1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #include <machine/bus.h> 79 #include <machine/resource.h> 80 #include <sys/rman.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 85 #include <net/bpf.h> 86 #include <net/if.h> 87 #include <net/if_arp.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <net80211/ieee80211_var.h> 94 #include <net80211/ieee80211_radiotap.h> 95 #include <net80211/ieee80211_regdomain.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_systm.h> 99 #include <netinet/in_var.h> 100 #include <netinet/ip.h> 101 #include <netinet/if_ether.h> 102 103 #include <dev/wpi/if_wpireg.h> 104 #include <dev/wpi/if_wpivar.h> 105 106 #define WPI_DEBUG 107 108 #ifdef WPI_DEBUG 109 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 110 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 111 #define WPI_DEBUG_SET (wpi_debug != 0) 112 113 enum { 114 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 115 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 116 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 117 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 118 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 119 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 120 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 121 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 122 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 123 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 124 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 125 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 126 WPI_DEBUG_ANY = 0xffffffff 127 }; 128 129 static int wpi_debug = 0; 130 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 131 TUNABLE_INT("debug.wpi", &wpi_debug); 132 133 #else 134 #define DPRINTF(x) 135 #define DPRINTFN(n, x) 136 #define WPI_DEBUG_SET 0 137 #endif 138 139 struct wpi_ident { 140 uint16_t vendor; 141 uint16_t device; 142 uint16_t subdevice; 143 const char *name; 144 }; 145 146 static const struct wpi_ident wpi_ident_table[] = { 147 /* The below entries support ABG regardless of the subid */ 148 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 149 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 150 /* The below entries only support BG */ 151 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 152 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 153 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 154 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 155 { 0, 0, 0, NULL } 156 }; 157 158 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 159 const char name[IFNAMSIZ], int unit, int opmode, 160 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 161 const uint8_t mac[IEEE80211_ADDR_LEN]); 162 static void wpi_vap_delete(struct ieee80211vap *); 163 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 164 void **, bus_size_t, bus_size_t, int); 165 static void wpi_dma_contig_free(struct wpi_dma_info *); 166 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 167 static int wpi_alloc_shared(struct wpi_softc *); 168 static void wpi_free_shared(struct wpi_softc *); 169 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 170 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 171 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 172 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 173 int, int); 174 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 175 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 176 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 177 const uint8_t mac[IEEE80211_ADDR_LEN]); 178 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 179 static void wpi_mem_lock(struct wpi_softc *); 180 static void wpi_mem_unlock(struct wpi_softc *); 181 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 182 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 183 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 184 const uint32_t *, int); 185 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 186 static int wpi_alloc_fwmem(struct wpi_softc *); 187 static void wpi_free_fwmem(struct wpi_softc *); 188 static int wpi_load_firmware(struct wpi_softc *); 189 static void wpi_unload_firmware(struct wpi_softc *); 190 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 191 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 192 struct wpi_rx_data *); 193 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 194 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 195 static void wpi_notif_intr(struct wpi_softc *); 196 static void wpi_intr(void *); 197 static uint8_t wpi_plcp_signal(int); 198 static void wpi_watchdog(void *); 199 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 200 struct ieee80211_node *, int); 201 static void wpi_start(struct ifnet *); 202 static void wpi_start_locked(struct ifnet *); 203 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 204 const struct ieee80211_bpf_params *); 205 static void wpi_scan_start(struct ieee80211com *); 206 static void wpi_scan_end(struct ieee80211com *); 207 static void wpi_set_channel(struct ieee80211com *); 208 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 209 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 210 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 211 static void wpi_read_eeprom(struct wpi_softc *, 212 uint8_t macaddr[IEEE80211_ADDR_LEN]); 213 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 214 static void wpi_read_eeprom_group(struct wpi_softc *, int); 215 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 216 static int wpi_wme_update(struct ieee80211com *); 217 static int wpi_mrr_setup(struct wpi_softc *); 218 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 219 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 220 #if 0 221 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 222 #endif 223 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 224 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 225 static int wpi_scan(struct wpi_softc *); 226 static int wpi_config(struct wpi_softc *); 227 static void wpi_stop_master(struct wpi_softc *); 228 static int wpi_power_up(struct wpi_softc *); 229 static int wpi_reset(struct wpi_softc *); 230 static void wpi_hwreset(void *, int); 231 static void wpi_rfreset(void *, int); 232 static void wpi_hw_config(struct wpi_softc *); 233 static void wpi_init(void *); 234 static void wpi_init_locked(struct wpi_softc *, int); 235 static void wpi_stop(struct wpi_softc *); 236 static void wpi_stop_locked(struct wpi_softc *); 237 238 static void wpi_newassoc(struct ieee80211_node *, int); 239 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 240 int); 241 static void wpi_calib_timeout(void *); 242 static void wpi_power_calibration(struct wpi_softc *, int); 243 static int wpi_get_power_index(struct wpi_softc *, 244 struct wpi_power_group *, struct ieee80211_channel *, int); 245 #ifdef WPI_DEBUG 246 static const char *wpi_cmd_str(int); 247 #endif 248 static int wpi_probe(device_t); 249 static int wpi_attach(device_t); 250 static int wpi_detach(device_t); 251 static int wpi_shutdown(device_t); 252 static int wpi_suspend(device_t); 253 static int wpi_resume(device_t); 254 255 256 static device_method_t wpi_methods[] = { 257 /* Device interface */ 258 DEVMETHOD(device_probe, wpi_probe), 259 DEVMETHOD(device_attach, wpi_attach), 260 DEVMETHOD(device_detach, wpi_detach), 261 DEVMETHOD(device_shutdown, wpi_shutdown), 262 DEVMETHOD(device_suspend, wpi_suspend), 263 DEVMETHOD(device_resume, wpi_resume), 264 265 { 0, 0 } 266 }; 267 268 static driver_t wpi_driver = { 269 "wpi", 270 wpi_methods, 271 sizeof (struct wpi_softc) 272 }; 273 274 static devclass_t wpi_devclass; 275 276 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 277 278 static const uint8_t wpi_ridx_to_plcp[] = { 279 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 280 /* R1-R4 (ral/ural is R4-R1) */ 281 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 282 /* CCK: device-dependent */ 283 10, 20, 55, 110 284 }; 285 static const uint8_t wpi_ridx_to_rate[] = { 286 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 287 2, 4, 11, 22 /*CCK */ 288 }; 289 290 291 static int 292 wpi_probe(device_t dev) 293 { 294 const struct wpi_ident *ident; 295 296 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 297 if (pci_get_vendor(dev) == ident->vendor && 298 pci_get_device(dev) == ident->device) { 299 device_set_desc(dev, ident->name); 300 return 0; 301 } 302 } 303 return ENXIO; 304 } 305 306 /** 307 * Load the firmare image from disk to the allocated dma buffer. 308 * we also maintain the reference to the firmware pointer as there 309 * is times where we may need to reload the firmware but we are not 310 * in a context that can access the filesystem (ie taskq cause by restart) 311 * 312 * @return 0 on success, an errno on failure 313 */ 314 static int 315 wpi_load_firmware(struct wpi_softc *sc) 316 { 317 const struct firmware *fp; 318 struct wpi_dma_info *dma = &sc->fw_dma; 319 const struct wpi_firmware_hdr *hdr; 320 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 321 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 322 int error; 323 324 DPRINTFN(WPI_DEBUG_FIRMWARE, 325 ("Attempting Loading Firmware from wpi_fw module\n")); 326 327 WPI_UNLOCK(sc); 328 329 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 330 device_printf(sc->sc_dev, 331 "could not load firmware image 'wpifw'\n"); 332 error = ENOENT; 333 WPI_LOCK(sc); 334 goto fail; 335 } 336 337 fp = sc->fw_fp; 338 339 WPI_LOCK(sc); 340 341 /* Validate the firmware is minimum a particular version */ 342 if (fp->version < WPI_FW_MINVERSION) { 343 device_printf(sc->sc_dev, 344 "firmware version is too old. Need %d, got %d\n", 345 WPI_FW_MINVERSION, 346 fp->version); 347 error = ENXIO; 348 goto fail; 349 } 350 351 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 352 device_printf(sc->sc_dev, 353 "firmware file too short: %zu bytes\n", fp->datasize); 354 error = ENXIO; 355 goto fail; 356 } 357 358 hdr = (const struct wpi_firmware_hdr *)fp->data; 359 360 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 361 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 362 363 rtextsz = le32toh(hdr->rtextsz); 364 rdatasz = le32toh(hdr->rdatasz); 365 itextsz = le32toh(hdr->itextsz); 366 idatasz = le32toh(hdr->idatasz); 367 btextsz = le32toh(hdr->btextsz); 368 369 /* check that all firmware segments are present */ 370 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 371 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 372 device_printf(sc->sc_dev, 373 "firmware file too short: %zu bytes\n", fp->datasize); 374 error = ENXIO; /* XXX appropriate error code? */ 375 goto fail; 376 } 377 378 /* get pointers to firmware segments */ 379 rtext = (const uint8_t *)(hdr + 1); 380 rdata = rtext + rtextsz; 381 itext = rdata + rdatasz; 382 idata = itext + itextsz; 383 btext = idata + idatasz; 384 385 DPRINTFN(WPI_DEBUG_FIRMWARE, 386 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 387 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 388 (le32toh(hdr->version) & 0xff000000) >> 24, 389 (le32toh(hdr->version) & 0x00ff0000) >> 16, 390 (le32toh(hdr->version) & 0x0000ffff), 391 rtextsz, rdatasz, 392 itextsz, idatasz, btextsz)); 393 394 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 395 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 396 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 397 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 398 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 399 400 /* sanity checks */ 401 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 402 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 403 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 404 idatasz > WPI_FW_INIT_DATA_MAXSZ || 405 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 406 (btextsz & 3) != 0) { 407 device_printf(sc->sc_dev, "firmware invalid\n"); 408 error = EINVAL; 409 goto fail; 410 } 411 412 /* copy initialization images into pre-allocated DMA-safe memory */ 413 memcpy(dma->vaddr, idata, idatasz); 414 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 415 416 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 417 418 /* tell adapter where to find initialization images */ 419 wpi_mem_lock(sc); 420 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 421 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 422 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 423 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 424 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 425 wpi_mem_unlock(sc); 426 427 /* load firmware boot code */ 428 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 429 device_printf(sc->sc_dev, "Failed to load microcode\n"); 430 goto fail; 431 } 432 433 /* now press "execute" */ 434 WPI_WRITE(sc, WPI_RESET, 0); 435 436 /* wait at most one second for the first alive notification */ 437 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 438 device_printf(sc->sc_dev, 439 "timeout waiting for adapter to initialize\n"); 440 goto fail; 441 } 442 443 /* copy runtime images into pre-allocated DMA-sage memory */ 444 memcpy(dma->vaddr, rdata, rdatasz); 445 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 446 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 447 448 /* tell adapter where to find runtime images */ 449 wpi_mem_lock(sc); 450 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 451 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 452 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 453 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 454 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 455 wpi_mem_unlock(sc); 456 457 /* wait at most one second for the first alive notification */ 458 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 459 device_printf(sc->sc_dev, 460 "timeout waiting for adapter to initialize2\n"); 461 goto fail; 462 } 463 464 DPRINTFN(WPI_DEBUG_FIRMWARE, 465 ("Firmware loaded to driver successfully\n")); 466 return error; 467 fail: 468 wpi_unload_firmware(sc); 469 return error; 470 } 471 472 /** 473 * Free the referenced firmware image 474 */ 475 static void 476 wpi_unload_firmware(struct wpi_softc *sc) 477 { 478 479 if (sc->fw_fp) { 480 WPI_UNLOCK(sc); 481 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 482 WPI_LOCK(sc); 483 sc->fw_fp = NULL; 484 } 485 } 486 487 static int 488 wpi_attach(device_t dev) 489 { 490 struct wpi_softc *sc = device_get_softc(dev); 491 struct ifnet *ifp; 492 struct ieee80211com *ic; 493 int ac, error, supportsa = 1; 494 uint32_t tmp; 495 const struct wpi_ident *ident; 496 uint8_t macaddr[IEEE80211_ADDR_LEN]; 497 498 sc->sc_dev = dev; 499 500 if (bootverbose || WPI_DEBUG_SET) 501 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 502 503 /* 504 * Some card's only support 802.11b/g not a, check to see if 505 * this is one such card. A 0x0 in the subdevice table indicates 506 * the entire subdevice range is to be ignored. 