xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/if_ether.h>
102 
103 #include <dev/wpi/if_wpireg.h>
104 #include <dev/wpi/if_wpivar.h>
105 
106 #define WPI_DEBUG
107 
108 #ifdef WPI_DEBUG
109 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111 #define	WPI_DEBUG_SET	(wpi_debug != 0)
112 
113 enum {
114 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
115 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
116 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
117 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
118 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
119 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
120 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
121 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
122 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
123 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
124 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
125 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
126 	WPI_DEBUG_ANY		= 0xffffffff
127 };
128 
129 static int wpi_debug = 0;
130 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
131 TUNABLE_INT("debug.wpi", &wpi_debug);
132 
133 #else
134 #define DPRINTF(x)
135 #define DPRINTFN(n, x)
136 #define WPI_DEBUG_SET	0
137 #endif
138 
139 struct wpi_ident {
140 	uint16_t	vendor;
141 	uint16_t	device;
142 	uint16_t	subdevice;
143 	const char	*name;
144 };
145 
146 static const struct wpi_ident wpi_ident_table[] = {
147 	/* The below entries support ABG regardless of the subid */
148 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
149 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150 	/* The below entries only support BG */
151 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
152 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
153 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
154 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
155 	{ 0, 0, 0, NULL }
156 };
157 
158 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
159 		    const char name[IFNAMSIZ], int unit, int opmode,
160 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
161 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
162 static void	wpi_vap_delete(struct ieee80211vap *);
163 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
164 		    void **, bus_size_t, bus_size_t, int);
165 static void	wpi_dma_contig_free(struct wpi_dma_info *);
166 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
167 static int	wpi_alloc_shared(struct wpi_softc *);
168 static void	wpi_free_shared(struct wpi_softc *);
169 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
170 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
173 		    int, int);
174 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
175 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
178 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179 static void	wpi_mem_lock(struct wpi_softc *);
180 static void	wpi_mem_unlock(struct wpi_softc *);
181 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184 		    const uint32_t *, int);
185 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186 static int	wpi_alloc_fwmem(struct wpi_softc *);
187 static void	wpi_free_fwmem(struct wpi_softc *);
188 static int	wpi_load_firmware(struct wpi_softc *);
189 static void	wpi_unload_firmware(struct wpi_softc *);
190 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192 		    struct wpi_rx_data *);
193 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_notif_intr(struct wpi_softc *);
196 static void	wpi_intr(void *);
197 static uint8_t	wpi_plcp_signal(int);
198 static void	wpi_watchdog(void *);
199 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
200 		    struct ieee80211_node *, int);
201 static void	wpi_start(struct ifnet *);
202 static void	wpi_start_locked(struct ifnet *);
203 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204 		    const struct ieee80211_bpf_params *);
205 static void	wpi_scan_start(struct ieee80211com *);
206 static void	wpi_scan_end(struct ieee80211com *);
207 static void	wpi_set_channel(struct ieee80211com *);
208 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
210 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
211 static void	wpi_read_eeprom(struct wpi_softc *,
212 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
213 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
214 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
215 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216 static int	wpi_wme_update(struct ieee80211com *);
217 static int	wpi_mrr_setup(struct wpi_softc *);
218 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220 #if 0
221 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222 #endif
223 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
225 static int	wpi_scan(struct wpi_softc *);
226 static int	wpi_config(struct wpi_softc *);
227 static void	wpi_stop_master(struct wpi_softc *);
228 static int	wpi_power_up(struct wpi_softc *);
229 static int	wpi_reset(struct wpi_softc *);
230 static void	wpi_hwreset(void *, int);
231 static void	wpi_rfreset(void *, int);
232 static void	wpi_hw_config(struct wpi_softc *);
233 static void	wpi_init(void *);
234 static void	wpi_init_locked(struct wpi_softc *, int);
235 static void	wpi_stop(struct wpi_softc *);
236 static void	wpi_stop_locked(struct wpi_softc *);
237 
238 static void	wpi_newassoc(struct ieee80211_node *, int);
239 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240 		    int);
241 static void	wpi_calib_timeout(void *);
242 static void	wpi_power_calibration(struct wpi_softc *, int);
243 static int	wpi_get_power_index(struct wpi_softc *,
244 		    struct wpi_power_group *, struct ieee80211_channel *, int);
245 #ifdef WPI_DEBUG
246 static const char *wpi_cmd_str(int);
247 #endif
248 static int wpi_probe(device_t);
249 static int wpi_attach(device_t);
250 static int wpi_detach(device_t);
251 static int wpi_shutdown(device_t);
252 static int wpi_suspend(device_t);
253 static int wpi_resume(device_t);
254 
255 
256 static device_method_t wpi_methods[] = {
257 	/* Device interface */
258 	DEVMETHOD(device_probe,		wpi_probe),
259 	DEVMETHOD(device_attach,	wpi_attach),
260 	DEVMETHOD(device_detach,	wpi_detach),
261 	DEVMETHOD(device_shutdown,	wpi_shutdown),
262 	DEVMETHOD(device_suspend,	wpi_suspend),
263 	DEVMETHOD(device_resume,	wpi_resume),
264 
265 	{ 0, 0 }
266 };
267 
268 static driver_t wpi_driver = {
269 	"wpi",
270 	wpi_methods,
271 	sizeof (struct wpi_softc)
272 };
273 
274 static devclass_t wpi_devclass;
275 
276 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277 
278 static const uint8_t wpi_ridx_to_plcp[] = {
279 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280 	/* R1-R4 (ral/ural is R4-R1) */
281 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282 	/* CCK: device-dependent */
283 	10, 20, 55, 110
284 };
285 static const uint8_t wpi_ridx_to_rate[] = {
286 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287 	2, 4, 11, 22 /*CCK */
288 };
289 
290 
291 static int
292 wpi_probe(device_t dev)
293 {
294 	const struct wpi_ident *ident;
295 
296 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297 		if (pci_get_vendor(dev) == ident->vendor &&
298 		    pci_get_device(dev) == ident->device) {
299 			device_set_desc(dev, ident->name);
300 			return 0;
301 		}
302 	}
303 	return ENXIO;
304 }
305 
306 /**
307  * Load the firmare image from disk to the allocated dma buffer.
308  * we also maintain the reference to the firmware pointer as there
309  * is times where we may need to reload the firmware but we are not
310  * in a context that can access the filesystem (ie taskq cause by restart)
311  *
312  * @return 0 on success, an errno on failure
313  */
314 static int
315 wpi_load_firmware(struct wpi_softc *sc)
316 {
317 	const struct firmware *fp;
318 	struct wpi_dma_info *dma = &sc->fw_dma;
319 	const struct wpi_firmware_hdr *hdr;
320 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322 	int error;
323 
324 	DPRINTFN(WPI_DEBUG_FIRMWARE,
325 	    ("Attempting Loading Firmware from wpi_fw module\n"));
326 
327 	WPI_UNLOCK(sc);
328 
329 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330 		device_printf(sc->sc_dev,
331 		    "could not load firmware image 'wpifw'\n");
332 		error = ENOENT;
333 		WPI_LOCK(sc);
334 		goto fail;
335 	}
336 
337 	fp = sc->fw_fp;
338 
339 	WPI_LOCK(sc);
340 
341 	/* Validate the firmware is minimum a particular version */
342 	if (fp->version < WPI_FW_MINVERSION) {
343 	    device_printf(sc->sc_dev,
344 			   "firmware version is too old. Need %d, got %d\n",
345 			   WPI_FW_MINVERSION,
346 			   fp->version);
347 	    error = ENXIO;
348 	    goto fail;
349 	}
350 
351 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352 		device_printf(sc->sc_dev,
353 		    "firmware file too short: %zu bytes\n", fp->datasize);
354 		error = ENXIO;
355 		goto fail;
356 	}
357 
358 	hdr = (const struct wpi_firmware_hdr *)fp->data;
359 
360 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362 
363 	rtextsz = le32toh(hdr->rtextsz);
364 	rdatasz = le32toh(hdr->rdatasz);
365 	itextsz = le32toh(hdr->itextsz);
366 	idatasz = le32toh(hdr->idatasz);
367 	btextsz = le32toh(hdr->btextsz);
368 
369 	/* check that all firmware segments are present */
370 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372 		device_printf(sc->sc_dev,
373 		    "firmware file too short: %zu bytes\n", fp->datasize);
374 		error = ENXIO; /* XXX appropriate error code? */
375 		goto fail;
376 	}
377 
378 	/* get pointers to firmware segments */
379 	rtext = (const uint8_t *)(hdr + 1);
380 	rdata = rtext + rtextsz;
381 	itext = rdata + rdatasz;
382 	idata = itext + itextsz;
383 	btext = idata + idatasz;
384 
385 	DPRINTFN(WPI_DEBUG_FIRMWARE,
386 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388 	     (le32toh(hdr->version) & 0xff000000) >> 24,
389 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
390 	     (le32toh(hdr->version) & 0x0000ffff),
391 	     rtextsz, rdatasz,
392 	     itextsz, idatasz, btextsz));
393 
394 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399 
400 	/* sanity checks */
401 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406 	    (btextsz & 3) != 0) {
407 		device_printf(sc->sc_dev, "firmware invalid\n");
408 		error = EINVAL;
409 		goto fail;
410 	}
411 
412 	/* copy initialization images into pre-allocated DMA-safe memory */
413 	memcpy(dma->vaddr, idata, idatasz);
414 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415 
416 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417 
418 	/* tell adapter where to find initialization images */
419 	wpi_mem_lock(sc);
420 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425 	wpi_mem_unlock(sc);
426 
427 	/* load firmware boot code */
428 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
430 	    goto fail;
431 	}
432 
433 	/* now press "execute" */
434 	WPI_WRITE(sc, WPI_RESET, 0);
435 
436 	/* wait at most one second for the first alive notification */
437 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438 		device_printf(sc->sc_dev,
439 		    "timeout waiting for adapter to initialize\n");
440 		goto fail;
441 	}
442 
443 	/* copy runtime images into pre-allocated DMA-sage memory */
444 	memcpy(dma->vaddr, rdata, rdatasz);
445 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447 
448 	/* tell adapter where to find runtime images */
449 	wpi_mem_lock(sc);
450 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455 	wpi_mem_unlock(sc);
456 
457 	/* wait at most one second for the first alive notification */
458 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459 		device_printf(sc->sc_dev,
460 		    "timeout waiting for adapter to initialize2\n");
461 		goto fail;
462 	}
463 
464 	DPRINTFN(WPI_DEBUG_FIRMWARE,
465 	    ("Firmware loaded to driver successfully\n"));
466 	return error;
467 fail:
468 	wpi_unload_firmware(sc);
469 	return error;
470 }
471 
472 /**
473  * Free the referenced firmware image
474  */
475 static void
476 wpi_unload_firmware(struct wpi_softc *sc)
477 {
478 
479 	if (sc->fw_fp) {
480 		WPI_UNLOCK(sc);
481 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482 		WPI_LOCK(sc);
483 		sc->fw_fp = NULL;
484 	}
485 }
486 
487 static int
488 wpi_attach(device_t dev)
489 {
490 	struct wpi_softc *sc = device_get_softc(dev);
491 	struct ifnet *ifp;
492 	struct ieee80211com *ic;
493 	int ac, error, supportsa = 1;
494 	uint32_t tmp;
495 	const struct wpi_ident *ident;
496 	uint8_t macaddr[IEEE80211_ADDR_LEN];
497 
498 	sc->sc_dev = dev;
499 
500 	if (bootverbose || WPI_DEBUG_SET)
501 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
502 
503 	/*
504 	 * Some card's only support 802.11b/g not a, check to see if
505 	 * this is one such card. A 0x0 in the subdevice table indicates
506 	 * the entire subdevice range is to be ignored.
507 	 */
508 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
509 		if (ident->subdevice &&
510 		    pci_get_subdevice(dev) == ident->subdevice) {
511 		    supportsa = 0;
512 		    break;
513 		}
514 	}
515 
516 	/* Create the tasks that can be queued */
517 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
518 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
519 
520 	WPI_LOCK_INIT(sc);
521 
522 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
523 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
524 
525 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
526 		device_printf(dev, "chip is in D%d power mode "
527 		    "-- setting to D0\n", pci_get_powerstate(dev));
528 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
529 	}
530 
531 	/* disable the retry timeout register */
532 	pci_write_config(dev, 0x41, 0, 1);
533 
534 	/* enable bus-mastering */
535 	pci_enable_busmaster(dev);
536 
537 	sc->mem_rid = PCIR_BAR(0);
538 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
539 	    RF_ACTIVE);
540 	if (sc->mem == NULL) {
541 		device_printf(dev, "could not allocate memory resource\n");
542 		error = ENOMEM;
543 		goto fail;
544 	}
545 
546 	sc->sc_st = rman_get_bustag(sc->mem);
547 	sc->sc_sh = rman_get_bushandle(sc->mem);
548 
549 	sc->irq_rid = 0;
550 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
551 	    RF_ACTIVE | RF_SHAREABLE);
552 	if (sc->irq == NULL) {
553 		device_printf(dev, "could not allocate interrupt resource\n");
554 		error = ENOMEM;
555 		goto fail;
556 	}
557 
558 	/*
559 	 * Allocate DMA memory for firmware transfers.
