1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include "opt_wlan.h" 63 64 #include <sys/param.h> 65 #include <sys/sysctl.h> 66 #include <sys/sockio.h> 67 #include <sys/mbuf.h> 68 #include <sys/kernel.h> 69 #include <sys/socket.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/queue.h> 73 #include <sys/taskqueue.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/endian.h> 77 #include <sys/linker.h> 78 #include <sys/firmware.h> 79 80 #include <machine/bus.h> 81 #include <machine/resource.h> 82 #include <sys/rman.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 87 #include <net/bpf.h> 88 #include <net/if.h> 89 #include <net/if_arp.h> 90 #include <net/ethernet.h> 91 #include <net/if_dl.h> 92 #include <net/if_media.h> 93 #include <net/if_types.h> 94 95 #include <net80211/ieee80211_var.h> 96 #include <net80211/ieee80211_radiotap.h> 97 #include <net80211/ieee80211_regdomain.h> 98 #include <net80211/ieee80211_ratectl.h> 99 100 #include <netinet/in.h> 101 #include <netinet/in_systm.h> 102 #include <netinet/in_var.h> 103 #include <netinet/ip.h> 104 #include <netinet/if_ether.h> 105 106 #include <dev/wpi/if_wpireg.h> 107 #include <dev/wpi/if_wpivar.h> 108 109 #define WPI_DEBUG 110 111 #ifdef WPI_DEBUG 112 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 113 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 114 #define WPI_DEBUG_SET (wpi_debug != 0) 115 116 enum { 117 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 118 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 119 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 120 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 121 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 122 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 123 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 124 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 125 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 126 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 127 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 128 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 129 WPI_DEBUG_ANY = 0xffffffff 130 }; 131 132 static int wpi_debug = 0; 133 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 134 TUNABLE_INT("debug.wpi", &wpi_debug); 135 136 #else 137 #define DPRINTF(x) 138 #define DPRINTFN(n, x) 139 #define WPI_DEBUG_SET 0 140 #endif 141 142 struct wpi_ident { 143 uint16_t vendor; 144 uint16_t device; 145 uint16_t subdevice; 146 const char *name; 147 }; 148 149 static const struct wpi_ident wpi_ident_table[] = { 150 /* The below entries support ABG regardless of the subid */ 151 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 152 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 153 /* The below entries only support BG */ 154 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 155 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 157 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 158 { 0, 0, 0, NULL } 159 }; 160 161 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 162 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 163 const uint8_t [IEEE80211_ADDR_LEN], 164 const uint8_t [IEEE80211_ADDR_LEN]); 165 static void wpi_vap_delete(struct ieee80211vap *); 166 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 167 void **, bus_size_t, bus_size_t, int); 168 static void wpi_dma_contig_free(struct wpi_dma_info *); 169 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 170 static int wpi_alloc_shared(struct wpi_softc *); 171 static void wpi_free_shared(struct wpi_softc *); 172 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 173 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 174 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 175 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 176 int, int); 177 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 178 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 179 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 180 static void wpi_mem_lock(struct wpi_softc *); 181 static void wpi_mem_unlock(struct wpi_softc *); 182 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 183 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 184 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 185 const uint32_t *, int); 186 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 187 static int wpi_alloc_fwmem(struct wpi_softc *); 188 static void wpi_free_fwmem(struct wpi_softc *); 189 static int wpi_load_firmware(struct wpi_softc *); 190 static void wpi_unload_firmware(struct wpi_softc *); 191 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 192 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 193 struct wpi_rx_data *); 194 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 195 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 196 static void wpi_notif_intr(struct wpi_softc *); 197 static void wpi_intr(void *); 198 static uint8_t wpi_plcp_signal(int); 199 static void wpi_watchdog(void *); 200 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 201 struct ieee80211_node *, int); 202 static void wpi_start(struct ifnet *); 203 static void wpi_start_locked(struct ifnet *); 204 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 205 const struct ieee80211_bpf_params *); 206 static void wpi_scan_start(struct ieee80211com *); 207 static void wpi_scan_end(struct ieee80211com *); 208 static void wpi_set_channel(struct ieee80211com *); 209 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 210 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 211 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 212 static void wpi_read_eeprom(struct wpi_softc *, 213 uint8_t macaddr[IEEE80211_ADDR_LEN]); 214 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 215 static void wpi_read_eeprom_group(struct wpi_softc *, int); 216 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 217 static int wpi_wme_update(struct ieee80211com *); 218 static int wpi_mrr_setup(struct wpi_softc *); 219 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 220 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 221 #if 0 222 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 223 #endif 224 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 225 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 226 static int wpi_scan(struct wpi_softc *); 227 static int wpi_config(struct wpi_softc *); 228 static void wpi_stop_master(struct wpi_softc *); 229 static int wpi_power_up(struct wpi_softc *); 230 static int wpi_reset(struct wpi_softc *); 231 static void wpi_hwreset(void *, int); 232 static void wpi_rfreset(void *, int); 233 static void wpi_hw_config(struct wpi_softc *); 234 static void wpi_init(void *); 235 static void wpi_init_locked(struct wpi_softc *, int); 236 static void wpi_stop(struct wpi_softc *); 237 static void wpi_stop_locked(struct wpi_softc *); 238 239 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 240 int); 241 static void wpi_calib_timeout(void *); 242 static void wpi_power_calibration(struct wpi_softc *, int); 243 static int wpi_get_power_index(struct wpi_softc *, 244 struct wpi_power_group *, struct ieee80211_channel *, int); 245 #ifdef WPI_DEBUG 246 static const char *wpi_cmd_str(int); 247 #endif 248 static int wpi_probe(device_t); 249 static int wpi_attach(device_t); 250 static int wpi_detach(device_t); 251 static int wpi_shutdown(device_t); 252 static int wpi_suspend(device_t); 253 static int wpi_resume(device_t); 254 255 256 static device_method_t wpi_methods[] = { 257 /* Device interface */ 258 DEVMETHOD(device_probe, wpi_probe), 259 DEVMETHOD(device_attach, wpi_attach), 260 DEVMETHOD(device_detach, wpi_detach), 261 DEVMETHOD(device_shutdown, wpi_shutdown), 262 DEVMETHOD(device_suspend, wpi_suspend), 263 DEVMETHOD(device_resume, wpi_resume), 264 265 { 0, 0 } 266 }; 267 268 static driver_t wpi_driver = { 269 "wpi", 270 wpi_methods, 271 sizeof (struct wpi_softc) 272 }; 273 274 static devclass_t wpi_devclass; 275 276 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 277 278 MODULE_VERSION(wpi, 1); 279 280 static const uint8_t wpi_ridx_to_plcp[] = { 281 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 282 /* R1-R4 (ral/ural is R4-R1) */ 283 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 284 /* CCK: device-dependent */ 285 10, 20, 55, 110 286 }; 287 static const uint8_t wpi_ridx_to_rate[] = { 288 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 289 2, 4, 11, 22 /*CCK */ 290 }; 291 292 293 static int 294 wpi_probe(device_t dev) 295 { 296 const struct wpi_ident *ident; 297 298 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 299 if (pci_get_vendor(dev) == ident->vendor && 300 pci_get_device(dev) == ident->device) { 301 device_set_desc(dev, ident->name); 302 return 0; 303 } 304 } 305 return ENXIO; 306 } 307 308 /** 309 * Load the firmare image from disk to the allocated dma buffer. 310 * we also maintain the reference to the firmware pointer as there 311 * is times where we may need to reload the firmware but we are not 312 * in a context that can access the filesystem (ie taskq cause by restart) 313 * 314 * @return 0 on success, an errno on failure 315 */ 316 static int 317 wpi_load_firmware(struct wpi_softc *sc) 318 { 319 const struct firmware *fp; 320 struct wpi_dma_info *dma = &sc->fw_dma; 321 const struct wpi_firmware_hdr *hdr; 322 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 323 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 324 int error; 325 326 DPRINTFN(WPI_DEBUG_FIRMWARE, 327 ("Attempting Loading Firmware from wpi_fw module\n")); 328 329 WPI_UNLOCK(sc); 330 331 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 332 device_printf(sc->sc_dev, 333 "could not load firmware image 'wpifw'\n"); 334 error = ENOENT; 335 WPI_LOCK(sc); 336 goto fail; 337 } 338 339 fp = sc->fw_fp; 340 341 WPI_LOCK(sc); 342 343 /* Validate the firmware is minimum a particular version */ 344 if (fp->version < WPI_FW_MINVERSION) { 345 device_printf(sc->sc_dev, 346 "firmware version is too old. Need %d, got %d\n", 347 WPI_FW_MINVERSION, 348 fp->version); 349 error = ENXIO; 350 goto fail; 351 } 352 353 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 354 device_printf(sc->sc_dev, 355 "firmware file too short: %zu bytes\n", fp->datasize); 356 error = ENXIO; 357 goto fail; 358 } 359 360 hdr = (const struct wpi_firmware_hdr *)fp->data; 361 362 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 363 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 364 365 rtextsz = le32toh(hdr->rtextsz); 366 rdatasz = le32toh(hdr->rdatasz); 367 itextsz = le32toh(hdr->itextsz); 368 idatasz = le32toh(hdr->idatasz); 369 btextsz = le32toh(hdr->btextsz); 370 371 /* check that all firmware segments are present */ 372 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 373 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 374 device_printf(sc->sc_dev, 375 "firmware file too short: %zu bytes\n", fp->datasize); 376 error = ENXIO; /* XXX appropriate error code? */ 377 goto fail; 378 } 379 380 /* get pointers to firmware segments */ 381 rtext = (const uint8_t *)(hdr + 1); 382 rdata = rtext + rtextsz; 383 itext = rdata + rdatasz; 384 idata = itext + itextsz; 385 btext = idata + idatasz; 386 387 DPRINTFN(WPI_DEBUG_FIRMWARE, 388 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 389 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 390 (le32toh(hdr->version) & 0xff000000) >> 24, 391 (le32toh(hdr->version) & 0x00ff0000) >> 16, 392 (le32toh(hdr->version) & 0x0000ffff), 393 rtextsz, rdatasz, 394 itextsz, idatasz, btextsz)); 395 396 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 397 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 398 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 399 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 400 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 401 402 /* sanity checks */ 403 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 404 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 405 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 406 idatasz > WPI_FW_INIT_DATA_MAXSZ || 407 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 408 (btextsz & 3) != 0) { 409 device_printf(sc->sc_dev, "firmware invalid\n"); 410 error = EINVAL; 411 goto fail; 412 } 413 414 /* copy initialization images into pre-allocated DMA-safe memory */ 415 memcpy(dma->vaddr, idata, idatasz); 416 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 417 418 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 419 420 /* tell adapter where to find initialization images */ 421 wpi_mem_lock(sc); 422 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 423 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 424 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 425 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 426 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 427 wpi_mem_unlock(sc); 428 429 /* load firmware boot code */ 430 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 431 device_printf(sc->sc_dev, "Failed to load microcode\n"); 432 goto fail; 433 } 434 435 /* now press "execute" */ 436 WPI_WRITE(sc, WPI_RESET, 0); 437 438 /* wait at most one second for the first alive notification */ 439 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 440 device_printf(sc->sc_dev, 441 "timeout waiting for adapter to initialize\n"); 442 goto fail; 443 } 444 445 /* copy runtime images into pre-allocated DMA-sage memory */ 446 memcpy(dma->vaddr, rdata, rdatasz); 447 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 448 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 449 450 /* tell adapter where to find runtime images */ 451 wpi_mem_lock(sc); 452 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 453 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 454 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 455 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 456 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 457 wpi_mem_unlock(sc); 458 459 /* wait at most one second for the first alive notification */ 460 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 461 device_printf(sc->sc_dev, 462 "timeout waiting for adapter to initialize2\n"); 463 goto fail; 464 } 465 466 DPRINTFN(WPI_DEBUG_FIRMWARE, 467 ("Firmware loaded to driver successfully\n")); 468 return error; 469 fail: 470 wpi_unload_firmware(sc); 471 return error; 472 } 473 474 /** 475 * Free the referenced firmware image 476 */ 477 static void 478 wpi_unload_firmware(struct wpi_softc *sc) 479 { 480 481 if (sc->fw_fp) { 482 WPI_UNLOCK(sc); 483 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 484 WPI_LOCK(sc); 485 sc->fw_fp = NULL; 486 } 487 } 488 489 static int 490 wpi_attach(device_t dev) 491 { 492 struct wpi_softc *sc = device_get_softc(dev); 493 struct ifnet *ifp; 494 struct ieee80211com *ic; 495 int ac, error, supportsa = 1; 496 uint32_t tmp; 497 const struct wpi_ident *ident; 498 uint8_t macaddr[IEEE80211_ADDR_LEN]; 499 500 sc->sc_dev = dev; 501 502 if (bootverbose || WPI_DEBUG_SET) 503 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 504 505 /* 506 * Some card's only support 802.11b/g not a, check to see if 507 * this is one such card. A 0x0 in the subdevice table indicates 508 * the entire subdevice range is to be ignored. 