevice table indicates
506 	 * the entire subdevice range is to be ignored.
507 	 */
508 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
509 		if (ident->subdevice &&
510 		    pci_get_subdevice(dev) == ident->subdevice) {
511 		    supportsa = 0;
512 		    break;
513 		}
514 	}
515 
516 	/* Create the tasks that can be queued */
517 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
518 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
519 
520 	WPI_LOCK_INIT(sc);
521 
522 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
523 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
524 
525 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
526 		device_printf(dev, "chip is in D%d power mode "
527 		    "-- setting to D0\n", pci_get_powerstate(dev));
528 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
529 	}
530 
531 	/* disable the retry timeout register */
532 	pci_write_config(dev, 0x41, 0, 1);
533 
534 	/* enable bus-mastering */
535 	pci_enable_busmaster(dev);
536 
537 	sc->mem_rid = PCIR_BAR(0);
538 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
539 	    RF_ACTIVE);
540 	if (sc->mem == NULL) {
541 		device_printf(dev, "could not allocate memory resource\n");
542 		error = ENOMEM;
543 		goto fail;
544 	}
545 
546 	sc->sc_st = rman_get_bustag(sc->mem);
547 	sc->sc_sh = rman_get_bushandle(sc->mem);
548 
549 	sc->irq_rid = 0;
550 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
551 	    RF_ACTIVE | RF_SHAREABLE);
552 	if (sc->irq == NULL) {
553 		device_printf(dev, "could not allocate interrupt resource\n");
554 		error = ENOMEM;
555 		goto fail;
556 	}
557 
558 	/*
559 	 * Allocate DMA memory for firmware transfers.
560 	 */
561 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
562 		printf(": could not allocate firmware memory\n");
563 		error = ENOMEM;
564 		goto fail;
565 	}
566 
567 	/*
568 	 * Put adapter into a known state.
569 	 */
570 	if ((error = wpi_reset(sc)) != 0) {
571 		device_printf(dev, "could not reset adapter\n");
572 		goto fail;
573 	}
574 
575 	wpi_mem_lock(sc);
576 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
577 	if (bootverbose || WPI_DEBUG_SET)
578 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
579 
580 	wpi_mem_unlock(sc);
581 
582 	/* Allocate shared page */
583 	if ((error = wpi_alloc_shared(sc)) != 0) {
584 		device_printf(dev, "could not allocate shared page\n");
585 		goto fail;
586 	}
587 
588 	/* tx data queues  - 4 for QoS purposes */
589 	for (ac = 0; ac < WME_NUM_AC; ac++) {
590 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
591 		if (error != 0) {
592 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
593 		    goto fail;
594 		}
595 	}
596 
597 	/* command queue to talk to the card's firmware */
598 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
599 	if (error != 0) {
600 		device_printf(dev, "could not allocate command ring\n");
601 		goto fail;
602 	}
603 
604 	/* receive data queue */
605 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
606 	if (error != 0) {
607 		device_printf(dev, "could not allocate Rx ring\n");
608 		goto fail;
609 	}
610 
611 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
612 	if (ifp == NULL) {
613 		device_printf(dev, "can not if_alloc()\n");
614 		error = ENOMEM;
615 		goto fail;
616 	}
617 	ic = ifp->if_l2com;
618 
619 	ic->ic_ifp = ifp;
620 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
621 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
622 
623 	/* set device capabilities */
624 	ic->ic_caps =
625 		  IEEE80211_C_STA		/* station mode supported */
626 		| IEEE80211_C_MONITOR		/* monitor mode supported */
627 		| IEEE80211_C_TXPMGT		/* tx power management */
628 		| IEEE80211_C_SHSLOT		/* short slot time supported */
629 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
630 		| IEEE80211_C_WPA		/* 802.11i */
631 /* XXX looks like WME is partly supported? */
632 #if 0
633 		| IEEE80211_C_IBSS		/* IBSS mode support */
634 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
635 		| IEEE80211_C_WME		/* 802.11e */
636 		| IEEE80211_C_HOSTAP		/* Host access point mode */
637 #endif
638 		;
639 
640 	/*
641 	 * Read in the eeprom and also setup the channels for
642 	 * net80211. We don't set the rates as net80211 does this for us
643 	 */
644 	wpi_read_eeprom(sc, macaddr);
645 
646 	if (bootverbose || WPI_DEBUG_SET) {
647 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
648 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
649 			  sc->type > 1 ? 'B': '?');
650 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
651 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
652 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
653 			  supportsa ? "does" : "does not");
654 
655 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
656 	       what sc->rev really represents - benjsc 20070615 */
657 	}
658 
659 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660 	ifp->if_softc = sc;
661 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662 	ifp->if_init = wpi_init;
663 	ifp->if_ioctl = wpi_ioctl;
664 	ifp->if_start = wpi_start;
665 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
666 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
667 	IFQ_SET_READY(&ifp->if_snd);
668 
669 	ieee80211_ifattach(ic, macaddr);
670 	/* override default methods */
671 	ic->ic_raw_xmit = wpi_raw_xmit;
672 	ic->ic_wme.wme_update = wpi_wme_update;
673 	ic->ic_scan_start = wpi_scan_start;
674 	ic->ic_scan_end = wpi_scan_end;
675 	ic->ic_set_channel = wpi_set_channel;
676 	ic->ic_scan_curchan = wpi_scan_curchan;
677 	ic->ic_scan_mindwell = wpi_scan_mindwell;
678 
679 	ic->ic_vap_create = wpi_vap_create;
680 	ic->ic_vap_delete = wpi_vap_delete;
681 
682 	ieee80211_radiotap_attach(ic,
683 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
684 		WPI_TX_RADIOTAP_PRESENT,
685 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
686 		WPI_RX_RADIOTAP_PRESENT);
687 
688 	/*
689 	 * Hook our interrupt after all initialization is complete.
690 	 */
691 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
692 	    NULL, wpi_intr, sc, &sc->sc_ih);
693 	if (error != 0) {
694 		device_printf(dev, "could not set up interrupt\n");
695 		goto fail;
696 	}
697 
698 	if (bootverbose)
699 		ieee80211_announce(ic);
700 #ifdef XXX_DEBUG
701 	ieee80211_announce_channels(ic);
702 #endif
703 	return 0;
704 
705 fail:	wpi_detach(dev);
706 	return ENXIO;
707 }
708 
709 static int
710 wpi_detach(device_t dev)
711 {
712 	struct wpi_softc *sc = device_get_softc(dev);
713 	struct ifnet *ifp = sc->sc_ifp;
714 	struct ieee80211com *ic;
715 	int ac;
716 
717 	if (ifp != NULL) {
718 		ic = ifp->if_l2com;
719 
720 		ieee80211_draintask(ic, &sc->sc_restarttask);
721 		ieee80211_draintask(ic, &sc->sc_radiotask);
722 		wpi_stop(sc);
723 		callout_drain(&sc->watchdog_to);
724 		callout_drain(&sc->calib_to);
725 		ieee80211_ifdetach(ic);
726 	}
727 
728 	WPI_LOCK(sc);
729 	if (sc->txq[0].data_dmat) {
730 		for (ac = 0; ac < WME_NUM_AC; ac++)
731 			wpi_free_tx_ring(sc, &sc->txq[ac]);
732 
733 		wpi_free_tx_ring(sc, &sc->cmdq);
734 		wpi_free_rx_ring(sc, &sc->rxq);
735 		wpi_free_shared(sc);
736 	}
737 
738 	if (sc->fw_fp != NULL) {
739 		wpi_unload_firmware(sc);
740 	}
741 
742 	if (sc->fw_dma.tag)
743 		wpi_free_fwmem(sc);
744 	WPI_UNLOCK(sc);
745 
746 	if (sc->irq != NULL) {
747 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
749 	}
750 
751 	if (sc->mem != NULL)
752 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
753 
754 	if (ifp != NULL)
755 		if_free(ifp);
756 
757 	WPI_LOCK_DESTROY(sc);
758 
759 	return 0;
760 }
761 
762 static struct ieee80211vap *
763 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
764     enum ieee80211_opmode opmode, int flags,
765     const uint8_t bssid[IEEE80211_ADDR_LEN],
766     const uint8_t mac[IEEE80211_ADDR_LEN])
767 {
768 	struct wpi_vap *wvp;
769 	struct ieee80211vap *vap;
770 
771 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
772 		return NULL;
773 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
774 	    M_80211_VAP, M_NOWAIT | M_ZERO);
775 	if (wvp == NULL)
776 		return NULL;
777 	vap = &wvp->vap;
778 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
779 	/* override with driver methods */
780 	wvp->newstate = vap->iv_newstate;
781 	vap->iv_newstate = wpi_newstate;
782 
783 	ieee80211_ratectl_init(vap);
784 	/* complete setup */
785 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
786 	ic->ic_opmode = opmode;
787 	return vap;
788 }
789 
790 static void
791 wpi_vap_delete(struct ieee80211vap *vap)
792 {
793 	struct wpi_vap *wvp = WPI_VAP(vap);
794 
795 	ieee80211_ratectl_deinit(vap);
796 	ieee80211_vap_detach(vap);
797 	free(wvp, M_80211_VAP);
798 }
799 
800 static void
801 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802 {
803 	if (error != 0)
804 		return;
805 
806 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
807 
808 	*(bus_addr_t *)arg = segs[0].ds_addr;
809 }
810 
811 /*
812  * Allocates a contiguous block of dma memory of the requested size and
813  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
814  * allocations greater than 4096 may fail. Hence if the requested alignment is
815  * greater we allocate 'alignment' size extra memory and shift the vaddr and
816  * paddr after the dma load. This bypasses the problem at the cost of a little
817  * more memory.
818  */
819 static int
820 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
821     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
822 {
823 	int error;
824 	bus_size_t align;
825 	bus_size_t reqsize;
826 
827 	DPRINTFN(WPI_DEBUG_DMA,
828 	    ("Size: %zd - alignment %zd\n", size, alignment));
829 
830 	dma->size = size;
831 	dma->tag = NULL;
832 
833 	if (alignment > 4096) {
834 		align = PAGE_SIZE;
835 		reqsize = size + alignment;
836 	} else {
837 		align = alignment;
838 		reqsize = size;
839 	}
840 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
841 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
842 	    NULL, NULL, reqsize,
843 	    1, reqsize, flags,
844 	    NULL, NULL, &dma->tag);
845 	if (error != 0) {
846 		device_printf(sc->sc_dev,
847 		    "could not create shared page DMA tag\n");
848 		goto fail;
849 	}
850 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
851 	    flags | BUS_DMA_ZERO, &dma->map);
852 	if (error != 0) {
853 		device_printf(sc->sc_dev,
854 		    "could not allocate shared page DMA memory\n");
855 		goto fail;
856 	}
857 
858 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
859 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
860 
861 	/* Save the original pointers so we can free all the memory */
862 	dma->paddr = dma->paddr_start;
863 	dma->vaddr = dma->vaddr_start;
864 
865 	/*
866 	 * Check the alignment and increment by 4096 until we get the
867 	 * requested alignment. Fail if can't obtain the alignment
868 	 * we requested.
869 	 */
870 	if ((dma->paddr & (alignment -1 )) != 0) {
871 		int i;
872 
873 		for (i = 0; i < alignment / 4096; i++) {
874 			if ((dma->paddr & (alignment - 1 )) == 0)
875 				break;
876 			dma->paddr += 4096;
877 			dma->vaddr += 4096;
878 		}
879 		if (i == alignment / 4096) {
880 			device_printf(sc->sc_dev,
881 			    "alignment requirement was not satisfied\n");
882 			goto fail;
883 		}
884 	}
885 
886 	if (error != 0) {
887 		device_printf(sc->sc_dev,
888 		    "could not load shared page DMA map\n");
889 		goto fail;
890 	}
891 
892 	if (kvap != NULL)
893 		*kvap = dma->vaddr;
894 
895 	return 0;
896 
897 fail:
898 	wpi_dma_contig_free(dma);
899 	return error;
900 }
901 
902 static void
903 wpi_dma_contig_free(struct wpi_dma_info *dma)
904 {
905 	if (dma->tag) {
906 		if (dma->map != NULL) {
907 			if (dma->paddr_start != 0) {
908 				bus_dmamap_sync(dma->tag, dma->map,
909 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910 				bus_dmamap_unload(dma->tag, dma->map);
911 			}
912 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
913 		}
914 		bus_dma_tag_destroy(dma->tag);
915 	}
916 }
917 
918 /*
919  * Allocate a shared page between host and NIC.