560 	 */
561 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
562 		printf(": could not allocate firmware memory\n");
563 		error = ENOMEM;
564 		goto fail;
565 	}
566 
567 	/*
568 	 * Put adapter into a known state.
569 	 */
570 	if ((error = wpi_reset(sc)) != 0) {
571 		device_printf(dev, "could not reset adapter\n");
572 		goto fail;
573 	}
574 
575 	wpi_mem_lock(sc);
576 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
577 	if (bootverbose || WPI_DEBUG_SET)
578 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
579 
580 	wpi_mem_unlock(sc);
581 
582 	/* Allocate shared page */
583 	if ((error = wpi_alloc_shared(sc)) != 0) {
584 		device_printf(dev, "could not allocate shared page\n");
585 		goto fail;
586 	}
587 
588 	/* tx data queues  - 4 for QoS purposes */
589 	for (ac = 0; ac < WME_NUM_AC; ac++) {
590 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
591 		if (error != 0) {
592 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
593 		    goto fail;
594 		}
595 	}
596 
597 	/* command queue to talk to the card's firmware */
598 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
599 	if (error != 0) {
600 		device_printf(dev, "could not allocate command ring\n");
601 		goto fail;
602 	}
603 
604 	/* receive data queue */
605 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
606 	if (error != 0) {
607 		device_printf(dev, "could not allocate Rx ring\n");
608 		goto fail;
609 	}
610 
611 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
612 	if (ifp == NULL) {
613 		device_printf(dev, "can not if_alloc()\n");
614 		error = ENOMEM;
615 		goto fail;
616 	}
617 	ic = ifp->if_l2com;
618 
619 	ic->ic_ifp = ifp;
620 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
621 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
622 
623 	/* set device capabilities */
624 	ic->ic_caps =
625 		  IEEE80211_C_STA		/* station mode supported */
626 		| IEEE80211_C_MONITOR		/* monitor mode supported */
627 		| IEEE80211_C_TXPMGT		/* tx power management */
628 		| IEEE80211_C_SHSLOT		/* short slot time supported */
629 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
630 		| IEEE80211_C_WPA		/* 802.11i */
631 /* XXX looks like WME is partly supported? */
632 #if 0
633 		| IEEE80211_C_IBSS		/* IBSS mode support */
634 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
635 		| IEEE80211_C_WME		/* 802.11e */
636 		| IEEE80211_C_HOSTAP		/* Host access point mode */
637 #endif
638 		;
639 
640 	/*
641 	 * Read in the eeprom and also setup the channels for
642 	 * net80211. We don't set the rates as net80211 does this for us
643 	 */
644 	wpi_read_eeprom(sc, macaddr);
645 
646 	if (bootverbose || WPI_DEBUG_SET) {
647 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
648 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
649 			  sc->type > 1 ? 'B': '?');
650 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
651 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
652 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
653 			  supportsa ? "does" : "does not");
654 
655 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
656 	       what sc->rev really represents - benjsc 20070615 */
657 	}
658 
659 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660 	ifp->if_softc = sc;
661 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662 	ifp->if_init = wpi_init;
663 	ifp->if_ioctl = wpi_ioctl;
664 	ifp->if_start = wpi_start;
665 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
666 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
667 	IFQ_SET_READY(&ifp->if_snd);
668 
669 	ieee80211_ifattach(ic, macaddr);
670 	/* override default methods */
671 	ic->ic_node_alloc = wpi_node_alloc;
672 	ic->ic_newassoc = wpi_newassoc;
673 	ic->ic_raw_xmit = wpi_raw_xmit;
674 	ic->ic_wme.wme_update = wpi_wme_update;
675 	ic->ic_scan_start = wpi_scan_start;
676 	ic->ic_scan_end = wpi_scan_end;
677 	ic->ic_set_channel = wpi_set_channel;
678 	ic->ic_scan_curchan = wpi_scan_curchan;
679 	ic->ic_scan_mindwell = wpi_scan_mindwell;
680 
681 	ic->ic_vap_create = wpi_vap_create;
682 	ic->ic_vap_delete = wpi_vap_delete;
683 
684 	ieee80211_radiotap_attach(ic,
685 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
686 		WPI_TX_RADIOTAP_PRESENT,
687 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
688 		WPI_RX_RADIOTAP_PRESENT);
689 
690 	/*
691 	 * Hook our interrupt after all initialization is complete.
692 	 */
693 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
694 	    NULL, wpi_intr, sc, &sc->sc_ih);
695 	if (error != 0) {
696 		device_printf(dev, "could not set up interrupt\n");
697 		goto fail;
698 	}
699 
700 	if (bootverbose)
701 		ieee80211_announce(ic);
702 #ifdef XXX_DEBUG
703 	ieee80211_announce_channels(ic);
704 #endif
705 	return 0;
706 
707 fail:	wpi_detach(dev);
708 	return ENXIO;
709 }
710 
711 static int
712 wpi_detach(device_t dev)
713 {
714 	struct wpi_softc *sc = device_get_softc(dev);
715 	struct ifnet *ifp = sc->sc_ifp;
716 	struct ieee80211com *ic;
717 	int ac;
718 
719 	if (ifp != NULL) {
720 		ic = ifp->if_l2com;
721 
722 		ieee80211_draintask(ic, &sc->sc_restarttask);
723 		ieee80211_draintask(ic, &sc->sc_radiotask);
724 		wpi_stop(sc);
725 		callout_drain(&sc->watchdog_to);
726 		callout_drain(&sc->calib_to);
727 		ieee80211_ifdetach(ic);
728 	}
729 
730 	WPI_LOCK(sc);
731 	if (sc->txq[0].data_dmat) {
732 		for (ac = 0; ac < WME_NUM_AC; ac++)
733 			wpi_free_tx_ring(sc, &sc->txq[ac]);
734 
735 		wpi_free_tx_ring(sc, &sc->cmdq);
736 		wpi_free_rx_ring(sc, &sc->rxq);
737 		wpi_free_shared(sc);
738 	}
739 
740 	if (sc->fw_fp != NULL) {
741 		wpi_unload_firmware(sc);
742 	}
743 
744 	if (sc->fw_dma.tag)
745 		wpi_free_fwmem(sc);
746 	WPI_UNLOCK(sc);
747 
748 	if (sc->irq != NULL) {
749 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
750 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
751 	}
752 
753 	if (sc->mem != NULL)
754 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
755 
756 	if (ifp != NULL)
757 		if_free(ifp);
758 
759 	WPI_LOCK_DESTROY(sc);
760 
761 	return 0;
762 }
763 
764 static struct ieee80211vap *
765 wpi_vap_create(struct ieee80211com *ic,
766 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
767 	const uint8_t bssid[IEEE80211_ADDR_LEN],
768 	const uint8_t mac[IEEE80211_ADDR_LEN])
769 {
770 	struct wpi_vap *wvp;
771 	struct ieee80211vap *vap;
772 
773 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
774 		return NULL;
775 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
776 	    M_80211_VAP, M_NOWAIT | M_ZERO);
777 	if (wvp == NULL)
778 		return NULL;
779 	vap = &wvp->vap;
780 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
781 	/* override with driver methods */
782 	wvp->newstate = vap->iv_newstate;
783 	vap->iv_newstate = wpi_newstate;
784 
785 	ieee80211_amrr_init(&wvp->amrr, vap,
786 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
787 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
788 	    500 /*ms*/);
789 
790 	/* complete setup */
791 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
792 	ic->ic_opmode = opmode;
793 	return vap;
794 }
795 
796 static void
797 wpi_vap_delete(struct ieee80211vap *vap)
798 {
799 	struct wpi_vap *wvp = WPI_VAP(vap);
800 
801 	ieee80211_amrr_cleanup(&wvp->amrr);
802 	ieee80211_vap_detach(vap);
803 	free(wvp, M_80211_VAP);
804 }
805 
806 static void
807 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
808 {
809 	if (error != 0)
810 		return;
811 
812 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
813 
814 	*(bus_addr_t *)arg = segs[0].ds_addr;
815 }
816 
817 /*
818  * Allocates a contiguous block of dma memory of the requested size and
819  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
820  * allocations greater than 4096 may fail. Hence if the requested alignment is
821  * greater we allocate 'alignment' size extra memory and shift the vaddr and
822  * paddr after the dma load. This bypasses the problem at the cost of a little
823  * more memory.
824  */
825 static int
826 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
827     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
828 {
829 	int error;
830 	bus_size_t align;
831 	bus_size_t reqsize;
832 
833 	DPRINTFN(WPI_DEBUG_DMA,
834 	    ("Size: %zd - alignment %zd\n", size, alignment));
835 
836 	dma->size = size;
837 	dma->tag = NULL;
838 
839 	if (alignment > 4096) {
840 		align = PAGE_SIZE;
841 		reqsize = size + alignment;
842 	} else {
843 		align = alignment;
844 		reqsize = size;
845 	}
846 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
847 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
848 	    NULL, NULL, reqsize,
849 	    1, reqsize, flags,
850 	    NULL, NULL, &dma->tag);
851 	if (error != 0) {
852 		device_printf(sc->sc_dev,
853 		    "could not create shared page DMA tag\n");
854 		goto fail;
855 	}
856 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
857 	    flags | BUS_DMA_ZERO, &dma->map);
858 	if (error != 0) {
859 		device_printf(sc->sc_dev,
860 		    "could not allocate shared page DMA memory\n");
861 		goto fail;
862 	}
863 
864 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
865 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
866 
867 	/* Save the original pointers so we can free all the memory */
868 	dma->paddr = dma->paddr_start;
869 	dma->vaddr = dma->vaddr_start;
870 
871 	/*
872 	 * Check the alignment and increment by 4096 until we get the
873 	 * requested alignment. Fail if can't obtain the alignment
874 	 * we requested.
875 	 */
876 	if ((dma->paddr & (alignment -1 )) != 0) {
877 		int i;
878 
879 		for (i = 0; i < alignment / 4096; i++) {
880 			if ((dma->paddr & (alignment - 1 )) == 0)
881 				break;
882 			dma->paddr += 4096;
883 			dma->vaddr += 4096;
884 		}
885 		if (i == alignment / 4096) {
886 			device_printf(sc->sc_dev,
887 			    "alignment requirement was not satisfied\n");
888 			goto fail;
889 		}
890 	}
891 
892 	if (error != 0) {
893 		device_printf(sc->sc_dev,
894 		    "could not load shared page DMA map\n");
895 		goto fail;
896 	}
897 
898 	if (kvap != NULL)
899 		*kvap = dma->vaddr;
900 
901 	return 0;
902 
903 fail:
904 	wpi_dma_contig_free(dma);
905 	return error;
906 }
907 
908 static void
909 wpi_dma_contig_free(struct wpi_dma_info *dma)
910 {
911 	if (dma->tag) {
912 		if (dma->map != NULL) {
913 			if (dma->paddr_start != 0) {
914 				bus_dmamap_sync(dma->tag, dma->map,
915 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
916 				bus_dmamap_unload(dma->tag, dma->map);
917 			}
918 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
919 		}
920 		bus_dma_tag_destroy(dma->tag);
921 	}
922 }
923 
924 /*
925  * Allocate a shared page between host and NIC.
926  */
927 static int
928 wpi_alloc_shared(struct wpi_softc *sc)
929 {
930 	int error;
931 
932 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
933 	    (void **)&sc->shared, sizeof (struct wpi_shared),
934 	    PAGE_SIZE,
935 	    BUS_DMA_NOWAIT);
936 
937 	if (error != 0) {
938 		device_printf(sc->sc_dev,
939 		    "could not allocate shared area DMA memory\n");
940 	}
941 
942 	return error;
943 }
944 
945 static void
946 wpi_free_shared(struct wpi_softc *sc)
947 {
948 	wpi_dma_contig_free(&sc->shared_dma);
949 }
950 
951 static int
952 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
953 {
954 
955 	int i, error;
956 
957 	ring->cur = 0;
958 
959 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
960 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
961 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
962 
963 	if (error != 0) {
964 		device_printf(sc->sc_dev,
965 		    "%s: could not allocate rx ring DMA memory, error %d\n",
966 		    __func__, error);
967 		goto fail;
968 	}
969 
970         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
971 	    BUS_SPACE_MAXADDR_32BIT,
972             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
973             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
974         if (error != 0) {
975                 device_printf(sc->sc_dev,
976 		    "%s: bus_dma_tag_create_failed, error %d\n",
977 		    __func__, error);
978                 goto fail;
979         }
980 
981 	/*
982 	 * Setup Rx buffers.
