xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 596596fec79f04e1f413850b44159224ff1fb8dc)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*
23  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24  *
25  * The 3945ABG network adapter doesn't use traditional hardware as
26  * many other adaptors do. Instead at run time the eeprom is set into a known
27  * state and told to load boot firmware. The boot firmware loads an init and a
28  * main  binary firmware image into SRAM on the card via DMA.
29  * Once the firmware is loaded, the driver/hw then
30  * communicate by way of circular dma rings via the SRAM to the firmware.
31  *
32  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33  * The 4 tx data rings allow for prioritization QoS.
34  *
35  * The rx data ring consists of 32 dma buffers. Two registers are used to
36  * indicate where in the ring the driver and the firmware are up to. The
37  * driver sets the initial read index (reg1) and the initial write index (reg2),
38  * the firmware updates the read index (reg1) on rx of a packet and fires an
39  * interrupt. The driver then processes the buffers starting at reg1 indicating
40  * to the firmware which buffers have been accessed by updating reg2. At the
41  * same time allocating new memory for the processed buffer.
42  *
43  * A similar thing happens with the tx rings. The difference is the firmware
44  * stop processing buffers once the queue is full and until confirmation
45  * of a successful transmition (tx_done) has occurred.
46  *
47  * The command ring operates in the same manner as the tx queues.
48  *
49  * All communication direct to the card (ie eeprom) is classed as Stage1
50  * communication
51  *
52  * All communication via the firmware to the card is classed as State2.
53  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54  * firmware. The bootstrap firmware and runtime firmware are loaded
55  * from host memory via dma to the card then told to execute. From this point
56  * on the majority of communications between the driver and the card goes
57  * via the firmware.
58  */
59 
60 #include "opt_wlan.h"
61 #include "opt_wpi.h"
62 
63 #include <sys/param.h>
64 #include <sys/sysctl.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/systm.h>
70 #include <sys/malloc.h>
71 #include <sys/queue.h>
72 #include <sys/taskqueue.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/endian.h>
76 #include <sys/linker.h>
77 #include <sys/firmware.h>
78 
79 #include <machine/bus.h>
80 #include <machine/resource.h>
81 #include <sys/rman.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/if_ether.h>
99 #include <netinet/ip.h>
100 
101 #include <net80211/ieee80211_var.h>
102 #include <net80211/ieee80211_radiotap.h>
103 #include <net80211/ieee80211_regdomain.h>
104 #include <net80211/ieee80211_ratectl.h>
105 
106 #include <dev/wpi/if_wpireg.h>
107 #include <dev/wpi/if_wpivar.h>
108 #include <dev/wpi/if_wpi_debug.h>
109 
110 struct wpi_ident {
111 	uint16_t	vendor;
112 	uint16_t	device;
113 	uint16_t	subdevice;
114 	const char	*name;
115 };
116 
117 static const struct wpi_ident wpi_ident_table[] = {
118 	/* The below entries support ABG regardless of the subid */
119 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	/* The below entries only support BG */
122 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0, 0, 0, NULL }
127 };
128 
129 static int	wpi_probe(device_t);
130 static int	wpi_attach(device_t);
131 static void	wpi_radiotap_attach(struct wpi_softc *);
132 static void	wpi_sysctlattach(struct wpi_softc *);
133 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
134 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
135 		    const uint8_t [IEEE80211_ADDR_LEN],
136 		    const uint8_t [IEEE80211_ADDR_LEN]);
137 static void	wpi_vap_delete(struct ieee80211vap *);
138 static int	wpi_detach(device_t);
139 static int	wpi_shutdown(device_t);
140 static int	wpi_suspend(device_t);
141 static int	wpi_resume(device_t);
142 static int	wpi_nic_lock(struct wpi_softc *);
143 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
144 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
145 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
146 		    void **, bus_size_t, bus_size_t);
147 static void	wpi_dma_contig_free(struct wpi_dma_info *);
148 static int	wpi_alloc_shared(struct wpi_softc *);
149 static void	wpi_free_shared(struct wpi_softc *);
150 static int	wpi_alloc_fwmem(struct wpi_softc *);
151 static void	wpi_free_fwmem(struct wpi_softc *);
152 static int	wpi_alloc_rx_ring(struct wpi_softc *);
153 static void	wpi_update_rx_ring(struct wpi_softc *);
154 static void	wpi_reset_rx_ring(struct wpi_softc *);
155 static void	wpi_free_rx_ring(struct wpi_softc *);
156 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
157 		    int);
158 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
159 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161 static int	wpi_read_eeprom(struct wpi_softc *,
162 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
163 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
164 static void	wpi_read_eeprom_band(struct wpi_softc *, int);
165 static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
166 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
167 		    struct ieee80211_channel *);
168 static int	wpi_setregdomain(struct ieee80211com *,
169 		    struct ieee80211_regdomain *, int,
170 		    struct ieee80211_channel[]);
171 static int	wpi_read_eeprom_group(struct wpi_softc *, int);
172 static void	wpi_node_free(struct ieee80211_node *);
173 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
174 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
175 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
176 static void	wpi_calib_timeout(void *);
177 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
178 		    struct wpi_rx_data *);
179 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
180 		    struct wpi_rx_data *);
181 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
182 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
183 static void	wpi_notif_intr(struct wpi_softc *);
184 static void	wpi_wakeup_intr(struct wpi_softc *);
185 static void	wpi_fatal_intr(struct wpi_softc *);
186 static void	wpi_intr(void *);
187 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
188 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
189 		    struct ieee80211_node *);
190 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
191 		    struct ieee80211_node *,
192 		    const struct ieee80211_bpf_params *);
193 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
194 		    const struct ieee80211_bpf_params *);
195 static void	wpi_start(struct ifnet *);
196 static void	wpi_start_locked(struct ifnet *);
197 static void	wpi_watchdog_rfkill(void *);
198 static void	wpi_watchdog(void *);
199 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
200 static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
201 static int	wpi_mrr_setup(struct wpi_softc *);
202 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
203 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
204 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
205 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
206 static int	wpi_updateedca(struct ieee80211com *);
207 static void	wpi_set_promisc(struct wpi_softc *);
208 static void	wpi_update_promisc(struct ifnet *);
209 static void	wpi_update_mcast(struct ifnet *);
210 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
211 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
212 static void	wpi_power_calibration(struct wpi_softc *);
213 static int	wpi_set_txpower(struct wpi_softc *, int);
214 static int	wpi_get_power_index(struct wpi_softc *,
215 		    struct wpi_power_group *, struct ieee80211_channel *, int);
216 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
217 static int	wpi_send_btcoex(struct wpi_softc *);
218 static int	wpi_send_rxon(struct wpi_softc *, int, int);
219 static int	wpi_config(struct wpi_softc *);
220 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
221 		    struct ieee80211_channel *, uint8_t);
222 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
223 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
224 		    struct ieee80211_channel *);
225 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
226 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
227 static void	wpi_update_beacon(struct ieee80211vap *, int);
228 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
229 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
230 static int	wpi_key_alloc(struct ieee80211vap *, struct ieee80211_key *,
231 		    ieee80211_keyix *, ieee80211_keyix *);
232 static int	wpi_key_set(struct ieee80211vap *,
233 		    const struct ieee80211_key *,
234 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
235 static int	wpi_key_delete(struct ieee80211vap *,
236 		    const struct ieee80211_key *);
237 static int	wpi_post_alive(struct wpi_softc *);
238 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
239 static int	wpi_load_firmware(struct wpi_softc *);
240 static int	wpi_read_firmware(struct wpi_softc *);
241 static void	wpi_unload_firmware(struct wpi_softc *);
242 static int	wpi_clock_wait(struct wpi_softc *);
243 static int	wpi_apm_init(struct wpi_softc *);
244 static void	wpi_apm_stop_master(struct wpi_softc *);
245 static void	wpi_apm_stop(struct wpi_softc *);
246 static void	wpi_nic_config(struct wpi_softc *);
247 static int	wpi_hw_init(struct wpi_softc *);
248 static void	wpi_hw_stop(struct wpi_softc *);
249 static void	wpi_radio_on(void *, int);
250 static void	wpi_radio_off(void *, int);
251 static void	wpi_init_locked(struct wpi_softc *);
252 static void	wpi_init(void *);
253 static void	wpi_stop_locked(struct wpi_softc *);
254 static void	wpi_stop(struct wpi_softc *);
255 static void	wpi_scan_start(struct ieee80211com *);
256 static void	wpi_scan_end(struct ieee80211com *);
257 static void	wpi_set_channel(struct ieee80211com *);
258 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
259 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
260 static void	wpi_hw_reset(void *, int);
261 
262 static device_method_t wpi_methods[] = {
263 	/* Device interface */
264 	DEVMETHOD(device_probe,		wpi_probe),
265 	DEVMETHOD(device_attach,	wpi_attach),
266 	DEVMETHOD(device_detach,	wpi_detach),
267 	DEVMETHOD(device_shutdown,	wpi_shutdown),
268 	DEVMETHOD(device_suspend,	wpi_suspend),
269 	DEVMETHOD(device_resume,	wpi_resume),
270 
271 	DEVMETHOD_END
272 };
273 
274 static driver_t wpi_driver = {
275 	"wpi",
276 	wpi_methods,
277 	sizeof (struct wpi_softc)
278 };
279 static devclass_t wpi_devclass;
280 
281 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282 
283 MODULE_VERSION(wpi, 1);
284 
285 MODULE_DEPEND(wpi, pci,  1, 1, 1);
286 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
287 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
288 
289 static int
290 wpi_probe(device_t dev)
291 {
292 	const struct wpi_ident *ident;
293 
294 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
295 		if (pci_get_vendor(dev) == ident->vendor &&
296 		    pci_get_device(dev) == ident->device) {
297 			device_set_desc(dev, ident->name);
298 			return (BUS_PROBE_DEFAULT);
299 		}
300 	}
301 	return ENXIO;
302 }
303 
304 static int
305 wpi_attach(device_t dev)
306 {
307 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
308 	struct ieee80211com *ic;
309 	struct ifnet *ifp;
310 	int i, error, rid, supportsa = 1;
311 	const struct wpi_ident *ident;
312 	uint8_t macaddr[IEEE80211_ADDR_LEN];
313 
314 	sc->sc_dev = dev;
315 
316 #ifdef	WPI_DEBUG
317 	error = resource_int_value(device_get_name(sc->sc_dev),
318 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
319 	if (error != 0)
320 		sc->sc_debug = 0;
321 #else
322 	sc->sc_debug = 0;
323 #endif
324 
325 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
326 
327 	/*
328 	 * Get the offset of the PCI Express Capability Structure in PCI
329 	 * Configuration Space.
330 	 */
331 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
332 	if (error != 0) {
333 		device_printf(dev, "PCIe capability structure not found!\n");
334 		return error;
335 	}
336 
337 	/*
338 	 * Some card's only support 802.11b/g not a, check to see if
339 	 * this is one such card. A 0x0 in the subdevice table indicates
340 	 * the entire subdevice range is to be ignored.
341 	 */
342 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
343 		if (ident->subdevice &&
344 		    pci_get_subdevice(dev) == ident->subdevice) {
345 		    supportsa = 0;
346 		    break;
347 		}
348 	}
349 
350 	/* Clear device-specific "PCI retry timeout" register (41h). */
351 	pci_write_config(dev, 0x41, 0, 1);
352 
353 	/* Enable bus-mastering. */
354 	pci_enable_busmaster(dev);
355 
356 	rid = PCIR_BAR(0);
357 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
358 	    RF_ACTIVE);
359 	if (sc->mem == NULL) {
360 		device_printf(dev, "can't map mem space\n");
361 		error = ENOMEM;
362 		return error;
363 	}
364 	sc->sc_st = rman_get_bustag(sc->mem);
365 	sc->sc_sh = rman_get_bushandle(sc->mem);
366 
367 	i = 1;
368 	rid = 0;
369 	if (pci_alloc_msi(dev, &i) == 0)
370 		rid = 1;
371 	/* Install interrupt handler. */
372 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
373 	    (rid != 0 ? 0 : RF_SHAREABLE));
374 	if (sc->irq == NULL) {
375 		device_printf(dev, "can't map interrupt\n");
376 		error = ENOMEM;
377 		goto fail;
378 	}
379 
380 	WPI_LOCK_INIT(sc);
381 
382 	sc->sc_unr = new_unrhdr(WPI_ID_IBSS_MIN, WPI_ID_IBSS_MAX, &sc->sc_mtx);
383 
384 	/* Allocate DMA memory for firmware transfers. */
385 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
386 		device_printf(dev,
387 		    "could not allocate memory for firmware, error %d\n",
388 		    error);
389 		goto fail;
390 	}
391 
392 	/* Allocate shared page. */
393 	if ((error = wpi_alloc_shared(sc)) != 0) {
394 		device_printf(dev, "could not allocate shared page\n");
395 		goto fail;
396 	}
397 
398 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
399 	for (i = 0; i < WPI_NTXQUEUES; i++) {
400 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
401 			device_printf(dev,
402 			    "could not allocate TX ring %d, error %d\n", i,
403 			    error);
404 			goto fail;
405 		}
406 	}
407 
408 	/* Allocate RX ring. */
409 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
410 		device_printf(dev, "could not allocate RX ring, error %d\n",
411 		    error);
412 		goto fail;
413 	}
414 
415 	/* Clear pending interrupts. */
416 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
417 
418 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
419 	if (ifp == NULL) {
420 		device_printf(dev, "can not allocate ifnet structure\n");
421 		goto fail;
422 	}
423 
424 	ic = ifp->if_l2com;
425 	ic->ic_ifp = ifp;
426 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
427 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
428 
429 	/* Set device capabilities. */
430 	ic->ic_caps =
431 		  IEEE80211_C_STA		/* station mode supported */
432 		| IEEE80211_C_IBSS		/* IBSS mode supported */
433 		| IEEE80211_C_MONITOR		/* monitor mode supported */
434 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
435 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
436 		| IEEE80211_C_TXPMGT		/* tx power management */
437 		| IEEE80211_C_SHSLOT		/* short slot time supported */
438 		| IEEE80211_C_WPA		/* 802.11i */
439 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
440 #if 0
441 		| IEEE80211_C_HOSTAP		/* Host access point mode */
442 #endif
443 		| IEEE80211_C_WME		/* 802.11e */
444 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
445 		;
446 
447 	ic->ic_cryptocaps =
448 		  IEEE80211_CRYPTO_AES_CCM;
449 
450 	/*
451 	 * Read in the eeprom and also setup the channels for
452 	 * net80211. We don't set the rates as net80211 does this for us
453 	 */
454 	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
455 		device_printf(dev, "could not read EEPROM, error %d\n",
456 		    error);
457 		goto fail;
458         }
459 
460 #ifdef	WPI_DEBUG
461 	if (bootverbose) {
462 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
463 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
464 			  sc->type > 1 ? 'B': '?');
465 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
466 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
467 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
468 			  supportsa ? "does" : "does not");
469 
470 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
471 	       what sc->rev really represents - benjsc 20070615 */
472 	}
473 #endif
474 
475 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
476 	ifp->if_softc = sc;
477 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
478 	ifp->if_init = wpi_init;
479 	ifp->if_ioctl = wpi_ioctl;
480 	ifp->if_start = wpi_start;
481 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
482 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
483 	IFQ_SET_READY(&ifp->if_snd);
484 
485 	ieee80211_ifattach(ic, macaddr);
486 	ic->ic_vap_create = wpi_vap_create;
487 	ic->ic_vap_delete = wpi_vap_delete;
488 	ic->ic_raw_xmit = wpi_raw_xmit;
489 	ic->ic_node_alloc = wpi_node_alloc;
490 	sc->sc_node_free = ic->ic_node_free;
491 	ic->ic_node_free = wpi_node_free;
492 	ic->ic_wme.wme_update = wpi_updateedca;
493 	ic->ic_update_promisc = wpi_update_promisc;
494 	ic->ic_update_mcast = wpi_update_mcast;
495 	ic->ic_scan_start = wpi_scan_start;
496 	ic->ic_scan_end = wpi_scan_end;
497 	ic->ic_set_channel = wpi_set_channel;
498 	sc->sc_scan_curchan = ic->ic_scan_curchan;
499 	ic->ic_scan_curchan = wpi_scan_curchan;
500 	ic->ic_scan_mindwell = wpi_scan_mindwell;
501 	ic->ic_setregdomain = wpi_setregdomain;
502 
503 	wpi_radiotap_attach(sc);
504 
505 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
506 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
507 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
508 	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
509 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
510 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
511 
512 	wpi_sysctlattach(sc);
513 
514 	/*
515 	 * Hook our interrupt after all initialization is complete.
516 	 */
517 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
518 	    NULL, wpi_intr, sc, &sc->sc_ih);
519 	if (error != 0) {
520 		device_printf(dev, "can't establish interrupt, error %d\n",
521 		    error);
522 		goto fail;
523 	}
524 
525 	if (bootverbose)
526 		ieee80211_announce(ic);
527 
528 #ifdef WPI_DEBUG
529 	if (sc->sc_debug & WPI_DEBUG_HW)
530 		ieee80211_announce_channels(ic);
531 #endif
532 
533 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
534 	return 0;
535 
536 fail:	wpi_detach(dev);
537 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
538 	return error;
539 }
540 
541 /*
542  * Attach the interface to 802.11 radiotap.