509 */ 510 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 511 if (ident->subdevice && 512 pci_get_subdevice(dev) == ident->subdevice) { 513 supportsa = 0; 514 break; 515 } 516 } 517 518 /* Create the tasks that can be queued */ 519 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc); 520 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc); 521 522 WPI_LOCK_INIT(sc); 523 524 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 525 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 526 527 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 528 device_printf(dev, "chip is in D%d power mode " 529 "-- setting to D0\n", pci_get_powerstate(dev)); 530 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 531 } 532 533 /* disable the retry timeout register */ 534 pci_write_config(dev, 0x41, 0, 1); 535 536 /* enable bus-mastering */ 537 pci_enable_busmaster(dev); 538 539 sc->mem_rid = PCIR_BAR(0); 540 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 541 RF_ACTIVE); 542 if (sc->mem == NULL) { 543 device_printf(dev, "could not allocate memory resource\n"); 544 error = ENOMEM; 545 goto fail; 546 } 547 548 sc->sc_st = rman_get_bustag(sc->mem); 549 sc->sc_sh = rman_get_bushandle(sc->mem); 550 551 sc->irq_rid = 0; 552 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 553 RF_ACTIVE | RF_SHAREABLE); 554 if (sc->irq == NULL) { 555 device_printf(dev, "could not allocate interrupt resource\n"); 556 error = ENOMEM; 557 goto fail; 558 } 559 560 /* 561 * Allocate DMA memory for firmware transfers. 562 */ 563 if ((error = wpi_alloc_fwmem(sc)) != 0) { 564 printf(": could not allocate firmware memory\n"); 565 error = ENOMEM; 566 goto fail; 567 } 568 569 /* 570 * Put adapter into a known state. 571 */ 572 if ((error = wpi_reset(sc)) != 0) { 573 device_printf(dev, "could not reset adapter\n"); 574 goto fail; 575 } 576 577 wpi_mem_lock(sc); 578 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 579 if (bootverbose || WPI_DEBUG_SET) 580 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 581 582 wpi_mem_unlock(sc); 583 584 /* Allocate shared page */ 585 if ((error = wpi_alloc_shared(sc)) != 0) { 586 device_printf(dev, "could not allocate shared page\n"); 587 goto fail; 588 } 589 590 /* tx data queues - 4 for QoS purposes */ 591 for (ac = 0; ac < WME_NUM_AC; ac++) { 592 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 593 if (error != 0) { 594 device_printf(dev, "could not allocate Tx ring %d\n",ac); 595 goto fail; 596 } 597 } 598 599 /* command queue to talk to the card's firmware */ 600 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 601 if (error != 0) { 602 device_printf(dev, "could not allocate command ring\n"); 603 goto fail; 604 } 605 606 /* receive data queue */ 607 error = wpi_alloc_rx_ring(sc, &sc->rxq); 608 if (error != 0) { 609 device_printf(dev, "could not allocate Rx ring\n"); 610 goto fail; 611 } 612 613 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 614 if (ifp == NULL) { 615 device_printf(dev, "can not if_alloc()\n"); 616 error = ENOMEM; 617 goto fail; 618 } 619 ic = ifp->if_l2com; 620 621 ic->ic_ifp = ifp; 622 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 623 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 624 625 /* set device capabilities */ 626 ic->ic_caps = 627 IEEE80211_C_STA /* station mode supported */ 628 | IEEE80211_C_MONITOR /* monitor mode supported */ 629 | IEEE80211_C_TXPMGT /* tx power management */ 630 | IEEE80211_C_SHSLOT /* short slot time supported */ 631 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 632 | IEEE80211_C_WPA /* 802.11i */ 633 /* XXX looks like WME is partly supported? */ 634 #if 0 635 | IEEE80211_C_IBSS /* IBSS mode support */ 636 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 637 | IEEE80211_C_WME /* 802.11e */ 638 | IEEE80211_C_HOSTAP /* Host access point mode */ 639 #endif 640 ; 641 642 /* 643 * Read in the eeprom and also setup the channels for 644 * net80211. We don't set the rates as net80211 does this for us 645 */ 646 wpi_read_eeprom(sc, macaddr); 647 648 if (bootverbose || WPI_DEBUG_SET) { 649 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 650 device_printf(sc->sc_dev, "Hardware Type: %c\n", 651 sc->type > 1 ? 'B': '?'); 652 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 653 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 654 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 655 supportsa ? "does" : "does not"); 656 657 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 658 what sc->rev really represents - benjsc 20070615 */ 659 } 660 661 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 662 ifp->if_softc = sc; 663 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 664 ifp->if_init = wpi_init; 665 ifp->if_ioctl = wpi_ioctl; 666 ifp->if_start = wpi_start; 667 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 668 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 669 IFQ_SET_READY(&ifp->if_snd); 670 671 ieee80211_ifattach(ic, macaddr); 672 /* override default methods */ 673 ic->ic_raw_xmit = wpi_raw_xmit; 674 ic->ic_wme.wme_update = wpi_wme_update; 675 ic->ic_scan_start = wpi_scan_start; 676 ic->ic_scan_end = wpi_scan_end; 677 ic->ic_set_channel = wpi_set_channel; 678 ic->ic_scan_curchan = wpi_scan_curchan; 679 ic->ic_scan_mindwell = wpi_scan_mindwell; 680 681 ic->ic_vap_create = wpi_vap_create; 682 ic->ic_vap_delete = wpi_vap_delete; 683 684 ieee80211_radiotap_attach(ic, 685 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 686 WPI_TX_RADIOTAP_PRESENT, 687 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 688 WPI_RX_RADIOTAP_PRESENT); 689 690 /* 691 * Hook our interrupt after all initialization is complete. 692 */ 693 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 694 NULL, wpi_intr, sc, &sc->sc_ih); 695 if (error != 0) { 696 device_printf(dev, "could not set up interrupt\n"); 697 goto fail; 698 } 699 700 if (bootverbose) 701 ieee80211_announce(ic); 702 #ifdef XXX_DEBUG 703 ieee80211_announce_channels(ic); 704 #endif 705 return 0; 706 707 fail: wpi_detach(dev); 708 return ENXIO; 709 } 710 711 static int 712 wpi_detach(device_t dev) 713 { 714 struct wpi_softc *sc = device_get_softc(dev); 715 struct ifnet *ifp = sc->sc_ifp; 716 struct ieee80211com *ic; 717 int ac; 718 719 if (ifp != NULL) { 720 ic = ifp->if_l2com; 721 722 ieee80211_draintask(ic, &sc->sc_restarttask); 723 ieee80211_draintask(ic, &sc->sc_radiotask); 724 wpi_stop(sc); 725 callout_drain(&sc->watchdog_to); 726 callout_drain(&sc->calib_to); 727 ieee80211_ifdetach(ic); 728 } 729 730 WPI_LOCK(sc); 731 if (sc->txq[0].data_dmat) { 732 for (ac = 0; ac < WME_NUM_AC; ac++) 733 wpi_free_tx_ring(sc, &sc->txq[ac]); 734 735 wpi_free_tx_ring(sc, &sc->cmdq); 736 wpi_free_rx_ring(sc, &sc->rxq); 737 wpi_free_shared(sc); 738 } 739 740 if (sc->fw_fp != NULL) { 741 wpi_unload_firmware(sc); 742 } 743 744 if (sc->fw_dma.tag) 745 wpi_free_fwmem(sc); 746 WPI_UNLOCK(sc); 747 748 if (sc->irq != NULL) { 749 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 750 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 751 } 752 753 if (sc->mem != NULL) 754 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 755 756 if (ifp != NULL) 757 if_free(ifp); 758 759 WPI_LOCK_DESTROY(sc); 760 761 return 0; 762 } 763 764 static struct ieee80211vap * 765 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 766 enum ieee80211_opmode opmode, int flags, 767 const uint8_t bssid[IEEE80211_ADDR_LEN], 768 const uint8_t mac[IEEE80211_ADDR_LEN]) 769 { 770 struct wpi_vap *wvp; 771 struct ieee80211vap *vap; 772 773 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 774 return NULL; 775 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 776 M_80211_VAP, M_NOWAIT | M_ZERO); 777 if (wvp == NULL) 778 return NULL; 779 vap = &wvp->vap; 780 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 781 /* override with driver methods */ 782 wvp->newstate = vap->iv_newstate; 783 vap->iv_newstate = wpi_newstate; 784 785 ieee80211_ratectl_init(vap); 786 /* complete setup */ 787 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 788 ic->ic_opmode = opmode; 789 return vap; 790 } 791 792 static void 793 wpi_vap_delete(struct ieee80211vap *vap) 794 { 795 struct wpi_vap *wvp = WPI_VAP(vap); 796 797 ieee80211_ratectl_deinit(vap); 798 ieee80211_vap_detach(vap); 799 free(wvp, M_80211_VAP); 800 } 801 802 static void 803 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 804 { 805 if (error != 0) 806 return; 807 808 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 809 810 *(bus_addr_t *)arg = segs[0].ds_addr; 811 } 812 813 /* 814 * Allocates a contiguous block of dma memory of the requested size and 815 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 816 * allocations greater than 4096 may fail. Hence if the requested alignment is 817 * greater we allocate 'alignment' size extra memory and shift the vaddr and 818 * paddr after the dma load. This bypasses the problem at the cost of a little 819 * more memory. 820 */ 821 static int 822 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 823 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 824 { 825 int error; 826 bus_size_t align; 827 bus_size_t reqsize; 828 829 DPRINTFN(WPI_DEBUG_DMA, 830 ("Size: %zd - alignment %zd\n", size, alignment)); 831 832 dma->size = size; 833 dma->tag = NULL; 834 835 if (alignment > 4096) { 836 align = PAGE_SIZE; 837 reqsize = size + alignment; 838 } else { 839 align = alignment; 840 reqsize = size; 841 } 842 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 843 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 844 NULL, NULL, reqsize, 845 1, reqsize, flags, 846 NULL, NULL, &dma->tag); 847 if (error != 0) { 848 device_printf(sc->sc_dev, 849 "could not create shared page DMA tag\n"); 850 goto fail; 851 } 852 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 853 flags | BUS_DMA_ZERO, &dma->map); 854 if (error != 0) { 855 device_printf(sc->sc_dev, 856 "could not allocate shared page DMA memory\n"); 857 goto fail; 858 } 859 860 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 861 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 862 863 /* Save the original pointers so we can free all the memory */ 864 dma->paddr = dma->paddr_start; 865 dma->vaddr = dma->vaddr_start; 866 867 /* 868 * Check the alignment and increment by 4096 until we get the 869 * requested alignment. Fail if can't obtain the alignment 870 * we requested. 871 */ 872 if ((dma->paddr & (alignment -1 )) != 0) { 873 int i; 874 875 for (i = 0; i < alignment / 4096; i++) { 876 if ((dma->paddr & (alignment - 1 )) == 0) 877 break; 878 dma->paddr += 4096; 879 dma->vaddr += 4096; 880 } 881 if (i == alignment / 4096) { 882 device_printf(sc->sc_dev, 883 "alignment requirement was not satisfied\n"); 884 goto fail; 885 } 886 } 887 888 if (error != 0) { 889 device_printf(sc->sc_dev, 890 "could not load shared page DMA map\n"); 891 goto fail; 892 } 893 894 if (kvap != NULL) 895 *kvap = dma->vaddr; 896 897 return 0; 898 899 fail: 900 wpi_dma_contig_free(dma); 901 return error; 902 } 903 904 static void 905 wpi_dma_contig_free(struct wpi_dma_info *dma) 906 { 907 if (dma->tag) { 908 if (dma->map != NULL) { 909 if (dma->paddr_start != 0) { 910 bus_dmamap_sync(dma->tag, dma->map, 911 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 912 bus_dmamap_unload(dma->tag, dma->map); 913 } 914 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 915 } 916 bus_dma_tag_destroy(dma->tag); 917 } 918 } 919 920 /* 921 * Allocate a shared page between host and NIC. 922 */ 923 static int 924 wpi_alloc_shared(struct wpi_softc *sc) 925 { 926 int error; 927 928 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 929 (void **)&sc->shared, sizeof (struct wpi_shared), 930 PAGE_SIZE, 931 BUS_DMA_NOWAIT); 932 933 if (error != 0) { 934 device_printf(sc->sc_dev, 935 "could not allocate shared area DMA memory\n"); 936 } 937 938 return error; 939 } 940 941 static void 942 wpi_free_shared(struct wpi_softc *sc) 943 { 944 wpi_dma_contig_free(&sc->shared_dma); 945 } 946 947 static int 948 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 949 { 950 951 int i, error; 952 953 ring->cur = 0; 954 955 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 956 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 957 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 958 959 if (error != 0) { 960 device_printf(sc->sc_dev, 961 "%s: could not allocate rx ring DMA memory, error %d\n", 962 __func__, error); 963 goto fail; 964 } 965 966 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 967 BUS_SPACE_MAXADDR_32BIT, 968 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 969 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 970 if (error != 0) { 971 device_printf(sc->sc_dev, 972 "%s: bus_dma_tag_create_failed, error %d\n", 973 __func__, error); 974 goto fail; 975 } 976 977 /* 978 * Setup Rx buffers. 