xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 5ca34122ecdd5abc62bdae39663fec9ac8523d87)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*
23  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24  *
25  * The 3945ABG network adapter doesn't use traditional hardware as
26  * many other adaptors do. Instead at run time the eeprom is set into a known
27  * state and told to load boot firmware. The boot firmware loads an init and a
28  * main  binary firmware image into SRAM on the card via DMA.
29  * Once the firmware is loaded, the driver/hw then
30  * communicate by way of circular dma rings via the SRAM to the firmware.
31  *
32  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33  * The 4 tx data rings allow for prioritization QoS.
34  *
35  * The rx data ring consists of 32 dma buffers. Two registers are used to
36  * indicate where in the ring the driver and the firmware are up to. The
37  * driver sets the initial read index (reg1) and the initial write index (reg2),
38  * the firmware updates the read index (reg1) on rx of a packet and fires an
39  * interrupt. The driver then processes the buffers starting at reg1 indicating
40  * to the firmware which buffers have been accessed by updating reg2. At the
41  * same time allocating new memory for the processed buffer.
42  *
43  * A similar thing happens with the tx rings. The difference is the firmware
44  * stop processing buffers once the queue is full and until confirmation
45  * of a successful transmition (tx_done) has occurred.
46  *
47  * The command ring operates in the same manner as the tx queues.
48  *
49  * All communication direct to the card (ie eeprom) is classed as Stage1
50  * communication
51  *
52  * All communication via the firmware to the card is classed as State2.
53  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54  * firmware. The bootstrap firmware and runtime firmware are loaded
55  * from host memory via dma to the card then told to execute. From this point
56  * on the majority of communications between the driver and the card goes
57  * via the firmware.
58  */
59 
60 #include "opt_wlan.h"
61 #include "opt_wpi.h"
62 
63 #include <sys/param.h>
64 #include <sys/sysctl.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/systm.h>
70 #include <sys/malloc.h>
71 #include <sys/queue.h>
72 #include <sys/taskqueue.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/endian.h>
76 #include <sys/linker.h>
77 #include <sys/firmware.h>
78 
79 #include <machine/bus.h>
80 #include <machine/resource.h>
81 #include <sys/rman.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/if_ether.h>
99 #include <netinet/ip.h>
100 
101 #include <net80211/ieee80211_var.h>
102 #include <net80211/ieee80211_radiotap.h>
103 #include <net80211/ieee80211_regdomain.h>
104 #include <net80211/ieee80211_ratectl.h>
105 
106 #include <dev/wpi/if_wpireg.h>
107 #include <dev/wpi/if_wpivar.h>
108 #include <dev/wpi/if_wpi_debug.h>
109 
110 struct wpi_ident {
111 	uint16_t	vendor;
112 	uint16_t	device;
113 	uint16_t	subdevice;
114 	const char	*name;
115 };
116 
117 static const struct wpi_ident wpi_ident_table[] = {
118 	/* The below entries support ABG regardless of the subid */
119 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	/* The below entries only support BG */
122 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0, 0, 0, NULL }
127 };
128 
129 static int	wpi_probe(device_t);
130 static int	wpi_attach(device_t);
131 static void	wpi_radiotap_attach(struct wpi_softc *);
132 static void	wpi_sysctlattach(struct wpi_softc *);
133 static void	wpi_init_beacon(struct wpi_vap *);
134 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136 		    const uint8_t [IEEE80211_ADDR_LEN],
137 		    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void	wpi_vap_delete(struct ieee80211vap *);
139 static int	wpi_detach(device_t);
140 static int	wpi_shutdown(device_t);
141 static int	wpi_suspend(device_t);
142 static int	wpi_resume(device_t);
143 static int	wpi_nic_lock(struct wpi_softc *);
144 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147 		    void **, bus_size_t, bus_size_t);
148 static void	wpi_dma_contig_free(struct wpi_dma_info *);
149 static int	wpi_alloc_shared(struct wpi_softc *);
150 static void	wpi_free_shared(struct wpi_softc *);
151 static int	wpi_alloc_fwmem(struct wpi_softc *);
152 static void	wpi_free_fwmem(struct wpi_softc *);
153 static int	wpi_alloc_rx_ring(struct wpi_softc *);
154 static void	wpi_update_rx_ring(struct wpi_softc *);
155 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
156 static void	wpi_reset_rx_ring(struct wpi_softc *);
157 static void	wpi_free_rx_ring(struct wpi_softc *);
158 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
159 		    int);
160 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
162 		    struct wpi_tx_ring *);
163 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
164 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165 static int	wpi_read_eeprom(struct wpi_softc *,
166 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
167 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
168 static void	wpi_read_eeprom_band(struct wpi_softc *, int);
169 static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
170 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
171 		    struct ieee80211_channel *);
172 static int	wpi_setregdomain(struct ieee80211com *,
173 		    struct ieee80211_regdomain *, int,
174 		    struct ieee80211_channel[]);
175 static int	wpi_read_eeprom_group(struct wpi_softc *, int);
176 static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
177 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
178 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
179 static void	wpi_node_free(struct ieee80211_node *);
180 static void	wpi_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
181 		    const struct ieee80211_rx_stats *,
182 		    int, int);
183 static void	wpi_restore_node(void *, struct ieee80211_node *);
184 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
185 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
186 static void	wpi_calib_timeout(void *);
187 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
188 		    struct wpi_rx_data *);
189 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
190 		    struct wpi_rx_data *);
191 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
192 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
193 static void	wpi_notif_intr(struct wpi_softc *);
194 static void	wpi_wakeup_intr(struct wpi_softc *);
195 #ifdef WPI_DEBUG
196 static void	wpi_debug_registers(struct wpi_softc *);
197 #endif
198 static void	wpi_fatal_intr(struct wpi_softc *);
199 static void	wpi_intr(void *);
200 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
201 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
202 		    struct ieee80211_node *);
203 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
204 		    struct ieee80211_node *,
205 		    const struct ieee80211_bpf_params *);
206 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
207 		    const struct ieee80211_bpf_params *);
208 static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
209 static void	wpi_start(void *, int);
210 static void	wpi_watchdog_rfkill(void *);
211 static void	wpi_scan_timeout(void *);
212 static void	wpi_tx_timeout(void *);
213 static void	wpi_parent(struct ieee80211com *);
214 static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
215 static int	wpi_mrr_setup(struct wpi_softc *);
216 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
217 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
218 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
219 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
220 static int	wpi_updateedca(struct ieee80211com *);
221 static void	wpi_set_promisc(struct wpi_softc *);
222 static void	wpi_update_promisc(struct ieee80211com *);
223 static void	wpi_update_mcast(struct ieee80211com *);
224 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
225 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
226 static void	wpi_power_calibration(struct wpi_softc *);
227 static int	wpi_set_txpower(struct wpi_softc *, int);
228 static int	wpi_get_power_index(struct wpi_softc *,
229 		    struct wpi_power_group *, uint8_t, int, int);
230 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
231 static int	wpi_send_btcoex(struct wpi_softc *);
232 static int	wpi_send_rxon(struct wpi_softc *, int, int);
233 static int	wpi_config(struct wpi_softc *);
234 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
235 		    struct ieee80211_channel *, uint8_t);
236 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
237 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
238 		    struct ieee80211_channel *);
239 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
240 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
241 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
242 static int	wpi_config_beacon(struct wpi_vap *);
243 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
244 static void	wpi_update_beacon(struct ieee80211vap *, int);
245 static void	wpi_newassoc(struct ieee80211_node *, int);
246 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
247 static int	wpi_load_key(struct ieee80211_node *,
248 		    const struct ieee80211_key *);
249 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
250 static int	wpi_set_global_keys(struct ieee80211_node *);
251 static int	wpi_del_key(struct ieee80211_node *,
252 		    const struct ieee80211_key *);
253 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
254 static int	wpi_process_key(struct ieee80211vap *,
255 		    const struct ieee80211_key *, int);
256 static int	wpi_key_set(struct ieee80211vap *,
257 		    const struct ieee80211_key *,
258 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
259 static int	wpi_key_delete(struct ieee80211vap *,
260 		    const struct ieee80211_key *);
261 static int	wpi_post_alive(struct wpi_softc *);
262 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
263 static int	wpi_load_firmware(struct wpi_softc *);
264 static int	wpi_read_firmware(struct wpi_softc *);
265 static void	wpi_unload_firmware(struct wpi_softc *);
266 static int	wpi_clock_wait(struct wpi_softc *);
267 static int	wpi_apm_init(struct wpi_softc *);
268 static void	wpi_apm_stop_master(struct wpi_softc *);
269 static void	wpi_apm_stop(struct wpi_softc *);
270 static void	wpi_nic_config(struct wpi_softc *);
271 static int	wpi_hw_init(struct wpi_softc *);
272 static void	wpi_hw_stop(struct wpi_softc *);
273 static void	wpi_radio_on(void *, int);
274 static void	wpi_radio_off(void *, int);
275 static int	wpi_init(struct wpi_softc *);
276 static void	wpi_stop_locked(struct wpi_softc *);
277 static void	wpi_stop(struct wpi_softc *);
278 static void	wpi_scan_start(struct ieee80211com *);
279 static void	wpi_scan_end(struct ieee80211com *);
280 static void	wpi_set_channel(struct ieee80211com *);
281 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
282 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
283 static void	wpi_hw_reset(void *, int);
284 
285 static device_method_t wpi_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		wpi_probe),
288 	DEVMETHOD(device_attach,	wpi_attach),
289 	DEVMETHOD(device_detach,	wpi_detach),
290 	DEVMETHOD(device_shutdown,	wpi_shutdown),
291 	DEVMETHOD(device_suspend,	wpi_suspend),
292 	DEVMETHOD(device_resume,	wpi_resume),
293 
294 	DEVMETHOD_END
295 };
296 
297 static driver_t wpi_driver = {
298 	"wpi",
299 	wpi_methods,
300 	sizeof (struct wpi_softc)
301 };
302 static devclass_t wpi_devclass;
303 
304 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
305 
306 MODULE_VERSION(wpi, 1);
307 
308 MODULE_DEPEND(wpi, pci,  1, 1, 1);
309 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
310 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
311 
312 static int
313 wpi_probe(device_t dev)
314 {
315 	const struct wpi_ident *ident;
316 
317 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
318 		if (pci_get_vendor(dev) == ident->vendor &&
319 		    pci_get_device(dev) == ident->device) {
320 			device_set_desc(dev, ident->name);
321 			return (BUS_PROBE_DEFAULT);
322 		}
323 	}
324 	return ENXIO;
325 }
326 
327 static int
328 wpi_attach(device_t dev)
329 {
330 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
331 	struct ieee80211com *ic;
332 	int i, error, rid;
333 #ifdef WPI_DEBUG
334 	int supportsa = 1;
335 	const struct wpi_ident *ident;
336 #endif
337 
338 	sc->sc_dev = dev;
339 
340 #ifdef WPI_DEBUG
341 	error = resource_int_value(device_get_name(sc->sc_dev),
342 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
343 	if (error != 0)
344 		sc->sc_debug = 0;
345 #else
346 	sc->sc_debug = 0;
347 #endif
348 
349 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
350 
351 	/*
352 	 * Get the offset of the PCI Express Capability Structure in PCI
353 	 * Configuration Space.
354 	 */
355 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
356 	if (error != 0) {
357 		device_printf(dev, "PCIe capability structure not found!\n");
358 		return error;
359 	}
360 
361 	/*
362 	 * Some card's only support 802.11b/g not a, check to see if
363 	 * this is one such card. A 0x0 in the subdevice table indicates
364 	 * the entire subdevice range is to be ignored.
365 	 */
366 #ifdef WPI_DEBUG
367 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
368 		if (ident->subdevice &&
369 		    pci_get_subdevice(dev) == ident->subdevice) {
370 		    supportsa = 0;
371 		    break;
372 		}
373 	}
374 #endif
375 
376 	/* Clear device-specific "PCI retry timeout" register (41h). */
377 	pci_write_config(dev, 0x41, 0, 1);
378 
379 	/* Enable bus-mastering. */
380 	pci_enable_busmaster(dev);
381 
382 	rid = PCIR_BAR(0);
383 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
384 	    RF_ACTIVE);
385 	if (sc->mem == NULL) {
386 		device_printf(dev, "can't map mem space\n");
387 		return ENOMEM;
388 	}
389 	sc->sc_st = rman_get_bustag(sc->mem);
390 	sc->sc_sh = rman_get_bushandle(sc->mem);
391 
392 	i = 1;
393 	rid = 0;
394 	if (pci_alloc_msi(dev, &i) == 0)
395 		rid = 1;
396 	/* Install interrupt handler. */
397 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
398 	    (rid != 0 ? 0 : RF_SHAREABLE));
399 	if (sc->irq == NULL) {
400 		device_printf(dev, "can't map interrupt\n");
401 		error = ENOMEM;
402 		goto fail;
403 	}
404 
405 	WPI_LOCK_INIT(sc);
406 	WPI_TX_LOCK_INIT(sc);
407 	WPI_RXON_LOCK_INIT(sc);
408 	WPI_NT_LOCK_INIT(sc);
409 	WPI_TXQ_LOCK_INIT(sc);
410 	WPI_TXQ_STATE_LOCK_INIT(sc);
411 
412 	/* Allocate DMA memory for firmware transfers. */
413 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
414 		device_printf(dev,
415 		    "could not allocate memory for firmware, error %d\n",
416 		    error);
417 		goto fail;
418 	}
419 
420 	/* Allocate shared page. */
421 	if ((error = wpi_alloc_shared(sc)) != 0) {
422 		device_printf(dev, "could not allocate shared page\n");
423 		goto fail;
424 	}
425 
426 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
427 	for (i = 0; i < WPI_NTXQUEUES; i++) {
428 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
429 			device_printf(dev,
430 			    "could not allocate TX ring %d, error %d\n", i,
431 			    error);
432 			goto fail;
433 		}
434 	}
435 
436 	/* Allocate RX ring. */
437 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
438 		device_printf(dev, "could not allocate RX ring, error %d\n",
439 		    error);
440 		goto fail;
441 	}
442 
443 	/* Clear pending interrupts. */
444 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
445 
446 	ic = &sc->sc_ic;
447 	ic->ic_softc = sc;
448 	ic->ic_name = device_get_nameunit(dev);
449 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
450 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
451 
452 	/* Set device capabilities. */
453 	ic->ic_caps =
454 		  IEEE80211_C_STA		/* station mode supported */
455 		| IEEE80211_C_IBSS		/* IBSS mode supported */
456 		| IEEE80211_C_HOSTAP		/* Host access point mode */
457 		| IEEE80211_C_MONITOR		/* monitor mode supported */
458 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
459 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
460 		| IEEE80211_C_TXPMGT		/* tx power management */
461 		| IEEE80211_C_SHSLOT		/* short slot time supported */
462 		| IEEE80211_C_WPA		/* 802.11i */
463 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
464 		| IEEE80211_C_WME		/* 802.11e */
465 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
466 		;
467 
468 	ic->ic_cryptocaps =
469 		  IEEE80211_CRYPTO_AES_CCM;
470 
471 	/*
472 	 * Read in the eeprom and also setup the channels for
473 	 * net80211. We don't set the rates as net80211 does this for us
474 	 */
475 	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
476 		device_printf(dev, "could not read EEPROM, error %d\n",
477 		    error);
478 		goto fail;
479 	}
480 
481 #ifdef WPI_DEBUG
482 	if (bootverbose) {
483 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
484 		    sc->domain);
485 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
486 		    sc->type > 1 ? 'B': '?');
487 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
488 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
489 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
490 		    supportsa ? "does" : "does not");
491 
492 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
493 		   check what sc->rev really represents - benjsc 20070615 */
494 	}
495 #endif
496 
497 	ieee80211_ifattach(ic);
498 	ic->ic_vap_create = wpi_vap_create;
499 	ic->ic_vap_delete = wpi_vap_delete;
500 	ic->ic_parent = wpi_parent;
501 	ic->ic_raw_xmit = wpi_raw_xmit;
502 	ic->ic_transmit = wpi_transmit;
503 	ic->ic_node_alloc = wpi_node_alloc;
504 	sc->sc_node_free = ic->ic_node_free;
505 	ic->ic_node_free = wpi_node_free;
506 	ic->ic_wme.wme_update = wpi_updateedca;
507 	ic->ic_update_promisc = wpi_update_promisc;
508 	ic->ic_update_mcast = wpi_update_mcast;
509 	ic->ic_newassoc = wpi_newassoc;
510 	ic->ic_scan_start = wpi_scan_start;
511 	ic->ic_scan_end = wpi_scan_end;
512 	ic->ic_set_channel = wpi_set_channel;
513 	ic->ic_scan_curchan = wpi_scan_curchan;
514 	ic->ic_scan_mindwell = wpi_scan_mindwell;
515 	ic->ic_setregdomain = wpi_setregdomain;
516 
517 	sc->sc_update_rx_ring = wpi_update_rx_ring;
518 	sc->sc_update_tx_ring = wpi_update_tx_ring;
519 
520 	wpi_radiotap_attach(sc);
521 
522 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
523 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
524 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
525 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
526 	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
527 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
528 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
529 	TASK_INIT(&sc->sc_start_task, 0, wpi_start, sc);
530 
531 	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
532 	    taskqueue_thread_enqueue, &sc->sc_tq);
533 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
534 	if (error != 0) {
535 		device_printf(dev, "can't start threads, error %d\n", error);
536 		goto fail;
537 	}
538 
539 	wpi_sysctlattach(sc);
540 
541 	/*
542 	 * Hook our interrupt after all initialization is complete.
543 	 */
544 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
545 	    NULL, wpi_intr, sc, &sc->sc_ih);
546 	if (error != 0) {
547 		device_printf(dev, "can't establish interrupt, error %d\n",
548 		    error);
549 		goto fail;
550 	}
551 
552 	if (bootverbose)
553 		ieee80211_announce(ic);
554 
555 #ifdef WPI_DEBUG
556 	if (sc->sc_debug & WPI_DEBUG_HW)
557 		ieee80211_announce_channels(ic);
558 #endif
559 
560 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
561 	return 0;
562 
563 fail:	wpi_detach(dev);
564 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
565 	return error;
566 }
567 
568 /*
569  * Attach the interface to 802.11 radiotap.