543  */
544 static void
545 wpi_radiotap_attach(struct wpi_softc *sc)
546 {
547 	struct ifnet *ifp = sc->sc_ifp;
548 	struct ieee80211com *ic = ifp->if_l2com;
549 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
550 	ieee80211_radiotap_attach(ic,
551 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
552 		WPI_TX_RADIOTAP_PRESENT,
553 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
554 		WPI_RX_RADIOTAP_PRESENT);
555 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
556 }
557 
558 static void
559 wpi_sysctlattach(struct wpi_softc *sc)
560 {
561 #ifdef  WPI_DEBUG
562 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
563 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
564 
565 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
566 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
567 		"control debugging printfs");
568 #endif
569 }
570 
571 static struct ieee80211vap *
572 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
573     enum ieee80211_opmode opmode, int flags,
574     const uint8_t bssid[IEEE80211_ADDR_LEN],
575     const uint8_t mac[IEEE80211_ADDR_LEN])
576 {
577 	struct wpi_vap *wvp;
578 	struct wpi_buf *bcn;
579 	struct ieee80211vap *vap;
580 
581 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
582 		return NULL;
583 
584 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
585 	    M_80211_VAP, M_NOWAIT | M_ZERO);
586 	if (wvp == NULL)
587 		return NULL;
588 	vap = &wvp->vap;
589 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
590 
591 	bcn = &wvp->wv_bcbuf;
592 	bcn->data = NULL;
593 
594 	/* Override with driver methods. */
595 	wvp->newstate = vap->iv_newstate;
596 	vap->iv_key_alloc = wpi_key_alloc;
597 	vap->iv_key_set = wpi_key_set;
598 	vap->iv_key_delete = wpi_key_delete;
599 	vap->iv_newstate = wpi_newstate;
600 	vap->iv_update_beacon = wpi_update_beacon;
601 
602 	ieee80211_ratectl_init(vap);
603 	/* Complete setup. */
604 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
605 	ic->ic_opmode = opmode;
606 	return vap;
607 }
608 
609 static void
610 wpi_vap_delete(struct ieee80211vap *vap)
611 {
612 	struct wpi_vap *wvp = WPI_VAP(vap);
613 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
614 
615 	ieee80211_ratectl_deinit(vap);
616 	ieee80211_vap_detach(vap);
617 
618 	if (bcn->data != NULL)
619 		free(bcn->data, M_DEVBUF);
620 	free(wvp, M_80211_VAP);
621 }
622 
623 static int
624 wpi_detach(device_t dev)
625 {
626 	struct wpi_softc *sc = device_get_softc(dev);
627 	struct ifnet *ifp = sc->sc_ifp;
628 	struct ieee80211com *ic;
629 	int qid;
630 
631 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
632 
633 	if (ifp != NULL) {
634 		ic = ifp->if_l2com;
635 
636 		ieee80211_draintask(ic, &sc->sc_reinittask);
637 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
638 
639 		wpi_stop(sc);
640 
641 		callout_drain(&sc->watchdog_to);
642 		callout_drain(&sc->watchdog_rfkill);
643 		callout_drain(&sc->calib_to);
644 		ieee80211_ifdetach(ic);
645 	}
646 
647 	/* Uninstall interrupt handler. */
648 	if (sc->irq != NULL) {
649 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
650 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
651 		    sc->irq);
652 		pci_release_msi(dev);
653 	}
654 
655 	if (sc->txq[0].data_dmat) {
656 		/* Free DMA resources. */
657 		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
658 			wpi_free_tx_ring(sc, &sc->txq[qid]);
659 
660 		wpi_free_rx_ring(sc);
661 		wpi_free_shared(sc);
662 	}
663 
664 	if (sc->fw_dma.tag)
665 		wpi_free_fwmem(sc);
666 
667 	if (sc->mem != NULL)
668 		bus_release_resource(dev, SYS_RES_MEMORY,
669 		    rman_get_rid(sc->mem), sc->mem);
670 
671 	if (ifp != NULL)
672 		if_free(ifp);
673 
674 	delete_unrhdr(sc->sc_unr);
675 
676 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
677 	WPI_LOCK_DESTROY(sc);
678 	return 0;
679 }
680 
681 static int
682 wpi_shutdown(device_t dev)
683 {
684 	struct wpi_softc *sc = device_get_softc(dev);
685 
686 	wpi_stop(sc);
687 	return 0;
688 }
689 
690 static int
691 wpi_suspend(device_t dev)
692 {
693 	struct wpi_softc *sc = device_get_softc(dev);
694 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
695 
696 	ieee80211_suspend_all(ic);
697 	return 0;
698 }
699 
700 static int
701 wpi_resume(device_t dev)
702 {
703 	struct wpi_softc *sc = device_get_softc(dev);
704 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
705 
706 	/* Clear device-specific "PCI retry timeout" register (41h). */
707 	pci_write_config(dev, 0x41, 0, 1);
708 
709 	ieee80211_resume_all(ic);
710 	return 0;
711 }
712 
713 /*
714  * Grab exclusive access to NIC memory.
715  */
716 static int
717 wpi_nic_lock(struct wpi_softc *sc)
718 {
719 	int ntries;
720 
721 	/* Request exclusive access to NIC. */
722 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
723 
724 	/* Spin until we actually get the lock. */
725 	for (ntries = 0; ntries < 1000; ntries++) {
726 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
727 		     (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
728 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
729 			return 0;
730 		DELAY(10);
731 	}
732 
733 	device_printf(sc->sc_dev, "could not lock memory\n");
734 
735 	return ETIMEDOUT;
736 }
737 
738 /*
739  * Release lock on NIC memory.
740  */
741 static __inline void
742 wpi_nic_unlock(struct wpi_softc *sc)
743 {
744 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
745 }
746 
747 static __inline uint32_t
748 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
749 {
750 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
751 	WPI_BARRIER_READ_WRITE(sc);
752 	return WPI_READ(sc, WPI_PRPH_RDATA);
753 }
754 
755 static __inline void
756 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
757 {
758 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
759 	WPI_BARRIER_WRITE(sc);
760 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
761 }
762 
763 static __inline void
764 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
765 {
766 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
767 }
768 
769 static __inline void
770 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
771 {
772 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
773 }
774 
775 static __inline void
776 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
777     const uint32_t *data, int count)
778 {
779 	for (; count > 0; count--, data++, addr += 4)
780 		wpi_prph_write(sc, addr, *data);
781 }
782 
783 static __inline uint32_t
784 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
785 {
786 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
787 	WPI_BARRIER_READ_WRITE(sc);
788 	return WPI_READ(sc, WPI_MEM_RDATA);
789 }
790 
791 static __inline void
792 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
793     int count)
794 {
795 	for (; count > 0; count--, addr += 4)
796 		*data++ = wpi_mem_read(sc, addr);
797 }
798 
799 static int
800 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
801 {
802 	uint8_t *out = data;
803 	uint32_t val;
804 	int error, ntries;
805 
806 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
807 
808 	if ((error = wpi_nic_lock(sc)) != 0)
809 		return error;
810 
811 	for (; count > 0; count -= 2, addr++) {
812 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
813 		for (ntries = 0; ntries < 10; ntries++) {
814 			val = WPI_READ(sc, WPI_EEPROM);
815 			if (val & WPI_EEPROM_READ_VALID)
816 				break;
817 			DELAY(5);
818 		}
819 		if (ntries == 10) {
820 			device_printf(sc->sc_dev,
821 			    "timeout reading ROM at 0x%x\n", addr);
822 			return ETIMEDOUT;
823 		}
824 		*out++= val >> 16;
825 		if (count > 1)
826 			*out ++= val >> 24;
827 	}
828 
829 	wpi_nic_unlock(sc);
830 
831 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
832 
833 	return 0;
834 }
835 
836 static void
837 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
838 {
839 	if (error != 0)
840 		return;
841 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
842 	*(bus_addr_t *)arg = segs[0].ds_addr;
843 }
844 
845 /*
846  * Allocates a contiguous block of dma memory of the requested size and
847  * alignment.
848  */
849 static int
850 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
851     void **kvap, bus_size_t size, bus_size_t alignment)
852 {
853 	int error;
854 
855 	dma->tag = NULL;
856 	dma->size = size;
857 
858 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
859 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
860 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
861 	if (error != 0)
862 		goto fail;
863 
864 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
865 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
866 	if (error != 0)
867 		goto fail;
868 
869 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
870 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
871 	if (error != 0)
872 		goto fail;
873 
874 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
875 
876 	if (kvap != NULL)
877 		*kvap = dma->vaddr;
878 
879 	return 0;
880 
881 fail:	wpi_dma_contig_free(dma);
882 	return error;
883 }
884 
885 static void
886 wpi_dma_contig_free(struct wpi_dma_info *dma)
887 {
888 	if (dma->vaddr != NULL) {
889 		bus_dmamap_sync(dma->tag, dma->map,
890 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
891 		bus_dmamap_unload(dma->tag, dma->map);
892 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
893 		dma->vaddr = NULL;
894 	}
895 	if (dma->tag != NULL) {
896 		bus_dma_tag_destroy(dma->tag);
897 		dma->tag = NULL;
898 	}
899 }
900 
901 /*
902  * Allocate a shared page between host and NIC.
903  */
904 static int
905 wpi_alloc_shared(struct wpi_softc *sc)
906 {
907 	/* Shared buffer must be aligned on a 4KB boundary. */
908 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
909 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
910 }
911 
912 static void
913 wpi_free_shared(struct wpi_softc *sc)
914 {
915 	wpi_dma_contig_free(&sc->shared_dma);
916 }
917 
918 /*
919  * Allocate DMA-safe memory for firmware transfer.
920  */
921 static int
922 wpi_alloc_fwmem(struct wpi_softc *sc)
923 {
924 	/* Must be aligned on a 16-byte boundary. */
925 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
926 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
927 }
928 
929 static void
930 wpi_free_fwmem(struct wpi_softc *sc)
931 {
932 	wpi_dma_contig_free(&sc->fw_dma);
933 }
934 
935 static int
936 wpi_alloc_rx_ring(struct wpi_softc *sc)
937 {
938 	struct wpi_rx_ring *ring = &sc->rxq;
939 	bus_size_t size;
940 	int i, error;
941 
942 	ring->cur = 0;
943 	ring->update = 0;
944 
945 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
946 
947 	/* Allocate RX descriptors (16KB aligned.) */
948 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
949 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
950 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
951 	if (error != 0) {
952 		device_printf(sc->sc_dev,
953 		    "%s: could not allocate RX ring DMA memory, error %d\n",
954 		    __func__, error);
955 		goto fail;
956 	}
957 
958 	/* Create RX buffer DMA tag. */
959         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
960 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
961 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
962 	    &ring->data_dmat);
963         if (error != 0) {
964                 device_printf(sc->sc_dev,
965 		    "%s: could not create RX buf DMA tag, error %d\n",
966 		    __func__, error);
967                 goto fail;
968         }
969 
970 	/*
971 	 * Allocate and map RX buffers.
972 	 */
973 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
974 		struct wpi_rx_data *data = &ring->data[i];
975 		bus_addr_t paddr;
976 
977 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
978 		if (error != 0) {
979 			device_printf(sc->sc_dev,
980 			    "%s: could not create RX buf DMA map, error %d\n",
981 			    __func__, error);
982 			goto fail;
983 		}
984 
985 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
986 		if (data->m == NULL) {
987 			device_printf(sc->sc_dev,
988 			    "%s: could not allocate RX mbuf\n", __func__);
989 			error = ENOBUFS;
990 			goto fail;
991 		}
992 
993 		error = bus_dmamap_load(ring->data_dmat, data->map,
994 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
995 		    &paddr, BUS_DMA_NOWAIT);
996 		if (error != 0 && error != EFBIG) {
997 			device_printf(sc->sc_dev,
998 			    "%s: can't map mbuf (error %d)\n", __func__,
999 			    error);
1000 			goto fail;
1001 		}
1002 
1003 		/* Set physical address of RX buffer. */
1004 		ring->desc[i] = htole32(paddr);
1005 	}
1006 
1007 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1008 	    BUS_DMASYNC_PREWRITE);
1009 
1010 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1011 
1012 	return 0;
1013 
1014 fail:	wpi_free_rx_ring(sc);
1015 
1016 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1017 
1018 	return error;
1019 }
1020 
1021 static void
1022 wpi_update_rx_ring(struct wpi_softc *sc)
1023 {
1024 	struct wpi_rx_ring *ring = &sc->rxq;
1025 
1026 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1027 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1028 		    __func__);
1029 
1030 		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1031 		ring->update = 1;
1032 	} else
1033 		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1034 }
1035 
1036 static void
1037 wpi_reset_rx_ring(struct wpi_softc *sc)
1038 {
1039 	struct wpi_rx_ring *ring = &sc->rxq;
1040 	int ntries;
1041 
1042 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1043 
1044 	if (wpi_nic_lock(sc) == 0) {
1045 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1046 		for (ntries = 0; ntries < 1000; ntries++) {
1047 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1048 			    WPI_FH_RX_STATUS_IDLE)
1049 				break;
1050 			DELAY(10);
1051 		}
1052 #ifdef WPI_DEBUG
1053 		if (ntries == 1000) {
1054 			device_printf(sc->sc_dev,
1055 			    "timeout resetting Rx ring\n");
1056 		}
1057 #endif
1058 		wpi_nic_unlock(sc);
1059 	}
1060 
1061 	ring->cur = 0;
1062 	ring->update = 0;
1063 }
1064 
1065 static void
1066 wpi_free_rx_ring(struct wpi_softc *sc)
1067 {
1068 	struct wpi_rx_ring *ring = &sc->rxq;
1069 	int i;
1070 
1071 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1072 
1073 	wpi_dma_contig_free(&ring->desc_dma);
1074 
1075 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1076 		struct wpi_rx_data *data = &ring->data[i];
1077 
1078 		if (data->m != NULL) {
1079 			bus_dmamap_sync(ring->data_dmat, data->map,
1080 			    BUS_DMASYNC_POSTREAD);
1081 			bus_dmamap_unload(ring->data_dmat, data->map);
1082 			m_freem(data->m);
1083 			data->m = NULL;
1084 		}
1085 		if (data->map != NULL)
1086 			bus_dmamap_destroy(ring->data_dmat, data->map);
1087 	}
1088 	if (ring->data_dmat != NULL) {
1089 		bus_dma_tag_destroy(ring->data_dmat);
1090 		ring->data_dmat = NULL;
1091 	}
1092 }
1093 
1094 static int
1095 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1096 {
1097 	bus_addr_t paddr;
1098 	bus_size_t size;
1099 	int i, error;
1100 
1101 	ring->qid = qid;
1102 	ring->queued = 0;
1103 	ring->cur = 0;
1104 	ring->update = 0;
1105 
1106 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1107 
1108 	/* Allocate TX descriptors (16KB aligned.) */
1109 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1110 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1111 	    size, WPI_RING_DMA_ALIGN);
1112 	if (error != 0) {
1113 		device_printf(sc->sc_dev,
1114 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1115 		    __func__, error);
1116 		goto fail;
1117 	}
1118 
1119 	/* Update shared area with ring physical address. */
1120 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1121 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1122 	    BUS_DMASYNC_PREWRITE);
1123 
1124 	/*
1125 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1126 	 * to allocate commands space for other rings.
1127 	 * XXX Do we really need to allocate descriptors for other rings?
1128 	 */
1129 	if (qid > 4)
1130 		return 0;
1131 
1132 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1133 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1134 	    size, 4);
1135 	if (error != 0) {
1136 		device_printf(sc->sc_dev,
1137 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1138 		    __func__, error);
1139 		goto fail;
1140 	}
1141 
1142 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1143 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1144 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1145 	    &ring->data_dmat);
1146 	if (error != 0) {
1147 		device_printf(sc->sc_dev,
1148 		    "%s: could not create TX buf DMA tag, error %d\n",
1149 		    __func__, error);
1150 		goto fail;
1151 	}
1152 
1153 	paddr = ring->cmd_dma.paddr;
1154 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1155 		struct wpi_tx_data *data = &ring->data[i];
1156 
1157 		data->cmd_paddr = paddr;
1158 		paddr += sizeof (struct wpi_tx_cmd);
1159 
1160 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1161 		if (error != 0) {
1162 			device_printf(sc->sc_dev,
1163 			    "%s: could not create TX buf DMA map, error %d\n",
1164 			    __func__, error);
1165 			goto fail;
1166 		}
1167 	}
1168 
1169 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1170 
1171 	return 0;
1172 
1173 fail:	wpi_free_tx_ring(sc, ring);
1174 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1175 	return error;
1176 }
1177 
1178 static void
1179 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180 {
1181 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1182 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1183 		    __func__, ring->qid);
1184 
1185 		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1186 		ring->update = 1;
1187 	} else
1188 		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1189 }
1190 
1191 static void
1192 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1193 {
1194 	int i;
1195 
1196 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1197 
1198 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1199 		struct wpi_tx_data *data = &ring->data[i];
1200 
1201 		if (data->m != NULL) {
1202 			bus_dmamap_sync(ring->data_dmat, data->map,
1203 			    BUS_DMASYNC_POSTWRITE);
1204 			bus_dmamap_unload(ring->data_dmat, data->map);
1205 			m_freem(data->m);
1206 			data->m = NULL;
1207 		}
1208 	}
1209 	/* Clear TX descriptors. */
1210 	memset(ring->desc, 0, ring->desc_dma.size);
1211 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1212 	    BUS_DMASYNC_PREWRITE);
1213 	sc->qfullmsk &= ~(1 << ring->qid);
1214 	ring->queued = 0;
1215 	ring->cur = 0;
1216 	ring->update = 0;
1217 }
1218 
1219 static void
1220 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1221 {
1222 	int i;
1223 
1224 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1225 
1226 	wpi_dma_contig_free(&ring->desc_dma);
1227 	wpi_dma_contig_free(&ring->cmd_dma);
1228 
1229 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1230 		struct wpi_tx_data *data = &ring->data[i];
1231 
1232 		if (data->m != NULL) {
1233 			bus_dmamap_sync(ring->data_dmat, data->map,
1234 			    BUS_DMASYNC_POSTWRITE);
1235 			bus_dmamap_unload(ring->data_dmat, data->map);
1236 			m_freem(data->m);
1237 		}
1238 		if (data->map != NULL)
1239 			bus_dmamap_destroy(ring->data_dmat, data->map);
1240 	}
1241 	if (ring->data_dmat != NULL) {
1242 		bus_dma_tag_destroy(ring->data_dmat);
1243 		ring->data_dmat = NULL;
1244 	}
1245 }
1246 
1247 /*
1248  * Extract various information from EEPROM.