979 */ 980 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 981 struct wpi_rx_data *data = &ring->data[i]; 982 struct mbuf *m; 983 bus_addr_t paddr; 984 985 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 986 if (error != 0) { 987 device_printf(sc->sc_dev, 988 "%s: bus_dmamap_create failed, error %d\n", 989 __func__, error); 990 goto fail; 991 } 992 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 993 if (m == NULL) { 994 device_printf(sc->sc_dev, 995 "%s: could not allocate rx mbuf\n", __func__); 996 error = ENOMEM; 997 goto fail; 998 } 999 /* map page */ 1000 error = bus_dmamap_load(ring->data_dmat, data->map, 1001 mtod(m, caddr_t), MJUMPAGESIZE, 1002 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1003 if (error != 0 && error != EFBIG) { 1004 device_printf(sc->sc_dev, 1005 "%s: bus_dmamap_load failed, error %d\n", 1006 __func__, error); 1007 m_freem(m); 1008 error = ENOMEM; /* XXX unique code */ 1009 goto fail; 1010 } 1011 bus_dmamap_sync(ring->data_dmat, data->map, 1012 BUS_DMASYNC_PREWRITE); 1013 1014 data->m = m; 1015 ring->desc[i] = htole32(paddr); 1016 } 1017 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1018 BUS_DMASYNC_PREWRITE); 1019 return 0; 1020 fail: 1021 wpi_free_rx_ring(sc, ring); 1022 return error; 1023 } 1024 1025 static void 1026 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1027 { 1028 int ntries; 1029 1030 wpi_mem_lock(sc); 1031 1032 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1033 1034 for (ntries = 0; ntries < 100; ntries++) { 1035 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1036 break; 1037 DELAY(10); 1038 } 1039 1040 wpi_mem_unlock(sc); 1041 1042 #ifdef WPI_DEBUG 1043 if (ntries == 100 && wpi_debug > 0) 1044 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1045 #endif 1046 1047 ring->cur = 0; 1048 } 1049 1050 static void 1051 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1052 { 1053 int i; 1054 1055 wpi_dma_contig_free(&ring->desc_dma); 1056 1057 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1058 struct wpi_rx_data *data = &ring->data[i]; 1059 1060 if (data->m != NULL) { 1061 bus_dmamap_sync(ring->data_dmat, data->map, 1062 BUS_DMASYNC_POSTREAD); 1063 bus_dmamap_unload(ring->data_dmat, data->map); 1064 m_freem(data->m); 1065 } 1066 if (data->map != NULL) 1067 bus_dmamap_destroy(ring->data_dmat, data->map); 1068 } 1069 } 1070 1071 static int 1072 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1073 int qid) 1074 { 1075 struct wpi_tx_data *data; 1076 int i, error; 1077 1078 ring->qid = qid; 1079 ring->count = count; 1080 ring->queued = 0; 1081 ring->cur = 0; 1082 ring->data = NULL; 1083 1084 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1085 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1086 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1087 1088 if (error != 0) { 1089 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1090 goto fail; 1091 } 1092 1093 /* update shared page with ring's base address */ 1094 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1095 1096 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1097 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1098 BUS_DMA_NOWAIT); 1099 1100 if (error != 0) { 1101 device_printf(sc->sc_dev, 1102 "could not allocate tx command DMA memory\n"); 1103 goto fail; 1104 } 1105 1106 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1107 M_NOWAIT | M_ZERO); 1108 if (ring->data == NULL) { 1109 device_printf(sc->sc_dev, 1110 "could not allocate tx data slots\n"); 1111 goto fail; 1112 } 1113 1114 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1115 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1116 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1117 &ring->data_dmat); 1118 if (error != 0) { 1119 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1120 goto fail; 1121 } 1122 1123 for (i = 0; i < count; i++) { 1124 data = &ring->data[i]; 1125 1126 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1127 if (error != 0) { 1128 device_printf(sc->sc_dev, 1129 "could not create tx buf DMA map\n"); 1130 goto fail; 1131 } 1132 bus_dmamap_sync(ring->data_dmat, data->map, 1133 BUS_DMASYNC_PREWRITE); 1134 } 1135 1136 return 0; 1137 1138 fail: 1139 wpi_free_tx_ring(sc, ring); 1140 return error; 1141 } 1142 1143 static void 1144 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1145 { 1146 struct wpi_tx_data *data; 1147 int i, ntries; 1148 1149 wpi_mem_lock(sc); 1150 1151 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1152 for (ntries = 0; ntries < 100; ntries++) { 1153 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1154 break; 1155 DELAY(10); 1156 } 1157 #ifdef WPI_DEBUG 1158 if (ntries == 100 && wpi_debug > 0) 1159 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1160 ring->qid); 1161 #endif 1162 wpi_mem_unlock(sc); 1163 1164 for (i = 0; i < ring->count; i++) { 1165 data = &ring->data[i]; 1166 1167 if (data->m != NULL) { 1168 bus_dmamap_unload(ring->data_dmat, data->map); 1169 m_freem(data->m); 1170 data->m = NULL; 1171 } 1172 } 1173 1174 ring->queued = 0; 1175 ring->cur = 0; 1176 } 1177 1178 static void 1179 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1180 { 1181 struct wpi_tx_data *data; 1182 int i; 1183 1184 wpi_dma_contig_free(&ring->desc_dma); 1185 wpi_dma_contig_free(&ring->cmd_dma); 1186 1187 if (ring->data != NULL) { 1188 for (i = 0; i < ring->count; i++) { 1189 data = &ring->data[i]; 1190 1191 if (data->m != NULL) { 1192 bus_dmamap_sync(ring->data_dmat, data->map, 1193 BUS_DMASYNC_POSTWRITE); 1194 bus_dmamap_unload(ring->data_dmat, data->map); 1195 m_freem(data->m); 1196 data->m = NULL; 1197 } 1198 } 1199 free(ring->data, M_DEVBUF); 1200 } 1201 1202 if (ring->data_dmat != NULL) 1203 bus_dma_tag_destroy(ring->data_dmat); 1204 } 1205 1206 static int 1207 wpi_shutdown(device_t dev) 1208 { 1209 struct wpi_softc *sc = device_get_softc(dev); 1210 1211 WPI_LOCK(sc); 1212 wpi_stop_locked(sc); 1213 wpi_unload_firmware(sc); 1214 WPI_UNLOCK(sc); 1215 1216 return 0; 1217 } 1218 1219 static int 1220 wpi_suspend(device_t dev) 1221 { 1222 struct wpi_softc *sc = device_get_softc(dev); 1223 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1224 1225 ieee80211_suspend_all(ic); 1226 return 0; 1227 } 1228 1229 static int 1230 wpi_resume(device_t dev) 1231 { 1232 struct wpi_softc *sc = device_get_softc(dev); 1233 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1234 1235 pci_write_config(dev, 0x41, 0, 1); 1236 1237 ieee80211_resume_all(ic); 1238 return 0; 1239 } 1240 1241 /** 1242 * Called by net80211 when ever there is a change to 80211 state machine 1243 */ 1244 static int 1245 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1246 { 1247 struct wpi_vap *wvp = WPI_VAP(vap); 1248 struct ieee80211com *ic = vap->iv_ic; 1249 struct ifnet *ifp = ic->ic_ifp; 1250 struct wpi_softc *sc = ifp->if_softc; 1251 int error; 1252 1253 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1254 ieee80211_state_name[vap->iv_state], 1255 ieee80211_state_name[nstate], sc->flags)); 1256 1257 IEEE80211_UNLOCK(ic); 1258 WPI_LOCK(sc); 1259 if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) { 1260 /* 1261 * On !INIT -> SCAN transitions, we need to clear any possible 1262 * knowledge about associations. 1263 */ 1264 error = wpi_config(sc); 1265 if (error != 0) { 1266 device_printf(sc->sc_dev, 1267 "%s: device config failed, error %d\n", 1268 __func__, error); 1269 } 1270 } 1271 if (nstate == IEEE80211_S_AUTH || 1272 (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) { 1273 /* 1274 * The node must be registered in the firmware before auth. 1275 * Also the associd must be cleared on RUN -> ASSOC 1276 * transitions. 1277 */ 1278 error = wpi_auth(sc, vap); 1279 if (error != 0) { 1280 device_printf(sc->sc_dev, 1281 "%s: could not move to auth state, error %d\n", 1282 __func__, error); 1283 } 1284 } 1285 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1286 error = wpi_run(sc, vap); 1287 if (error != 0) { 1288 device_printf(sc->sc_dev, 1289 "%s: could not move to run state, error %d\n", 1290 __func__, error); 1291 } 1292 } 1293 if (nstate == IEEE80211_S_RUN) { 1294 /* RUN -> RUN transition; just restart the timers */ 1295 wpi_calib_timeout(sc); 1296 /* XXX split out rate control timer */ 1297 } 1298 WPI_UNLOCK(sc); 1299 IEEE80211_LOCK(ic); 1300 return wvp->newstate(vap, nstate, arg); 1301 } 1302 1303 /* 1304 * Grab exclusive access to NIC memory. 1305 */ 1306 static void 1307 wpi_mem_lock(struct wpi_softc *sc) 1308 { 1309 int ntries; 1310 uint32_t tmp; 1311 1312 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1313 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1314 1315 /* spin until we actually get the lock */ 1316 for (ntries = 0; ntries < 100; ntries++) { 1317 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1318 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1319 break; 1320 DELAY(10); 1321 } 1322 if (ntries == 100) 1323 device_printf(sc->sc_dev, "could not lock memory\n"); 1324 } 1325 1326 /* 1327 * Release lock on NIC memory. 1328 */ 1329 static void 1330 wpi_mem_unlock(struct wpi_softc *sc) 1331 { 1332 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1333 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1334 } 1335 1336 static uint32_t 1337 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1338 { 1339 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1340 return WPI_READ(sc, WPI_READ_MEM_DATA); 1341 } 1342 1343 static void 1344 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1345 { 1346 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1347 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1348 } 1349 1350 static void 1351 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1352 const uint32_t *data, int wlen) 1353 { 1354 for (; wlen > 0; wlen--, data++, addr+=4) 1355 wpi_mem_write(sc, addr, *data); 1356 } 1357 1358 /* 1359 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1360 * using the traditional bit-bang method. Data is read up until len bytes have 1361 * been obtained. 1362 */ 1363 static uint16_t 1364 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1365 { 1366 int ntries; 1367 uint32_t val; 1368 uint8_t *out = data; 1369 1370 wpi_mem_lock(sc); 1371 1372 for (; len > 0; len -= 2, addr++) { 1373 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1374 1375 for (ntries = 0; ntries < 10; ntries++) { 1376 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1377 break; 1378 DELAY(5); 1379 } 1380 1381 if (ntries == 10) { 1382 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1383 return ETIMEDOUT; 1384 } 1385 1386 *out++= val >> 16; 1387 if (len > 1) 1388 *out ++= val >> 24; 1389 } 1390 1391 wpi_mem_unlock(sc); 1392 1393 return 0; 1394 } 1395 1396 /* 1397 * The firmware text and data segments are transferred to the NIC using DMA. 1398 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1399 * where to find it. Once the NIC has copied the firmware into its internal 1400 * memory, we can free our local copy in the driver. 1401 */ 1402 static int 1403 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1404 { 1405 int error, ntries; 1406 1407 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1408 1409 size /= sizeof(uint32_t); 1410 1411 wpi_mem_lock(sc); 1412 1413 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1414 (const uint32_t *)fw, size); 1415 1416 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1417 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1418 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1419 1420 /* run microcode */ 1421 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1422 1423 /* wait while the adapter is busy copying the firmware */ 1424 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1425 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1426 DPRINTFN(WPI_DEBUG_HW, 1427 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1428 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1429 if (status & WPI_TX_IDLE(6)) { 1430 DPRINTFN(WPI_DEBUG_HW, 1431 ("Status Match! - ntries = %d\n", ntries)); 1432 break; 1433 } 1434 DELAY(10); 1435 } 1436 if (ntries == 1000) { 1437 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1438 error = ETIMEDOUT; 1439 } 1440 1441 /* start the microcode executing */ 1442 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1443 1444 wpi_mem_unlock(sc); 1445 1446 return (error); 1447 } 1448 1449 static void 1450 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1451 struct wpi_rx_data *data) 1452 { 1453 struct ifnet *ifp = sc->sc_ifp; 1454 struct ieee80211com *ic = ifp->if_l2com; 1455 struct wpi_rx_ring *ring = &sc->rxq; 1456 struct wpi_rx_stat *stat; 1457 struct wpi_rx_head *head; 1458 struct wpi_rx_tail *tail; 1459 struct ieee80211_node *ni; 1460 struct mbuf *m, *mnew; 1461 bus_addr_t paddr; 1462 int error; 1463 1464 stat = (struct wpi_rx_stat *)(desc + 1); 1465 1466 if (stat->len > WPI_STAT_MAXLEN) { 1467 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1468 ifp->if_ierrors++; 1469 return; 1470 } 1471 1472 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 1473 