983 	 */
984 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
985 		struct wpi_rx_data *data = &ring->data[i];
986 		struct mbuf *m;
987 		bus_addr_t paddr;
988 
989 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
990 		if (error != 0) {
991 			device_printf(sc->sc_dev,
992 			    "%s: bus_dmamap_create failed, error %d\n",
993 			    __func__, error);
994 			goto fail;
995 		}
996 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
997 		if (m == NULL) {
998 			device_printf(sc->sc_dev,
999 			   "%s: could not allocate rx mbuf\n", __func__);
1000 			error = ENOMEM;
1001 			goto fail;
1002 		}
1003 		/* map page */
1004 		error = bus_dmamap_load(ring->data_dmat, data->map,
1005 		    mtod(m, caddr_t), MJUMPAGESIZE,
1006 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1007 		if (error != 0 && error != EFBIG) {
1008 			device_printf(sc->sc_dev,
1009 			    "%s: bus_dmamap_load failed, error %d\n",
1010 			    __func__, error);
1011 			m_freem(m);
1012 			error = ENOMEM;	/* XXX unique code */
1013 			goto fail;
1014 		}
1015 		bus_dmamap_sync(ring->data_dmat, data->map,
1016 		    BUS_DMASYNC_PREWRITE);
1017 
1018 		data->m = m;
1019 		ring->desc[i] = htole32(paddr);
1020 	}
1021 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1022 	    BUS_DMASYNC_PREWRITE);
1023 	return 0;
1024 fail:
1025 	wpi_free_rx_ring(sc, ring);
1026 	return error;
1027 }
1028 
1029 static void
1030 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1031 {
1032 	int ntries;
1033 
1034 	wpi_mem_lock(sc);
1035 
1036 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1037 
1038 	for (ntries = 0; ntries < 100; ntries++) {
1039 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1040 			break;
1041 		DELAY(10);
1042 	}
1043 
1044 	wpi_mem_unlock(sc);
1045 
1046 #ifdef WPI_DEBUG
1047 	if (ntries == 100 && wpi_debug > 0)
1048 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1049 #endif
1050 
1051 	ring->cur = 0;
1052 }
1053 
1054 static void
1055 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1056 {
1057 	int i;
1058 
1059 	wpi_dma_contig_free(&ring->desc_dma);
1060 
1061 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1062 		if (ring->data[i].m != NULL)
1063 			m_freem(ring->data[i].m);
1064 }
1065 
1066 static int
1067 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1068 	int qid)
1069 {
1070 	struct wpi_tx_data *data;
1071 	int i, error;
1072 
1073 	ring->qid = qid;
1074 	ring->count = count;
1075 	ring->queued = 0;
1076 	ring->cur = 0;
1077 	ring->data = NULL;
1078 
1079 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1080 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1081 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1082 
1083 	if (error != 0) {
1084 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1085 	    goto fail;
1086 	}
1087 
1088 	/* update shared page with ring's base address */
1089 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1090 
1091 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1092 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1093 		BUS_DMA_NOWAIT);
1094 
1095 	if (error != 0) {
1096 		device_printf(sc->sc_dev,
1097 		    "could not allocate tx command DMA memory\n");
1098 		goto fail;
1099 	}
1100 
1101 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1102 	    M_NOWAIT | M_ZERO);
1103 	if (ring->data == NULL) {
1104 		device_printf(sc->sc_dev,
1105 		    "could not allocate tx data slots\n");
1106 		goto fail;
1107 	}
1108 
1109 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1110 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1111 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1112 	    &ring->data_dmat);
1113 	if (error != 0) {
1114 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1115 		goto fail;
1116 	}
1117 
1118 	for (i = 0; i < count; i++) {
1119 		data = &ring->data[i];
1120 
1121 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1122 		if (error != 0) {
1123 			device_printf(sc->sc_dev,
1124 			    "could not create tx buf DMA map\n");
1125 			goto fail;
1126 		}
1127 		bus_dmamap_sync(ring->data_dmat, data->map,
1128 		    BUS_DMASYNC_PREWRITE);
1129 	}
1130 
1131 	return 0;
1132 
1133 fail:
1134 	wpi_free_tx_ring(sc, ring);
1135 	return error;
1136 }
1137 
1138 static void
1139 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1140 {
1141 	struct wpi_tx_data *data;
1142 	int i, ntries;
1143 
1144 	wpi_mem_lock(sc);
1145 
1146 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1147 	for (ntries = 0; ntries < 100; ntries++) {
1148 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1149 			break;
1150 		DELAY(10);
1151 	}
1152 #ifdef WPI_DEBUG
1153 	if (ntries == 100 && wpi_debug > 0)
1154 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1155 		    ring->qid);
1156 #endif
1157 	wpi_mem_unlock(sc);
1158 
1159 	for (i = 0; i < ring->count; i++) {
1160 		data = &ring->data[i];
1161 
1162 		if (data->m != NULL) {
1163 			bus_dmamap_unload(ring->data_dmat, data->map);
1164 			m_freem(data->m);
1165 			data->m = NULL;
1166 		}
1167 	}
1168 
1169 	ring->queued = 0;
1170 	ring->cur = 0;
1171 }
1172 
1173 static void
1174 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1175 {
1176 	struct wpi_tx_data *data;
1177 	int i;
1178 
1179 	wpi_dma_contig_free(&ring->desc_dma);
1180 	wpi_dma_contig_free(&ring->cmd_dma);
1181 
1182 	if (ring->data != NULL) {
1183 		for (i = 0; i < ring->count; i++) {
1184 			data = &ring->data[i];
1185 
1186 			if (data->m != NULL) {
1187 				bus_dmamap_sync(ring->data_dmat, data->map,
1188 				    BUS_DMASYNC_POSTWRITE);
1189 				bus_dmamap_unload(ring->data_dmat, data->map);
1190 				m_freem(data->m);
1191 				data->m = NULL;
1192 			}
1193 		}
1194 		free(ring->data, M_DEVBUF);
1195 	}
1196 
1197 	if (ring->data_dmat != NULL)
1198 		bus_dma_tag_destroy(ring->data_dmat);
1199 }
1200 
1201 static int
1202 wpi_shutdown(device_t dev)
1203 {
1204 	struct wpi_softc *sc = device_get_softc(dev);
1205 
1206 	WPI_LOCK(sc);
1207 	wpi_stop_locked(sc);
1208 	wpi_unload_firmware(sc);
1209 	WPI_UNLOCK(sc);
1210 
1211 	return 0;
1212 }
1213 
1214 static int
1215 wpi_suspend(device_t dev)
1216 {
1217 	struct wpi_softc *sc = device_get_softc(dev);
1218 
1219 	wpi_stop(sc);
1220 	return 0;
1221 }
1222 
1223 static int
1224 wpi_resume(device_t dev)
1225 {
1226 	struct wpi_softc *sc = device_get_softc(dev);
1227 	struct ifnet *ifp = sc->sc_ifp;
1228 
1229 	pci_write_config(dev, 0x41, 0, 1);
1230 
1231 	if (ifp->if_flags & IFF_UP) {
1232 		wpi_init(ifp->if_softc);
1233 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1234 			wpi_start(ifp);
1235 	}
1236 	return 0;
1237 }
1238 
1239 /* ARGSUSED */
1240 static struct ieee80211_node *
1241 wpi_node_alloc(struct ieee80211vap *vap __unused,
1242 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1243 {
1244 	struct wpi_node *wn;
1245 
1246 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1247 
1248 	return &wn->ni;
1249 }
1250 
1251 /**
1252  * Called by net80211 when ever there is a change to 80211 state machine
1253  */
1254 static int
1255 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1256 {
1257 	struct wpi_vap *wvp = WPI_VAP(vap);
1258 	struct ieee80211com *ic = vap->iv_ic;
1259 	struct ifnet *ifp = ic->ic_ifp;
1260 	struct wpi_softc *sc = ifp->if_softc;
1261 	int error;
1262 
1263 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1264 		ieee80211_state_name[vap->iv_state],
1265 		ieee80211_state_name[nstate], sc->flags));
1266 
1267 	IEEE80211_UNLOCK(ic);
1268 	WPI_LOCK(sc);
1269 	if (nstate == IEEE80211_S_AUTH) {
1270 		/* The node must be registered in the firmware before auth */
1271 		error = wpi_auth(sc, vap);
1272 		if (error != 0) {
1273 			device_printf(sc->sc_dev,
1274 			    "%s: could not move to auth state, error %d\n",
1275 			    __func__, error);
1276 		}
1277 	}
1278 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1279 		error = wpi_run(sc, vap);
1280 		if (error != 0) {
1281 			device_printf(sc->sc_dev,
1282 			    "%s: could not move to run state, error %d\n",
1283 			    __func__, error);
1284 		}
1285 	}
1286 	if (nstate == IEEE80211_S_RUN) {
1287 		/* RUN -> RUN transition; just restart the timers */
1288 		wpi_calib_timeout(sc);
1289 		/* XXX split out rate control timer */
1290 	}
1291 	WPI_UNLOCK(sc);
1292 	IEEE80211_LOCK(ic);
1293 	return wvp->newstate(vap, nstate, arg);
1294 }
1295 
1296 /*
1297  * Grab exclusive access to NIC memory.
1298  */
1299 static void
1300 wpi_mem_lock(struct wpi_softc *sc)
1301 {
1302 	int ntries;
1303 	uint32_t tmp;
1304 
1305 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1306 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1307 
1308 	/* spin until we actually get the lock */
1309 	for (ntries = 0; ntries < 100; ntries++) {
1310 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1311 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1312 			break;
1313 		DELAY(10);
1314 	}
1315 	if (ntries == 100)
1316 		device_printf(sc->sc_dev, "could not lock memory\n");
1317 }
1318 
1319 /*
1320  * Release lock on NIC memory.
1321  */
1322 static void
1323 wpi_mem_unlock(struct wpi_softc *sc)
1324 {
1325 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1326 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1327 }
1328 
1329 static uint32_t
1330 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1331 {
1332 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1333 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1334 }
1335 
1336 static void
1337 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1338 {
1339 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1340 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1341 }
1342 
1343 static void
1344 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1345     const uint32_t *data, int wlen)
1346 {
1347 	for (; wlen > 0; wlen--, data++, addr+=4)
1348 		wpi_mem_write(sc, addr, *data);
1349 }
1350 
1351 /*
1352  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1353  * using the traditional bit-bang method. Data is read up until len bytes have
1354  * been obtained.
1355  */
1356 static uint16_t
1357 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1358 {
1359 	int ntries;
1360 	uint32_t val;
1361 	uint8_t *out = data;
1362 
1363 	wpi_mem_lock(sc);
1364 
1365 	for (; len > 0; len -= 2, addr++) {
1366 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1367 
1368 		for (ntries = 0; ntries < 10; ntries++) {
1369 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1370 				break;
1371 			DELAY(5);
1372 		}
1373 
1374 		if (ntries == 10) {
1375 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1376 			return ETIMEDOUT;
1377 		}
1378 
1379 		*out++= val >> 16;
1380 		if (len > 1)
1381 			*out ++= val >> 24;
1382 	}
1383 
1384 	wpi_mem_unlock(sc);
1385 
1386 	return 0;
1387 }
1388 
1389 /*
1390  * The firmware text and data segments are transferred to the NIC using DMA.
1391  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1392  * where to find it.  Once the NIC has copied the firmware into its internal
1393  * memory, we can free our local copy in the driver.