1249  */
1250 static int
1251 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1252 {
1253 #define WPI_CHK(res) do {		\
1254 	if ((error = res) != 0)		\
1255 		goto fail;		\
1256 } while (0)
1257 	int error, i;
1258 
1259 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1260 
1261 	/* Adapter has to be powered on for EEPROM access to work. */
1262 	if ((error = wpi_apm_init(sc)) != 0) {
1263 		device_printf(sc->sc_dev,
1264 		    "%s: could not power ON adapter, error %d\n", __func__,
1265 		    error);
1266 		return error;
1267 	}
1268 
1269 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1270 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1271 		error = EIO;
1272 		goto fail;
1273 	}
1274 	/* Clear HW ownership of EEPROM. */
1275 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1276 
1277 	/* Read the hardware capabilities, revision and SKU type. */
1278 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1279 	    sizeof(sc->cap)));
1280 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1281 	    sizeof(sc->rev)));
1282 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1283 	    sizeof(sc->type)));
1284 
1285 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
1286 	    sc->type);
1287 
1288 	/* Read the regulatory domain (4 ASCII characters.) */
1289 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1290 	    sizeof(sc->domain)));
1291 
1292 	/* Read MAC address. */
1293 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1294 	    IEEE80211_ADDR_LEN));
1295 
1296 	/* Read the list of authorized channels. */
1297 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1298 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1299 
1300 	/* Read the list of TX power groups. */
1301 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1302 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1303 
1304 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1305 
1306 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1307 	    __func__);
1308 
1309 	return error;
1310 #undef WPI_CHK
1311 }
1312 
1313 /*
1314  * Translate EEPROM flags to net80211.
1315  */
1316 static uint32_t
1317 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1318 {
1319 	uint32_t nflags;
1320 
1321 	nflags = 0;
1322 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1323 		nflags |= IEEE80211_CHAN_PASSIVE;
1324 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1325 		nflags |= IEEE80211_CHAN_NOADHOC;
1326 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1327 		nflags |= IEEE80211_CHAN_DFS;
1328 		/* XXX apparently IBSS may still be marked */
1329 		nflags |= IEEE80211_CHAN_NOADHOC;
1330 	}
1331 
1332 	return nflags;
1333 }
1334 
1335 static void
1336 wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1337 {
1338 	struct ifnet *ifp = sc->sc_ifp;
1339 	struct ieee80211com *ic = ifp->if_l2com;
1340 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1341 	const struct wpi_chan_band *band = &wpi_bands[n];
1342 	struct ieee80211_channel *c;
1343 	uint8_t chan;
1344 	int i, nflags;
1345 
1346 	for (i = 0; i < band->nchan; i++) {
1347 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1348 			DPRINTF(sc, WPI_DEBUG_HW,
1349 			    "Channel Not Valid: %d, band %d\n",
1350 			     band->chan[i],n);
1351 			continue;
1352 		}
1353 
1354 		chan = band->chan[i];
1355 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1356 
1357 		c = &ic->ic_channels[ic->ic_nchans++];
1358 		c->ic_ieee = chan;
1359 		c->ic_maxregpower = channels[i].maxpwr;
1360 		c->ic_maxpower = 2*c->ic_maxregpower;
1361 
1362 		if (n == 0) {	/* 2GHz band */
1363 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1364 			/* G =>'s B is supported */
1365 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1366 			c = &ic->ic_channels[ic->ic_nchans++];
1367 			c[0] = c[-1];
1368 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1369 		} else {	/* 5GHz band */
1370 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1371 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1372 		}
1373 
1374 		/* Save maximum allowed TX power for this channel. */
1375 		sc->maxpwr[chan] = channels[i].maxpwr;
1376 
1377 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1378 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1379 		    " offset %d\n", chan, c->ic_freq,
1380 		    channels[i].flags, sc->maxpwr[chan],
1381 		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1382 	}
1383 }
1384 
1385 /**
1386  * Read the eeprom to find out what channels are valid for the given
1387  * band and update net80211 with what we find.
1388  */
1389 static int
1390 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1391 {
1392 	struct ifnet *ifp = sc->sc_ifp;
1393 	struct ieee80211com *ic = ifp->if_l2com;
1394 	const struct wpi_chan_band *band = &wpi_bands[n];
1395 	int error;
1396 
1397 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1398 
1399 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1400 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1401 	if (error != 0) {
1402 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1403 		return error;
1404 	}
1405 
1406 	wpi_read_eeprom_band(sc, n);
1407 
1408 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1409 
1410 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1411 
1412 	return 0;
1413 }
1414 
1415 static struct wpi_eeprom_chan *
1416 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1417 {
1418 	int i, j;
1419 
1420 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1421 		for (i = 0; i < wpi_bands[j].nchan; i++)
1422 			if (wpi_bands[j].chan[i] == c->ic_ieee)
1423 				return &sc->eeprom_channels[j][i];
1424 
1425 	return NULL;
1426 }
1427 
1428 /*
1429  * Enforce flags read from EEPROM.
1430  */
1431 static int
1432 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1433     int nchan, struct ieee80211_channel chans[])
1434 {
1435 	struct ifnet *ifp = ic->ic_ifp;
1436 	struct wpi_softc *sc = ifp->if_softc;
1437 	int i;
1438 
1439 	for (i = 0; i < nchan; i++) {
1440 		struct ieee80211_channel *c = &chans[i];
1441 		struct wpi_eeprom_chan *channel;
1442 
1443 		channel = wpi_find_eeprom_channel(sc, c);
1444 		if (channel == NULL) {
1445 			if_printf(ic->ic_ifp,
1446 			    "%s: invalid channel %u freq %u/0x%x\n",
1447 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1448 			return EINVAL;
1449 		}
1450 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 static int
1457 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1458 {
1459 	struct wpi_power_group *group = &sc->groups[n];
1460 	struct wpi_eeprom_group rgroup;
1461 	int i, error;
1462 
1463 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1464 
1465 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1466 	    &rgroup, sizeof rgroup)) != 0) {
1467 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1468 		return error;
1469 	}
1470 
1471 	/* Save TX power group information. */
1472 	group->chan   = rgroup.chan;
1473 	group->maxpwr = rgroup.maxpwr;
1474 	/* Retrieve temperature at which the samples were taken. */
1475 	group->temp   = (int16_t)le16toh(rgroup.temp);
1476 
1477 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1478 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1479 	    group->maxpwr, group->temp);
1480 
1481 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1482 		group->samples[i].index = rgroup.samples[i].index;
1483 		group->samples[i].power = rgroup.samples[i].power;
1484 
1485 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1486 		    "\tsample %d: index=%d power=%d\n", i,
1487 		    group->samples[i].index, group->samples[i].power);
1488 	}
1489 
1490 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1491 
1492 	return 0;
1493 }
1494 
1495 static struct ieee80211_node *
1496 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1497 {
1498 	struct wpi_node *wn;
1499 
1500 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1501 	    M_NOWAIT | M_ZERO);
1502 
1503 	if (wn == NULL)
1504 		return NULL;
1505 
1506 	wn->id = WPI_ID_UNDEFINED;
1507 
1508 	return &wn->ni;
1509 }
1510 
1511 static void
1512 wpi_node_free(struct ieee80211_node *ni)
1513 {
1514 	struct ieee80211com *ic = ni->ni_ic;
1515 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1516 	struct wpi_node *wn = (struct wpi_node *)ni;
1517 
1518 	if (wn->id >= WPI_ID_IBSS_MIN && wn->id <= WPI_ID_IBSS_MAX) {
1519 		free_unr(sc->sc_unr, wn->id);
1520 
1521 		WPI_LOCK(sc);
1522 		if (sc->rxon.filter & htole32(WPI_FILTER_BSS))
1523 			wpi_del_node(sc, ni);
1524 		WPI_UNLOCK(sc);
1525 	}
1526 
1527 	sc->sc_node_free(ni);
1528 }
1529 
1530 /**
1531  * Called by net80211 when ever there is a change to 80211 state machine
1532  */
1533 static int
1534 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1535 {
1536 	struct wpi_vap *wvp = WPI_VAP(vap);
1537 	struct ieee80211com *ic = vap->iv_ic;
1538 	struct ifnet *ifp = ic->ic_ifp;
1539 	struct wpi_softc *sc = ifp->if_softc;
1540 	int error = 0;
1541 
1542 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1543 
1544 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1545 		ieee80211_state_name[vap->iv_state],
1546 		ieee80211_state_name[nstate]);
1547 
1548 	IEEE80211_UNLOCK(ic);
1549 	WPI_LOCK(sc);
1550 	switch (nstate) {
1551 	case IEEE80211_S_SCAN:
1552 		if ((vap->iv_opmode == IEEE80211_M_IBSS ||
1553 		    vap->iv_opmode == IEEE80211_M_AHDEMO) &&
1554 		    (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
1555 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1556 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1557 				device_printf(sc->sc_dev,
1558 				    "%s: could not send RXON\n", __func__);
1559 			}
1560 		}
1561 		break;
1562 
1563 	case IEEE80211_S_ASSOC:
1564 		if (vap->iv_state != IEEE80211_S_RUN)
1565 			break;
1566 		/* FALLTHROUGH */
1567 	case IEEE80211_S_AUTH:
1568 		/*
1569 		 * The node must be registered in the firmware before auth.
1570 		 * Also the associd must be cleared on RUN -> ASSOC
1571 		 * transitions.
1572 		 */
1573 		if ((error = wpi_auth(sc, vap)) != 0) {
1574 			device_printf(sc->sc_dev,
1575 			    "%s: could not move to AUTH state, error %d\n",
1576 			    __func__, error);
1577 		}
1578 		break;
1579 
1580 	case IEEE80211_S_RUN:
1581 		/*
1582 		 * RUN -> RUN transition; Just restart the timers.
1583 		 */
1584 		if (vap->iv_state == IEEE80211_S_RUN) {
1585 			wpi_calib_timeout(sc);
1586 			break;
1587 		}
1588 
1589 		/*
1590 		 * !RUN -> RUN requires setting the association id
1591 		 * which is done with a firmware cmd.  We also defer
1592 		 * starting the timers until that work is done.
1593 		 */
1594 		if ((error = wpi_run(sc, vap)) != 0) {
1595 			device_printf(sc->sc_dev,
1596 			    "%s: could not move to RUN state\n", __func__);
1597 		}
1598 		break;
1599 
1600 	default:
1601 		break;
1602 	}
1603 	WPI_UNLOCK(sc);
1604 	IEEE80211_LOCK(ic);
1605 	if (error != 0) {
1606 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1607 		return error;
1608 	}
1609 
1610 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1611 
1612 	return wvp->newstate(vap, nstate, arg);
1613 }
1614 
1615 static void
1616 wpi_calib_timeout(void *arg)
1617 {
1618 	struct wpi_softc *sc = arg;
1619 	struct ifnet *ifp = sc->sc_ifp;
1620 	struct ieee80211com *ic = ifp->if_l2com;
1621 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1622 
1623 	if (vap->iv_state != IEEE80211_S_RUN)
1624 		return;
1625 
1626 	wpi_power_calibration(sc);
1627 
1628 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1629 }
1630 
1631 static __inline uint8_t
1632 rate2plcp(const uint8_t rate)
1633 {
1634 	switch (rate) {
1635 	case 12:	return 0xd;
1636 	case 18:	return 0xf;
1637 	case 24:	return 0x5;
1638 	case 36:	return 0x7;
1639 	case 48:	return 0x9;
1640 	case 72:	return 0xb;
1641 	case 96:	return 0x1;
1642 	case 108:	return 0x3;
1643 	case 2:		return 10;
1644 	case 4:		return 20;
1645 	case 11:	return 55;
1646 	case 22:	return 110;
1647 	default:	return 0;
1648 	}
1649 }
1650 
1651 static __inline uint8_t
1652 plcp2rate(const uint8_t plcp)
1653 {
1654 	switch (plcp) {
1655 	case 0xd:	return 12;
1656 	case 0xf:	return 18;
1657 	case 0x5:	return 24;
1658 	case 0x7:	return 36;
1659 	case 0x9:	return 48;
1660 	case 0xb:	return 72;
1661 	case 0x1:	return 96;
1662 	case 0x3:	return 108;
1663 	case 10:	return 2;
1664 	case 20:	return 4;
1665 	case 55:	return 11;
1666 	case 110:	return 22;
1667 	default:	return 0;
1668 	}
1669 }
1670 
1671 /* Quickly determine if a given rate is CCK or OFDM. */
1672 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1673 
1674 static void
1675 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1676     struct wpi_rx_data *data)
1677 {
1678 	struct ifnet *ifp = sc->sc_ifp;
1679 	const struct ieee80211_cipher *cip = NULL;
1680 	struct ieee80211com *ic = ifp->if_l2com;
1681 	struct wpi_rx_ring *ring = &sc->rxq;
1682 	struct wpi_rx_stat *stat;
1683 	struct wpi_rx_head *head;
1684 	struct wpi_rx_tail *tail;
1685 	struct ieee80211_frame *wh;
1686 	struct ieee80211_node *ni;
1687 	struct mbuf *m, *m1;
1688 	bus_addr_t paddr;
1689 	uint32_t flags;
1690 	uint16_t len;
1691 	int error;
1692 
1693 	stat = (struct wpi_rx_stat *)(desc + 1);
1694 
1695 	if (stat->len > WPI_STAT_MAXLEN) {
1696 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1697 		goto fail1;
1698 	}
1699 
1700 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1701 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1702 	len = le16toh(head->len);
1703 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1704 	flags = le32toh(tail->flags);
1705 
1706 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1707 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1708 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1709 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1710 
1711 	/* Discard frames with a bad FCS early. */
1712 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1713 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1714 		    __func__, flags);
1715 		goto fail1;
1716 	}
1717 	/* Discard frames that are too short. */
1718 	if (len < sizeof (*wh)) {
1719 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1720 		    __func__, len);
1721 		goto fail1;
1722 	}
1723 
1724 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1725 	if (m1 == NULL) {
1726 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1727 		    __func__);
1728 		goto fail1;
1729 	}
1730 	bus_dmamap_unload(ring->data_dmat, data->map);
1731 
1732 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1733 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1734 	if (error != 0 && error != EFBIG) {
1735 		device_printf(sc->sc_dev,
1736 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1737 		m_freem(m1);
1738 
1739 		/* Try to reload the old mbuf. */
1740 		error = bus_dmamap_load(ring->data_dmat, data->map,
1741 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1742 		    &paddr, BUS_DMA_NOWAIT);
1743 		if (error != 0 && error != EFBIG) {
1744 			panic("%s: could not load old RX mbuf", __func__);
1745 		}
1746 		/* Physical address may have changed. */
1747 		ring->desc[ring->cur] = htole32(paddr);
1748 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1749 		    BUS_DMASYNC_PREWRITE);
1750 		goto fail1;
1751 	}
1752 
1753 	m = data->m;
1754 	data->m = m1;
1755 	/* Update RX descriptor. */
1756 	ring->desc[ring->cur] = htole32(paddr);
1757 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1758 	    BUS_DMASYNC_PREWRITE);
1759 
1760 	/* Finalize mbuf. */
1761 	m->m_pkthdr.rcvif = ifp;
1762 	m->m_data = (caddr_t)(head + 1);
1763 	m->m_pkthdr.len = m->m_len = len;
1764 
1765 	/* Grab a reference to the source node. */
1766 	wh = mtod(m, struct ieee80211_frame *);
1767 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1768 
1769 	if (ni != NULL)
1770 		cip = ni->ni_ucastkey.wk_cipher;
1771 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1772 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1773 	    cip != NULL && cip->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
1774 		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP)
1775 			goto fail2;
1776 
1777 		/* Check whether decryption was successful or not. */
1778 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1779 			DPRINTF(sc, WPI_DEBUG_RECV,
1780 			    "CCMP decryption failed 0x%x\n", flags);
1781 			goto fail2;
1782 		}
1783 		m->m_flags |= M_WEP;
1784 	}
1785 
1786 	if (ieee80211_radiotap_active(ic)) {
1787 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1788 
1789 		tap->wr_flags = 0;
1790 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1791 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1792 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1793 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1794 		tap->wr_tsft = tail->tstamp;
1795 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1796 		tap->wr_rate = plcp2rate(head->plcp);
1797 	}
1798 
1799 	WPI_UNLOCK(sc);
1800 
1801 	/* Send the frame to the 802.11 layer. */
1802 	if (ni != NULL) {
1803 		(void)ieee80211_input(ni, m, stat->rssi, -WPI_RSSI_OFFSET);
1804 		/* Node is no longer needed. */
1805 		ieee80211_free_node(ni);
1806 	} else
1807 		(void)ieee80211_input_all(ic, m, stat->rssi, -WPI_RSSI_OFFSET);
1808 
1809 	WPI_LOCK(sc);
1810 
1811 	return;
1812 
1813 fail2:	ieee80211_free_node(ni);
1814 	m_freem(m);
1815 
1816 fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1817 }
1818 
1819 static void
1820 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1821     struct wpi_rx_data *data)
1822 {
1823 	/* Ignore */
1824 }
1825 
1826 static void
1827 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1828 {
1829 	struct ifnet *ifp = sc->sc_ifp;
1830 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1831 	struct wpi_tx_data *data = &ring->data[desc->idx];
1832 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1833 	struct mbuf *m;
1834 	struct ieee80211_node *ni;
1835 	struct ieee80211vap *vap;
1836 	int ackfailcnt = stat->ackfailcnt;
1837 	int status = le32toh(stat->status);
1838 
1839 	KASSERT(data->ni != NULL, ("no node"));
1840 
1841 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1842 
1843 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1844 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1845 	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1846 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1847 
1848 	/* Unmap and free mbuf. */
1849 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1850 	bus_dmamap_unload(ring->data_dmat, data->map);
1851 	m = data->m, data->m = NULL;
1852 	ni = data->ni, data->ni = NULL;
1853 	vap = ni->ni_vap;
1854 
1855 	/*
1856 	 * Update rate control statistics for the node.