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1474 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1475 1476 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1477 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1478 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1479 (uintmax_t)le64toh(tail->tstamp))); 1480 1481 /* discard Rx frames with bad CRC early */ 1482 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1483 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1484 le32toh(tail->flags))); 1485 ifp->if_ierrors++; 1486 return; 1487 } 1488 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1489 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1490 le16toh(head->len))); 1491 ifp->if_ierrors++; 1492 return; 1493 } 1494 1495 /* XXX don't need mbuf, just dma buffer */ 1496 mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1497 if (mnew == NULL) { 1498 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1499 __func__)); 1500 ifp->if_ierrors++; 1501 return; 1502 } 1503 bus_dmamap_unload(ring->data_dmat, data->map); 1504 1505 error = bus_dmamap_load(ring->data_dmat, data->map, 1506 mtod(mnew, caddr_t), MJUMPAGESIZE, 1507 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1508 if (error != 0 && error != EFBIG) { 1509 device_printf(sc->sc_dev, 1510 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1511 m_freem(mnew); 1512 ifp->if_ierrors++; 1513 return; 1514 } 1515 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1516 1517 /* finalize mbuf and swap in new one */ 1518 m = data->m; 1519 m->m_pkthdr.rcvif = ifp; 1520 m->m_data = (caddr_t)(head + 1); 1521 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1522 1523 data->m = mnew; 1524 /* update Rx descriptor */ 1525 ring->desc[ring->cur] = htole32(paddr); 1526 1527 if (ieee80211_radiotap_active(ic)) { 1528 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1529 1530 tap->wr_flags = 0; 1531 tap->wr_chan_freq = 1532 htole16(ic->ic_channels[head->chan].ic_freq); 1533 tap->wr_chan_flags = 1534 htole16(ic->ic_channels[head->chan].ic_flags); 1535 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1536 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1537 tap->wr_tsft = tail->tstamp; 1538 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1539 switch (head->rate) { 1540 /* CCK rates */ 1541 case 10: tap->wr_rate = 2; break; 1542 case 20: tap->wr_rate = 4; break; 1543 case 55: tap->wr_rate = 11; break; 1544 case 110: tap->wr_rate = 22; break; 1545 /* OFDM rates */ 1546 case 0xd: tap->wr_rate = 12; break; 1547 case 0xf: tap->wr_rate = 18; break; 1548 case 0x5: tap->wr_rate = 24; break; 1549 case 0x7: tap->wr_rate = 36; break; 1550 case 0x9: tap->wr_rate = 48; break; 1551 case 0xb: tap->wr_rate = 72; break; 1552 case 0x1: tap->wr_rate = 96; break; 1553 case 0x3: tap->wr_rate = 108; break; 1554 /* unknown rate: should not happen */ 1555 default: tap->wr_rate = 0; 1556 } 1557 if (le16toh(head->flags) & 0x4) 1558 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1559 } 1560 1561 WPI_UNLOCK(sc); 1562 1563 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1564 if (ni != NULL) { 1565 (void) ieee80211_input(ni, m, stat->rssi, 0); 1566 ieee80211_free_node(ni); 1567 } else 1568 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1569 1570 WPI_LOCK(sc); 1571 } 1572 1573 static void 1574 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1575 { 1576 struct ifnet *ifp = sc->sc_ifp; 1577 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1578 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1579 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1580 struct ieee80211_node *ni = txdata->ni; 1581 struct ieee80211vap *vap = ni->ni_vap; 1582 int retrycnt = 0; 1583 1584 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1585 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1586 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1587 le32toh(stat->status))); 1588 1589 /* 1590 * Update rate control statistics for the node. 1591 * XXX we should not count mgmt frames since they're always sent at 1592 * the lowest available bit-rate. 1593 * XXX frames w/o ACK shouldn't be used either 1594 */ 1595 if (stat->ntries > 0) { 1596 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1597 retrycnt = 1; 1598 } 1599 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1600 &retrycnt, NULL); 1601 1602 /* XXX oerrors should only count errors !maxtries */ 1603 if ((le32toh(stat->status) & 0xff) != 1) 1604 ifp->if_oerrors++; 1605 else 1606 ifp->if_opackets++; 1607 1608 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1609 bus_dmamap_unload(ring->data_dmat, txdata->map); 1610 /* XXX handle M_TXCB? */ 1611 m_freem(txdata->m); 1612 txdata->m = NULL; 1613 ieee80211_free_node(txdata->ni); 1614 txdata->ni = NULL; 1615 1616 ring->queued--; 1617 1618 sc->sc_tx_timer = 0; 1619 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1620 wpi_start_locked(ifp); 1621 } 1622 1623 static void 1624 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1625 { 1626 struct wpi_tx_ring *ring = &sc->cmdq; 1627 struct wpi_tx_data *data; 1628 1629 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1630 "type=%s len=%d\n", desc->qid, desc->idx, 1631 desc->flags, wpi_cmd_str(desc->type), 1632 le32toh(desc->len))); 1633 1634 if ((desc->qid & 7) != 4) 1635 return; /* not a command ack */ 1636 1637 data = &ring->data[desc->idx]; 1638 1639 /* if the command was mapped in a mbuf, free it */ 1640 if (data->m != NULL) { 1641 bus_dmamap_unload(ring->data_dmat, data->map); 1642 m_freem(data->m); 1643 data->m = NULL; 1644 } 1645 1646 sc->flags &= ~WPI_FLAG_BUSY; 1647 wakeup(&ring->cmd[desc->idx]); 1648 } 1649 1650 static void 1651 wpi_notif_intr(struct wpi_softc *sc) 1652 { 1653 struct ifnet *ifp = sc->sc_ifp; 1654 struct ieee80211com *ic = ifp->if_l2com; 1655 struct wpi_rx_desc *desc; 1656 struct wpi_rx_data *data; 1657 uint32_t hw; 1658 1659 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 1660 BUS_DMASYNC_POSTREAD); 1661 1662 hw = le32toh(sc->shared->next); 1663 while (sc->rxq.cur != hw) { 1664 data = &sc->rxq.data[sc->rxq.cur]; 1665 1666 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1667 BUS_DMASYNC_POSTREAD); 1668 desc = (void *)data->m->m_ext.ext_buf; 1669 1670 DPRINTFN(WPI_DEBUG_NOTIFY, 1671 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1672 desc->qid, 1673 desc->idx, 1674 desc->flags, 1675 desc->type, 1676 le32toh(desc->len))); 1677 1678 if (!(desc->qid & 0x80)) /* reply to a command */ 1679 wpi_cmd_intr(sc, desc); 1680 1681 switch (desc->type) { 1682 case WPI_RX_DONE: 1683 /* a 802.11 frame was received */ 1684 wpi_rx_intr(sc, desc, data); 1685 break; 1686 1687 case WPI_TX_DONE: 1688 /* a 802.11 frame has been transmitted */ 1689 wpi_tx_intr(sc, desc); 1690 break; 1691 1692 case WPI_UC_READY: 1693 { 1694 struct wpi_ucode_info *uc = 1695 (struct wpi_ucode_info *)(desc + 1); 1696 1697 /* the microcontroller is ready */ 1698 DPRINTF(("microcode alive notification version %x " 1699 "alive %x\n", le32toh(uc->version), 1700 le32toh(uc->valid))); 1701 1702 if (le32toh(uc->valid) != 1) { 1703 device_printf(sc->sc_dev, 1704 "microcontroller initialization failed\n"); 1705 wpi_stop_locked(sc); 1706 } 1707 break; 1708 } 1709 case WPI_STATE_CHANGED: 1710 { 1711 uint32_t *status = (uint32_t *)(desc + 1); 1712 1713 /* enabled/disabled notification */ 1714 DPRINTF(("state changed to %x\n", le32toh(*status))); 1715 1716 if (le32toh(*status) & 1) { 1717 device_printf(sc->sc_dev, 1718 "Radio transmitter is switched off\n"); 1719 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1720 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1721 /* Disable firmware commands */ 1722 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1723 } 1724 break; 1725 } 1726 case WPI_START_SCAN: 1727 { 1728 #ifdef WPI_DEBUG 1729 struct wpi_start_scan *scan = 1730 (struct wpi_start_scan *)(desc + 1); 1731 #endif 1732 1733 DPRINTFN(WPI_DEBUG_SCANNING, 1734 ("scanning channel %d status %x\n", 1735 scan->chan, le32toh(scan->status))); 1736 break; 1737 } 1738 case WPI_STOP_SCAN: 1739 { 1740 #ifdef WPI_DEBUG 1741 struct wpi_stop_scan *scan = 1742 (struct wpi_stop_scan *)(desc + 1); 1743 #endif 1744 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1745 1746 DPRINTFN(WPI_DEBUG_SCANNING, 1747 ("scan finished nchan=%d status=%d chan=%d\n", 1748 scan->nchan, scan->status, scan->chan)); 1749 1750 sc->sc_scan_timer = 0; 1751 ieee80211_scan_next(vap); 1752 break; 1753 } 1754 case WPI_MISSED_BEACON: 1755 { 1756 struct wpi_missed_beacon *beacon = 1757 (struct wpi_missed_beacon *)(desc + 1); 1758 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1759 1760 if (le32toh(beacon->consecutive) >= 1761 vap->iv_bmissthreshold) { 1762 DPRINTF(("Beacon miss: %u >= %u\n", 1763 le32toh(beacon->consecutive), 1764 vap->iv_bmissthreshold)); 1765 ieee80211_beacon_miss(ic); 1766 } 1767 break; 1768 } 1769 } 1770 1771 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1772 } 1773 1774 /* tell the firmware what we have processed */ 1775 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1776 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1777 } 1778 1779 static void 1780 wpi_intr(void *arg) 1781 { 1782 struct wpi_softc *sc = arg; 1783 uint32_t r; 1784 1785 WPI_LOCK(sc); 1786 1787 r = WPI_READ(sc, WPI_INTR); 1788 if (r == 0 || r == 0xffffffff) { 1789 WPI_UNLOCK(sc); 1790 return; 1791 } 1792 1793 /* disable interrupts */ 1794 WPI_WRITE(sc, WPI_MASK, 0); 1795 /* ack interrupts */ 1796 WPI_WRITE(sc, WPI_INTR, r); 1797 1798 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1799 struct ifnet *ifp = sc->sc_ifp; 1800 struct ieee80211com *ic = ifp->if_l2com; 1801 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1802 1803 device_printf(sc->sc_dev, "fatal firmware error\n"); 1804 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1805 "(Hardware Error)")); 1806 if (vap != NULL) 1807 ieee80211_cancel_scan(vap); 1808 ieee80211_runtask(ic, &sc->sc_restarttask); 1809 sc->flags &= ~WPI_FLAG_BUSY; 1810 WPI_UNLOCK(sc); 1811 return; 1812 } 1813 1814 if (r & WPI_RX_INTR) 1815 wpi_notif_intr(sc); 1816 1817 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1818 wakeup(sc); 1819 1820 /* re-enable interrupts */ 1821 if (sc->sc_ifp->if_flags & IFF_UP) 1822 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1823 1824 WPI_UNLOCK(sc); 1825 } 1826 1827 static uint8_t 1828 wpi_plcp_signal(int rate) 1829 { 1830 switch (rate) { 1831 /* CCK rates (returned values are device-dependent) */ 1832 case 2: return 10; 1833 case 4: return 20; 1834 case 11: return 55; 1835 case 22: return 110; 1836 1837 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1838 /* R1-R4 (ral/ural is R4-R1) */ 1839 case 12: return 0xd; 1840 case 18: return 0xf; 1841 case 24: return 0x5; 1842 case 36: return 0x7; 1843 case 48: return 0x9; 1844 case 72: return 0xb; 1845 case 96: return 0x1; 1846 case 108: return 0x3; 1847 1848 /* unsupported rates (should not get there) */ 1849 default: return 0; 1850 } 1851 } 1852 1853 /* quickly determine if a given rate is CCK or OFDM */ 1854 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1855 1856 /* 1857 * Construct the data packet for a transmit buffer and acutally put 1858 * the buffer onto the transmit ring, kicking the card to process the 1859 * the buffer. 1860 */ 1861 static int 1862 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1863 int ac) 1864 { 1865 struct ieee80211vap *vap = ni->ni_vap; 1866 struct ifnet *ifp = sc->sc_ifp; 1867 struct ieee80211com *ic = ifp->if_l2com; 1868 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1869 struct wpi_tx_ring *ring = &sc->txq[ac]; 1870 struct wpi_tx_desc *desc; 1871 struct wpi_tx_data *data; 1872 struct wpi_tx_cmd *cmd; 1873 struct wpi_cmd_data *tx; 1874 struct ieee80211_frame *wh; 1875 const struct ieee80211_txparam *tp; 1876 struct ieee80211_key *k; 1877 struct mbuf *mnew; 1878 int i, error, nsegs, rate, hdrlen, ismcast; 1879 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1880 1881 desc = &ring->desc[ring->cur]; 1882 data = &ring->data[ring->cur]; 1883 1884 wh = mtod(m0, struct ieee80211_frame *); 1885 1886 hdrlen = ieee80211_hdrsize(wh); 1887 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1888 1889 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1890 k = ieee80211_crypto_encap(ni, m0); 1891 if (k == NULL) { 1892 m_freem(m0); 1893 return ENOBUFS; 1894 } 1895 /* packet header may have moved, reset our local pointer */ 1896 wh = mtod(m0, struct ieee80211_frame *); 1897 } 1898 1899 cmd = &ring->cmd[ring->cur]; 1900 cmd->code = WPI_CMD_TX_DATA; 1901 cmd->flags = 0; 1902 cmd->qid = ring->qid; 1903 cmd->idx = ring->cur; 1904 1905 tx = (struct wpi_cmd_data *)cmd->data; 1906 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1907 tx->timeout = htole16(0); 1908 tx->ofdm_mask = 0xff; 1909 tx->cck_mask = 0x0f; 1910 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1911 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1912 tx->len = htole16(m0->m_pkthdr.len); 1913 1914 if (!ismcast) { 1915 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1916 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1917 tx->flags |= htole32(WPI_TX_NEED_ACK); 1918 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1919 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1920 tx->rts_ntries = 7; 1921 } 1922 } 1923 /* pick a rate */ 1924 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1925 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1926 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1927 /* tell h/w to set timestamp in probe responses */ 1928 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1929 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1930 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1931 