507 */ 508 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 509 if (ident->subdevice && 510 pci_get_subdevice(dev) == ident->subdevice) { 511 supportsa = 0; 512 break; 513 } 514 } 515 516 /* Create the tasks that can be queued */ 517 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc); 518 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc); 519 520 WPI_LOCK_INIT(sc); 521 522 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 523 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 524 525 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 526 device_printf(dev, "chip is in D%d power mode " 527 "-- setting to D0\n", pci_get_powerstate(dev)); 528 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 529 } 530 531 /* disable the retry timeout register */ 532 pci_write_config(dev, 0x41, 0, 1); 533 534 /* enable bus-mastering */ 535 pci_enable_busmaster(dev); 536 537 sc->mem_rid = PCIR_BAR(0); 538 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 539 RF_ACTIVE); 540 if (sc->mem == NULL) { 541 device_printf(dev, "could not allocate memory resource\n"); 542 error = ENOMEM; 543 goto fail; 544 } 545 546 sc->sc_st = rman_get_bustag(sc->mem); 547 sc->sc_sh = rman_get_bushandle(sc->mem); 548 549 sc->irq_rid = 0; 550 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 551 RF_ACTIVE | RF_SHAREABLE); 552 if (sc->irq == NULL) { 553 device_printf(dev, "could not allocate interrupt resource\n"); 554 error = ENOMEM; 555 goto fail; 556 } 557 558 /* 559 * Allocate DMA memory for firmware transfers. 560 */ 561 if ((error = wpi_alloc_fwmem(sc)) != 0) { 562 printf(": could not allocate firmware memory\n"); 563 error = ENOMEM; 564 goto fail; 565 } 566 567 /* 568 * Put adapter into a known state. 569 */ 570 if ((error = wpi_reset(sc)) != 0) { 571 device_printf(dev, "could not reset adapter\n"); 572 goto fail; 573 } 574 575 wpi_mem_lock(sc); 576 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 577 if (bootverbose || WPI_DEBUG_SET) 578 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 579 580 wpi_mem_unlock(sc); 581 582 /* Allocate shared page */ 583 if ((error = wpi_alloc_shared(sc)) != 0) { 584 device_printf(dev, "could not allocate shared page\n"); 585 goto fail; 586 } 587 588 /* tx data queues - 4 for QoS purposes */ 589 for (ac = 0; ac < WME_NUM_AC; ac++) { 590 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 591 if (error != 0) { 592 device_printf(dev, "could not allocate Tx ring %d\n",ac); 593 goto fail; 594 } 595 } 596 597 /* command queue to talk to the card's firmware */ 598 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 599 if (error != 0) { 600 device_printf(dev, "could not allocate command ring\n"); 601 goto fail; 602 } 603 604 /* receive data queue */ 605 error = wpi_alloc_rx_ring(sc, &sc->rxq); 606 if (error != 0) { 607 device_printf(dev, "could not allocate Rx ring\n"); 608 goto fail; 609 } 610 611 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 612 if (ifp == NULL) { 613 device_printf(dev, "can not if_alloc()\n"); 614 error = ENOMEM; 615 goto fail; 616 } 617 ic = ifp->if_l2com; 618 619 ic->ic_ifp = ifp; 620 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 621 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 622 623 /* set device capabilities */ 624 ic->ic_caps = 625 IEEE80211_C_STA /* station mode supported */ 626 | IEEE80211_C_MONITOR /* monitor mode supported */ 627 | IEEE80211_C_TXPMGT /* tx power management */ 628 | IEEE80211_C_SHSLOT /* short slot time supported */ 629 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 630 | IEEE80211_C_WPA /* 802.11i */ 631 /* XXX looks like WME is partly supported? */ 632 #if 0 633 | IEEE80211_C_IBSS /* IBSS mode support */ 634 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 635 | IEEE80211_C_WME /* 802.11e */ 636 | IEEE80211_C_HOSTAP /* Host access point mode */ 637 #endif 638 ; 639 640 /* 641 * Read in the eeprom and also setup the channels for 642 * net80211. We don't set the rates as net80211 does this for us 643 */ 644 wpi_read_eeprom(sc, macaddr); 645 646 if (bootverbose || WPI_DEBUG_SET) { 647 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 648 device_printf(sc->sc_dev, "Hardware Type: %c\n", 649 sc->type > 1 ? 'B': '?'); 650 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 651 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 652 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 653 supportsa ? "does" : "does not"); 654 655 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 656 what sc->rev really represents - benjsc 20070615 */ 657 } 658 659 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 660 ifp->if_softc = sc; 661 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 662 ifp->if_init = wpi_init; 663 ifp->if_ioctl = wpi_ioctl; 664 ifp->if_start = wpi_start; 665 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 666 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 667 IFQ_SET_READY(&ifp->if_snd); 668 669 ieee80211_ifattach(ic, macaddr); 670 /* override default methods */ 671 ic->ic_node_alloc = wpi_node_alloc; 672 ic->ic_newassoc = wpi_newassoc; 673 ic->ic_raw_xmit = wpi_raw_xmit; 674 ic->ic_wme.wme_update = wpi_wme_update; 675 ic->ic_scan_start = wpi_scan_start; 676 ic->ic_scan_end = wpi_scan_end; 677 ic->ic_set_channel = wpi_set_channel; 678 ic->ic_scan_curchan = wpi_scan_curchan; 679 ic->ic_scan_mindwell = wpi_scan_mindwell; 680 681 ic->ic_vap_create = wpi_vap_create; 682 ic->ic_vap_delete = wpi_vap_delete; 683 684 ieee80211_radiotap_attach(ic, 685 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 686 WPI_TX_RADIOTAP_PRESENT, 687 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 688 WPI_RX_RADIOTAP_PRESENT); 689 690 /* 691 * Hook our interrupt after all initialization is complete. 692 */ 693 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 694 NULL, wpi_intr, sc, &sc->sc_ih); 695 if (error != 0) { 696 device_printf(dev, "could not set up interrupt\n"); 697 goto fail; 698 } 699 700 if (bootverbose) 701 ieee80211_announce(ic); 702 #ifdef XXX_DEBUG 703 ieee80211_announce_channels(ic); 704 #endif 705 return 0; 706 707 fail: wpi_detach(dev); 708 return ENXIO; 709 } 710 711 static int 712 wpi_detach(device_t dev) 713 { 714 struct wpi_softc *sc = device_get_softc(dev); 715 struct ifnet *ifp = sc->sc_ifp; 716 struct ieee80211com *ic; 717 int ac; 718 719 if (ifp != NULL) { 720 ic = ifp->if_l2com; 721 722 ieee80211_draintask(ic, &sc->sc_restarttask); 723 ieee80211_draintask(ic, &sc->sc_radiotask); 724 wpi_stop(sc); 725 callout_drain(&sc->watchdog_to); 726 callout_drain(&sc->calib_to); 727 ieee80211_ifdetach(ic); 728 } 729 730 WPI_LOCK(sc); 731 if (sc->txq[0].data_dmat) { 732 for (ac = 0; ac < WME_NUM_AC; ac++) 733 wpi_free_tx_ring(sc, &sc->txq[ac]); 734 735 wpi_free_tx_ring(sc, &sc->cmdq); 736 wpi_free_rx_ring(sc, &sc->rxq); 737 wpi_free_shared(sc); 738 } 739 740 if (sc->fw_fp != NULL) { 741 wpi_unload_firmware(sc); 742 } 743 744 if (sc->fw_dma.tag) 745 wpi_free_fwmem(sc); 746 WPI_UNLOCK(sc); 747 748 if (sc->irq != NULL) { 749 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 750 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 751 } 752 753 if (sc->mem != NULL) 754 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 755 756 if (ifp != NULL) 757 if_free(ifp); 758 759 WPI_LOCK_DESTROY(sc); 760 761 return 0; 762 } 763 764 static struct ieee80211vap * 765 wpi_vap_create(struct ieee80211com *ic, 766 const char name[IFNAMSIZ], int unit, int opmode, int flags, 767 const uint8_t bssid[IEEE80211_ADDR_LEN], 768 const uint8_t mac[IEEE80211_ADDR_LEN]) 769 { 770 struct wpi_vap *wvp; 771 struct ieee80211vap *vap; 772 773 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 774 return NULL; 775 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 776 M_80211_VAP, M_NOWAIT | M_ZERO); 777 if (wvp == NULL) 778 return NULL; 779 vap = &wvp->vap; 780 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 781 /* override with driver methods */ 782 wvp->newstate = vap->iv_newstate; 783 vap->iv_newstate = wpi_newstate; 784 785 ieee80211_amrr_init(&wvp->amrr, vap, 786 IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, 787 IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD, 788 500 /*ms*/); 789 790 /* complete setup */ 791 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 792 ic->ic_opmode = opmode; 793 return vap; 794 } 795 796 static void 797 wpi_vap_delete(struct ieee80211vap *vap) 798 { 799 struct wpi_vap *wvp = WPI_VAP(vap); 800 801 ieee80211_amrr_cleanup(&wvp->amrr); 802 ieee80211_vap_detach(vap); 803 free(wvp, M_80211_VAP); 804 } 805 806 static void 807 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 808 { 809 if (error != 0) 810 return; 811 812 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 813 814 *(bus_addr_t *)arg = segs[0].ds_addr; 815 } 816 817 /* 818 * Allocates a contiguous block of dma memory of the requested size and 819 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 820 * allocations greater than 4096 may fail. Hence if the requested alignment is 821 * greater we allocate 'alignment' size extra memory and shift the vaddr and 822 * paddr after the dma load. This bypasses the problem at the cost of a little 823 * more memory. 824 */ 825 static int 826 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 827 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 828 { 829 int error; 830 bus_size_t align; 831 bus_size_t reqsize; 832 833 DPRINTFN(WPI_DEBUG_DMA, 834 ("Size: %zd - alignment %zd\n", size, alignment)); 835 836 dma->size = size; 837 dma->tag = NULL; 838 839 if (alignment > 4096) { 840 align = PAGE_SIZE; 841 reqsize = size + alignment; 842 } else { 843 align = alignment; 844 reqsize = size; 845 } 846 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 847 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 848 NULL, NULL, reqsize, 849 1, reqsize, flags, 850 NULL, NULL, &dma->tag); 851 if (error != 0) { 852 device_printf(sc->sc_dev, 853 "could not create shared page DMA tag\n"); 854 goto fail; 855 } 856 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 857 flags | BUS_DMA_ZERO, &dma->map); 858 if (error != 0) { 859 device_printf(sc->sc_dev, 860 "could not allocate shared page DMA memory\n"); 861 goto fail; 862 } 863 864 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 865 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 866 867 /* Save the original pointers so we can free all the memory */ 868 dma->paddr = dma->paddr_start; 869 dma->vaddr = dma->vaddr_start; 870 871 /* 872 * Check the alignment and increment by 4096 until we get the 873 * requested alignment. Fail if can't obtain the alignment 874 * we requested. 875 */ 876 if ((dma->paddr & (alignment -1 )) != 0) { 877 int i; 878 879 for (i = 0; i < alignment / 4096; i++) { 880 if ((dma->paddr & (alignment - 1 )) == 0) 881 break; 882 dma->paddr += 4096; 883 dma->vaddr += 4096; 884 } 885 if (i == alignment / 4096) { 886 device_printf(sc->sc_dev, 887 "alignment requirement was not satisfied\n"); 888 goto fail; 889 } 890 } 891 892 if (error != 0) { 893 device_printf(sc->sc_dev, 894 "could not load shared page DMA map\n"); 895 goto fail; 896 } 897 898 if (kvap != NULL) 899 *kvap = dma->vaddr; 900 901 return 0; 902 903 fail: 904 wpi_dma_contig_free(dma); 905 return error; 906 } 907 908 static void 909 wpi_dma_contig_free(struct wpi_dma_info *dma) 910 { 911 if (dma->tag) { 912 if (dma->map != NULL) { 913 if (dma->paddr_start != 0) { 914 bus_dmamap_sync(dma->tag, dma->map, 915 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 916 bus_dmamap_unload(dma->tag, dma->map); 917 } 918 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 919 } 920 bus_dma_tag_destroy(dma->tag); 921 } 922 } 923 924 /* 925 * Allocate a shared page between host and NIC. 926 */ 927 static int 928 wpi_alloc_shared(struct wpi_softc *sc) 929 { 930 int error; 931 932 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 933 (void **)&sc->shared, sizeof (struct wpi_shared), 934 PAGE_SIZE, 935 BUS_DMA_NOWAIT); 936 937 if (error != 0) { 938 device_printf(sc->sc_dev, 939 "could not allocate shared area DMA memory\n"); 940 } 941 942 return error; 943 } 944 945 static void 946 wpi_free_shared(struct wpi_softc *sc) 947 { 948 wpi_dma_contig_free(&sc->shared_dma); 949 } 950 951 static int 952 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 953 { 954 955 int i, error; 956 957 ring->cur = 0; 958 959 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 960 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 961 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 962 963 if (error != 0) { 964 device_printf(sc->sc_dev, 965 "%s: could not allocate rx ring DMA memory, error %d\n", 966 __func__, error); 967 goto fail; 968 } 969 970 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 971 BUS_SPACE_MAXADDR_32BIT, 972 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 973 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 974 if (error != 0) { 975 device_printf(sc->sc_dev, 976 "%s: bus_dma_tag_create_failed, error %d\n", 977 __func__, error); 978 goto fail; 979 } 980 981 /* 982 * Setup Rx buffers. 