1857 	 */
1858 	WPI_UNLOCK(sc);
1859 	if ((status & 0xff) != 1) {
1860 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1861 		ieee80211_ratectl_tx_complete(vap, ni,
1862 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1863 	} else {
1864 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1865 		ieee80211_ratectl_tx_complete(vap, ni,
1866 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1867 	}
1868 
1869 	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1870 	WPI_LOCK(sc);
1871 
1872 	sc->sc_tx_timer = 0;
1873 	if (--ring->queued < WPI_TX_RING_LOMARK) {
1874 		sc->qfullmsk &= ~(1 << ring->qid);
1875 		if (sc->qfullmsk == 0 &&
1876 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1877 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1878 			wpi_start_locked(ifp);
1879 		}
1880 	}
1881 
1882 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1883 }
1884 
1885 /*
1886  * Process a "command done" firmware notification.  This is where we wakeup
1887  * processes waiting for a synchronous command completion.
1888  */
1889 static void
1890 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1891 {
1892 	struct wpi_tx_ring *ring = &sc->txq[4];
1893 	struct wpi_tx_data *data;
1894 
1895 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid=%x idx=%d flags=%x "
1896 				   "type=%s len=%d\n", desc->qid, desc->idx,
1897 				   desc->flags, wpi_cmd_str(desc->type),
1898 				   le32toh(desc->len));
1899 
1900 	if ((desc->qid & 7) != 4)
1901 		return;	/* Not a command ack. */
1902 
1903 	data = &ring->data[desc->idx];
1904 
1905 	/* If the command was mapped in an mbuf, free it. */
1906 	if (data->m != NULL) {
1907 		bus_dmamap_sync(ring->data_dmat, data->map,
1908 		    BUS_DMASYNC_POSTWRITE);
1909 		bus_dmamap_unload(ring->data_dmat, data->map);
1910 		m_freem(data->m);
1911 		data->m = NULL;
1912 	}
1913 
1914 	sc->flags &= ~WPI_FLAG_BUSY;
1915 	wakeup(&ring->cmd[desc->idx]);
1916 }
1917 
1918 static void
1919 wpi_notif_intr(struct wpi_softc *sc)
1920 {
1921 	struct ifnet *ifp = sc->sc_ifp;
1922 	struct ieee80211com *ic = ifp->if_l2com;
1923 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1924 	int hw;
1925 
1926 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1927 	    BUS_DMASYNC_POSTREAD);
1928 
1929 	hw = le32toh(sc->shared->next);
1930 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1931 
1932 	while (sc->rxq.cur != hw) {
1933 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1934 
1935 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1936 		struct wpi_rx_desc *desc;
1937 
1938 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1939 		    BUS_DMASYNC_POSTREAD);
1940 		desc = mtod(data->m, struct wpi_rx_desc *);
1941 
1942 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
1943 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
1944 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
1945 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
1946 
1947 		if (!(desc->qid & 0x80))	/* Reply to a command. */
1948 			wpi_cmd_done(sc, desc);
1949 
1950 		switch (desc->type) {
1951 		case WPI_RX_DONE:
1952 			/* An 802.11 frame has been received. */
1953 			wpi_rx_done(sc, desc, data);
1954 			break;
1955 
1956 		case WPI_TX_DONE:
1957 			/* An 802.11 frame has been transmitted. */
1958 			wpi_tx_done(sc, desc);
1959 			break;
1960 
1961 		case WPI_RX_STATISTICS:
1962 		case WPI_BEACON_STATISTICS:
1963 			wpi_rx_statistics(sc, desc, data);
1964 			break;
1965 
1966 		case WPI_BEACON_MISSED:
1967 		{
1968 			struct wpi_beacon_missed *miss =
1969 			    (struct wpi_beacon_missed *)(desc + 1);
1970 			int misses;
1971 
1972 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1973 			    BUS_DMASYNC_POSTREAD);
1974 			misses = le32toh(miss->consecutive);
1975 
1976 			DPRINTF(sc, WPI_DEBUG_STATE,
1977 			    "%s: beacons missed %d/%d\n", __func__, misses,
1978 			    le32toh(miss->total));
1979 
1980 			if (vap->iv_state == IEEE80211_S_RUN &&
1981 			    (ic->ic_flags & IEEE80211_S_SCAN) == 0) {
1982 				if (misses >=  vap->iv_bmissthreshold) {
1983 					WPI_UNLOCK(sc);
1984 					ieee80211_beacon_miss(ic);
1985 					WPI_LOCK(sc);
1986 				}
1987 			}
1988 			break;
1989 		}
1990 		case WPI_UC_READY:
1991 		{
1992 			struct wpi_ucode_info *uc =
1993 			    (struct wpi_ucode_info *)(desc + 1);
1994 
1995 			/* The microcontroller is ready. */
1996 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1997 			    BUS_DMASYNC_POSTREAD);
1998 			DPRINTF(sc, WPI_DEBUG_RESET,
1999 			    "microcode alive notification version=%d.%d "
2000 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2001 			    uc->subtype, le32toh(uc->valid));
2002 
2003 			if (le32toh(uc->valid) != 1) {
2004 				device_printf(sc->sc_dev,
2005 				    "microcontroller initialization failed\n");
2006 				wpi_stop_locked(sc);
2007 			}
2008 			/* Save the address of the error log in SRAM. */
2009 			sc->errptr = le32toh(uc->errptr);
2010 			break;
2011 		}
2012 		case WPI_STATE_CHANGED:
2013 		{
2014                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2015                             BUS_DMASYNC_POSTREAD);
2016 
2017 			uint32_t *status = (uint32_t *)(desc + 1);
2018 
2019 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2020 			    le32toh(*status));
2021 
2022 			if (le32toh(*status) & 1) {
2023 				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2024 				return;
2025 			}
2026 			break;
2027 		}
2028 		case WPI_START_SCAN:
2029 		{
2030 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2031 			    BUS_DMASYNC_POSTREAD);
2032 #ifdef WPI_DEBUG
2033 			struct wpi_start_scan *scan =
2034 			    (struct wpi_start_scan *)(desc + 1);
2035 			DPRINTF(sc, WPI_DEBUG_SCAN,
2036 			    "%s: scanning channel %d status %x\n",
2037 			    __func__, scan->chan, le32toh(scan->status));
2038 #endif
2039 			break;
2040 		}
2041 		case WPI_STOP_SCAN:
2042 		{
2043 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2044 			    BUS_DMASYNC_POSTREAD);
2045 #ifdef WPI_DEBUG
2046 			struct wpi_stop_scan *scan =
2047 			    (struct wpi_stop_scan *)(desc + 1);
2048 			DPRINTF(sc, WPI_DEBUG_SCAN,
2049 			    "scan finished nchan=%d status=%d chan=%d\n",
2050 			    scan->nchan, scan->status, scan->chan);
2051 #endif
2052 			sc->sc_scan_timer = 0;
2053 			WPI_UNLOCK(sc);
2054 			ieee80211_scan_next(vap);
2055 			WPI_LOCK(sc);
2056 			break;
2057 		}
2058 		}
2059 	}
2060 
2061 	/* Tell the firmware what we have processed. */
2062 	wpi_update_rx_ring(sc);
2063 }
2064 
2065 /*
2066  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2067  * from power-down sleep mode.
2068  */
2069 static void
2070 wpi_wakeup_intr(struct wpi_softc *sc)
2071 {
2072 	int qid;
2073 
2074 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2075 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2076 
2077 	/* Wakeup RX and TX rings. */
2078 	if (sc->rxq.update) {
2079 		sc->rxq.update = 0;
2080 		wpi_update_rx_ring(sc);
2081 	}
2082 	for (qid = 0; qid < WPI_NTXQUEUES; qid++) {
2083 		struct wpi_tx_ring *ring = &sc->txq[qid];
2084 
2085 		if (ring->update) {
2086 			ring->update = 0;
2087 			wpi_update_tx_ring(sc, ring);
2088 		}
2089 	}
2090 
2091 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2092 }
2093 
2094 /*
2095  * Dump the error log of the firmware when a firmware panic occurs.  Although
2096  * we can't debug the firmware because it is neither open source nor free, it
2097  * can help us to identify certain classes of problems.
2098  */
2099 static void
2100 wpi_fatal_intr(struct wpi_softc *sc)
2101 {
2102 	struct wpi_fw_dump dump;
2103 	uint32_t i, offset, count;
2104 	const uint32_t size_errmsg =
2105 	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2106 
2107 	/* Check that the error log address is valid. */
2108 	if (sc->errptr < WPI_FW_DATA_BASE ||
2109 	    sc->errptr + sizeof (dump) >
2110 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2111 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2112 		    sc->errptr);
2113                 return;
2114         }
2115 	if (wpi_nic_lock(sc) != 0) {
2116 		printf("%s: could not read firmware error log\n", __func__);
2117                 return;
2118         }
2119 	/* Read number of entries in the log. */
2120 	count = wpi_mem_read(sc, sc->errptr);
2121 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2122 		printf("%s: invalid count field (count = %u)\n", __func__,
2123 		    count);
2124 		wpi_nic_unlock(sc);
2125 		return;
2126 	}
2127 	/* Skip "count" field. */
2128 	offset = sc->errptr + sizeof (uint32_t);
2129 	printf("firmware error log (count = %u):\n", count);
2130 	for (i = 0; i < count; i++) {
2131 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2132 		    sizeof (dump) / sizeof (uint32_t));
2133 
2134 		printf("  error type = \"%s\" (0x%08X)\n",
2135 		    (dump.desc < size_errmsg) ?
2136 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2137 		    dump.desc);
2138 		printf("  error data      = 0x%08X\n",
2139 		    dump.data);
2140 		printf("  branch link     = 0x%08X%08X\n",
2141 		    dump.blink[0], dump.blink[1]);
2142 		printf("  interrupt link  = 0x%08X%08X\n",
2143 		    dump.ilink[0], dump.ilink[1]);
2144 		printf("  time            = %u\n", dump.time);
2145 
2146 		offset += sizeof (dump);
2147 	}
2148 	wpi_nic_unlock(sc);
2149 	/* Dump driver status (TX and RX rings) while we're here. */
2150 	printf("driver status:\n");
2151 	for (i = 0; i < WPI_NTXQUEUES; i++) {
2152 		struct wpi_tx_ring *ring = &sc->txq[i];
2153 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2154 		    i, ring->qid, ring->cur, ring->queued);
2155 	}
2156 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2157 }
2158 
2159 static void
2160 wpi_intr(void *arg)
2161 {
2162 	struct wpi_softc *sc = arg;
2163 	struct ifnet *ifp = sc->sc_ifp;
2164 	uint32_t r1, r2;
2165 
2166 	WPI_LOCK(sc);
2167 
2168 	/* Disable interrupts. */
2169 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2170 
2171 	r1 = WPI_READ(sc, WPI_INT);
2172 
2173 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
2174 		WPI_UNLOCK(sc);
2175 		return;	/* Hardware gone! */
2176 	}
2177 
2178 	r2 = WPI_READ(sc, WPI_FH_INT);
2179 
2180 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2181 	    r1, r2);
2182 
2183 	if (r1 == 0 && r2 == 0)
2184 		goto done;	/* Interrupt not for us. */
2185 
2186 	/* Acknowledge interrupts. */
2187 	WPI_WRITE(sc, WPI_INT, r1);
2188 	WPI_WRITE(sc, WPI_FH_INT, r2);
2189 
2190 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2191 		struct ieee80211com *ic = ifp->if_l2com;
2192 
2193 		device_printf(sc->sc_dev, "fatal firmware error\n");
2194 		wpi_fatal_intr(sc);
2195 		DPRINTF(sc, WPI_DEBUG_HW,
2196 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2197 		    "(Hardware Error)");
2198 		ieee80211_runtask(ic, &sc->sc_reinittask);
2199 		sc->flags &= ~WPI_FLAG_BUSY;
2200 		WPI_UNLOCK(sc);
2201 		return;
2202 	}
2203 
2204 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2205 	    (r2 & WPI_FH_INT_RX))
2206 		wpi_notif_intr(sc);
2207 
2208 	if (r1 & WPI_INT_ALIVE)
2209 		wakeup(sc);	/* Firmware is alive. */
2210 
2211 	if (r1 & WPI_INT_WAKEUP)
2212 		wpi_wakeup_intr(sc);
2213 
2214 done:
2215 	/* Re-enable interrupts. */
2216 	if (ifp->if_flags & IFF_UP)
2217 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2218 
2219 	WPI_UNLOCK(sc);
2220 }
2221 
2222 static int
2223 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2224 {
2225 	struct ieee80211_frame *wh;
2226 	struct wpi_tx_cmd *cmd;
2227 	struct wpi_tx_data *data;
2228 	struct wpi_tx_desc *desc;
2229 	struct wpi_tx_ring *ring;
2230 	struct mbuf *m1;
2231 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2232 	int error, i, hdrlen, nsegs, totlen, pad;
2233 
2234 	WPI_LOCK_ASSERT(sc);
2235 
2236 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2237 
2238 	wh = mtod(buf->m, struct ieee80211_frame *);
2239 	hdrlen = ieee80211_anyhdrsize(wh);
2240 	totlen = buf->m->m_pkthdr.len;
2241 
2242 	if (hdrlen & 3) {
2243 		/* First segment length must be a multiple of 4. */
2244 		pad = 4 - (hdrlen & 3);
2245 	} else
2246 		pad = 0;
2247 
2248 	ring = &sc->txq[buf->ac];
2249 	desc = &ring->desc[ring->cur];
2250 	data = &ring->data[ring->cur];
2251 
2252 	/* Prepare TX firmware command. */
2253 	cmd = &ring->cmd[ring->cur];
2254 	cmd->code = buf->code;
2255 	cmd->flags = 0;
2256 	cmd->qid = ring->qid;
2257 	cmd->idx = ring->cur;
2258 
2259 	memcpy(cmd->data, buf->data, buf->size);
2260 
2261 	/* Save and trim IEEE802.11 header. */
2262 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2263 	m_adj(buf->m, hdrlen);
2264 
2265 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2266 	    segs, &nsegs, BUS_DMA_NOWAIT);
2267 	if (error != 0 && error != EFBIG) {
2268 		device_printf(sc->sc_dev,
2269 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2270 		m_freem(buf->m);
2271 		return error;
2272 	}
2273 	if (error != 0) {
2274 		/* Too many DMA segments, linearize mbuf. */
2275 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER);
2276 		if (m1 == NULL) {
2277 			device_printf(sc->sc_dev,
2278 			    "%s: could not defrag mbuf\n", __func__);
2279 			m_freem(buf->m);
2280 			return ENOBUFS;
2281 		}
2282 		buf->m = m1;
2283 
2284 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2285 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2286 		if (error != 0) {
2287 			device_printf(sc->sc_dev,
2288 			    "%s: can't map mbuf (error %d)\n", __func__, error);
2289 			m_freem(buf->m);
2290 			return error;
2291 		}
2292 	}
2293 
2294 	data->m = buf->m;
2295 	data->ni = buf->ni;
2296 
2297 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2298 	    __func__, ring->qid, ring->cur, totlen, nsegs);
2299 
2300 	/* Fill TX descriptor. */
2301 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2302 	/* First DMA segment is used by the TX command. */
2303 	desc->segs[0].addr = htole32(data->cmd_paddr);
2304 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2305 	/* Other DMA segments are for data payload. */
2306 	seg = &segs[0];
2307 	for (i = 1; i <= nsegs; i++) {
2308 		desc->segs[i].addr = htole32(seg->ds_addr);
2309 		desc->segs[i].len  = htole32(seg->ds_len);
2310 		seg++;
2311 	}
2312 
2313 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2314 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2315 	    BUS_DMASYNC_PREWRITE);
2316 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2317 	    BUS_DMASYNC_PREWRITE);
2318 
2319 	/* Kick TX ring. */
2320 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2321 	wpi_update_tx_ring(sc, ring);
2322 
2323 	/* Mark TX ring as full if we reach a certain threshold. */
2324 	if (++ring->queued > WPI_TX_RING_HIMARK)
2325 		sc->qfullmsk |= 1 << ring->qid;
2326 
2327 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2328 
2329 	return 0;
2330 }
2331 
2332 /*
2333  * Construct the data packet for a transmit buffer.