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1932 tx->timeout = htole16(3); 1933 else 1934 tx->timeout = htole16(2); 1935 rate = tp->mgmtrate; 1936 } else if (ismcast) { 1937 rate = tp->mcastrate; 1938 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1939 rate = tp->ucastrate; 1940 } else { 1941 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1942 rate = ni->ni_txrate; 1943 } 1944 tx->rate = wpi_plcp_signal(rate); 1945 1946 /* be very persistant at sending frames out */ 1947 #if 0 1948 tx->data_ntries = tp->maxretry; 1949 #else 1950 tx->data_ntries = 15; /* XXX way too high */ 1951 #endif 1952 1953 if (ieee80211_radiotap_active_vap(vap)) { 1954 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1955 tap->wt_flags = 0; 1956 tap->wt_rate = rate; 1957 tap->wt_hwqueue = ac; 1958 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1959 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1960 1961 ieee80211_radiotap_tx(vap, m0); 1962 } 1963 1964 /* save and trim IEEE802.11 header */ 1965 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1966 m_adj(m0, hdrlen); 1967 1968 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1969 &nsegs, BUS_DMA_NOWAIT); 1970 if (error != 0 && error != EFBIG) { 1971 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1972 error); 1973 m_freem(m0); 1974 return error; 1975 } 1976 if (error != 0) { 1977 /* XXX use m_collapse */ 1978 mnew = m_defrag(m0, M_NOWAIT); 1979 if (mnew == NULL) { 1980 device_printf(sc->sc_dev, 1981 "could not defragment mbuf\n"); 1982 m_freem(m0); 1983 return ENOBUFS; 1984 } 1985 m0 = mnew; 1986 1987 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1988 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1989 if (error != 0) { 1990 device_printf(sc->sc_dev, 1991 "could not map mbuf (error %d)\n", error); 1992 m_freem(m0); 1993 return error; 1994 } 1995 } 1996 1997 data->m = m0; 1998 data->ni = ni; 1999 2000 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 2001 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 2002 2003 /* first scatter/gather segment is used by the tx data command */ 2004 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2005 (1 + nsegs) << 24); 2006 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2007 ring->cur * sizeof (struct wpi_tx_cmd)); 2008 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 2009 for (i = 1; i <= nsegs; i++) { 2010 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 2011 desc->segs[i].len = htole32(segs[i - 1].ds_len); 2012 } 2013 2014 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2015 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2016 BUS_DMASYNC_PREWRITE); 2017 2018 ring->queued++; 2019 2020 /* kick ring */ 2021 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2022 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2023 2024 return 0; 2025 } 2026 2027 /** 2028 * Process data waiting to be sent on the IFNET output queue 2029 */ 2030 static void 2031 wpi_start(struct ifnet *ifp) 2032 { 2033 struct wpi_softc *sc = ifp->if_softc; 2034 2035 WPI_LOCK(sc); 2036 wpi_start_locked(ifp); 2037 WPI_UNLOCK(sc); 2038 } 2039 2040 static void 2041 wpi_start_locked(struct ifnet *ifp) 2042 { 2043 struct wpi_softc *sc = ifp->if_softc; 2044 struct ieee80211_node *ni; 2045 struct mbuf *m; 2046 int ac; 2047 2048 WPI_LOCK_ASSERT(sc); 2049 2050 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2051 return; 2052 2053 for (;;) { 2054 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2055 if (m == NULL) 2056 break; 2057 ac = M_WME_GETAC(m); 2058 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2059 /* there is no place left in this ring */ 2060 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2061 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2062 break; 2063 } 2064 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2065 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2066 ieee80211_free_node(ni); 2067 ifp->if_oerrors++; 2068 break; 2069 } 2070 sc->sc_tx_timer = 5; 2071 } 2072 } 2073 2074 static int 2075 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2076 const struct ieee80211_bpf_params *params) 2077 { 2078 struct ieee80211com *ic = ni->ni_ic; 2079 struct ifnet *ifp = ic->ic_ifp; 2080 struct wpi_softc *sc = ifp->if_softc; 2081 2082 /* prevent management frames from being sent if we're not ready */ 2083 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2084 m_freem(m); 2085 ieee80211_free_node(ni); 2086 return ENETDOWN; 2087 } 2088 WPI_LOCK(sc); 2089 2090 /* management frames go into ring 0 */ 2091 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2092 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2093 m_freem(m); 2094 WPI_UNLOCK(sc); 2095 ieee80211_free_node(ni); 2096 return ENOBUFS; /* XXX */ 2097 } 2098 2099 ifp->if_opackets++; 2100 if (wpi_tx_data(sc, m, ni, 0) != 0) 2101 goto bad; 2102 sc->sc_tx_timer = 5; 2103 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2104 2105 WPI_UNLOCK(sc); 2106 return 0; 2107 bad: 2108 ifp->if_oerrors++; 2109 WPI_UNLOCK(sc); 2110 ieee80211_free_node(ni); 2111 return EIO; /* XXX */ 2112 } 2113 2114 static int 2115 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2116 { 2117 struct wpi_softc *sc = ifp->if_softc; 2118 struct ieee80211com *ic = ifp->if_l2com; 2119 struct ifreq *ifr = (struct ifreq *) data; 2120 int error = 0, startall = 0; 2121 2122 switch (cmd) { 2123 case SIOCSIFFLAGS: 2124 WPI_LOCK(sc); 2125 if ((ifp->if_flags & IFF_UP)) { 2126 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2127 wpi_init_locked(sc, 0); 2128 startall = 1; 2129 } 2130 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2131 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2132 wpi_stop_locked(sc); 2133 WPI_UNLOCK(sc); 2134 if (startall) 2135 ieee80211_start_all(ic); 2136 break; 2137 case SIOCGIFMEDIA: 2138 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2139 break; 2140 case SIOCGIFADDR: 2141 error = ether_ioctl(ifp, cmd, data); 2142 break; 2143 default: 2144 error = EINVAL; 2145 break; 2146 } 2147 return error; 2148 } 2149 2150 /* 2151 * Extract various information from EEPROM. 2152 */ 2153 static void 2154 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2155 { 2156 int i; 2157 2158 /* read the hardware capabilities, revision and SKU type */ 2159 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2160 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2161 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2162 2163 /* read the regulatory domain */ 2164 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2165 2166 /* read in the hw MAC address */ 2167 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2168 2169 /* read the list of authorized channels */ 2170 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2171 wpi_read_eeprom_channels(sc,i); 2172 2173 /* read the power level calibration info for each group */ 2174 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2175 wpi_read_eeprom_group(sc,i); 2176 } 2177 2178 /* 2179 * Send a command to the firmware. 2180 */ 2181 static int 2182 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2183 { 2184 struct wpi_tx_ring *ring = &sc->cmdq; 2185 struct wpi_tx_desc *desc; 2186 struct wpi_tx_cmd *cmd; 2187 2188 #ifdef WPI_DEBUG 2189 if (!async) { 2190 WPI_LOCK_ASSERT(sc); 2191 } 2192 #endif 2193 2194 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2195 async)); 2196 2197 if (sc->flags & WPI_FLAG_BUSY) { 2198 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2199 __func__, code); 2200 return EAGAIN; 2201 } 2202 sc->flags|= WPI_FLAG_BUSY; 2203 2204 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2205 code, size)); 2206 2207 desc = &ring->desc[ring->cur]; 2208 cmd = &ring->cmd[ring->cur]; 2209 2210 cmd->code = code; 2211 cmd->flags = 0; 2212 cmd->qid = ring->qid; 2213 cmd->idx = ring->cur; 2214 memcpy(cmd->data, buf, size); 2215 2216 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2217 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2218 ring->cur * sizeof (struct wpi_tx_cmd)); 2219 desc->segs[0].len = htole32(4 + size); 2220 2221 /* kick cmd ring */ 2222 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2223 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2224 2225 if (async) { 2226 sc->flags &= ~ WPI_FLAG_BUSY; 2227 return 0; 2228 } 2229 2230 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2231 } 2232 2233 static int 2234 wpi_wme_update(struct ieee80211com *ic) 2235 { 2236 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2237 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2238 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2239 const struct wmeParams *wmep; 2240 struct wpi_wme_setup wme; 2241 int ac; 2242 2243 /* don't override default WME values if WME is not actually enabled */ 2244 if (!(ic->ic_flags & IEEE80211_F_WME)) 2245 return 0; 2246 2247 wme.flags = 0; 2248 for (ac = 0; ac < WME_NUM_AC; ac++) { 2249 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2250 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2251 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2252 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2253 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2254 2255 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2256 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2257 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2258 } 2259 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2260 #undef WPI_USEC 2261 #undef WPI_EXP2 2262 } 2263 2264 /* 2265 * Configure h/w multi-rate retries. 2266 */ 2267 static int 2268 wpi_mrr_setup(struct wpi_softc *sc) 2269 { 2270 struct ifnet *ifp = sc->sc_ifp; 2271 struct ieee80211com *ic = ifp->if_l2com; 2272 struct wpi_mrr_setup mrr; 2273 int i, error; 2274 2275 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2276 2277 /* CCK rates (not used with 802.11a) */ 2278 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2279 mrr.rates[i].flags = 0; 2280 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2281 /* fallback to the immediate lower CCK rate (if any) */ 2282 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2283 /* try one time at this rate before falling back to "next" */ 2284 mrr.rates[i].ntries = 1; 2285 } 2286 2287 /* OFDM rates (not used with 802.11b) */ 2288 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2289 mrr.rates[i].flags = 0; 2290 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2291 /* fallback to the immediate lower OFDM rate (if any) */ 2292 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2293 mrr.rates[i].next = (i == WPI_OFDM6) ? 2294 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2295 WPI_OFDM6 : WPI_CCK2) : 2296 i - 1; 2297 /* try one time at this rate before falling back to "next" */ 2298 mrr.rates[i].ntries = 1; 2299 } 2300 2301 /* setup MRR for control frames */ 2302 mrr.which = WPI_MRR_CTL; 2303 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2304 if (error != 0) { 2305 device_printf(sc->sc_dev, 2306 "could not setup MRR for control frames\n"); 2307 return error; 2308 } 2309 2310 /* setup MRR for data frames */ 2311 mrr.which = WPI_MRR_DATA; 2312 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2313 if (error != 0) { 2314 device_printf(sc->sc_dev, 2315 "could not setup MRR for data frames\n"); 2316 return error; 2317 } 2318 2319 return 0; 2320 } 2321 2322 static void 2323 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2324 { 2325 struct wpi_cmd_led led; 2326 2327 led.which = which; 2328 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2329 led.off = off; 2330 led.on = on; 2331 2332 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2333 } 2334 2335 static void 2336 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2337 { 2338 struct wpi_cmd_tsf tsf; 2339 uint64_t val, mod; 2340 2341 memset(&tsf, 0, sizeof tsf); 2342 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2343 tsf.bintval = htole16(ni->ni_intval); 2344 tsf.lintval = htole16(10); 2345 2346 /* compute remaining time until next beacon */ 2347 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2348 mod = le64toh(tsf.tstamp) % val; 2349 tsf.binitval = htole32((uint32_t)(val - mod)); 2350 2351 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2352 device_printf(sc->sc_dev, "could not enable TSF\n"); 2353 } 2354 2355 #if 0 2356 /* 2357 * Build a beacon frame that the firmware will broadcast periodically in 2358 * IBSS or HostAP modes. 