920  */
921 static int
922 wpi_alloc_shared(struct wpi_softc *sc)
923 {
924 	int error;
925 
926 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
927 	    (void **)&sc->shared, sizeof (struct wpi_shared),
928 	    PAGE_SIZE,
929 	    BUS_DMA_NOWAIT);
930 
931 	if (error != 0) {
932 		device_printf(sc->sc_dev,
933 		    "could not allocate shared area DMA memory\n");
934 	}
935 
936 	return error;
937 }
938 
939 static void
940 wpi_free_shared(struct wpi_softc *sc)
941 {
942 	wpi_dma_contig_free(&sc->shared_dma);
943 }
944 
945 static int
946 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
947 {
948 
949 	int i, error;
950 
951 	ring->cur = 0;
952 
953 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
954 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
955 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
956 
957 	if (error != 0) {
958 		device_printf(sc->sc_dev,
959 		    "%s: could not allocate rx ring DMA memory, error %d\n",
960 		    __func__, error);
961 		goto fail;
962 	}
963 
964         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
965 	    BUS_SPACE_MAXADDR_32BIT,
966             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
967             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
968         if (error != 0) {
969                 device_printf(sc->sc_dev,
970 		    "%s: bus_dma_tag_create_failed, error %d\n",
971 		    __func__, error);
972                 goto fail;
973         }
974 
975 	/*
976 	 * Setup Rx buffers.
977 	 */
978 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
979 		struct wpi_rx_data *data = &ring->data[i];
980 		struct mbuf *m;
981 		bus_addr_t paddr;
982 
983 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
984 		if (error != 0) {
985 			device_printf(sc->sc_dev,
986 			    "%s: bus_dmamap_create failed, error %d\n",
987 			    __func__, error);
988 			goto fail;
989 		}
990 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
991 		if (m == NULL) {
992 			device_printf(sc->sc_dev,
993 			   "%s: could not allocate rx mbuf\n", __func__);
994 			error = ENOMEM;
995 			goto fail;
996 		}
997 		/* map page */
998 		error = bus_dmamap_load(ring->data_dmat, data->map,
999 		    mtod(m, caddr_t), MJUMPAGESIZE,
1000 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1001 		if (error != 0 && error != EFBIG) {
1002 			device_printf(sc->sc_dev,
1003 			    "%s: bus_dmamap_load failed, error %d\n",
1004 			    __func__, error);
1005 			m_freem(m);
1006 			error = ENOMEM;	/* XXX unique code */
1007 			goto fail;
1008 		}
1009 		bus_dmamap_sync(ring->data_dmat, data->map,
1010 		    BUS_DMASYNC_PREWRITE);
1011 
1012 		data->m = m;
1013 		ring->desc[i] = htole32(paddr);
1014 	}
1015 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1016 	    BUS_DMASYNC_PREWRITE);
1017 	return 0;
1018 fail:
1019 	wpi_free_rx_ring(sc, ring);
1020 	return error;
1021 }
1022 
1023 static void
1024 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1025 {
1026 	int ntries;
1027 
1028 	wpi_mem_lock(sc);
1029 
1030 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1031 
1032 	for (ntries = 0; ntries < 100; ntries++) {
1033 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1034 			break;
1035 		DELAY(10);
1036 	}
1037 
1038 	wpi_mem_unlock(sc);
1039 
1040 #ifdef WPI_DEBUG
1041 	if (ntries == 100 && wpi_debug > 0)
1042 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1043 #endif
1044 
1045 	ring->cur = 0;
1046 }
1047 
1048 static void
1049 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1050 {
1051 	int i;
1052 
1053 	wpi_dma_contig_free(&ring->desc_dma);
1054 
1055 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1056 		struct wpi_rx_data *data = &ring->data[i];
1057 
1058 		if (data->m != NULL) {
1059 			bus_dmamap_sync(ring->data_dmat, data->map,
1060 			    BUS_DMASYNC_POSTREAD);
1061 			bus_dmamap_unload(ring->data_dmat, data->map);
1062 			m_freem(data->m);
1063 		}
1064 		if (data->map != NULL)
1065 			bus_dmamap_destroy(ring->data_dmat, data->map);
1066 	}
1067 }
1068 
1069 static int
1070 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1071 	int qid)
1072 {
1073 	struct wpi_tx_data *data;
1074 	int i, error;
1075 
1076 	ring->qid = qid;
1077 	ring->count = count;
1078 	ring->queued = 0;
1079 	ring->cur = 0;
1080 	ring->data = NULL;
1081 
1082 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1083 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1084 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1085 
1086 	if (error != 0) {
1087 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1088 	    goto fail;
1089 	}
1090 
1091 	/* update shared page with ring's base address */
1092 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1093 
1094 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1095 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1096 		BUS_DMA_NOWAIT);
1097 
1098 	if (error != 0) {
1099 		device_printf(sc->sc_dev,
1100 		    "could not allocate tx command DMA memory\n");
1101 		goto fail;
1102 	}
1103 
1104 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1105 	    M_NOWAIT | M_ZERO);
1106 	if (ring->data == NULL) {
1107 		device_printf(sc->sc_dev,
1108 		    "could not allocate tx data slots\n");
1109 		goto fail;
1110 	}
1111 
1112 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1113 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1114 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1115 	    &ring->data_dmat);
1116 	if (error != 0) {
1117 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1118 		goto fail;
1119 	}
1120 
1121 	for (i = 0; i < count; i++) {
1122 		data = &ring->data[i];
1123 
1124 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1125 		if (error != 0) {
1126 			device_printf(sc->sc_dev,
1127 			    "could not create tx buf DMA map\n");
1128 			goto fail;
1129 		}
1130 		bus_dmamap_sync(ring->data_dmat, data->map,
1131 		    BUS_DMASYNC_PREWRITE);
1132 	}
1133 
1134 	return 0;
1135 
1136 fail:
1137 	wpi_free_tx_ring(sc, ring);
1138 	return error;
1139 }
1140 
1141 static void
1142 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1143 {
1144 	struct wpi_tx_data *data;
1145 	int i, ntries;
1146 
1147 	wpi_mem_lock(sc);
1148 
1149 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1150 	for (ntries = 0; ntries < 100; ntries++) {
1151 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1152 			break;
1153 		DELAY(10);
1154 	}
1155 #ifdef WPI_DEBUG
1156 	if (ntries == 100 && wpi_debug > 0)
1157 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1158 		    ring->qid);
1159 #endif
1160 	wpi_mem_unlock(sc);
1161 
1162 	for (i = 0; i < ring->count; i++) {
1163 		data = &ring->data[i];
1164 
1165 		if (data->m != NULL) {
1166 			bus_dmamap_unload(ring->data_dmat, data->map);
1167 			m_freem(data->m);
1168 			data->m = NULL;
1169 		}
1170 	}
1171 
1172 	ring->queued = 0;
1173 	ring->cur = 0;
1174 }
1175 
1176 static void
1177 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1178 {
1179 	struct wpi_tx_data *data;
1180 	int i;
1181 
1182 	wpi_dma_contig_free(&ring->desc_dma);
1183 	wpi_dma_contig_free(&ring->cmd_dma);
1184 
1185 	if (ring->data != NULL) {
1186 		for (i = 0; i < ring->count; i++) {
1187 			data = &ring->data[i];
1188 
1189 			if (data->m != NULL) {
1190 				bus_dmamap_sync(ring->data_dmat, data->map,
1191 				    BUS_DMASYNC_POSTWRITE);
1192 				bus_dmamap_unload(ring->data_dmat, data->map);
1193 				m_freem(data->m);
1194 				data->m = NULL;
1195 			}
1196 		}
1197 		free(ring->data, M_DEVBUF);
1198 	}
1199 
1200 	if (ring->data_dmat != NULL)
1201 		bus_dma_tag_destroy(ring->data_dmat);
1202 }
1203 
1204 static int
1205 wpi_shutdown(device_t dev)
1206 {
1207 	struct wpi_softc *sc = device_get_softc(dev);
1208 
1209 	WPI_LOCK(sc);
1210 	wpi_stop_locked(sc);
1211 	wpi_unload_firmware(sc);
1212 	WPI_UNLOCK(sc);
1213 
1214 	return 0;
1215 }
1216 
1217 static int
1218 wpi_suspend(device_t dev)
1219 {
1220 	struct wpi_softc *sc = device_get_softc(dev);
1221 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1222 
1223 	ieee80211_suspend_all(ic);
1224 	return 0;
1225 }
1226 
1227 static int
1228 wpi_resume(device_t dev)
1229 {
1230 	struct wpi_softc *sc = device_get_softc(dev);
1231 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1232 
1233 	pci_write_config(dev, 0x41, 0, 1);
1234 
1235 	ieee80211_resume_all(ic);
1236 	return 0;
1237 }
1238 
1239 /**
1240  * Called by net80211 when ever there is a change to 80211 state machine
1241  */
1242 static int
1243 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1244 {
1245 	struct wpi_vap *wvp = WPI_VAP(vap);
1246 	struct ieee80211com *ic = vap->iv_ic;
1247 	struct ifnet *ifp = ic->ic_ifp;
1248 	struct wpi_softc *sc = ifp->if_softc;
1249 	int error;
1250 
1251 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1252 		ieee80211_state_name[vap->iv_state],
1253 		ieee80211_state_name[nstate], sc->flags));
1254 
1255 	IEEE80211_UNLOCK(ic);
1256 	WPI_LOCK(sc);
1257 	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1258 		/*
1259 		 * On !INIT -> SCAN transitions, we need to clear any possible
1260 		 * knowledge about associations.
1261 		 */
1262 		error = wpi_config(sc);
1263 		if (error != 0) {
1264 			device_printf(sc->sc_dev,
1265 			    "%s: device config failed, error %d\n",
1266 			    __func__, error);
1267 		}
1268 	}
1269 	if (nstate == IEEE80211_S_AUTH ||
1270 	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1271 		/*
1272 		 * The node must be registered in the firmware before auth.
1273 		 * Also the associd must be cleared on RUN -> ASSOC
1274 		 * transitions.
1275 		 */
1276 		error = wpi_auth(sc, vap);
1277 		if (error != 0) {
1278 			device_printf(sc->sc_dev,
1279 			    "%s: could not move to auth state, error %d\n",
1280 			    __func__, error);
1281 		}
1282 	}
1283 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1284 		error = wpi_run(sc, vap);
1285 		if (error != 0) {
1286 			device_printf(sc->sc_dev,
1287 			    "%s: could not move to run state, error %d\n",
1288 			    __func__, error);
1289 		}
1290 	}
1291 	if (nstate == IEEE80211_S_RUN) {
1292 		/* RUN -> RUN transition; just restart the timers */
1293 		wpi_calib_timeout(sc);
1294 		/* XXX split out rate control timer */
1295 	}
1296 	WPI_UNLOCK(sc);
1297 	IEEE80211_LOCK(ic);
1298 	return wvp->newstate(vap, nstate, arg);
1299 }
1300 
1301 /*
1302  * Grab exclusive access to NIC memory.