1394  */
1395 static int
1396 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1397 {
1398 	int error, ntries;
1399 
1400 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1401 
1402 	size /= sizeof(uint32_t);
1403 
1404 	wpi_mem_lock(sc);
1405 
1406 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1407 	    (const uint32_t *)fw, size);
1408 
1409 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1410 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1411 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1412 
1413 	/* run microcode */
1414 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1415 
1416 	/* wait while the adapter is busy copying the firmware */
1417 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1418 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1419 		DPRINTFN(WPI_DEBUG_HW,
1420 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1421 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1422 		if (status & WPI_TX_IDLE(6)) {
1423 			DPRINTFN(WPI_DEBUG_HW,
1424 			    ("Status Match! - ntries = %d\n", ntries));
1425 			break;
1426 		}
1427 		DELAY(10);
1428 	}
1429 	if (ntries == 1000) {
1430 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1431 		error = ETIMEDOUT;
1432 	}
1433 
1434 	/* start the microcode executing */
1435 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1436 
1437 	wpi_mem_unlock(sc);
1438 
1439 	return (error);
1440 }
1441 
1442 static void
1443 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1444 	struct wpi_rx_data *data)
1445 {
1446 	struct ifnet *ifp = sc->sc_ifp;
1447 	struct ieee80211com *ic = ifp->if_l2com;
1448 	struct wpi_rx_ring *ring = &sc->rxq;
1449 	struct wpi_rx_stat *stat;
1450 	struct wpi_rx_head *head;
1451 	struct wpi_rx_tail *tail;
1452 	struct ieee80211_node *ni;
1453 	struct mbuf *m, *mnew;
1454 	bus_addr_t paddr;
1455 	int error;
1456 
1457 	stat = (struct wpi_rx_stat *)(desc + 1);
1458 
1459 	if (stat->len > WPI_STAT_MAXLEN) {
1460 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1461 		ifp->if_ierrors++;
1462 		return;
1463 	}
1464 
1465 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1466 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1467 
1468 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1469 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1470 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1471 	    (uintmax_t)le64toh(tail->tstamp)));
1472 
1473 	/* discard Rx frames with bad CRC early */
1474 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1475 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1476 		    le32toh(tail->flags)));
1477 		ifp->if_ierrors++;
1478 		return;
1479 	}
1480 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1481 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1482 		    le16toh(head->len)));
1483 		ifp->if_ierrors++;
1484 		return;
1485 	}
1486 
1487 	/* XXX don't need mbuf, just dma buffer */
1488 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1489 	if (mnew == NULL) {
1490 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1491 		    __func__));
1492 		ifp->if_ierrors++;
1493 		return;
1494 	}
1495 	error = bus_dmamap_load(ring->data_dmat, data->map,
1496 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1497 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1498 	if (error != 0 && error != EFBIG) {
1499 		device_printf(sc->sc_dev,
1500 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1501 		m_freem(mnew);
1502 		ifp->if_ierrors++;
1503 		return;
1504 	}
1505 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1506 
1507 	/* finalize mbuf and swap in new one */
1508 	m = data->m;
1509 	m->m_pkthdr.rcvif = ifp;
1510 	m->m_data = (caddr_t)(head + 1);
1511 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1512 
1513 	data->m = mnew;
1514 	/* update Rx descriptor */
1515 	ring->desc[ring->cur] = htole32(paddr);
1516 
1517 	if (ieee80211_radiotap_active(ic)) {
1518 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1519 
1520 		tap->wr_flags = 0;
1521 		tap->wr_chan_freq =
1522 			htole16(ic->ic_channels[head->chan].ic_freq);
1523 		tap->wr_chan_flags =
1524 			htole16(ic->ic_channels[head->chan].ic_flags);
1525 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1526 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1527 		tap->wr_tsft = tail->tstamp;
1528 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1529 		switch (head->rate) {
1530 		/* CCK rates */
1531 		case  10: tap->wr_rate =   2; break;
1532 		case  20: tap->wr_rate =   4; break;
1533 		case  55: tap->wr_rate =  11; break;
1534 		case 110: tap->wr_rate =  22; break;
1535 		/* OFDM rates */
1536 		case 0xd: tap->wr_rate =  12; break;
1537 		case 0xf: tap->wr_rate =  18; break;
1538 		case 0x5: tap->wr_rate =  24; break;
1539 		case 0x7: tap->wr_rate =  36; break;
1540 		case 0x9: tap->wr_rate =  48; break;
1541 		case 0xb: tap->wr_rate =  72; break;
1542 		case 0x1: tap->wr_rate =  96; break;
1543 		case 0x3: tap->wr_rate = 108; break;
1544 		/* unknown rate: should not happen */
1545 		default:  tap->wr_rate =   0;
1546 		}
1547 		if (le16toh(head->flags) & 0x4)
1548 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1549 	}
1550 
1551 	WPI_UNLOCK(sc);
1552 
1553 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1554 	if (ni != NULL) {
1555 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1556 		ieee80211_free_node(ni);
1557 	} else
1558 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1559 
1560 	WPI_LOCK(sc);
1561 }
1562 
1563 static void
1564 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1565 {
1566 	struct ifnet *ifp = sc->sc_ifp;
1567 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1568 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1569 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1570 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1571 
1572 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1573 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1574 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1575 	    le32toh(stat->status)));
1576 
1577 	/*
1578 	 * Update rate control statistics for the node.
1579 	 * XXX we should not count mgmt frames since they're always sent at
1580 	 * the lowest available bit-rate.
1581 	 * XXX frames w/o ACK shouldn't be used either
1582 	 */
1583 	wn->amn.amn_txcnt++;
1584 	if (stat->ntries > 0) {
1585 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1586 		wn->amn.amn_retrycnt++;
1587 	}
1588 
1589 	/* XXX oerrors should only count errors !maxtries */
1590 	if ((le32toh(stat->status) & 0xff) != 1)
1591 		ifp->if_oerrors++;
1592 	else
1593 		ifp->if_opackets++;
1594 
1595 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1596 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1597 	/* XXX handle M_TXCB? */
1598 	m_freem(txdata->m);
1599 	txdata->m = NULL;
1600 	ieee80211_free_node(txdata->ni);
1601 	txdata->ni = NULL;
1602 
1603 	ring->queued--;
1604 
1605 	sc->sc_tx_timer = 0;
1606 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1607 	wpi_start_locked(ifp);
1608 }
1609 
1610 static void
1611 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1612 {
1613 	struct wpi_tx_ring *ring = &sc->cmdq;
1614 	struct wpi_tx_data *data;
1615 
1616 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1617 				 "type=%s len=%d\n", desc->qid, desc->idx,
1618 				 desc->flags, wpi_cmd_str(desc->type),
1619 				 le32toh(desc->len)));
1620 
1621 	if ((desc->qid & 7) != 4)
1622 		return;	/* not a command ack */
1623 
1624 	data = &ring->data[desc->idx];
1625 
1626 	/* if the command was mapped in a mbuf, free it */
1627 	if (data->m != NULL) {
1628 		bus_dmamap_unload(ring->data_dmat, data->map);
1629 		m_freem(data->m);
1630 		data->m = NULL;
1631 	}
1632 
1633 	sc->flags &= ~WPI_FLAG_BUSY;
1634 	wakeup(&ring->cmd[desc->idx]);
1635 }
1636 
1637 static void
1638 wpi_notif_intr(struct wpi_softc *sc)
1639 {
1640 	struct ifnet *ifp = sc->sc_ifp;
1641 	struct ieee80211com *ic = ifp->if_l2com;
1642 	struct wpi_rx_desc *desc;
1643 	struct wpi_rx_data *data;
1644 	uint32_t hw;
1645 
1646 	hw = le32toh(sc->shared->next);
1647 	while (sc->rxq.cur != hw) {
1648 		data = &sc->rxq.data[sc->rxq.cur];
1649 		desc = (void *)data->m->m_ext.ext_buf;
1650 
1651 		DPRINTFN(WPI_DEBUG_NOTIFY,
1652 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1653 			  desc->qid,
1654 			  desc->idx,
1655 			  desc->flags,
1656 			  desc->type,
1657 			  le32toh(desc->len)));
1658 
1659 		if (!(desc->qid & 0x80))	/* reply to a command */
1660 			wpi_cmd_intr(sc, desc);
1661 
1662 		switch (desc->type) {
1663 		case WPI_RX_DONE:
1664 			/* a 802.11 frame was received */
1665 			wpi_rx_intr(sc, desc, data);
1666 			break;
1667 
1668 		case WPI_TX_DONE:
1669 			/* a 802.11 frame has been transmitted */
1670 			wpi_tx_intr(sc, desc);
1671 			break;
1672 
1673 		case WPI_UC_READY:
1674 		{
1675 			struct wpi_ucode_info *uc =
1676 				(struct wpi_ucode_info *)(desc + 1);
1677 
1678 			/* the microcontroller is ready */
1679 			DPRINTF(("microcode alive notification version %x "
1680 				"alive %x\n", le32toh(uc->version),
1681 				le32toh(uc->valid)));
1682 
1683 			if (le32toh(uc->valid) != 1) {
1684 				device_printf(sc->sc_dev,
1685 				    "microcontroller initialization failed\n");
1686 				wpi_stop_locked(sc);
1687 			}
1688 			break;
1689 		}
1690 		case WPI_STATE_CHANGED:
1691 		{
1692 			uint32_t *status = (uint32_t *)(desc + 1);
1693 
1694 			/* enabled/disabled notification */
1695 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1696 
1697 			if (le32toh(*status) & 1) {
1698 				device_printf(sc->sc_dev,
1699 				    "Radio transmitter is switched off\n");
1700 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1701 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1702 				/* Disable firmware commands */
1703 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1704 			}
1705 			break;
1706 		}
1707 		case WPI_START_SCAN:
1708 		{
1709 #ifdef WPI_DEBUG
1710 			struct wpi_start_scan *scan =
1711 				(struct wpi_start_scan *)(desc + 1);
1712 #endif
1713 
1714 			DPRINTFN(WPI_DEBUG_SCANNING,
1715 				 ("scanning channel %d status %x\n",
1716 			    scan->chan, le32toh(scan->status)));
1717 			break;
1718 		}
1719 		case WPI_STOP_SCAN:
1720 		{
1721 #ifdef WPI_DEBUG
1722 			struct wpi_stop_scan *scan =
1723 				(struct wpi_stop_scan *)(desc + 1);
1724 #endif
1725 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1726 
1727 			DPRINTFN(WPI_DEBUG_SCANNING,
1728 			    ("scan finished nchan=%d status=%d chan=%d\n",
1729 			     scan->nchan, scan->status, scan->chan));
1730 
1731 			sc->sc_scan_timer = 0;
1732 			ieee80211_scan_next(vap);
1733 			break;
1734 		}
1735 		case WPI_MISSED_BEACON:
1736 		{
1737 			struct wpi_missed_beacon *beacon =
1738 				(struct wpi_missed_beacon *)(desc + 1);
1739 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1740 
1741 			if (le32toh(beacon->consecutive) >=
1742 			    vap->iv_bmissthreshold) {
1743 				DPRINTF(("Beacon miss: %u >= %u\n",
1744 					 le32toh(beacon->consecutive),
1745 					 vap->iv_bmissthreshold));
1746 				ieee80211_beacon_miss(ic);
1747 			}
1748 			break;
1749 		}
1750 		}
1751 
1752 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1753 	}
1754 
1755 	/* tell the firmware what we have processed */
1756 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1757 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1758 }
1759 
1760 static void
1761 wpi_intr(void *arg)
1762 {
1763 	struct wpi_softc *sc = arg;
1764 	uint32_t r;
1765 
1766 	WPI_LOCK(sc);
1767 
1768 	r = WPI_READ(sc, WPI_INTR);
1769 	if (r == 0 || r == 0xffffffff) {
1770 		WPI_UNLOCK(sc);
1771 		return;
1772 	}
1773 
1774 	/* disable interrupts */
1775 	WPI_WRITE(sc, WPI_MASK, 0);
1776 	/* ack interrupts */
1777 	WPI_WRITE(sc, WPI_INTR, r);
1778 
1779 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1780 		struct ifnet *ifp = sc->sc_ifp;
1781 		struct ieee80211com *ic = ifp->if_l2com;
1782 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1783 
1784 		device_printf(sc->sc_dev, "fatal firmware error\n");
1785 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1786 				"(Hardware Error)"));
1787 		if (vap != NULL)
1788 			ieee80211_cancel_scan(vap);
1789 		ieee80211_runtask(ic, &sc->sc_restarttask);
1790 		sc->flags &= ~WPI_FLAG_BUSY;
1791 		WPI_UNLOCK(sc);
1792 		return;
1793 	}
1794 
1795 	if (r & WPI_RX_INTR)
1796 		wpi_notif_intr(sc);
1797 
1798 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1799 		wakeup(sc);
1800 
1801 	/* re-enable interrupts */
1802 	if (sc->sc_ifp->if_flags & IFF_UP)
1803 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1804 
1805 	WPI_UNLOCK(sc);
1806 }
1807 
1808 static uint8_t
1809 wpi_plcp_signal(int rate)
1810 {
1811 	switch (rate) {
1812 	/* CCK rates (returned values are device-dependent) */
1813 	case 2:		return 10;
1814 	case 4:		return 20;
1815 	case 11:	return 55;
1816 	case 22:	return 110;
1817 
1818 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1819 	/* R1-R4 (ral/ural is R4-R1) */
1820 	case 12:	return 0xd;
1821 	case 18:	return 0xf;
1822 	case 24:	return 0x5;
1823 	case 36:	return 0x7;
1824 	case 48:	return 0x9;
1825 	case 72:	return 0xb;
1826 	case 96:	return 0x1;
1827 	case 108:	return 0x3;
1828 
1829 	/* unsupported rates (should not get there) */
1830 	default:	return 0;
1831 	}
1832 }
1833 
1834 /* quickly determine if a given rate is CCK or OFDM */
1835 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1836 
1837 /*
1838  * Construct the data packet for a transmit buffer and acutally put
1839  * the buffer onto the transmit ring, kicking the card to process the
1840  * the buffer.