2359 */ 2360 static int 2361 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2362 { 2363 struct ifnet *ifp = sc->sc_ifp; 2364 struct ieee80211com *ic = ifp->if_l2com; 2365 struct wpi_tx_ring *ring = &sc->cmdq; 2366 struct wpi_tx_desc *desc; 2367 struct wpi_tx_data *data; 2368 struct wpi_tx_cmd *cmd; 2369 struct wpi_cmd_beacon *bcn; 2370 struct ieee80211_beacon_offsets bo; 2371 struct mbuf *m0; 2372 bus_addr_t physaddr; 2373 int error; 2374 2375 desc = &ring->desc[ring->cur]; 2376 data = &ring->data[ring->cur]; 2377 2378 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2379 if (m0 == NULL) { 2380 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2381 return ENOMEM; 2382 } 2383 2384 cmd = &ring->cmd[ring->cur]; 2385 cmd->code = WPI_CMD_SET_BEACON; 2386 cmd->flags = 0; 2387 cmd->qid = ring->qid; 2388 cmd->idx = ring->cur; 2389 2390 bcn = (struct wpi_cmd_beacon *)cmd->data; 2391 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2392 bcn->id = WPI_ID_BROADCAST; 2393 bcn->ofdm_mask = 0xff; 2394 bcn->cck_mask = 0x0f; 2395 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2396 bcn->len = htole16(m0->m_pkthdr.len); 2397 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2398 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2399 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2400 2401 /* save and trim IEEE802.11 header */ 2402 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2403 m_adj(m0, sizeof (struct ieee80211_frame)); 2404 2405 /* assume beacon frame is contiguous */ 2406 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2407 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2408 if (error != 0) { 2409 device_printf(sc->sc_dev, "could not map beacon\n"); 2410 m_freem(m0); 2411 return error; 2412 } 2413 2414 data->m = m0; 2415 2416 /* first scatter/gather segment is used by the beacon command */ 2417 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2418 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2419 ring->cur * sizeof (struct wpi_tx_cmd)); 2420 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2421 desc->segs[1].addr = htole32(physaddr); 2422 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2423 2424 /* kick cmd ring */ 2425 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2426 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2427 2428 return 0; 2429 } 2430 #endif 2431 2432 static int 2433 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2434 { 2435 struct ieee80211com *ic = vap->iv_ic; 2436 struct ieee80211_node *ni = vap->iv_bss; 2437 struct wpi_node_info node; 2438 int error; 2439 2440 2441 /* update adapter's configuration */ 2442 sc->config.associd = 0; 2443 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2444 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2445 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2446 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2447 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2448 WPI_CONFIG_24GHZ); 2449 } else { 2450 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO | 2451 WPI_CONFIG_24GHZ); 2452 } 2453 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2454 sc->config.cck_mask = 0; 2455 sc->config.ofdm_mask = 0x15; 2456 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2457 sc->config.cck_mask = 0x03; 2458 sc->config.ofdm_mask = 0; 2459 } else { 2460 /* XXX assume 802.11b/g */ 2461 sc->config.cck_mask = 0x0f; 2462 sc->config.ofdm_mask = 0x15; 2463 } 2464 2465 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2466 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2467 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2468 sizeof (struct wpi_config), 1); 2469 if (error != 0) { 2470 device_printf(sc->sc_dev, "could not configure\n"); 2471 return error; 2472 } 2473 2474 /* configuration has changed, set Tx power accordingly */ 2475 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2476 device_printf(sc->sc_dev, "could not set Tx power\n"); 2477 return error; 2478 } 2479 2480 /* add default node */ 2481 memset(&node, 0, sizeof node); 2482 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2483 node.id = WPI_ID_BSS; 2484 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2485 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2486 node.action = htole32(WPI_ACTION_SET_RATE); 2487 node.antenna = WPI_ANTENNA_BOTH; 2488 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2489 if (error != 0) 2490 device_printf(sc->sc_dev, "could not add BSS node\n"); 2491 2492 return (error); 2493 } 2494 2495 static int 2496 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2497 { 2498 struct ieee80211com *ic = vap->iv_ic; 2499 struct ieee80211_node *ni = vap->iv_bss; 2500 int error; 2501 2502 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2503 /* link LED blinks while monitoring */ 2504 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2505 return 0; 2506 } 2507 2508 wpi_enable_tsf(sc, ni); 2509 2510 /* update adapter's configuration */ 2511 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2512 /* short preamble/slot time are negotiated when associating */ 2513 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2514 WPI_CONFIG_SHSLOT); 2515 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2516 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2517 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2518 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2519 sc->config.filter |= htole32(WPI_FILTER_BSS); 2520 2521 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2522 2523 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2524 sc->config.flags)); 2525 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2526 wpi_config), 1); 2527 if (error != 0) { 2528 device_printf(sc->sc_dev, "could not update configuration\n"); 2529 return error; 2530 } 2531 2532 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2533 if (error != 0) { 2534 device_printf(sc->sc_dev, "could set txpower\n"); 2535 return error; 2536 } 2537 2538 /* link LED always on while associated */ 2539 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2540 2541 /* start automatic rate control timer */ 2542 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2543 2544 return (error); 2545 } 2546 2547 /* 2548 * Send a scan request to the firmware. Since this command is huge, we map it 2549 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2550 * much of this code is similar to that in wpi_cmd but because we must manually 2551 * construct the probe & channels, we duplicate what's needed here. XXX In the 2552 * future, this function should be modified to use wpi_cmd to help cleanup the 2553 * code base. 2554 */ 2555 static int 2556 wpi_scan(struct wpi_softc *sc) 2557 { 2558 struct ifnet *ifp = sc->sc_ifp; 2559 struct ieee80211com *ic = ifp->if_l2com; 2560 struct ieee80211_scan_state *ss = ic->ic_scan; 2561 struct wpi_tx_ring *ring = &sc->cmdq; 2562 struct wpi_tx_desc *desc; 2563 struct wpi_tx_data *data; 2564 struct wpi_tx_cmd *cmd; 2565 struct wpi_scan_hdr *hdr; 2566 struct wpi_scan_chan *chan; 2567 struct ieee80211_frame *wh; 2568 struct ieee80211_rateset *rs; 2569 struct ieee80211_channel *c; 2570 enum ieee80211_phymode mode; 2571 uint8_t *frm; 2572 int nrates, pktlen, error, i, nssid; 2573 bus_addr_t physaddr; 2574 2575 desc = &ring->desc[ring->cur]; 2576 data = &ring->data[ring->cur]; 2577 2578 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2579 if (data->m == NULL) { 2580 device_printf(sc->sc_dev, 2581 "could not allocate mbuf for scan command\n"); 2582 return ENOMEM; 2583 } 2584 2585 cmd = mtod(data->m, struct wpi_tx_cmd *); 2586 cmd->code = WPI_CMD_SCAN; 2587 cmd->flags = 0; 2588 cmd->qid = ring->qid; 2589 cmd->idx = ring->cur; 2590 2591 hdr = (struct wpi_scan_hdr *)cmd->data; 2592 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2593 2594 /* 2595 * Move to the next channel if no packets are received within 5 msecs 2596 * after sending the probe request (this helps to reduce the duration 2597 * of active scans). 2598 */ 2599 hdr->quiet = htole16(5); 2600 hdr->threshold = htole16(1); 2601 2602 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2603 /* send probe requests at 6Mbps */ 2604 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2605 2606 /* Enable crc checking */ 2607 hdr->promotion = htole16(1); 2608 } else { 2609 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2610 /* send probe requests at 1Mbps */ 2611 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2612 } 2613 hdr->tx.id = WPI_ID_BROADCAST; 2614 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2615 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2616 2617 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2618 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2619 for (i = 0; i < nssid; i++) { 2620 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2621 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2622 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2623 hdr->scan_essids[i].esslen); 2624 #ifdef WPI_DEBUG 2625 if (wpi_debug & WPI_DEBUG_SCANNING) { 2626 printf("Scanning Essid: "); 2627 ieee80211_print_essid(hdr->scan_essids[i].essid, 2628 hdr->scan_essids[i].esslen); 2629 printf("\n"); 2630 } 2631 #endif 2632 } 2633 2634 /* 2635 * Build a probe request frame. Most of the following code is a 2636 * copy & paste of what is done in net80211. 2637 */ 2638 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2639 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2640 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2641 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2642 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2643 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2644 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2645 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2646 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2647 2648 frm = (uint8_t *)(wh + 1); 2649 2650 /* add essid IE, the hardware will fill this in for us */ 2651 *frm++ = IEEE80211_ELEMID_SSID; 2652 *frm++ = 0; 2653 2654 mode = ieee80211_chan2mode(ic->ic_curchan); 2655 rs = &ic->ic_sup_rates[mode]; 2656 2657 /* add supported rates IE */ 2658 *frm++ = IEEE80211_ELEMID_RATES; 2659 nrates = rs->rs_nrates; 2660 if (nrates > IEEE80211_RATE_SIZE) 2661 nrates = IEEE80211_RATE_SIZE; 2662 *frm++ = nrates; 2663 memcpy(frm, rs->rs_rates, nrates); 2664 frm += nrates; 2665 2666 /* add supported xrates IE */ 2667 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2668 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2669 *frm++ = IEEE80211_ELEMID_XRATES; 2670 *frm++ = nrates; 2671 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2672 frm += nrates; 2673 } 2674 2675 /* setup length of probe request */ 2676 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2677 2678 /* 2679 * Construct information about the channel that we 2680 * want to scan. The firmware expects this to be directly 2681 * after the scan probe request 2682 */ 2683 c = ic->ic_curchan; 2684 chan = (struct wpi_scan_chan *)frm; 2685 chan->chan = ieee80211_chan2ieee(ic, c); 2686 chan->flags = 0; 2687 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2688 chan->flags |= WPI_CHAN_ACTIVE; 2689 if (nssid != 0) 2690 chan->flags |= WPI_CHAN_DIRECT; 2691 } 2692 chan->gain_dsp = 0x6e; /* Default level */ 2693 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2694 chan->active = htole16(10); 2695 chan->passive = htole16(ss->ss_maxdwell); 2696 chan->gain_radio = 0x3b; 2697 } else { 2698 chan->active = htole16(20); 2699 chan->passive = htole16(ss->ss_maxdwell); 2700 chan->gain_radio = 0x28; 2701 } 2702 2703 DPRINTFN(WPI_DEBUG_SCANNING, 2704 ("Scanning %u Passive: %d\n", 2705 chan->chan, 2706 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2707 2708 hdr->nchan++; 2709 chan++; 2710 2711 frm += sizeof (struct wpi_scan_chan); 2712 #if 0 2713 // XXX All Channels.... 2714 for (c = &ic->ic_channels[1]; 2715 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2716 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2717 continue; 2718 2719 chan->chan = ieee80211_chan2ieee(ic, c); 2720 chan->flags = 0; 2721 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2722 chan->flags |= WPI_CHAN_ACTIVE; 2723 if (ic->ic_des_ssid[0].len != 0) 2724 chan->flags |= WPI_CHAN_DIRECT; 2725 } 2726 chan->gain_dsp = 0x6e; /* Default level */ 2727 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2728 chan->active = htole16(10); 2729 chan->passive = htole16(110); 2730 chan->gain_radio = 0x3b; 2731 } else { 2732 chan->active = htole16(20); 2733 chan->passive = htole16(120); 2734 chan->gain_radio = 0x28; 2735 } 2736 2737 DPRINTFN(WPI_DEBUG_SCANNING, 2738 ("Scanning %u Passive: %d\n", 2739 chan->chan, 2740 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2741 2742 hdr->nchan++; 2743 chan++; 2744 2745 frm += sizeof (struct wpi_scan_chan); 2746 } 2747 #endif 2748 2749 hdr->len = htole16(frm - (uint8_t *)hdr); 2750 pktlen = frm - (uint8_t *)cmd; 2751 2752 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2753 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2754 if (error != 0) { 2755 device_printf(sc->sc_dev, "could not map scan command\n"); 2756 m_freem(data->m); 2757 data->m = NULL; 2758 return error; 2759 } 2760 2761 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2762 desc->segs[0].addr = htole32(physaddr); 2763 desc->segs[0].len = htole32(pktlen); 2764 2765 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2766 BUS_DMASYNC_PREWRITE); 2767 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2768 2769 /* kick cmd ring */ 2770 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2771 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2772 2773 sc->sc_scan_timer = 5; 2774 return 0; /* will be notified async. of failure/success */ 2775 } 2776 2777 /** 2778 * Configure the card to listen to a particular channel, this transisions the 2779 * card in to being able to receive frames from remote devices. 