1303  */
1304 static void
1305 wpi_mem_lock(struct wpi_softc *sc)
1306 {
1307 	int ntries;
1308 	uint32_t tmp;
1309 
1310 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1311 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1312 
1313 	/* spin until we actually get the lock */
1314 	for (ntries = 0; ntries < 100; ntries++) {
1315 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1316 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1317 			break;
1318 		DELAY(10);
1319 	}
1320 	if (ntries == 100)
1321 		device_printf(sc->sc_dev, "could not lock memory\n");
1322 }
1323 
1324 /*
1325  * Release lock on NIC memory.
1326  */
1327 static void
1328 wpi_mem_unlock(struct wpi_softc *sc)
1329 {
1330 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1331 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1332 }
1333 
1334 static uint32_t
1335 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1336 {
1337 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1338 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1339 }
1340 
1341 static void
1342 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1343 {
1344 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1345 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1346 }
1347 
1348 static void
1349 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1350     const uint32_t *data, int wlen)
1351 {
1352 	for (; wlen > 0; wlen--, data++, addr+=4)
1353 		wpi_mem_write(sc, addr, *data);
1354 }
1355 
1356 /*
1357  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1358  * using the traditional bit-bang method. Data is read up until len bytes have
1359  * been obtained.
1360  */
1361 static uint16_t
1362 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1363 {
1364 	int ntries;
1365 	uint32_t val;
1366 	uint8_t *out = data;
1367 
1368 	wpi_mem_lock(sc);
1369 
1370 	for (; len > 0; len -= 2, addr++) {
1371 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1372 
1373 		for (ntries = 0; ntries < 10; ntries++) {
1374 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1375 				break;
1376 			DELAY(5);
1377 		}
1378 
1379 		if (ntries == 10) {
1380 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1381 			return ETIMEDOUT;
1382 		}
1383 
1384 		*out++= val >> 16;
1385 		if (len > 1)
1386 			*out ++= val >> 24;
1387 	}
1388 
1389 	wpi_mem_unlock(sc);
1390 
1391 	return 0;
1392 }
1393 
1394 /*
1395  * The firmware text and data segments are transferred to the NIC using DMA.
1396  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1397  * where to find it.  Once the NIC has copied the firmware into its internal
1398  * memory, we can free our local copy in the driver.
1399  */
1400 static int
1401 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1402 {
1403 	int error, ntries;
1404 
1405 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1406 
1407 	size /= sizeof(uint32_t);
1408 
1409 	wpi_mem_lock(sc);
1410 
1411 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1412 	    (const uint32_t *)fw, size);
1413 
1414 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1415 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1416 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1417 
1418 	/* run microcode */
1419 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1420 
1421 	/* wait while the adapter is busy copying the firmware */
1422 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1423 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1424 		DPRINTFN(WPI_DEBUG_HW,
1425 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1426 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1427 		if (status & WPI_TX_IDLE(6)) {
1428 			DPRINTFN(WPI_DEBUG_HW,
1429 			    ("Status Match! - ntries = %d\n", ntries));
1430 			break;
1431 		}
1432 		DELAY(10);
1433 	}
1434 	if (ntries == 1000) {
1435 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1436 		error = ETIMEDOUT;
1437 	}
1438 
1439 	/* start the microcode executing */
1440 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1441 
1442 	wpi_mem_unlock(sc);
1443 
1444 	return (error);
1445 }
1446 
1447 static void
1448 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1449 	struct wpi_rx_data *data)
1450 {
1451 	struct ifnet *ifp = sc->sc_ifp;
1452 	struct ieee80211com *ic = ifp->if_l2com;
1453 	struct wpi_rx_ring *ring = &sc->rxq;
1454 	struct wpi_rx_stat *stat;
1455 	struct wpi_rx_head *head;
1456 	struct wpi_rx_tail *tail;
1457 	struct ieee80211_node *ni;
1458 	struct mbuf *m, *mnew;
1459 	bus_addr_t paddr;
1460 	int error;
1461 
1462 	stat = (struct wpi_rx_stat *)(desc + 1);
1463 
1464 	if (stat->len > WPI_STAT_MAXLEN) {
1465 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1466 		ifp->if_ierrors++;
1467 		return;
1468 	}
1469 
1470 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1471 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1472 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1473 
1474 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1475 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1476 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1477 	    (uintmax_t)le64toh(tail->tstamp)));
1478 
1479 	/* discard Rx frames with bad CRC early */
1480 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1481 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1482 		    le32toh(tail->flags)));
1483 		ifp->if_ierrors++;
1484 		return;
1485 	}
1486 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1487 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1488 		    le16toh(head->len)));
1489 		ifp->if_ierrors++;
1490 		return;
1491 	}
1492 
1493 	/* XXX don't need mbuf, just dma buffer */
1494 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1495 	if (mnew == NULL) {
1496 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1497 		    __func__));
1498 		ifp->if_ierrors++;
1499 		return;
1500 	}
1501 	bus_dmamap_unload(ring->data_dmat, data->map);
1502 
1503 	error = bus_dmamap_load(ring->data_dmat, data->map,
1504 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1505 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1506 	if (error != 0 && error != EFBIG) {
1507 		device_printf(sc->sc_dev,
1508 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1509 		m_freem(mnew);
1510 		ifp->if_ierrors++;
1511 		return;
1512 	}
1513 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1514 
1515 	/* finalize mbuf and swap in new one */
1516 	m = data->m;
1517 	m->m_pkthdr.rcvif = ifp;
1518 	m->m_data = (caddr_t)(head + 1);
1519 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1520 
1521 	data->m = mnew;
1522 	/* update Rx descriptor */
1523 	ring->desc[ring->cur] = htole32(paddr);
1524 
1525 	if (ieee80211_radiotap_active(ic)) {
1526 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1527 
1528 		tap->wr_flags = 0;
1529 		tap->wr_chan_freq =
1530 			htole16(ic->ic_channels[head->chan].ic_freq);
1531 		tap->wr_chan_flags =
1532 			htole16(ic->ic_channels[head->chan].ic_flags);
1533 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1534 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1535 		tap->wr_tsft = tail->tstamp;
1536 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1537 		switch (head->rate) {
1538 		/* CCK rates */
1539 		case  10: tap->wr_rate =   2; break;
1540 		case  20: tap->wr_rate =   4; break;
1541 		case  55: tap->wr_rate =  11; break;
1542 		case 110: tap->wr_rate =  22; break;
1543 		/* OFDM rates */
1544 		case 0xd: tap->wr_rate =  12; break;
1545 		case 0xf: tap->wr_rate =  18; break;
1546 		case 0x5: tap->wr_rate =  24; break;
1547 		case 0x7: tap->wr_rate =  36; break;
1548 		case 0x9: tap->wr_rate =  48; break;
1549 		case 0xb: tap->wr_rate =  72; break;
1550 		case 0x1: tap->wr_rate =  96; break;
1551 		case 0x3: tap->wr_rate = 108; break;
1552 		/* unknown rate: should not happen */
1553 		default:  tap->wr_rate =   0;
1554 		}
1555 		if (le16toh(head->flags) & 0x4)
1556 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1557 	}
1558 
1559 	WPI_UNLOCK(sc);
1560 
1561 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1562 	if (ni != NULL) {
1563 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1564 		ieee80211_free_node(ni);
1565 	} else
1566 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1567 
1568 	WPI_LOCK(sc);
1569 }
1570 
1571 static void
1572 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1573 {
1574 	struct ifnet *ifp = sc->sc_ifp;
1575 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1576 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1577 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1578 	struct ieee80211_node *ni = txdata->ni;
1579 	struct ieee80211vap *vap = ni->ni_vap;
1580 	int retrycnt = 0;
1581 
1582 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1583 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1584 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1585 	    le32toh(stat->status)));
1586 
1587 	/*
1588 	 * Update rate control statistics for the node.
1589 	 * XXX we should not count mgmt frames since they're always sent at
1590 	 * the lowest available bit-rate.
1591 	 * XXX frames w/o ACK shouldn't be used either
1592 	 */
1593 	if (stat->ntries > 0) {
1594 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1595 		retrycnt = 1;
1596 	}
1597 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1598 	    &retrycnt, NULL);
1599 
1600 	/* XXX oerrors should only count errors !maxtries */
1601 	if ((le32toh(stat->status) & 0xff) != 1)
1602 		ifp->if_oerrors++;
1603 	else
1604 		ifp->if_opackets++;
1605 
1606 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1607 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1608 	/* XXX handle M_TXCB? */
1609 	m_freem(txdata->m);
1610 	txdata->m = NULL;
1611 	ieee80211_free_node(txdata->ni);
1612 	txdata->ni = NULL;
1613 
1614 	ring->queued--;
1615 
1616 	sc->sc_tx_timer = 0;
1617 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1618 	wpi_start_locked(ifp);
1619 }
1620 
1621 static void
1622 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1623 {
1624 	struct wpi_tx_ring *ring = &sc->cmdq;
1625 	struct wpi_tx_data *data;
1626 
1627 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1628 				 "type=%s len=%d\n", desc->qid, desc->idx,
1629 				 desc->flags, wpi_cmd_str(desc->type),
1630 				 le32toh(desc->len)));
1631 
1632 	if ((desc->qid & 7) != 4)
1633 		return;	/* not a command ack */
1634 
1635 	data = &ring->data[desc->idx];
1636 
1637 	/* if the command was mapped in a mbuf, free it */
1638 	if (data->m != NULL) {
1639 		bus_dmamap_unload(ring->data_dmat, data->map);
1640 		m_freem(data->m);
1641 		data->m = NULL;
1642 	}
1643 
1644 	sc->flags &= ~WPI_FLAG_BUSY;
1645 	wakeup(&ring->cmd[desc->idx]);
1646 }
1647 
1648 static void
1649 wpi_notif_intr(struct wpi_softc *sc)
1650 {
1651 	struct ifnet *ifp = sc->sc_ifp;
1652 	struct ieee80211com *ic = ifp->if_l2com;
1653 	struct wpi_rx_desc *desc;
1654 	struct wpi_rx_data *data;
1655 	uint32_t hw;
1656 
1657 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1658 	    BUS_DMASYNC_POSTREAD);
1659 
1660 	hw = le32toh(sc->shared->next);
1661 	while (sc->rxq.cur != hw) {
1662 		data = &sc->rxq.data[sc->rxq.cur];
1663 
1664 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1665 		    BUS_DMASYNC_POSTREAD);
1666 		desc = (void *)data->m->m_ext.ext_buf;
1667 
1668 		DPRINTFN(WPI_DEBUG_NOTIFY,
1669 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1670 			  desc->qid,
1671 			  desc->idx,
1672 			  desc->flags,
1673 			  desc->type,
1674 			  le32toh(desc->len)));
1675 
1676 		if (!(desc->qid & 0x80))	/* reply to a command */
1677 			wpi_cmd_intr(sc, desc);
1678 
1679 		switch (desc->type) {
1680 		case WPI_RX_DONE:
1681 			/* a 802.11 frame was received */
1682 			wpi_rx_intr(sc, desc, data);
1683 			break;
1684 
1685 		case WPI_TX_DONE:
1686 			/* a 802.11 frame has been transmitted */
1687 			wpi_tx_intr(sc, desc);
1688 			break;
1689 
1690 		case WPI_UC_READY:
1691 		{
1692 			struct wpi_ucode_info *uc =
1693 				(struct wpi_ucode_info *)(desc + 1);
1694 
1695 			/* the microcontroller is ready */
1696 			DPRINTF(("microcode alive notification version %x "
1697 				"alive %x\n", le32toh(uc->version),
1698 				le32toh(uc->valid)));
1699 
1700 			if (le32toh(uc->valid) != 1) {
1701 				device_printf(sc->sc_dev,
1702 				    "microcontroller initialization failed\n");
1703 				wpi_stop_locked(sc);
1704 			}
1705 			break;
1706 		}
1707 		case WPI_STATE_CHANGED:
1708 		{
1709 			uint32_t *status = (uint32_t *)(desc + 1);
1710 
1711 			/* enabled/disabled notification */
1712 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1713 
1714 			if (le32toh(*status) & 1) {
1715 				device_printf(sc->sc_dev,
1716 				    "Radio transmitter is switched off\n");
1717 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1718 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1719 				/* Disable firmware commands */