570  */
571 static void
572 wpi_radiotap_attach(struct wpi_softc *sc)
573 {
574 	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
575 	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
576 
577 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
578 	ieee80211_radiotap_attach(&sc->sc_ic,
579 	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
580 	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
581 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
582 }
583 
584 static void
585 wpi_sysctlattach(struct wpi_softc *sc)
586 {
587 #ifdef WPI_DEBUG
588 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
589 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
590 
591 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
592 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
593 		"control debugging printfs");
594 #endif
595 }
596 
597 static void
598 wpi_init_beacon(struct wpi_vap *wvp)
599 {
600 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
601 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
602 
603 	cmd->id = WPI_ID_BROADCAST;
604 	cmd->ofdm_mask = 0xff;
605 	cmd->cck_mask = 0x0f;
606 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
607 
608 	/*
609 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
610 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
611 	 */
612 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
613 
614 	bcn->code = WPI_CMD_SET_BEACON;
615 	bcn->ac = WPI_CMD_QUEUE_NUM;
616 	bcn->size = sizeof(struct wpi_cmd_beacon);
617 }
618 
619 static struct ieee80211vap *
620 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
621     enum ieee80211_opmode opmode, int flags,
622     const uint8_t bssid[IEEE80211_ADDR_LEN],
623     const uint8_t mac[IEEE80211_ADDR_LEN])
624 {
625 	struct wpi_vap *wvp;
626 	struct ieee80211vap *vap;
627 
628 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
629 		return NULL;
630 
631 	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
632 	vap = &wvp->wv_vap;
633 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
634 
635 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
636 		WPI_VAP_LOCK_INIT(wvp);
637 		wpi_init_beacon(wvp);
638 	}
639 
640 	/* Override with driver methods. */
641 	vap->iv_key_set = wpi_key_set;
642 	vap->iv_key_delete = wpi_key_delete;
643 	wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
644 	vap->iv_recv_mgmt = wpi_recv_mgmt;
645 	wvp->wv_newstate = vap->iv_newstate;
646 	vap->iv_newstate = wpi_newstate;
647 	vap->iv_update_beacon = wpi_update_beacon;
648 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
649 
650 	ieee80211_ratectl_init(vap);
651 	/* Complete setup. */
652 	ieee80211_vap_attach(vap, ieee80211_media_change,
653 	    ieee80211_media_status, mac);
654 	ic->ic_opmode = opmode;
655 	return vap;
656 }
657 
658 static void
659 wpi_vap_delete(struct ieee80211vap *vap)
660 {
661 	struct wpi_vap *wvp = WPI_VAP(vap);
662 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
663 	enum ieee80211_opmode opmode = vap->iv_opmode;
664 
665 	ieee80211_ratectl_deinit(vap);
666 	ieee80211_vap_detach(vap);
667 
668 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
669 		if (bcn->m != NULL)
670 			m_freem(bcn->m);
671 
672 		WPI_VAP_LOCK_DESTROY(wvp);
673 	}
674 
675 	free(wvp, M_80211_VAP);
676 }
677 
678 static int
679 wpi_detach(device_t dev)
680 {
681 	struct wpi_softc *sc = device_get_softc(dev);
682 	struct ieee80211com *ic = &sc->sc_ic;
683 	int qid;
684 
685 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
686 
687 	if (ic->ic_vap_create == wpi_vap_create) {
688 		ieee80211_draintask(ic, &sc->sc_radioon_task);
689 		ieee80211_draintask(ic, &sc->sc_start_task);
690 
691 		wpi_stop(sc);
692 
693 		if (sc->sc_tq != NULL) {
694 			taskqueue_drain_all(sc->sc_tq);
695 			taskqueue_free(sc->sc_tq);
696 		}
697 
698 		callout_drain(&sc->watchdog_rfkill);
699 		callout_drain(&sc->tx_timeout);
700 		callout_drain(&sc->scan_timeout);
701 		callout_drain(&sc->calib_to);
702 		ieee80211_ifdetach(ic);
703 	}
704 
705 	/* Uninstall interrupt handler. */
706 	if (sc->irq != NULL) {
707 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
708 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
709 		    sc->irq);
710 		pci_release_msi(dev);
711 	}
712 
713 	if (sc->txq[0].data_dmat) {
714 		/* Free DMA resources. */
715 		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
716 			wpi_free_tx_ring(sc, &sc->txq[qid]);
717 
718 		wpi_free_rx_ring(sc);
719 		wpi_free_shared(sc);
720 	}
721 
722 	if (sc->fw_dma.tag)
723 		wpi_free_fwmem(sc);
724 
725 	if (sc->mem != NULL)
726 		bus_release_resource(dev, SYS_RES_MEMORY,
727 		    rman_get_rid(sc->mem), sc->mem);
728 
729 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
730 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
731 	WPI_TXQ_LOCK_DESTROY(sc);
732 	WPI_NT_LOCK_DESTROY(sc);
733 	WPI_RXON_LOCK_DESTROY(sc);
734 	WPI_TX_LOCK_DESTROY(sc);
735 	WPI_LOCK_DESTROY(sc);
736 	return 0;
737 }
738 
739 static int
740 wpi_shutdown(device_t dev)
741 {
742 	struct wpi_softc *sc = device_get_softc(dev);
743 
744 	wpi_stop(sc);
745 	return 0;
746 }
747 
748 static int
749 wpi_suspend(device_t dev)
750 {
751 	struct wpi_softc *sc = device_get_softc(dev);
752 	struct ieee80211com *ic = &sc->sc_ic;
753 
754 	ieee80211_suspend_all(ic);
755 	return 0;
756 }
757 
758 static int
759 wpi_resume(device_t dev)
760 {
761 	struct wpi_softc *sc = device_get_softc(dev);
762 	struct ieee80211com *ic = &sc->sc_ic;
763 
764 	/* Clear device-specific "PCI retry timeout" register (41h). */
765 	pci_write_config(dev, 0x41, 0, 1);
766 
767 	ieee80211_resume_all(ic);
768 	return 0;
769 }
770 
771 /*
772  * Grab exclusive access to NIC memory.
773  */
774 static int
775 wpi_nic_lock(struct wpi_softc *sc)
776 {
777 	int ntries;
778 
779 	/* Request exclusive access to NIC. */
780 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
781 
782 	/* Spin until we actually get the lock. */
783 	for (ntries = 0; ntries < 1000; ntries++) {
784 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
785 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
786 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
787 			return 0;
788 		DELAY(10);
789 	}
790 
791 	device_printf(sc->sc_dev, "could not lock memory\n");
792 
793 	return ETIMEDOUT;
794 }
795 
796 /*
797  * Release lock on NIC memory.
798  */
799 static __inline void
800 wpi_nic_unlock(struct wpi_softc *sc)
801 {
802 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
803 }
804 
805 static __inline uint32_t
806 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
807 {
808 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
809 	WPI_BARRIER_READ_WRITE(sc);
810 	return WPI_READ(sc, WPI_PRPH_RDATA);
811 }
812 
813 static __inline void
814 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
815 {
816 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
817 	WPI_BARRIER_WRITE(sc);
818 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
819 }
820 
821 static __inline void
822 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
823 {
824 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
825 }
826 
827 static __inline void
828 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
829 {
830 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
831 }
832 
833 static __inline void
834 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
835     const uint32_t *data, int count)
836 {
837 	for (; count > 0; count--, data++, addr += 4)
838 		wpi_prph_write(sc, addr, *data);
839 }
840 
841 static __inline uint32_t
842 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
843 {
844 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
845 	WPI_BARRIER_READ_WRITE(sc);
846 	return WPI_READ(sc, WPI_MEM_RDATA);
847 }
848 
849 static __inline void
850 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
851     int count)
852 {
853 	for (; count > 0; count--, addr += 4)
854 		*data++ = wpi_mem_read(sc, addr);
855 }
856 
857 static int
858 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
859 {
860 	uint8_t *out = data;
861 	uint32_t val;
862 	int error, ntries;
863 
864 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
865 
866 	if ((error = wpi_nic_lock(sc)) != 0)
867 		return error;
868 
869 	for (; count > 0; count -= 2, addr++) {
870 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
871 		for (ntries = 0; ntries < 10; ntries++) {
872 			val = WPI_READ(sc, WPI_EEPROM);
873 			if (val & WPI_EEPROM_READ_VALID)
874 				break;
875 			DELAY(5);
876 		}
877 		if (ntries == 10) {
878 			device_printf(sc->sc_dev,
879 			    "timeout reading ROM at 0x%x\n", addr);
880 			return ETIMEDOUT;
881 		}
882 		*out++= val >> 16;
883 		if (count > 1)
884 			*out ++= val >> 24;
885 	}
886 
887 	wpi_nic_unlock(sc);
888 
889 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
890 
891 	return 0;
892 }
893 
894 static void
895 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
896 {
897 	if (error != 0)
898 		return;
899 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
900 	*(bus_addr_t *)arg = segs[0].ds_addr;
901 }
902 
903 /*
904  * Allocates a contiguous block of dma memory of the requested size and
905  * alignment.
906  */
907 static int
908 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
909     void **kvap, bus_size_t size, bus_size_t alignment)
910 {
911 	int error;
912 
913 	dma->tag = NULL;
914 	dma->size = size;
915 
916 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
917 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
918 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
919 	if (error != 0)
920 		goto fail;
921 
922 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
923 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
924 	if (error != 0)
925 		goto fail;
926 
927 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
928 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
929 	if (error != 0)
930 		goto fail;
931 
932 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
933 
934 	if (kvap != NULL)
935 		*kvap = dma->vaddr;
936 
937 	return 0;
938 
939 fail:	wpi_dma_contig_free(dma);
940 	return error;
941 }
942 
943 static void
944 wpi_dma_contig_free(struct wpi_dma_info *dma)
945 {
946 	if (dma->vaddr != NULL) {
947 		bus_dmamap_sync(dma->tag, dma->map,
948 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
949 		bus_dmamap_unload(dma->tag, dma->map);
950 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
951 		dma->vaddr = NULL;
952 	}
953 	if (dma->tag != NULL) {
954 		bus_dma_tag_destroy(dma->tag);
955 		dma->tag = NULL;
956 	}
957 }
958 
959 /*
960  * Allocate a shared page between host and NIC.
961  */
962 static int
963 wpi_alloc_shared(struct wpi_softc *sc)
964 {
965 	/* Shared buffer must be aligned on a 4KB boundary. */
966 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
967 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
968 }
969 
970 static void
971 wpi_free_shared(struct wpi_softc *sc)
972 {
973 	wpi_dma_contig_free(&sc->shared_dma);
974 }
975 
976 /*
977  * Allocate DMA-safe memory for firmware transfer.
978  */
979 static int
980 wpi_alloc_fwmem(struct wpi_softc *sc)
981 {
982 	/* Must be aligned on a 16-byte boundary. */
983 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
984 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
985 }
986 
987 static void
988 wpi_free_fwmem(struct wpi_softc *sc)
989 {
990 	wpi_dma_contig_free(&sc->fw_dma);
991 }
992 
993 static int
994 wpi_alloc_rx_ring(struct wpi_softc *sc)
995 {
996 	struct wpi_rx_ring *ring = &sc->rxq;
997 	bus_size_t size;
998 	int i, error;
999 
1000 	ring->cur = 0;
1001 	ring->update = 0;
1002 
1003 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1004 
1005 	/* Allocate RX descriptors (16KB aligned.) */
1006 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1007 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1008 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1009 	if (error != 0) {
1010 		device_printf(sc->sc_dev,
1011 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1012 		    __func__, error);
1013 		goto fail;
1014 	}
1015 
1016 	/* Create RX buffer DMA tag. */
1017 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1018 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1019 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1020 	    &ring->data_dmat);
1021 	if (error != 0) {
1022 		device_printf(sc->sc_dev,
1023 		    "%s: could not create RX buf DMA tag, error %d\n",
1024 		    __func__, error);
1025 		goto fail;
1026 	}
1027 
1028 	/*
1029 	 * Allocate and map RX buffers.
1030 	 */
1031 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1032 		struct wpi_rx_data *data = &ring->data[i];
1033 		bus_addr_t paddr;
1034 
1035 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1036 		if (error != 0) {
1037 			device_printf(sc->sc_dev,
1038 			    "%s: could not create RX buf DMA map, error %d\n",
1039 			    __func__, error);
1040 			goto fail;
1041 		}
1042 
1043 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1044 		if (data->m == NULL) {
1045 			device_printf(sc->sc_dev,
1046 			    "%s: could not allocate RX mbuf\n", __func__);
1047 			error = ENOBUFS;
1048 			goto fail;
1049 		}
1050 
1051 		error = bus_dmamap_load(ring->data_dmat, data->map,
1052 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1053 		    &paddr, BUS_DMA_NOWAIT);
1054 		if (error != 0 && error != EFBIG) {
1055 			device_printf(sc->sc_dev,
1056 			    "%s: can't map mbuf (error %d)\n", __func__,
1057 			    error);
1058 			goto fail;
1059 		}
1060 
1061 		/* Set physical address of RX buffer. */
1062 		ring->desc[i] = htole32(paddr);
1063 	}
1064 
1065 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1066 	    BUS_DMASYNC_PREWRITE);
1067 
1068 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1069 
1070 	return 0;
1071 
1072 fail:	wpi_free_rx_ring(sc);
1073 
1074 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1075 
1076 	return error;
1077 }
1078 
1079 static void
1080 wpi_update_rx_ring(struct wpi_softc *sc)
1081 {
1082 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1083 }
1084 
1085 static void
1086 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1087 {
1088 	struct wpi_rx_ring *ring = &sc->rxq;
1089 
1090 	if (ring->update != 0) {
1091 		/* Wait for INT_WAKEUP event. */
1092 		return;
1093 	}
1094 
1095 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1096 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1097 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1098 		    __func__);
1099 		ring->update = 1;
1100 	} else {
1101 		wpi_update_rx_ring(sc);
1102 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1103 	}
1104 }
1105 
1106 static void
1107 wpi_reset_rx_ring(struct wpi_softc *sc)
1108 {
1109 	struct wpi_rx_ring *ring = &sc->rxq;
1110 	int ntries;
1111 
1112 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1113 
1114 	if (wpi_nic_lock(sc) == 0) {
1115 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1116 		for (ntries = 0; ntries < 1000; ntries++) {
1117 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1118 			    WPI_FH_RX_STATUS_IDLE)
1119 				break;
1120 			DELAY(10);
1121 		}
1122 		wpi_nic_unlock(sc);
1123 	}
1124 
1125 	ring->cur = 0;
1126 	ring->update = 0;
1127 }
1128 
1129 static void
1130 wpi_free_rx_ring(struct wpi_softc *sc)
1131 {
1132 	struct wpi_rx_ring *ring = &sc->rxq;
1133 	int i;
1134 
1135 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1136 
1137 	wpi_dma_contig_free(&ring->desc_dma);
1138 
1139 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1140 		struct wpi_rx_data *data = &ring->data[i];
1141 
1142 		if (data->m != NULL) {
1143 			bus_dmamap_sync(ring->data_dmat, data->map,
1144 			    BUS_DMASYNC_POSTREAD);
1145 			bus_dmamap_unload(ring->data_dmat, data->map);
1146 			m_freem(data->m);
1147 			data->m = NULL;
1148 		}
1149 		if (data->map != NULL)
1150 			bus_dmamap_destroy(ring->data_dmat, data->map);
1151 	}
1152 	if (ring->data_dmat != NULL) {
1153 		bus_dma_tag_destroy(ring->data_dmat);
1154 		ring->data_dmat = NULL;
1155 	}
1156 }
1157 
1158 static int
1159 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1160 {
1161 	bus_addr_t paddr;
1162 	bus_size_t size;
1163 	int i, error;
1164 
1165 	ring->qid = qid;
1166 	ring->queued = 0;
1167 	ring->cur = 0;
1168 	ring->update = 0;
1169 	mbufq_init(&ring->snd, ifqmaxlen);
1170 
1171 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1172 
1173 	/* Allocate TX descriptors (16KB aligned.) */
1174 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1175 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1176 	    size, WPI_RING_DMA_ALIGN);
1177 	if (error != 0) {
1178 		device_printf(sc->sc_dev,
1179 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1180 		    __func__, error);
1181 		goto fail;
1182 	}
1183 
1184 	/* Update shared area with ring physical address. */
1185 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1186 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1187 	    BUS_DMASYNC_PREWRITE);
1188 
1189 	/*
1190 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1191 	 * to allocate commands space for other rings.
1192 	 * XXX Do we really need to allocate descriptors for other rings?
1193 	 */
1194 	if (qid > WPI_CMD_QUEUE_NUM) {
1195 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1196 		return 0;
1197 	}
1198 
1199 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1200 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1201 	    size, 4);
1202 	if (error != 0) {
1203 		device_printf(sc->sc_dev,
1204 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1205 		    __func__, error);
1206 		goto fail;
1207 	}
1208 
1209 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1210 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1211 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1212 	    &ring->data_dmat);
1213 	if (error != 0) {
1214 		device_printf(sc->sc_dev,
1215 		    "%s: could not create TX buf DMA tag, error %d\n",
1216 		    __func__, error);
1217 		goto fail;
1218 	}
1219 
1220 	paddr = ring->cmd_dma.paddr;
1221 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1222 		struct wpi_tx_data *data = &ring->data[i];
1223 
1224 		data->cmd_paddr = paddr;
1225 		paddr += sizeof (struct wpi_tx_cmd);
1226 
1227 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1228 		if (error != 0) {
1229 			device_printf(sc->sc_dev,
1230 			    "%s: could not create TX buf DMA map, error %d\n",
1231 			    __func__, error);
1232 			goto fail;
1233 		}
1234 	}
1235 
1236 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1237 
1238 	return 0;
1239 
1240 fail:	wpi_free_tx_ring(sc, ring);
1241 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1242 	return error;
1243 }
1244 
1245 static void
1246 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1247 {
1248 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1249 }
1250 
1251 static void
1252 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1253 {
1254 
1255 	if (ring->update != 0) {
1256 		/* Wait for INT_WAKEUP event. */
1257 		return;
1258 	}
1259 
1260 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1261 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1262 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1263 		    __func__, ring->qid);
1264 		ring->update = 1;
1265 	} else {
1266 		wpi_update_tx_ring(sc, ring);
1267 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1268 	}
1269 }
1270 
1271 static void
1272 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1273 {
1274 	int i;
1275 
1276 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1277 
1278 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1279 		struct wpi_tx_data *data = &ring->data[i];
1280 
1281 		if (data->m != NULL) {
1282 			bus_dmamap_sync(ring->data_dmat, data->map,
1283 			    BUS_DMASYNC_POSTWRITE);
1284 			bus_dmamap_unload(ring->data_dmat, data->map);
1285 			m_freem(data->m);
1286 			data->m = NULL;
1287 		}
1288 		if (data->ni != NULL) {
1289 			ieee80211_free_node(data->ni);
1290 			data->ni = NULL;
1291 		}
1292 	}
1293 	/* Clear TX descriptors. */
1294 	memset(ring->desc, 0, ring->desc_dma.size);
1295 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1296 	    BUS_DMASYNC_PREWRITE);
1297 	mbufq_drain(&ring->snd);
1298 	sc->qfullmsk &= ~(1 << ring->qid);
1299 	ring->queued = 0;
1300 	ring->cur = 0;
1301 	ring->update = 0;
1302 }
1303 
1304 static void
1305 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1306 {
1307 	int i;
1308 
1309 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1310 
1311 	wpi_dma_contig_free(&ring->desc_dma);
1312 	wpi_dma_contig_free(&ring->cmd_dma);
1313 
1314 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1315 		struct wpi_tx_data *data = &ring->data[i];
1316 
1317 		if (data->m != NULL) {
1318 			bus_dmamap_sync(ring->data_dmat, data->map,
1319 			    BUS_DMASYNC_POSTWRITE);
1320 			bus_dmamap_unload(ring->data_dmat, data->map);
1321 			m_freem(data->m);
1322 		}
1323 		if (data->map != NULL)
1324 			bus_dmamap_destroy(ring->data_dmat, data->map);
1325 	}
1326 	if (ring->data_dmat != NULL) {
1327 		bus_dma_tag_destroy(ring->data_dmat);
1328 		ring->data_dmat = NULL;
1329 	}
1330 }
1331 
1332 /*
1333  * Extract various information from EEPROM.
1334  */
1335 static int
1336 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1337 {
1338 #define WPI_CHK(res) do {		\
1339 	if ((error = res) != 0)		\
1340 		goto fail;		\
1341 } while (0)
1342 	int error, i;
1343 
1344 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1345 
1346 	/* Adapter has to be powered on for EEPROM access to work. */
1347 	if ((error = wpi_apm_init(sc)) != 0) {
1348 		device_printf(sc->sc_dev,
1349 		    "%s: could not power ON adapter, error %d\n", __func__,
1350 		    error);
1351 		return error;
1352 	}
1353 
1354 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1355 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1356 		error = EIO;
1357 		goto fail;
1358 	}
1359 	/* Clear HW ownership of EEPROM. */
1360 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1361 
1362 	/* Read the hardware capabilities, revision and SKU type. */
1363 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1364 	    sizeof(sc->cap)));
1365 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1366 	    sizeof(sc->rev)));
1367 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1368 	    sizeof(sc->type)));
1369 
1370 	sc->rev = le16toh(sc->rev);
1371 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1372 	    sc->rev, sc->type);
1373 
1374 	/* Read the regulatory domain (4 ASCII characters.) */
1375 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1376 	    sizeof(sc->domain)));
1377 
1378 	/* Read MAC address. */
1379 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1380 	    IEEE80211_ADDR_LEN));
1381 
1382 	/* Read the list of authorized channels. */
1383 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1384 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1385 
1386 	/* Read the list of TX power groups. */
1387 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1388 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1389 
1390 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1391 
1392 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1393 	    __func__);
1394 
1395 	return error;
1396 #undef WPI_CHK
1397 }
1398 
1399 /*
1400  * Translate EEPROM flags to net80211.