1841  */
1842 static int
1843 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1844 	int ac)
1845 {
1846 	struct ieee80211vap *vap = ni->ni_vap;
1847 	struct ifnet *ifp = sc->sc_ifp;
1848 	struct ieee80211com *ic = ifp->if_l2com;
1849 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1850 	struct wpi_tx_ring *ring = &sc->txq[ac];
1851 	struct wpi_tx_desc *desc;
1852 	struct wpi_tx_data *data;
1853 	struct wpi_tx_cmd *cmd;
1854 	struct wpi_cmd_data *tx;
1855 	struct ieee80211_frame *wh;
1856 	const struct ieee80211_txparam *tp;
1857 	struct ieee80211_key *k;
1858 	struct mbuf *mnew;
1859 	int i, error, nsegs, rate, hdrlen, ismcast;
1860 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1861 
1862 	desc = &ring->desc[ring->cur];
1863 	data = &ring->data[ring->cur];
1864 
1865 	wh = mtod(m0, struct ieee80211_frame *);
1866 
1867 	hdrlen = ieee80211_hdrsize(wh);
1868 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1869 
1870 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1871 		k = ieee80211_crypto_encap(ni, m0);
1872 		if (k == NULL) {
1873 			m_freem(m0);
1874 			return ENOBUFS;
1875 		}
1876 		/* packet header may have moved, reset our local pointer */
1877 		wh = mtod(m0, struct ieee80211_frame *);
1878 	}
1879 
1880 	cmd = &ring->cmd[ring->cur];
1881 	cmd->code = WPI_CMD_TX_DATA;
1882 	cmd->flags = 0;
1883 	cmd->qid = ring->qid;
1884 	cmd->idx = ring->cur;
1885 
1886 	tx = (struct wpi_cmd_data *)cmd->data;
1887 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1888 	tx->timeout = htole16(0);
1889 	tx->ofdm_mask = 0xff;
1890 	tx->cck_mask = 0x0f;
1891 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1892 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1893 	tx->len = htole16(m0->m_pkthdr.len);
1894 
1895 	if (!ismcast) {
1896 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1897 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1898 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1899 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1900 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1901 			tx->rts_ntries = 7;
1902 		}
1903 	}
1904 	/* pick a rate */
1905 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1906 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1907 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1908 		/* tell h/w to set timestamp in probe responses */
1909 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1910 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1911 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1912 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1913 			tx->timeout = htole16(3);
1914 		else
1915 			tx->timeout = htole16(2);
1916 		rate = tp->mgmtrate;
1917 	} else if (ismcast) {
1918 		rate = tp->mcastrate;
1919 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1920 		rate = tp->ucastrate;
1921 	} else {
1922 		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1923 		rate = ni->ni_txrate;
1924 	}
1925 	tx->rate = wpi_plcp_signal(rate);
1926 
1927 	/* be very persistant at sending frames out */
1928 #if 0
1929 	tx->data_ntries = tp->maxretry;
1930 #else
1931 	tx->data_ntries = 15;		/* XXX way too high */
1932 #endif
1933 
1934 	if (ieee80211_radiotap_active_vap(vap)) {
1935 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1936 		tap->wt_flags = 0;
1937 		tap->wt_rate = rate;
1938 		tap->wt_hwqueue = ac;
1939 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1940 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1941 
1942 		ieee80211_radiotap_tx(vap, m0);
1943 	}
1944 
1945 	/* save and trim IEEE802.11 header */
1946 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1947 	m_adj(m0, hdrlen);
1948 
1949 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1950 	    &nsegs, BUS_DMA_NOWAIT);
1951 	if (error != 0 && error != EFBIG) {
1952 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1953 		    error);
1954 		m_freem(m0);
1955 		return error;
1956 	}
1957 	if (error != 0) {
1958 		/* XXX use m_collapse */
1959 		mnew = m_defrag(m0, M_DONTWAIT);
1960 		if (mnew == NULL) {
1961 			device_printf(sc->sc_dev,
1962 			    "could not defragment mbuf\n");
1963 			m_freem(m0);
1964 			return ENOBUFS;
1965 		}
1966 		m0 = mnew;
1967 
1968 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1969 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1970 		if (error != 0) {
1971 			device_printf(sc->sc_dev,
1972 			    "could not map mbuf (error %d)\n", error);
1973 			m_freem(m0);
1974 			return error;
1975 		}
1976 	}
1977 
1978 	data->m = m0;
1979 	data->ni = ni;
1980 
1981 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1982 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1983 
1984 	/* first scatter/gather segment is used by the tx data command */
1985 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1986 	    (1 + nsegs) << 24);
1987 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1988 	    ring->cur * sizeof (struct wpi_tx_cmd));
1989 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1990 	for (i = 1; i <= nsegs; i++) {
1991 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1992 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1993 	}
1994 
1995 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1996 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1997 	    BUS_DMASYNC_PREWRITE);
1998 
1999 	ring->queued++;
2000 
2001 	/* kick ring */
2002 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2003 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2004 
2005 	return 0;
2006 }
2007 
2008 /**
2009  * Process data waiting to be sent on the IFNET output queue
2010  */
2011 static void
2012 wpi_start(struct ifnet *ifp)
2013 {
2014 	struct wpi_softc *sc = ifp->if_softc;
2015 
2016 	WPI_LOCK(sc);
2017 	wpi_start_locked(ifp);
2018 	WPI_UNLOCK(sc);
2019 }
2020 
2021 static void
2022 wpi_start_locked(struct ifnet *ifp)
2023 {
2024 	struct wpi_softc *sc = ifp->if_softc;
2025 	struct ieee80211_node *ni;
2026 	struct mbuf *m;
2027 	int ac;
2028 
2029 	WPI_LOCK_ASSERT(sc);
2030 
2031 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2032 		return;
2033 
2034 	for (;;) {
2035 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2036 		if (m == NULL)
2037 			break;
2038 		ac = M_WME_GETAC(m);
2039 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2040 			/* there is no place left in this ring */
2041 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2042 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2043 			break;
2044 		}
2045 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2046 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2047 			ieee80211_free_node(ni);
2048 			ifp->if_oerrors++;
2049 			break;
2050 		}
2051 		sc->sc_tx_timer = 5;
2052 	}
2053 }
2054 
2055 static int
2056 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2057 	const struct ieee80211_bpf_params *params)
2058 {
2059 	struct ieee80211com *ic = ni->ni_ic;
2060 	struct ifnet *ifp = ic->ic_ifp;
2061 	struct wpi_softc *sc = ifp->if_softc;
2062 
2063 	/* prevent management frames from being sent if we're not ready */
2064 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2065 		m_freem(m);
2066 		ieee80211_free_node(ni);
2067 		return ENETDOWN;
2068 	}
2069 	WPI_LOCK(sc);
2070 
2071 	/* management frames go into ring 0 */
2072 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2073 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2074 		m_freem(m);
2075 		WPI_UNLOCK(sc);
2076 		ieee80211_free_node(ni);
2077 		return ENOBUFS;		/* XXX */
2078 	}
2079 
2080 	ifp->if_opackets++;
2081 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2082 		goto bad;
2083 	sc->sc_tx_timer = 5;
2084 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2085 
2086 	WPI_UNLOCK(sc);
2087 	return 0;
2088 bad:
2089 	ifp->if_oerrors++;
2090 	WPI_UNLOCK(sc);
2091 	ieee80211_free_node(ni);
2092 	return EIO;		/* XXX */
2093 }
2094 
2095 static int
2096 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2097 {
2098 	struct wpi_softc *sc = ifp->if_softc;
2099 	struct ieee80211com *ic = ifp->if_l2com;
2100 	struct ifreq *ifr = (struct ifreq *) data;
2101 	int error = 0, startall = 0;
2102 
2103 	switch (cmd) {
2104 	case SIOCSIFFLAGS:
2105 		WPI_LOCK(sc);
2106 		if ((ifp->if_flags & IFF_UP)) {
2107 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2108 				wpi_init_locked(sc, 0);
2109 				startall = 1;
2110 			}
2111 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2112 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2113 			wpi_stop_locked(sc);
2114 		WPI_UNLOCK(sc);
2115 		if (startall)
2116 			ieee80211_start_all(ic);
2117 		break;
2118 	case SIOCGIFMEDIA:
2119 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2120 		break;
2121 	case SIOCGIFADDR:
2122 		error = ether_ioctl(ifp, cmd, data);
2123 		break;
2124 	default:
2125 		error = EINVAL;
2126 		break;
2127 	}
2128 	return error;
2129 }
2130 
2131 /*
2132  * Extract various information from EEPROM.
2133  */
2134 static void
2135 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2136 {
2137 	int i;
2138 
2139 	/* read the hardware capabilities, revision and SKU type */
2140 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2141 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2142 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2143 
2144 	/* read the regulatory domain */
2145 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2146 
2147 	/* read in the hw MAC address */
2148 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2149 
2150 	/* read the list of authorized channels */
2151 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2152 		wpi_read_eeprom_channels(sc,i);
2153 
2154 	/* read the power level calibration info for each group */
2155 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2156 		wpi_read_eeprom_group(sc,i);
2157 }
2158 
2159 /*
2160  * Send a command to the firmware.
2161  */
2162 static int
2163 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2164 {
2165 	struct wpi_tx_ring *ring = &sc->cmdq;
2166 	struct wpi_tx_desc *desc;
2167 	struct wpi_tx_cmd *cmd;
2168 
2169 #ifdef WPI_DEBUG
2170 	if (!async) {
2171 		WPI_LOCK_ASSERT(sc);
2172 	}
2173 #endif
2174 
2175 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2176 		    async));
2177 
2178 	if (sc->flags & WPI_FLAG_BUSY) {
2179 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2180 		    __func__, code);
2181 		return EAGAIN;
2182 	}
2183 	sc->flags|= WPI_FLAG_BUSY;
2184 
2185 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2186 	    code, size));
2187 
2188 	desc = &ring->desc[ring->cur];
2189 	cmd = &ring->cmd[ring->cur];
2190 
2191 	cmd->code = code;
2192 	cmd->flags = 0;
2193 	cmd->qid = ring->qid;
2194 	cmd->idx = ring->cur;
2195 	memcpy(cmd->data, buf, size);
2196 
2197 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2198 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2199 		ring->cur * sizeof (struct wpi_tx_cmd));
2200 	desc->segs[0].len  = htole32(4 + size);
2201 
2202 	/* kick cmd ring */
2203 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2204 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2205 
2206 	if (async) {
2207 		sc->flags &= ~ WPI_FLAG_BUSY;
2208 		return 0;
2209 	}
2210 
2211 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2212 }
2213 
2214 static int
2215 wpi_wme_update(struct ieee80211com *ic)
2216 {
2217 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2218 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2219 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2220 	const struct wmeParams *wmep;
2221 	struct wpi_wme_setup wme;
2222 	int ac;
2223 
2224 	/* don't override default WME values if WME is not actually enabled */
2225 	if (!(ic->ic_flags & IEEE80211_F_WME))
2226 		return 0;
2227 
2228 	wme.flags = 0;
2229 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2230 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2231 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2232 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2233 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2234 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2235 
2236 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2237 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2238 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2239 	}
2240 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2241 #undef WPI_USEC
2242 #undef WPI_EXP2
2243 }
2244 
2245 /*
2246  * Configure h/w multi-rate retries.
2247  */
2248 static int
2249 wpi_mrr_setup(struct wpi_softc *sc)
2250 {
2251 	struct ifnet *ifp = sc->sc_ifp;
2252 	struct ieee80211com *ic = ifp->if_l2com;
2253 	struct wpi_mrr_setup mrr;
2254 	int i, error;
2255 
2256 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2257 
2258 	/* CCK rates (not used with 802.11a) */
2259 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2260 		mrr.rates[i].flags = 0;
2261 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2262 		/* fallback to the immediate lower CCK rate (if any) */
2263 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2264 		/* try one time at this rate before falling back to "next" */
2265 		mrr.rates[i].ntries = 1;
2266 	}
2267 
2268 	/* OFDM rates (not used with 802.11b) */
2269 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2270 		mrr.rates[i].flags = 0;
2271 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2272 		/* fallback to the immediate lower OFDM rate (if any) */
2273 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2274 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2275 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2276 			WPI_OFDM6 : WPI_CCK2) :
2277 		    i - 1;
2278 		/* try one time at this rate before falling back to "next" */
2279 		mrr.rates[i].ntries = 1;
2280 	}
2281 
2282 	/* setup MRR for control frames */
2283 	mrr.which = htole32(WPI_MRR_CTL);
2284 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2285 	if (error != 0) {
2286 		device_printf(sc->sc_dev,
2287 		    "could not setup MRR for control frames\n");
2288 		return error;
2289 	}
2290 
2291 	/* setup MRR for data frames */
2292 	mrr.which = htole32(WPI_MRR_DATA);
2293 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2294 	if (error != 0) {
2295 		device_printf(sc->sc_dev,
2296 		    "could not setup MRR for data frames\n");
2297 		return error;
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 static void
2304 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2305 {
2306 	struct wpi_cmd_led led;
2307 
2308 	led.which = which;
2309 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2310 	led.off = off;
2311 	led.on = on;
2312 
2313 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2314 }
2315 
2316 static void
2317 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2318 {
2319 	struct wpi_cmd_tsf tsf;
2320 	uint64_t val, mod;
2321 
2322 	memset(&tsf, 0, sizeof tsf);
2323 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2324 	tsf.bintval = htole16(ni->ni_intval);
2325 	tsf.lintval = htole16(10);
2326 
2327 	/* compute remaining time until next beacon */
2328 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2329 	mod = le64toh(tsf.tstamp) % val;
2330 	tsf.binitval = htole32((uint32_t)(val - mod));
2331 
2332 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2333 		device_printf(sc->sc_dev, "could not enable TSF\n");
2334 }
2335 
2336 #if 0
2337 /*
2338  * Build a beacon frame that the firmware will broadcast periodically in
2339  * IBSS or HostAP modes.