1720 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1721 			}
1722 			break;
1723 		}
1724 		case WPI_START_SCAN:
1725 		{
1726 #ifdef WPI_DEBUG
1727 			struct wpi_start_scan *scan =
1728 				(struct wpi_start_scan *)(desc + 1);
1729 #endif
1730 
1731 			DPRINTFN(WPI_DEBUG_SCANNING,
1732 				 ("scanning channel %d status %x\n",
1733 			    scan->chan, le32toh(scan->status)));
1734 			break;
1735 		}
1736 		case WPI_STOP_SCAN:
1737 		{
1738 #ifdef WPI_DEBUG
1739 			struct wpi_stop_scan *scan =
1740 				(struct wpi_stop_scan *)(desc + 1);
1741 #endif
1742 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1743 
1744 			DPRINTFN(WPI_DEBUG_SCANNING,
1745 			    ("scan finished nchan=%d status=%d chan=%d\n",
1746 			     scan->nchan, scan->status, scan->chan));
1747 
1748 			sc->sc_scan_timer = 0;
1749 			ieee80211_scan_next(vap);
1750 			break;
1751 		}
1752 		case WPI_MISSED_BEACON:
1753 		{
1754 			struct wpi_missed_beacon *beacon =
1755 				(struct wpi_missed_beacon *)(desc + 1);
1756 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1757 
1758 			if (le32toh(beacon->consecutive) >=
1759 			    vap->iv_bmissthreshold) {
1760 				DPRINTF(("Beacon miss: %u >= %u\n",
1761 					 le32toh(beacon->consecutive),
1762 					 vap->iv_bmissthreshold));
1763 				ieee80211_beacon_miss(ic);
1764 			}
1765 			break;
1766 		}
1767 		}
1768 
1769 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1770 	}
1771 
1772 	/* tell the firmware what we have processed */
1773 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1774 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1775 }
1776 
1777 static void
1778 wpi_intr(void *arg)
1779 {
1780 	struct wpi_softc *sc = arg;
1781 	uint32_t r;
1782 
1783 	WPI_LOCK(sc);
1784 
1785 	r = WPI_READ(sc, WPI_INTR);
1786 	if (r == 0 || r == 0xffffffff) {
1787 		WPI_UNLOCK(sc);
1788 		return;
1789 	}
1790 
1791 	/* disable interrupts */
1792 	WPI_WRITE(sc, WPI_MASK, 0);
1793 	/* ack interrupts */
1794 	WPI_WRITE(sc, WPI_INTR, r);
1795 
1796 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1797 		struct ifnet *ifp = sc->sc_ifp;
1798 		struct ieee80211com *ic = ifp->if_l2com;
1799 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1800 
1801 		device_printf(sc->sc_dev, "fatal firmware error\n");
1802 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1803 				"(Hardware Error)"));
1804 		if (vap != NULL)
1805 			ieee80211_cancel_scan(vap);
1806 		ieee80211_runtask(ic, &sc->sc_restarttask);
1807 		sc->flags &= ~WPI_FLAG_BUSY;
1808 		WPI_UNLOCK(sc);
1809 		return;
1810 	}
1811 
1812 	if (r & WPI_RX_INTR)
1813 		wpi_notif_intr(sc);
1814 
1815 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1816 		wakeup(sc);
1817 
1818 	/* re-enable interrupts */
1819 	if (sc->sc_ifp->if_flags & IFF_UP)
1820 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1821 
1822 	WPI_UNLOCK(sc);
1823 }
1824 
1825 static uint8_t
1826 wpi_plcp_signal(int rate)
1827 {
1828 	switch (rate) {
1829 	/* CCK rates (returned values are device-dependent) */
1830 	case 2:		return 10;
1831 	case 4:		return 20;
1832 	case 11:	return 55;
1833 	case 22:	return 110;
1834 
1835 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1836 	/* R1-R4 (ral/ural is R4-R1) */
1837 	case 12:	return 0xd;
1838 	case 18:	return 0xf;
1839 	case 24:	return 0x5;
1840 	case 36:	return 0x7;
1841 	case 48:	return 0x9;
1842 	case 72:	return 0xb;
1843 	case 96:	return 0x1;
1844 	case 108:	return 0x3;
1845 
1846 	/* unsupported rates (should not get there) */
1847 	default:	return 0;
1848 	}
1849 }
1850 
1851 /* quickly determine if a given rate is CCK or OFDM */
1852 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1853 
1854 /*
1855  * Construct the data packet for a transmit buffer and acutally put
1856  * the buffer onto the transmit ring, kicking the card to process the
1857  * the buffer.
1858  */
1859 static int
1860 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1861 	int ac)
1862 {
1863 	struct ieee80211vap *vap = ni->ni_vap;
1864 	struct ifnet *ifp = sc->sc_ifp;
1865 	struct ieee80211com *ic = ifp->if_l2com;
1866 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1867 	struct wpi_tx_ring *ring = &sc->txq[ac];
1868 	struct wpi_tx_desc *desc;
1869 	struct wpi_tx_data *data;
1870 	struct wpi_tx_cmd *cmd;
1871 	struct wpi_cmd_data *tx;
1872 	struct ieee80211_frame *wh;
1873 	const struct ieee80211_txparam *tp;
1874 	struct ieee80211_key *k;
1875 	struct mbuf *mnew;
1876 	int i, error, nsegs, rate, hdrlen, ismcast;
1877 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1878 
1879 	desc = &ring->desc[ring->cur];
1880 	data = &ring->data[ring->cur];
1881 
1882 	wh = mtod(m0, struct ieee80211_frame *);
1883 
1884 	hdrlen = ieee80211_hdrsize(wh);
1885 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1886 
1887 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1888 		k = ieee80211_crypto_encap(ni, m0);
1889 		if (k == NULL) {
1890 			m_freem(m0);
1891 			return ENOBUFS;
1892 		}
1893 		/* packet header may have moved, reset our local pointer */
1894 		wh = mtod(m0, struct ieee80211_frame *);
1895 	}
1896 
1897 	cmd = &ring->cmd[ring->cur];
1898 	cmd->code = WPI_CMD_TX_DATA;
1899 	cmd->flags = 0;
1900 	cmd->qid = ring->qid;
1901 	cmd->idx = ring->cur;
1902 
1903 	tx = (struct wpi_cmd_data *)cmd->data;
1904 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1905 	tx->timeout = htole16(0);
1906 	tx->ofdm_mask = 0xff;
1907 	tx->cck_mask = 0x0f;
1908 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1909 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1910 	tx->len = htole16(m0->m_pkthdr.len);
1911 
1912 	if (!ismcast) {
1913 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1914 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1915 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1916 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1917 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1918 			tx->rts_ntries = 7;
1919 		}
1920 	}
1921 	/* pick a rate */
1922 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1923 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1924 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1925 		/* tell h/w to set timestamp in probe responses */
1926 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1927 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1928 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1929 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1930 			tx->timeout = htole16(3);
1931 		else
1932 			tx->timeout = htole16(2);
1933 		rate = tp->mgmtrate;
1934 	} else if (ismcast) {
1935 		rate = tp->mcastrate;
1936 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1937 		rate = tp->ucastrate;
1938 	} else {
1939 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1940 		rate = ni->ni_txrate;
1941 	}
1942 	tx->rate = wpi_plcp_signal(rate);
1943 
1944 	/* be very persistant at sending frames out */
1945 #if 0
1946 	tx->data_ntries = tp->maxretry;
1947 #else
1948 	tx->data_ntries = 15;		/* XXX way too high */
1949 #endif
1950 
1951 	if (ieee80211_radiotap_active_vap(vap)) {
1952 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1953 		tap->wt_flags = 0;
1954 		tap->wt_rate = rate;
1955 		tap->wt_hwqueue = ac;
1956 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1957 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1958 
1959 		ieee80211_radiotap_tx(vap, m0);
1960 	}
1961 
1962 	/* save and trim IEEE802.11 header */
1963 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1964 	m_adj(m0, hdrlen);
1965 
1966 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1967 	    &nsegs, BUS_DMA_NOWAIT);
1968 	if (error != 0 && error != EFBIG) {
1969 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1970 		    error);
1971 		m_freem(m0);
1972 		return error;
1973 	}
1974 	if (error != 0) {
1975 		/* XXX use m_collapse */
1976 		mnew = m_defrag(m0, M_DONTWAIT);
1977 		if (mnew == NULL) {
1978 			device_printf(sc->sc_dev,
1979 			    "could not defragment mbuf\n");
1980 			m_freem(m0);
1981 			return ENOBUFS;
1982 		}
1983 		m0 = mnew;
1984 
1985 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1986 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1987 		if (error != 0) {
1988 			device_printf(sc->sc_dev,
1989 			    "could not map mbuf (error %d)\n", error);
1990 			m_freem(m0);
1991 			return error;
1992 		}
1993 	}
1994 
1995 	data->m = m0;
1996 	data->ni = ni;
1997 
1998 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1999 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2000 
2001 	/* first scatter/gather segment is used by the tx data command */
2002 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2003 	    (1 + nsegs) << 24);
2004 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2005 	    ring->cur * sizeof (struct wpi_tx_cmd));
2006 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2007 	for (i = 1; i <= nsegs; i++) {
2008 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2009 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2010 	}
2011 
2012 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2013 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2014 	    BUS_DMASYNC_PREWRITE);
2015 
2016 	ring->queued++;
2017 
2018 	/* kick ring */
2019 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2020 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2021 
2022 	return 0;
2023 }
2024 
2025 /**
2026  * Process data waiting to be sent on the IFNET output queue
2027  */
2028 static void
2029 wpi_start(struct ifnet *ifp)
2030 {
2031 	struct wpi_softc *sc = ifp->if_softc;
2032 
2033 	WPI_LOCK(sc);
2034 	wpi_start_locked(ifp);
2035 	WPI_UNLOCK(sc);
2036 }
2037 
2038 static void
2039 wpi_start_locked(struct ifnet *ifp)
2040 {
2041 	struct wpi_softc *sc = ifp->if_softc;
2042 	struct ieee80211_node *ni;
2043 	struct mbuf *m;
2044 	int ac;
2045 
2046 	WPI_LOCK_ASSERT(sc);
2047 
2048 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2049 		return;
2050 
2051 	for (;;) {
2052 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2053 		if (m == NULL)
2054 			break;
2055 		ac = M_WME_GETAC(m);
2056 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2057 			/* there is no place left in this ring */
2058 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2059 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2060 			break;
2061 		}
2062 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2063 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2064 			ieee80211_free_node(ni);
2065 			ifp->if_oerrors++;
2066 			break;
2067 		}
2068 		sc->sc_tx_timer = 5;
2069 	}
2070 }
2071 
2072 static int
2073 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2074 	const struct ieee80211_bpf_params *params)
2075 {
2076 	struct ieee80211com *ic = ni->ni_ic;
2077 	struct ifnet *ifp = ic->ic_ifp;
2078 	struct wpi_softc *sc = ifp->if_softc;
2079 
2080 	/* prevent management frames from being sent if we're not ready */
2081 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2082 		m_freem(m);
2083 		ieee80211_free_node(ni);
2084 		return ENETDOWN;
2085 	}
2086 	WPI_LOCK(sc);
2087 
2088 	/* management frames go into ring 0 */
2089 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2090 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2091 		m_freem(m);
2092 		WPI_UNLOCK(sc);
2093 		ieee80211_free_node(ni);
2094 		return ENOBUFS;		/* XXX */
2095 	}
2096 
2097 	ifp->if_opackets++;
2098 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2099 		goto bad;
2100 	sc->sc_tx_timer = 5;
2101 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2102 
2103 	WPI_UNLOCK(sc);
2104 	return 0;
2105 bad:
2106 	ifp->if_oerrors++;
2107 	WPI_UNLOCK(sc);
2108 	ieee80211_free_node(ni);
2109 	return EIO;		/* XXX */
2110 }
2111 
2112 static int
2113 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2114 {
2115 	struct wpi_softc *sc = ifp->if_softc;
2116 	struct ieee80211com *ic = ifp->if_l2com;
2117 	struct ifreq *ifr = (struct ifreq *) data;
2118 	int error = 0, startall = 0;
2119 
2120 	switch (cmd) {
2121 	case SIOCSIFFLAGS:
2122 		WPI_LOCK(sc);
2123 		if ((ifp->if_flags & IFF_UP)) {
2124 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2125 				wpi_init_locked(sc, 0);
2126 				startall = 1;
2127 			}
2128 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2129 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2130 			wpi_stop_locked(sc);
2131 		WPI_UNLOCK(sc);
2132 		if (startall)
2133 			ieee80211_start_all(ic);
2134 		break;
2135 	case SIOCGIFMEDIA:
2136 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2137 		break;
2138 	case SIOCGIFADDR:
2139 		error = ether_ioctl(ifp, cmd, data);
2140 		break;
2141 	default:
2142 		error = EINVAL;
2143 		break;
2144 	}
2145 	return error;
2146 }
2147 
2148 /*
2149  * Extract various information from EEPROM.