983 */ 984 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 985 struct wpi_rx_data *data = &ring->data[i]; 986 struct mbuf *m; 987 bus_addr_t paddr; 988 989 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 990 if (error != 0) { 991 device_printf(sc->sc_dev, 992 "%s: bus_dmamap_create failed, error %d\n", 993 __func__, error); 994 goto fail; 995 } 996 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 997 if (m == NULL) { 998 device_printf(sc->sc_dev, 999 "%s: could not allocate rx mbuf\n", __func__); 1000 error = ENOMEM; 1001 goto fail; 1002 } 1003 /* map page */ 1004 error = bus_dmamap_load(ring->data_dmat, data->map, 1005 mtod(m, caddr_t), MJUMPAGESIZE, 1006 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1007 if (error != 0 && error != EFBIG) { 1008 device_printf(sc->sc_dev, 1009 "%s: bus_dmamap_load failed, error %d\n", 1010 __func__, error); 1011 m_freem(m); 1012 error = ENOMEM; /* XXX unique code */ 1013 goto fail; 1014 } 1015 bus_dmamap_sync(ring->data_dmat, data->map, 1016 BUS_DMASYNC_PREWRITE); 1017 1018 data->m = m; 1019 ring->desc[i] = htole32(paddr); 1020 } 1021 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1022 BUS_DMASYNC_PREWRITE); 1023 return 0; 1024 fail: 1025 wpi_free_rx_ring(sc, ring); 1026 return error; 1027 } 1028 1029 static void 1030 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1031 { 1032 int ntries; 1033 1034 wpi_mem_lock(sc); 1035 1036 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1037 1038 for (ntries = 0; ntries < 100; ntries++) { 1039 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1040 break; 1041 DELAY(10); 1042 } 1043 1044 wpi_mem_unlock(sc); 1045 1046 #ifdef WPI_DEBUG 1047 if (ntries == 100 && wpi_debug > 0) 1048 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1049 #endif 1050 1051 ring->cur = 0; 1052 } 1053 1054 static void 1055 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1056 { 1057 int i; 1058 1059 wpi_dma_contig_free(&ring->desc_dma); 1060 1061 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1062 if (ring->data[i].m != NULL) 1063 m_freem(ring->data[i].m); 1064 } 1065 1066 static int 1067 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1068 int qid) 1069 { 1070 struct wpi_tx_data *data; 1071 int i, error; 1072 1073 ring->qid = qid; 1074 ring->count = count; 1075 ring->queued = 0; 1076 ring->cur = 0; 1077 ring->data = NULL; 1078 1079 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1080 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1081 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1082 1083 if (error != 0) { 1084 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1085 goto fail; 1086 } 1087 1088 /* update shared page with ring's base address */ 1089 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1090 1091 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1092 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1093 BUS_DMA_NOWAIT); 1094 1095 if (error != 0) { 1096 device_printf(sc->sc_dev, 1097 "could not allocate tx command DMA memory\n"); 1098 goto fail; 1099 } 1100 1101 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1102 M_NOWAIT | M_ZERO); 1103 if (ring->data == NULL) { 1104 device_printf(sc->sc_dev, 1105 "could not allocate tx data slots\n"); 1106 goto fail; 1107 } 1108 1109 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1110 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1111 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1112 &ring->data_dmat); 1113 if (error != 0) { 1114 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1115 goto fail; 1116 } 1117 1118 for (i = 0; i < count; i++) { 1119 data = &ring->data[i]; 1120 1121 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1122 if (error != 0) { 1123 device_printf(sc->sc_dev, 1124 "could not create tx buf DMA map\n"); 1125 goto fail; 1126 } 1127 bus_dmamap_sync(ring->data_dmat, data->map, 1128 BUS_DMASYNC_PREWRITE); 1129 } 1130 1131 return 0; 1132 1133 fail: 1134 wpi_free_tx_ring(sc, ring); 1135 return error; 1136 } 1137 1138 static void 1139 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1140 { 1141 struct wpi_tx_data *data; 1142 int i, ntries; 1143 1144 wpi_mem_lock(sc); 1145 1146 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1147 for (ntries = 0; ntries < 100; ntries++) { 1148 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1149 break; 1150 DELAY(10); 1151 } 1152 #ifdef WPI_DEBUG 1153 if (ntries == 100 && wpi_debug > 0) 1154 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1155 ring->qid); 1156 #endif 1157 wpi_mem_unlock(sc); 1158 1159 for (i = 0; i < ring->count; i++) { 1160 data = &ring->data[i]; 1161 1162 if (data->m != NULL) { 1163 bus_dmamap_unload(ring->data_dmat, data->map); 1164 m_freem(data->m); 1165 data->m = NULL; 1166 } 1167 } 1168 1169 ring->queued = 0; 1170 ring->cur = 0; 1171 } 1172 1173 static void 1174 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1175 { 1176 struct wpi_tx_data *data; 1177 int i; 1178 1179 wpi_dma_contig_free(&ring->desc_dma); 1180 wpi_dma_contig_free(&ring->cmd_dma); 1181 1182 if (ring->data != NULL) { 1183 for (i = 0; i < ring->count; i++) { 1184 data = &ring->data[i]; 1185 1186 if (data->m != NULL) { 1187 bus_dmamap_sync(ring->data_dmat, data->map, 1188 BUS_DMASYNC_POSTWRITE); 1189 bus_dmamap_unload(ring->data_dmat, data->map); 1190 m_freem(data->m); 1191 data->m = NULL; 1192 } 1193 } 1194 free(ring->data, M_DEVBUF); 1195 } 1196 1197 if (ring->data_dmat != NULL) 1198 bus_dma_tag_destroy(ring->data_dmat); 1199 } 1200 1201 static int 1202 wpi_shutdown(device_t dev) 1203 { 1204 struct wpi_softc *sc = device_get_softc(dev); 1205 1206 WPI_LOCK(sc); 1207 wpi_stop_locked(sc); 1208 wpi_unload_firmware(sc); 1209 WPI_UNLOCK(sc); 1210 1211 return 0; 1212 } 1213 1214 static int 1215 wpi_suspend(device_t dev) 1216 { 1217 struct wpi_softc *sc = device_get_softc(dev); 1218 1219 wpi_stop(sc); 1220 return 0; 1221 } 1222 1223 static int 1224 wpi_resume(device_t dev) 1225 { 1226 struct wpi_softc *sc = device_get_softc(dev); 1227 struct ifnet *ifp = sc->sc_ifp; 1228 1229 pci_write_config(dev, 0x41, 0, 1); 1230 1231 if (ifp->if_flags & IFF_UP) { 1232 wpi_init(ifp->if_softc); 1233 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1234 wpi_start(ifp); 1235 } 1236 return 0; 1237 } 1238 1239 /* ARGSUSED */ 1240 static struct ieee80211_node * 1241 wpi_node_alloc(struct ieee80211vap *vap __unused, 1242 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 1243 { 1244 struct wpi_node *wn; 1245 1246 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1247 1248 return &wn->ni; 1249 } 1250 1251 /** 1252 * Called by net80211 when ever there is a change to 80211 state machine 1253 */ 1254 static int 1255 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1256 { 1257 struct wpi_vap *wvp = WPI_VAP(vap); 1258 struct ieee80211com *ic = vap->iv_ic; 1259 struct ifnet *ifp = ic->ic_ifp; 1260 struct wpi_softc *sc = ifp->if_softc; 1261 int error; 1262 1263 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1264 ieee80211_state_name[vap->iv_state], 1265 ieee80211_state_name[nstate], sc->flags)); 1266 1267 IEEE80211_UNLOCK(ic); 1268 WPI_LOCK(sc); 1269 if (nstate == IEEE80211_S_AUTH) { 1270 /* The node must be registered in the firmware before auth */ 1271 error = wpi_auth(sc, vap); 1272 if (error != 0) { 1273 device_printf(sc->sc_dev, 1274 "%s: could not move to auth state, error %d\n", 1275 __func__, error); 1276 } 1277 } 1278 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1279 error = wpi_run(sc, vap); 1280 if (error != 0) { 1281 device_printf(sc->sc_dev, 1282 "%s: could not move to run state, error %d\n", 1283 __func__, error); 1284 } 1285 } 1286 if (nstate == IEEE80211_S_RUN) { 1287 /* RUN -> RUN transition; just restart the timers */ 1288 wpi_calib_timeout(sc); 1289 /* XXX split out rate control timer */ 1290 } 1291 WPI_UNLOCK(sc); 1292 IEEE80211_LOCK(ic); 1293 return wvp->newstate(vap, nstate, arg); 1294 } 1295 1296 /* 1297 * Grab exclusive access to NIC memory. 1298 */ 1299 static void 1300 wpi_mem_lock(struct wpi_softc *sc) 1301 { 1302 int ntries; 1303 uint32_t tmp; 1304 1305 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1306 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1307 1308 /* spin until we actually get the lock */ 1309 for (ntries = 0; ntries < 100; ntries++) { 1310 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1311 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1312 break; 1313 DELAY(10); 1314 } 1315 if (ntries == 100) 1316 device_printf(sc->sc_dev, "could not lock memory\n"); 1317 } 1318 1319 /* 1320 * Release lock on NIC memory. 1321 */ 1322 static void 1323 wpi_mem_unlock(struct wpi_softc *sc) 1324 { 1325 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1326 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1327 } 1328 1329 static uint32_t 1330 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1331 { 1332 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1333 return WPI_READ(sc, WPI_READ_MEM_DATA); 1334 } 1335 1336 static void 1337 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1338 { 1339 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1340 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1341 } 1342 1343 static void 1344 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1345 const uint32_t *data, int wlen) 1346 { 1347 for (; wlen > 0; wlen--, data++, addr+=4) 1348 wpi_mem_write(sc, addr, *data); 1349 } 1350 1351 /* 1352 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1353 * using the traditional bit-bang method. Data is read up until len bytes have 1354 * been obtained. 1355 */ 1356 static uint16_t 1357 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1358 { 1359 int ntries; 1360 uint32_t val; 1361 uint8_t *out = data; 1362 1363 wpi_mem_lock(sc); 1364 1365 for (; len > 0; len -= 2, addr++) { 1366 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1367 1368 for (ntries = 0; ntries < 10; ntries++) { 1369 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1370 break; 1371 DELAY(5); 1372 } 1373 1374 if (ntries == 10) { 1375 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1376 return ETIMEDOUT; 1377 } 1378 1379 *out++= val >> 16; 1380 if (len > 1) 1381 *out ++= val >> 24; 1382 } 1383 1384 wpi_mem_unlock(sc); 1385 1386 return 0; 1387 } 1388 1389 /* 1390 * The firmware text and data segments are transferred to the NIC using DMA. 1391 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1392 * where to find it. Once the NIC has copied the firmware into its internal 1393 * memory, we can free our local copy in the driver. 1394 */ 1395 static int 1396 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1397 { 1398 int error, ntries; 1399 1400 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1401 1402 size /= sizeof(uint32_t); 1403 1404 wpi_mem_lock(sc); 1405 1406 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1407 (const uint32_t *)fw, size); 1408 1409 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1410 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1411 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1412 1413 /* run microcode */ 1414 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1415 1416 /* wait while the adapter is busy copying the firmware */ 1417 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1418 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1419 DPRINTFN(WPI_DEBUG_HW, 1420 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1421 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1422 if (status & WPI_TX_IDLE(6)) { 1423 DPRINTFN(WPI_DEBUG_HW, 1424 ("Status Match! - ntries = %d\n", ntries)); 1425 break; 1426 } 1427 DELAY(10); 1428 } 1429 if (ntries == 1000) { 1430 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1431 error = ETIMEDOUT; 1432 } 1433 1434 /* start the microcode executing */ 1435 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1436 1437 wpi_mem_unlock(sc); 1438 1439 return (error); 1440 } 1441 1442 static void 1443 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1444 struct wpi_rx_data *data) 1445 { 1446 struct ifnet *ifp = sc->sc_ifp; 1447 struct ieee80211com *ic = ifp->if_l2com; 1448 struct wpi_rx_ring *ring = &sc->rxq; 1449 struct wpi_rx_stat *stat; 1450 struct wpi_rx_head *head; 1451 struct wpi_rx_tail *tail; 1452 struct ieee80211_node *ni; 1453 struct mbuf *m, *mnew; 1454 bus_addr_t paddr; 1455 int error; 1456 1457 stat = (struct wpi_rx_stat *)(desc + 1); 1458 1459 if (stat->len > WPI_STAT_MAXLEN) { 1460 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1461 ifp->if_ierrors++; 1462 return; 1463 } 1464 1465 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1466 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1467 1468 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1469 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1470 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1471 (uintmax_t)le64toh(tail->tstamp))); 1472 1473 /* discard Rx frames with bad CRC early */ 1474 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1475 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1476 le32toh(tail->flags))); 1477 ifp->if_ierrors++; 1478 return; 1479 } 1480 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1481 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1482 le16toh(head->len))); 1483 ifp->if_ierrors++; 1484 return; 1485 } 1486 1487 /* XXX don't need mbuf, just dma buffer */ 1488 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1489 if (mnew == NULL) { 1490 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1491 __func__)); 1492 ifp->if_ierrors++; 1493 return; 1494 } 1495 error = bus_dmamap_load(ring->data_dmat, data->map, 1496 mtod(mnew, caddr_t), MJUMPAGESIZE, 1497 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1498 if (error != 0 && error != EFBIG) { 1499 device_printf(sc->sc_dev, 1500 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1501 m_freem(mnew); 1502 ifp->if_ierrors++; 1503 return; 1504 } 1505 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1506 1507 /* finalize mbuf and swap in new one */ 1508 m = data->m; 1509 m->m_pkthdr.rcvif = ifp; 1510 m->m_data = (caddr_t)(head + 1); 1511 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1512 1513 data->m = mnew; 1514 /* update Rx descriptor */ 1515 ring->desc[ring->cur] = htole32(paddr); 1516 1517 if (ieee80211_radiotap_active(ic)) { 1518 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1519 1520 tap->wr_flags = 0; 1521 tap->wr_chan_freq = 1522 htole16(ic->ic_channels[head->chan].ic_freq); 1523 tap->wr_chan_flags = 1524 htole16(ic->ic_channels[head->chan].ic_flags); 1525 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1526 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1527 tap->wr_tsft = tail->tstamp; 1528 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1529 switch (head->rate) { 1530 /* CCK rates */ 1531 case 10: tap->wr_rate = 2; break; 1532 case 20: tap->wr_rate = 4; break; 1533 case 55: tap->wr_rate = 11; break; 1534 case 110: tap->wr_rate = 22; break; 1535 /* OFDM rates */ 1536 case 0xd: tap->wr_rate = 12; break; 1537 case 0xf: tap->wr_rate = 18; break; 1538 case 0x5: tap->wr_rate = 24; break; 1539 case 0x7: tap->wr_rate = 36; break; 1540 case 0x9: tap->wr_rate = 48; break; 1541 case 0xb: tap->wr_rate = 72; break; 1542 case 0x1: tap->wr_rate = 96; break; 1543 case 0x3: tap->wr_rate = 108; break; 1544 /* unknown rate: should not happen */ 1545 default: tap->wr_rate = 0; 1546 } 1547 if (le16toh(head->flags) & 0x4) 1548 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1549 } 1550 1551 WPI_UNLOCK(sc); 1552 1553 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1554 if (ni != NULL) { 1555 (void) ieee80211_input(ni, m, stat->rssi, 0); 1556 ieee80211_free_node(ni); 1557 } else 1558 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1559 1560 WPI_LOCK(sc); 1561 } 1562 1563 static void 1564 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1565 { 1566 struct ifnet *ifp = sc->sc_ifp; 1567 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1568 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1569 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1570 struct wpi_node *wn = (struct wpi_node *)txdata->ni; 1571 1572 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1573 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1574 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1575 le32toh(stat->status))); 1576 1577 /* 1578 * Update rate control statistics for the node. 1579 * XXX we should not count mgmt frames since they're always sent at 1580 * the lowest available bit-rate. 1581 * XXX frames w/o ACK shouldn't be used either 1582 */ 1583 wn->amn.amn_txcnt++; 1584 if (stat->ntries > 0) { 1585 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1586 wn->amn.amn_retrycnt++; 1587 } 1588 1589 /* XXX oerrors should only count errors !maxtries */ 1590 if ((le32toh(stat->status) & 0xff) != 1) 1591 ifp->if_oerrors++; 1592 else 1593 ifp->if_opackets++; 1594 1595 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1596 bus_dmamap_unload(ring->data_dmat, txdata->map); 1597 /* XXX handle M_TXCB? */ 1598 m_freem(txdata->m); 1599 txdata->m = NULL; 1600 ieee80211_free_node(txdata->ni); 1601 txdata->ni = NULL; 1602 1603 ring->queued--; 1604 1605 sc->sc_tx_timer = 0; 1606 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1607 wpi_start_locked(ifp); 1608 } 1609 1610 static void 1611 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1612 { 1613 struct wpi_tx_ring *ring = &sc->cmdq; 1614 struct wpi_tx_data *data; 1615 1616 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1617 "type=%s len=%d\n", desc->qid, desc->idx, 1618 desc->flags, wpi_cmd_str(desc->type), 1619 le32toh(desc->len))); 1620 1621 if ((desc->qid & 7) != 4) 1622 return; /* not a command ack */ 1623 1624 data = &ring->data[desc->idx]; 1625 1626 /* if the command was mapped in a mbuf, free it */ 1627 if (data->m != NULL) { 1628 bus_dmamap_unload(ring->data_dmat, data->map); 1629 m_freem(data->m); 1630 data->m = NULL; 1631 } 1632 1633 sc->flags &= ~WPI_FLAG_BUSY; 1634 wakeup(&ring->cmd[desc->idx]); 1635 } 1636 1637 static void 1638 wpi_notif_intr(struct wpi_softc *sc) 1639 { 1640 struct ifnet *ifp = sc->sc_ifp; 1641 struct ieee80211com *ic = ifp->if_l2com; 1642 struct wpi_rx_desc *desc; 1643 struct wpi_rx_data *data; 1644 uint32_t hw; 1645 1646 hw = le32toh(sc->shared->next); 1647 while (sc->rxq.cur != hw) { 1648 data = &sc->rxq.data[sc->rxq.cur]; 1649 desc = (void *)data->m->m_ext.ext_buf; 1650 1651 DPRINTFN(WPI_DEBUG_NOTIFY, 1652 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1653 desc->qid, 1654 desc->idx, 1655 desc->flags, 1656 desc->type, 1657 le32toh(desc->len))); 1658 1659 if (!(desc->qid & 0x80)) /* reply to a command */ 1660 wpi_cmd_intr(sc, desc); 1661 1662 switch (desc->type) { 1663 case WPI_RX_DONE: 1664 /* a 802.11 frame was received */ 1665 wpi_rx_intr(sc, desc, data); 1666 break; 1667 1668 case WPI_TX_DONE: 1669 /* a 802.11 frame has been transmitted */ 1670 wpi_tx_intr(sc, desc); 1671 break; 1672 1673 case WPI_UC_READY: 1674 { 1675 struct wpi_ucode_info *uc = 1676 (struct wpi_ucode_info *)(desc + 1); 1677 1678 /* the microcontroller is ready */ 1679 DPRINTF(("microcode alive notification version %x " 1680 "alive %x\n", le32toh(uc->version), 1681 le32toh(uc->valid))); 1682 1683 if (le32toh(uc->valid) != 1) { 1684 device_printf(sc->sc_dev, 1685 "microcontroller initialization failed\n"); 1686 wpi_stop_locked(sc); 1687 } 1688 break; 1689 } 1690 case WPI_STATE_CHANGED: 1691 { 1692 uint32_t *status = (uint32_t *)(desc + 1); 1693 1694 /* enabled/disabled notification */ 1695 DPRINTF(("state changed to %x\n", le32toh(*status))); 1696 1697 if (le32toh(*status) & 1) { 1698 device_printf(sc->sc_dev, 1699 "Radio transmitter is switched off\n"); 1700 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1701 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1702 /* Disable firmware commands */ 1703 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1704 } 1705 break; 1706 } 1707 case WPI_START_SCAN: 1708 { 1709 #ifdef WPI_DEBUG 1710 struct wpi_start_scan *scan = 1711 (struct wpi_start_scan *)(desc + 1); 1712 #endif 1713 1714 DPRINTFN(WPI_DEBUG_SCANNING, 1715 ("scanning channel %d status %x\n", 1716 scan->chan, le32toh(scan->status))); 1717 break; 1718 } 1719 case WPI_STOP_SCAN: 1720 { 1721 #ifdef WPI_DEBUG 1722 struct wpi_stop_scan *scan = 1723 (struct wpi_stop_scan *)(desc + 1); 1724 #endif 1725 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1726 1727 DPRINTFN(WPI_DEBUG_SCANNING, 1728 ("scan finished nchan=%d status=%d chan=%d\n", 1729 scan->nchan, scan->status, scan->chan)); 1730 1731 sc->sc_scan_timer = 0; 1732 ieee80211_scan_next(vap); 1733 break; 1734 } 1735 case WPI_MISSED_BEACON: 1736 { 1737 struct wpi_missed_beacon *beacon = 1738 (struct wpi_missed_beacon *)(desc + 1); 1739 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1740 1741 if (le32toh(beacon->consecutive) >= 1742 vap->iv_bmissthreshold) { 1743 DPRINTF(("Beacon miss: %u >= %u\n", 1744 le32toh(beacon->consecutive), 1745 vap->iv_bmissthreshold)); 1746 ieee80211_beacon_miss(ic); 1747 } 1748 break; 1749 } 1750 } 1751 1752 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1753 } 1754 1755 /* tell the firmware what we have processed */ 1756 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1757 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1758 } 1759 1760 static void 1761 wpi_intr(void *arg) 1762 { 1763 struct wpi_softc *sc = arg; 1764 uint32_t r; 1765 1766 WPI_LOCK(sc); 1767 1768 r = WPI_READ(sc, WPI_INTR); 1769 if (r == 0 || r == 0xffffffff) { 1770 WPI_UNLOCK(sc); 1771 return; 1772 } 1773 1774 /* disable interrupts */ 1775 WPI_WRITE(sc, WPI_MASK, 0); 1776 /* ack interrupts */ 1777 WPI_WRITE(sc, WPI_INTR, r); 1778 1779 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1780 struct ifnet *ifp = sc->sc_ifp; 1781 struct ieee80211com *ic = ifp->if_l2com; 1782 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1783 1784 device_printf(sc->sc_dev, "fatal firmware error\n"); 1785 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1786 "(Hardware Error)")); 1787 if (vap != NULL) 1788 ieee80211_cancel_scan(vap); 1789 ieee80211_runtask(ic, &sc->sc_restarttask); 1790 sc->flags &= ~WPI_FLAG_BUSY; 1791 WPI_UNLOCK(sc); 1792 return; 1793 } 1794 1795 if (r & WPI_RX_INTR) 1796 wpi_notif_intr(sc); 1797 1798 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1799 wakeup(sc); 1800 1801 /* re-enable interrupts */ 1802 if (sc->sc_ifp->if_flags & IFF_UP) 1803 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1804 1805 WPI_UNLOCK(sc); 1806 } 1807 1808 static uint8_t 1809 wpi_plcp_signal(int rate) 1810 { 1811 switch (rate) { 1812 /* CCK rates (returned values are device-dependent) */ 1813 case 2: return 10; 1814 case 4: return 20; 1815 case 11: return 55; 1816 case 22: return 110; 1817 1818 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1819 /* R1-R4 (ral/ural is R4-R1) */ 1820 case 12: return 0xd; 1821 case 18: return 0xf; 1822 case 24: return 0x5; 1823 case 36: return 0x7; 1824 case 48: return 0x9; 1825 case 72: return 0xb; 1826 case 96: return 0x1; 1827 case 108: return 0x3; 1828 1829 /* unsupported rates (should not get there) */ 1830 default: return 0; 1831 } 1832 } 1833 1834 /* quickly determine if a given rate is CCK or OFDM */ 1835 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1836 1837 /* 1838 * Construct the data packet for a transmit buffer and acutally put 1839 * the buffer onto the transmit ring, kicking the card to process the 1840 * the buffer. 1841 */ 1842 static int 1843 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1844 int ac) 1845 { 1846 struct ieee80211vap *vap = ni->ni_vap; 1847 struct ifnet *ifp = sc->sc_ifp; 1848 struct ieee80211com *ic = ifp->if_l2com; 1849 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1850 struct wpi_tx_ring *ring = &sc->txq[ac]; 1851 struct wpi_tx_desc *desc; 1852 struct wpi_tx_data *data; 1853 struct wpi_tx_cmd *cmd; 1854 struct wpi_cmd_data *tx; 1855 struct ieee80211_frame *wh; 1856 const struct ieee80211_txparam *tp; 1857 struct ieee80211_key *k; 1858 struct mbuf *mnew; 1859 int i, error, nsegs, rate, hdrlen, ismcast; 1860 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1861 1862 desc = &ring->desc[ring->cur]; 1863 data = &ring->data[ring->cur]; 1864 1865 wh = mtod(m0, struct ieee80211_frame *); 1866 1867 hdrlen = ieee80211_hdrsize(wh); 1868 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1869 1870 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1871 k = ieee80211_crypto_encap(ni, m0); 1872 if (k == NULL) { 1873 m_freem(m0); 1874 return ENOBUFS; 1875 } 1876 /* packet header may have moved, reset our local pointer */ 1877 wh = mtod(m0, struct ieee80211_frame *); 1878 } 1879 1880 cmd = &ring->cmd[ring->cur]; 1881 cmd->code = WPI_CMD_TX_DATA; 1882 cmd->flags = 0; 1883 cmd->qid = ring->qid; 1884 cmd->idx = ring->cur; 1885 1886 tx = (struct wpi_cmd_data *)cmd->data; 1887 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1888 tx->timeout = htole16(0); 1889 tx->ofdm_mask = 0xff; 1890 tx->cck_mask = 0x0f; 1891 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1892 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1893 tx->len = htole16(m0->m_pkthdr.len); 1894 1895 if (!ismcast) { 1896 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1897 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1898 tx->flags |= htole32(WPI_TX_NEED_ACK); 1899 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1900 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1901 tx->rts_ntries = 7; 1902 } 1903 } 1904 /* pick a rate */ 1905 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1906 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1907 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1908 /* tell h/w to set timestamp in probe responses */ 1909 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1910 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1911 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1912 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1913 tx->timeout = htole16(3); 1914 else 1915 tx->timeout = htole16(2); 1916 rate = tp->mgmtrate; 1917 } else if (ismcast) { 1918 rate = tp->mcastrate; 1919 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1920 rate = tp->ucastrate; 1921 } else { 1922 (void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn); 1923 rate = ni->ni_txrate; 1924 } 1925 tx->rate = wpi_plcp_signal(rate); 1926 1927 /* be very persistant at sending frames out */ 1928 #if 0 1929 tx->data_ntries = tp->maxretry; 1930 #else 1931 