2340  */
2341 static int
2342 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2343 {
2344 	struct ifnet *ifp = sc->sc_ifp;
2345 	struct ieee80211com *ic = ifp->if_l2com;
2346 	struct wpi_tx_ring *ring = &sc->cmdq;
2347 	struct wpi_tx_desc *desc;
2348 	struct wpi_tx_data *data;
2349 	struct wpi_tx_cmd *cmd;
2350 	struct wpi_cmd_beacon *bcn;
2351 	struct ieee80211_beacon_offsets bo;
2352 	struct mbuf *m0;
2353 	bus_addr_t physaddr;
2354 	int error;
2355 
2356 	desc = &ring->desc[ring->cur];
2357 	data = &ring->data[ring->cur];
2358 
2359 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2360 	if (m0 == NULL) {
2361 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2362 		return ENOMEM;
2363 	}
2364 
2365 	cmd = &ring->cmd[ring->cur];
2366 	cmd->code = WPI_CMD_SET_BEACON;
2367 	cmd->flags = 0;
2368 	cmd->qid = ring->qid;
2369 	cmd->idx = ring->cur;
2370 
2371 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2372 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2373 	bcn->id = WPI_ID_BROADCAST;
2374 	bcn->ofdm_mask = 0xff;
2375 	bcn->cck_mask = 0x0f;
2376 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2377 	bcn->len = htole16(m0->m_pkthdr.len);
2378 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2379 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2380 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2381 
2382 	/* save and trim IEEE802.11 header */
2383 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2384 	m_adj(m0, sizeof (struct ieee80211_frame));
2385 
2386 	/* assume beacon frame is contiguous */
2387 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2388 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2389 	if (error != 0) {
2390 		device_printf(sc->sc_dev, "could not map beacon\n");
2391 		m_freem(m0);
2392 		return error;
2393 	}
2394 
2395 	data->m = m0;
2396 
2397 	/* first scatter/gather segment is used by the beacon command */
2398 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2399 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2400 		ring->cur * sizeof (struct wpi_tx_cmd));
2401 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2402 	desc->segs[1].addr = htole32(physaddr);
2403 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2404 
2405 	/* kick cmd ring */
2406 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2407 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2408 
2409 	return 0;
2410 }
2411 #endif
2412 
2413 static int
2414 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2415 {
2416 	struct ieee80211com *ic = vap->iv_ic;
2417 	struct ieee80211_node *ni = vap->iv_bss;
2418 	struct wpi_node_info node;
2419 	int error;
2420 
2421 
2422 	/* update adapter's configuration */
2423 	sc->config.associd = 0;
2424 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2425 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2426 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2427 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2428 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2429 		    WPI_CONFIG_24GHZ);
2430 	}
2431 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2432 		sc->config.cck_mask  = 0;
2433 		sc->config.ofdm_mask = 0x15;
2434 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2435 		sc->config.cck_mask  = 0x03;
2436 		sc->config.ofdm_mask = 0;
2437 	} else {
2438 		/* XXX assume 802.11b/g */
2439 		sc->config.cck_mask  = 0x0f;
2440 		sc->config.ofdm_mask = 0x15;
2441 	}
2442 
2443 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2444 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2445 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2446 		sizeof (struct wpi_config), 1);
2447 	if (error != 0) {
2448 		device_printf(sc->sc_dev, "could not configure\n");
2449 		return error;
2450 	}
2451 
2452 	/* configuration has changed, set Tx power accordingly */
2453 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2454 		device_printf(sc->sc_dev, "could not set Tx power\n");
2455 		return error;
2456 	}
2457 
2458 	/* add default node */
2459 	memset(&node, 0, sizeof node);
2460 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2461 	node.id = WPI_ID_BSS;
2462 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2463 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2464 	node.action = htole32(WPI_ACTION_SET_RATE);
2465 	node.antenna = WPI_ANTENNA_BOTH;
2466 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2467 	if (error != 0)
2468 		device_printf(sc->sc_dev, "could not add BSS node\n");
2469 
2470 	return (error);
2471 }
2472 
2473 static int
2474 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2475 {
2476 	struct ieee80211com *ic = vap->iv_ic;
2477 	struct ieee80211_node *ni = vap->iv_bss;
2478 	int error;
2479 
2480 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2481 		/* link LED blinks while monitoring */
2482 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2483 		return 0;
2484 	}
2485 
2486 	wpi_enable_tsf(sc, ni);
2487 
2488 	/* update adapter's configuration */
2489 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2490 	/* short preamble/slot time are negotiated when associating */
2491 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2492 	    WPI_CONFIG_SHSLOT);
2493 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2494 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2495 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2496 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2497 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2498 
2499 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2500 
2501 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2502 		    sc->config.flags));
2503 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2504 		    wpi_config), 1);
2505 	if (error != 0) {
2506 		device_printf(sc->sc_dev, "could not update configuration\n");
2507 		return error;
2508 	}
2509 
2510 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2511 	if (error != 0) {
2512 		device_printf(sc->sc_dev, "could set txpower\n");
2513 		return error;
2514 	}
2515 
2516 	/* link LED always on while associated */
2517 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2518 
2519 	/* start automatic rate control timer */
2520 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2521 
2522 	return (error);
2523 }
2524 
2525 /*
2526  * Send a scan request to the firmware.  Since this command is huge, we map it
2527  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2528  * much of this code is similar to that in wpi_cmd but because we must manually
2529  * construct the probe & channels, we duplicate what's needed here. XXX In the
2530  * future, this function should be modified to use wpi_cmd to help cleanup the
2531  * code base.
2532  */
2533 static int
2534 wpi_scan(struct wpi_softc *sc)
2535 {
2536 	struct ifnet *ifp = sc->sc_ifp;
2537 	struct ieee80211com *ic = ifp->if_l2com;
2538 	struct ieee80211_scan_state *ss = ic->ic_scan;
2539 	struct wpi_tx_ring *ring = &sc->cmdq;
2540 	struct wpi_tx_desc *desc;
2541 	struct wpi_tx_data *data;
2542 	struct wpi_tx_cmd *cmd;
2543 	struct wpi_scan_hdr *hdr;
2544 	struct wpi_scan_chan *chan;
2545 	struct ieee80211_frame *wh;
2546 	struct ieee80211_rateset *rs;
2547 	struct ieee80211_channel *c;
2548 	enum ieee80211_phymode mode;
2549 	uint8_t *frm;
2550 	int nrates, pktlen, error, i, nssid;
2551 	bus_addr_t physaddr;
2552 
2553 	desc = &ring->desc[ring->cur];
2554 	data = &ring->data[ring->cur];
2555 
2556 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2557 	if (data->m == NULL) {
2558 		device_printf(sc->sc_dev,
2559 		    "could not allocate mbuf for scan command\n");
2560 		return ENOMEM;
2561 	}
2562 
2563 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2564 	cmd->code = WPI_CMD_SCAN;
2565 	cmd->flags = 0;
2566 	cmd->qid = ring->qid;
2567 	cmd->idx = ring->cur;
2568 
2569 	hdr = (struct wpi_scan_hdr *)cmd->data;
2570 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2571 
2572 	/*
2573 	 * Move to the next channel if no packets are received within 5 msecs
2574 	 * after sending the probe request (this helps to reduce the duration
2575 	 * of active scans).
2576 	 */
2577 	hdr->quiet = htole16(5);
2578 	hdr->threshold = htole16(1);
2579 
2580 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2581 		/* send probe requests at 6Mbps */
2582 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2583 
2584 		/* Enable crc checking */
2585 		hdr->promotion = htole16(1);
2586 	} else {
2587 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2588 		/* send probe requests at 1Mbps */
2589 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2590 	}
2591 	hdr->tx.id = WPI_ID_BROADCAST;
2592 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2593 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2594 
2595 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2596 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2597 	for (i = 0; i < nssid; i++) {
2598 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2599 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2600 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2601 		    hdr->scan_essids[i].esslen);
2602 #ifdef WPI_DEBUG
2603 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2604 			printf("Scanning Essid: ");
2605 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2606 			    hdr->scan_essids[i].esslen);
2607 			printf("\n");
2608 		}
2609 #endif
2610 	}
2611 
2612 	/*
2613 	 * Build a probe request frame.  Most of the following code is a
2614 	 * copy & paste of what is done in net80211.
2615 	 */
2616 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2617 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2618 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2619 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2620 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2621 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2622 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2623 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2624 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2625 
2626 	frm = (uint8_t *)(wh + 1);
2627 
2628 	/* add essid IE, the hardware will fill this in for us */
2629 	*frm++ = IEEE80211_ELEMID_SSID;
2630 	*frm++ = 0;
2631 
2632 	mode = ieee80211_chan2mode(ic->ic_curchan);
2633 	rs = &ic->ic_sup_rates[mode];
2634 
2635 	/* add supported rates IE */
2636 	*frm++ = IEEE80211_ELEMID_RATES;
2637 	nrates = rs->rs_nrates;
2638 	if (nrates > IEEE80211_RATE_SIZE)
2639 		nrates = IEEE80211_RATE_SIZE;
2640 	*frm++ = nrates;
2641 	memcpy(frm, rs->rs_rates, nrates);
2642 	frm += nrates;
2643 
2644 	/* add supported xrates IE */
2645 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2646 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2647 		*frm++ = IEEE80211_ELEMID_XRATES;
2648 		*frm++ = nrates;
2649 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2650 		frm += nrates;
2651 	}
2652 
2653 	/* setup length of probe request */
2654 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2655 
2656 	/*
2657 	 * Construct information about the channel that we
2658 	 * want to scan. The firmware expects this to be directly
2659 	 * after the scan probe request
2660 	 */
2661 	c = ic->ic_curchan;
2662 	chan = (struct wpi_scan_chan *)frm;
2663 	chan->chan = ieee80211_chan2ieee(ic, c);
2664 	chan->flags = 0;
2665 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2666 		chan->flags |= WPI_CHAN_ACTIVE;
2667 		if (nssid != 0)
2668 			chan->flags |= WPI_CHAN_DIRECT;
2669 	}
2670 	chan->gain_dsp = 0x6e; /* Default level */
2671 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2672 		chan->active = htole16(10);
2673 		chan->passive = htole16(ss->ss_maxdwell);
2674 		chan->gain_radio = 0x3b;
2675 	} else {
2676 		chan->active = htole16(20);
2677 		chan->passive = htole16(ss->ss_maxdwell);
2678 		chan->gain_radio = 0x28;
2679 	}
2680 
2681 	DPRINTFN(WPI_DEBUG_SCANNING,
2682 	    ("Scanning %u Passive: %d\n",
2683 	     chan->chan,
2684 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2685 
2686 	hdr->nchan++;
2687 	chan++;
2688 
2689 	frm += sizeof (struct wpi_scan_chan);
2690 #if 0
2691 	// XXX All Channels....