1401  */
1402 static uint32_t
1403 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1404 {
1405 	uint32_t nflags;
1406 
1407 	nflags = 0;
1408 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1409 		nflags |= IEEE80211_CHAN_PASSIVE;
1410 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1411 		nflags |= IEEE80211_CHAN_NOADHOC;
1412 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1413 		nflags |= IEEE80211_CHAN_DFS;
1414 		/* XXX apparently IBSS may still be marked */
1415 		nflags |= IEEE80211_CHAN_NOADHOC;
1416 	}
1417 
1418 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1419 	if (nflags & IEEE80211_CHAN_NOADHOC)
1420 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1421 
1422 	return nflags;
1423 }
1424 
1425 static void
1426 wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1427 {
1428 	struct ieee80211com *ic = &sc->sc_ic;
1429 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1430 	const struct wpi_chan_band *band = &wpi_bands[n];
1431 	struct ieee80211_channel *c;
1432 	uint8_t chan;
1433 	int i, nflags;
1434 
1435 	for (i = 0; i < band->nchan; i++) {
1436 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1437 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1438 			    "Channel Not Valid: %d, band %d\n",
1439 			     band->chan[i],n);
1440 			continue;
1441 		}
1442 
1443 		chan = band->chan[i];
1444 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1445 
1446 		c = &ic->ic_channels[ic->ic_nchans++];
1447 		c->ic_ieee = chan;
1448 		c->ic_maxregpower = channels[i].maxpwr;
1449 		c->ic_maxpower = 2*c->ic_maxregpower;
1450 
1451 		if (n == 0) {	/* 2GHz band */
1452 			c->ic_freq = ieee80211_ieee2mhz(chan,
1453 			    IEEE80211_CHAN_G);
1454 
1455 			/* G =>'s B is supported */
1456 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1457 			c = &ic->ic_channels[ic->ic_nchans++];
1458 			c[0] = c[-1];
1459 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1460 		} else {	/* 5GHz band */
1461 			c->ic_freq = ieee80211_ieee2mhz(chan,
1462 			    IEEE80211_CHAN_A);
1463 
1464 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1465 		}
1466 
1467 		/* Save maximum allowed TX power for this channel. */
1468 		sc->maxpwr[chan] = channels[i].maxpwr;
1469 
1470 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1471 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1472 		    " offset %d\n", chan, c->ic_freq,
1473 		    channels[i].flags, sc->maxpwr[chan],
1474 		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1475 	}
1476 }
1477 
1478 /**
1479  * Read the eeprom to find out what channels are valid for the given
1480  * band and update net80211 with what we find.
1481  */
1482 static int
1483 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1484 {
1485 	struct ieee80211com *ic = &sc->sc_ic;
1486 	const struct wpi_chan_band *band = &wpi_bands[n];
1487 	int error;
1488 
1489 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1490 
1491 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1492 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1493 	if (error != 0) {
1494 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1495 		return error;
1496 	}
1497 
1498 	wpi_read_eeprom_band(sc, n);
1499 
1500 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1501 
1502 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1503 
1504 	return 0;
1505 }
1506 
1507 static struct wpi_eeprom_chan *
1508 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1509 {
1510 	int i, j;
1511 
1512 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1513 		for (i = 0; i < wpi_bands[j].nchan; i++)
1514 			if (wpi_bands[j].chan[i] == c->ic_ieee)
1515 				return &sc->eeprom_channels[j][i];
1516 
1517 	return NULL;
1518 }
1519 
1520 /*
1521  * Enforce flags read from EEPROM.
1522  */
1523 static int
1524 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1525     int nchan, struct ieee80211_channel chans[])
1526 {
1527 	struct wpi_softc *sc = ic->ic_softc;
1528 	int i;
1529 
1530 	for (i = 0; i < nchan; i++) {
1531 		struct ieee80211_channel *c = &chans[i];
1532 		struct wpi_eeprom_chan *channel;
1533 
1534 		channel = wpi_find_eeprom_channel(sc, c);
1535 		if (channel == NULL) {
1536 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1537 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1538 			return EINVAL;
1539 		}
1540 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 static int
1547 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1548 {
1549 	struct wpi_power_group *group = &sc->groups[n];
1550 	struct wpi_eeprom_group rgroup;
1551 	int i, error;
1552 
1553 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1554 
1555 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1556 	    &rgroup, sizeof rgroup)) != 0) {
1557 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1558 		return error;
1559 	}
1560 
1561 	/* Save TX power group information. */
1562 	group->chan   = rgroup.chan;
1563 	group->maxpwr = rgroup.maxpwr;
1564 	/* Retrieve temperature at which the samples were taken. */
1565 	group->temp   = (int16_t)le16toh(rgroup.temp);
1566 
1567 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1568 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1569 	    group->maxpwr, group->temp);
1570 
1571 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1572 		group->samples[i].index = rgroup.samples[i].index;
1573 		group->samples[i].power = rgroup.samples[i].power;
1574 
1575 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1576 		    "\tsample %d: index=%d power=%d\n", i,
1577 		    group->samples[i].index, group->samples[i].power);
1578 	}
1579 
1580 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1581 
1582 	return 0;
1583 }
1584 
1585 static int
1586 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1587 {
1588 	int newid = WPI_ID_IBSS_MIN;
1589 
1590 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1591 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1592 			sc->nodesmsk |= 1 << newid;
1593 			return newid;
1594 		}
1595 	}
1596 
1597 	return WPI_ID_UNDEFINED;
1598 }
1599 
1600 static __inline int
1601 wpi_add_node_entry_sta(struct wpi_softc *sc)
1602 {
1603 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1604 
1605 	return WPI_ID_BSS;
1606 }
1607 
1608 static __inline int
1609 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1610 {
1611 	if (id == WPI_ID_UNDEFINED)
1612 		return 0;
1613 
1614 	return (sc->nodesmsk >> id) & 1;
1615 }
1616 
1617 static __inline void
1618 wpi_clear_node_table(struct wpi_softc *sc)
1619 {
1620 	sc->nodesmsk = 0;
1621 }
1622 
1623 static __inline void
1624 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1625 {
1626 	sc->nodesmsk &= ~(1 << id);
1627 }
1628 
1629 static struct ieee80211_node *
1630 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1631 {
1632 	struct wpi_node *wn;
1633 
1634 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1635 	    M_NOWAIT | M_ZERO);
1636 
1637 	if (wn == NULL)
1638 		return NULL;
1639 
1640 	wn->id = WPI_ID_UNDEFINED;
1641 
1642 	return &wn->ni;
1643 }
1644 
1645 static void
1646 wpi_node_free(struct ieee80211_node *ni)
1647 {
1648 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1649 	struct wpi_node *wn = WPI_NODE(ni);
1650 
1651 	if (wn->id != WPI_ID_UNDEFINED) {
1652 		WPI_NT_LOCK(sc);
1653 		if (wpi_check_node_entry(sc, wn->id)) {
1654 			wpi_del_node_entry(sc, wn->id);
1655 			wpi_del_node(sc, ni);
1656 		}
1657 		WPI_NT_UNLOCK(sc);
1658 	}
1659 
1660 	sc->sc_node_free(ni);
1661 }
1662 
1663 static __inline int
1664 wpi_check_bss_filter(struct wpi_softc *sc)
1665 {
1666 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1667 }
1668 
1669 static void
1670 wpi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1671     const struct ieee80211_rx_stats *rxs,
1672     int rssi, int nf)
1673 {
1674 	struct ieee80211vap *vap = ni->ni_vap;
1675 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1676 	struct wpi_vap *wvp = WPI_VAP(vap);
1677 	uint64_t ni_tstamp, rx_tstamp;
1678 
1679 	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1680 
1681 	if (vap->iv_opmode == IEEE80211_M_IBSS &&
1682 	    vap->iv_state == IEEE80211_S_RUN &&
1683 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1684 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1685 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1686 		rx_tstamp = le64toh(sc->rx_tstamp);
1687 
1688 		if (ni_tstamp >= rx_tstamp) {
1689 			DPRINTF(sc, WPI_DEBUG_STATE,
1690 			    "ibss merge, tsf %ju tstamp %ju\n",
1691 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1692 			(void) ieee80211_ibss_merge(ni);
1693 		}
1694 	}
1695 }
1696 
1697 static void
1698 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1699 {
1700 	struct wpi_softc *sc = arg;
1701 	struct wpi_node *wn = WPI_NODE(ni);
1702 	int error;
1703 
1704 	WPI_NT_LOCK(sc);
1705 	if (wn->id != WPI_ID_UNDEFINED) {
1706 		wn->id = WPI_ID_UNDEFINED;
1707 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1708 			device_printf(sc->sc_dev,
1709 			    "%s: could not add IBSS node, error %d\n",
1710 			    __func__, error);
1711 		}
1712 	}
1713 	WPI_NT_UNLOCK(sc);
1714 }
1715 
1716 static void
1717 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1718 {
1719 	struct ieee80211com *ic = &sc->sc_ic;
1720 
1721 	/* Set group keys once. */
1722 	WPI_NT_LOCK(sc);
1723 	wvp->wv_gtk = 0;
1724 	WPI_NT_UNLOCK(sc);
1725 
1726 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1727 	ieee80211_crypto_reload_keys(ic);
1728 }
1729 
1730 /**
1731  * Called by net80211 when ever there is a change to 80211 state machine
1732  */
1733 static int
1734 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1735 {
1736 	struct wpi_vap *wvp = WPI_VAP(vap);
1737 	struct ieee80211com *ic = vap->iv_ic;
1738 	struct wpi_softc *sc = ic->ic_softc;
1739 	int error = 0;
1740 
1741 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1742 
1743 	WPI_TXQ_LOCK(sc);
1744 	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1745 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1746 		WPI_TXQ_UNLOCK(sc);
1747 
1748 		return ENXIO;
1749 	}
1750 	WPI_TXQ_UNLOCK(sc);
1751 
1752 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1753 		ieee80211_state_name[vap->iv_state],
1754 		ieee80211_state_name[nstate]);
1755 
1756 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1757 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1758 			device_printf(sc->sc_dev,
1759 			    "%s: could not set power saving level\n",
1760 			    __func__);
1761 			return error;
1762 		}
1763 
1764 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1765 	}
1766 
1767 	switch (nstate) {
1768 	case IEEE80211_S_SCAN:
1769 		WPI_RXON_LOCK(sc);
1770 		if (wpi_check_bss_filter(sc) != 0) {
1771 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1772 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1773 				device_printf(sc->sc_dev,
1774 				    "%s: could not send RXON\n", __func__);
1775 			}
1776 		}
1777 		WPI_RXON_UNLOCK(sc);
1778 		break;
1779 
1780 	case IEEE80211_S_ASSOC:
1781 		if (vap->iv_state != IEEE80211_S_RUN)
1782 			break;
1783 		/* FALLTHROUGH */
1784 	case IEEE80211_S_AUTH:
1785 		/*
1786 		 * NB: do not optimize AUTH -> AUTH state transmission -
1787 		 * this will break powersave with non-QoS AP!
1788 		 */
1789 
1790 		/*
1791 		 * The node must be registered in the firmware before auth.
1792 		 * Also the associd must be cleared on RUN -> ASSOC
1793 		 * transitions.
1794 		 */
1795 		if ((error = wpi_auth(sc, vap)) != 0) {
1796 			device_printf(sc->sc_dev,
1797 			    "%s: could not move to AUTH state, error %d\n",
1798 			    __func__, error);
1799 		}
1800 		break;
1801 
1802 	case IEEE80211_S_RUN:
1803 		/*
1804 		 * RUN -> RUN transition:
1805 		 * STA mode: Just restart the timers.
1806 		 * IBSS mode: Process IBSS merge.
1807 		 */
1808 		if (vap->iv_state == IEEE80211_S_RUN) {
1809 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1810 				WPI_RXON_LOCK(sc);
1811 				wpi_calib_timeout(sc);
1812 				WPI_RXON_UNLOCK(sc);
1813 				break;
1814 			} else {
1815 				/*
1816 				 * Drop the BSS_FILTER bit
1817 				 * (there is no another way to change bssid).
1818 				 */
1819 				WPI_RXON_LOCK(sc);
1820 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1821 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1822 					device_printf(sc->sc_dev,
1823 					    "%s: could not send RXON\n",
1824 					    __func__);
1825 				}
1826 				WPI_RXON_UNLOCK(sc);
1827 
1828 				/* Restore all what was lost. */
1829 				wpi_restore_node_table(sc, wvp);
1830 
1831 				/* XXX set conditionally? */
1832 				wpi_updateedca(ic);
1833 			}
1834 		}
1835 
1836 		/*
1837 		 * !RUN -> RUN requires setting the association id
1838 		 * which is done with a firmware cmd.  We also defer
1839 		 * starting the timers until that work is done.
1840 		 */
1841 		if ((error = wpi_run(sc, vap)) != 0) {
1842 			device_printf(sc->sc_dev,
1843 			    "%s: could not move to RUN state\n", __func__);
1844 		}
1845 		break;
1846 
1847 	default:
1848 		break;
1849 	}
1850 	if (error != 0) {
1851 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1852 		return error;
1853 	}
1854 
1855 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1856 
1857 	return wvp->wv_newstate(vap, nstate, arg);
1858 }
1859 
1860 static void
1861 wpi_calib_timeout(void *arg)
1862 {
1863 	struct wpi_softc *sc = arg;
1864 
1865 	if (wpi_check_bss_filter(sc) == 0)
1866 		return;
1867 
1868 	wpi_power_calibration(sc);
1869 
1870 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1871 }
1872 
1873 static __inline uint8_t
1874 rate2plcp(const uint8_t rate)
1875 {
1876 	switch (rate) {
1877 	case 12:	return 0xd;
1878 	case 18:	return 0xf;
1879 	case 24:	return 0x5;
1880 	case 36:	return 0x7;
1881 	case 48:	return 0x9;
1882 	case 72:	return 0xb;
1883 	case 96:	return 0x1;
1884 	case 108:	return 0x3;
1885 	case 2:		return 10;
1886 	case 4:		return 20;
1887 	case 11:	return 55;
1888 	case 22:	return 110;
1889 	default:	return 0;
1890 	}
1891 }
1892 
1893 static __inline uint8_t
1894 plcp2rate(const uint8_t plcp)
1895 {
1896 	switch (plcp) {
1897 	case 0xd:	return 12;
1898 	case 0xf:	return 18;
1899 	case 0x5:	return 24;
1900 	case 0x7:	return 36;
1901 	case 0x9:	return 48;
1902 	case 0xb:	return 72;
1903 	case 0x1:	return 96;
1904 	case 0x3:	return 108;
1905 	case 10:	return 2;
1906 	case 20:	return 4;
1907 	case 55:	return 11;
1908 	case 110:	return 22;
1909 	default:	return 0;
1910 	}
1911 }
1912 
1913 /* Quickly determine if a given rate is CCK or OFDM. */
1914 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1915 
1916 static void
1917 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1918     struct wpi_rx_data *data)
1919 {
1920 	struct ieee80211com *ic = &sc->sc_ic;
1921 	struct wpi_rx_ring *ring = &sc->rxq;
1922 	struct wpi_rx_stat *stat;
1923 	struct wpi_rx_head *head;
1924 	struct wpi_rx_tail *tail;
1925 	struct ieee80211_frame *wh;
1926 	struct ieee80211_node *ni;
1927 	struct mbuf *m, *m1;
1928 	bus_addr_t paddr;
1929 	uint32_t flags;
1930 	uint16_t len;
1931 	int error;
1932 
1933 	stat = (struct wpi_rx_stat *)(desc + 1);
1934 
1935 	if (stat->len > WPI_STAT_MAXLEN) {
1936 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1937 		goto fail1;
1938 	}
1939 
1940 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1941 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1942 	len = le16toh(head->len);
1943 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1944 	flags = le32toh(tail->flags);
1945 
1946 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1947 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1948 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1949 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1950 
1951 	/* Discard frames with a bad FCS early. */
1952 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1953 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1954 		    __func__, flags);
1955 		goto fail1;
1956 	}
1957 	/* Discard frames that are too short. */
1958 	if (len < sizeof (struct ieee80211_frame_ack)) {
1959 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1960 		    __func__, len);
1961 		goto fail1;
1962 	}
1963 
1964 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1965 	if (m1 == NULL) {
1966 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1967 		    __func__);
1968 		goto fail1;
1969 	}
1970 	bus_dmamap_unload(ring->data_dmat, data->map);
1971 
1972 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1973 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1974 	if (error != 0 && error != EFBIG) {
1975 		device_printf(sc->sc_dev,
1976 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1977 		m_freem(m1);
1978 
1979 		/* Try to reload the old mbuf. */
1980 		error = bus_dmamap_load(ring->data_dmat, data->map,
1981 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1982 		    &paddr, BUS_DMA_NOWAIT);
1983 		if (error != 0 && error != EFBIG) {
1984 			panic("%s: could not load old RX mbuf", __func__);
1985 		}
1986 		/* Physical address may have changed. */
1987 		ring->desc[ring->cur] = htole32(paddr);
1988 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1989 		    BUS_DMASYNC_PREWRITE);
1990 		goto fail1;
1991 	}
1992 
1993 	m = data->m;
1994 	data->m = m1;
1995 	/* Update RX descriptor. */
1996 	ring->desc[ring->cur] = htole32(paddr);
1997 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1998 	    BUS_DMASYNC_PREWRITE);
1999 
2000 	/* Finalize mbuf. */
2001 	m->m_data = (caddr_t)(head + 1);
2002 	m->m_pkthdr.len = m->m_len = len;
2003 
2004 	/* Grab a reference to the source node. */
2005 	wh = mtod(m, struct ieee80211_frame *);
2006 
2007 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2008 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2009 		/* Check whether decryption was successful or not. */
2010 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2011 			DPRINTF(sc, WPI_DEBUG_RECV,
2012 			    "CCMP decryption failed 0x%x\n", flags);
2013 			goto fail2;
2014 		}
2015 		m->m_flags |= M_WEP;
2016 	}
2017 
2018 	if (len >= sizeof(struct ieee80211_frame_min))
2019 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2020 	else
2021 		ni = NULL;
2022 
2023 	sc->rx_tstamp = tail->tstamp;
2024 
2025 	if (ieee80211_radiotap_active(ic)) {
2026 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2027 
2028 		tap->wr_flags = 0;
2029 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2030 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2031 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2032 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2033 		tap->wr_tsft = tail->tstamp;
2034 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2035 		tap->wr_rate = plcp2rate(head->plcp);
2036 	}
2037 
2038 	WPI_UNLOCK(sc);
2039 
2040 	/* Send the frame to the 802.11 layer. */
2041 	if (ni != NULL) {
2042 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2043 		/* Node is no longer needed. */
2044 		ieee80211_free_node(ni);
2045 	} else
2046 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2047 
2048 	WPI_LOCK(sc);
2049 
2050 	return;
2051 
2052 fail2:	m_freem(m);
2053 
2054 fail1:	counter_u64_add(ic->ic_ierrors, 1);
2055 }
2056 
2057 static void
2058 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2059     struct wpi_rx_data *data)
2060 {
2061 	/* Ignore */
2062 }
2063 
2064 static void
2065 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2066 {
2067 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2068 	struct wpi_tx_data *data = &ring->data[desc->idx];
2069 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2070 	struct mbuf *m;
2071 	struct ieee80211_node *ni;
2072 	struct ieee80211vap *vap;
2073 	struct ieee80211com *ic;
2074 	uint32_t status = le32toh(stat->status);
2075 	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2076 
2077 	KASSERT(data->ni != NULL, ("no node"));
2078 	KASSERT(data->m != NULL, ("no mbuf"));
2079 
2080 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2081 
2082 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2083 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2084 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2085 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2086 
2087 	/* Unmap and free mbuf. */
2088 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2089 	bus_dmamap_unload(ring->data_dmat, data->map);
2090 	m = data->m, data->m = NULL;
2091 	ni = data->ni, data->ni = NULL;
2092 	vap = ni->ni_vap;
2093 	ic = vap->iv_ic;
2094 
2095 	/*
2096 	 * Update rate control statistics for the node.
2097 	 */
2098 	if (status & WPI_TX_STATUS_FAIL) {
2099 		ieee80211_ratectl_tx_complete(vap, ni,
2100 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2101 	} else
2102 		ieee80211_ratectl_tx_complete(vap, ni,
2103 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2104 
2105 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2106 
2107 	WPI_TXQ_STATE_LOCK(sc);
2108 	ring->queued -= 1;
2109 	if (ring->queued > 0) {
2110 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2111 
2112 		if ((sc->qfullmsk & (1 << ring->qid)) != 0 &&
2113 		     ring->queued < WPI_TX_RING_LOMARK) {
2114 			sc->qfullmsk &= ~(1 << ring->qid);
2115 			ieee80211_runtask(ic, &sc->sc_start_task);
2116 		}
2117 	} else
2118 		callout_stop(&sc->tx_timeout);
2119 	WPI_TXQ_STATE_UNLOCK(sc);
2120 
2121 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2122 }
2123 
2124 /*
2125  * Process a "command done" firmware notification.  This is where we wakeup
2126  * processes waiting for a synchronous command completion.