2150  */
2151 static void
2152 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2153 {
2154 	int i;
2155 
2156 	/* read the hardware capabilities, revision and SKU type */
2157 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2158 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2159 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2160 
2161 	/* read the regulatory domain */
2162 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2163 
2164 	/* read in the hw MAC address */
2165 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2166 
2167 	/* read the list of authorized channels */
2168 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2169 		wpi_read_eeprom_channels(sc,i);
2170 
2171 	/* read the power level calibration info for each group */
2172 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2173 		wpi_read_eeprom_group(sc,i);
2174 }
2175 
2176 /*
2177  * Send a command to the firmware.
2178  */
2179 static int
2180 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2181 {
2182 	struct wpi_tx_ring *ring = &sc->cmdq;
2183 	struct wpi_tx_desc *desc;
2184 	struct wpi_tx_cmd *cmd;
2185 
2186 #ifdef WPI_DEBUG
2187 	if (!async) {
2188 		WPI_LOCK_ASSERT(sc);
2189 	}
2190 #endif
2191 
2192 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2193 		    async));
2194 
2195 	if (sc->flags & WPI_FLAG_BUSY) {
2196 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2197 		    __func__, code);
2198 		return EAGAIN;
2199 	}
2200 	sc->flags|= WPI_FLAG_BUSY;
2201 
2202 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2203 	    code, size));
2204 
2205 	desc = &ring->desc[ring->cur];
2206 	cmd = &ring->cmd[ring->cur];
2207 
2208 	cmd->code = code;
2209 	cmd->flags = 0;
2210 	cmd->qid = ring->qid;
2211 	cmd->idx = ring->cur;
2212 	memcpy(cmd->data, buf, size);
2213 
2214 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2215 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2216 		ring->cur * sizeof (struct wpi_tx_cmd));
2217 	desc->segs[0].len  = htole32(4 + size);
2218 
2219 	/* kick cmd ring */
2220 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2221 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2222 
2223 	if (async) {
2224 		sc->flags &= ~ WPI_FLAG_BUSY;
2225 		return 0;
2226 	}
2227 
2228 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2229 }
2230 
2231 static int
2232 wpi_wme_update(struct ieee80211com *ic)
2233 {
2234 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2235 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2236 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2237 	const struct wmeParams *wmep;
2238 	struct wpi_wme_setup wme;
2239 	int ac;
2240 
2241 	/* don't override default WME values if WME is not actually enabled */
2242 	if (!(ic->ic_flags & IEEE80211_F_WME))
2243 		return 0;
2244 
2245 	wme.flags = 0;
2246 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2247 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2248 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2249 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2250 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2251 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2252 
2253 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2254 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2255 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2256 	}
2257 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2258 #undef WPI_USEC
2259 #undef WPI_EXP2
2260 }
2261 
2262 /*
2263  * Configure h/w multi-rate retries.
2264  */
2265 static int
2266 wpi_mrr_setup(struct wpi_softc *sc)
2267 {
2268 	struct ifnet *ifp = sc->sc_ifp;
2269 	struct ieee80211com *ic = ifp->if_l2com;
2270 	struct wpi_mrr_setup mrr;
2271 	int i, error;
2272 
2273 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2274 
2275 	/* CCK rates (not used with 802.11a) */
2276 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2277 		mrr.rates[i].flags = 0;
2278 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2279 		/* fallback to the immediate lower CCK rate (if any) */
2280 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2281 		/* try one time at this rate before falling back to "next" */
2282 		mrr.rates[i].ntries = 1;
2283 	}
2284 
2285 	/* OFDM rates (not used with 802.11b) */
2286 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2287 		mrr.rates[i].flags = 0;
2288 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2289 		/* fallback to the immediate lower OFDM rate (if any) */
2290 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2291 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2292 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2293 			WPI_OFDM6 : WPI_CCK2) :
2294 		    i - 1;
2295 		/* try one time at this rate before falling back to "next" */
2296 		mrr.rates[i].ntries = 1;
2297 	}
2298 
2299 	/* setup MRR for control frames */
2300 	mrr.which = WPI_MRR_CTL;
2301 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2302 	if (error != 0) {
2303 		device_printf(sc->sc_dev,
2304 		    "could not setup MRR for control frames\n");
2305 		return error;
2306 	}
2307 
2308 	/* setup MRR for data frames */
2309 	mrr.which = WPI_MRR_DATA;
2310 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2311 	if (error != 0) {
2312 		device_printf(sc->sc_dev,
2313 		    "could not setup MRR for data frames\n");
2314 		return error;
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 static void
2321 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2322 {
2323 	struct wpi_cmd_led led;
2324 
2325 	led.which = which;
2326 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2327 	led.off = off;
2328 	led.on = on;
2329 
2330 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2331 }
2332 
2333 static void
2334 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2335 {
2336 	struct wpi_cmd_tsf tsf;
2337 	uint64_t val, mod;
2338 
2339 	memset(&tsf, 0, sizeof tsf);
2340 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2341 	tsf.bintval = htole16(ni->ni_intval);
2342 	tsf.lintval = htole16(10);
2343 
2344 	/* compute remaining time until next beacon */
2345 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2346 	mod = le64toh(tsf.tstamp) % val;
2347 	tsf.binitval = htole32((uint32_t)(val - mod));
2348 
2349 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2350 		device_printf(sc->sc_dev, "could not enable TSF\n");
2351 }
2352 
2353 #if 0
2354 /*
2355  * Build a beacon frame that the firmware will broadcast periodically in
2356  * IBSS or HostAP modes.
2357  */
2358 static int
2359 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2360 {
2361 	struct ifnet *ifp = sc->sc_ifp;
2362 	struct ieee80211com *ic = ifp->if_l2com;
2363 	struct wpi_tx_ring *ring = &sc->cmdq;
2364 	struct wpi_tx_desc *desc;
2365 	struct wpi_tx_data *data;
2366 	struct wpi_tx_cmd *cmd;
2367 	struct wpi_cmd_beacon *bcn;
2368 	struct ieee80211_beacon_offsets bo;
2369 	struct mbuf *m0;
2370 	bus_addr_t physaddr;
2371 	int error;
2372 
2373 	desc = &ring->desc[ring->cur];
2374 	data = &ring->data[ring->cur];
2375 
2376 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2377 	if (m0 == NULL) {
2378 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2379 		return ENOMEM;
2380 	}
2381 
2382 	cmd = &ring->cmd[ring->cur];
2383 	cmd->code = WPI_CMD_SET_BEACON;
2384 	cmd->flags = 0;
2385 	cmd->qid = ring->qid;
2386 	cmd->idx = ring->cur;
2387 
2388 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2389 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2390 	bcn->id = WPI_ID_BROADCAST;
2391 	bcn->ofdm_mask = 0xff;
2392 	bcn->cck_mask = 0x0f;
2393 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2394 	bcn->len = htole16(m0->m_pkthdr.len);
2395 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2396 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2397 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2398 
2399 	/* save and trim IEEE802.11 header */
2400 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2401 	m_adj(m0, sizeof (struct ieee80211_frame));
2402 
2403 	/* assume beacon frame is contiguous */
2404 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2405 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2406 	if (error != 0) {
2407 		device_printf(sc->sc_dev, "could not map beacon\n");
2408 		m_freem(m0);
2409 		return error;
2410 	}
2411 
2412 	data->m = m0;
2413 
2414 	/* first scatter/gather segment is used by the beacon command */
2415 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2416 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2417 		ring->cur * sizeof (struct wpi_tx_cmd));
2418 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2419 	desc->segs[1].addr = htole32(physaddr);
2420 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2421 
2422 	/* kick cmd ring */
2423 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2424 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2425 
2426 	return 0;
2427 }
2428 #endif
2429 
2430 static int
2431 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2432 {
2433 	struct ieee80211com *ic = vap->iv_ic;
2434 	struct ieee80211_node *ni = vap->iv_bss;
2435 	struct wpi_node_info node;
2436 	int error;
2437 
2438 
2439 	/* update adapter's configuration */
2440 	sc->config.associd = 0;
2441 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2442 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2443 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2444 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2445 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2446 		    WPI_CONFIG_24GHZ);
2447 	} else {
2448 		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2449 		    WPI_CONFIG_24GHZ);
2450 	}
2451 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2452 		sc->config.cck_mask  = 0;
2453 		sc->config.ofdm_mask = 0x15;
2454 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2455 		sc->config.cck_mask  = 0x03;
2456 		sc->config.ofdm_mask = 0;
2457 	} else {
2458 		/* XXX assume 802.11b/g */
2459 		sc->config.cck_mask  = 0x0f;
2460 		sc->config.ofdm_mask = 0x15;
2461 	}
2462 
2463 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2464 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2465 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2466 		sizeof (struct wpi_config), 1);
2467 	if (error != 0) {
2468 		device_printf(sc->sc_dev, "could not configure\n");
2469 		return error;
2470 	}
2471 
2472 	/* configuration has changed, set Tx power accordingly */
2473 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2474 		device_printf(sc->sc_dev, "could not set Tx power\n");
2475 		return error;
2476 	}
2477 
2478 	/* add default node */
2479 	memset(&node, 0, sizeof node);
2480 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2481 	node.id = WPI_ID_BSS;
2482 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2483 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2484 	node.action = htole32(WPI_ACTION_SET_RATE);
2485 	node.antenna = WPI_ANTENNA_BOTH;
2486 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2487 	if (error != 0)
2488 		device_printf(sc->sc_dev, "could not add BSS node\n");
2489 
2490 	return (error);
2491 }
2492 
2493 static int
2494 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2495 {
2496 	struct ieee80211com *ic = vap->iv_ic;
2497 	struct ieee80211_node *ni = vap->iv_bss;
2498 	int error;
2499 
2500 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2501 		/* link LED blinks while monitoring */
2502 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2503 		return 0;
2504 	}
2505 
2506 	wpi_enable_tsf(sc, ni);
2507 
2508 	/* update adapter's configuration */
2509 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2510 	/* short preamble/slot time are negotiated when associating */
2511 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2512 	    WPI_CONFIG_SHSLOT);
2513 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2514 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2515 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2516 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2517 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2518 
2519 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2520 
2521 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2522 		    sc->config.flags));
2523 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2524 		    wpi_config), 1);
2525 	if (error != 0) {
2526 		device_printf(sc->sc_dev, "could not update configuration\n");
2527 		return error;
2528 	}
2529 
2530 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2531 	if (error != 0) {
2532 		device_printf(sc->sc_dev, "could set txpower\n");
2533 		return error;
2534 	}
2535 
2536 	/* link LED always on while associated */
2537 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2538 
2539 	/* start automatic rate control timer */
2540 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2541 
2542 	return (error);
2543 }
2544 
2545 /*
2546  * Send a scan request to the firmware.  Since this command is huge, we map it
2547  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2548  * much of this code is similar to that in wpi_cmd but because we must manually
2549  * construct the probe & channels, we duplicate what's needed here. XXX In the
2550  * future, this function should be modified to use wpi_cmd to help cleanup the
2551  * code base.