tx->data_ntries = 15; /* XXX way too high */ 1932 #endif 1933 1934 if (ieee80211_radiotap_active_vap(vap)) { 1935 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1936 tap->wt_flags = 0; 1937 tap->wt_rate = rate; 1938 tap->wt_hwqueue = ac; 1939 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1940 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1941 1942 ieee80211_radiotap_tx(vap, m0); 1943 } 1944 1945 /* save and trim IEEE802.11 header */ 1946 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1947 m_adj(m0, hdrlen); 1948 1949 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1950 &nsegs, BUS_DMA_NOWAIT); 1951 if (error != 0 && error != EFBIG) { 1952 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1953 error); 1954 m_freem(m0); 1955 return error; 1956 } 1957 if (error != 0) { 1958 /* XXX use m_collapse */ 1959 mnew = m_defrag(m0, M_DONTWAIT); 1960 if (mnew == NULL) { 1961 device_printf(sc->sc_dev, 1962 "could not defragment mbuf\n"); 1963 m_freem(m0); 1964 return ENOBUFS; 1965 } 1966 m0 = mnew; 1967 1968 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1969 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1970 if (error != 0) { 1971 device_printf(sc->sc_dev, 1972 "could not map mbuf (error %d)\n", error); 1973 m_freem(m0); 1974 return error; 1975 } 1976 } 1977 1978 data->m = m0; 1979 data->ni = ni; 1980 1981 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1982 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1983 1984 /* first scatter/gather segment is used by the tx data command */ 1985 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1986 (1 + nsegs) << 24); 1987 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1988 ring->cur * sizeof (struct wpi_tx_cmd)); 1989 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 1990 for (i = 1; i <= nsegs; i++) { 1991 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 1992 desc->segs[i].len = htole32(segs[i - 1].ds_len); 1993 } 1994 1995 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1996 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1997 BUS_DMASYNC_PREWRITE); 1998 1999 ring->queued++; 2000 2001 /* kick ring */ 2002 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2003 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2004 2005 return 0; 2006 } 2007 2008 /** 2009 * Process data waiting to be sent on the IFNET output queue 2010 */ 2011 static void 2012 wpi_start(struct ifnet *ifp) 2013 { 2014 struct wpi_softc *sc = ifp->if_softc; 2015 2016 WPI_LOCK(sc); 2017 wpi_start_locked(ifp); 2018 WPI_UNLOCK(sc); 2019 } 2020 2021 static void 2022 wpi_start_locked(struct ifnet *ifp) 2023 { 2024 struct wpi_softc *sc = ifp->if_softc; 2025 struct ieee80211_node *ni; 2026 struct mbuf *m; 2027 int ac; 2028 2029 WPI_LOCK_ASSERT(sc); 2030 2031 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2032 return; 2033 2034 for (;;) { 2035 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2036 if (m == NULL) 2037 break; 2038 ac = M_WME_GETAC(m); 2039 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2040 /* there is no place left in this ring */ 2041 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2042 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2043 break; 2044 } 2045 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2046 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2047 ieee80211_free_node(ni); 2048 ifp->if_oerrors++; 2049 break; 2050 } 2051 sc->sc_tx_timer = 5; 2052 } 2053 } 2054 2055 static int 2056 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2057 const struct ieee80211_bpf_params *params) 2058 { 2059 struct ieee80211com *ic = ni->ni_ic; 2060 struct ifnet *ifp = ic->ic_ifp; 2061 struct wpi_softc *sc = ifp->if_softc; 2062 2063 /* prevent management frames from being sent if we're not ready */ 2064 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2065 m_freem(m); 2066 ieee80211_free_node(ni); 2067 return ENETDOWN; 2068 } 2069 WPI_LOCK(sc); 2070 2071 /* management frames go into ring 0 */ 2072 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2073 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2074 m_freem(m); 2075 WPI_UNLOCK(sc); 2076 ieee80211_free_node(ni); 2077 return ENOBUFS; /* XXX */ 2078 } 2079 2080 ifp->if_opackets++; 2081 if (wpi_tx_data(sc, m, ni, 0) != 0) 2082 goto bad; 2083 sc->sc_tx_timer = 5; 2084 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2085 2086 WPI_UNLOCK(sc); 2087 return 0; 2088 bad: 2089 ifp->if_oerrors++; 2090 WPI_UNLOCK(sc); 2091 ieee80211_free_node(ni); 2092 return EIO; /* XXX */ 2093 } 2094 2095 static int 2096 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2097 { 2098 struct wpi_softc *sc = ifp->if_softc; 2099 struct ieee80211com *ic = ifp->if_l2com; 2100 struct ifreq *ifr = (struct ifreq *) data; 2101 int error = 0, startall = 0; 2102 2103 switch (cmd) { 2104 case SIOCSIFFLAGS: 2105 WPI_LOCK(sc); 2106 if ((ifp->if_flags & IFF_UP)) { 2107 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2108 wpi_init_locked(sc, 0); 2109 startall = 1; 2110 } 2111 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2112 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2113 wpi_stop_locked(sc); 2114 WPI_UNLOCK(sc); 2115 if (startall) 2116 ieee80211_start_all(ic); 2117 break; 2118 case SIOCGIFMEDIA: 2119 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2120 break; 2121 case SIOCGIFADDR: 2122 error = ether_ioctl(ifp, cmd, data); 2123 break; 2124 default: 2125 error = EINVAL; 2126 break; 2127 } 2128 return error; 2129 } 2130 2131 /* 2132 * Extract various information from EEPROM. 2133 */ 2134 static void 2135 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2136 { 2137 int i; 2138 2139 /* read the hardware capabilities, revision and SKU type */ 2140 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2141 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2142 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2143 2144 /* read the regulatory domain */ 2145 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2146 2147 /* read in the hw MAC address */ 2148 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2149 2150 /* read the list of authorized channels */ 2151 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2152 wpi_read_eeprom_channels(sc,i); 2153 2154 /* read the power level calibration info for each group */ 2155 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2156 wpi_read_eeprom_group(sc,i); 2157 } 2158 2159 /* 2160 * Send a command to the firmware. 2161 */ 2162 static int 2163 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2164 { 2165 struct wpi_tx_ring *ring = &sc->cmdq; 2166 struct wpi_tx_desc *desc; 2167 struct wpi_tx_cmd *cmd; 2168 2169 #ifdef WPI_DEBUG 2170 if (!async) { 2171 WPI_LOCK_ASSERT(sc); 2172 } 2173 #endif 2174 2175 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2176 async)); 2177 2178 if (sc->flags & WPI_FLAG_BUSY) { 2179 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2180 __func__, code); 2181 return EAGAIN; 2182 } 2183 sc->flags|= WPI_FLAG_BUSY; 2184 2185 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2186 code, size)); 2187 2188 desc = &ring->desc[ring->cur]; 2189 cmd = &ring->cmd[ring->cur]; 2190 2191 cmd->code = code; 2192 cmd->flags = 0; 2193 cmd->qid = ring->qid; 2194 cmd->idx = ring->cur; 2195 memcpy(cmd->data, buf, size); 2196 2197 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2198 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2199 ring->cur * sizeof (struct wpi_tx_cmd)); 2200 desc->segs[0].len = htole32(4 + size); 2201 2202 /* kick cmd ring */ 2203 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2204 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2205 2206 if (async) { 2207 sc->flags &= ~ WPI_FLAG_BUSY; 2208 return 0; 2209 } 2210 2211 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2212 } 2213 2214 static int 2215 wpi_wme_update(struct ieee80211com *ic) 2216 { 2217 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2218 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2219 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2220 const struct wmeParams *wmep; 2221 struct wpi_wme_setup wme; 2222 int ac; 2223 2224 /* don't override default WME values if WME is not actually enabled */ 2225 if (!(ic->ic_flags & IEEE80211_F_WME)) 2226 return 0; 2227 2228 wme.flags = 0; 2229 for (ac = 0; ac < WME_NUM_AC; ac++) { 2230 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2231 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2232 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2233 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2234 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2235 2236 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2237 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2238 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2239 } 2240 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2241 #undef WPI_USEC 2242 #undef WPI_EXP2 2243 } 2244 2245 /* 2246 * Configure h/w multi-rate retries. 2247 */ 2248 static int 2249 wpi_mrr_setup(struct wpi_softc *sc) 2250 { 2251 struct ifnet *ifp = sc->sc_ifp; 2252 struct ieee80211com *ic = ifp->if_l2com; 2253 struct wpi_mrr_setup mrr; 2254 int i, error; 2255 2256 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2257 2258 /* CCK rates (not used with 802.11a) */ 2259 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2260 mrr.rates[i].flags = 0; 2261 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2262 /* fallback to the immediate lower CCK rate (if any) */ 2263 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2264 /* try one time at this rate before falling back to "next" */ 2265 mrr.rates[i].ntries = 1; 2266 } 2267 2268 /* OFDM rates (not used with 802.11b) */ 2269 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2270 mrr.rates[i].flags = 0; 2271 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2272 /* fallback to the immediate lower OFDM rate (if any) */ 2273 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2274 mrr.rates[i].next = (i == WPI_OFDM6) ? 2275 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2276 WPI_OFDM6 : WPI_CCK2) : 2277 i - 1; 2278 /* try one time at this rate before falling back to "next" */ 2279 mrr.rates[i].ntries = 1; 2280 } 2281 2282 /* setup MRR for control frames */ 2283 mrr.which = htole32(WPI_MRR_CTL); 2284 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2285 if (error != 0) { 2286 device_printf(sc->sc_dev, 2287 "could not setup MRR for control frames\n"); 2288 return error; 2289 } 2290 2291 /* setup MRR for data frames */ 2292 mrr.which = htole32(WPI_MRR_DATA); 2293 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2294 if (error != 0) { 2295 device_printf(sc->sc_dev, 2296 "could not setup MRR for data frames\n"); 2297 return error; 2298 } 2299 2300 return 0; 2301 } 2302 2303 static void 2304 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2305 { 2306 struct wpi_cmd_led led; 2307 2308 led.which = which; 2309 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2310 led.off = off; 2311 led.on = on; 2312 2313 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2314 } 2315 2316 static void 2317 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2318 { 2319 struct wpi_cmd_tsf tsf; 2320 uint64_t val, mod; 2321 2322 memset(&tsf, 0, sizeof tsf); 2323 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2324 tsf.bintval = htole16(ni->ni_intval); 2325 tsf.lintval = htole16(10); 2326 2327 /* compute remaining time until next beacon */ 2328 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2329 mod = le64toh(tsf.tstamp) % val; 2330 tsf.binitval = htole32((uint32_t)(val - mod)); 2331 2332 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2333 device_printf(sc->sc_dev, "could not enable TSF\n"); 2334 } 2335 2336 #if 0 2337 /* 2338 * Build a beacon frame that the firmware will broadcast periodically in 2339 * IBSS or HostAP modes. 