2334  */
2335 static int
2336 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2337 {
2338 	const struct ieee80211_txparam *tp;
2339 	struct ieee80211vap *vap = ni->ni_vap;
2340 	struct ieee80211com *ic = ni->ni_ic;
2341 	struct wpi_node *wn = (void *)ni;
2342 	struct ieee80211_channel *chan;
2343 	struct ieee80211_frame *wh;
2344 	struct ieee80211_key *k = NULL;
2345 	struct wpi_cmd_data tx;
2346 	struct wpi_buf tx_data;
2347 	uint32_t flags;
2348 	uint16_t qos;
2349 	uint8_t tid, type;
2350 	int ac, error, rate, ismcast, totlen;
2351 
2352 	wh = mtod(m, struct ieee80211_frame *);
2353 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2354 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2355 
2356 	/* Select EDCA Access Category and TX ring for this frame. */
2357 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2358  		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2359 		tid = qos & IEEE80211_QOS_TID;
2360 	} else {
2361 		qos = 0;
2362 		tid = 0;
2363         }
2364 	ac = M_WME_GETAC(m);
2365 
2366 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2367 		ni->ni_chan : ic->ic_curchan;
2368 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2369 
2370 	/* Choose a TX rate index. */
2371 	if (type == IEEE80211_FC0_TYPE_MGT)
2372 		rate = tp->mgmtrate;
2373 	else if (ismcast)
2374 		rate = tp->mcastrate;
2375 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2376 		rate = tp->ucastrate;
2377 	else if (m->m_flags & M_EAPOL)
2378 		rate = tp->mgmtrate;
2379 	else {
2380 		/* XXX pass pktlen */
2381 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2382 		rate = ni->ni_txrate;
2383 	}
2384 
2385 	/* Encrypt the frame if need be. */
2386 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2387 		/* Retrieve key for TX. */
2388 		k = ieee80211_crypto_encap(ni, m);
2389 		if (k == NULL) {
2390 			error = ENOBUFS;
2391 			goto fail;
2392 		}
2393 		/* 802.11 header may have moved. */
2394 		wh = mtod(m, struct ieee80211_frame *);
2395 	}
2396 	totlen = m->m_pkthdr.len;
2397 
2398 	if (ieee80211_radiotap_active_vap(vap)) {
2399 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2400 
2401 		tap->wt_flags = 0;
2402 		tap->wt_rate = rate;
2403 		if (k != NULL)
2404 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2405 
2406 		ieee80211_radiotap_tx(vap, m);
2407 	}
2408 
2409 	flags = 0;
2410 	if (!ismcast) {
2411 		/* Unicast frame, check if an ACK is expected. */
2412 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2413 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2414 			flags |= WPI_TX_NEED_ACK;
2415 	}
2416 
2417 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2418 		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2419 
2420 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2421 	if (!ismcast) {
2422 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2423 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2424 			flags |= WPI_TX_NEED_RTS;
2425 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2426 		    WPI_RATE_IS_OFDM(rate)) {
2427 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2428 				flags |= WPI_TX_NEED_CTS;
2429 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2430 				flags |= WPI_TX_NEED_RTS;
2431 		}
2432 
2433 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2434 			flags |= WPI_TX_FULL_TXOP;
2435 	}
2436 
2437 	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2438 	if (type == IEEE80211_FC0_TYPE_MGT) {
2439 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2440 
2441 		/* Tell HW to set timestamp in probe responses. */
2442 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2443 			flags |= WPI_TX_INSERT_TSTAMP;
2444 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2445 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2446 			tx.timeout = htole16(3);
2447 		else
2448 			tx.timeout = htole16(2);
2449 	}
2450 
2451 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2452 		tx.id = WPI_ID_BROADCAST;
2453 	else {
2454 		if (wn->id == WPI_ID_UNDEFINED &&
2455 		    (vap->iv_opmode == IEEE80211_M_IBSS ||
2456 		    vap->iv_opmode == IEEE80211_M_AHDEMO)) {
2457 			error = wpi_add_ibss_node(sc, ni);
2458 			if (error != 0) {
2459 				device_printf(sc->sc_dev,
2460 				    "%s: could not add IBSS node, error %d\n",
2461 				    __func__, error);
2462 				goto fail;
2463 			}
2464 		}
2465 
2466 		if (wn->id == WPI_ID_UNDEFINED) {
2467 			device_printf(sc->sc_dev,
2468 			    "%s: undefined node id\n", __func__);
2469 			error = EINVAL;
2470 			goto fail;
2471 		}
2472 
2473 		tx.id = wn->id;
2474 	}
2475 
2476 	if (type != IEEE80211_FC0_TYPE_MGT)
2477 		tx.data_ntries = tp->maxretry;
2478 
2479 	tx.len = htole16(totlen);
2480 	tx.flags = htole32(flags);
2481 	tx.plcp = rate2plcp(rate);
2482 	tx.tid = tid;
2483 	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2484 	tx.ofdm_mask = 0xff;
2485 	tx.cck_mask = 0x0f;
2486 	tx.rts_ntries = 7;
2487 
2488 	if (k != NULL && k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2489 		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
2490 			tx.security = WPI_CIPHER_CCMP;
2491 			memcpy(tx.key, k->wk_key, k->wk_keylen);
2492 		}
2493 	}
2494 
2495 	tx_data.data = &tx;
2496 	tx_data.ni = ni;
2497 	tx_data.m = m;
2498 	tx_data.size = sizeof(tx);
2499 	tx_data.code = WPI_CMD_TX_DATA;
2500 	tx_data.ac = ac;
2501 
2502 	return wpi_cmd2(sc, &tx_data);
2503 
2504 fail:	m_freem(m);
2505 	return error;
2506 }
2507 
2508 static int
2509 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2510     const struct ieee80211_bpf_params *params)
2511 {
2512 	struct ieee80211vap *vap = ni->ni_vap;
2513 	struct ieee80211_frame *wh;
2514 	struct wpi_cmd_data tx;
2515 	struct wpi_buf tx_data;
2516 	uint32_t flags;
2517 	uint8_t type;
2518 	int ac, rate, totlen;
2519 
2520 	wh = mtod(m, struct ieee80211_frame *);
2521 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2522 	totlen = m->m_pkthdr.len;
2523 
2524 	ac = params->ibp_pri & 3;
2525 
2526 	/* Choose a TX rate index. */
2527 	rate = params->ibp_rate0;
2528 
2529 	flags = 0;
2530 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2531 		flags |= WPI_TX_NEED_ACK;
2532 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2533 		flags |= WPI_TX_NEED_RTS;
2534 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2535 		flags |= WPI_TX_NEED_CTS;
2536 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2537 		flags |= WPI_TX_FULL_TXOP;
2538 
2539 	if (ieee80211_radiotap_active_vap(vap)) {
2540 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2541 
2542 		tap->wt_flags = 0;
2543 		tap->wt_rate = rate;
2544 
2545 		ieee80211_radiotap_tx(vap, m);
2546 	}
2547 
2548 	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2549 	if (type == IEEE80211_FC0_TYPE_MGT) {
2550 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2551 
2552 		/* Tell HW to set timestamp in probe responses. */
2553 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2554 			flags |= WPI_TX_INSERT_TSTAMP;
2555 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2556 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2557 			tx.timeout = htole16(3);
2558 		else
2559 			tx.timeout = htole16(2);
2560 	}
2561 
2562 	tx.len = htole16(totlen);
2563 	tx.flags = htole32(flags);
2564 	tx.plcp = rate2plcp(rate);
2565 	tx.id = WPI_ID_BROADCAST;
2566 	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2567 	tx.rts_ntries = params->ibp_try1;
2568 	tx.data_ntries = params->ibp_try0;
2569 
2570 	tx_data.data = &tx;
2571 	tx_data.ni = ni;
2572 	tx_data.m = m;
2573 	tx_data.size = sizeof(tx);
2574 	tx_data.code = WPI_CMD_TX_DATA;
2575 	tx_data.ac = ac;
2576 
2577 	return wpi_cmd2(sc, &tx_data);
2578 }
2579 
2580 static int
2581 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2582     const struct ieee80211_bpf_params *params)
2583 {
2584 	struct ieee80211com *ic = ni->ni_ic;
2585 	struct ifnet *ifp = ic->ic_ifp;
2586 	struct wpi_softc *sc = ifp->if_softc;
2587 	int error = 0;
2588 
2589 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2590 
2591 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2592 		ieee80211_free_node(ni);
2593 		m_freem(m);
2594 		return ENETDOWN;
2595 	}
2596 
2597 	WPI_LOCK(sc);
2598 	if (params == NULL) {
2599 		/*
2600 		 * Legacy path; interpret frame contents to decide
2601 		 * precisely how to send the frame.
2602 		 */
2603 		error = wpi_tx_data(sc, m, ni);
2604 	} else {
2605 		/*
2606 		 * Caller supplied explicit parameters to use in
2607 		 * sending the frame.
2608 		 */
2609 		error = wpi_tx_data_raw(sc, m, ni, params);
2610 	}
2611 	WPI_UNLOCK(sc);
2612 
2613 	if (error != 0) {
2614 		/* NB: m is reclaimed on tx failure */
2615 		ieee80211_free_node(ni);
2616 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2617 
2618 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2619 
2620 		return error;
2621 	}
2622 
2623 	sc->sc_tx_timer = 5;
2624 
2625 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2626 
2627 	return 0;
2628 }
2629 
2630 /**
2631  * Process data waiting to be sent on the IFNET output queue
2632  */
2633 static void
2634 wpi_start(struct ifnet *ifp)
2635 {
2636 	struct wpi_softc *sc = ifp->if_softc;
2637 
2638 	WPI_LOCK(sc);
2639 	wpi_start_locked(ifp);
2640 	WPI_UNLOCK(sc);
2641 }
2642 
2643 static void
2644 wpi_start_locked(struct ifnet *ifp)
2645 {
2646 	struct wpi_softc *sc = ifp->if_softc;
2647 	struct ieee80211_node *ni;
2648 	struct mbuf *m;
2649 
2650 	WPI_LOCK_ASSERT(sc);
2651 
2652 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2653 
2654 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2655 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
2656 		return;
2657 
2658 	for (;;) {
2659 		if (sc->qfullmsk != 0) {
2660 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2661 			break;
2662 		}
2663 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2664 		if (m == NULL)
2665 			break;
2666 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2667 		if (wpi_tx_data(sc, m, ni) != 0) {
2668 			WPI_UNLOCK(sc);
2669 			ieee80211_free_node(ni);
2670 			WPI_LOCK(sc);
2671 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2672 		} else
2673 			sc->sc_tx_timer = 5;
2674 	}
2675 
2676 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2677 }
2678 
2679 static void
2680 wpi_watchdog_rfkill(void *arg)
2681 {
2682 	struct wpi_softc *sc = arg;
2683 	struct ifnet *ifp = sc->sc_ifp;
2684 	struct ieee80211com *ic = ifp->if_l2com;
2685 
2686 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2687 
2688 	/* No need to lock firmware memory. */
2689 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2690 		/* Radio kill switch is still off. */
2691 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2692 		    sc);
2693 	} else
2694 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2695 }
2696 
2697 /**
2698  * Called every second, wpi_watchdog used by the watch dog timer
2699  * to check that the card is still alive
2700  */
2701 static void
2702 wpi_watchdog(void *arg)
2703 {
2704 	struct wpi_softc *sc = arg;
2705 	struct ifnet *ifp = sc->sc_ifp;
2706 	struct ieee80211com *ic = ifp->if_l2com;
2707 
2708 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "Watchdog: tick\n");
2709 
2710 	if (sc->sc_tx_timer > 0) {
2711 		if (--sc->sc_tx_timer == 0) {
2712 			if_printf(ifp, "device timeout\n");
2713 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2714 			ieee80211_runtask(ic, &sc->sc_reinittask);
2715 		}
2716 	}
2717 
2718 	if (sc->sc_scan_timer > 0) {
2719 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2720 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
2721 			if_printf(ifp, "scan timeout\n");
2722 			ieee80211_cancel_scan(vap);
2723 			ieee80211_runtask(ic, &sc->sc_reinittask);
2724 		}
2725 	}
2726 
2727 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2728 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2729 }
2730 
2731 static int
2732 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2733 {
2734 	struct wpi_softc *sc = ifp->if_softc;
2735 	struct ieee80211com *ic = ifp->if_l2com;
2736 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2737 	struct ifreq *ifr = (struct ifreq *) data;
2738 	int error = 0, startall = 0, stop = 0;
2739 
2740 	switch (cmd) {
2741 	case SIOCGIFADDR:
2742 		error = ether_ioctl(ifp, cmd, data);
2743 		break;
2744 	case SIOCSIFFLAGS:
2745 		WPI_LOCK(sc);
2746 		if (ifp->if_flags & IFF_UP) {
2747 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2748 				wpi_init_locked(sc);
2749 				if (WPI_READ(sc, WPI_GP_CNTRL) &
2750 				    WPI_GP_CNTRL_RFKILL)
2751 					startall = 1;
2752 				else
2753 					stop = 1;
2754 			}
2755 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2756 			wpi_stop_locked(sc);
2757 		WPI_UNLOCK(sc);
2758 		if (startall)
2759 			ieee80211_start_all(ic);
2760 		else if (vap != NULL && stop)
2761 			ieee80211_stop(vap);
2762 		break;
2763 	case SIOCGIFMEDIA:
2764 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2765 		break;
2766 	default:
2767 		error = EINVAL;
2768 		break;
2769 	}
2770 	return error;
2771 }
2772 
2773 /*
2774  * Send a command to the firmware.
2775  */
2776 static int
2777 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
2778     int async)
2779 {
2780 	struct wpi_tx_ring *ring = &sc->txq[4];
2781 	struct wpi_tx_desc *desc;
2782 	struct wpi_tx_data *data;
2783 	struct wpi_tx_cmd *cmd;
2784 	struct mbuf *m;
2785 	bus_addr_t paddr;
2786 	int totlen, error;
2787 
2788 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2789 
2790 	if (async == 0)
2791 		WPI_LOCK_ASSERT(sc);
2792 
2793 	DPRINTF(sc, WPI_DEBUG_CMD, "wpi_cmd %s size %zu async %d\n",
2794 	    wpi_cmd_str(code), size, async);
2795 
2796 	if (sc->flags & WPI_FLAG_BUSY) {
2797 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2798 		    __func__, code);
2799 		return EAGAIN;
2800 	}
2801 	sc->flags |= WPI_FLAG_BUSY;
2802 
2803 	desc = &ring->desc[ring->cur];
2804 	data = &ring->data[ring->cur];
2805 	totlen = 4 + size;
2806 
2807 	if (size > sizeof cmd->data) {
2808 		/* Command is too large to fit in a descriptor. */
2809 		if (totlen > MCLBYTES)
2810 			return EINVAL;
2811 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2812 		if (m == NULL)
2813 			return ENOMEM;
2814 		cmd = mtod(m, struct wpi_tx_cmd *);
2815 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
2816 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2817 		if (error != 0) {
2818 			m_freem(m);
2819 			return error;
2820 		}
2821 		data->m = m;
2822 	} else {
2823 		cmd = &ring->cmd[ring->cur];
2824 		paddr = data->cmd_paddr;
2825 	}
2826 
2827 	cmd->code = code;
2828 	cmd->flags = 0;
2829 	cmd->qid = ring->qid;
2830 	cmd->idx = ring->cur;
2831 	memcpy(cmd->data, buf, size);
2832 
2833 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
2834 	desc->segs[0].addr = htole32(paddr);
2835 	desc->segs[0].len  = htole32(totlen);
2836 
2837 	if (size > sizeof cmd->data) {
2838 		bus_dmamap_sync(ring->data_dmat, data->map,
2839 		    BUS_DMASYNC_PREWRITE);
2840 	} else {
2841 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2842 		    BUS_DMASYNC_PREWRITE);
2843 	}
2844 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2845 	    BUS_DMASYNC_PREWRITE);
2846 
2847 	/* Kick command ring. */
2848 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2849 	wpi_update_tx_ring(sc, ring);
2850 
2851 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2852 
2853 	if (async) {
2854 		sc->flags &= ~WPI_FLAG_BUSY;
2855 		return 0;
2856 	}
2857 
2858 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2859 }
2860 
2861 /*
2862  * Configure HW multi-rate retries.
2863  */
2864 static int
2865 wpi_mrr_setup(struct wpi_softc *sc)
2866 {
2867 	struct ifnet *ifp = sc->sc_ifp;
2868 	struct ieee80211com *ic = ifp->if_l2com;
2869 	struct wpi_mrr_setup mrr;
2870 	int i, error;
2871 
2872 	/* CCK rates (not used with 802.11a). */
2873 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2874 		mrr.rates[i].flags = 0;
2875 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2876 		/* Fallback to the immediate lower CCK rate (if any.) */
2877 		mrr.rates[i].next =
2878 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2879 		/* Try one time at this rate before falling back to "next". */
2880 		mrr.rates[i].ntries = 1;
2881 	}
2882 	/* OFDM rates (not used with 802.11b). */
2883 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2884 		mrr.rates[i].flags = 0;
2885 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2886 		/* Fallback to the immediate lower rate (if any.) */
2887 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2888 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2889 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2890 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2891 		    i - 1;
2892 		/* Try one time at this rate before falling back to "next". */
2893 		mrr.rates[i].ntries = 1;
2894 	}
2895 	/* Setup MRR for control frames. */
2896 	mrr.which = htole32(WPI_MRR_CTL);
2897 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2898 	if (error != 0) {
2899 		device_printf(sc->sc_dev,
2900 		    "could not setup MRR for control frames\n");
2901 		return error;
2902 	}
2903 	/* Setup MRR for data frames. */
2904 	mrr.which = htole32(WPI_MRR_DATA);
2905 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2906 	if (error != 0) {
2907 		device_printf(sc->sc_dev,
2908 		    "could not setup MRR for data frames\n");
2909 		return error;
2910 	}
2911 	return 0;
2912 }
2913 
2914 static int
2915 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2916 {
2917 	struct ieee80211com *ic = ni->ni_ic;
2918 	struct wpi_node *wn = (void *)ni;
2919 	struct wpi_node_info node;
2920 
2921 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2922 
2923 	if (wn->id == WPI_ID_UNDEFINED)
2924 		return EINVAL;
2925 
2926 	memset(&node, 0, sizeof node);
2927 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2928 	node.id = wn->id;
2929 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2930 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2931 	node.action = htole32(WPI_ACTION_SET_RATE);
2932 	node.antenna = WPI_ANTENNA_BOTH;
2933 
2934 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2935 }
2936 
2937 /*
2938  * Broadcast node is used to send group-addressed and management frames.