2552  */
2553 static int
2554 wpi_scan(struct wpi_softc *sc)
2555 {
2556 	struct ifnet *ifp = sc->sc_ifp;
2557 	struct ieee80211com *ic = ifp->if_l2com;
2558 	struct ieee80211_scan_state *ss = ic->ic_scan;
2559 	struct wpi_tx_ring *ring = &sc->cmdq;
2560 	struct wpi_tx_desc *desc;
2561 	struct wpi_tx_data *data;
2562 	struct wpi_tx_cmd *cmd;
2563 	struct wpi_scan_hdr *hdr;
2564 	struct wpi_scan_chan *chan;
2565 	struct ieee80211_frame *wh;
2566 	struct ieee80211_rateset *rs;
2567 	struct ieee80211_channel *c;
2568 	enum ieee80211_phymode mode;
2569 	uint8_t *frm;
2570 	int nrates, pktlen, error, i, nssid;
2571 	bus_addr_t physaddr;
2572 
2573 	desc = &ring->desc[ring->cur];
2574 	data = &ring->data[ring->cur];
2575 
2576 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2577 	if (data->m == NULL) {
2578 		device_printf(sc->sc_dev,
2579 		    "could not allocate mbuf for scan command\n");
2580 		return ENOMEM;
2581 	}
2582 
2583 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2584 	cmd->code = WPI_CMD_SCAN;
2585 	cmd->flags = 0;
2586 	cmd->qid = ring->qid;
2587 	cmd->idx = ring->cur;
2588 
2589 	hdr = (struct wpi_scan_hdr *)cmd->data;
2590 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2591 
2592 	/*
2593 	 * Move to the next channel if no packets are received within 5 msecs
2594 	 * after sending the probe request (this helps to reduce the duration
2595 	 * of active scans).
2596 	 */
2597 	hdr->quiet = htole16(5);
2598 	hdr->threshold = htole16(1);
2599 
2600 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2601 		/* send probe requests at 6Mbps */
2602 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2603 
2604 		/* Enable crc checking */
2605 		hdr->promotion = htole16(1);
2606 	} else {
2607 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2608 		/* send probe requests at 1Mbps */
2609 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2610 	}
2611 	hdr->tx.id = WPI_ID_BROADCAST;
2612 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2613 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2614 
2615 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2616 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2617 	for (i = 0; i < nssid; i++) {
2618 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2619 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2620 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2621 		    hdr->scan_essids[i].esslen);
2622 #ifdef WPI_DEBUG
2623 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2624 			printf("Scanning Essid: ");
2625 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2626 			    hdr->scan_essids[i].esslen);
2627 			printf("\n");
2628 		}
2629 #endif
2630 	}
2631 
2632 	/*
2633 	 * Build a probe request frame.  Most of the following code is a
2634 	 * copy & paste of what is done in net80211.
2635 	 */
2636 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2637 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2638 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2639 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2640 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2641 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2642 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2643 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2644 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2645 
2646 	frm = (uint8_t *)(wh + 1);
2647 
2648 	/* add essid IE, the hardware will fill this in for us */
2649 	*frm++ = IEEE80211_ELEMID_SSID;
2650 	*frm++ = 0;
2651 
2652 	mode = ieee80211_chan2mode(ic->ic_curchan);
2653 	rs = &ic->ic_sup_rates[mode];
2654 
2655 	/* add supported rates IE */
2656 	*frm++ = IEEE80211_ELEMID_RATES;
2657 	nrates = rs->rs_nrates;
2658 	if (nrates > IEEE80211_RATE_SIZE)
2659 		nrates = IEEE80211_RATE_SIZE;
2660 	*frm++ = nrates;
2661 	memcpy(frm, rs->rs_rates, nrates);
2662 	frm += nrates;
2663 
2664 	/* add supported xrates IE */
2665 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2666 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2667 		*frm++ = IEEE80211_ELEMID_XRATES;
2668 		*frm++ = nrates;
2669 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2670 		frm += nrates;
2671 	}
2672 
2673 	/* setup length of probe request */
2674 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2675 
2676 	/*
2677 	 * Construct information about the channel that we
2678 	 * want to scan. The firmware expects this to be directly
2679 	 * after the scan probe request
2680 	 */
2681 	c = ic->ic_curchan;
2682 	chan = (struct wpi_scan_chan *)frm;
2683 	chan->chan = ieee80211_chan2ieee(ic, c);
2684 	chan->flags = 0;
2685 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2686 		chan->flags |= WPI_CHAN_ACTIVE;
2687 		if (nssid != 0)
2688 			chan->flags |= WPI_CHAN_DIRECT;
2689 	}
2690 	chan->gain_dsp = 0x6e; /* Default level */
2691 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2692 		chan->active = htole16(10);
2693 		chan->passive = htole16(ss->ss_maxdwell);
2694 		chan->gain_radio = 0x3b;
2695 	} else {
2696 		chan->active = htole16(20);
2697 		chan->passive = htole16(ss->ss_maxdwell);
2698 		chan->gain_radio = 0x28;
2699 	}
2700 
2701 	DPRINTFN(WPI_DEBUG_SCANNING,
2702 	    ("Scanning %u Passive: %d\n",
2703 	     chan->chan,
2704 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2705 
2706 	hdr->nchan++;
2707 	chan++;
2708 
2709 	frm += sizeof (struct wpi_scan_chan);
2710 #if 0
2711 	// XXX All Channels....
2712 	for (c  = &ic->ic_channels[1];
2713 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2714 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2715 			continue;
2716 
2717 		chan->chan = ieee80211_chan2ieee(ic, c);
2718 		chan->flags = 0;
2719 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2720 		    chan->flags |= WPI_CHAN_ACTIVE;
2721 		    if (ic->ic_des_ssid[0].len != 0)
2722 			chan->flags |= WPI_CHAN_DIRECT;
2723 		}
2724 		chan->gain_dsp = 0x6e; /* Default level */
2725 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2726 			chan->active = htole16(10);
2727 			chan->passive = htole16(110);
2728 			chan->gain_radio = 0x3b;
2729 		} else {
2730 			chan->active = htole16(20);
2731 			chan->passive = htole16(120);
2732 			chan->gain_radio = 0x28;
2733 		}
2734 
2735 		DPRINTFN(WPI_DEBUG_SCANNING,
2736 			 ("Scanning %u Passive: %d\n",
2737 			  chan->chan,
2738 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2739 
2740 		hdr->nchan++;
2741 		chan++;
2742 
2743 		frm += sizeof (struct wpi_scan_chan);
2744 	}
2745 #endif
2746 
2747 	hdr->len = htole16(frm - (uint8_t *)hdr);
2748 	pktlen = frm - (uint8_t *)cmd;
2749 
2750 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2751 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2752 	if (error != 0) {
2753 		device_printf(sc->sc_dev, "could not map scan command\n");
2754 		m_freem(data->m);
2755 		data->m = NULL;
2756 		return error;
2757 	}
2758 
2759 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2760 	desc->segs[0].addr = htole32(physaddr);
2761 	desc->segs[0].len  = htole32(pktlen);
2762 
2763 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2764 	    BUS_DMASYNC_PREWRITE);
2765 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2766 
2767 	/* kick cmd ring */
2768 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2769 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2770 
2771 	sc->sc_scan_timer = 5;
2772 	return 0;	/* will be notified async. of failure/success */
2773 }
2774 
2775 /**
2776  * Configure the card to listen to a particular channel, this transisions the
2777  * card in to being able to receive frames from remote devices.
2778  */
2779 static int
2780 wpi_config(struct wpi_softc *sc)
2781 {
2782 	struct ifnet *ifp = sc->sc_ifp;
2783 	struct ieee80211com *ic = ifp->if_l2com;
2784 	struct wpi_power power;
2785 	struct wpi_bluetooth bluetooth;
2786 	struct wpi_node_info node;
2787 	int error;
2788 
2789 	/* set power mode */
2790 	memset(&power, 0, sizeof power);
2791 	power.flags = htole32(WPI_POWER_CAM|0x8);
2792 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2793 	if (error != 0) {
2794 		device_printf(sc->sc_dev, "could not set power mode\n");
2795 		return error;
2796 	}
2797 
2798 	/* configure bluetooth coexistence */
2799 	memset(&bluetooth, 0, sizeof bluetooth);
2800 	bluetooth.flags = 3;
2801 	bluetooth.lead = 0xaa;
2802 	bluetooth.kill = 1;
2803 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2804 	    0);
2805 	if (error != 0) {
2806 		device_printf(sc->sc_dev,
2807 		    "could not configure bluetooth coexistence\n");
2808 		return error;
2809 	}
2810 
2811 	/* configure adapter */
2812 	memset(&sc->config, 0, sizeof (struct wpi_config));
2813 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2814 	/*set default channel*/
2815 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2816 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2817 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2818 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2819 		    WPI_CONFIG_24GHZ);
2820 	}
2821 	sc->config.filter = 0;
2822 	switch (ic->ic_opmode) {
2823 	case IEEE80211_M_STA:
2824 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2825 		sc->config.mode = WPI_MODE_STA;
2826 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2827 		break;
2828 	case IEEE80211_M_IBSS:
2829 	case IEEE80211_M_AHDEMO:
2830 		sc->config.mode = WPI_MODE_IBSS;
2831 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2832 					     WPI_FILTER_MULTICAST);
2833 		break;
2834 	case IEEE80211_M_HOSTAP:
2835 		sc->config.mode = WPI_MODE_HOSTAP;
2836 		break;
2837 	case IEEE80211_M_MONITOR:
2838 		sc->config.mode = WPI_MODE_MONITOR;
2839 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2840 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2841 		break;
2842 	default:
2843 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2844 		return EINVAL;
2845 	}
2846 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2847 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2848 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2849 		sizeof (struct wpi_config), 0);
2850 	if (error != 0) {
2851 		device_printf(sc->sc_dev, "configure command failed\n");
2852 		return error;
2853 	}
2854 
2855 	/* configuration has changed, set Tx power accordingly */
2856 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2857 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2858 	    return error;
2859 	}
2860 
2861 	/* add broadcast node */
2862 	memset(&node, 0, sizeof node);
2863 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2864 	node.id = WPI_ID_BROADCAST;
2865 	node.rate = wpi_plcp_signal(2);
2866 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2867 	if (error != 0) {
2868 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2869 		return error;
2870 	}
2871 
2872 	/* Setup rate scalling */
2873 	error = wpi_mrr_setup(sc);
2874 	if (error != 0) {
2875 		device_printf(sc->sc_dev, "could not setup MRR\n");
2876 		return error;
2877 	}
2878 
2879 	return 0;
2880 }
2881 
2882 static void
2883 wpi_stop_master(struct wpi_softc *sc)
2884 {
2885 	uint32_t tmp;
2886 	int ntries;
2887 
2888 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2889 
2890 	tmp = WPI_READ(sc, WPI_RESET);
2891 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2892 
2893 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2894 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2895 		return;	/* already asleep */
2896 
2897 	for (ntries = 0; ntries < 100; ntries++) {
2898 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2899 			break;
2900 		DELAY(10);
2901 	}
2902 	if (ntries == 100) {
2903 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2904 	}
2905 }
2906 
2907 static int
2908 wpi_power_up(struct wpi_softc *sc)
2909 {
2910 	uint32_t tmp;
2911 	int ntries;
2912 
2913 	wpi_mem_lock(sc);
2914 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2915 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2916 	wpi_mem_unlock(sc);
2917 
2918 	for (ntries = 0; ntries < 5000; ntries++) {
2919 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2920 			break;
2921 		DELAY(10);
2922 	}
2923 	if (ntries == 5000) {
2924 		device_printf(sc->sc_dev,
2925 		    "timeout waiting for NIC to power up\n");
2926 		return ETIMEDOUT;
2927 	}
2928 	return 0;
2929 }
2930 
2931 static int
2932 wpi_reset(struct wpi_softc *sc)
2933 {
2934 	uint32_t tmp;
2935 	int ntries;