2340 */ 2341 static int 2342 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2343 { 2344 struct ifnet *ifp = sc->sc_ifp; 2345 struct ieee80211com *ic = ifp->if_l2com; 2346 struct wpi_tx_ring *ring = &sc->cmdq; 2347 struct wpi_tx_desc *desc; 2348 struct wpi_tx_data *data; 2349 struct wpi_tx_cmd *cmd; 2350 struct wpi_cmd_beacon *bcn; 2351 struct ieee80211_beacon_offsets bo; 2352 struct mbuf *m0; 2353 bus_addr_t physaddr; 2354 int error; 2355 2356 desc = &ring->desc[ring->cur]; 2357 data = &ring->data[ring->cur]; 2358 2359 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2360 if (m0 == NULL) { 2361 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2362 return ENOMEM; 2363 } 2364 2365 cmd = &ring->cmd[ring->cur]; 2366 cmd->code = WPI_CMD_SET_BEACON; 2367 cmd->flags = 0; 2368 cmd->qid = ring->qid; 2369 cmd->idx = ring->cur; 2370 2371 bcn = (struct wpi_cmd_beacon *)cmd->data; 2372 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2373 bcn->id = WPI_ID_BROADCAST; 2374 bcn->ofdm_mask = 0xff; 2375 bcn->cck_mask = 0x0f; 2376 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2377 bcn->len = htole16(m0->m_pkthdr.len); 2378 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2379 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2380 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2381 2382 /* save and trim IEEE802.11 header */ 2383 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2384 m_adj(m0, sizeof (struct ieee80211_frame)); 2385 2386 /* assume beacon frame is contiguous */ 2387 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2388 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2389 if (error != 0) { 2390 device_printf(sc->sc_dev, "could not map beacon\n"); 2391 m_freem(m0); 2392 return error; 2393 } 2394 2395 data->m = m0; 2396 2397 /* first scatter/gather segment is used by the beacon command */ 2398 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2399 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2400 ring->cur * sizeof (struct wpi_tx_cmd)); 2401 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2402 desc->segs[1].addr = htole32(physaddr); 2403 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2404 2405 /* kick cmd ring */ 2406 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2407 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2408 2409 return 0; 2410 } 2411 #endif 2412 2413 static int 2414 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2415 { 2416 struct ieee80211com *ic = vap->iv_ic; 2417 struct ieee80211_node *ni = vap->iv_bss; 2418 struct wpi_node_info node; 2419 int error; 2420 2421 2422 /* update adapter's configuration */ 2423 sc->config.associd = 0; 2424 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2425 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2426 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2427 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2428 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2429 WPI_CONFIG_24GHZ); 2430 } 2431 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2432 sc->config.cck_mask = 0; 2433 sc->config.ofdm_mask = 0x15; 2434 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2435 sc->config.cck_mask = 0x03; 2436 sc->config.ofdm_mask = 0; 2437 } else { 2438 /* XXX assume 802.11b/g */ 2439 sc->config.cck_mask = 0x0f; 2440 sc->config.ofdm_mask = 0x15; 2441 } 2442 2443 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2444 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2445 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2446 sizeof (struct wpi_config), 1); 2447 if (error != 0) { 2448 device_printf(sc->sc_dev, "could not configure\n"); 2449 return error; 2450 } 2451 2452 /* configuration has changed, set Tx power accordingly */ 2453 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2454 device_printf(sc->sc_dev, "could not set Tx power\n"); 2455 return error; 2456 } 2457 2458 /* add default node */ 2459 memset(&node, 0, sizeof node); 2460 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2461 node.id = WPI_ID_BSS; 2462 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2463 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2464 node.action = htole32(WPI_ACTION_SET_RATE); 2465 node.antenna = WPI_ANTENNA_BOTH; 2466 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2467 if (error != 0) 2468 device_printf(sc->sc_dev, "could not add BSS node\n"); 2469 2470 return (error); 2471 } 2472 2473 static int 2474 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2475 { 2476 struct ieee80211com *ic = vap->iv_ic; 2477 struct ieee80211_node *ni = vap->iv_bss; 2478 int error; 2479 2480 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2481 /* link LED blinks while monitoring */ 2482 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2483 return 0; 2484 } 2485 2486 wpi_enable_tsf(sc, ni); 2487 2488 /* update adapter's configuration */ 2489 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2490 /* short preamble/slot time are negotiated when associating */ 2491 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2492 WPI_CONFIG_SHSLOT); 2493 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2494 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2495 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2496 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2497 sc->config.filter |= htole32(WPI_FILTER_BSS); 2498 2499 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2500 2501 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2502 sc->config.flags)); 2503 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2504 wpi_config), 1); 2505 if (error != 0) { 2506 device_printf(sc->sc_dev, "could not update configuration\n"); 2507 return error; 2508 } 2509 2510 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2511 if (error != 0) { 2512 device_printf(sc->sc_dev, "could set txpower\n"); 2513 return error; 2514 } 2515 2516 /* link LED always on while associated */ 2517 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2518 2519 /* start automatic rate control timer */ 2520 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2521 2522 return (error); 2523 } 2524 2525 /* 2526 * Send a scan request to the firmware. Since this command is huge, we map it 2527 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2528 * much of this code is similar to that in wpi_cmd but because we must manually 2529 * construct the probe & channels, we duplicate what's needed here. XXX In the 2530 * future, this function should be modified to use wpi_cmd to help cleanup the 2531 * code base. 2532 */ 2533 static int 2534 wpi_scan(struct wpi_softc *sc) 2535 { 2536 struct ifnet *ifp = sc->sc_ifp; 2537 struct ieee80211com *ic = ifp->if_l2com; 2538 struct ieee80211_scan_state *ss = ic->ic_scan; 2539 struct wpi_tx_ring *ring = &sc->cmdq; 2540 struct wpi_tx_desc *desc; 2541 struct wpi_tx_data *data; 2542 struct wpi_tx_cmd *cmd; 2543 struct wpi_scan_hdr *hdr; 2544 struct wpi_scan_chan *chan; 2545 struct ieee80211_frame *wh; 2546 struct ieee80211_rateset *rs; 2547 struct ieee80211_channel *c; 2548 enum ieee80211_phymode mode; 2549 uint8_t *frm; 2550 int nrates, pktlen, error, i, nssid; 2551 bus_addr_t physaddr; 2552 2553 desc = &ring->desc[ring->cur]; 2554 data = &ring->data[ring->cur]; 2555 2556 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2557 if (data->m == NULL) { 2558 device_printf(sc->sc_dev, 2559 "could not allocate mbuf for scan command\n"); 2560 return ENOMEM; 2561 } 2562 2563 cmd = mtod(data->m, struct wpi_tx_cmd *); 2564 cmd->code = WPI_CMD_SCAN; 2565 cmd->flags = 0; 2566 cmd->qid = ring->qid; 2567 cmd->idx = ring->cur; 2568 2569 hdr = (struct wpi_scan_hdr *)cmd->data; 2570 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2571 2572 /* 2573 * Move to the next channel if no packets are received within 5 msecs 2574 * after sending the probe request (this helps to reduce the duration 2575 * of active scans). 2576 */ 2577 hdr->quiet = htole16(5); 2578 hdr->threshold = htole16(1); 2579 2580 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2581 /* send probe requests at 6Mbps */ 2582 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2583 2584 /* Enable crc checking */ 2585 hdr->promotion = htole16(1); 2586 } else { 2587 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2588 /* send probe requests at 1Mbps */ 2589 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2590 } 2591 hdr->tx.id = WPI_ID_BROADCAST; 2592 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2593 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2594 2595 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2596 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2597 for (i = 0; i < nssid; i++) { 2598 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2599 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2600 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2601 hdr->scan_essids[i].esslen); 2602 #ifdef WPI_DEBUG 2603 if (wpi_debug & WPI_DEBUG_SCANNING) { 2604 printf("Scanning Essid: "); 2605 ieee80211_print_essid(hdr->scan_essids[i].essid, 2606 hdr->scan_essids[i].esslen); 2607 printf("\n"); 2608 } 2609 #endif 2610 } 2611 2612 /* 2613 * Build a probe request frame. Most of the following code is a 2614 * copy & paste of what is done in net80211. 2615 */ 2616 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2617 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2618 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2619 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2620 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2621 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2622 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2623 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2624 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2625 2626 frm = (uint8_t *)(wh + 1); 2627 2628 /* add essid IE, the hardware will fill this in for us */ 2629 *frm++ = IEEE80211_ELEMID_SSID; 2630 *frm++ = 0; 2631 2632 mode = ieee80211_chan2mode(ic->ic_curchan); 2633 rs = &ic->ic_sup_rates[mode]; 2634 2635 /* add supported rates IE */ 2636 *frm++ = IEEE80211_ELEMID_RATES; 2637 nrates = rs->rs_nrates; 2638 if (nrates > IEEE80211_RATE_SIZE) 2639 nrates = IEEE80211_RATE_SIZE; 2640 *frm++ = nrates; 2641 memcpy(frm, rs->rs_rates, nrates); 2642 frm += nrates; 2643 2644 /* add supported xrates IE */ 2645 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2646 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2647 *frm++ = IEEE80211_ELEMID_XRATES; 2648 *frm++ = nrates; 2649 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2650 frm += nrates; 2651 } 2652 2653 /* setup length of probe request */ 2654 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2655 2656 /* 2657 * Construct information about the channel that we 2658 * want to scan. The firmware expects this to be directly 2659 * after the scan probe request 2660 */ 2661 c = ic->ic_curchan; 2662 chan = (struct wpi_scan_chan *)frm; 2663 chan->chan = ieee80211_chan2ieee(ic, c); 2664 chan->flags = 0; 2665 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2666 chan->flags |= WPI_CHAN_ACTIVE; 2667 if (nssid != 0) 2668 chan->flags |= WPI_CHAN_DIRECT; 2669 } 2670 chan->gain_dsp = 0x6e; /* Default level */ 2671 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2672 chan->active = htole16(10); 2673 chan->passive = htole16(ss->ss_maxdwell); 2674 chan->gain_radio = 0x3b; 2675 } else { 2676 chan->active = htole16(20); 2677 chan->passive = htole16(ss->ss_maxdwell); 2678 chan->gain_radio = 0x28; 2679 } 2680 2681 DPRINTFN(WPI_DEBUG_SCANNING, 2682 ("Scanning %u Passive: %d\n", 2683 chan->chan, 2684 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2685 2686 hdr->nchan++; 2687 chan++; 2688 2689 frm += sizeof (struct wpi_scan_chan); 2690 #if 0 2691 // XXX All Channels.... 2692 for (c = &ic->ic_channels[1]; 2693 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2694 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2695 continue; 2696 2697 chan->chan = ieee80211_chan2ieee(ic, c); 2698 chan->flags = 0; 2699 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2700 chan->flags |= WPI_CHAN_ACTIVE; 2701 if (ic->ic_des_ssid[0].len != 0) 2702 chan->flags |= WPI_CHAN_DIRECT; 2703 } 2704 chan->gain_dsp = 0x6e; /* Default level */ 2705 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2706 chan->active = htole16(10); 2707 chan->passive = htole16(110); 2708 chan->gain_radio = 0x3b; 2709 } else { 2710 chan->active = htole16(20); 2711 chan->passive = htole16(120); 2712 chan->gain_radio = 0x28; 2713 } 2714 2715 DPRINTFN(WPI_DEBUG_SCANNING, 2716 ("Scanning %u Passive: %d\n", 2717 chan->chan, 2718 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2719 2720 hdr->nchan++; 2721 chan++; 2722 2723 frm += sizeof (struct wpi_scan_chan); 2724 } 2725 #endif 2726 2727 hdr->len = htole16(frm - (uint8_t *)hdr); 2728 pktlen = frm - (uint8_t *)cmd; 2729 2730 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2731 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2732 if (error != 0) { 2733 device_printf(sc->sc_dev, "could not map scan command\n"); 2734 m_freem(data->m); 2735 data->m = NULL; 2736 return error; 2737 } 2738 2739 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2740 desc->segs[0].addr = htole32(physaddr); 2741 desc->segs[0].len = htole32(pktlen); 2742 2743 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2744 BUS_DMASYNC_PREWRITE); 2745 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2746 2747 /* kick cmd ring */ 2748 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2749 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2750 2751 sc->sc_scan_timer = 5; 2752 return 0; /* will be notified async. of failure/success */ 2753 } 2754 2755 /** 2756 * Configure the card to listen to a particular channel, this transisions the 2757 * card in to being able to receive frames from remote devices. 