2692 	for (c  = &ic->ic_channels[1];
2693 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2694 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2695 			continue;
2696 
2697 		chan->chan = ieee80211_chan2ieee(ic, c);
2698 		chan->flags = 0;
2699 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2700 		    chan->flags |= WPI_CHAN_ACTIVE;
2701 		    if (ic->ic_des_ssid[0].len != 0)
2702 			chan->flags |= WPI_CHAN_DIRECT;
2703 		}
2704 		chan->gain_dsp = 0x6e; /* Default level */
2705 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2706 			chan->active = htole16(10);
2707 			chan->passive = htole16(110);
2708 			chan->gain_radio = 0x3b;
2709 		} else {
2710 			chan->active = htole16(20);
2711 			chan->passive = htole16(120);
2712 			chan->gain_radio = 0x28;
2713 		}
2714 
2715 		DPRINTFN(WPI_DEBUG_SCANNING,
2716 			 ("Scanning %u Passive: %d\n",
2717 			  chan->chan,
2718 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2719 
2720 		hdr->nchan++;
2721 		chan++;
2722 
2723 		frm += sizeof (struct wpi_scan_chan);
2724 	}
2725 #endif
2726 
2727 	hdr->len = htole16(frm - (uint8_t *)hdr);
2728 	pktlen = frm - (uint8_t *)cmd;
2729 
2730 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2731 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2732 	if (error != 0) {
2733 		device_printf(sc->sc_dev, "could not map scan command\n");
2734 		m_freem(data->m);
2735 		data->m = NULL;
2736 		return error;
2737 	}
2738 
2739 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2740 	desc->segs[0].addr = htole32(physaddr);
2741 	desc->segs[0].len  = htole32(pktlen);
2742 
2743 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2744 	    BUS_DMASYNC_PREWRITE);
2745 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2746 
2747 	/* kick cmd ring */
2748 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2749 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2750 
2751 	sc->sc_scan_timer = 5;
2752 	return 0;	/* will be notified async. of failure/success */
2753 }
2754 
2755 /**
2756  * Configure the card to listen to a particular channel, this transisions the
2757  * card in to being able to receive frames from remote devices.
2758  */
2759 static int
2760 wpi_config(struct wpi_softc *sc)
2761 {
2762 	struct ifnet *ifp = sc->sc_ifp;
2763 	struct ieee80211com *ic = ifp->if_l2com;
2764 	struct wpi_power power;
2765 	struct wpi_bluetooth bluetooth;
2766 	struct wpi_node_info node;
2767 	int error;
2768 
2769 	/* set power mode */
2770 	memset(&power, 0, sizeof power);
2771 	power.flags = htole32(WPI_POWER_CAM|0x8);
2772 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2773 	if (error != 0) {
2774 		device_printf(sc->sc_dev, "could not set power mode\n");
2775 		return error;
2776 	}
2777 
2778 	/* configure bluetooth coexistence */
2779 	memset(&bluetooth, 0, sizeof bluetooth);
2780 	bluetooth.flags = 3;
2781 	bluetooth.lead = 0xaa;
2782 	bluetooth.kill = 1;
2783 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2784 	    0);
2785 	if (error != 0) {
2786 		device_printf(sc->sc_dev,
2787 		    "could not configure bluetooth coexistence\n");
2788 		return error;
2789 	}
2790 
2791 	/* configure adapter */
2792 	memset(&sc->config, 0, sizeof (struct wpi_config));
2793 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2794 	/*set default channel*/
2795 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2796 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2797 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2798 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2799 		    WPI_CONFIG_24GHZ);
2800 	}
2801 	sc->config.filter = 0;
2802 	switch (ic->ic_opmode) {
2803 	case IEEE80211_M_STA:
2804 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2805 		sc->config.mode = WPI_MODE_STA;
2806 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2807 		break;
2808 	case IEEE80211_M_IBSS:
2809 	case IEEE80211_M_AHDEMO:
2810 		sc->config.mode = WPI_MODE_IBSS;
2811 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2812 					     WPI_FILTER_MULTICAST);
2813 		break;
2814 	case IEEE80211_M_HOSTAP:
2815 		sc->config.mode = WPI_MODE_HOSTAP;
2816 		break;
2817 	case IEEE80211_M_MONITOR:
2818 		sc->config.mode = WPI_MODE_MONITOR;
2819 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2820 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2821 		break;
2822 	default:
2823 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2824 		return EINVAL;
2825 	}
2826 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2827 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2828 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2829 		sizeof (struct wpi_config), 0);
2830 	if (error != 0) {
2831 		device_printf(sc->sc_dev, "configure command failed\n");
2832 		return error;
2833 	}
2834 
2835 	/* configuration has changed, set Tx power accordingly */
2836 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2837 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2838 	    return error;
2839 	}
2840 
2841 	/* add broadcast node */
2842 	memset(&node, 0, sizeof node);
2843 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2844 	node.id = WPI_ID_BROADCAST;
2845 	node.rate = wpi_plcp_signal(2);
2846 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2847 	if (error != 0) {
2848 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2849 		return error;
2850 	}
2851 
2852 	/* Setup rate scalling */
2853 	error = wpi_mrr_setup(sc);
2854 	if (error != 0) {
2855 		device_printf(sc->sc_dev, "could not setup MRR\n");
2856 		return error;
2857 	}
2858 
2859 	return 0;
2860 }
2861 
2862 static void
2863 wpi_stop_master(struct wpi_softc *sc)
2864 {
2865 	uint32_t tmp;
2866 	int ntries;
2867 
2868 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2869 
2870 	tmp = WPI_READ(sc, WPI_RESET);
2871 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2872 
2873 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2874 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2875 		return;	/* already asleep */
2876 
2877 	for (ntries = 0; ntries < 100; ntries++) {
2878 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2879 			break;
2880 		DELAY(10);
2881 	}
2882 	if (ntries == 100) {
2883 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2884 	}
2885 }
2886 
2887 static int
2888 wpi_power_up(struct wpi_softc *sc)
2889 {
2890 	uint32_t tmp;
2891 	int ntries;
2892 
2893 	wpi_mem_lock(sc);
2894 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2895 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2896 	wpi_mem_unlock(sc);
2897 
2898 	for (ntries = 0; ntries < 5000; ntries++) {
2899 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2900 			break;
2901 		DELAY(10);
2902 	}
2903 	if (ntries == 5000) {
2904 		device_printf(sc->sc_dev,
2905 		    "timeout waiting for NIC to power up\n");
2906 		return ETIMEDOUT;
2907 	}
2908 	return 0;
2909 }
2910 
2911 static int
2912 wpi_reset(struct wpi_softc *sc)
2913 {
2914 	uint32_t tmp;
2915 	int ntries;
2916 
2917 	DPRINTFN(WPI_DEBUG_HW,
2918 	    ("Resetting the card - clearing any uploaded firmware\n"));
2919 
2920 	/* clear any pending interrupts */
2921 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2922 
2923 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2924 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2925 
2926 	tmp = WPI_READ(sc, WPI_CHICKEN);
2927 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2928 
2929 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2930 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2931 
2932 	/* wait for clock stabilization */
2933 	for (ntries = 0; ntries < 25000; ntries++) {
2934 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2935 			break;
2936 		DELAY(10);
2937 	}
2938 	if (ntries == 25000) {
2939 		device_printf(sc->sc_dev,
2940 		    "timeout waiting for clock stabilization\n");
2941 		return ETIMEDOUT;
2942 	}
2943 
2944 	/* initialize EEPROM */
2945 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2946 
2947 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2948 		device_printf(sc->sc_dev, "EEPROM not found\n");
2949 		return EIO;
2950 	}
2951 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2952 
2953 	return 0;
2954 }
2955 
2956 static void
2957 wpi_hw_config(struct wpi_softc *sc)
2958 {
2959 	uint32_t rev, hw;
2960 
2961 	/* voodoo from the Linux "driver".. */
2962 	hw = WPI_READ(sc, WPI_HWCONFIG);
2963 
2964 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2965 	if ((rev & 0xc0) == 0x40)
2966 		hw |= WPI_HW_ALM_MB;
2967 	else if (!(rev & 0x80))
2968 		hw |= WPI_HW_ALM_MM;
2969 
2970 	if (sc->cap == 0x80)
2971 		hw |= WPI_HW_SKU_MRC;
2972 
2973 	hw &= ~WPI_HW_REV_D;
2974 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2975 		hw |= WPI_HW_REV_D;
2976 
2977 	if (sc->type > 1)
2978 		hw |= WPI_HW_TYPE_B;
2979 
2980 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2981 }
2982 
2983 static void
2984 wpi_rfkill_resume(struct wpi_softc *sc)
2985 {
2986 	struct ifnet *ifp = sc->sc_ifp;
2987 	struct ieee80211com *ic = ifp->if_l2com;
2988 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2989 	int ntries;
2990 
2991 	/* enable firmware again */
2992 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2993 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2994 
2995 	/* wait for thermal sensors to calibrate */
2996 	for (ntries = 0; ntries < 1000; ntries++) {
2997 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2998 			break;
2999 		DELAY(10);
3000 	}
3001 
3002 	if (ntries == 1000) {
3003 		device_printf(sc->sc_dev,
3004 		    "timeout waiting for thermal calibration\n");
3005 		WPI_UNLOCK(sc);
3006 		return;
3007 	}
3008 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3009 
3010 	if (wpi_config(sc) != 0) {
3011 		device_printf(sc->sc_dev, "device config failed\n");
3012 		WPI_UNLOCK(sc);
3013 		return;
3014 	}
3015 
3016 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3017 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3018 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3019 
3020 	if (vap != NULL) {
3021 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3022 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3023 				ieee80211_beacon_miss(ic);
3024 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3025 			} else
3026 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3027 		} else {
3028 			ieee80211_scan_next(vap);
3029 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3030 		}
3031 	}
3032 
3033 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3034 }
3035 
3036 static void
3037 wpi_init_locked(struct wpi_softc *sc, int force)
3038 {
3039 	struct ifnet *ifp = sc->sc_ifp;
3040 	uint32_t tmp;
3041 	int ntries, qid;
3042 
3043 	wpi_stop_locked(sc);
3044 	(void)wpi_reset(sc);
3045 
3046 	wpi_mem_lock(sc);
3047 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3048 	DELAY(20);
3049 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3050 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3051 	wpi_mem_unlock(sc);
3052 
3053 	(void)wpi_power_up(sc);
3054 	wpi_hw_config(sc);
3055 
3056 	/* init Rx ring */
3057 	wpi_mem_lock(sc);
3058 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3059 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3060 	    offsetof(struct wpi_shared, next));
3061 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3062 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3063 	wpi_mem_unlock(sc);
3064 
3065 	/* init Tx rings */
3066 	wpi_mem_lock(sc);
3067 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3068 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3069 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3070 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3071 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3072 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3073 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3074 
3075 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3076 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3077 
3078 	for (qid = 0; qid < 6; qid++) {
3079 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3080 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3081 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3082 	}
3083 	wpi_mem_unlock(sc);
3084 
3085 	/* clear "radio off" and "disable command" bits (reversed logic) */
3086 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3087 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3088 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3089 
3090 	/* clear any pending interrupts */
3091 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3092 
3093 	/* enable interrupts */
3094 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3095 
3096 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3097 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3098 
3099 	if ((wpi_load_firmware(sc)) != 0) {
3100 	    device_printf(sc->sc_dev,
3101 		"A problem occurred loading the firmware to the driver\n");
3102 	    return;
3103 	}
3104 
3105 	/* At this point the firmware is up and running. If the hardware
3106 	 * RF switch is turned off thermal calibration will fail, though
3107 	 * the card is still happy to continue to accept commands, catch
3108 	 * this case and schedule a task to watch for it to be turned on.