2939  */
2940 static int
2941 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
2942 {
2943 	struct ifnet *ifp = sc->sc_ifp;
2944 	struct ieee80211com *ic = ifp->if_l2com;
2945 	struct wpi_node_info node;
2946 
2947 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2948 
2949 	memset(&node, 0, sizeof node);
2950 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
2951 	node.id = WPI_ID_BROADCAST;
2952 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2953 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2954 	node.action = htole32(WPI_ACTION_SET_RATE);
2955 	node.antenna = WPI_ANTENNA_BOTH;
2956 
2957 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
2958 }
2959 
2960 static int
2961 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2962 {
2963 	struct wpi_node *wn = (void *)ni;
2964 
2965 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2966 
2967 	if (wn->id != WPI_ID_UNDEFINED)
2968 		return EINVAL;
2969 
2970 	wn->id = alloc_unrl(sc->sc_unr);
2971 
2972 	if (wn->id == (uint8_t)-1)
2973 		return ENOBUFS;
2974 
2975 	return wpi_add_node(sc, ni);
2976 }
2977 
2978 static void
2979 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2980 {
2981 	struct wpi_node *wn = (void *)ni;
2982 	struct wpi_cmd_del_node node;
2983 	int error;
2984 
2985 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2986 
2987 	if (wn->id == WPI_ID_UNDEFINED) {
2988 		device_printf(sc->sc_dev, "%s: undefined node id passed\n",
2989 		    __func__);
2990 		return;
2991 	}
2992 
2993 	memset(&node, 0, sizeof node);
2994 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2995 	node.count = 1;
2996 
2997 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
2998 	if (error != 0) {
2999 		device_printf(sc->sc_dev,
3000 		    "%s: could not delete node %u, error %d\n", __func__,
3001 		    wn->id, error);
3002 	}
3003 }
3004 
3005 static int
3006 wpi_updateedca(struct ieee80211com *ic)
3007 {
3008 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3009 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3010 	struct wpi_edca_params cmd;
3011 	int aci, error;
3012 
3013 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3014 
3015 	memset(&cmd, 0, sizeof cmd);
3016 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3017 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3018 		const struct wmeParams *ac =
3019 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3020 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3021 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3022 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3023 		cmd.ac[aci].txoplimit =
3024 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3025 
3026 		DPRINTF(sc, WPI_DEBUG_EDCA,
3027 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3028 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3029 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3030 		    cmd.ac[aci].txoplimit);
3031 	}
3032 	IEEE80211_UNLOCK(ic);
3033 	WPI_LOCK(sc);
3034 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3035 	WPI_UNLOCK(sc);
3036 	IEEE80211_LOCK(ic);
3037 
3038 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3039 
3040 	return error;
3041 #undef WPI_EXP2
3042 }
3043 
3044 static void
3045 wpi_set_promisc(struct wpi_softc *sc)
3046 {
3047 	struct ifnet *ifp = sc->sc_ifp;
3048 	uint32_t promisc_filter;
3049 
3050 	promisc_filter = WPI_FILTER_PROMISC | WPI_FILTER_CTL;
3051 
3052 	if (ifp->if_flags & IFF_PROMISC)
3053 		sc->rxon.filter |= htole32(promisc_filter);
3054 	else
3055 		sc->rxon.filter &= ~htole32(promisc_filter);
3056 }
3057 
3058 static void
3059 wpi_update_promisc(struct ifnet *ifp)
3060 {
3061 	struct wpi_softc *sc = ifp->if_softc;
3062 
3063 	wpi_set_promisc(sc);
3064 
3065 	WPI_LOCK(sc);
3066 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3067 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3068 		    __func__);
3069 	}
3070 	WPI_UNLOCK(sc);
3071 }
3072 
3073 static void
3074 wpi_update_mcast(struct ifnet *ifp)
3075 {
3076 	/* Ignore */
3077 }
3078 
3079 static void
3080 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3081 {
3082 	struct wpi_cmd_led led;
3083 
3084 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3085 
3086 	led.which = which;
3087 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3088 	led.off = off;
3089 	led.on = on;
3090 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3091 }
3092 
3093 static int
3094 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3095 {
3096 	struct wpi_cmd_timing cmd;
3097 	uint64_t val, mod;
3098 
3099 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3100 
3101 	memset(&cmd, 0, sizeof cmd);
3102 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3103 	cmd.bintval = htole16(ni->ni_intval);
3104 	cmd.lintval = htole16(10);
3105 
3106 	/* Compute remaining time until next beacon. */
3107 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3108 	mod = le64toh(cmd.tstamp) % val;
3109 	cmd.binitval = htole32((uint32_t)(val - mod));
3110 
3111 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3112 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3113 
3114 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3115 }
3116 
3117 /*
3118  * This function is called periodically (every 60 seconds) to adjust output
3119  * power to temperature changes.
3120  */
3121 static void
3122 wpi_power_calibration(struct wpi_softc *sc)
3123 {
3124 	int temp;
3125 
3126 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3127 
3128 	/* Update sensor data. */
3129 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3130 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3131 
3132 	/* Sanity-check read value. */
3133 	if (temp < -260 || temp > 25) {
3134 		/* This can't be correct, ignore. */
3135 		DPRINTF(sc, WPI_DEBUG_TEMP,
3136 		    "out-of-range temperature reported: %d\n", temp);
3137 		return;
3138 	}
3139 
3140 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3141 
3142 	/* Adjust Tx power if need be. */
3143 	if (abs(temp - sc->temp) <= 6)
3144 		return;
3145 
3146 	sc->temp = temp;
3147 
3148 	if (wpi_set_txpower(sc, 1) != 0) {
3149 		/* just warn, too bad for the automatic calibration... */
3150 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3151 	}
3152 }
3153 
3154 /*
3155  * Set TX power for current channel.
3156  */
3157 static int
3158 wpi_set_txpower(struct wpi_softc *sc, int async)
3159 {
3160 	struct ifnet *ifp = sc->sc_ifp;
3161 	struct ieee80211com *ic = ifp->if_l2com;
3162 	struct ieee80211_channel *ch;
3163 	struct wpi_power_group *group;
3164 	struct wpi_cmd_txpower cmd;
3165 	uint8_t chan;
3166 	int idx, i;
3167 
3168 	/* Retrieve current channel from last RXON. */
3169 	chan = sc->rxon.chan;
3170 	ch = &ic->ic_channels[chan];
3171 
3172 	/* Find the TX power group to which this channel belongs. */
3173 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3174 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3175 			if (chan <= group->chan)
3176 				break;
3177 	} else
3178 		group = &sc->groups[0];
3179 
3180 	memset(&cmd, 0, sizeof cmd);
3181 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3182 	cmd.chan = htole16(chan);
3183 
3184 	/* Set TX power for all OFDM and CCK rates. */
3185 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3186 		/* Retrieve TX power for this channel/rate. */
3187 		idx = wpi_get_power_index(sc, group, ch, i);
3188 
3189 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3190 
3191 		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3192 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3193 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3194 		} else {
3195 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3196 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3197 		}
3198 		DPRINTF(sc, WPI_DEBUG_TEMP,
3199 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3200 	}
3201 
3202 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3203 }
3204 
3205 /*
3206  * Determine Tx power index for a given channel/rate combination.
3207  * This takes into account the regulatory information from EEPROM and the
3208  * current temperature.
3209  */
3210 static int
3211 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3212     struct ieee80211_channel *c, int ridx)
3213 {
3214 /* Fixed-point arithmetic division using a n-bit fractional part. */
3215 #define fdivround(a, b, n)      \
3216 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3217 
3218 /* Linear interpolation. */
3219 #define interpolate(x, x1, y1, x2, y2, n)       \
3220 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3221 
3222 	struct ifnet *ifp = sc->sc_ifp;
3223 	struct ieee80211com *ic = ifp->if_l2com;
3224 	struct wpi_power_sample *sample;
3225 	int pwr, idx;
3226 	u_int chan;
3227 
3228 	/* Get channel number. */
3229 	chan = ieee80211_chan2ieee(ic, c);
3230 
3231 	/* Default TX power is group maximum TX power minus 3dB. */
3232 	pwr = group->maxpwr / 2;
3233 
3234 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3235 	switch (ridx) {
3236 	case WPI_RIDX_OFDM36:
3237 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3238 		break;
3239 	case WPI_RIDX_OFDM48:
3240 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3241 		break;
3242 	case WPI_RIDX_OFDM54:
3243 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3244 		break;
3245 	}
3246 
3247 	/* Never exceed the channel maximum allowed TX power. */
3248 	pwr = min(pwr, sc->maxpwr[chan]);
3249 
3250 	/* Retrieve TX power index into gain tables from samples. */
3251 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3252 		if (pwr > sample[1].power)
3253 			break;
3254 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3255 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3256 	    sample[1].power, sample[1].index, 19);
3257 
3258 	/*-
3259 	 * Adjust power index based on current temperature:
3260 	 * - if cooler than factory-calibrated: decrease output power
3261 	 * - if warmer than factory-calibrated: increase output power
3262 	 */
3263 	idx -= (sc->temp - group->temp) * 11 / 100;
3264 
3265 	/* Decrease TX power for CCK rates (-5dB). */
3266 	if (ridx >= WPI_RIDX_CCK1)
3267 		idx += 10;
3268 
3269 	/* Make sure idx stays in a valid range. */
3270 	if (idx < 0)
3271 		return 0;
3272 	if (idx > WPI_MAX_PWR_INDEX)
3273 		return WPI_MAX_PWR_INDEX;
3274 	return idx;
3275 
3276 #undef interpolate
3277 #undef fdivround
3278 }
3279 
3280 /*
3281  * Set STA mode power saving level (between 0 and 5).
3282  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3283  */
3284 static int
3285 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3286 {
3287 	struct wpi_pmgt_cmd cmd;
3288 	const struct wpi_pmgt *pmgt;
3289 	uint32_t max, skip_dtim;
3290 	uint32_t reg;
3291 	int i;
3292 
3293 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3294 	    "%s: dtim=%d, level=%d, async=%d\n",
3295 	    __func__, dtim, level, async);
3296 
3297 	/* Select which PS parameters to use. */
3298 	if (dtim <= 10)
3299 		pmgt = &wpi_pmgt[0][level];
3300 	else
3301 		pmgt = &wpi_pmgt[1][level];
3302 
3303 	memset(&cmd, 0, sizeof cmd);
3304 	if (level != 0)	/* not CAM */
3305 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3306 	/* Retrieve PCIe Active State Power Management (ASPM). */
3307 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3308 	if (!(reg & 0x1))	/* L0s Entry disabled. */
3309 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3310 
3311 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3312 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3313 
3314 	if (dtim == 0) {
3315 		dtim = 1;
3316 		skip_dtim = 0;
3317 	} else
3318 		skip_dtim = pmgt->skip_dtim;
3319 
3320 	if (skip_dtim != 0) {
3321 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3322 		max = pmgt->intval[4];
3323 		if (max == (uint32_t)-1)
3324 			max = dtim * (skip_dtim + 1);
3325 		else if (max > dtim)
3326 			max = (max / dtim) * dtim;
3327 	} else
3328 		max = dtim;
3329 
3330 	for (i = 0; i < 5; i++)
3331 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3332 
3333 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3334 }
3335 
3336 static int
3337 wpi_send_btcoex(struct wpi_softc *sc)
3338 {
3339 	struct wpi_bluetooth cmd;
3340 
3341         memset(&cmd, 0, sizeof cmd);
3342         cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3343         cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3344         cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3345 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3346 	    __func__);
3347         return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3348 }
3349 
3350 static int
3351 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3352 {
3353 	int error;
3354 
3355 	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3356 		struct wpi_assoc rxon_assoc;
3357 
3358 		rxon_assoc.flags = sc->rxon.flags;
3359 		rxon_assoc.filter = sc->rxon.filter;
3360 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3361 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3362 		rxon_assoc.reserved = 0;
3363 
3364 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3365 		    sizeof (struct wpi_assoc), async);
3366 	} else {
3367 		error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3368 		    sizeof (struct wpi_rxon), async);
3369 	}
3370 	if (error != 0) {
3371 		device_printf(sc->sc_dev, "RXON command failed, error %d\n",
3372 		    error);
3373 		return error;
3374 	}
3375 
3376 	/* Configuration has changed, set Tx power accordingly. */
3377 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3378 		device_printf(sc->sc_dev,
3379 		    "%s: could not set TX power, error %d\n", __func__, error);
3380 		return error;
3381 	}
3382 
3383 	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3384 		/* Add broadcast node. */
3385 		error = wpi_add_broadcast_node(sc, async);
3386 		if (error != 0) {
3387 			device_printf(sc->sc_dev,
3388 			    "could not add broadcast node, error %d\n", error);
3389 			return error;
3390 		}
3391 	}
3392 
3393 	return 0;
3394 }
3395 
3396 /**
3397  * Configure the card to listen to a particular channel, this transisions the
3398  * card in to being able to receive frames from remote devices.
3399  */
3400 static int
3401 wpi_config(struct wpi_softc *sc)
3402 {
3403 	struct ifnet *ifp = sc->sc_ifp;
3404 	struct ieee80211com *ic = ifp->if_l2com;
3405 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3406 	uint32_t flags;
3407 	int error;
3408 
3409 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3410 
3411 	/* Set power saving level to CAM during initialization. */
3412 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3413 		device_printf(sc->sc_dev,
3414 		    "%s: could not set power saving level\n", __func__);
3415 		return error;
3416 	}
3417 
3418 	/* Configure bluetooth coexistence. */
3419 	if ((error = wpi_send_btcoex(sc)) != 0) {
3420 		device_printf(sc->sc_dev,
3421 		    "could not configure bluetooth coexistence\n");
3422 		return error;
3423 	}
3424 
3425 	/* Configure adapter. */
3426 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3427 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3428 
3429 	/* Set default channel. */
3430 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3431 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3432 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3433 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3434 
3435 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3436 	switch (ic->ic_opmode) {
3437 	case IEEE80211_M_STA:
3438 		sc->rxon.mode = WPI_MODE_STA;
3439 		break;
3440 	case IEEE80211_M_IBSS:
3441 		sc->rxon.mode = WPI_MODE_IBSS;
3442 		sc->rxon.filter |= WPI_FILTER_BEACON;
3443 		break;
3444 	/* XXX workaround for passive channels selection */
3445 	case IEEE80211_M_AHDEMO:
3446 	case IEEE80211_M_HOSTAP:
3447 		sc->rxon.mode = WPI_MODE_HOSTAP;
3448 		break;
3449 	case IEEE80211_M_MONITOR:
3450 		sc->rxon.mode = WPI_MODE_MONITOR;
3451 		break;
3452 	default:
3453 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
3454 		return EINVAL;
3455 	}
3456 	sc->rxon.filter = htole32(sc->rxon.filter);
3457 	wpi_set_promisc(sc);
3458 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3459 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3460 
3461 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3462 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3463 		    __func__);
3464 		return error;
3465 	}
3466 
3467 	/* Setup rate scalling. */
3468 	if ((error = wpi_mrr_setup(sc)) != 0) {
3469 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3470 		    error);
3471 		return error;
3472 	}
3473 
3474 	/* Disable beacon notifications (unused). */
3475 	flags = WPI_STATISTICS_BEACON_DISABLE;
3476 	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3477 	if (error != 0) {
3478 		device_printf(sc->sc_dev,
3479 		    "could not disable beacon statistics, error %d\n", error);
3480 		return error;
3481 	}
3482 
3483 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3484 
3485 	return 0;
3486 }
3487 
3488 static uint16_t
3489 wpi_get_active_dwell_time(struct wpi_softc *sc,
3490     struct ieee80211_channel *c, uint8_t n_probes)
3491 {
3492 	/* No channel? Default to 2GHz settings. */
3493 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3494 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3495 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3496 	}
3497 
3498 	/* 5GHz dwell time. */
3499 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3500 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3501 }
3502 
3503 /*
3504  * Limit the total dwell time to 85% of the beacon interval.
3505  *
3506  * Returns the dwell time in milliseconds.
3507  */
3508 static uint16_t
3509 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3510 {
3511 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3512 	struct ieee80211vap *vap = NULL;
3513 	int bintval = 0;
3514 
3515 	/* bintval is in TU (1.024mS) */
3516 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
3517 		vap = TAILQ_FIRST(&ic->ic_vaps);
3518 		bintval = vap->iv_bss->ni_intval;
3519 	}
3520 
3521 	/*
3522 	 * If it's non-zero, we should calculate the minimum of
3523 	 * it and the DWELL_BASE.
3524 	 *
3525 	 * XXX Yes, the math should take into account that bintval
3526 	 * is 1.024mS, not 1mS..
3527 	 */
3528 	if (bintval > 0) {
3529 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3530 		    bintval);
3531 		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3532 	}
3533 
3534 	/* No association context? Default. */
3535 	return (WPI_PASSIVE_DWELL_BASE);
3536 }
3537 
3538 static uint16_t
3539 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3540 {
3541 	uint16_t passive;
3542 
3543 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3544 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3545 	else
3546 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3547 
3548 	/* Clamp to the beacon interval if we're associated. */
3549 	return (wpi_limit_dwell(sc, passive));
3550 }
3551 
3552 /*
3553  * Send a scan request to the firmware.
3554  */
3555 static int
3556 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3557 {
3558 	struct ifnet *ifp = sc->sc_ifp;
3559 	struct ieee80211com *ic = ifp->if_l2com;
3560 	struct ieee80211_scan_state *ss = ic->ic_scan;
3561 	struct ieee80211vap *vap = ss->ss_vap;
3562 	struct wpi_scan_hdr *hdr;
3563 	struct wpi_cmd_data *tx;
3564 	struct wpi_scan_essid *essids;
3565 	struct wpi_scan_chan *chan;
3566 	struct ieee80211_frame *wh;
3567 	struct ieee80211_rateset *rs;
3568 	uint16_t dwell_active, dwell_passive;
3569 	uint8_t *buf, *frm;
3570 	int buflen, error, i, nssid;
3571 
3572 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3573 
3574 	/*
3575 	 * We are absolutely not allowed to send a scan command when another
3576 	 * scan command is pending.
3577 	 */
3578 	if (sc->sc_scan_timer) {
3579 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3580 		    __func__);
3581 		return (EAGAIN);
3582 	}
3583 
3584 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3585 	if (buf == NULL) {
3586 		device_printf(sc->sc_dev,
3587 		    "%s: could not allocate buffer for scan command\n",
3588 		    __func__);
3589 		return ENOMEM;
3590 	}
3591 	hdr = (struct wpi_scan_hdr *)buf;
3592 
3593 	/*
3594 	 * Move to the next channel if no packets are received within 10 msecs
3595 	 * after sending the probe request.
3596 	 */
3597 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3598 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3599 	/*
3600 	 * Max needs to be greater than active and passive and quiet!
3601 	 * It's also in microseconds!
3602 	 */
3603 	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3604 	hdr->pause_svc = htole32((4 << 24) |
3605 	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3606 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3607 
3608 	tx = (struct wpi_cmd_data *)(hdr + 1);
3609 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3610 	tx->id = WPI_ID_BROADCAST;
3611 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3612 
3613 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3614 		/* Send probe requests at 6Mbps. */
3615 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3616 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3617 	} else {
3618 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3619 		/* Send probe requests at 1Mbps. */
3620 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3621 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3622 	}
3623 
3624 	essids = (struct wpi_scan_essid *)(tx + 1);
3625 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3626 	for (i = 0; i < nssid; i++) {
3627 		essids[i].id = IEEE80211_ELEMID_SSID;
3628 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3629 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3630 #ifdef WPI_DEBUG
3631 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3632 			printf("Scanning Essid: ");
3633 			ieee80211_print_essid(essids[i].data, essids[i].len);
3634 			printf("\n");
3635 		}
3636 #endif
3637 	}
3638 
3639 	/*
3640 	 * Build a probe request frame.  Most of the following code is a
3641 	 * copy & paste of what is done in net80211.