2936 
2937 	DPRINTFN(WPI_DEBUG_HW,
2938 	    ("Resetting the card - clearing any uploaded firmware\n"));
2939 
2940 	/* clear any pending interrupts */
2941 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2942 
2943 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2944 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2945 
2946 	tmp = WPI_READ(sc, WPI_CHICKEN);
2947 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2948 
2949 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2950 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2951 
2952 	/* wait for clock stabilization */
2953 	for (ntries = 0; ntries < 25000; ntries++) {
2954 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2955 			break;
2956 		DELAY(10);
2957 	}
2958 	if (ntries == 25000) {
2959 		device_printf(sc->sc_dev,
2960 		    "timeout waiting for clock stabilization\n");
2961 		return ETIMEDOUT;
2962 	}
2963 
2964 	/* initialize EEPROM */
2965 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2966 
2967 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2968 		device_printf(sc->sc_dev, "EEPROM not found\n");
2969 		return EIO;
2970 	}
2971 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2972 
2973 	return 0;
2974 }
2975 
2976 static void
2977 wpi_hw_config(struct wpi_softc *sc)
2978 {
2979 	uint32_t rev, hw;
2980 
2981 	/* voodoo from the Linux "driver".. */
2982 	hw = WPI_READ(sc, WPI_HWCONFIG);
2983 
2984 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2985 	if ((rev & 0xc0) == 0x40)
2986 		hw |= WPI_HW_ALM_MB;
2987 	else if (!(rev & 0x80))
2988 		hw |= WPI_HW_ALM_MM;
2989 
2990 	if (sc->cap == 0x80)
2991 		hw |= WPI_HW_SKU_MRC;
2992 
2993 	hw &= ~WPI_HW_REV_D;
2994 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2995 		hw |= WPI_HW_REV_D;
2996 
2997 	if (sc->type > 1)
2998 		hw |= WPI_HW_TYPE_B;
2999 
3000 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3001 }
3002 
3003 static void
3004 wpi_rfkill_resume(struct wpi_softc *sc)
3005 {
3006 	struct ifnet *ifp = sc->sc_ifp;
3007 	struct ieee80211com *ic = ifp->if_l2com;
3008 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3009 	int ntries;
3010 
3011 	/* enable firmware again */
3012 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3013 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3014 
3015 	/* wait for thermal sensors to calibrate */
3016 	for (ntries = 0; ntries < 1000; ntries++) {
3017 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3018 			break;
3019 		DELAY(10);
3020 	}
3021 
3022 	if (ntries == 1000) {
3023 		device_printf(sc->sc_dev,
3024 		    "timeout waiting for thermal calibration\n");
3025 		return;
3026 	}
3027 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3028 
3029 	if (wpi_config(sc) != 0) {
3030 		device_printf(sc->sc_dev, "device config failed\n");
3031 		return;
3032 	}
3033 
3034 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3035 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3036 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3037 
3038 	if (vap != NULL) {
3039 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3040 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3041 				ieee80211_beacon_miss(ic);
3042 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3043 			} else
3044 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3045 		} else {
3046 			ieee80211_scan_next(vap);
3047 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3048 		}
3049 	}
3050 
3051 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3052 }
3053 
3054 static void
3055 wpi_init_locked(struct wpi_softc *sc, int force)
3056 {
3057 	struct ifnet *ifp = sc->sc_ifp;
3058 	uint32_t tmp;
3059 	int ntries, qid;
3060 
3061 	wpi_stop_locked(sc);
3062 	(void)wpi_reset(sc);
3063 
3064 	wpi_mem_lock(sc);
3065 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3066 	DELAY(20);
3067 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3068 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3069 	wpi_mem_unlock(sc);
3070 
3071 	(void)wpi_power_up(sc);
3072 	wpi_hw_config(sc);
3073 
3074 	/* init Rx ring */
3075 	wpi_mem_lock(sc);
3076 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3077 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3078 	    offsetof(struct wpi_shared, next));
3079 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3080 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3081 	wpi_mem_unlock(sc);
3082 
3083 	/* init Tx rings */
3084 	wpi_mem_lock(sc);
3085 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3086 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3087 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3088 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3089 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3090 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3091 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3092 
3093 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3094 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3095 
3096 	for (qid = 0; qid < 6; qid++) {
3097 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3098 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3099 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3100 	}
3101 	wpi_mem_unlock(sc);
3102 
3103 	/* clear "radio off" and "disable command" bits (reversed logic) */
3104 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3105 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3106 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3107 
3108 	/* clear any pending interrupts */
3109 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3110 
3111 	/* enable interrupts */
3112 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3113 
3114 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3115 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3116 
3117 	if ((wpi_load_firmware(sc)) != 0) {
3118 	    device_printf(sc->sc_dev,
3119 		"A problem occurred loading the firmware to the driver\n");
3120 	    return;
3121 	}
3122 
3123 	/* At this point the firmware is up and running. If the hardware
3124 	 * RF switch is turned off thermal calibration will fail, though
3125 	 * the card is still happy to continue to accept commands, catch
3126 	 * this case and schedule a task to watch for it to be turned on.
3127 	 */
3128 	wpi_mem_lock(sc);
3129 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3130 	wpi_mem_unlock(sc);
3131 
3132 	if (!(tmp & 0x1)) {
3133 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3134 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3135 		goto out;
3136 	}
3137 
3138 	/* wait for thermal sensors to calibrate */
3139 	for (ntries = 0; ntries < 1000; ntries++) {
3140 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3141 			break;
3142 		DELAY(10);
3143 	}
3144 
3145 	if (ntries == 1000) {
3146 		device_printf(sc->sc_dev,
3147 		    "timeout waiting for thermal sensors calibration\n");
3148 		return;
3149 	}
3150 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3151 
3152 	if (wpi_config(sc) != 0) {
3153 		device_printf(sc->sc_dev, "device config failed\n");
3154 		return;
3155 	}
3156 
3157 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3158 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3159 out:
3160 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3161 }
3162 
3163 static void
3164 wpi_init(void *arg)
3165 {
3166 	struct wpi_softc *sc = arg;
3167 	struct ifnet *ifp = sc->sc_ifp;
3168 	struct ieee80211com *ic = ifp->if_l2com;
3169 
3170 	WPI_LOCK(sc);
3171 	wpi_init_locked(sc, 0);
3172 	WPI_UNLOCK(sc);
3173 
3174 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3175 		ieee80211_start_all(ic);		/* start all vaps */
3176 }
3177 
3178 static void
3179 wpi_stop_locked(struct wpi_softc *sc)
3180 {
3181 	struct ifnet *ifp = sc->sc_ifp;
3182 	uint32_t tmp;
3183 	int ac;
3184 
3185 	sc->sc_tx_timer = 0;
3186 	sc->sc_scan_timer = 0;
3187 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3188 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3189 	callout_stop(&sc->watchdog_to);
3190 	callout_stop(&sc->calib_to);
3191 
3192 
3193 	/* disable interrupts */
3194 	WPI_WRITE(sc, WPI_MASK, 0);
3195 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3196 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3197 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3198 
3199 	wpi_mem_lock(sc);
3200 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3201 	wpi_mem_unlock(sc);
3202 
3203 	/* reset all Tx rings */
3204 	for (ac = 0; ac < 4; ac++)
3205 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3206 	wpi_reset_tx_ring(sc, &sc->cmdq);
3207 
3208 	/* reset Rx ring */
3209 	wpi_reset_rx_ring(sc, &sc->rxq);
3210 
3211 	wpi_mem_lock(sc);
3212 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3213 	wpi_mem_unlock(sc);
3214 
3215 	DELAY(5);
3216 
3217 	wpi_stop_master(sc);
3218 
3219 	tmp = WPI_READ(sc, WPI_RESET);
3220 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3221 	sc->flags &= ~WPI_FLAG_BUSY;
3222 }
3223 
3224 static void
3225 wpi_stop(struct wpi_softc *sc)
3226 {
3227 	WPI_LOCK(sc);
3228 	wpi_stop_locked(sc);
3229 	WPI_UNLOCK(sc);
3230 }
3231 
3232 static void
3233 wpi_calib_timeout(void *arg)
3234 {
3235 	struct wpi_softc *sc = arg;
3236 	struct ifnet *ifp = sc->sc_ifp;
3237 	struct ieee80211com *ic = ifp->if_l2com;
3238 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3239 	int temp;
3240 
3241 	if (vap->iv_state != IEEE80211_S_RUN)
3242 		return;
3243 
3244 	/* update sensor data */
3245 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3246 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3247 
3248 	wpi_power_calibration(sc, temp);
3249 
3250 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3251 }
3252 
3253 /*
3254  * This function is called periodically (every 60 seconds) to adjust output
3255  * power to temperature changes.
3256  */
3257 static void
3258 wpi_power_calibration(struct wpi_softc *sc, int temp)
3259 {
3260 	struct ifnet *ifp = sc->sc_ifp;
3261 	struct ieee80211com *ic = ifp->if_l2com;
3262 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3263 
3264 	/* sanity-check read value */
3265 	if (temp < -260 || temp > 25) {
3266 		/* this can't be correct, ignore */
3267 		DPRINTFN(WPI_DEBUG_TEMP,
3268 		    ("out-of-range temperature reported: %d\n", temp));
3269 		return;
3270 	}
3271 
3272 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3273 
3274 	/* adjust Tx power if need be */
3275 	if (abs(temp - sc->temp) <= 6)
3276 		return;
3277 
3278 	sc->temp = temp;
3279 
3280 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3281 		/* just warn, too bad for the automatic calibration... */
3282 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3283 	}
3284 }
3285 
3286 /**
3287  * Read the eeprom to find out what channels are valid for the given
3288  * band and update net80211 with what we find.
3289  */
3290 static void
3291 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3292 {
3293 	struct ifnet *ifp = sc->sc_ifp;
3294 	struct ieee80211com *ic = ifp->if_l2com;
3295 	const struct wpi_chan_band *band = &wpi_bands[n];
3296 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3297 	struct ieee80211_channel *c;
3298 	int chan, i, passive;
3299 
3300 	wpi_read_prom_data(sc, band->addr, channels,
3301 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3302 
3303 	for (i = 0; i < band->nchan; i++) {
3304 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3305 			DPRINTFN(WPI_DEBUG_HW,
3306 			    ("Channel Not Valid: %d, band %d\n",
3307 			     band->chan[i],n));
3308 			continue;
3309 		}
3310 
3311 		passive = 0;
3312 		chan = band->chan[i];
3313 		c = &ic->ic_channels[ic->ic_nchans++];
3314 
3315 		/* is active scan allowed on this channel? */
3316 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3317 			passive = IEEE80211_CHAN_PASSIVE;
3318 		}
3319 
3320 		if (n == 0) {	/* 2GHz band */
3321 			c->ic_ieee = chan;
3322 			c->ic_freq = ieee80211_ieee2mhz(chan,
3323 			    IEEE80211_CHAN_2GHZ);
3324 			c->ic_flags = IEEE80211_CHAN_B | passive;
3325 
3326 			c = &ic->ic_channels[ic->ic_nchans++];
3327 			c->ic_ieee = chan;
3328 			c->ic_freq = ieee80211_ieee2mhz(chan,
3329 			    IEEE80211_CHAN_2GHZ);
3330 			c->ic_flags = IEEE80211_CHAN_G | passive;
3331 
3332 		} else {	/* 5GHz band */
3333 			/*
3334 			 * Some 3945ABG adapters support channels 7, 8, 11
3335 			 * and 12 in the 2GHz *and* 5GHz bands.