2127  */
2128 static void
2129 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2130 {
2131 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2132 	struct wpi_tx_data *data;
2133 
2134 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2135 				   "type %s len %d\n", desc->qid, desc->idx,
2136 				   desc->flags, wpi_cmd_str(desc->type),
2137 				   le32toh(desc->len));
2138 
2139 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2140 		return;	/* Not a command ack. */
2141 
2142 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2143 
2144 	data = &ring->data[desc->idx];
2145 
2146 	/* If the command was mapped in an mbuf, free it. */
2147 	if (data->m != NULL) {
2148 		bus_dmamap_sync(ring->data_dmat, data->map,
2149 		    BUS_DMASYNC_POSTWRITE);
2150 		bus_dmamap_unload(ring->data_dmat, data->map);
2151 		m_freem(data->m);
2152 		data->m = NULL;
2153 	}
2154 
2155 	wakeup(&ring->cmd[desc->idx]);
2156 
2157 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2158 		WPI_TXQ_LOCK(sc);
2159 		if (sc->sc_flags & WPI_PS_PATH) {
2160 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2161 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2162 		} else {
2163 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2164 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2165 		}
2166 		WPI_TXQ_UNLOCK(sc);
2167 	}
2168 }
2169 
2170 static void
2171 wpi_notif_intr(struct wpi_softc *sc)
2172 {
2173 	struct ieee80211com *ic = &sc->sc_ic;
2174 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2175 	uint32_t hw;
2176 
2177 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2178 	    BUS_DMASYNC_POSTREAD);
2179 
2180 	hw = le32toh(sc->shared->next) & 0xfff;
2181 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2182 
2183 	while (sc->rxq.cur != hw) {
2184 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2185 
2186 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2187 		struct wpi_rx_desc *desc;
2188 
2189 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2190 		    BUS_DMASYNC_POSTREAD);
2191 		desc = mtod(data->m, struct wpi_rx_desc *);
2192 
2193 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2194 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2195 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2196 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2197 
2198 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2199 			/* Reply to a command. */
2200 			wpi_cmd_done(sc, desc);
2201 		}
2202 
2203 		switch (desc->type) {
2204 		case WPI_RX_DONE:
2205 			/* An 802.11 frame has been received. */
2206 			wpi_rx_done(sc, desc, data);
2207 
2208 			if (sc->sc_running == 0) {
2209 				/* wpi_stop() was called. */
2210 				return;
2211 			}
2212 
2213 			break;
2214 
2215 		case WPI_TX_DONE:
2216 			/* An 802.11 frame has been transmitted. */
2217 			wpi_tx_done(sc, desc);
2218 			break;
2219 
2220 		case WPI_RX_STATISTICS:
2221 		case WPI_BEACON_STATISTICS:
2222 			wpi_rx_statistics(sc, desc, data);
2223 			break;
2224 
2225 		case WPI_BEACON_MISSED:
2226 		{
2227 			struct wpi_beacon_missed *miss =
2228 			    (struct wpi_beacon_missed *)(desc + 1);
2229 			uint32_t expected, misses, received, threshold;
2230 
2231 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2232 			    BUS_DMASYNC_POSTREAD);
2233 
2234 			misses = le32toh(miss->consecutive);
2235 			expected = le32toh(miss->expected);
2236 			received = le32toh(miss->received);
2237 			threshold = MAX(2, vap->iv_bmissthreshold);
2238 
2239 			DPRINTF(sc, WPI_DEBUG_BMISS,
2240 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2241 			    __func__, misses, le32toh(miss->total), received,
2242 			    expected);
2243 
2244 			if (misses >= threshold ||
2245 			    (received == 0 && expected >= threshold)) {
2246 				WPI_RXON_LOCK(sc);
2247 				if (callout_pending(&sc->scan_timeout)) {
2248 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2249 					    0, 1);
2250 				}
2251 				WPI_RXON_UNLOCK(sc);
2252 				if (vap->iv_state == IEEE80211_S_RUN &&
2253 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2254 					ieee80211_beacon_miss(ic);
2255 			}
2256 
2257 			break;
2258 		}
2259 #ifdef WPI_DEBUG
2260 		case WPI_BEACON_SENT:
2261 		{
2262 			struct wpi_tx_stat *stat =
2263 			    (struct wpi_tx_stat *)(desc + 1);
2264 			uint64_t *tsf = (uint64_t *)(stat + 1);
2265 			uint32_t *mode = (uint32_t *)(tsf + 1);
2266 
2267 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2268 			    BUS_DMASYNC_POSTREAD);
2269 
2270 			DPRINTF(sc, WPI_DEBUG_BEACON,
2271 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2272 			    "duration %u, status %x, tsf %ju, mode %x\n",
2273 			    stat->rtsfailcnt, stat->ackfailcnt,
2274 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2275 			    le32toh(stat->status), *tsf, *mode);
2276 
2277 			break;
2278 		}
2279 #endif
2280 		case WPI_UC_READY:
2281 		{
2282 			struct wpi_ucode_info *uc =
2283 			    (struct wpi_ucode_info *)(desc + 1);
2284 
2285 			/* The microcontroller is ready. */
2286 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2287 			    BUS_DMASYNC_POSTREAD);
2288 			DPRINTF(sc, WPI_DEBUG_RESET,
2289 			    "microcode alive notification version=%d.%d "
2290 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2291 			    uc->subtype, le32toh(uc->valid));
2292 
2293 			if (le32toh(uc->valid) != 1) {
2294 				device_printf(sc->sc_dev,
2295 				    "microcontroller initialization failed\n");
2296 				wpi_stop_locked(sc);
2297 				return;
2298 			}
2299 			/* Save the address of the error log in SRAM. */
2300 			sc->errptr = le32toh(uc->errptr);
2301 			break;
2302 		}
2303 		case WPI_STATE_CHANGED:
2304 		{
2305 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2306 			    BUS_DMASYNC_POSTREAD);
2307 
2308 			uint32_t *status = (uint32_t *)(desc + 1);
2309 
2310 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2311 			    le32toh(*status));
2312 
2313 			if (le32toh(*status) & 1) {
2314 				WPI_NT_LOCK(sc);
2315 				wpi_clear_node_table(sc);
2316 				WPI_NT_UNLOCK(sc);
2317 				taskqueue_enqueue(sc->sc_tq,
2318 				    &sc->sc_radiooff_task);
2319 				return;
2320 			}
2321 			break;
2322 		}
2323 #ifdef WPI_DEBUG
2324 		case WPI_START_SCAN:
2325 		{
2326 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2327 			    BUS_DMASYNC_POSTREAD);
2328 
2329 			struct wpi_start_scan *scan =
2330 			    (struct wpi_start_scan *)(desc + 1);
2331 			DPRINTF(sc, WPI_DEBUG_SCAN,
2332 			    "%s: scanning channel %d status %x\n",
2333 			    __func__, scan->chan, le32toh(scan->status));
2334 
2335 			break;
2336 		}
2337 #endif
2338 		case WPI_STOP_SCAN:
2339 		{
2340 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2341 			    BUS_DMASYNC_POSTREAD);
2342 
2343 			struct wpi_stop_scan *scan =
2344 			    (struct wpi_stop_scan *)(desc + 1);
2345 
2346 			DPRINTF(sc, WPI_DEBUG_SCAN,
2347 			    "scan finished nchan=%d status=%d chan=%d\n",
2348 			    scan->nchan, scan->status, scan->chan);
2349 
2350 			WPI_RXON_LOCK(sc);
2351 			callout_stop(&sc->scan_timeout);
2352 			WPI_RXON_UNLOCK(sc);
2353 			if (scan->status == WPI_SCAN_ABORTED)
2354 				ieee80211_cancel_scan(vap);
2355 			else
2356 				ieee80211_scan_next(vap);
2357 			break;
2358 		}
2359 		}
2360 
2361 		if (sc->rxq.cur % 8 == 0) {
2362 			/* Tell the firmware what we have processed. */
2363 			sc->sc_update_rx_ring(sc);
2364 		}
2365 	}
2366 }
2367 
2368 /*
2369  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2370  * from power-down sleep mode.
2371  */
2372 static void
2373 wpi_wakeup_intr(struct wpi_softc *sc)
2374 {
2375 	int qid;
2376 
2377 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2378 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2379 
2380 	/* Wakeup RX and TX rings. */
2381 	if (sc->rxq.update) {
2382 		sc->rxq.update = 0;
2383 		wpi_update_rx_ring(sc);
2384 	}
2385 	WPI_TXQ_LOCK(sc);
2386 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2387 		struct wpi_tx_ring *ring = &sc->txq[qid];
2388 
2389 		if (ring->update) {
2390 			ring->update = 0;
2391 			wpi_update_tx_ring(sc, ring);
2392 		}
2393 	}
2394 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2395 	WPI_TXQ_UNLOCK(sc);
2396 }
2397 
2398 /*
2399  * This function prints firmware registers
2400  */
2401 #ifdef WPI_DEBUG
2402 static void
2403 wpi_debug_registers(struct wpi_softc *sc)
2404 {
2405 	size_t i;
2406 	static const uint32_t csr_tbl[] = {
2407 		WPI_HW_IF_CONFIG,
2408 		WPI_INT,
2409 		WPI_INT_MASK,
2410 		WPI_FH_INT,
2411 		WPI_GPIO_IN,
2412 		WPI_RESET,
2413 		WPI_GP_CNTRL,
2414 		WPI_EEPROM,
2415 		WPI_EEPROM_GP,
2416 		WPI_GIO,
2417 		WPI_UCODE_GP1,
2418 		WPI_UCODE_GP2,
2419 		WPI_GIO_CHICKEN,
2420 		WPI_ANA_PLL,
2421 		WPI_DBG_HPET_MEM,
2422 	};
2423 	static const uint32_t prph_tbl[] = {
2424 		WPI_APMG_CLK_CTRL,
2425 		WPI_APMG_PS,
2426 		WPI_APMG_PCI_STT,
2427 		WPI_APMG_RFKILL,
2428 	};
2429 
2430 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2431 
2432 	for (i = 0; i < nitems(csr_tbl); i++) {
2433 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2434 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2435 
2436 		if ((i + 1) % 2 == 0)
2437 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2438 	}
2439 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2440 
2441 	if (wpi_nic_lock(sc) == 0) {
2442 		for (i = 0; i < nitems(prph_tbl); i++) {
2443 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2444 			    wpi_get_prph_string(prph_tbl[i]),
2445 			    wpi_prph_read(sc, prph_tbl[i]));
2446 
2447 			if ((i + 1) % 2 == 0)
2448 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2449 		}
2450 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2451 		wpi_nic_unlock(sc);
2452 	} else {
2453 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2454 		    "Cannot access internal registers.\n");
2455 	}
2456 }
2457 #endif
2458 
2459 /*
2460  * Dump the error log of the firmware when a firmware panic occurs.  Although
2461  * we can't debug the firmware because it is neither open source nor free, it
2462  * can help us to identify certain classes of problems.
2463  */
2464 static void
2465 wpi_fatal_intr(struct wpi_softc *sc)
2466 {
2467 	struct wpi_fw_dump dump;
2468 	uint32_t i, offset, count;
2469 
2470 	/* Check that the error log address is valid. */
2471 	if (sc->errptr < WPI_FW_DATA_BASE ||
2472 	    sc->errptr + sizeof (dump) >
2473 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2474 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2475 		    sc->errptr);
2476 		return;
2477 	}
2478 	if (wpi_nic_lock(sc) != 0) {
2479 		printf("%s: could not read firmware error log\n", __func__);
2480 		return;
2481 	}
2482 	/* Read number of entries in the log. */
2483 	count = wpi_mem_read(sc, sc->errptr);
2484 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2485 		printf("%s: invalid count field (count = %u)\n", __func__,
2486 		    count);
2487 		wpi_nic_unlock(sc);
2488 		return;
2489 	}
2490 	/* Skip "count" field. */
2491 	offset = sc->errptr + sizeof (uint32_t);
2492 	printf("firmware error log (count = %u):\n", count);
2493 	for (i = 0; i < count; i++) {
2494 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2495 		    sizeof (dump) / sizeof (uint32_t));
2496 
2497 		printf("  error type = \"%s\" (0x%08X)\n",
2498 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2499 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2500 		    dump.desc);
2501 		printf("  error data      = 0x%08X\n",
2502 		    dump.data);
2503 		printf("  branch link     = 0x%08X%08X\n",
2504 		    dump.blink[0], dump.blink[1]);
2505 		printf("  interrupt link  = 0x%08X%08X\n",
2506 		    dump.ilink[0], dump.ilink[1]);
2507 		printf("  time            = %u\n", dump.time);
2508 
2509 		offset += sizeof (dump);
2510 	}
2511 	wpi_nic_unlock(sc);
2512 	/* Dump driver status (TX and RX rings) while we're here. */
2513 	printf("driver status:\n");
2514 	WPI_TXQ_LOCK(sc);
2515 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2516 		struct wpi_tx_ring *ring = &sc->txq[i];
2517 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2518 		    i, ring->qid, ring->cur, ring->queued);
2519 	}
2520 	WPI_TXQ_UNLOCK(sc);
2521 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2522 }
2523 
2524 static void
2525 wpi_intr(void *arg)
2526 {
2527 	struct wpi_softc *sc = arg;
2528 	uint32_t r1, r2;
2529 
2530 	WPI_LOCK(sc);
2531 
2532 	/* Disable interrupts. */
2533 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2534 
2535 	r1 = WPI_READ(sc, WPI_INT);
2536 
2537 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2538 		goto end;	/* Hardware gone! */
2539 
2540 	r2 = WPI_READ(sc, WPI_FH_INT);
2541 
2542 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2543 	    r1, r2);
2544 
2545 	if (r1 == 0 && r2 == 0)
2546 		goto done;	/* Interrupt not for us. */
2547 
2548 	/* Acknowledge interrupts. */
2549 	WPI_WRITE(sc, WPI_INT, r1);
2550 	WPI_WRITE(sc, WPI_FH_INT, r2);
2551 
2552 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2553 		device_printf(sc->sc_dev, "fatal firmware error\n");
2554 #ifdef WPI_DEBUG
2555 		wpi_debug_registers(sc);
2556 #endif
2557 		wpi_fatal_intr(sc);
2558 		DPRINTF(sc, WPI_DEBUG_HW,
2559 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2560 		    "(Hardware Error)");
2561 		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2562 		goto end;
2563 	}
2564 
2565 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2566 	    (r2 & WPI_FH_INT_RX))
2567 		wpi_notif_intr(sc);
2568 
2569 	if (r1 & WPI_INT_ALIVE)
2570 		wakeup(sc);	/* Firmware is alive. */
2571 
2572 	if (r1 & WPI_INT_WAKEUP)
2573 		wpi_wakeup_intr(sc);
2574 
2575 done:
2576 	/* Re-enable interrupts. */
2577 	if (sc->sc_running)
2578 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2579 
2580 end:	WPI_UNLOCK(sc);
2581 }
2582 
2583 static int
2584 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2585 {
2586 	struct ieee80211_frame *wh;
2587 	struct wpi_tx_cmd *cmd;
2588 	struct wpi_tx_data *data;
2589 	struct wpi_tx_desc *desc;
2590 	struct wpi_tx_ring *ring;
2591 	struct mbuf *m1;
2592 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2593 	int error, i, hdrlen, nsegs, totlen, pad;
2594 
2595 	WPI_TXQ_LOCK(sc);
2596 
2597 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2598 
2599 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2600 
2601 	if (sc->sc_running == 0) {
2602 		/* wpi_stop() was called */
2603 		error = ENETDOWN;
2604 		goto fail;
2605 	}
2606 
2607 	wh = mtod(buf->m, struct ieee80211_frame *);
2608 	hdrlen = ieee80211_anyhdrsize(wh);
2609 	totlen = buf->m->m_pkthdr.len;
2610 
2611 	if (hdrlen & 3) {
2612 		/* First segment length must be a multiple of 4. */
2613 		pad = 4 - (hdrlen & 3);
2614 	} else
2615 		pad = 0;
2616 
2617 	ring = &sc->txq[buf->ac];
2618 	desc = &ring->desc[ring->cur];
2619 	data = &ring->data[ring->cur];
2620 
2621 	/* Prepare TX firmware command. */
2622 	cmd = &ring->cmd[ring->cur];
2623 	cmd->code = buf->code;
2624 	cmd->flags = 0;
2625 	cmd->qid = ring->qid;
2626 	cmd->idx = ring->cur;
2627 
2628 	memcpy(cmd->data, buf->data, buf->size);
2629 
2630 	/* Save and trim IEEE802.11 header. */
2631 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2632 	m_adj(buf->m, hdrlen);
2633 
2634 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2635 	    segs, &nsegs, BUS_DMA_NOWAIT);
2636 	if (error != 0 && error != EFBIG) {
2637 		device_printf(sc->sc_dev,
2638 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2639 		goto fail;
2640 	}
2641 	if (error != 0) {
2642 		/* Too many DMA segments, linearize mbuf. */
2643 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2644 		if (m1 == NULL) {
2645 			device_printf(sc->sc_dev,
2646 			    "%s: could not defrag mbuf\n", __func__);
2647 			error = ENOBUFS;
2648 			goto fail;
2649 		}
2650 		buf->m = m1;
2651 
2652 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2653 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2654 		if (error != 0) {
2655 			device_printf(sc->sc_dev,
2656 			    "%s: can't map mbuf (error %d)\n", __func__,
2657 			    error);
2658 			goto fail;
2659 		}
2660 	}
2661 
2662 	KASSERT(nsegs < WPI_MAX_SCATTER,
2663 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2664 	     nsegs, WPI_MAX_SCATTER));
2665 
2666 	data->m = buf->m;
2667 	data->ni = buf->ni;
2668 
2669 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2670 	    __func__, ring->qid, ring->cur, totlen, nsegs);
2671 
2672 	/* Fill TX descriptor. */
2673 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2674 	/* First DMA segment is used by the TX command. */
2675 	desc->segs[0].addr = htole32(data->cmd_paddr);
2676 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2677 	/* Other DMA segments are for data payload. */
2678 	seg = &segs[0];
2679 	for (i = 1; i <= nsegs; i++) {
2680 		desc->segs[i].addr = htole32(seg->ds_addr);
2681 		desc->segs[i].len  = htole32(seg->ds_len);
2682 		seg++;
2683 	}
2684 
2685 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2686 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2687 	    BUS_DMASYNC_PREWRITE);
2688 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2689 	    BUS_DMASYNC_PREWRITE);
2690 
2691 	/* Kick TX ring. */
2692 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2693 	sc->sc_update_tx_ring(sc, ring);
2694 
2695 	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2696 		/* Mark TX ring as full if we reach a certain threshold. */
2697 		WPI_TXQ_STATE_LOCK(sc);
2698 		if (++ring->queued > WPI_TX_RING_HIMARK)
2699 			sc->qfullmsk |= 1 << ring->qid;
2700 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2701 		WPI_TXQ_STATE_UNLOCK(sc);
2702 	}
2703 
2704 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2705 
2706 	WPI_TXQ_UNLOCK(sc);
2707 
2708 	return 0;
2709 
2710 fail:	m_freem(buf->m);
2711 
2712 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2713 
2714 	WPI_TXQ_UNLOCK(sc);
2715 
2716 	return error;
2717 }
2718 
2719 /*
2720  * Construct the data packet for a transmit buffer.