3642 	 */
3643 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3644 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3645 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3646 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3647 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3648 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3649 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3650 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3651 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3652 
3653 	frm = (uint8_t *)(wh + 1);
3654 	frm = ieee80211_add_ssid(frm, NULL, 0);
3655 	frm = ieee80211_add_rates(frm, rs);
3656 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3657 		frm = ieee80211_add_xrates(frm, rs);
3658 
3659 	/* Set length of probe request. */
3660 	tx->len = htole16(frm - (uint8_t *)wh);
3661 
3662 	/*
3663 	 * Construct information about the channel that we
3664 	 * want to scan. The firmware expects this to be directly
3665 	 * after the scan probe request
3666 	 */
3667 	chan = (struct wpi_scan_chan *)frm;
3668 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3669 	chan->flags = 0;
3670 	if (nssid) {
3671 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3672 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3673 	} else
3674 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3675 
3676 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3677 		chan->flags |= WPI_CHAN_ACTIVE;
3678 
3679 	/*
3680 	 * Calculate the active/passive dwell times.
3681 	 */
3682 
3683 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3684 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3685 
3686 	/* Make sure they're valid. */
3687 	if (dwell_passive <= dwell_active)
3688 		dwell_passive = dwell_active + 1;
3689 
3690 	chan->active = htole16(dwell_active);
3691 	chan->passive = htole16(dwell_passive);
3692 
3693 	chan->dsp_gain = 0x6e;  /* Default level */
3694 
3695 	if (IEEE80211_IS_CHAN_5GHZ(c))
3696 		chan->rf_gain = 0x3b;
3697 	else
3698 		chan->rf_gain = 0x28;
3699 
3700 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
3701 	     chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
3702 
3703 	hdr->nchan++;
3704 	chan++;
3705 
3706 	buflen = (uint8_t *)chan - buf;
3707 	hdr->len = htole16(buflen);
3708 
3709 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
3710 	    hdr->nchan);
3711 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
3712 	free(buf, M_DEVBUF);
3713 
3714 	sc->sc_scan_timer = 5;
3715 
3716 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3717 
3718 	return error;
3719 }
3720 
3721 static int
3722 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
3723 {
3724 	struct ieee80211com *ic = vap->iv_ic;
3725 	struct ieee80211_node *ni = vap->iv_bss;
3726 	int error;
3727 
3728 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3729 
3730 	/* Update adapter configuration. */
3731 	sc->rxon.associd = 0;
3732 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
3733 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3734 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3735 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3736 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3737 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3738 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3739 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3740 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3741 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3742 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3743 		sc->rxon.cck_mask  = 0;
3744 		sc->rxon.ofdm_mask = 0x15;
3745 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3746 		sc->rxon.cck_mask  = 0x03;
3747 		sc->rxon.ofdm_mask = 0;
3748 	} else {
3749 		/* Assume 802.11b/g. */
3750 		sc->rxon.cck_mask  = 0x0f;
3751 		sc->rxon.ofdm_mask = 0x15;
3752 	}
3753 
3754 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
3755 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
3756 	    sc->rxon.ofdm_mask);
3757 
3758 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3759 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3760 		    __func__);
3761 	}
3762 
3763 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3764 
3765 	return error;
3766 }
3767 
3768 static int
3769 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
3770 {
3771 	struct ifnet *ifp = sc->sc_ifp;
3772 	struct ieee80211com *ic = ifp->if_l2com;
3773 	struct ieee80211vap *vap = ni->ni_vap;
3774 	struct wpi_vap *wvp = WPI_VAP(vap);
3775 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
3776 	struct ieee80211_beacon_offsets bo;
3777 	struct wpi_cmd_beacon *cmd;
3778 	struct mbuf *m;
3779 	int totlen;
3780 
3781 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3782 
3783 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
3784 		return EINVAL;
3785 
3786 	m = ieee80211_beacon_alloc(ni, &bo);
3787 	if (m == NULL) {
3788 		device_printf(sc->sc_dev,
3789 		    "%s: could not allocate beacon frame\n", __func__);
3790 		return ENOMEM;
3791 	}
3792 	totlen = m->m_pkthdr.len;
3793 
3794 	if (bcn->data == NULL) {
3795 		cmd = malloc(sizeof(struct wpi_cmd_beacon), M_DEVBUF,
3796 		    M_NOWAIT | M_ZERO);
3797 
3798 		if (cmd == NULL) {
3799 			device_printf(sc->sc_dev,
3800 			    "could not allocate buffer for beacon command\n");
3801 			m_freem(m);
3802 			return ENOMEM;
3803 		}
3804 
3805 		cmd->id = WPI_ID_BROADCAST;
3806 		cmd->ofdm_mask = 0xff;
3807 		cmd->cck_mask = 0x0f;
3808 		cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
3809 		cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
3810 
3811 		bcn->data = cmd;
3812 		bcn->ni = NULL;
3813 		bcn->code = WPI_CMD_SET_BEACON;
3814 		bcn->ac = 4;
3815 		bcn->size = sizeof(struct wpi_cmd_beacon);
3816 	} else
3817 		cmd = bcn->data;
3818 
3819 	cmd->len = htole16(totlen);
3820 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3821 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3822 
3823 	/* NB: m will be freed in wpi_cmd_done() */
3824 	bcn->m = m;
3825 
3826 	return wpi_cmd2(sc, bcn);
3827 }
3828 
3829 static void
3830 wpi_update_beacon(struct ieee80211vap *vap, int item)
3831 {
3832 	struct ieee80211_node *ni = vap->iv_bss;
3833 	struct ifnet *ifp = vap->iv_ifp;
3834 	struct wpi_softc *sc = ifp->if_softc;
3835 	int error;
3836 
3837 	WPI_LOCK(sc);
3838 	if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3839 		device_printf(sc->sc_dev,
3840 		    "%s: could not update beacon frame, error %d", __func__,
3841 		    error);
3842 	}
3843 	WPI_UNLOCK(sc);
3844 }
3845 
3846 static int
3847 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
3848 {
3849 	struct ieee80211com *ic = vap->iv_ic;
3850 	struct ieee80211_node *ni = vap->iv_bss;
3851 	int error;
3852 
3853 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3854 
3855 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
3856 		/* Link LED blinks while monitoring. */
3857 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3858 		return 0;
3859 	}
3860 
3861 	/* XXX kernel panic workaround */
3862 	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
3863 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
3864 		    __func__);
3865 		return EINVAL;
3866 	}
3867 
3868 	if ((error = wpi_set_timing(sc, ni)) != 0) {
3869 		device_printf(sc->sc_dev,
3870 		    "%s: could not set timing, error %d\n", __func__, error);
3871 		return error;
3872 	}
3873 
3874 	/* Update adapter configuration. */
3875 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3876 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
3877 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3878 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3879 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3880 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3881 	/* Short preamble and slot time are negotiated when associating. */
3882 	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
3883 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3884 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3885 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3886 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3887 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3888 		sc->rxon.cck_mask  = 0;
3889 		sc->rxon.ofdm_mask = 0x15;
3890 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3891 		sc->rxon.cck_mask  = 0x03;
3892 		sc->rxon.ofdm_mask = 0;
3893 	} else {
3894 		/* Assume 802.11b/g. */
3895 		sc->rxon.cck_mask  = 0x0f;
3896 		sc->rxon.ofdm_mask = 0x15;
3897 	}
3898 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
3899 
3900 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
3901 
3902 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
3903 	    sc->rxon.chan, sc->rxon.flags);
3904 
3905 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3906 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3907 		    __func__);
3908 		return error;
3909 	}
3910 
3911 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3912 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3913 			device_printf(sc->sc_dev,
3914 			    "%s: could not setup beacon, error %d\n", __func__,
3915 			    error);
3916 			return error;
3917 		}
3918 	}
3919 
3920 	if (vap->iv_opmode == IEEE80211_M_STA) {
3921 		/* Add BSS node. */
3922 		((struct wpi_node *)ni)->id = WPI_ID_BSS;
3923 		if ((error = wpi_add_node(sc, ni)) != 0) {
3924 			device_printf(sc->sc_dev,
3925 			    "%s: could not add BSS node, error %d\n", __func__,
3926 			    error);
3927 			return error;
3928 		}
3929 	}
3930 
3931 	/* Link LED always on while associated. */
3932 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3933 
3934 	/* Start periodic calibration timer. */
3935 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3936 
3937 	/* Enable power-saving mode if requested by user. */
3938 	if (vap->iv_flags & IEEE80211_F_PMGTON)
3939 		(void)wpi_set_pslevel(sc, 0, 3, 1);
3940 	else
3941 		(void)wpi_set_pslevel(sc, 0, 0, 1);
3942 
3943 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3944 
3945 	return 0;
3946 }
3947 
3948 static int
3949 wpi_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
3950     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3951 {
3952 	struct ifnet *ifp = vap->iv_ifp;
3953 	struct wpi_softc *sc = ifp->if_softc;
3954 
3955 	if (!(&vap->iv_nw_keys[0] <= k &&
3956 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
3957 		if (k->wk_flags & IEEE80211_KEY_GROUP) {
3958 			/* should not happen */
3959 			DPRINTF(sc, WPI_DEBUG_KEY, "%s: bogus group key\n",
3960 			    __func__);
3961 			return 0;
3962 		}
3963 		*keyix = 0;	/* NB: use key index 0 for ucast key */
3964 	} else {
3965 		*keyix = *rxkeyix = k - vap->iv_nw_keys;
3966 
3967 		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM)
3968 			k->wk_flags |= IEEE80211_KEY_SWCRYPT;
3969 	}
3970 	return 1;
3971 }
3972 
3973 static int
3974 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
3975     const uint8_t mac[IEEE80211_ADDR_LEN])
3976 {
3977 	const struct ieee80211_cipher *cip = k->wk_cipher;
3978 	struct ieee80211com *ic = vap->iv_ic;
3979 	struct ieee80211_node *ni = vap->iv_bss;
3980 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3981 	struct wpi_node *wn = (void *)ni;
3982 	struct wpi_node_info node;
3983 	uint16_t kflags;
3984 	int error;
3985 
3986 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3987 
3988 	switch (cip->ic_cipher) {
3989 	case IEEE80211_CIPHER_AES_CCM:
3990 		if (k->wk_flags & IEEE80211_KEY_GROUP)
3991 			return 1;
3992 
3993 		kflags = WPI_KFLAG_CCMP;
3994 		break;
3995 	default:
3996 		/* null_key_set() */
3997 		return 1;
3998 	}
3999 
4000 	if (wn->id == WPI_ID_UNDEFINED)
4001 		return 0;
4002 
4003 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4004 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4005 		kflags |= WPI_KFLAG_MULTICAST;
4006 
4007 	memset(&node, 0, sizeof node);
4008 	node.id = wn->id;
4009 	node.control = WPI_NODE_UPDATE;
4010 	node.flags = WPI_FLAG_KEY_SET;
4011 	node.kflags = htole16(kflags);
4012 	memcpy(node.key, k->wk_key, k->wk_keylen);
4013 
4014 	DPRINTF(sc, WPI_DEBUG_KEY, "set key id=%d for node %d\n", k->wk_keyix,
4015 	    node.id);
4016 
4017 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4018 	if (error != 0) {
4019 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4020 		    error);
4021 		return 0;
4022 	}
4023 
4024 	return 1;
4025 }
4026 
4027 static int
4028 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4029 {
4030 	const struct ieee80211_cipher *cip = k->wk_cipher;
4031 	struct ieee80211com *ic = vap->iv_ic;
4032 	struct ieee80211_node *ni = vap->iv_bss;
4033 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4034 	struct wpi_node *wn = (void *)ni;
4035 	struct wpi_node_info node;
4036 
4037 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4038 
4039 	switch (cip->ic_cipher) {
4040 	case IEEE80211_CIPHER_AES_CCM:
4041 		break;
4042 	default:
4043 		/* null_key_delete() */
4044 		return 1;
4045 	}
4046 
4047 	if (vap->iv_state != IEEE80211_S_RUN ||
4048 	    (k->wk_flags & IEEE80211_KEY_GROUP))
4049 		return 1; /* Nothing to do. */
4050 
4051 	memset(&node, 0, sizeof node);
4052 	node.id = wn->id;
4053 	node.control = WPI_NODE_UPDATE;
4054 	node.flags = WPI_FLAG_KEY_SET;
4055 
4056 	DPRINTF(sc, WPI_DEBUG_KEY, "delete keys for node %d\n", node.id);
4057 	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4058 
4059 	return 1;
4060 }
4061 
4062 /*
4063  * This function is called after the runtime firmware notifies us of its
4064  * readiness (called in a process context).
4065  */
4066 static int
4067 wpi_post_alive(struct wpi_softc *sc)
4068 {
4069 	int ntries, error;
4070 
4071 	/* Check (again) that the radio is not disabled. */
4072 	if ((error = wpi_nic_lock(sc)) != 0)
4073 		return error;
4074 
4075 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4076 
4077 	/* NB: Runtime firmware must be up and running. */
4078 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4079  		device_printf(sc->sc_dev,
4080 		    "RF switch: radio disabled (%s)\n", __func__);
4081 		wpi_nic_unlock(sc);
4082 		return EPERM;   /* :-) */
4083 	}
4084 	wpi_nic_unlock(sc);
4085 
4086 	/* Wait for thermal sensor to calibrate. */
4087 	for (ntries = 0; ntries < 1000; ntries++) {
4088 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4089 			break;
4090 		DELAY(10);
4091 	}
4092 
4093 	if (ntries == 1000) {
4094 		device_printf(sc->sc_dev,
4095 		    "timeout waiting for thermal sensor calibration\n");
4096                 return ETIMEDOUT;
4097         }
4098 
4099         DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4100         return 0;
4101 }
4102 
4103 /*
4104  * The firmware boot code is small and is intended to be copied directly into
4105  * the NIC internal memory (no DMA transfer).