2780 */ 2781 static int 2782 wpi_config(struct wpi_softc *sc) 2783 { 2784 struct ifnet *ifp = sc->sc_ifp; 2785 struct ieee80211com *ic = ifp->if_l2com; 2786 struct wpi_power power; 2787 struct wpi_bluetooth bluetooth; 2788 struct wpi_node_info node; 2789 int error; 2790 2791 /* set power mode */ 2792 memset(&power, 0, sizeof power); 2793 power.flags = htole32(WPI_POWER_CAM|0x8); 2794 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2795 if (error != 0) { 2796 device_printf(sc->sc_dev, "could not set power mode\n"); 2797 return error; 2798 } 2799 2800 /* configure bluetooth coexistence */ 2801 memset(&bluetooth, 0, sizeof bluetooth); 2802 bluetooth.flags = 3; 2803 bluetooth.lead = 0xaa; 2804 bluetooth.kill = 1; 2805 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2806 0); 2807 if (error != 0) { 2808 device_printf(sc->sc_dev, 2809 "could not configure bluetooth coexistence\n"); 2810 return error; 2811 } 2812 2813 /* configure adapter */ 2814 memset(&sc->config, 0, sizeof (struct wpi_config)); 2815 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2816 /*set default channel*/ 2817 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2818 sc->config.flags = htole32(WPI_CONFIG_TSF); 2819 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2820 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2821 WPI_CONFIG_24GHZ); 2822 } 2823 sc->config.filter = 0; 2824 switch (ic->ic_opmode) { 2825 case IEEE80211_M_STA: 2826 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2827 sc->config.mode = WPI_MODE_STA; 2828 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2829 break; 2830 case IEEE80211_M_IBSS: 2831 case IEEE80211_M_AHDEMO: 2832 sc->config.mode = WPI_MODE_IBSS; 2833 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2834 WPI_FILTER_MULTICAST); 2835 break; 2836 case IEEE80211_M_HOSTAP: 2837 sc->config.mode = WPI_MODE_HOSTAP; 2838 break; 2839 case IEEE80211_M_MONITOR: 2840 sc->config.mode = WPI_MODE_MONITOR; 2841 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2842 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2843 break; 2844 default: 2845 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2846 return EINVAL; 2847 } 2848 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2849 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2850 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2851 sizeof (struct wpi_config), 0); 2852 if (error != 0) { 2853 device_printf(sc->sc_dev, "configure command failed\n"); 2854 return error; 2855 } 2856 2857 /* configuration has changed, set Tx power accordingly */ 2858 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2859 device_printf(sc->sc_dev, "could not set Tx power\n"); 2860 return error; 2861 } 2862 2863 /* add broadcast node */ 2864 memset(&node, 0, sizeof node); 2865 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2866 node.id = WPI_ID_BROADCAST; 2867 node.rate = wpi_plcp_signal(2); 2868 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2869 if (error != 0) { 2870 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2871 return error; 2872 } 2873 2874 /* Setup rate scalling */ 2875 error = wpi_mrr_setup(sc); 2876 if (error != 0) { 2877 device_printf(sc->sc_dev, "could not setup MRR\n"); 2878 return error; 2879 } 2880 2881 return 0; 2882 } 2883 2884 static void 2885 wpi_stop_master(struct wpi_softc *sc) 2886 { 2887 uint32_t tmp; 2888 int ntries; 2889 2890 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2891 2892 tmp = WPI_READ(sc, WPI_RESET); 2893 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2894 2895 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2896 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2897 return; /* already asleep */ 2898 2899 for (ntries = 0; ntries < 100; ntries++) { 2900 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2901 break; 2902 DELAY(10); 2903 } 2904 if (ntries == 100) { 2905 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2906 } 2907 } 2908 2909 static int 2910 wpi_power_up(struct wpi_softc *sc) 2911 { 2912 uint32_t tmp; 2913 int ntries; 2914 2915 wpi_mem_lock(sc); 2916 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2917 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2918 wpi_mem_unlock(sc); 2919 2920 for (ntries = 0; ntries < 5000; ntries++) { 2921 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2922 break; 2923 DELAY(10); 2924 } 2925 if (ntries == 5000) { 2926 device_printf(sc->sc_dev, 2927 "timeout waiting for NIC to power up\n"); 2928 return ETIMEDOUT; 2929 } 2930 return 0; 2931 } 2932 2933 static int 2934 wpi_reset(struct wpi_softc *sc) 2935 { 2936 uint32_t tmp; 2937 int ntries; 2938 2939 DPRINTFN(WPI_DEBUG_HW, 2940 ("Resetting the card - clearing any uploaded firmware\n")); 2941 2942 /* clear any pending interrupts */ 2943 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2944 2945 tmp = WPI_READ(sc, WPI_PLL_CTL); 2946 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2947 2948 tmp = WPI_READ(sc, WPI_CHICKEN); 2949 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2950 2951 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2952 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2953 2954 /* wait for clock stabilization */ 2955 for (ntries = 0; ntries < 25000; ntries++) { 2956 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2957 break; 2958 DELAY(10); 2959 } 2960 if (ntries == 25000) { 2961 device_printf(sc->sc_dev, 2962 "timeout waiting for clock stabilization\n"); 2963 return ETIMEDOUT; 2964 } 2965 2966 /* initialize EEPROM */ 2967 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2968 2969 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2970 device_printf(sc->sc_dev, "EEPROM not found\n"); 2971 return EIO; 2972 } 2973 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2974 2975 return 0; 2976 } 2977 2978 static void 2979 wpi_hw_config(struct wpi_softc *sc) 2980 { 2981 uint32_t rev, hw; 2982 2983 /* voodoo from the Linux "driver".. */ 2984 hw = WPI_READ(sc, WPI_HWCONFIG); 2985 2986 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2987 if ((rev & 0xc0) == 0x40) 2988 hw |= WPI_HW_ALM_MB; 2989 else if (!(rev & 0x80)) 2990 hw |= WPI_HW_ALM_MM; 2991 2992 if (sc->cap == 0x80) 2993 hw |= WPI_HW_SKU_MRC; 2994 2995 hw &= ~WPI_HW_REV_D; 2996 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2997 hw |= WPI_HW_REV_D; 2998 2999 if (sc->type > 1) 3000 hw |= WPI_HW_TYPE_B; 3001 3002 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3003 } 3004 3005 static void 3006 wpi_rfkill_resume(struct wpi_softc *sc) 3007 { 3008 struct ifnet *ifp = sc->sc_ifp; 3009 struct ieee80211com *ic = ifp->if_l2com; 3010 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3011 int ntries; 3012 3013 /* enable firmware again */ 3014 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3015 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3016 3017 /* wait for thermal sensors to calibrate */ 3018 for (ntries = 0; ntries < 1000; ntries++) { 3019 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3020 break; 3021 DELAY(10); 3022 } 3023 3024 if (ntries == 1000) { 3025 device_printf(sc->sc_dev, 3026 "timeout waiting for thermal calibration\n"); 3027 return; 3028 } 3029 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3030 3031 if (wpi_config(sc) != 0) { 3032 device_printf(sc->sc_dev, "device config failed\n"); 3033 return; 3034 } 3035 3036 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3037 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3038 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3039 3040 if (vap != NULL) { 3041 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3042 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3043 ieee80211_beacon_miss(ic); 3044 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3045 } else 3046 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3047 } else { 3048 ieee80211_scan_next(vap); 3049 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3050 } 3051 } 3052 3053 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3054 } 3055 3056 static void 3057 wpi_init_locked(struct wpi_softc *sc, int force) 3058 { 3059 struct ifnet *ifp = sc->sc_ifp; 3060 uint32_t tmp; 3061 int ntries, qid; 3062 3063 wpi_stop_locked(sc); 3064 (void)wpi_reset(sc); 3065 3066 wpi_mem_lock(sc); 3067 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3068 DELAY(20); 3069 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3070 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3071 wpi_mem_unlock(sc); 3072 3073 (void)wpi_power_up(sc); 3074 wpi_hw_config(sc); 3075 3076 /* init Rx ring */ 3077 wpi_mem_lock(sc); 3078 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3079 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3080 offsetof(struct wpi_shared, next)); 3081 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3082 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3083 wpi_mem_unlock(sc); 3084 3085 /* init Tx rings */ 3086 wpi_mem_lock(sc); 3087 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3088 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3089 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3090 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3091 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3092 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3093 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3094 3095 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3096 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3097 3098 for (qid = 0; qid < 6; qid++) { 3099 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3100 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3101 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3102 } 3103 wpi_mem_unlock(sc); 3104 3105 /* clear "radio off" and "disable command" bits (reversed logic) */ 3106 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3107 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3108 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3109 3110 /* clear any pending interrupts */ 3111 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3112 3113 /* enable interrupts */ 3114 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3115 3116 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3117 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3118 3119 if ((wpi_load_firmware(sc)) != 0) { 3120 device_printf(sc->sc_dev, 3121 "A problem occurred loading the firmware to the driver\n"); 3122 return; 3123 } 3124 3125 /* At this point the firmware is up and running. If the hardware 3126 * RF switch is turned off thermal calibration will fail, though 3127 * the card is still happy to continue to accept commands, catch 3128 * this case and schedule a task to watch for it to be turned on. 3129 */ 3130 wpi_mem_lock(sc); 3131 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3132 wpi_mem_unlock(sc); 3133 3134 if (!(tmp & 0x1)) { 3135 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3136 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3137 goto out; 3138 } 3139 3140 /* wait for thermal sensors to calibrate */ 3141 for (ntries = 0; ntries < 1000; ntries++) { 3142 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3143 break; 3144 DELAY(10); 3145 } 3146 3147 if (ntries == 1000) { 3148 device_printf(sc->sc_dev, 3149 "timeout waiting for thermal sensors calibration\n"); 3150 return; 3151 } 3152 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3153 3154 if (wpi_config(sc) != 0) { 3155 device_printf(sc->sc_dev, "device config failed\n"); 3156 return; 3157 } 3158 3159 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3160 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3161 out: 3162 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3163 } 3164 3165 static void 3166 wpi_init(void *arg) 3167 { 3168 struct wpi_softc *sc = arg; 3169 struct ifnet *ifp = sc->sc_ifp; 3170 struct ieee80211com *ic = ifp->if_l2com; 3171 3172 WPI_LOCK(sc); 3173 wpi_init_locked(sc, 0); 3174 WPI_UNLOCK(sc); 3175 3176 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3177 ieee80211_start_all(ic); /* start all vaps */ 3178 } 3179 3180 static void 3181 wpi_stop_locked(struct wpi_softc *sc) 3182 { 3183 struct ifnet *ifp = sc->sc_ifp; 3184 uint32_t tmp; 3185 int ac; 3186 3187 sc->sc_tx_timer = 0; 3188 sc->sc_scan_timer = 0; 3189 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3190 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3191 callout_stop(&sc->watchdog_to); 3192 callout_stop(&sc->calib_to); 3193 3194 3195 /* disable interrupts */ 3196 WPI_WRITE(sc, WPI_MASK, 0); 3197 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3198 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3199 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3200 3201 wpi_mem_lock(sc); 3202 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3203 wpi_mem_unlock(sc); 3204 3205 /* reset all Tx rings */ 3206 for (ac = 0; ac < 4; ac++) 3207 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3208 wpi_reset_tx_ring(sc, &sc->cmdq); 3209 3210 /* reset Rx ring */ 3211 wpi_reset_rx_ring(sc, &sc->rxq); 3212 3213 wpi_mem_lock(sc); 3214 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3215 wpi_mem_unlock(sc); 3216 3217 DELAY(5); 3218 3219 wpi_stop_master(sc); 3220 3221 tmp = WPI_READ(sc, WPI_RESET); 3222 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3223 sc->flags &= ~WPI_FLAG_BUSY; 3224 } 3225 3226 static void 3227 wpi_stop(struct wpi_softc *sc) 3228 { 3229 WPI_LOCK(sc); 3230 wpi_stop_locked(sc); 3231 WPI_UNLOCK(sc); 3232 } 3233 3234 static void 3235 wpi_calib_timeout(void *arg) 3236 { 3237 struct wpi_softc *sc = arg; 3238 struct ifnet *ifp = sc->sc_ifp; 3239 struct ieee80211com *ic = ifp->if_l2com; 3240 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3241 int temp; 3242 3243 if (vap->iv_state != IEEE80211_S_RUN) 3244 return; 3245 3246 /* update sensor data */ 3247 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3248 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3249 3250 wpi_power_calibration(sc, temp); 3251 3252 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3253 } 3254 3255 /* 3256 * This function is called periodically (every 60 seconds) to adjust output 3257 * power to temperature changes. 