2758 */ 2759 static int 2760 wpi_config(struct wpi_softc *sc) 2761 { 2762 struct ifnet *ifp = sc->sc_ifp; 2763 struct ieee80211com *ic = ifp->if_l2com; 2764 struct wpi_power power; 2765 struct wpi_bluetooth bluetooth; 2766 struct wpi_node_info node; 2767 int error; 2768 2769 /* set power mode */ 2770 memset(&power, 0, sizeof power); 2771 power.flags = htole32(WPI_POWER_CAM|0x8); 2772 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2773 if (error != 0) { 2774 device_printf(sc->sc_dev, "could not set power mode\n"); 2775 return error; 2776 } 2777 2778 /* configure bluetooth coexistence */ 2779 memset(&bluetooth, 0, sizeof bluetooth); 2780 bluetooth.flags = 3; 2781 bluetooth.lead = 0xaa; 2782 bluetooth.kill = 1; 2783 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2784 0); 2785 if (error != 0) { 2786 device_printf(sc->sc_dev, 2787 "could not configure bluetooth coexistence\n"); 2788 return error; 2789 } 2790 2791 /* configure adapter */ 2792 memset(&sc->config, 0, sizeof (struct wpi_config)); 2793 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2794 /*set default channel*/ 2795 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2796 sc->config.flags = htole32(WPI_CONFIG_TSF); 2797 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2798 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2799 WPI_CONFIG_24GHZ); 2800 } 2801 sc->config.filter = 0; 2802 switch (ic->ic_opmode) { 2803 case IEEE80211_M_STA: 2804 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2805 sc->config.mode = WPI_MODE_STA; 2806 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2807 break; 2808 case IEEE80211_M_IBSS: 2809 case IEEE80211_M_AHDEMO: 2810 sc->config.mode = WPI_MODE_IBSS; 2811 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2812 WPI_FILTER_MULTICAST); 2813 break; 2814 case IEEE80211_M_HOSTAP: 2815 sc->config.mode = WPI_MODE_HOSTAP; 2816 break; 2817 case IEEE80211_M_MONITOR: 2818 sc->config.mode = WPI_MODE_MONITOR; 2819 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2820 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2821 break; 2822 default: 2823 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2824 return EINVAL; 2825 } 2826 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2827 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2828 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2829 sizeof (struct wpi_config), 0); 2830 if (error != 0) { 2831 device_printf(sc->sc_dev, "configure command failed\n"); 2832 return error; 2833 } 2834 2835 /* configuration has changed, set Tx power accordingly */ 2836 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2837 device_printf(sc->sc_dev, "could not set Tx power\n"); 2838 return error; 2839 } 2840 2841 /* add broadcast node */ 2842 memset(&node, 0, sizeof node); 2843 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2844 node.id = WPI_ID_BROADCAST; 2845 node.rate = wpi_plcp_signal(2); 2846 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2847 if (error != 0) { 2848 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2849 return error; 2850 } 2851 2852 /* Setup rate scalling */ 2853 error = wpi_mrr_setup(sc); 2854 if (error != 0) { 2855 device_printf(sc->sc_dev, "could not setup MRR\n"); 2856 return error; 2857 } 2858 2859 return 0; 2860 } 2861 2862 static void 2863 wpi_stop_master(struct wpi_softc *sc) 2864 { 2865 uint32_t tmp; 2866 int ntries; 2867 2868 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2869 2870 tmp = WPI_READ(sc, WPI_RESET); 2871 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2872 2873 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2874 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2875 return; /* already asleep */ 2876 2877 for (ntries = 0; ntries < 100; ntries++) { 2878 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2879 break; 2880 DELAY(10); 2881 } 2882 if (ntries == 100) { 2883 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2884 } 2885 } 2886 2887 static int 2888 wpi_power_up(struct wpi_softc *sc) 2889 { 2890 uint32_t tmp; 2891 int ntries; 2892 2893 wpi_mem_lock(sc); 2894 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2895 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2896 wpi_mem_unlock(sc); 2897 2898 for (ntries = 0; ntries < 5000; ntries++) { 2899 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2900 break; 2901 DELAY(10); 2902 } 2903 if (ntries == 5000) { 2904 device_printf(sc->sc_dev, 2905 "timeout waiting for NIC to power up\n"); 2906 return ETIMEDOUT; 2907 } 2908 return 0; 2909 } 2910 2911 static int 2912 wpi_reset(struct wpi_softc *sc) 2913 { 2914 uint32_t tmp; 2915 int ntries; 2916 2917 DPRINTFN(WPI_DEBUG_HW, 2918 ("Resetting the card - clearing any uploaded firmware\n")); 2919 2920 /* clear any pending interrupts */ 2921 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2922 2923 tmp = WPI_READ(sc, WPI_PLL_CTL); 2924 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2925 2926 tmp = WPI_READ(sc, WPI_CHICKEN); 2927 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2928 2929 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2930 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2931 2932 /* wait for clock stabilization */ 2933 for (ntries = 0; ntries < 25000; ntries++) { 2934 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2935 break; 2936 DELAY(10); 2937 } 2938 if (ntries == 25000) { 2939 device_printf(sc->sc_dev, 2940 "timeout waiting for clock stabilization\n"); 2941 return ETIMEDOUT; 2942 } 2943 2944 /* initialize EEPROM */ 2945 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2946 2947 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2948 device_printf(sc->sc_dev, "EEPROM not found\n"); 2949 return EIO; 2950 } 2951 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2952 2953 return 0; 2954 } 2955 2956 static void 2957 wpi_hw_config(struct wpi_softc *sc) 2958 { 2959 uint32_t rev, hw; 2960 2961 /* voodoo from the Linux "driver".. */ 2962 hw = WPI_READ(sc, WPI_HWCONFIG); 2963 2964 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2965 if ((rev & 0xc0) == 0x40) 2966 hw |= WPI_HW_ALM_MB; 2967 else if (!(rev & 0x80)) 2968 hw |= WPI_HW_ALM_MM; 2969 2970 if (sc->cap == 0x80) 2971 hw |= WPI_HW_SKU_MRC; 2972 2973 hw &= ~WPI_HW_REV_D; 2974 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2975 hw |= WPI_HW_REV_D; 2976 2977 if (sc->type > 1) 2978 hw |= WPI_HW_TYPE_B; 2979 2980 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2981 } 2982 2983 static void 2984 wpi_rfkill_resume(struct wpi_softc *sc) 2985 { 2986 struct ifnet *ifp = sc->sc_ifp; 2987 struct ieee80211com *ic = ifp->if_l2com; 2988 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2989 int ntries; 2990 2991 /* enable firmware again */ 2992 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 2993 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 2994 2995 /* wait for thermal sensors to calibrate */ 2996 for (ntries = 0; ntries < 1000; ntries++) { 2997 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 2998 break; 2999 DELAY(10); 3000 } 3001 3002 if (ntries == 1000) { 3003 device_printf(sc->sc_dev, 3004 "timeout waiting for thermal calibration\n"); 3005 WPI_UNLOCK(sc); 3006 return; 3007 } 3008 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3009 3010 if (wpi_config(sc) != 0) { 3011 device_printf(sc->sc_dev, "device config failed\n"); 3012 WPI_UNLOCK(sc); 3013 return; 3014 } 3015 3016 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3017 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3018 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3019 3020 if (vap != NULL) { 3021 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3022 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3023 ieee80211_beacon_miss(ic); 3024 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3025 } else 3026 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3027 } else { 3028 ieee80211_scan_next(vap); 3029 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3030 } 3031 } 3032 3033 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3034 } 3035 3036 static void 3037 wpi_init_locked(struct wpi_softc *sc, int force) 3038 { 3039 struct ifnet *ifp = sc->sc_ifp; 3040 uint32_t tmp; 3041 int ntries, qid; 3042 3043 wpi_stop_locked(sc); 3044 (void)wpi_reset(sc); 3045 3046 wpi_mem_lock(sc); 3047 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3048 DELAY(20); 3049 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3050 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3051 wpi_mem_unlock(sc); 3052 3053 (void)wpi_power_up(sc); 3054 wpi_hw_config(sc); 3055 3056 /* init Rx ring */ 3057 wpi_mem_lock(sc); 3058 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3059 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3060 offsetof(struct wpi_shared, next)); 3061 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3062 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3063 wpi_mem_unlock(sc); 3064 3065 /* init Tx rings */ 3066 wpi_mem_lock(sc); 3067 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3068 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3069 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3070 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3071 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3072 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3073 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3074 3075 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3076 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3077 3078 for (qid = 0; qid < 6; qid++) { 3079 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3080 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3081 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3082 } 3083 wpi_mem_unlock(sc); 3084 3085 /* clear "radio off" and "disable command" bits (reversed logic) */ 3086 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3087 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3088 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3089 3090 /* clear any pending interrupts */ 3091 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3092 3093 /* enable interrupts */ 3094 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3095 3096 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3097 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3098 3099 if ((wpi_load_firmware(sc)) != 0) { 3100 device_printf(sc->sc_dev, 3101 "A problem occurred loading the firmware to the driver\n"); 3102 return; 3103 } 3104 3105 /* At this point the firmware is up and running. If the hardware 3106 * RF switch is turned off thermal calibration will fail, though 3107 * the card is still happy to continue to accept commands, catch 3108 * this case and schedule a task to watch for it to be turned on. 3109 */ 3110 wpi_mem_lock(sc); 3111 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3112 wpi_mem_unlock(sc); 3113 3114 if (!(tmp & 0x1)) { 3115 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3116 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3117 goto out; 3118 } 3119 3120 /* wait for thermal sensors to calibrate */ 3121 for (ntries = 0; ntries < 1000; ntries++) { 3122 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3123 break; 3124 DELAY(10); 3125 } 3126 3127 if (ntries == 1000) { 3128 device_printf(sc->sc_dev, 3129 "timeout waiting for thermal sensors calibration\n"); 3130 return; 3131 } 3132 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3133 3134 if (wpi_config(sc) != 0) { 3135 device_printf(sc->sc_dev, "device config failed\n"); 3136 return; 3137 } 3138 3139 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3140 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3141 out: 3142 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3143 } 3144 3145 static void 3146 wpi_init(void *arg) 3147 { 3148 struct wpi_softc *sc = arg; 3149 struct ifnet *ifp = sc->sc_ifp; 3150 struct ieee80211com *ic = ifp->if_l2com; 3151 3152 WPI_LOCK(sc); 3153 wpi_init_locked(sc, 0); 3154 WPI_UNLOCK(sc); 3155 3156 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3157 ieee80211_start_all(ic); /* start all vaps */ 3158 } 3159 3160 static void 3161 wpi_stop_locked(struct wpi_softc *sc) 3162 { 3163 struct ifnet *ifp = sc->sc_ifp; 3164 uint32_t tmp; 3165 int ac; 3166 3167 sc->sc_tx_timer = 0; 3168 sc->sc_scan_timer = 0; 3169 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3170 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3171 callout_stop(&sc->watchdog_to); 3172 callout_stop(&sc->calib_to); 3173 3174 3175 /* disable interrupts */ 3176 WPI_WRITE(sc, WPI_MASK, 0); 3177 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3178 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3179 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3180 3181 wpi_mem_lock(sc); 3182 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3183 wpi_mem_unlock(sc); 3184 3185 /* reset all Tx rings */ 3186 for (ac = 0; ac < 4; ac++) 3187 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3188 wpi_reset_tx_ring(sc, &sc->cmdq); 3189 3190 /* reset Rx ring */ 3191 wpi_reset_rx_ring(sc, &sc->rxq); 3192 3193 wpi_mem_lock(sc); 3194 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3195 wpi_mem_unlock(sc); 3196 3197 DELAY(5); 3198 3199 wpi_stop_master(sc); 3200 3201 tmp = WPI_READ(sc, WPI_RESET); 3202 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3203 sc->flags &= ~WPI_FLAG_BUSY; 3204 } 3205 3206 static void 3207 wpi_stop(struct wpi_softc *sc) 3208 { 3209 WPI_LOCK(sc); 3210 wpi_stop_locked(sc); 3211 WPI_UNLOCK(sc); 3212 } 3213 3214 static void 3215 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3216 { 3217 struct ieee80211vap *vap = ni->ni_vap; 3218 struct wpi_vap *wvp = WPI_VAP(vap); 3219 3220 ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni); 3221 } 3222 3223 static void 3224 wpi_calib_timeout(void *arg) 3225 { 3226 struct wpi_softc *sc = arg; 3227 struct ifnet *ifp = sc->sc_ifp; 3228 struct ieee80211com *ic = ifp->if_l2com; 3229 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3230 int temp; 3231 3232 if (vap->iv_state != IEEE80211_S_RUN) 3233 return; 3234 3235 /* update sensor data */ 3236 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3237 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3238 3239 wpi_power_calibration(sc, temp); 3240 3241 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3242 } 3243 3244 /* 3245 * This function is called periodically (every 60 seconds) to adjust output 3246 * power to temperature changes. 