2721  */
2722 static int
2723 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2724 {
2725 	const struct ieee80211_txparam *tp;
2726 	struct ieee80211vap *vap = ni->ni_vap;
2727 	struct ieee80211com *ic = ni->ni_ic;
2728 	struct wpi_node *wn = WPI_NODE(ni);
2729 	struct ieee80211_channel *chan;
2730 	struct ieee80211_frame *wh;
2731 	struct ieee80211_key *k = NULL;
2732 	struct wpi_buf tx_data;
2733 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2734 	uint32_t flags;
2735 	uint16_t qos;
2736 	uint8_t tid, type;
2737 	int ac, error, swcrypt, rate, ismcast, totlen;
2738 
2739 	wh = mtod(m, struct ieee80211_frame *);
2740 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2741 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2742 
2743 	/* Select EDCA Access Category and TX ring for this frame. */
2744 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2745 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2746 		tid = qos & IEEE80211_QOS_TID;
2747 	} else {
2748 		qos = 0;
2749 		tid = 0;
2750 	}
2751 	ac = M_WME_GETAC(m);
2752 
2753 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2754 		ni->ni_chan : ic->ic_curchan;
2755 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2756 
2757 	/* Choose a TX rate index. */
2758 	if (type == IEEE80211_FC0_TYPE_MGT)
2759 		rate = tp->mgmtrate;
2760 	else if (ismcast)
2761 		rate = tp->mcastrate;
2762 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2763 		rate = tp->ucastrate;
2764 	else if (m->m_flags & M_EAPOL)
2765 		rate = tp->mgmtrate;
2766 	else {
2767 		/* XXX pass pktlen */
2768 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2769 		rate = ni->ni_txrate;
2770 	}
2771 
2772 	/* Encrypt the frame if need be. */
2773 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2774 		/* Retrieve key for TX. */
2775 		k = ieee80211_crypto_encap(ni, m);
2776 		if (k == NULL) {
2777 			error = ENOBUFS;
2778 			goto fail;
2779 		}
2780 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2781 
2782 		/* 802.11 header may have moved. */
2783 		wh = mtod(m, struct ieee80211_frame *);
2784 	}
2785 	totlen = m->m_pkthdr.len;
2786 
2787 	if (ieee80211_radiotap_active_vap(vap)) {
2788 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2789 
2790 		tap->wt_flags = 0;
2791 		tap->wt_rate = rate;
2792 		if (k != NULL)
2793 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2794 
2795 		ieee80211_radiotap_tx(vap, m);
2796 	}
2797 
2798 	flags = 0;
2799 	if (!ismcast) {
2800 		/* Unicast frame, check if an ACK is expected. */
2801 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2802 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2803 			flags |= WPI_TX_NEED_ACK;
2804 	}
2805 
2806 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2807 		flags |= WPI_TX_AUTO_SEQ;
2808 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2809 		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2810 
2811 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2812 	if (!ismcast) {
2813 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2814 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2815 			flags |= WPI_TX_NEED_RTS;
2816 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2817 		    WPI_RATE_IS_OFDM(rate)) {
2818 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2819 				flags |= WPI_TX_NEED_CTS;
2820 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2821 				flags |= WPI_TX_NEED_RTS;
2822 		}
2823 
2824 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2825 			flags |= WPI_TX_FULL_TXOP;
2826 	}
2827 
2828 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2829 	if (type == IEEE80211_FC0_TYPE_MGT) {
2830 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2831 
2832 		/* Tell HW to set timestamp in probe responses. */
2833 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2834 			flags |= WPI_TX_INSERT_TSTAMP;
2835 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2836 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2837 			tx->timeout = htole16(3);
2838 		else
2839 			tx->timeout = htole16(2);
2840 	}
2841 
2842 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2843 		tx->id = WPI_ID_BROADCAST;
2844 	else {
2845 		if (wn->id == WPI_ID_UNDEFINED) {
2846 			device_printf(sc->sc_dev,
2847 			    "%s: undefined node id\n", __func__);
2848 			error = EINVAL;
2849 			goto fail;
2850 		}
2851 
2852 		tx->id = wn->id;
2853 	}
2854 
2855 	if (k != NULL && !swcrypt) {
2856 		switch (k->wk_cipher->ic_cipher) {
2857 		case IEEE80211_CIPHER_AES_CCM:
2858 			tx->security = WPI_CIPHER_CCMP;
2859 			break;
2860 
2861 		default:
2862 			break;
2863 		}
2864 
2865 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2866 	}
2867 
2868 	tx->len = htole16(totlen);
2869 	tx->flags = htole32(flags);
2870 	tx->plcp = rate2plcp(rate);
2871 	tx->tid = tid;
2872 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2873 	tx->ofdm_mask = 0xff;
2874 	tx->cck_mask = 0x0f;
2875 	tx->rts_ntries = 7;
2876 	tx->data_ntries = tp->maxretry;
2877 
2878 	tx_data.ni = ni;
2879 	tx_data.m = m;
2880 	tx_data.size = sizeof(struct wpi_cmd_data);
2881 	tx_data.code = WPI_CMD_TX_DATA;
2882 	tx_data.ac = ac;
2883 
2884 	return wpi_cmd2(sc, &tx_data);
2885 
2886 fail:	m_freem(m);
2887 	return error;
2888 }
2889 
2890 static int
2891 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2892     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2893 {
2894 	struct ieee80211vap *vap = ni->ni_vap;
2895 	struct ieee80211_key *k = NULL;
2896 	struct ieee80211_frame *wh;
2897 	struct wpi_buf tx_data;
2898 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2899 	uint32_t flags;
2900 	uint8_t type;
2901 	int ac, rate, swcrypt, totlen;
2902 
2903 	wh = mtod(m, struct ieee80211_frame *);
2904 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2905 
2906 	ac = params->ibp_pri & 3;
2907 
2908 	/* Choose a TX rate index. */
2909 	rate = params->ibp_rate0;
2910 
2911 	flags = 0;
2912 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2913 		flags |= WPI_TX_AUTO_SEQ;
2914 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2915 		flags |= WPI_TX_NEED_ACK;
2916 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2917 		flags |= WPI_TX_NEED_RTS;
2918 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2919 		flags |= WPI_TX_NEED_CTS;
2920 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2921 		flags |= WPI_TX_FULL_TXOP;
2922 
2923 	/* Encrypt the frame if need be. */
2924 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2925 		/* Retrieve key for TX. */
2926 		k = ieee80211_crypto_encap(ni, m);
2927 		if (k == NULL) {
2928 			m_freem(m);
2929 			return ENOBUFS;
2930 		}
2931 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2932 
2933 		/* 802.11 header may have moved. */
2934 		wh = mtod(m, struct ieee80211_frame *);
2935 	}
2936 	totlen = m->m_pkthdr.len;
2937 
2938 	if (ieee80211_radiotap_active_vap(vap)) {
2939 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2940 
2941 		tap->wt_flags = 0;
2942 		tap->wt_rate = rate;
2943 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2944 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2945 
2946 		ieee80211_radiotap_tx(vap, m);
2947 	}
2948 
2949 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2950 	if (type == IEEE80211_FC0_TYPE_MGT) {
2951 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2952 
2953 		/* Tell HW to set timestamp in probe responses. */
2954 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2955 			flags |= WPI_TX_INSERT_TSTAMP;
2956 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2957 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2958 			tx->timeout = htole16(3);
2959 		else
2960 			tx->timeout = htole16(2);
2961 	}
2962 
2963 	if (k != NULL && !swcrypt) {
2964 		switch (k->wk_cipher->ic_cipher) {
2965 		case IEEE80211_CIPHER_AES_CCM:
2966 			tx->security = WPI_CIPHER_CCMP;
2967 			break;
2968 
2969 		default:
2970 			break;
2971 		}
2972 
2973 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2974 	}
2975 
2976 	tx->len = htole16(totlen);
2977 	tx->flags = htole32(flags);
2978 	tx->plcp = rate2plcp(rate);
2979 	tx->id = WPI_ID_BROADCAST;
2980 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2981 	tx->rts_ntries = params->ibp_try1;
2982 	tx->data_ntries = params->ibp_try0;
2983 
2984 	tx_data.ni = ni;
2985 	tx_data.m = m;
2986 	tx_data.size = sizeof(struct wpi_cmd_data);
2987 	tx_data.code = WPI_CMD_TX_DATA;
2988 	tx_data.ac = ac;
2989 
2990 	return wpi_cmd2(sc, &tx_data);
2991 }
2992 
2993 static __inline int
2994 wpi_tx_ring_is_full(struct wpi_softc *sc, int ac)
2995 {
2996 	struct wpi_tx_ring *ring = &sc->txq[ac];
2997 	int retval;
2998 
2999 	WPI_TXQ_STATE_LOCK(sc);
3000 	retval = (ring->queued > WPI_TX_RING_HIMARK);
3001 	WPI_TXQ_STATE_UNLOCK(sc);
3002 
3003 	return retval;
3004 }
3005 
3006 static __inline void
3007 wpi_handle_tx_failure(struct ieee80211_node *ni)
3008 {
3009 	/* NB: m is reclaimed on tx failure */
3010 	if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3011 	ieee80211_free_node(ni);
3012 }
3013 
3014 static int
3015 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3016     const struct ieee80211_bpf_params *params)
3017 {
3018 	struct ieee80211com *ic = ni->ni_ic;
3019 	struct wpi_softc *sc = ic->ic_softc;
3020 	int ac, error = 0;
3021 
3022 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3023 
3024 	ac = M_WME_GETAC(m);
3025 
3026 	WPI_TX_LOCK(sc);
3027 
3028 	if (sc->sc_running == 0 || wpi_tx_ring_is_full(sc, ac)) {
3029 		m_freem(m);
3030 		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3031 		goto unlock;
3032 	}
3033 
3034 	if (params == NULL) {
3035 		/*
3036 		 * Legacy path; interpret frame contents to decide
3037 		 * precisely how to send the frame.
3038 		 */
3039 		error = wpi_tx_data(sc, m, ni);
3040 	} else {
3041 		/*
3042 		 * Caller supplied explicit parameters to use in
3043 		 * sending the frame.
3044 		 */
3045 		error = wpi_tx_data_raw(sc, m, ni, params);
3046 	}
3047 
3048 unlock:	WPI_TX_UNLOCK(sc);
3049 
3050 	if (error != 0) {
3051 		wpi_handle_tx_failure(ni);
3052 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3053 
3054 		return error;
3055 	}
3056 
3057 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3058 
3059 	return 0;
3060 }
3061 
3062 static int
3063 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3064 {
3065 	struct wpi_softc *sc = ic->ic_softc;
3066 	struct ieee80211_node *ni;
3067 	struct mbufq *sndq;
3068 	int ac, error;
3069 
3070 	WPI_TX_LOCK(sc);
3071 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3072 
3073 	/* Check if interface is up & running. */
3074 	if (sc->sc_running == 0) {
3075 		error = ENXIO;
3076 		goto unlock;
3077 	}
3078 
3079 	/* Check for available space. */
3080 	ac = M_WME_GETAC(m);
3081 	sndq = &sc->txq[ac].snd;
3082 	if (wpi_tx_ring_is_full(sc, ac) || mbufq_len(sndq) != 0) {
3083 		/* wpi_tx_done() will dequeue it. */
3084 		error = mbufq_enqueue(sndq, m);
3085 		goto unlock;
3086 	}
3087 
3088 	error = 0;
3089 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3090 	if (wpi_tx_data(sc, m, ni) != 0) {
3091 		wpi_handle_tx_failure(ni);
3092 	}
3093 
3094 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3095 
3096 unlock:	WPI_TX_UNLOCK(sc);
3097 
3098 	return (error);
3099 }
3100 
3101 /**
3102  * Process data waiting to be sent on the output queue
3103  */
3104 static void
3105 wpi_start(void *arg0, int pending)
3106 {
3107 	struct wpi_softc *sc = arg0;
3108 	struct ieee80211_node *ni;
3109 	struct mbuf *m;
3110 	uint8_t i;
3111 
3112 	WPI_TX_LOCK(sc);
3113 	if (sc->sc_running == 0)
3114 		goto unlock;
3115 
3116 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3117 
3118 	for (i = 0; i < WPI_CMD_QUEUE_NUM; i++) {
3119 		struct mbufq *sndq = &sc->txq[i].snd;
3120 
3121 		for (;;) {
3122 			if (wpi_tx_ring_is_full(sc, i))
3123 				break;
3124 
3125 			if ((m = mbufq_dequeue(sndq)) == NULL)
3126 				break;
3127 
3128 			ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3129 			if (wpi_tx_data(sc, m, ni) != 0) {
3130 				wpi_handle_tx_failure(ni);
3131 			}
3132 		}
3133 	}
3134 
3135 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3136 unlock:	WPI_TX_UNLOCK(sc);
3137 }
3138 
3139 static void
3140 wpi_watchdog_rfkill(void *arg)
3141 {
3142 	struct wpi_softc *sc = arg;
3143 	struct ieee80211com *ic = &sc->sc_ic;
3144 
3145 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3146 
3147 	/* No need to lock firmware memory. */
3148 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3149 		/* Radio kill switch is still off. */
3150 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3151 		    sc);
3152 	} else
3153 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3154 }
3155 
3156 static void
3157 wpi_scan_timeout(void *arg)
3158 {
3159 	struct wpi_softc *sc = arg;
3160 	struct ieee80211com *ic = &sc->sc_ic;
3161 
3162 	ic_printf(ic, "scan timeout\n");
3163 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3164 }
3165 
3166 static void
3167 wpi_tx_timeout(void *arg)
3168 {
3169 	struct wpi_softc *sc = arg;
3170 	struct ieee80211com *ic = &sc->sc_ic;
3171 
3172 	ic_printf(ic, "device timeout\n");
3173 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3174 }
3175 
3176 static void
3177 wpi_parent(struct ieee80211com *ic)
3178 {
3179 	struct wpi_softc *sc = ic->ic_softc;
3180 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3181 
3182 	if (ic->ic_nrunning > 0) {
3183 		if (wpi_init(sc) == 0) {
3184 			ieee80211_notify_radio(ic, 1);
3185 			ieee80211_start_all(ic);
3186 		} else {
3187 			ieee80211_notify_radio(ic, 0);
3188 			ieee80211_stop(vap);
3189 		}
3190 	} else
3191 		wpi_stop(sc);
3192 }
3193 
3194 /*
3195  * Send a command to the firmware.
3196  */
3197 static int
3198 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
3199     int async)
3200 {
3201 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3202 	struct wpi_tx_desc *desc;
3203 	struct wpi_tx_data *data;
3204 	struct wpi_tx_cmd *cmd;
3205 	struct mbuf *m;
3206 	bus_addr_t paddr;
3207 	int totlen, error;
3208 
3209 	WPI_TXQ_LOCK(sc);
3210 
3211 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3212 
3213 	if (sc->sc_running == 0) {
3214 		/* wpi_stop() was called */
3215 		if (code == WPI_CMD_SCAN)
3216 			error = ENETDOWN;
3217 		else
3218 			error = 0;
3219 
3220 		goto fail;
3221 	}
3222 
3223 	if (async == 0)
3224 		WPI_LOCK_ASSERT(sc);
3225 
3226 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %zu async %d\n",
3227 	    __func__, wpi_cmd_str(code), size, async);
3228 
3229 	desc = &ring->desc[ring->cur];
3230 	data = &ring->data[ring->cur];
3231 	totlen = 4 + size;
3232 
3233 	if (size > sizeof cmd->data) {
3234 		/* Command is too large to fit in a descriptor. */
3235 		if (totlen > MCLBYTES) {
3236 			error = EINVAL;
3237 			goto fail;
3238 		}
3239 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3240 		if (m == NULL) {
3241 			error = ENOMEM;
3242 			goto fail;
3243 		}
3244 		cmd = mtod(m, struct wpi_tx_cmd *);
3245 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3246 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3247 		if (error != 0) {
3248 			m_freem(m);
3249 			goto fail;
3250 		}
3251 		data->m = m;
3252 	} else {
3253 		cmd = &ring->cmd[ring->cur];
3254 		paddr = data->cmd_paddr;
3255 	}
3256 
3257 	cmd->code = code;
3258 	cmd->flags = 0;
3259 	cmd->qid = ring->qid;
3260 	cmd->idx = ring->cur;
3261 	memcpy(cmd->data, buf, size);
3262 
3263 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3264 	desc->segs[0].addr = htole32(paddr);
3265 	desc->segs[0].len  = htole32(totlen);
3266 
3267 	if (size > sizeof cmd->data) {
3268 		bus_dmamap_sync(ring->data_dmat, data->map,
3269 		    BUS_DMASYNC_PREWRITE);
3270 	} else {
3271 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3272 		    BUS_DMASYNC_PREWRITE);
3273 	}
3274 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3275 	    BUS_DMASYNC_PREWRITE);
3276 
3277 	/* Kick command ring. */
3278 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3279 	sc->sc_update_tx_ring(sc, ring);
3280 
3281 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3282 
3283 	WPI_TXQ_UNLOCK(sc);
3284 
3285 	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3286 
3287 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3288 
3289 	WPI_TXQ_UNLOCK(sc);
3290 
3291 	return error;
3292 }
3293 
3294 /*
3295  * Configure HW multi-rate retries.
3296  */
3297 static int
3298 wpi_mrr_setup(struct wpi_softc *sc)
3299 {
3300 	struct ieee80211com *ic = &sc->sc_ic;
3301 	struct wpi_mrr_setup mrr;
3302 	int i, error;
3303 
3304 	/* CCK rates (not used with 802.11a). */
3305 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3306 		mrr.rates[i].flags = 0;
3307 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3308 		/* Fallback to the immediate lower CCK rate (if any.) */
3309 		mrr.rates[i].next =
3310 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3311 		/* Try twice at this rate before falling back to "next". */
3312 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3313 	}
3314 	/* OFDM rates (not used with 802.11b). */
3315 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3316 		mrr.rates[i].flags = 0;
3317 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3318 		/* Fallback to the immediate lower rate (if any.) */
3319 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3320 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3321 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3322 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3323 		    i - 1;
3324 		/* Try twice at this rate before falling back to "next". */
3325 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3326 	}
3327 	/* Setup MRR for control frames. */
3328 	mrr.which = htole32(WPI_MRR_CTL);
3329 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3330 	if (error != 0) {
3331 		device_printf(sc->sc_dev,
3332 		    "could not setup MRR for control frames\n");
3333 		return error;
3334 	}
3335 	/* Setup MRR for data frames. */
3336 	mrr.which = htole32(WPI_MRR_DATA);
3337 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3338 	if (error != 0) {
3339 		device_printf(sc->sc_dev,
3340 		    "could not setup MRR for data frames\n");
3341 		return error;
3342 	}
3343 	return 0;
3344 }
3345 
3346 static int
3347 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3348 {
3349 	struct ieee80211com *ic = ni->ni_ic;
3350 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3351 	struct wpi_node *wn = WPI_NODE(ni);
3352 	struct wpi_node_info node;
3353 	int error;
3354 
3355 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3356 
3357 	if (wn->id == WPI_ID_UNDEFINED)
3358 		return EINVAL;
3359 
3360 	memset(&node, 0, sizeof node);
3361 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3362 	node.id = wn->id;
3363 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3364 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3365 	node.action = htole32(WPI_ACTION_SET_RATE);
3366 	node.antenna = WPI_ANTENNA_BOTH;
3367 
3368 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3369 	    wn->id, ether_sprintf(ni->ni_macaddr));
3370 
3371 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3372 	if (error != 0) {
3373 		device_printf(sc->sc_dev,
3374 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3375 		    error);
3376 		return error;
3377 	}
3378 
3379 	if (wvp->wv_gtk != 0) {
3380 		error = wpi_set_global_keys(ni);
3381 		if (error != 0) {
3382 			device_printf(sc->sc_dev,
3383 			    "%s: error while setting global keys\n", __func__);
3384 			return ENXIO;
3385 		}
3386 	}
3387 
3388 	return 0;
3389 }
3390 
3391 /*
3392  * Broadcast node is used to send group-addressed and management frames.