4106  */
4107 static int
4108 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4109 {
4110 	int error, ntries;
4111 
4112 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4113 
4114 	size /= sizeof (uint32_t);
4115 
4116 	if ((error = wpi_nic_lock(sc)) != 0)
4117 		return error;
4118 
4119 	/* Copy microcode image into NIC memory. */
4120 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4121 	    (const uint32_t *)ucode, size);
4122 
4123 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4124 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4125 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4126 
4127 	/* Start boot load now. */
4128 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4129 
4130 	/* Wait for transfer to complete. */
4131 	for (ntries = 0; ntries < 1000; ntries++) {
4132 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4133 		DPRINTF(sc, WPI_DEBUG_HW,
4134 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4135 		    WPI_FH_TX_STATUS_IDLE(6),
4136 		    status & WPI_FH_TX_STATUS_IDLE(6));
4137 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4138 			DPRINTF(sc, WPI_DEBUG_HW,
4139 			    "Status Match! - ntries = %d\n", ntries);
4140 			break;
4141 		}
4142 		DELAY(10);
4143 	}
4144 	if (ntries == 1000) {
4145 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4146 		    __func__);
4147 		wpi_nic_unlock(sc);
4148 		return ETIMEDOUT;
4149 	}
4150 
4151 	/* Enable boot after power up. */
4152 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4153 
4154 	wpi_nic_unlock(sc);
4155 	return 0;
4156 }
4157 
4158 static int
4159 wpi_load_firmware(struct wpi_softc *sc)
4160 {
4161 	struct wpi_fw_info *fw = &sc->fw;
4162 	struct wpi_dma_info *dma = &sc->fw_dma;
4163 	int error;
4164 
4165 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4166 
4167 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4168 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4169 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4170 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4171 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4172 
4173 	/* Tell adapter where to find initialization sections. */
4174 	if ((error = wpi_nic_lock(sc)) != 0)
4175 		return error;
4176 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4177 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4178 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4179 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4180 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4181 	wpi_nic_unlock(sc);
4182 
4183 	/* Load firmware boot code. */
4184 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4185 	if (error != 0) {
4186 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4187 		    __func__);
4188 		return error;
4189 	}
4190 
4191 	/* Now press "execute". */
4192 	WPI_WRITE(sc, WPI_RESET, 0);
4193 
4194 	/* Wait at most one second for first alive notification. */
4195 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4196 		device_printf(sc->sc_dev,
4197 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4198 		    __func__, error);
4199 		return error;
4200 	}
4201 
4202 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4203 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4204 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4205 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4206 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4207 
4208 	/* Tell adapter where to find runtime sections. */
4209 	if ((error = wpi_nic_lock(sc)) != 0)
4210 		return error;
4211 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4212 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4213 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4214 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4215 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4216 	    WPI_FW_UPDATED | fw->main.textsz);
4217 	wpi_nic_unlock(sc);
4218 
4219 	return 0;
4220 }
4221 
4222 static int
4223 wpi_read_firmware(struct wpi_softc *sc)
4224 {
4225 	const struct firmware *fp;
4226 	struct wpi_fw_info *fw = &sc->fw;
4227 	const struct wpi_firmware_hdr *hdr;
4228 	int error;
4229 
4230 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4231 
4232 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4233 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4234 
4235 	WPI_UNLOCK(sc);
4236 	fp = firmware_get(WPI_FW_NAME);
4237 	WPI_LOCK(sc);
4238 
4239 	if (fp == NULL) {
4240 		device_printf(sc->sc_dev,
4241 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4242 		return EINVAL;
4243 	}
4244 
4245 	sc->fw_fp = fp;
4246 
4247 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4248 		device_printf(sc->sc_dev,
4249 		    "firmware file too short: %zu bytes\n", fp->datasize);
4250 		error = EINVAL;
4251 		goto fail;
4252 	}
4253 
4254 	fw->size = fp->datasize;
4255 	fw->data = (const uint8_t *)fp->data;
4256 
4257 	/* Extract firmware header information. */
4258 	hdr = (const struct wpi_firmware_hdr *)fw->data;
4259 
4260 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4261 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4262 
4263 	fw->main.textsz = le32toh(hdr->rtextsz);
4264 	fw->main.datasz = le32toh(hdr->rdatasz);
4265 	fw->init.textsz = le32toh(hdr->itextsz);
4266 	fw->init.datasz = le32toh(hdr->idatasz);
4267 	fw->boot.textsz = le32toh(hdr->btextsz);
4268 	fw->boot.datasz = 0;
4269 
4270 	/* Sanity-check firmware header. */
4271 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4272 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4273 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4274 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4275 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4276 	    (fw->boot.textsz & 3) != 0) {
4277 		device_printf(sc->sc_dev, "invalid firmware header\n");
4278 		error = EINVAL;
4279 		goto fail;
4280 	}
4281 
4282 	/* Check that all firmware sections fit. */
4283 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4284 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4285 		device_printf(sc->sc_dev,
4286 		    "firmware file too short: %zu bytes\n", fw->size);
4287 		error = EINVAL;
4288 		goto fail;
4289 	}
4290 
4291 	/* Get pointers to firmware sections. */
4292 	fw->main.text = (const uint8_t *)(hdr + 1);
4293 	fw->main.data = fw->main.text + fw->main.textsz;
4294 	fw->init.text = fw->main.data + fw->main.datasz;
4295 	fw->init.data = fw->init.text + fw->init.textsz;
4296 	fw->boot.text = fw->init.data + fw->init.datasz;
4297 
4298 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4299 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4300 	    "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
4301 	    hdr->major, hdr->minor, le32toh(hdr->driver),
4302 	    fw->main.textsz, fw->main.datasz,
4303 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4304 
4305 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4306 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4307 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4308 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4309 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4310 
4311 	return 0;
4312 
4313 fail:	wpi_unload_firmware(sc);
4314 	return error;
4315 }
4316 
4317 /**
4318  * Free the referenced firmware image
4319  */
4320 static void
4321 wpi_unload_firmware(struct wpi_softc *sc)
4322 {
4323 	if (sc->fw_fp != NULL) {
4324 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4325 		sc->fw_fp = NULL;
4326 	}
4327 }
4328 
4329 static int
4330 wpi_clock_wait(struct wpi_softc *sc)
4331 {
4332 	int ntries;
4333 
4334 	/* Set "initialization complete" bit. */
4335 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4336 
4337 	/* Wait for clock stabilization. */
4338 	for (ntries = 0; ntries < 2500; ntries++) {
4339 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4340 			return 0;
4341 		DELAY(100);
4342 	}
4343 	device_printf(sc->sc_dev,
4344 	    "%s: timeout waiting for clock stabilization\n", __func__);
4345 
4346 	return ETIMEDOUT;
4347 }
4348 
4349 static int
4350 wpi_apm_init(struct wpi_softc *sc)
4351 {
4352 	uint32_t reg;
4353 	int error;
4354 
4355 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4356 
4357 	/* Disable L0s exit timer (NMI bug workaround). */
4358 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4359 	/* Don't wait for ICH L0s (ICH bug workaround). */
4360 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4361 
4362 	/* Set FH wait threshold to max (HW bug under stress workaround). */
4363 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4364 
4365 	/* Retrieve PCIe Active State Power Management (ASPM). */
4366 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4367 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4368 	if (reg & 0x02)	/* L1 Entry enabled. */
4369 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4370 	else
4371 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4372 
4373 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4374 
4375 	/* Wait for clock stabilization before accessing prph. */
4376 	if ((error = wpi_clock_wait(sc)) != 0)
4377 		return error;
4378 
4379 	if ((error = wpi_nic_lock(sc)) != 0)
4380 		return error;
4381 	/* Enable DMA and BSM (Bootstrap State Machine). */
4382 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4383 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4384 	DELAY(20);
4385 	/* Disable L1-Active. */
4386 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4387 	/* ??? */
4388 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4389 	wpi_nic_unlock(sc);
4390 
4391 	return 0;
4392 }
4393 
4394 static void
4395 wpi_apm_stop_master(struct wpi_softc *sc)
4396 {
4397 	int ntries;
4398 
4399 	/* Stop busmaster DMA activity. */
4400 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4401 
4402 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4403 	    WPI_GP_CNTRL_MAC_PS)
4404 		return; /* Already asleep. */
4405 
4406 	for (ntries = 0; ntries < 100; ntries++) {
4407 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4408 			return;
4409 		DELAY(10);
4410 	}
4411 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
4412 }
4413 
4414 static void
4415 wpi_apm_stop(struct wpi_softc *sc)
4416 {
4417 	wpi_apm_stop_master(sc);
4418 
4419 	/* Reset the entire device. */
4420 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4421 	DELAY(10);
4422 	/* Clear "initialization complete" bit. */
4423 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4424 }
4425 
4426 static void
4427 wpi_nic_config(struct wpi_softc *sc)
4428 {
4429 	uint32_t rev;
4430 
4431 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4432 
4433 	/* voodoo from the Linux "driver".. */
4434 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4435 	if ((rev & 0xc0) == 0x40)
4436 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4437 	else if (!(rev & 0x80))
4438 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4439 
4440 	if (sc->cap == 0x80)
4441 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4442 
4443 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
4444 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4445 	else
4446 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4447 
4448 	if (sc->type > 1)
4449 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4450 }
4451 
4452 static int
4453 wpi_hw_init(struct wpi_softc *sc)
4454 {
4455 	int chnl, ntries, error;
4456 
4457 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4458 
4459 	/* Clear pending interrupts. */
4460 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4461 
4462 	if ((error = wpi_apm_init(sc)) != 0) {
4463 		device_printf(sc->sc_dev,
4464 		    "%s: could not power ON adapter, error %d\n", __func__,
4465 		    error);
4466 		return error;
4467 	}
4468 
4469 	/* Select VMAIN power source. */
4470 	if ((error = wpi_nic_lock(sc)) != 0)
4471 		return error;
4472 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
4473 	wpi_nic_unlock(sc);
4474 	/* Spin until VMAIN gets selected. */
4475 	for (ntries = 0; ntries < 5000; ntries++) {
4476 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
4477 			break;
4478 		DELAY(10);
4479 	}
4480 	if (ntries == 5000) {
4481 		device_printf(sc->sc_dev, "timeout selecting power source\n");
4482 		return ETIMEDOUT;
4483 	}
4484 
4485 	/* Perform adapter initialization. */
4486 	wpi_nic_config(sc);
4487 
4488 	/* Initialize RX ring. */
4489 	if ((error = wpi_nic_lock(sc)) != 0)
4490 		return error;
4491 	/* Set physical address of RX ring. */
4492 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
4493 	/* Set physical address of RX read pointer. */
4494 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
4495 	    offsetof(struct wpi_shared, next));
4496 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
4497 	/* Enable RX. */
4498 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
4499 	    WPI_FH_RX_CONFIG_DMA_ENA |
4500 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
4501 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
4502 	    WPI_FH_RX_CONFIG_MAXFRAG |
4503 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
4504 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
4505 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
4506 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
4507 	wpi_nic_unlock(sc);
4508 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
4509 
4510 	/* Initialize TX rings. */
4511 	if ((error = wpi_nic_lock(sc)) != 0)
4512 		return error;
4513 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
4514 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
4515 	/* Enable all 6 TX rings. */
4516 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
4517 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
4518 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
4519 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
4520 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
4521 	/* Set physical address of TX rings. */
4522 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
4523 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
4524 
4525 	/* Enable all DMA channels. */
4526 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4527 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
4528 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
4529 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
4530 	}
4531 	wpi_nic_unlock(sc);
4532 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
4533 
4534 	/* Clear "radio off" and "commands blocked" bits. */
4535 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4536 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
4537 
4538 	/* Clear pending interrupts. */
4539 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4540 	/* Enable interrupts. */
4541 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
4542 
4543 	/* _Really_ make sure "radio off" bit is cleared! */
4544 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4545 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4546 
4547 	if ((error = wpi_load_firmware(sc)) != 0) {
4548 		device_printf(sc->sc_dev,
4549 		    "%s: could not load firmware, error %d\n", __func__,
4550 		    error);
4551 		return error;
4552 	}
4553 	/* Wait at most one second for firmware alive notification. */
4554 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4555 		device_printf(sc->sc_dev,
4556 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4557 		    __func__, error);
4558 		return error;
4559 	}
4560 
4561 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4562 
4563 	/* Do post-firmware initialization. */
4564 	return wpi_post_alive(sc);
4565 }
4566 
4567 static void
4568 wpi_hw_stop(struct wpi_softc *sc)
4569 {
4570 	int chnl, qid, ntries;
4571 
4572 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4573 
4574 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
4575 		wpi_nic_lock(sc);
4576 
4577 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
4578 
4579 	/* Disable interrupts. */
4580 	WPI_WRITE(sc, WPI_INT_MASK, 0);
4581 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4582 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
4583 
4584 	/* Make sure we no longer hold the NIC lock. */
4585 	wpi_nic_unlock(sc);
4586 
4587 	if (wpi_nic_lock(sc) == 0) {
4588 		/* Stop TX scheduler. */
4589 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
4590 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
4591 
4592 		/* Stop all DMA channels. */
4593 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4594 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
4595 			for (ntries = 0; ntries < 200; ntries++) {
4596 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
4597 				    WPI_FH_TX_STATUS_IDLE(chnl))
4598 					break;
4599 				DELAY(10);
4600 			}
4601 		}
4602 		wpi_nic_unlock(sc);
4603 	}
4604 
4605 	/* Stop RX ring. */
4606 	wpi_reset_rx_ring(sc);
4607 
4608 	/* Reset all TX rings. */
4609 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
4610 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
4611 
4612 	if (wpi_nic_lock(sc) == 0) {
4613 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
4614 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
4615 		wpi_nic_unlock(sc);
4616 	}
4617 	DELAY(5);
4618 	/* Power OFF adapter. */
4619 	wpi_apm_stop(sc);
4620 }
4621 
4622 static void
4623 wpi_radio_on(void *arg0, int pending)
4624 {
4625 	struct wpi_softc *sc = arg0;
4626 	struct ifnet *ifp = sc->sc_ifp;
4627 	struct ieee80211com *ic = ifp->if_l2com;
4628 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4629 
4630 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
4631 
4632 	if (vap != NULL) {
4633 		wpi_init(sc);
4634 		ieee80211_init(vap);
4635 	}
4636 
4637 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
4638 		WPI_LOCK(sc);
4639 		callout_stop(&sc->watchdog_rfkill);
4640 		WPI_UNLOCK(sc);
4641 	}
4642 }
4643 
4644 static void
4645 wpi_radio_off(void *arg0, int pending)
4646 {
4647 	struct wpi_softc *sc = arg0;
4648 	struct ifnet *ifp = sc->sc_ifp;
4649 	struct ieee80211com *ic = ifp->if_l2com;
4650 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4651 
4652 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
4653 
4654 	wpi_stop(sc);
4655 	if (vap != NULL)
4656 		ieee80211_stop(vap);
4657 
4658 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
4659 }
4660 
4661 static void
4662 wpi_init_locked(struct wpi_softc *sc)
4663 {
4664 	struct ifnet *ifp = sc->sc_ifp;
4665 	int error;
4666 
4667 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4668 
4669 	WPI_LOCK_ASSERT(sc);
4670 
4671 	/* Check that the radio is not disabled by hardware switch. */
4672 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
4673 		device_printf(sc->sc_dev,
4674 		    "RF switch: radio disabled (%s)\n", __func__);
4675 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
4676 		    sc);
4677 		return;
4678 	}
4679 
4680 	/* Read firmware images from the filesystem. */
4681 	if ((error = wpi_read_firmware(sc)) != 0) {
4682 		device_printf(sc->sc_dev,
4683 		    "%s: could not read firmware, error %d\n", __func__,
4684 		    error);
4685 		goto fail;
4686 	}
4687 
4688 	/* Initialize hardware and upload firmware. */
4689 	error = wpi_hw_init(sc);
4690 	wpi_unload_firmware(sc);
4691 	if (error != 0) {
4692 		device_printf(sc->sc_dev,
4693 		    "%s: could not initialize hardware, error %d\n", __func__,
4694 		    error);
4695 		goto fail;
4696 	}
4697 
4698 	/* Configure adapter now that it is ready. */
4699 	if ((error = wpi_config(sc)) != 0) {
4700 		device_printf(sc->sc_dev,
4701 		    "%s: could not configure device, error %d\n", __func__,
4702 		    error);
4703 		goto fail;
4704 	}
4705 
4706 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4707 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4708 
4709 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
4710 
4711 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4712 
4713 	return;
4714 
4715 fail:	wpi_stop_locked(sc);
4716 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4717 }
4718 
4719 static void
4720 wpi_init(void *arg)
4721 {
4722 	struct wpi_softc *sc = arg;
4723 	struct ifnet *ifp = sc->sc_ifp;
4724 	struct ieee80211com *ic = ifp->if_l2com;
4725 
4726 	WPI_LOCK(sc);
4727 	wpi_init_locked(sc);
4728 	WPI_UNLOCK(sc);
4729 
4730 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4731 		ieee80211_start_all(ic);
4732 }
4733 
4734 static void
4735 wpi_stop_locked(struct wpi_softc *sc)
4736 {
4737 	struct ifnet *ifp = sc->sc_ifp;
4738 
4739 	WPI_LOCK_ASSERT(sc);
4740 
4741 	sc->sc_scan_timer = 0;
4742 	sc->sc_tx_timer = 0;
4743 	callout_stop(&sc->watchdog_to);
4744 	callout_stop(&sc->calib_to);
4745 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4746 
4747 	/* Power OFF hardware. */
4748 	wpi_hw_stop(sc);
4749 }
4750 
4751 static void
4752 wpi_stop(struct wpi_softc *sc)
4753 {
4754 	WPI_LOCK(sc);
4755 	wpi_stop_locked(sc);
4756 	WPI_UNLOCK(sc);
4757 }
4758 
4759 /*
4760  * Callback from net80211 to start a scan.
4761  */
4762 static void
4763 wpi_scan_start(struct ieee80211com *ic)
4764 {
4765 	struct ifnet *ifp = ic->ic_ifp;
4766 	struct wpi_softc *sc = ifp->if_softc;
4767 
4768 	WPI_LOCK(sc);
4769 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
4770 	WPI_UNLOCK(sc);
4771 }
4772 
4773 /*
4774  * Callback from net80211 to terminate a scan.
4775  */
4776 static void
4777 wpi_scan_end(struct ieee80211com *ic)
4778 {
4779 	struct ifnet *ifp = ic->ic_ifp;
4780 	struct wpi_softc *sc = ifp->if_softc;
4781 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4782 
4783 	if (vap->iv_state == IEEE80211_S_RUN) {
4784 		WPI_LOCK(sc);
4785 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4786 		WPI_UNLOCK(sc);
4787 	}
4788 }
4789 
4790 /**
4791  * Called by the net80211 framework to indicate to the driver
4792  * that the channel should be changed
4793  */
4794 static void
4795 wpi_set_channel(struct ieee80211com *ic)
4796 {
4797 	const struct ieee80211_channel *c = ic->ic_curchan;
4798 	struct ifnet *ifp = ic->ic_ifp;
4799 	struct wpi_softc *sc = ifp->if_softc;
4800 	int error;
4801 
4802 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4803 
4804 	WPI_LOCK(sc);
4805 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4806 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4807 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4808 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4809 
4810 	/*
4811 	 * Only need to set the channel in Monitor mode. AP scanning and auth
4812 	 * are already taken care of by their respective firmware commands.
4813 	 */
4814 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4815 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4816 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4817 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
4818 			    WPI_RXON_24GHZ);
4819 		} else {
4820 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
4821 			    WPI_RXON_24GHZ);
4822 		}
4823 		if ((error = wpi_send_rxon(sc, 0, 0)) != 0)
4824 			device_printf(sc->sc_dev,
4825 			    "%s: error %d settting channel\n", __func__,
4826 			    error);
4827 	}
4828 	WPI_UNLOCK(sc);
4829 }
4830 
4831 /**
4832  * Called by net80211 to indicate that we need to scan the current
4833  * channel. The channel is previously be set via the wpi_set_channel
4834  * callback.
4835  */
4836 static void
4837 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4838 {
4839 	struct ieee80211vap *vap = ss->ss_vap;
4840 	struct ieee80211com *ic = vap->iv_ic;
4841 	struct ifnet *ifp = ic->ic_ifp;
4842 	struct wpi_softc *sc = ifp->if_softc;
4843 	int error;
4844 
4845 	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
4846 		WPI_LOCK(sc);
4847 		error = wpi_scan(sc, ic->ic_curchan);
4848 		WPI_UNLOCK(sc);
4849 		if (error != 0)
4850 			ieee80211_cancel_scan(vap);
4851 	} else {
4852 		/* Send probe request when associated. */
4853 		sc->sc_scan_curchan(ss, maxdwell);
4854 	}
4855 }
4856 
4857 /**
4858  * Called by the net80211 framework to indicate
4859  * the minimum dwell time has been met, terminate the scan.
4860  * We don't actually terminate the scan as the firmware will notify
4861  * us when it's finished and we have no way to interrupt it.
4862  */
4863 static void
4864 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
4865 {
4866 	/* NB: don't try to abort scan; wait for firmware to finish */
4867 }
4868 
4869 static void
4870 wpi_hw_reset(void *arg, int pending)
4871 {
4872 	struct wpi_softc *sc = arg;
4873 	struct ifnet *ifp = sc->sc_ifp;
4874 	struct ieee80211com *ic = ifp->if_l2com;
4875 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4876 
4877 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4878 
4879 	wpi_stop(sc);
4880 	if (vap != NULL)
4881 		ieee80211_stop(vap);
4882 	wpi_init(sc);
4883 	if (vap != NULL)
4884 		ieee80211_init(vap);
4885 }
4886