3258 */ 3259 static void 3260 wpi_power_calibration(struct wpi_softc *sc, int temp) 3261 { 3262 struct ifnet *ifp = sc->sc_ifp; 3263 struct ieee80211com *ic = ifp->if_l2com; 3264 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3265 3266 /* sanity-check read value */ 3267 if (temp < -260 || temp > 25) { 3268 /* this can't be correct, ignore */ 3269 DPRINTFN(WPI_DEBUG_TEMP, 3270 ("out-of-range temperature reported: %d\n", temp)); 3271 return; 3272 } 3273 3274 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3275 3276 /* adjust Tx power if need be */ 3277 if (abs(temp - sc->temp) <= 6) 3278 return; 3279 3280 sc->temp = temp; 3281 3282 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3283 /* just warn, too bad for the automatic calibration... */ 3284 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3285 } 3286 } 3287 3288 /** 3289 * Read the eeprom to find out what channels are valid for the given 3290 * band and update net80211 with what we find. 3291 */ 3292 static void 3293 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3294 { 3295 struct ifnet *ifp = sc->sc_ifp; 3296 struct ieee80211com *ic = ifp->if_l2com; 3297 const struct wpi_chan_band *band = &wpi_bands[n]; 3298 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3299 struct ieee80211_channel *c; 3300 int chan, i, passive; 3301 3302 wpi_read_prom_data(sc, band->addr, channels, 3303 band->nchan * sizeof (struct wpi_eeprom_chan)); 3304 3305 for (i = 0; i < band->nchan; i++) { 3306 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3307 DPRINTFN(WPI_DEBUG_HW, 3308 ("Channel Not Valid: %d, band %d\n", 3309 band->chan[i],n)); 3310 continue; 3311 } 3312 3313 passive = 0; 3314 chan = band->chan[i]; 3315 c = &ic->ic_channels[ic->ic_nchans++]; 3316 3317 /* is active scan allowed on this channel? */ 3318 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3319 passive = IEEE80211_CHAN_PASSIVE; 3320 } 3321 3322 if (n == 0) { /* 2GHz band */ 3323 c->ic_ieee = chan; 3324 c->ic_freq = ieee80211_ieee2mhz(chan, 3325 IEEE80211_CHAN_2GHZ); 3326 c->ic_flags = IEEE80211_CHAN_B | passive; 3327 3328 c = &ic->ic_channels[ic->ic_nchans++]; 3329 c->ic_ieee = chan; 3330 c->ic_freq = ieee80211_ieee2mhz(chan, 3331 IEEE80211_CHAN_2GHZ); 3332 c->ic_flags = IEEE80211_CHAN_G | passive; 3333 3334 } else { /* 5GHz band */ 3335 /* 3336 * Some 3945ABG adapters support channels 7, 8, 11 3337 * and 12 in the 2GHz *and* 5GHz bands. 3338 * Because of limitations in our net80211(9) stack, 3339 * we can't support these channels in 5GHz band. 3340 * XXX not true; just need to map to proper frequency 3341 */ 3342 if (chan <= 14) 3343 continue; 3344 3345 c->ic_ieee = chan; 3346 c->ic_freq = ieee80211_ieee2mhz(chan, 3347 IEEE80211_CHAN_5GHZ); 3348 c->ic_flags = IEEE80211_CHAN_A | passive; 3349 } 3350 3351 /* save maximum allowed power for this channel */ 3352 sc->maxpwr[chan] = channels[i].maxpwr; 3353 3354 #if 0 3355 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3356 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3357 //ic->ic_channels[chan].ic_minpower... 3358 //ic->ic_channels[chan].ic_maxregtxpower... 3359 #endif 3360 3361 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3362 " passive=%d, offset %d\n", chan, c->ic_freq, 3363 channels[i].flags, sc->maxpwr[chan], 3364 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3365 ic->ic_nchans)); 3366 } 3367 } 3368 3369 static void 3370 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3371 { 3372 struct wpi_power_group *group = &sc->groups[n]; 3373 struct wpi_eeprom_group rgroup; 3374 int i; 3375 3376 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3377 sizeof rgroup); 3378 3379 /* save power group information */ 3380 group->chan = rgroup.chan; 3381 group->maxpwr = rgroup.maxpwr; 3382 /* temperature at which the samples were taken */ 3383 group->temp = (int16_t)le16toh(rgroup.temp); 3384 3385 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3386 group->chan, group->maxpwr, group->temp)); 3387 3388 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3389 group->samples[i].index = rgroup.samples[i].index; 3390 group->samples[i].power = rgroup.samples[i].power; 3391 3392 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3393 group->samples[i].index, group->samples[i].power)); 3394 } 3395 } 3396 3397 /* 3398 * Update Tx power to match what is defined for channel `c'. 3399 */ 3400 static int 3401 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3402 { 3403 struct ifnet *ifp = sc->sc_ifp; 3404 struct ieee80211com *ic = ifp->if_l2com; 3405 struct wpi_power_group *group; 3406 struct wpi_cmd_txpower txpower; 3407 u_int chan; 3408 int i; 3409 3410 /* get channel number */ 3411 chan = ieee80211_chan2ieee(ic, c); 3412 3413 /* find the power group to which this channel belongs */ 3414 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3415 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3416 if (chan <= group->chan) 3417 break; 3418 } else 3419 group = &sc->groups[0]; 3420 3421 memset(&txpower, 0, sizeof txpower); 3422 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3423 txpower.channel = htole16(chan); 3424 3425 /* set Tx power for all OFDM and CCK rates */ 3426 for (i = 0; i <= 11 ; i++) { 3427 /* retrieve Tx power for this channel/rate combination */ 3428 int idx = wpi_get_power_index(sc, group, c, 3429 wpi_ridx_to_rate[i]); 3430 3431 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3432 3433 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3434 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3435 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3436 } else { 3437 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3438 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3439 } 3440 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3441 chan, wpi_ridx_to_rate[i], idx)); 3442 } 3443 3444 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3445 } 3446 3447 /* 3448 * Determine Tx power index for a given channel/rate combination. 3449 * This takes into account the regulatory information from EEPROM and the 3450 * current temperature. 3451 */ 3452 static int 3453 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3454 struct ieee80211_channel *c, int rate) 3455 { 3456 /* fixed-point arithmetic division using a n-bit fractional part */ 3457 #define fdivround(a, b, n) \ 3458 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3459 3460 /* linear interpolation */ 3461 #define interpolate(x, x1, y1, x2, y2, n) \ 3462 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3463 3464 struct ifnet *ifp = sc->sc_ifp; 3465 struct ieee80211com *ic = ifp->if_l2com; 3466 struct wpi_power_sample *sample; 3467 int pwr, idx; 3468 u_int chan; 3469 3470 /* get channel number */ 3471 chan = ieee80211_chan2ieee(ic, c); 3472 3473 /* default power is group's maximum power - 3dB */ 3474 pwr = group->maxpwr / 2; 3475 3476 /* decrease power for highest OFDM rates to reduce distortion */ 3477 switch (rate) { 3478 case 72: /* 36Mb/s */ 3479 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3480 break; 3481 case 96: /* 48Mb/s */ 3482 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3483 break; 3484 case 108: /* 54Mb/s */ 3485 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3486 break; 3487 } 3488 3489 /* never exceed channel's maximum allowed Tx power */ 3490 pwr = min(pwr, sc->maxpwr[chan]); 3491 3492 /* retrieve power index into gain tables from samples */ 3493 for (sample = group->samples; sample < &group->samples[3]; sample++) 3494 if (pwr > sample[1].power) 3495 break; 3496 /* fixed-point linear interpolation using a 19-bit fractional part */ 3497 idx = interpolate(pwr, sample[0].power, sample[0].index, 3498 sample[1].power, sample[1].index, 19); 3499 3500 /* 3501 * Adjust power index based on current temperature 3502 * - if colder than factory-calibrated: decreate output power 3503 * - if warmer than factory-calibrated: increase output power 3504 */ 3505 idx -= (sc->temp - group->temp) * 11 / 100; 3506 3507 /* decrease power for CCK rates (-5dB) */ 3508 if (!WPI_RATE_IS_OFDM(rate)) 3509 idx += 10; 3510 3511 /* keep power index in a valid range */ 3512 if (idx < 0) 3513 return 0; 3514 if (idx > WPI_MAX_PWR_INDEX) 3515 return WPI_MAX_PWR_INDEX; 3516 return idx; 3517 3518 #undef interpolate 3519 #undef fdivround 3520 } 3521 3522 /** 3523 * Called by net80211 framework to indicate that a scan 3524 * is starting. This function doesn't actually do the scan, 3525 * wpi_scan_curchan starts things off. This function is more 3526 * of an early warning from the framework we should get ready 3527 * for the scan. 3528 */ 3529 static void 3530 wpi_scan_start(struct ieee80211com *ic) 3531 { 3532 struct ifnet *ifp = ic->ic_ifp; 3533 struct wpi_softc *sc = ifp->if_softc; 3534 3535 WPI_LOCK(sc); 3536 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3537 WPI_UNLOCK(sc); 3538 } 3539 3540 /** 3541 * Called by the net80211 framework, indicates that the 3542 * scan has ended. If there is a scan in progress on the card 3543 * then it should be aborted. 3544 */ 3545 static void 3546 wpi_scan_end(struct ieee80211com *ic) 3547 { 3548 /* XXX ignore */ 3549 } 3550 3551 /** 3552 * Called by the net80211 framework to indicate to the driver 3553 * that the channel should be changed 3554 */ 3555 static void 3556 wpi_set_channel(struct ieee80211com *ic) 3557 { 3558 struct ifnet *ifp = ic->ic_ifp; 3559 struct wpi_softc *sc = ifp->if_softc; 3560 int error; 3561 3562 /* 3563 * Only need to set the channel in Monitor mode. AP scanning and auth 3564 * are already taken care of by their respective firmware commands. 3565 */ 3566 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3567 WPI_LOCK(sc); 3568 error = wpi_config(sc); 3569 WPI_UNLOCK(sc); 3570 if (error != 0) 3571 device_printf(sc->sc_dev, 3572 "error %d settting channel\n", error); 3573 } 3574 } 3575 3576 /** 3577 * Called by net80211 to indicate that we need to scan the current 3578 * channel. The channel is previously be set via the wpi_set_channel 3579 * callback. 3580 */ 3581 static void 3582 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3583 { 3584 struct ieee80211vap *vap = ss->ss_vap; 3585 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3586 struct wpi_softc *sc = ifp->if_softc; 3587 3588 WPI_LOCK(sc); 3589 if (wpi_scan(sc)) 3590 ieee80211_cancel_scan(vap); 3591 WPI_UNLOCK(sc); 3592 } 3593 3594 /** 3595 * Called by the net80211 framework to indicate 3596 * the minimum dwell time has been met, terminate the scan. 3597 * We don't actually terminate the scan as the firmware will notify 3598 * us when it's finished and we have no way to interrupt it. 3599 */ 3600 static void 3601 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3602 { 3603 /* NB: don't try to abort scan; wait for firmware to finish */ 3604 } 3605 3606 static void 3607 wpi_hwreset(void *arg, int pending) 3608 { 3609 struct wpi_softc *sc = arg; 3610 3611 WPI_LOCK(sc); 3612 wpi_init_locked(sc, 0); 3613 WPI_UNLOCK(sc); 3614 } 3615 3616 static void 3617 wpi_rfreset(void *arg, int pending) 3618 { 3619 struct wpi_softc *sc = arg; 3620 3621 WPI_LOCK(sc); 3622 wpi_rfkill_resume(sc); 3623 WPI_UNLOCK(sc); 3624 } 3625 3626 /* 3627 * Allocate DMA-safe memory for firmware transfer. 3628 */ 3629 static int 3630 wpi_alloc_fwmem(struct wpi_softc *sc) 3631 { 3632 /* allocate enough contiguous space to store text and data */ 3633 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3634 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3635 BUS_DMA_NOWAIT); 3636 } 3637 3638 static void 3639 wpi_free_fwmem(struct wpi_softc *sc) 3640 { 3641 wpi_dma_contig_free(&sc->fw_dma); 3642 } 3643 3644 /** 3645 * Called every second, wpi_watchdog used by the watch dog timer 3646 * to check that the card is still alive 3647 */ 3648 static void 3649 wpi_watchdog(void *arg) 3650 { 3651 struct wpi_softc *sc = arg; 3652 struct ifnet *ifp = sc->sc_ifp; 3653 struct ieee80211com *ic = ifp->if_l2com; 3654 uint32_t tmp; 3655 3656 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3657 3658 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3659 /* No need to lock firmware memory */ 3660 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3661 3662 if ((tmp & 0x1) == 0) { 3663 /* Radio kill switch is still off */ 3664 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3665 return; 3666 } 3667 3668 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3669 ieee80211_runtask(ic, &sc->sc_radiotask); 3670 return; 3671 } 3672 3673 if (sc->sc_tx_timer > 0) { 3674 if (--sc->sc_tx_timer == 0) { 3675 device_printf(sc->sc_dev,"device timeout\n"); 3676 ifp->if_oerrors++; 3677 ieee80211_runtask(ic, &sc->sc_restarttask); 3678 } 3679 } 3680 if (sc->sc_scan_timer > 0) { 3681 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3682 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3683 device_printf(sc->sc_dev,"scan timeout\n"); 3684 ieee80211_cancel_scan(vap); 3685 ieee80211_runtask(ic, &sc->sc_restarttask); 3686 } 3687 } 3688 3689 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3690 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3691 } 3692 3693 #ifdef WPI_DEBUG 3694 static const char *wpi_cmd_str(int cmd) 3695 { 3696 switch (cmd) { 3697 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3698 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3699 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3700 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3701 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3702 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3703 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3704 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3705 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3706 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3707 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3708 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3709 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3710 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3711 3712 default: 3713 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3714 return "UNKNOWN CMD"; /* Make the compiler happy */ 3715 } 3716 } 3717 #endif 3718 3719 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3720 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3721 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3722