3393  */
3394 static int
3395 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3396 {
3397 	struct ieee80211com *ic = &sc->sc_ic;
3398 	struct wpi_node_info node;
3399 
3400 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3401 
3402 	memset(&node, 0, sizeof node);
3403 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3404 	node.id = WPI_ID_BROADCAST;
3405 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3406 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3407 	node.action = htole32(WPI_ACTION_SET_RATE);
3408 	node.antenna = WPI_ANTENNA_BOTH;
3409 
3410 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3411 
3412 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3413 }
3414 
3415 static int
3416 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3417 {
3418 	struct wpi_node *wn = WPI_NODE(ni);
3419 	int error;
3420 
3421 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3422 
3423 	wn->id = wpi_add_node_entry_sta(sc);
3424 
3425 	if ((error = wpi_add_node(sc, ni)) != 0) {
3426 		wpi_del_node_entry(sc, wn->id);
3427 		wn->id = WPI_ID_UNDEFINED;
3428 		return error;
3429 	}
3430 
3431 	return 0;
3432 }
3433 
3434 static int
3435 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3436 {
3437 	struct wpi_node *wn = WPI_NODE(ni);
3438 	int error;
3439 
3440 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3441 	    ("the node %d was added before", wn->id));
3442 
3443 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3444 
3445 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3446 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3447 		return ENOMEM;
3448 	}
3449 
3450 	if ((error = wpi_add_node(sc, ni)) != 0) {
3451 		wpi_del_node_entry(sc, wn->id);
3452 		wn->id = WPI_ID_UNDEFINED;
3453 		return error;
3454 	}
3455 
3456 	return 0;
3457 }
3458 
3459 static void
3460 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3461 {
3462 	struct wpi_node *wn = WPI_NODE(ni);
3463 	struct wpi_cmd_del_node node;
3464 	int error;
3465 
3466 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3467 
3468 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3469 
3470 	memset(&node, 0, sizeof node);
3471 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3472 	node.count = 1;
3473 
3474 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3475 	    wn->id, ether_sprintf(ni->ni_macaddr));
3476 
3477 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3478 	if (error != 0) {
3479 		device_printf(sc->sc_dev,
3480 		    "%s: could not delete node %u, error %d\n", __func__,
3481 		    wn->id, error);
3482 	}
3483 }
3484 
3485 static int
3486 wpi_updateedca(struct ieee80211com *ic)
3487 {
3488 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3489 	struct wpi_softc *sc = ic->ic_softc;
3490 	struct wpi_edca_params cmd;
3491 	int aci, error;
3492 
3493 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3494 
3495 	memset(&cmd, 0, sizeof cmd);
3496 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3497 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3498 		const struct wmeParams *ac =
3499 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3500 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3501 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3502 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3503 		cmd.ac[aci].txoplimit =
3504 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3505 
3506 		DPRINTF(sc, WPI_DEBUG_EDCA,
3507 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3508 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3509 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3510 		    cmd.ac[aci].txoplimit);
3511 	}
3512 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3513 
3514 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3515 
3516 	return error;
3517 #undef WPI_EXP2
3518 }
3519 
3520 static void
3521 wpi_set_promisc(struct wpi_softc *sc)
3522 {
3523 	struct ieee80211com *ic = &sc->sc_ic;
3524 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3525 	uint32_t promisc_filter;
3526 
3527 	promisc_filter = WPI_FILTER_CTL;
3528 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3529 		promisc_filter |= WPI_FILTER_PROMISC;
3530 
3531 	if (ic->ic_promisc > 0)
3532 		sc->rxon.filter |= htole32(promisc_filter);
3533 	else
3534 		sc->rxon.filter &= ~htole32(promisc_filter);
3535 }
3536 
3537 static void
3538 wpi_update_promisc(struct ieee80211com *ic)
3539 {
3540 	struct wpi_softc *sc = ic->ic_softc;
3541 
3542 	WPI_RXON_LOCK(sc);
3543 	wpi_set_promisc(sc);
3544 
3545 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3546 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3547 		    __func__);
3548 	}
3549 	WPI_RXON_UNLOCK(sc);
3550 }
3551 
3552 static void
3553 wpi_update_mcast(struct ieee80211com *ic)
3554 {
3555 	/* Ignore */
3556 }
3557 
3558 static void
3559 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3560 {
3561 	struct wpi_cmd_led led;
3562 
3563 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3564 
3565 	led.which = which;
3566 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3567 	led.off = off;
3568 	led.on = on;
3569 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3570 }
3571 
3572 static int
3573 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3574 {
3575 	struct wpi_cmd_timing cmd;
3576 	uint64_t val, mod;
3577 
3578 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3579 
3580 	memset(&cmd, 0, sizeof cmd);
3581 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3582 	cmd.bintval = htole16(ni->ni_intval);
3583 	cmd.lintval = htole16(10);
3584 
3585 	/* Compute remaining time until next beacon. */
3586 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3587 	mod = le64toh(cmd.tstamp) % val;
3588 	cmd.binitval = htole32((uint32_t)(val - mod));
3589 
3590 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3591 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3592 
3593 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3594 }
3595 
3596 /*
3597  * This function is called periodically (every 60 seconds) to adjust output
3598  * power to temperature changes.
3599  */
3600 static void
3601 wpi_power_calibration(struct wpi_softc *sc)
3602 {
3603 	int temp;
3604 
3605 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3606 
3607 	/* Update sensor data. */
3608 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3609 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3610 
3611 	/* Sanity-check read value. */
3612 	if (temp < -260 || temp > 25) {
3613 		/* This can't be correct, ignore. */
3614 		DPRINTF(sc, WPI_DEBUG_TEMP,
3615 		    "out-of-range temperature reported: %d\n", temp);
3616 		return;
3617 	}
3618 
3619 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3620 
3621 	/* Adjust Tx power if need be. */
3622 	if (abs(temp - sc->temp) <= 6)
3623 		return;
3624 
3625 	sc->temp = temp;
3626 
3627 	if (wpi_set_txpower(sc, 1) != 0) {
3628 		/* just warn, too bad for the automatic calibration... */
3629 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3630 	}
3631 }
3632 
3633 /*
3634  * Set TX power for current channel.
3635  */
3636 static int
3637 wpi_set_txpower(struct wpi_softc *sc, int async)
3638 {
3639 	struct wpi_power_group *group;
3640 	struct wpi_cmd_txpower cmd;
3641 	uint8_t chan;
3642 	int idx, is_chan_5ghz, i;
3643 
3644 	/* Retrieve current channel from last RXON. */
3645 	chan = sc->rxon.chan;
3646 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3647 
3648 	/* Find the TX power group to which this channel belongs. */
3649 	if (is_chan_5ghz) {
3650 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3651 			if (chan <= group->chan)
3652 				break;
3653 	} else
3654 		group = &sc->groups[0];
3655 
3656 	memset(&cmd, 0, sizeof cmd);
3657 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3658 	cmd.chan = htole16(chan);
3659 
3660 	/* Set TX power for all OFDM and CCK rates. */
3661 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3662 		/* Retrieve TX power for this channel/rate. */
3663 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3664 
3665 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3666 
3667 		if (is_chan_5ghz) {
3668 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3669 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3670 		} else {
3671 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3672 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3673 		}
3674 		DPRINTF(sc, WPI_DEBUG_TEMP,
3675 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3676 	}
3677 
3678 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3679 }
3680 
3681 /*
3682  * Determine Tx power index for a given channel/rate combination.
3683  * This takes into account the regulatory information from EEPROM and the
3684  * current temperature.
3685  */
3686 static int
3687 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3688     uint8_t chan, int is_chan_5ghz, int ridx)
3689 {
3690 /* Fixed-point arithmetic division using a n-bit fractional part. */
3691 #define fdivround(a, b, n)	\
3692 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3693 
3694 /* Linear interpolation. */
3695 #define interpolate(x, x1, y1, x2, y2, n)	\
3696 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3697 
3698 	struct wpi_power_sample *sample;
3699 	int pwr, idx;
3700 
3701 	/* Default TX power is group maximum TX power minus 3dB. */
3702 	pwr = group->maxpwr / 2;
3703 
3704 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3705 	switch (ridx) {
3706 	case WPI_RIDX_OFDM36:
3707 		pwr -= is_chan_5ghz ?  5 : 0;
3708 		break;
3709 	case WPI_RIDX_OFDM48:
3710 		pwr -= is_chan_5ghz ? 10 : 7;
3711 		break;
3712 	case WPI_RIDX_OFDM54:
3713 		pwr -= is_chan_5ghz ? 12 : 9;
3714 		break;
3715 	}
3716 
3717 	/* Never exceed the channel maximum allowed TX power. */
3718 	pwr = min(pwr, sc->maxpwr[chan]);
3719 
3720 	/* Retrieve TX power index into gain tables from samples. */
3721 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3722 		if (pwr > sample[1].power)
3723 			break;
3724 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3725 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3726 	    sample[1].power, sample[1].index, 19);
3727 
3728 	/*-
3729 	 * Adjust power index based on current temperature:
3730 	 * - if cooler than factory-calibrated: decrease output power
3731 	 * - if warmer than factory-calibrated: increase output power
3732 	 */
3733 	idx -= (sc->temp - group->temp) * 11 / 100;
3734 
3735 	/* Decrease TX power for CCK rates (-5dB). */
3736 	if (ridx >= WPI_RIDX_CCK1)
3737 		idx += 10;
3738 
3739 	/* Make sure idx stays in a valid range. */
3740 	if (idx < 0)
3741 		return 0;
3742 	if (idx > WPI_MAX_PWR_INDEX)
3743 		return WPI_MAX_PWR_INDEX;
3744 	return idx;
3745 
3746 #undef interpolate
3747 #undef fdivround
3748 }
3749 
3750 /*
3751  * Set STA mode power saving level (between 0 and 5).
3752  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3753  */
3754 static int
3755 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3756 {
3757 	struct wpi_pmgt_cmd cmd;
3758 	const struct wpi_pmgt *pmgt;
3759 	uint32_t max, skip_dtim;
3760 	uint32_t reg;
3761 	int i;
3762 
3763 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3764 	    "%s: dtim=%d, level=%d, async=%d\n",
3765 	    __func__, dtim, level, async);
3766 
3767 	/* Select which PS parameters to use. */
3768 	if (dtim <= 10)
3769 		pmgt = &wpi_pmgt[0][level];
3770 	else
3771 		pmgt = &wpi_pmgt[1][level];
3772 
3773 	memset(&cmd, 0, sizeof cmd);
3774 	WPI_TXQ_LOCK(sc);
3775 	if (level != 0)	{	/* not CAM */
3776 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3777 		sc->sc_flags |= WPI_PS_PATH;
3778 	} else
3779 		sc->sc_flags &= ~WPI_PS_PATH;
3780 	WPI_TXQ_UNLOCK(sc);
3781 	/* Retrieve PCIe Active State Power Management (ASPM). */
3782 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3783 	if (!(reg & 0x1))	/* L0s Entry disabled. */
3784 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3785 
3786 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3787 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3788 
3789 	if (dtim == 0) {
3790 		dtim = 1;
3791 		skip_dtim = 0;
3792 	} else
3793 		skip_dtim = pmgt->skip_dtim;
3794 
3795 	if (skip_dtim != 0) {
3796 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3797 		max = pmgt->intval[4];
3798 		if (max == (uint32_t)-1)
3799 			max = dtim * (skip_dtim + 1);
3800 		else if (max > dtim)
3801 			max = (max / dtim) * dtim;
3802 	} else
3803 		max = dtim;
3804 
3805 	for (i = 0; i < 5; i++)
3806 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3807 
3808 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3809 }
3810 
3811 static int
3812 wpi_send_btcoex(struct wpi_softc *sc)
3813 {
3814 	struct wpi_bluetooth cmd;
3815 
3816 	memset(&cmd, 0, sizeof cmd);
3817 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3818 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3819 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3820 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3821 	    __func__);
3822 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3823 }
3824 
3825 static int
3826 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3827 {
3828 	int error;
3829 
3830 	if (async)
3831 		WPI_RXON_LOCK_ASSERT(sc);
3832 
3833 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3834 		struct wpi_assoc rxon_assoc;
3835 
3836 		rxon_assoc.flags = sc->rxon.flags;
3837 		rxon_assoc.filter = sc->rxon.filter;
3838 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3839 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3840 		rxon_assoc.reserved = 0;
3841 
3842 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3843 		    sizeof (struct wpi_assoc), async);
3844 		if (error != 0) {
3845 			device_printf(sc->sc_dev,
3846 			    "RXON_ASSOC command failed, error %d\n", error);
3847 			return error;
3848 		}
3849 	} else {
3850 		if (async) {
3851 			WPI_NT_LOCK(sc);
3852 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3853 			    sizeof (struct wpi_rxon), async);
3854 			if (error == 0)
3855 				wpi_clear_node_table(sc);
3856 			WPI_NT_UNLOCK(sc);
3857 		} else {
3858 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3859 			    sizeof (struct wpi_rxon), async);
3860 			if (error == 0)
3861 				wpi_clear_node_table(sc);
3862 		}
3863 
3864 		if (error != 0) {
3865 			device_printf(sc->sc_dev,
3866 			    "RXON command failed, error %d\n", error);
3867 			return error;
3868 		}
3869 
3870 		/* Add broadcast node. */
3871 		error = wpi_add_broadcast_node(sc, async);
3872 		if (error != 0) {
3873 			device_printf(sc->sc_dev,
3874 			    "could not add broadcast node, error %d\n", error);
3875 			return error;
3876 		}
3877 	}
3878 
3879 	/* Configuration has changed, set Tx power accordingly. */
3880 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3881 		device_printf(sc->sc_dev,
3882 		    "%s: could not set TX power, error %d\n", __func__, error);
3883 		return error;
3884 	}
3885 
3886 	return 0;
3887 }
3888 
3889 /**
3890  * Configure the card to listen to a particular channel, this transisions the
3891  * card in to being able to receive frames from remote devices.
3892  */
3893 static int
3894 wpi_config(struct wpi_softc *sc)
3895 {
3896 	struct ieee80211com *ic = &sc->sc_ic;
3897 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3898 	struct ieee80211_channel *c = ic->ic_curchan;
3899 	int error;
3900 
3901 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3902 
3903 	/* Set power saving level to CAM during initialization. */
3904 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3905 		device_printf(sc->sc_dev,
3906 		    "%s: could not set power saving level\n", __func__);
3907 		return error;
3908 	}
3909 
3910 	/* Configure bluetooth coexistence. */
3911 	if ((error = wpi_send_btcoex(sc)) != 0) {
3912 		device_printf(sc->sc_dev,
3913 		    "could not configure bluetooth coexistence\n");
3914 		return error;
3915 	}
3916 
3917 	/* Configure adapter. */
3918 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3919 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3920 
3921 	/* Set default channel. */
3922 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3923 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3924 	if (IEEE80211_IS_CHAN_2GHZ(c))
3925 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3926 
3927 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3928 	switch (ic->ic_opmode) {
3929 	case IEEE80211_M_STA:
3930 		sc->rxon.mode = WPI_MODE_STA;
3931 		break;
3932 	case IEEE80211_M_IBSS:
3933 		sc->rxon.mode = WPI_MODE_IBSS;
3934 		sc->rxon.filter |= WPI_FILTER_BEACON;
3935 		break;
3936 	case IEEE80211_M_HOSTAP:
3937 		/* XXX workaround for beaconing */
3938 		sc->rxon.mode = WPI_MODE_IBSS;
3939 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3940 		break;
3941 	case IEEE80211_M_AHDEMO:
3942 		sc->rxon.mode = WPI_MODE_HOSTAP;
3943 		break;
3944 	case IEEE80211_M_MONITOR:
3945 		sc->rxon.mode = WPI_MODE_MONITOR;
3946 		break;
3947 	default:
3948 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3949 		    ic->ic_opmode);
3950 		return EINVAL;
3951 	}
3952 	sc->rxon.filter = htole32(sc->rxon.filter);
3953 	wpi_set_promisc(sc);
3954 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3955 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3956 
3957 	/* XXX Current configuration may be unusable. */
3958 	if (IEEE80211_IS_CHAN_NOADHOC(c) && sc->rxon.mode == WPI_MODE_IBSS) {
3959 		device_printf(sc->sc_dev,
3960 		    "%s: invalid channel (%d) selected for IBSS mode\n",
3961 		    __func__, ieee80211_chan2ieee(ic, c));
3962 		return EINVAL;
3963 	}
3964 
3965 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3966 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3967 		    __func__);
3968 		return error;
3969 	}
3970 
3971 	/* Setup rate scalling. */
3972 	if ((error = wpi_mrr_setup(sc)) != 0) {
3973 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3974 		    error);
3975 		return error;
3976 	}
3977 
3978 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3979 
3980 	return 0;
3981 }
3982 
3983 static uint16_t
3984 wpi_get_active_dwell_time(struct wpi_softc *sc,
3985     struct ieee80211_channel *c, uint8_t n_probes)
3986 {
3987 	/* No channel? Default to 2GHz settings. */
3988 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3989 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3990 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3991 	}
3992 
3993 	/* 5GHz dwell time. */
3994 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3995 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3996 }
3997 
3998 /*
3999  * Limit the total dwell time.
4000  *
4001  * Returns the dwell time in milliseconds.
4002  */
4003 static uint16_t
4004 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4005 {
4006 	struct ieee80211com *ic = &sc->sc_ic;
4007 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4008 	int bintval = 0;
4009 
4010 	/* bintval is in TU (1.024mS) */
4011 	if (vap != NULL)
4012 		bintval = vap->iv_bss->ni_intval;
4013 
4014 	/*
4015 	 * If it's non-zero, we should calculate the minimum of
4016 	 * it and the DWELL_BASE.
4017 	 *
4018 	 * XXX Yes, the math should take into account that bintval
4019 	 * is 1.024mS, not 1mS..
4020 	 */
4021 	if (bintval > 0) {
4022 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4023 		    bintval);
4024 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4025 	}
4026 
4027 	/* No association context? Default. */
4028 	return dwell_time;
4029 }
4030 
4031 static uint16_t
4032 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4033 {
4034 	uint16_t passive;
4035 
4036 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4037 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4038 	else
4039 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4040 
4041 	/* Clamp to the beacon interval if we're associated. */
4042 	return (wpi_limit_dwell(sc, passive));
4043 }
4044 
4045 static uint32_t
4046 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4047 {
4048 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4049 	uint32_t nbeacons = time / bintval;
4050 
4051 	if (mod > WPI_PAUSE_MAX_TIME)
4052 		mod = WPI_PAUSE_MAX_TIME;
4053 
4054 	return WPI_PAUSE_SCAN(nbeacons, mod);
4055 }
4056 
4057 /*
4058  * Send a scan request to the firmware.
4059  */
4060 static int
4061 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4062 {
4063 	struct ieee80211com *ic = &sc->sc_ic;
4064 	struct ieee80211_scan_state *ss = ic->ic_scan;
4065 	struct ieee80211vap *vap = ss->ss_vap;
4066 	struct wpi_scan_hdr *hdr;
4067 	struct wpi_cmd_data *tx;
4068 	struct wpi_scan_essid *essids;
4069 	struct wpi_scan_chan *chan;
4070 	struct ieee80211_frame *wh;
4071 	struct ieee80211_rateset *rs;
4072 	uint16_t dwell_active, dwell_passive;
4073 	uint8_t *buf, *frm;
4074 	int bgscan, bintval, buflen, error, i, nssid;
4075 
4076 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4077 
4078 	/*
4079 	 * We are absolutely not allowed to send a scan command when another
4080 	 * scan command is pending.
4081 	 */
4082 	if (callout_pending(&sc->scan_timeout)) {
4083 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4084 		    __func__);
4085 		error = EAGAIN;
4086 		goto fail;
4087 	}
4088 
4089 	bgscan = wpi_check_bss_filter(sc);
4090 	bintval = vap->iv_bss->ni_intval;
4091 	if (bgscan != 0 &&
4092 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4093 		error = EOPNOTSUPP;
4094 		goto fail;
4095 	}
4096 
4097 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4098 	if (buf == NULL) {
4099 		device_printf(sc->sc_dev,
4100 		    "%s: could not allocate buffer for scan command\n",
4101 		    __func__);
4102 		error = ENOMEM;
4103 		goto fail;
4104 	}
4105 	hdr = (struct wpi_scan_hdr *)buf;
4106 
4107 	/*
4108 	 * Move to the next channel if no packets are received within 10 msecs
4109 	 * after sending the probe request.
4110 	 */
4111 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4112 	hdr->quiet_threshold = htole16(1);
4113 
4114 	if (bgscan != 0) {
4115 		/*
4116 		 * Max needs to be greater than active and passive and quiet!
4117 		 * It's also in microseconds!