3247 */ 3248 static void 3249 wpi_power_calibration(struct wpi_softc *sc, int temp) 3250 { 3251 struct ifnet *ifp = sc->sc_ifp; 3252 struct ieee80211com *ic = ifp->if_l2com; 3253 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3254 3255 /* sanity-check read value */ 3256 if (temp < -260 || temp > 25) { 3257 /* this can't be correct, ignore */ 3258 DPRINTFN(WPI_DEBUG_TEMP, 3259 ("out-of-range temperature reported: %d\n", temp)); 3260 return; 3261 } 3262 3263 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3264 3265 /* adjust Tx power if need be */ 3266 if (abs(temp - sc->temp) <= 6) 3267 return; 3268 3269 sc->temp = temp; 3270 3271 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3272 /* just warn, too bad for the automatic calibration... */ 3273 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3274 } 3275 } 3276 3277 /** 3278 * Read the eeprom to find out what channels are valid for the given 3279 * band and update net80211 with what we find. 3280 */ 3281 static void 3282 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3283 { 3284 struct ifnet *ifp = sc->sc_ifp; 3285 struct ieee80211com *ic = ifp->if_l2com; 3286 const struct wpi_chan_band *band = &wpi_bands[n]; 3287 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3288 struct ieee80211_channel *c; 3289 int chan, i, passive; 3290 3291 wpi_read_prom_data(sc, band->addr, channels, 3292 band->nchan * sizeof (struct wpi_eeprom_chan)); 3293 3294 for (i = 0; i < band->nchan; i++) { 3295 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3296 DPRINTFN(WPI_DEBUG_HW, 3297 ("Channel Not Valid: %d, band %d\n", 3298 band->chan[i],n)); 3299 continue; 3300 } 3301 3302 passive = 0; 3303 chan = band->chan[i]; 3304 c = &ic->ic_channels[ic->ic_nchans++]; 3305 3306 /* is active scan allowed on this channel? */ 3307 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3308 passive = IEEE80211_CHAN_PASSIVE; 3309 } 3310 3311 if (n == 0) { /* 2GHz band */ 3312 c->ic_ieee = chan; 3313 c->ic_freq = ieee80211_ieee2mhz(chan, 3314 IEEE80211_CHAN_2GHZ); 3315 c->ic_flags = IEEE80211_CHAN_B | passive; 3316 3317 c = &ic->ic_channels[ic->ic_nchans++]; 3318 c->ic_ieee = chan; 3319 c->ic_freq = ieee80211_ieee2mhz(chan, 3320 IEEE80211_CHAN_2GHZ); 3321 c->ic_flags = IEEE80211_CHAN_G | passive; 3322 3323 } else { /* 5GHz band */ 3324 /* 3325 * Some 3945ABG adapters support channels 7, 8, 11 3326 * and 12 in the 2GHz *and* 5GHz bands. 3327 * Because of limitations in our net80211(9) stack, 3328 * we can't support these channels in 5GHz band. 3329 * XXX not true; just need to map to proper frequency 3330 */ 3331 if (chan <= 14) 3332 continue; 3333 3334 c->ic_ieee = chan; 3335 c->ic_freq = ieee80211_ieee2mhz(chan, 3336 IEEE80211_CHAN_5GHZ); 3337 c->ic_flags = IEEE80211_CHAN_A | passive; 3338 } 3339 3340 /* save maximum allowed power for this channel */ 3341 sc->maxpwr[chan] = channels[i].maxpwr; 3342 3343 #if 0 3344 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3345 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3346 //ic->ic_channels[chan].ic_minpower... 3347 //ic->ic_channels[chan].ic_maxregtxpower... 3348 #endif 3349 3350 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3351 " passive=%d, offset %d\n", chan, c->ic_freq, 3352 channels[i].flags, sc->maxpwr[chan], 3353 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3354 ic->ic_nchans)); 3355 } 3356 } 3357 3358 static void 3359 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3360 { 3361 struct wpi_power_group *group = &sc->groups[n]; 3362 struct wpi_eeprom_group rgroup; 3363 int i; 3364 3365 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3366 sizeof rgroup); 3367 3368 /* save power group information */ 3369 group->chan = rgroup.chan; 3370 group->maxpwr = rgroup.maxpwr; 3371 /* temperature at which the samples were taken */ 3372 group->temp = (int16_t)le16toh(rgroup.temp); 3373 3374 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3375 group->chan, group->maxpwr, group->temp)); 3376 3377 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3378 group->samples[i].index = rgroup.samples[i].index; 3379 group->samples[i].power = rgroup.samples[i].power; 3380 3381 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3382 group->samples[i].index, group->samples[i].power)); 3383 } 3384 } 3385 3386 /* 3387 * Update Tx power to match what is defined for channel `c'. 3388 */ 3389 static int 3390 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3391 { 3392 struct ifnet *ifp = sc->sc_ifp; 3393 struct ieee80211com *ic = ifp->if_l2com; 3394 struct wpi_power_group *group; 3395 struct wpi_cmd_txpower txpower; 3396 u_int chan; 3397 int i; 3398 3399 /* get channel number */ 3400 chan = ieee80211_chan2ieee(ic, c); 3401 3402 /* find the power group to which this channel belongs */ 3403 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3404 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3405 if (chan <= group->chan) 3406 break; 3407 } else 3408 group = &sc->groups[0]; 3409 3410 memset(&txpower, 0, sizeof txpower); 3411 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3412 txpower.channel = htole16(chan); 3413 3414 /* set Tx power for all OFDM and CCK rates */ 3415 for (i = 0; i <= 11 ; i++) { 3416 /* retrieve Tx power for this channel/rate combination */ 3417 int idx = wpi_get_power_index(sc, group, c, 3418 wpi_ridx_to_rate[i]); 3419 3420 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3421 3422 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3423 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3424 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3425 } else { 3426 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3427 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3428 } 3429 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3430 chan, wpi_ridx_to_rate[i], idx)); 3431 } 3432 3433 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3434 } 3435 3436 /* 3437 * Determine Tx power index for a given channel/rate combination. 3438 * This takes into account the regulatory information from EEPROM and the 3439 * current temperature. 3440 */ 3441 static int 3442 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3443 struct ieee80211_channel *c, int rate) 3444 { 3445 /* fixed-point arithmetic division using a n-bit fractional part */ 3446 #define fdivround(a, b, n) \ 3447 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3448 3449 /* linear interpolation */ 3450 #define interpolate(x, x1, y1, x2, y2, n) \ 3451 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3452 3453 struct ifnet *ifp = sc->sc_ifp; 3454 struct ieee80211com *ic = ifp->if_l2com; 3455 struct wpi_power_sample *sample; 3456 int pwr, idx; 3457 u_int chan; 3458 3459 /* get channel number */ 3460 chan = ieee80211_chan2ieee(ic, c); 3461 3462 /* default power is group's maximum power - 3dB */ 3463 pwr = group->maxpwr / 2; 3464 3465 /* decrease power for highest OFDM rates to reduce distortion */ 3466 switch (rate) { 3467 case 72: /* 36Mb/s */ 3468 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3469 break; 3470 case 96: /* 48Mb/s */ 3471 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3472 break; 3473 case 108: /* 54Mb/s */ 3474 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3475 break; 3476 } 3477 3478 /* never exceed channel's maximum allowed Tx power */ 3479 pwr = min(pwr, sc->maxpwr[chan]); 3480 3481 /* retrieve power index into gain tables from samples */ 3482 for (sample = group->samples; sample < &group->samples[3]; sample++) 3483 if (pwr > sample[1].power) 3484 break; 3485 /* fixed-point linear interpolation using a 19-bit fractional part */ 3486 idx = interpolate(pwr, sample[0].power, sample[0].index, 3487 sample[1].power, sample[1].index, 19); 3488 3489 /* 3490 * Adjust power index based on current temperature 3491 * - if colder than factory-calibrated: decreate output power 3492 * - if warmer than factory-calibrated: increase output power 3493 */ 3494 idx -= (sc->temp - group->temp) * 11 / 100; 3495 3496 /* decrease power for CCK rates (-5dB) */ 3497 if (!WPI_RATE_IS_OFDM(rate)) 3498 idx += 10; 3499 3500 /* keep power index in a valid range */ 3501 if (idx < 0) 3502 return 0; 3503 if (idx > WPI_MAX_PWR_INDEX) 3504 return WPI_MAX_PWR_INDEX; 3505 return idx; 3506 3507 #undef interpolate 3508 #undef fdivround 3509 } 3510 3511 /** 3512 * Called by net80211 framework to indicate that a scan 3513 * is starting. This function doesn't actually do the scan, 3514 * wpi_scan_curchan starts things off. This function is more 3515 * of an early warning from the framework we should get ready 3516 * for the scan. 3517 */ 3518 static void 3519 wpi_scan_start(struct ieee80211com *ic) 3520 { 3521 struct ifnet *ifp = ic->ic_ifp; 3522 struct wpi_softc *sc = ifp->if_softc; 3523 3524 WPI_LOCK(sc); 3525 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3526 WPI_UNLOCK(sc); 3527 } 3528 3529 /** 3530 * Called by the net80211 framework, indicates that the 3531 * scan has ended. If there is a scan in progress on the card 3532 * then it should be aborted. 3533 */ 3534 static void 3535 wpi_scan_end(struct ieee80211com *ic) 3536 { 3537 /* XXX ignore */ 3538 } 3539 3540 /** 3541 * Called by the net80211 framework to indicate to the driver 3542 * that the channel should be changed 3543 */ 3544 static void 3545 wpi_set_channel(struct ieee80211com *ic) 3546 { 3547 struct ifnet *ifp = ic->ic_ifp; 3548 struct wpi_softc *sc = ifp->if_softc; 3549 int error; 3550 3551 /* 3552 * Only need to set the channel in Monitor mode. AP scanning and auth 3553 * are already taken care of by their respective firmware commands. 3554 */ 3555 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3556 error = wpi_config(sc); 3557 if (error != 0) 3558 device_printf(sc->sc_dev, 3559 "error %d settting channel\n", error); 3560 } 3561 } 3562 3563 /** 3564 * Called by net80211 to indicate that we need to scan the current 3565 * channel. The channel is previously be set via the wpi_set_channel 3566 * callback. 3567 */ 3568 static void 3569 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3570 { 3571 struct ieee80211vap *vap = ss->ss_vap; 3572 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3573 struct wpi_softc *sc = ifp->if_softc; 3574 3575 WPI_LOCK(sc); 3576 if (wpi_scan(sc)) 3577 ieee80211_cancel_scan(vap); 3578 WPI_UNLOCK(sc); 3579 } 3580 3581 /** 3582 * Called by the net80211 framework to indicate 3583 * the minimum dwell time has been met, terminate the scan. 3584 * We don't actually terminate the scan as the firmware will notify 3585 * us when it's finished and we have no way to interrupt it. 3586 */ 3587 static void 3588 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3589 { 3590 /* NB: don't try to abort scan; wait for firmware to finish */ 3591 } 3592 3593 static void 3594 wpi_hwreset(void *arg, int pending) 3595 { 3596 struct wpi_softc *sc = arg; 3597 3598 WPI_LOCK(sc); 3599 wpi_init_locked(sc, 0); 3600 WPI_UNLOCK(sc); 3601 } 3602 3603 static void 3604 wpi_rfreset(void *arg, int pending) 3605 { 3606 struct wpi_softc *sc = arg; 3607 3608 WPI_LOCK(sc); 3609 wpi_rfkill_resume(sc); 3610 WPI_UNLOCK(sc); 3611 } 3612 3613 /* 3614 * Allocate DMA-safe memory for firmware transfer. 3615 */ 3616 static int 3617 wpi_alloc_fwmem(struct wpi_softc *sc) 3618 { 3619 /* allocate enough contiguous space to store text and data */ 3620 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3621 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3622 BUS_DMA_NOWAIT); 3623 } 3624 3625 static void 3626 wpi_free_fwmem(struct wpi_softc *sc) 3627 { 3628 wpi_dma_contig_free(&sc->fw_dma); 3629 } 3630 3631 /** 3632 * Called every second, wpi_watchdog used by the watch dog timer 3633 * to check that the card is still alive 3634 */ 3635 static void 3636 wpi_watchdog(void *arg) 3637 { 3638 struct wpi_softc *sc = arg; 3639 struct ifnet *ifp = sc->sc_ifp; 3640 struct ieee80211com *ic = ifp->if_l2com; 3641 uint32_t tmp; 3642 3643 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3644 3645 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3646 /* No need to lock firmware memory */ 3647 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3648 3649 if ((tmp & 0x1) == 0) { 3650 /* Radio kill switch is still off */ 3651 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3652 return; 3653 } 3654 3655 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3656 ieee80211_runtask(ic, &sc->sc_radiotask); 3657 return; 3658 } 3659 3660 if (sc->sc_tx_timer > 0) { 3661 if (--sc->sc_tx_timer == 0) { 3662 device_printf(sc->sc_dev,"device timeout\n"); 3663 ifp->if_oerrors++; 3664 ieee80211_runtask(ic, &sc->sc_restarttask); 3665 } 3666 } 3667 if (sc->sc_scan_timer > 0) { 3668 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3669 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3670 device_printf(sc->sc_dev,"scan timeout\n"); 3671 ieee80211_cancel_scan(vap); 3672 ieee80211_runtask(ic, &sc->sc_restarttask); 3673 } 3674 } 3675 3676 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3677 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3678 } 3679 3680 #ifdef WPI_DEBUG 3681 static const char *wpi_cmd_str(int cmd) 3682 { 3683 switch (cmd) { 3684 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3685 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3686 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3687 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3688 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3689 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3690 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3691 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3692 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3693 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3694 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3695 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3696 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3697 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3698 3699 default: 3700 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3701 return "UNKNOWN CMD"; /* Make the compiler happy */ 3702 } 3703 } 3704 #endif 3705 3706 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3707 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3708 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3709 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3710