3336 			 * Because of limitations in our net80211(9) stack,
3337 			 * we can't support these channels in 5GHz band.
3338 			 * XXX not true; just need to map to proper frequency
3339 			 */
3340 			if (chan <= 14)
3341 				continue;
3342 
3343 			c->ic_ieee = chan;
3344 			c->ic_freq = ieee80211_ieee2mhz(chan,
3345 			    IEEE80211_CHAN_5GHZ);
3346 			c->ic_flags = IEEE80211_CHAN_A | passive;
3347 		}
3348 
3349 		/* save maximum allowed power for this channel */
3350 		sc->maxpwr[chan] = channels[i].maxpwr;
3351 
3352 #if 0
3353 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3354 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3355 		//ic->ic_channels[chan].ic_minpower...
3356 		//ic->ic_channels[chan].ic_maxregtxpower...
3357 #endif
3358 
3359 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3360 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3361 		    channels[i].flags, sc->maxpwr[chan],
3362 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3363 		    ic->ic_nchans));
3364 	}
3365 }
3366 
3367 static void
3368 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3369 {
3370 	struct wpi_power_group *group = &sc->groups[n];
3371 	struct wpi_eeprom_group rgroup;
3372 	int i;
3373 
3374 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3375 	    sizeof rgroup);
3376 
3377 	/* save power group information */
3378 	group->chan   = rgroup.chan;
3379 	group->maxpwr = rgroup.maxpwr;
3380 	/* temperature at which the samples were taken */
3381 	group->temp   = (int16_t)le16toh(rgroup.temp);
3382 
3383 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3384 		    group->chan, group->maxpwr, group->temp));
3385 
3386 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3387 		group->samples[i].index = rgroup.samples[i].index;
3388 		group->samples[i].power = rgroup.samples[i].power;
3389 
3390 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3391 			    group->samples[i].index, group->samples[i].power));
3392 	}
3393 }
3394 
3395 /*
3396  * Update Tx power to match what is defined for channel `c'.
3397  */
3398 static int
3399 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3400 {
3401 	struct ifnet *ifp = sc->sc_ifp;
3402 	struct ieee80211com *ic = ifp->if_l2com;
3403 	struct wpi_power_group *group;
3404 	struct wpi_cmd_txpower txpower;
3405 	u_int chan;
3406 	int i;
3407 
3408 	/* get channel number */
3409 	chan = ieee80211_chan2ieee(ic, c);
3410 
3411 	/* find the power group to which this channel belongs */
3412 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3413 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3414 			if (chan <= group->chan)
3415 				break;
3416 	} else
3417 		group = &sc->groups[0];
3418 
3419 	memset(&txpower, 0, sizeof txpower);
3420 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3421 	txpower.channel = htole16(chan);
3422 
3423 	/* set Tx power for all OFDM and CCK rates */
3424 	for (i = 0; i <= 11 ; i++) {
3425 		/* retrieve Tx power for this channel/rate combination */
3426 		int idx = wpi_get_power_index(sc, group, c,
3427 		    wpi_ridx_to_rate[i]);
3428 
3429 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3430 
3431 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3432 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3433 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3434 		} else {
3435 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3436 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3437 		}
3438 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3439 			    chan, wpi_ridx_to_rate[i], idx));
3440 	}
3441 
3442 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3443 }
3444 
3445 /*
3446  * Determine Tx power index for a given channel/rate combination.
3447  * This takes into account the regulatory information from EEPROM and the
3448  * current temperature.
3449  */
3450 static int
3451 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3452     struct ieee80211_channel *c, int rate)
3453 {
3454 /* fixed-point arithmetic division using a n-bit fractional part */
3455 #define fdivround(a, b, n)      \
3456 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3457 
3458 /* linear interpolation */
3459 #define interpolate(x, x1, y1, x2, y2, n)       \
3460 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3461 
3462 	struct ifnet *ifp = sc->sc_ifp;
3463 	struct ieee80211com *ic = ifp->if_l2com;
3464 	struct wpi_power_sample *sample;
3465 	int pwr, idx;
3466 	u_int chan;
3467 
3468 	/* get channel number */
3469 	chan = ieee80211_chan2ieee(ic, c);
3470 
3471 	/* default power is group's maximum power - 3dB */
3472 	pwr = group->maxpwr / 2;
3473 
3474 	/* decrease power for highest OFDM rates to reduce distortion */
3475 	switch (rate) {
3476 		case 72:	/* 36Mb/s */
3477 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3478 			break;
3479 		case 96:	/* 48Mb/s */
3480 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3481 			break;
3482 		case 108:	/* 54Mb/s */
3483 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3484 			break;
3485 	}
3486 
3487 	/* never exceed channel's maximum allowed Tx power */
3488 	pwr = min(pwr, sc->maxpwr[chan]);
3489 
3490 	/* retrieve power index into gain tables from samples */
3491 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3492 		if (pwr > sample[1].power)
3493 			break;
3494 	/* fixed-point linear interpolation using a 19-bit fractional part */
3495 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3496 	    sample[1].power, sample[1].index, 19);
3497 
3498 	/*
3499 	 *  Adjust power index based on current temperature
3500 	 *	- if colder than factory-calibrated: decreate output power
3501 	 *	- if warmer than factory-calibrated: increase output power
3502 	 */
3503 	idx -= (sc->temp - group->temp) * 11 / 100;
3504 
3505 	/* decrease power for CCK rates (-5dB) */
3506 	if (!WPI_RATE_IS_OFDM(rate))
3507 		idx += 10;
3508 
3509 	/* keep power index in a valid range */
3510 	if (idx < 0)
3511 		return 0;
3512 	if (idx > WPI_MAX_PWR_INDEX)
3513 		return WPI_MAX_PWR_INDEX;
3514 	return idx;
3515 
3516 #undef interpolate
3517 #undef fdivround
3518 }
3519 
3520 /**
3521  * Called by net80211 framework to indicate that a scan
3522  * is starting. This function doesn't actually do the scan,
3523  * wpi_scan_curchan starts things off. This function is more
3524  * of an early warning from the framework we should get ready
3525  * for the scan.
3526  */
3527 static void
3528 wpi_scan_start(struct ieee80211com *ic)
3529 {
3530 	struct ifnet *ifp = ic->ic_ifp;
3531 	struct wpi_softc *sc = ifp->if_softc;
3532 
3533 	WPI_LOCK(sc);
3534 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3535 	WPI_UNLOCK(sc);
3536 }
3537 
3538 /**
3539  * Called by the net80211 framework, indicates that the
3540  * scan has ended. If there is a scan in progress on the card
3541  * then it should be aborted.
3542  */
3543 static void
3544 wpi_scan_end(struct ieee80211com *ic)
3545 {
3546 	/* XXX ignore */
3547 }
3548 
3549 /**
3550  * Called by the net80211 framework to indicate to the driver
3551  * that the channel should be changed
3552  */
3553 static void
3554 wpi_set_channel(struct ieee80211com *ic)
3555 {
3556 	struct ifnet *ifp = ic->ic_ifp;
3557 	struct wpi_softc *sc = ifp->if_softc;
3558 	int error;
3559 
3560 	/*
3561 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3562 	 * are already taken care of by their respective firmware commands.
3563 	 */
3564 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3565 		WPI_LOCK(sc);
3566 		error = wpi_config(sc);
3567 		WPI_UNLOCK(sc);
3568 		if (error != 0)
3569 			device_printf(sc->sc_dev,
3570 			    "error %d settting channel\n", error);
3571 	}
3572 }
3573 
3574 /**
3575  * Called by net80211 to indicate that we need to scan the current
3576  * channel. The channel is previously be set via the wpi_set_channel
3577  * callback.
3578  */
3579 static void
3580 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3581 {
3582 	struct ieee80211vap *vap = ss->ss_vap;
3583 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3584 	struct wpi_softc *sc = ifp->if_softc;
3585 
3586 	WPI_LOCK(sc);
3587 	if (wpi_scan(sc))
3588 		ieee80211_cancel_scan(vap);
3589 	WPI_UNLOCK(sc);
3590 }
3591 
3592 /**
3593  * Called by the net80211 framework to indicate
3594  * the minimum dwell time has been met, terminate the scan.
3595  * We don't actually terminate the scan as the firmware will notify
3596  * us when it's finished and we have no way to interrupt it.
3597  */
3598 static void
3599 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3600 {
3601 	/* NB: don't try to abort scan; wait for firmware to finish */
3602 }
3603 
3604 static void
3605 wpi_hwreset(void *arg, int pending)
3606 {
3607 	struct wpi_softc *sc = arg;
3608 
3609 	WPI_LOCK(sc);
3610 	wpi_init_locked(sc, 0);
3611 	WPI_UNLOCK(sc);
3612 }
3613 
3614 static void
3615 wpi_rfreset(void *arg, int pending)
3616 {
3617 	struct wpi_softc *sc = arg;
3618 
3619 	WPI_LOCK(sc);
3620 	wpi_rfkill_resume(sc);
3621 	WPI_UNLOCK(sc);
3622 }
3623 
3624 /*
3625  * Allocate DMA-safe memory for firmware transfer.
3626  */
3627 static int
3628 wpi_alloc_fwmem(struct wpi_softc *sc)
3629 {
3630 	/* allocate enough contiguous space to store text and data */
3631 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3632 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3633 	    BUS_DMA_NOWAIT);
3634 }
3635 
3636 static void
3637 wpi_free_fwmem(struct wpi_softc *sc)
3638 {
3639 	wpi_dma_contig_free(&sc->fw_dma);
3640 }
3641 
3642 /**
3643  * Called every second, wpi_watchdog used by the watch dog timer
3644  * to check that the card is still alive
3645  */
3646 static void
3647 wpi_watchdog(void *arg)
3648 {
3649 	struct wpi_softc *sc = arg;
3650 	struct ifnet *ifp = sc->sc_ifp;
3651 	struct ieee80211com *ic = ifp->if_l2com;
3652 	uint32_t tmp;
3653 
3654 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3655 
3656 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3657 		/* No need to lock firmware memory */
3658 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3659 
3660 		if ((tmp & 0x1) == 0) {
3661 			/* Radio kill switch is still off */
3662 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3663 			return;
3664 		}
3665 
3666 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3667 		ieee80211_runtask(ic, &sc->sc_radiotask);
3668 		return;
3669 	}
3670 
3671 	if (sc->sc_tx_timer > 0) {
3672 		if (--sc->sc_tx_timer == 0) {
3673 			device_printf(sc->sc_dev,"device timeout\n");
3674 			ifp->if_oerrors++;
3675 			ieee80211_runtask(ic, &sc->sc_restarttask);
3676 		}
3677 	}
3678 	if (sc->sc_scan_timer > 0) {
3679 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3680 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3681 			device_printf(sc->sc_dev,"scan timeout\n");
3682 			ieee80211_cancel_scan(vap);
3683 			ieee80211_runtask(ic, &sc->sc_restarttask);
3684 		}
3685 	}
3686 
3687 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3688 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3689 }
3690 
3691 #ifdef WPI_DEBUG
3692 static const char *wpi_cmd_str(int cmd)
3693 {
3694 	switch (cmd) {
3695 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3696 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3697 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3698 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3699 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3700 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3701 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3702 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3703 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3704 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3705 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3706 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3707 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3708 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3709 
3710 	default:
3711 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3712 		return "UNKNOWN CMD";	/* Make the compiler happy */
3713 	}
3714 }
3715 #endif
3716 
3717 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3718 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3719 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3720