4118 		 */
4119 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4120 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4121 		    bintval));
4122 	}
4123 
4124 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4125 
4126 	tx = (struct wpi_cmd_data *)(hdr + 1);
4127 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4128 	tx->id = WPI_ID_BROADCAST;
4129 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4130 
4131 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4132 		/* Send probe requests at 6Mbps. */
4133 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4134 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4135 	} else {
4136 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4137 		/* Send probe requests at 1Mbps. */
4138 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4139 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4140 	}
4141 
4142 	essids = (struct wpi_scan_essid *)(tx + 1);
4143 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4144 	for (i = 0; i < nssid; i++) {
4145 		essids[i].id = IEEE80211_ELEMID_SSID;
4146 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4147 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4148 #ifdef WPI_DEBUG
4149 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4150 			printf("Scanning Essid: ");
4151 			ieee80211_print_essid(essids[i].data, essids[i].len);
4152 			printf("\n");
4153 		}
4154 #endif
4155 	}
4156 
4157 	/*
4158 	 * Build a probe request frame.  Most of the following code is a
4159 	 * copy & paste of what is done in net80211.
4160 	 */
4161 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4162 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4163 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4164 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4165 	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4166 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4167 	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4168 
4169 	frm = (uint8_t *)(wh + 1);
4170 	frm = ieee80211_add_ssid(frm, NULL, 0);
4171 	frm = ieee80211_add_rates(frm, rs);
4172 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4173 		frm = ieee80211_add_xrates(frm, rs);
4174 
4175 	/* Set length of probe request. */
4176 	tx->len = htole16(frm - (uint8_t *)wh);
4177 
4178 	/*
4179 	 * Construct information about the channel that we
4180 	 * want to scan. The firmware expects this to be directly
4181 	 * after the scan probe request
4182 	 */
4183 	chan = (struct wpi_scan_chan *)frm;
4184 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4185 	chan->flags = 0;
4186 	if (nssid) {
4187 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4188 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4189 	} else
4190 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4191 
4192 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4193 		chan->flags |= WPI_CHAN_ACTIVE;
4194 
4195 	/*
4196 	 * Calculate the active/passive dwell times.
4197 	 */
4198 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4199 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4200 
4201 	/* Make sure they're valid. */
4202 	if (dwell_active > dwell_passive)
4203 		dwell_active = dwell_passive;
4204 
4205 	chan->active = htole16(dwell_active);
4206 	chan->passive = htole16(dwell_passive);
4207 
4208 	chan->dsp_gain = 0x6e;  /* Default level */
4209 
4210 	if (IEEE80211_IS_CHAN_5GHZ(c))
4211 		chan->rf_gain = 0x3b;
4212 	else
4213 		chan->rf_gain = 0x28;
4214 
4215 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4216 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4217 
4218 	hdr->nchan++;
4219 
4220 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4221 		/* XXX Force probe request transmission. */
4222 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4223 
4224 		chan++;
4225 
4226 		/* Reduce unnecessary delay. */
4227 		chan->flags = 0;
4228 		chan->passive = chan->active = hdr->quiet_time;
4229 
4230 		hdr->nchan++;
4231 	}
4232 
4233 	chan++;
4234 
4235 	buflen = (uint8_t *)chan - buf;
4236 	hdr->len = htole16(buflen);
4237 
4238 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4239 	    hdr->nchan);
4240 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4241 	free(buf, M_DEVBUF);
4242 
4243 	if (error != 0)
4244 		goto fail;
4245 
4246 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4247 
4248 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4249 
4250 	return 0;
4251 
4252 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4253 
4254 	return error;
4255 }
4256 
4257 static int
4258 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4259 {
4260 	struct ieee80211com *ic = vap->iv_ic;
4261 	struct ieee80211_node *ni = vap->iv_bss;
4262 	struct ieee80211_channel *c = ni->ni_chan;
4263 	int error;
4264 
4265 	WPI_RXON_LOCK(sc);
4266 
4267 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4268 
4269 	/* Update adapter configuration. */
4270 	sc->rxon.associd = 0;
4271 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4272 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4273 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4274 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4275 	if (IEEE80211_IS_CHAN_2GHZ(c))
4276 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4277 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4278 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4279 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4280 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4281 	if (IEEE80211_IS_CHAN_A(c)) {
4282 		sc->rxon.cck_mask  = 0;
4283 		sc->rxon.ofdm_mask = 0x15;
4284 	} else if (IEEE80211_IS_CHAN_B(c)) {
4285 		sc->rxon.cck_mask  = 0x03;
4286 		sc->rxon.ofdm_mask = 0;
4287 	} else {
4288 		/* Assume 802.11b/g. */
4289 		sc->rxon.cck_mask  = 0x0f;
4290 		sc->rxon.ofdm_mask = 0x15;
4291 	}
4292 
4293 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4294 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4295 	    sc->rxon.ofdm_mask);
4296 
4297 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4298 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4299 		    __func__);
4300 	}
4301 
4302 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4303 
4304 	WPI_RXON_UNLOCK(sc);
4305 
4306 	return error;
4307 }
4308 
4309 static int
4310 wpi_config_beacon(struct wpi_vap *wvp)
4311 {
4312 	struct ieee80211com *ic = wvp->wv_vap.iv_ic;
4313 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4314 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4315 	struct wpi_softc *sc = ic->ic_softc;
4316 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4317 	struct ieee80211_tim_ie *tie;
4318 	struct mbuf *m;
4319 	uint8_t *ptr;
4320 	int error;
4321 
4322 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4323 
4324 	WPI_VAP_LOCK_ASSERT(wvp);
4325 
4326 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4327 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4328 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4329 
4330 	/* XXX seems to be unused */
4331 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4332 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4333 		ptr = mtod(bcn->m, uint8_t *);
4334 
4335 		cmd->tim = htole16(bo->bo_tim - ptr);
4336 		cmd->timsz = tie->tim_len;
4337 	}
4338 
4339 	/* Necessary for recursion in ieee80211_beacon_update(). */
4340 	m = bcn->m;
4341 	bcn->m = m_dup(m, M_NOWAIT);
4342 	if (bcn->m == NULL) {
4343 		device_printf(sc->sc_dev,
4344 		    "%s: could not copy beacon frame\n", __func__);
4345 		error = ENOMEM;
4346 		goto end;
4347 	}
4348 
4349 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4350 		device_printf(sc->sc_dev,
4351 		    "%s: could not update beacon frame, error %d", __func__,
4352 		    error);
4353 	}
4354 
4355 	/* Restore mbuf. */
4356 end:	bcn->m = m;
4357 
4358 	return error;
4359 }
4360 
4361 static int
4362 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4363 {
4364 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
4365 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4366 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4367 	struct mbuf *m;
4368 	int error;
4369 
4370 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4371 
4372 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4373 		return EINVAL;
4374 
4375 	m = ieee80211_beacon_alloc(ni, bo);
4376 	if (m == NULL) {
4377 		device_printf(sc->sc_dev,
4378 		    "%s: could not allocate beacon frame\n", __func__);
4379 		return ENOMEM;
4380 	}
4381 
4382 	WPI_VAP_LOCK(wvp);
4383 	if (bcn->m != NULL)
4384 		m_freem(bcn->m);
4385 
4386 	bcn->m = m;
4387 
4388 	error = wpi_config_beacon(wvp);
4389 	WPI_VAP_UNLOCK(wvp);
4390 
4391 	return error;
4392 }
4393 
4394 static void
4395 wpi_update_beacon(struct ieee80211vap *vap, int item)
4396 {
4397 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4398 	struct wpi_vap *wvp = WPI_VAP(vap);
4399 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4400 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4401 	struct ieee80211_node *ni = vap->iv_bss;
4402 	int mcast = 0;
4403 
4404 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4405 
4406 	WPI_VAP_LOCK(wvp);
4407 	if (bcn->m == NULL) {
4408 		bcn->m = ieee80211_beacon_alloc(ni, bo);
4409 		if (bcn->m == NULL) {
4410 			device_printf(sc->sc_dev,
4411 			    "%s: could not allocate beacon frame\n", __func__);
4412 
4413 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4414 			    __func__);
4415 
4416 			WPI_VAP_UNLOCK(wvp);
4417 			return;
4418 		}
4419 	}
4420 	WPI_VAP_UNLOCK(wvp);
4421 
4422 	if (item == IEEE80211_BEACON_TIM)
4423 		mcast = 1;	/* TODO */
4424 
4425 	setbit(bo->bo_flags, item);
4426 	ieee80211_beacon_update(ni, bo, bcn->m, mcast);
4427 
4428 	WPI_VAP_LOCK(wvp);
4429 	wpi_config_beacon(wvp);
4430 	WPI_VAP_UNLOCK(wvp);
4431 
4432 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4433 }
4434 
4435 static void
4436 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4437 {
4438 	struct ieee80211vap *vap = ni->ni_vap;
4439 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4440 	struct wpi_node *wn = WPI_NODE(ni);
4441 	int error;
4442 
4443 	WPI_NT_LOCK(sc);
4444 
4445 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4446 
4447 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4448 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4449 			device_printf(sc->sc_dev,
4450 			    "%s: could not add IBSS node, error %d\n",
4451 			    __func__, error);
4452 		}
4453 	}
4454 	WPI_NT_UNLOCK(sc);
4455 }
4456 
4457 static int
4458 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4459 {
4460 	struct ieee80211com *ic = vap->iv_ic;
4461 	struct ieee80211_node *ni = vap->iv_bss;
4462 	struct ieee80211_channel *c = ni->ni_chan;
4463 	int error;
4464 
4465 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4466 
4467 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4468 		/* Link LED blinks while monitoring. */
4469 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4470 		return 0;
4471 	}
4472 
4473 	/* XXX kernel panic workaround */
4474 	if (c == IEEE80211_CHAN_ANYC) {
4475 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4476 		    __func__);
4477 		return EINVAL;
4478 	}
4479 
4480 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4481 		device_printf(sc->sc_dev,
4482 		    "%s: could not set timing, error %d\n", __func__, error);
4483 		return error;
4484 	}
4485 
4486 	/* Update adapter configuration. */
4487 	WPI_RXON_LOCK(sc);
4488 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4489 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4490 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4491 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4492 	if (IEEE80211_IS_CHAN_2GHZ(c))
4493 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4494 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4495 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4496 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4497 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4498 	if (IEEE80211_IS_CHAN_A(c)) {
4499 		sc->rxon.cck_mask  = 0;
4500 		sc->rxon.ofdm_mask = 0x15;
4501 	} else if (IEEE80211_IS_CHAN_B(c)) {
4502 		sc->rxon.cck_mask  = 0x03;
4503 		sc->rxon.ofdm_mask = 0;
4504 	} else {
4505 		/* Assume 802.11b/g. */
4506 		sc->rxon.cck_mask  = 0x0f;
4507 		sc->rxon.ofdm_mask = 0x15;
4508 	}
4509 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4510 
4511 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4512 	    sc->rxon.chan, sc->rxon.flags);
4513 
4514 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4515 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4516 		    __func__);
4517 		return error;
4518 	}
4519 
4520 	/* Start periodic calibration timer. */
4521 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4522 
4523 	WPI_RXON_UNLOCK(sc);
4524 
4525 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4526 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4527 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4528 			device_printf(sc->sc_dev,
4529 			    "%s: could not setup beacon, error %d\n", __func__,
4530 			    error);
4531 			return error;
4532 		}
4533 	}
4534 
4535 	if (vap->iv_opmode == IEEE80211_M_STA) {
4536 		/* Add BSS node. */
4537 		WPI_NT_LOCK(sc);
4538 		error = wpi_add_sta_node(sc, ni);
4539 		WPI_NT_UNLOCK(sc);
4540 		if (error != 0) {
4541 			device_printf(sc->sc_dev,
4542 			    "%s: could not add BSS node, error %d\n", __func__,
4543 			    error);
4544 			return error;
4545 		}
4546 	}
4547 
4548 	/* Link LED always on while associated. */
4549 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4550 
4551 	/* Enable power-saving mode if requested by user. */
4552 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4553 	    vap->iv_opmode != IEEE80211_M_IBSS)
4554 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4555 
4556 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4557 
4558 	return 0;
4559 }
4560 
4561 static int
4562 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4563 {
4564 	const struct ieee80211_cipher *cip = k->wk_cipher;
4565 	struct ieee80211vap *vap = ni->ni_vap;
4566 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4567 	struct wpi_node *wn = WPI_NODE(ni);
4568 	struct wpi_node_info node;
4569 	uint16_t kflags;
4570 	int error;
4571 
4572 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4573 
4574 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4575 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4576 		    __func__);
4577 		return 0;
4578 	}
4579 
4580 	switch (cip->ic_cipher) {
4581 	case IEEE80211_CIPHER_AES_CCM:
4582 		kflags = WPI_KFLAG_CCMP;
4583 		break;
4584 
4585 	default:
4586 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4587 		    cip->ic_cipher);
4588 		return 0;
4589 	}
4590 
4591 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4592 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4593 		kflags |= WPI_KFLAG_MULTICAST;
4594 
4595 	memset(&node, 0, sizeof node);
4596 	node.id = wn->id;
4597 	node.control = WPI_NODE_UPDATE;
4598 	node.flags = WPI_FLAG_KEY_SET;
4599 	node.kflags = htole16(kflags);
4600 	memcpy(node.key, k->wk_key, k->wk_keylen);
4601 again:
4602 	DPRINTF(sc, WPI_DEBUG_KEY,
4603 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4604 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4605 	    node.id, ether_sprintf(ni->ni_macaddr));
4606 
4607 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4608 	if (error != 0) {
4609 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4610 		    error);
4611 		return !error;
4612 	}
4613 
4614 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4615 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4616 		kflags |= WPI_KFLAG_MULTICAST;
4617 		node.kflags = htole16(kflags);
4618 
4619 		goto again;
4620 	}
4621 
4622 	return 1;
4623 }
4624 
4625 static void
4626 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4627 {
4628 	const struct ieee80211_key *k = arg;
4629 	struct ieee80211vap *vap = ni->ni_vap;
4630 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4631 	struct wpi_node *wn = WPI_NODE(ni);
4632 	int error;
4633 
4634 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4635 		return;
4636 
4637 	WPI_NT_LOCK(sc);
4638 	error = wpi_load_key(ni, k);
4639 	WPI_NT_UNLOCK(sc);
4640 
4641 	if (error == 0) {
4642 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4643 		    __func__);
4644 	}
4645 }
4646 
4647 static int
4648 wpi_set_global_keys(struct ieee80211_node *ni)
4649 {
4650 	struct ieee80211vap *vap = ni->ni_vap;
4651 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4652 	int error = 1;
4653 
4654 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4655 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4656 			error = wpi_load_key(ni, wk);
4657 
4658 	return !error;
4659 }
4660 
4661 static int
4662 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4663 {
4664 	struct ieee80211vap *vap = ni->ni_vap;
4665 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4666 	struct wpi_node *wn = WPI_NODE(ni);
4667 	struct wpi_node_info node;
4668 	uint16_t kflags;
4669 	int error;
4670 
4671 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4672 
4673 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4674 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4675 		return 1;	/* Nothing to do. */
4676 	}
4677 
4678 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4679 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4680 		kflags |= WPI_KFLAG_MULTICAST;
4681 
4682 	memset(&node, 0, sizeof node);
4683 	node.id = wn->id;
4684 	node.control = WPI_NODE_UPDATE;
4685 	node.flags = WPI_FLAG_KEY_SET;
4686 	node.kflags = htole16(kflags);
4687 again:
4688 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4689 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4690 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4691 
4692 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4693 	if (error != 0) {
4694 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4695 		    error);
4696 		return !error;
4697 	}
4698 
4699 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4700 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4701 		kflags |= WPI_KFLAG_MULTICAST;
4702 		node.kflags = htole16(kflags);
4703 
4704 		goto again;
4705 	}
4706 
4707 	return 1;
4708 }
4709 
4710 static void
4711 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4712 {
4713 	const struct ieee80211_key *k = arg;
4714 	struct ieee80211vap *vap = ni->ni_vap;
4715 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4716 	struct wpi_node *wn = WPI_NODE(ni);
4717 	int error;
4718 
4719 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4720 		return;
4721 
4722 	WPI_NT_LOCK(sc);
4723 	error = wpi_del_key(ni, k);
4724 	WPI_NT_UNLOCK(sc);
4725 
4726 	if (error == 0) {
4727 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4728 		    __func__);
4729 	}
4730 }
4731 
4732 static int
4733 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4734     int set)
4735 {
4736 	struct ieee80211com *ic = vap->iv_ic;
4737 	struct wpi_softc *sc = ic->ic_softc;
4738 	struct wpi_vap *wvp = WPI_VAP(vap);
4739 	struct ieee80211_node *ni;
4740 	int error, ni_ref = 0;
4741 
4742 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4743 
4744 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4745 		/* Not for us. */
4746 		return 1;
4747 	}
4748 
4749 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4750 		/* XMIT keys are handled in wpi_tx_data(). */
4751 		return 1;
4752 	}
4753 
4754 	/* Handle group keys. */
4755 	if (&vap->iv_nw_keys[0] <= k &&
4756 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4757 		WPI_NT_LOCK(sc);
4758 		if (set)
4759 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4760 		else
4761 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4762 		WPI_NT_UNLOCK(sc);
4763 
4764 		if (vap->iv_state == IEEE80211_S_RUN) {
4765 			ieee80211_iterate_nodes(&ic->ic_sta,
4766 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4767 			    __DECONST(void *, k));
4768 		}
4769 
4770 		return 1;
4771 	}
4772 
4773 	switch (vap->iv_opmode) {
4774 	case IEEE80211_M_STA:
4775 		ni = vap->iv_bss;
4776 		break;
4777 
4778 	case IEEE80211_M_IBSS:
4779 	case IEEE80211_M_AHDEMO:
4780 	case IEEE80211_M_HOSTAP:
4781 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4782 		if (ni == NULL)
4783 			return 0;	/* should not happen */
4784 
4785 		ni_ref = 1;
4786 		break;
4787 
4788 	default:
4789 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4790 		    vap->iv_opmode);
4791 		return 0;
4792 	}
4793 
4794 	WPI_NT_LOCK(sc);
4795 	if (set)
4796 		error = wpi_load_key(ni, k);
4797 	else
4798 		error = wpi_del_key(ni, k);
4799 	WPI_NT_UNLOCK(sc);
4800 
4801 	if (ni_ref)
4802 		ieee80211_node_decref(ni);
4803 
4804 	return error;
4805 }
4806 
4807 static int
4808 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4809     const uint8_t mac[IEEE80211_ADDR_LEN])
4810 {
4811 	return wpi_process_key(vap, k, 1);
4812 }
4813 
4814 static int
4815 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4816 {
4817 	return wpi_process_key(vap, k, 0);
4818 }
4819 
4820 /*
4821  * This function is called after the runtime firmware notifies us of its
4822  * readiness (called in a process context).
4823  */
4824 static int
4825 wpi_post_alive(struct wpi_softc *sc)
4826 {
4827 	int ntries, error;
4828 
4829 	/* Check (again) that the radio is not disabled. */
4830 	if ((error = wpi_nic_lock(sc)) != 0)
4831 		return error;
4832 
4833 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4834 
4835 	/* NB: Runtime firmware must be up and running. */
4836 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4837 		device_printf(sc->sc_dev,
4838 		    "RF switch: radio disabled (%s)\n", __func__);
4839 		wpi_nic_unlock(sc);
4840 		return EPERM;   /* :-) */
4841 	}
4842 	wpi_nic_unlock(sc);
4843 
4844 	/* Wait for thermal sensor to calibrate. */
4845 	for (ntries = 0; ntries < 1000; ntries++) {
4846 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4847 			break;
4848 		DELAY(10);
4849 	}
4850 
4851 	if (ntries == 1000) {
4852 		device_printf(sc->sc_dev,
4853 		    "timeout waiting for thermal sensor calibration\n");
4854 		return ETIMEDOUT;
4855 	}
4856 
4857 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4858 	return 0;
4859 }
4860 
4861 /*
4862  * The firmware boot code is small and is intended to be copied directly into
4863  * the NIC internal memory (no DMA transfer).
4864  */
4865 static int
4866 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4867 {
4868 	int error, ntries;
4869 
4870 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4871 
4872 	size /= sizeof (uint32_t);
4873 
4874 	if ((error = wpi_nic_lock(sc)) != 0)
4875 		return error;
4876 
4877 	/* Copy microcode image into NIC memory. */
4878 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4879 	    (const uint32_t *)ucode, size);
4880 
4881 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4882 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4883 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4884 
4885 	/* Start boot load now. */
4886 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4887 
4888 	/* Wait for transfer to complete. */
4889 	for (ntries = 0; ntries < 1000; ntries++) {
4890 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4891 		DPRINTF(sc, WPI_DEBUG_HW,
4892 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4893 		    WPI_FH_TX_STATUS_IDLE(6),
4894 		    status & WPI_FH_TX_STATUS_IDLE(6));
4895 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4896 			DPRINTF(sc, WPI_DEBUG_HW,
4897 			    "Status Match! - ntries = %d\n", ntries);
4898 			break;
4899 		}
4900 		DELAY(10);
4901 	}
4902 	if (ntries == 1000) {
4903 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4904 		    __func__);
4905 		wpi_nic_unlock(sc);
4906 		return ETIMEDOUT;
4907 	}
4908 
4909 	/* Enable boot after power up. */
4910 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4911 
4912 	wpi_nic_unlock(sc);
4913 	return 0;
4914 }
4915 
4916 static int
4917 wpi_load_firmware(struct wpi_softc *sc)
4918 {
4919 	struct wpi_fw_info *fw = &sc->fw;
4920 	struct wpi_dma_info *dma = &sc->fw_dma;
4921 	int error;
4922 
4923 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4924 
4925 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4926 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4927 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4928 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4929 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4930 
4931 	/* Tell adapter where to find initialization sections. */
4932 	if ((error = wpi_nic_lock(sc)) != 0)
4933 		return error;
4934 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4935 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4936 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4937 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4938 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4939 	wpi_nic_unlock(sc);
4940 
4941 	/* Load firmware boot code. */
4942 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4943 	if (error != 0) {
4944 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4945 		    __func__);
4946 		return error;
4947 	}
4948 
4949 	/* Now press "execute". */
4950 	WPI_WRITE(sc, WPI_RESET, 0);
4951 
4952 	/* Wait at most one second for first alive notification. */
4953 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4954 		device_printf(sc->sc_dev,
4955 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4956 		    __func__, error);
4957 		return error;
4958 	}
4959 
4960 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4961 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4962 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4963 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4964 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4965 
4966 	/* Tell adapter where to find runtime sections. */
4967 	if ((error = wpi_nic_lock(sc)) != 0)
4968 		return error;
4969 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4970 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4971 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4972 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4973 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4974 	    WPI_FW_UPDATED | fw->main.textsz);
4975 	wpi_nic_unlock(sc);
4976 
4977 	return 0;
4978 }
4979 
4980 static int
4981 wpi_read_firmware(struct wpi_softc *sc)
4982 {
4983 	const struct firmware *fp;
4984 	struct wpi_fw_info *fw = &sc->fw;
4985 	const struct wpi_firmware_hdr *hdr;
4986 	int error;
4987 
4988 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4989 
4990 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4991 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4992 
4993 	WPI_UNLOCK(sc);
4994 	fp = firmware_get(WPI_FW_NAME);
4995 	WPI_LOCK(sc);
4996 
4997 	if (fp == NULL) {
4998 		device_printf(sc->sc_dev,
4999 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5000 		return EINVAL;
5001 	}
5002 
5003 	sc->fw_fp = fp;
5004 
5005 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5006 		device_printf(sc->sc_dev,
5007 		    "firmware file too short: %zu bytes\n", fp->datasize);
5008 		error = EINVAL;
5009 		goto fail;
5010 	}
5011 
5012 	fw->size = fp->datasize;
5013 	fw->data = (const uint8_t *)fp->data;
5014 
5015 	/* Extract firmware header information. */
5016 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5017 
5018 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5019 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5020 
5021 	fw->main.textsz = le32toh(hdr->rtextsz);
5022 	fw->main.datasz = le32toh(hdr->rdatasz);
5023 	fw->init.textsz = le32toh(hdr->itextsz);
5024 	fw->init.datasz = le32toh(hdr->idatasz);
5025 	fw->boot.textsz = le32toh(hdr->btextsz);
5026 	fw->boot.datasz = 0;
5027 
5028 	/* Sanity-check firmware header. */
5029 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5030 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5031 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5032 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5033 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5034 	    (fw->boot.textsz & 3) != 0) {
5035 		device_printf(sc->sc_dev, "invalid firmware header\n");
5036 		error = EINVAL;
5037 		goto fail;
5038 	}
5039 
5040 	/* Check that all firmware sections fit. */
5041 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5042 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5043 		device_printf(sc->sc_dev,
5044 		    "firmware file too short: %zu bytes\n", fw->size);
5045 		error = EINVAL;
5046 		goto fail;
5047 	}
5048 
5049 	/* Get pointers to firmware sections. */
5050 	fw->main.text = (const uint8_t *)(hdr + 1);
5051 	fw->main.data = fw->main.text + fw->main.textsz;
5052 	fw->init.text = fw->main.data + fw->main.datasz;
5053 	fw->init.data = fw->init.text + fw->init.textsz;
5054 	fw->boot.text = fw->init.data + fw->init.datasz;
5055 
5056 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5057 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5058 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5059 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5060 	    fw->main.textsz, fw->main.datasz,
5061 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5062 
5063 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5064 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5065 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5066 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5067 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5068 
5069 	return 0;
5070 
5071 fail:	wpi_unload_firmware(sc);
5072 	return error;
5073 }
5074 
5075 /**
5076  * Free the referenced firmware image
5077  */
5078 static void
5079 wpi_unload_firmware(struct wpi_softc *sc)
5080 {
5081 	if (sc->fw_fp != NULL) {
5082 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5083 		sc->fw_fp = NULL;
5084 	}
5085 }
5086 
5087 static int
5088 wpi_clock_wait(struct wpi_softc *sc)
5089 {
5090 	int ntries;
5091 
5092 	/* Set "initialization complete" bit. */
5093 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5094 
5095 	/* Wait for clock stabilization. */
5096 	for (ntries = 0; ntries < 2500; ntries++) {
5097 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5098 			return 0;
5099 		DELAY(100);
5100 	}
5101 	device_printf(sc->sc_dev,
5102 	    "%s: timeout waiting for clock stabilization\n", __func__);
5103 
5104 	return ETIMEDOUT;
5105 }
5106 
5107 static int
5108 wpi_apm_init(struct wpi_softc *sc)
5109 {
5110 	uint32_t reg;
5111 	int error;
5112 
5113 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5114 
5115 	/* Disable L0s exit timer (NMI bug workaround). */
5116 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5117 	/* Don't wait for ICH L0s (ICH bug workaround). */
5118 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5119 
5120 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5121 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5122 
5123 	/* Retrieve PCIe Active State Power Management (ASPM). */
5124 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5125 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5126 	if (reg & 0x02)	/* L1 Entry enabled. */
5127 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5128 	else
5129 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5130 
5131 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5132 
5133 	/* Wait for clock stabilization before accessing prph. */
5134 	if ((error = wpi_clock_wait(sc)) != 0)
5135 		return error;
5136 
5137 	if ((error = wpi_nic_lock(sc)) != 0)
5138 		return error;
5139 	/* Cleanup. */
5140 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5141 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5142 
5143 	/* Enable DMA and BSM (Bootstrap State Machine). */
5144 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5145 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5146 	DELAY(20);
5147 	/* Disable L1-Active. */
5148 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5149 	wpi_nic_unlock(sc);
5150 
5151 	return 0;
5152 }
5153 
5154 static void
5155 wpi_apm_stop_master(struct wpi_softc *sc)
5156 {
5157 	int ntries;
5158 
5159 	/* Stop busmaster DMA activity. */
5160 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5161 
5162 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5163 	    WPI_GP_CNTRL_MAC_PS)
5164 		return; /* Already asleep. */
5165 
5166 	for (ntries = 0; ntries < 100; ntries++) {
5167 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5168 			return;
5169 		DELAY(10);
5170 	}
5171 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5172 	    __func__);
5173 }
5174 
5175 static void
5176 wpi_apm_stop(struct wpi_softc *sc)
5177 {
5178 	wpi_apm_stop_master(sc);
5179 
5180 	/* Reset the entire device. */
5181 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5182 	DELAY(10);
5183 	/* Clear "initialization complete" bit. */
5184 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5185 }
5186 
5187 static void
5188 wpi_nic_config(struct wpi_softc *sc)
5189 {
5190 	uint32_t rev;
5191 
5192 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5193 
5194 	/* voodoo from the Linux "driver".. */
5195 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5196 	if ((rev & 0xc0) == 0x40)
5197 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5198 	else if (!(rev & 0x80))
5199 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5200 
5201 	if (sc->cap == 0x80)
5202 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5203 
5204 	if ((sc->rev & 0xf0) == 0xd0)
5205 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5206 	else
5207 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5208 
5209 	if (sc->type > 1)
5210 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5211 }
5212 
5213 static int
5214 wpi_hw_init(struct wpi_softc *sc)
5215 {
5216 	int chnl, ntries, error;
5217 
5218 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5219 
5220 	/* Clear pending interrupts. */
5221 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5222 
5223 	if ((error = wpi_apm_init(sc)) != 0) {
5224 		device_printf(sc->sc_dev,
5225 		    "%s: could not power ON adapter, error %d\n", __func__,
5226 		    error);
5227 		return error;
5228 	}
5229 
5230 	/* Select VMAIN power source. */
5231 	if ((error = wpi_nic_lock(sc)) != 0)
5232 		return error;
5233 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5234 	wpi_nic_unlock(sc);
5235 	/* Spin until VMAIN gets selected. */
5236 	for (ntries = 0; ntries < 5000; ntries++) {
5237 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5238 			break;
5239 		DELAY(10);
5240 	}
5241 	if (ntries == 5000) {
5242 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5243 		return ETIMEDOUT;
5244 	}
5245 
5246 	/* Perform adapter initialization. */
5247 	wpi_nic_config(sc);
5248 
5249 	/* Initialize RX ring. */
5250 	if ((error = wpi_nic_lock(sc)) != 0)
5251 		return error;
5252 	/* Set physical address of RX ring. */
5253 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5254 	/* Set physical address of RX read pointer. */
5255 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5256 	    offsetof(struct wpi_shared, next));
5257 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5258 	/* Enable RX. */
5259 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5260 	    WPI_FH_RX_CONFIG_DMA_ENA |
5261 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5262 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5263 	    WPI_FH_RX_CONFIG_MAXFRAG |
5264 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5265 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5266 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5267 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5268 	wpi_nic_unlock(sc);
5269 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5270 
5271 	/* Initialize TX rings. */
5272 	if ((error = wpi_nic_lock(sc)) != 0)
5273 		return error;
5274 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5275 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5276 	/* Enable all 6 TX rings. */
5277 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5278 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5279 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5280 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5281 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5282 	/* Set physical address of TX rings. */
5283 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5284 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5285 
5286 	/* Enable all DMA channels. */
5287 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5288 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5289 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5290 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5291 	}
5292 	wpi_nic_unlock(sc);
5293 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5294 
5295 	/* Clear "radio off" and "commands blocked" bits. */
5296 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5297 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5298 
5299 	/* Clear pending interrupts. */
5300 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5301 	/* Enable interrupts. */
5302 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5303 
5304 	/* _Really_ make sure "radio off" bit is cleared! */
5305 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5306 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5307 
5308 	if ((error = wpi_load_firmware(sc)) != 0) {
5309 		device_printf(sc->sc_dev,
5310 		    "%s: could not load firmware, error %d\n", __func__,
5311 		    error);
5312 		return error;
5313 	}
5314 	/* Wait at most one second for firmware alive notification. */
5315 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5316 		device_printf(sc->sc_dev,
5317 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5318 		    __func__, error);
5319 		return error;
5320 	}
5321 
5322 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5323 
5324 	/* Do post-firmware initialization. */
5325 	return wpi_post_alive(sc);
5326 }
5327 
5328 static void
5329 wpi_hw_stop(struct wpi_softc *sc)
5330 {
5331 	int chnl, qid, ntries;
5332 
5333 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5334 
5335 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5336 		wpi_nic_lock(sc);
5337 
5338 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5339 
5340 	/* Disable interrupts. */
5341 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5342 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5343 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5344 
5345 	/* Make sure we no longer hold the NIC lock. */
5346 	wpi_nic_unlock(sc);
5347 
5348 	if (wpi_nic_lock(sc) == 0) {
5349 		/* Stop TX scheduler. */
5350 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5351 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5352 
5353 		/* Stop all DMA channels. */
5354 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5355 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5356 			for (ntries = 0; ntries < 200; ntries++) {
5357 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5358 				    WPI_FH_TX_STATUS_IDLE(chnl))
5359 					break;
5360 				DELAY(10);
5361 			}
5362 		}
5363 		wpi_nic_unlock(sc);
5364 	}
5365 
5366 	/* Stop RX ring. */
5367 	wpi_reset_rx_ring(sc);
5368 
5369 	/* Reset all TX rings. */
5370 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
5371 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5372 
5373 	if (wpi_nic_lock(sc) == 0) {
5374 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5375 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5376 		wpi_nic_unlock(sc);
5377 	}
5378 	DELAY(5);
5379 	/* Power OFF adapter. */
5380 	wpi_apm_stop(sc);
5381 }
5382 
5383 static void
5384 wpi_radio_on(void *arg0, int pending)
5385 {
5386 	struct wpi_softc *sc = arg0;
5387 	struct ieee80211com *ic = &sc->sc_ic;
5388 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5389 
5390 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5391 
5392 	WPI_LOCK(sc);
5393 	callout_stop(&sc->watchdog_rfkill);
5394 	WPI_UNLOCK(sc);
5395 
5396 	if (vap != NULL)
5397 		ieee80211_init(vap);
5398 }
5399 
5400 static void
5401 wpi_radio_off(void *arg0, int pending)
5402 {
5403 	struct wpi_softc *sc = arg0;
5404 	struct ieee80211com *ic = &sc->sc_ic;
5405 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5406 
5407 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5408 
5409 	ieee80211_notify_radio(ic, 0);
5410 	wpi_stop(sc);
5411 	if (vap != NULL)
5412 		ieee80211_stop(vap);
5413 
5414 	WPI_LOCK(sc);
5415 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5416 	WPI_UNLOCK(sc);
5417 }
5418 
5419 static int
5420 wpi_init(struct wpi_softc *sc)
5421 {
5422 	int error = 0;
5423 
5424 	WPI_LOCK(sc);
5425 
5426 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5427 
5428 	if (sc->sc_running != 0)
5429 		goto end;
5430 
5431 	/* Check that the radio is not disabled by hardware switch. */
5432 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5433 		device_printf(sc->sc_dev,
5434 		    "RF switch: radio disabled (%s)\n", __func__);
5435 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5436 		    sc);
5437 		error = EINPROGRESS;
5438 		goto end;
5439 	}
5440 
5441 	/* Read firmware images from the filesystem. */
5442 	if ((error = wpi_read_firmware(sc)) != 0) {
5443 		device_printf(sc->sc_dev,
5444 		    "%s: could not read firmware, error %d\n", __func__,
5445 		    error);
5446 		goto end;
5447 	}
5448 
5449 	sc->sc_running = 1;
5450 
5451 	/* Initialize hardware and upload firmware. */
5452 	error = wpi_hw_init(sc);
5453 	wpi_unload_firmware(sc);
5454 	if (error != 0) {
5455 		device_printf(sc->sc_dev,
5456 		    "%s: could not initialize hardware, error %d\n", __func__,
5457 		    error);
5458 		goto fail;
5459 	}
5460 
5461 	/* Configure adapter now that it is ready. */
5462 	if ((error = wpi_config(sc)) != 0) {
5463 		device_printf(sc->sc_dev,
5464 		    "%s: could not configure device, error %d\n", __func__,
5465 		    error);
5466 		goto fail;
5467 	}
5468 
5469 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5470 
5471 	WPI_UNLOCK(sc);
5472 
5473 	return 0;
5474 
5475 fail:	wpi_stop_locked(sc);
5476 
5477 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5478 	WPI_UNLOCK(sc);
5479 
5480 	return error;
5481 }
5482 
5483 static void
5484 wpi_stop_locked(struct wpi_softc *sc)
5485 {
5486 
5487 	WPI_LOCK_ASSERT(sc);
5488 
5489 	if (sc->sc_running == 0)
5490 		return;
5491 
5492 	WPI_TX_LOCK(sc);
5493 	WPI_TXQ_LOCK(sc);
5494 	sc->sc_running = 0;
5495 	WPI_TXQ_UNLOCK(sc);
5496 	WPI_TX_UNLOCK(sc);
5497 
5498 	WPI_TXQ_STATE_LOCK(sc);
5499 	callout_stop(&sc->tx_timeout);
5500 	WPI_TXQ_STATE_UNLOCK(sc);
5501 
5502 	WPI_RXON_LOCK(sc);
5503 	callout_stop(&sc->scan_timeout);
5504 	callout_stop(&sc->calib_to);
5505 	WPI_RXON_UNLOCK(sc);
5506 
5507 	/* Power OFF hardware. */
5508 	wpi_hw_stop(sc);
5509 }
5510 
5511 static void
5512 wpi_stop(struct wpi_softc *sc)
5513 {
5514 	WPI_LOCK(sc);
5515 	wpi_stop_locked(sc);
5516 	WPI_UNLOCK(sc);
5517 }
5518 
5519 /*
5520  * Callback from net80211 to start a scan.
5521  */
5522 static void
5523 wpi_scan_start(struct ieee80211com *ic)
5524 {
5525 	struct wpi_softc *sc = ic->ic_softc;
5526 
5527 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5528 }
5529 
5530 /*
5531  * Callback from net80211 to terminate a scan.
5532  */
5533 static void
5534 wpi_scan_end(struct ieee80211com *ic)
5535 {
5536 	struct wpi_softc *sc = ic->ic_softc;
5537 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5538 
5539 	if (vap->iv_state == IEEE80211_S_RUN)
5540 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5541 }
5542 
5543 /**
5544  * Called by the net80211 framework to indicate to the driver
5545  * that the channel should be changed
5546  */
5547 static void
5548 wpi_set_channel(struct ieee80211com *ic)
5549 {
5550 	const struct ieee80211_channel *c = ic->ic_curchan;
5551 	struct wpi_softc *sc = ic->ic_softc;
5552 	int error;
5553 
5554 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5555 
5556 	WPI_LOCK(sc);
5557 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5558 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5559 	WPI_UNLOCK(sc);
5560 	WPI_TX_LOCK(sc);
5561 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5562 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5563 	WPI_TX_UNLOCK(sc);
5564 
5565 	/*
5566 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5567 	 * are already taken care of by their respective firmware commands.
5568 	 */
5569 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5570 		WPI_RXON_LOCK(sc);
5571 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5572 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5573 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5574 			    WPI_RXON_24GHZ);
5575 		} else {
5576 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5577 			    WPI_RXON_24GHZ);
5578 		}
5579 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5580 			device_printf(sc->sc_dev,
5581 			    "%s: error %d setting channel\n", __func__,
5582 			    error);
5583 		WPI_RXON_UNLOCK(sc);
5584 	}
5585 }
5586 
5587 /**
5588  * Called by net80211 to indicate that we need to scan the current
5589  * channel. The channel is previously be set via the wpi_set_channel
5590  * callback.
5591  */
5592 static void
5593 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5594 {
5595 	struct ieee80211vap *vap = ss->ss_vap;
5596 	struct ieee80211com *ic = vap->iv_ic;
5597 	struct wpi_softc *sc = ic->ic_softc;
5598 	int error;
5599 
5600 	WPI_RXON_LOCK(sc);
5601 	error = wpi_scan(sc, ic->ic_curchan);
5602 	WPI_RXON_UNLOCK(sc);
5603 	if (error != 0)
5604 		ieee80211_cancel_scan(vap);
5605 }
5606 
5607 /**
5608  * Called by the net80211 framework to indicate
5609  * the minimum dwell time has been met, terminate the scan.
5610  * We don't actually terminate the scan as the firmware will notify
5611  * us when it's finished and we have no way to interrupt it.
5612  */
5613 static void
5614 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5615 {
5616 	/* NB: don't try to abort scan; wait for firmware to finish */
5617 }
5618 
5619 static void
5620 wpi_hw_reset(void *arg, int pending)
5621 {
5622 	struct wpi_softc *sc = arg;
5623 	struct ieee80211com *ic = &sc->sc_ic;
5624 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5625 
5626 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5627 
5628 	ieee80211_notify_radio(ic, 0);
5629 	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5630 		ieee80211_cancel_scan(vap);
5631 
5632 	wpi_stop(sc);
5633 	if (vap != NULL) {
5634 		ieee80211_stop(vap);
5635 		ieee80211_init(vap);
5636 	}
5637 }
5638