3109 	 */
3110 	wpi_mem_lock(sc);
3111 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3112 	wpi_mem_unlock(sc);
3113 
3114 	if (!(tmp & 0x1)) {
3115 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3116 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3117 		goto out;
3118 	}
3119 
3120 	/* wait for thermal sensors to calibrate */
3121 	for (ntries = 0; ntries < 1000; ntries++) {
3122 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3123 			break;
3124 		DELAY(10);
3125 	}
3126 
3127 	if (ntries == 1000) {
3128 		device_printf(sc->sc_dev,
3129 		    "timeout waiting for thermal sensors calibration\n");
3130 		return;
3131 	}
3132 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3133 
3134 	if (wpi_config(sc) != 0) {
3135 		device_printf(sc->sc_dev, "device config failed\n");
3136 		return;
3137 	}
3138 
3139 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3140 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3141 out:
3142 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3143 }
3144 
3145 static void
3146 wpi_init(void *arg)
3147 {
3148 	struct wpi_softc *sc = arg;
3149 	struct ifnet *ifp = sc->sc_ifp;
3150 	struct ieee80211com *ic = ifp->if_l2com;
3151 
3152 	WPI_LOCK(sc);
3153 	wpi_init_locked(sc, 0);
3154 	WPI_UNLOCK(sc);
3155 
3156 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3157 		ieee80211_start_all(ic);		/* start all vaps */
3158 }
3159 
3160 static void
3161 wpi_stop_locked(struct wpi_softc *sc)
3162 {
3163 	struct ifnet *ifp = sc->sc_ifp;
3164 	uint32_t tmp;
3165 	int ac;
3166 
3167 	sc->sc_tx_timer = 0;
3168 	sc->sc_scan_timer = 0;
3169 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3170 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3171 	callout_stop(&sc->watchdog_to);
3172 	callout_stop(&sc->calib_to);
3173 
3174 
3175 	/* disable interrupts */
3176 	WPI_WRITE(sc, WPI_MASK, 0);
3177 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3178 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3179 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3180 
3181 	wpi_mem_lock(sc);
3182 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3183 	wpi_mem_unlock(sc);
3184 
3185 	/* reset all Tx rings */
3186 	for (ac = 0; ac < 4; ac++)
3187 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3188 	wpi_reset_tx_ring(sc, &sc->cmdq);
3189 
3190 	/* reset Rx ring */
3191 	wpi_reset_rx_ring(sc, &sc->rxq);
3192 
3193 	wpi_mem_lock(sc);
3194 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3195 	wpi_mem_unlock(sc);
3196 
3197 	DELAY(5);
3198 
3199 	wpi_stop_master(sc);
3200 
3201 	tmp = WPI_READ(sc, WPI_RESET);
3202 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3203 	sc->flags &= ~WPI_FLAG_BUSY;
3204 }
3205 
3206 static void
3207 wpi_stop(struct wpi_softc *sc)
3208 {
3209 	WPI_LOCK(sc);
3210 	wpi_stop_locked(sc);
3211 	WPI_UNLOCK(sc);
3212 }
3213 
3214 static void
3215 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3216 {
3217 	struct ieee80211vap *vap = ni->ni_vap;
3218 	struct wpi_vap *wvp = WPI_VAP(vap);
3219 
3220 	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3221 }
3222 
3223 static void
3224 wpi_calib_timeout(void *arg)
3225 {
3226 	struct wpi_softc *sc = arg;
3227 	struct ifnet *ifp = sc->sc_ifp;
3228 	struct ieee80211com *ic = ifp->if_l2com;
3229 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3230 	int temp;
3231 
3232 	if (vap->iv_state != IEEE80211_S_RUN)
3233 		return;
3234 
3235 	/* update sensor data */
3236 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3237 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3238 
3239 	wpi_power_calibration(sc, temp);
3240 
3241 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3242 }
3243 
3244 /*
3245  * This function is called periodically (every 60 seconds) to adjust output
3246  * power to temperature changes.
3247  */
3248 static void
3249 wpi_power_calibration(struct wpi_softc *sc, int temp)
3250 {
3251 	struct ifnet *ifp = sc->sc_ifp;
3252 	struct ieee80211com *ic = ifp->if_l2com;
3253 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3254 
3255 	/* sanity-check read value */
3256 	if (temp < -260 || temp > 25) {
3257 		/* this can't be correct, ignore */
3258 		DPRINTFN(WPI_DEBUG_TEMP,
3259 		    ("out-of-range temperature reported: %d\n", temp));
3260 		return;
3261 	}
3262 
3263 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3264 
3265 	/* adjust Tx power if need be */
3266 	if (abs(temp - sc->temp) <= 6)
3267 		return;
3268 
3269 	sc->temp = temp;
3270 
3271 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3272 		/* just warn, too bad for the automatic calibration... */
3273 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3274 	}
3275 }
3276 
3277 /**
3278  * Read the eeprom to find out what channels are valid for the given
3279  * band and update net80211 with what we find.
3280  */
3281 static void
3282 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3283 {
3284 	struct ifnet *ifp = sc->sc_ifp;
3285 	struct ieee80211com *ic = ifp->if_l2com;
3286 	const struct wpi_chan_band *band = &wpi_bands[n];
3287 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3288 	struct ieee80211_channel *c;
3289 	int chan, i, passive;
3290 
3291 	wpi_read_prom_data(sc, band->addr, channels,
3292 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3293 
3294 	for (i = 0; i < band->nchan; i++) {
3295 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3296 			DPRINTFN(WPI_DEBUG_HW,
3297 			    ("Channel Not Valid: %d, band %d\n",
3298 			     band->chan[i],n));
3299 			continue;
3300 		}
3301 
3302 		passive = 0;
3303 		chan = band->chan[i];
3304 		c = &ic->ic_channels[ic->ic_nchans++];
3305 
3306 		/* is active scan allowed on this channel? */
3307 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3308 			passive = IEEE80211_CHAN_PASSIVE;
3309 		}
3310 
3311 		if (n == 0) {	/* 2GHz band */
3312 			c->ic_ieee = chan;
3313 			c->ic_freq = ieee80211_ieee2mhz(chan,
3314 			    IEEE80211_CHAN_2GHZ);
3315 			c->ic_flags = IEEE80211_CHAN_B | passive;
3316 
3317 			c = &ic->ic_channels[ic->ic_nchans++];
3318 			c->ic_ieee = chan;
3319 			c->ic_freq = ieee80211_ieee2mhz(chan,
3320 			    IEEE80211_CHAN_2GHZ);
3321 			c->ic_flags = IEEE80211_CHAN_G | passive;
3322 
3323 		} else {	/* 5GHz band */
3324 			/*
3325 			 * Some 3945ABG adapters support channels 7, 8, 11
3326 			 * and 12 in the 2GHz *and* 5GHz bands.
3327 			 * Because of limitations in our net80211(9) stack,
3328 			 * we can't support these channels in 5GHz band.
3329 			 * XXX not true; just need to map to proper frequency
3330 			 */
3331 			if (chan <= 14)
3332 				continue;
3333 
3334 			c->ic_ieee = chan;
3335 			c->ic_freq = ieee80211_ieee2mhz(chan,
3336 			    IEEE80211_CHAN_5GHZ);
3337 			c->ic_flags = IEEE80211_CHAN_A | passive;
3338 		}
3339 
3340 		/* save maximum allowed power for this channel */
3341 		sc->maxpwr[chan] = channels[i].maxpwr;
3342 
3343 #if 0
3344 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3345 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3346 		//ic->ic_channels[chan].ic_minpower...
3347 		//ic->ic_channels[chan].ic_maxregtxpower...
3348 #endif
3349 
3350 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3351 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3352 		    channels[i].flags, sc->maxpwr[chan],
3353 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3354 		    ic->ic_nchans));
3355 	}
3356 }
3357 
3358 static void
3359 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3360 {
3361 	struct wpi_power_group *group = &sc->groups[n];
3362 	struct wpi_eeprom_group rgroup;
3363 	int i;
3364 
3365 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3366 	    sizeof rgroup);
3367 
3368 	/* save power group information */
3369 	group->chan   = rgroup.chan;
3370 	group->maxpwr = rgroup.maxpwr;
3371 	/* temperature at which the samples were taken */
3372 	group->temp   = (int16_t)le16toh(rgroup.temp);
3373 
3374 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3375 		    group->chan, group->maxpwr, group->temp));
3376 
3377 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3378 		group->samples[i].index = rgroup.samples[i].index;
3379 		group->samples[i].power = rgroup.samples[i].power;
3380 
3381 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3382 			    group->samples[i].index, group->samples[i].power));
3383 	}
3384 }
3385 
3386 /*
3387  * Update Tx power to match what is defined for channel `c'.
3388  */
3389 static int
3390 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3391 {
3392 	struct ifnet *ifp = sc->sc_ifp;
3393 	struct ieee80211com *ic = ifp->if_l2com;
3394 	struct wpi_power_group *group;
3395 	struct wpi_cmd_txpower txpower;
3396 	u_int chan;
3397 	int i;
3398 
3399 	/* get channel number */
3400 	chan = ieee80211_chan2ieee(ic, c);
3401 
3402 	/* find the power group to which this channel belongs */
3403 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3404 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3405 			if (chan <= group->chan)
3406 				break;
3407 	} else
3408 		group = &sc->groups[0];
3409 
3410 	memset(&txpower, 0, sizeof txpower);
3411 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3412 	txpower.channel = htole16(chan);
3413 
3414 	/* set Tx power for all OFDM and CCK rates */
3415 	for (i = 0; i <= 11 ; i++) {
3416 		/* retrieve Tx power for this channel/rate combination */
3417 		int idx = wpi_get_power_index(sc, group, c,
3418 		    wpi_ridx_to_rate[i]);
3419 
3420 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3421 
3422 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3423 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3424 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3425 		} else {
3426 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3427 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3428 		}
3429 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3430 			    chan, wpi_ridx_to_rate[i], idx));
3431 	}
3432 
3433 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3434 }
3435 
3436 /*
3437  * Determine Tx power index for a given channel/rate combination.
3438  * This takes into account the regulatory information from EEPROM and the
3439  * current temperature.
3440  */
3441 static int
3442 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3443     struct ieee80211_channel *c, int rate)
3444 {
3445 /* fixed-point arithmetic division using a n-bit fractional part */
3446 #define fdivround(a, b, n)      \
3447 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3448 
3449 /* linear interpolation */
3450 #define interpolate(x, x1, y1, x2, y2, n)       \
3451 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3452 
3453 	struct ifnet *ifp = sc->sc_ifp;
3454 	struct ieee80211com *ic = ifp->if_l2com;
3455 	struct wpi_power_sample *sample;
3456 	int pwr, idx;
3457 	u_int chan;
3458 
3459 	/* get channel number */
3460 	chan = ieee80211_chan2ieee(ic, c);
3461 
3462 	/* default power is group's maximum power - 3dB */
3463 	pwr = group->maxpwr / 2;
3464 
3465 	/* decrease power for highest OFDM rates to reduce distortion */
3466 	switch (rate) {
3467 		case 72:	/* 36Mb/s */
3468 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3469 			break;
3470 		case 96:	/* 48Mb/s */
3471 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3472 			break;
3473 		case 108:	/* 54Mb/s */
3474 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3475 			break;
3476 	}
3477 
3478 	/* never exceed channel's maximum allowed Tx power */
3479 	pwr = min(pwr, sc->maxpwr[chan]);
3480 
3481 	/* retrieve power index into gain tables from samples */
3482 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3483 		if (pwr > sample[1].power)
3484 			break;
3485 	/* fixed-point linear interpolation using a 19-bit fractional part */
3486 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3487 	    sample[1].power, sample[1].index, 19);
3488 
3489 	/*
3490 	 *  Adjust power index based on current temperature
3491 	 *	- if colder than factory-calibrated: decreate output power
3492 	 *	- if warmer than factory-calibrated: increase output power
3493 	 */
3494 	idx -= (sc->temp - group->temp) * 11 / 100;
3495 
3496 	/* decrease power for CCK rates (-5dB) */
3497 	if (!WPI_RATE_IS_OFDM(rate))
3498 		idx += 10;
3499 
3500 	/* keep power index in a valid range */
3501 	if (idx < 0)
3502 		return 0;
3503 	if (idx > WPI_MAX_PWR_INDEX)
3504 		return WPI_MAX_PWR_INDEX;
3505 	return idx;
3506 
3507 #undef interpolate
3508 #undef fdivround
3509 }
3510 
3511 /**
3512  * Called by net80211 framework to indicate that a scan
3513  * is starting. This function doesn't actually do the scan,
3514  * wpi_scan_curchan starts things off. This function is more
3515  * of an early warning from the framework we should get ready
3516  * for the scan.
3517  */
3518 static void
3519 wpi_scan_start(struct ieee80211com *ic)
3520 {
3521 	struct ifnet *ifp = ic->ic_ifp;
3522 	struct wpi_softc *sc = ifp->if_softc;
3523 
3524 	WPI_LOCK(sc);
3525 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3526 	WPI_UNLOCK(sc);
3527 }
3528 
3529 /**
3530  * Called by the net80211 framework, indicates that the
3531  * scan has ended. If there is a scan in progress on the card
3532  * then it should be aborted.
3533  */
3534 static void
3535 wpi_scan_end(struct ieee80211com *ic)
3536 {
3537 	/* XXX ignore */
3538 }
3539 
3540 /**
3541  * Called by the net80211 framework to indicate to the driver
3542  * that the channel should be changed
3543  */
3544 static void
3545 wpi_set_channel(struct ieee80211com *ic)
3546 {
3547 	struct ifnet *ifp = ic->ic_ifp;
3548 	struct wpi_softc *sc = ifp->if_softc;
3549 	int error;
3550 
3551 	/*
3552 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3553 	 * are already taken care of by their respective firmware commands.
3554 	 */
3555 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3556 		error = wpi_config(sc);
3557 		if (error != 0)
3558 			device_printf(sc->sc_dev,
3559 			    "error %d settting channel\n", error);
3560 	}
3561 }
3562 
3563 /**
3564  * Called by net80211 to indicate that we need to scan the current
3565  * channel. The channel is previously be set via the wpi_set_channel
3566  * callback.
3567  */
3568 static void
3569 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3570 {
3571 	struct ieee80211vap *vap = ss->ss_vap;
3572 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3573 	struct wpi_softc *sc = ifp->if_softc;
3574 
3575 	WPI_LOCK(sc);
3576 	if (wpi_scan(sc))
3577 		ieee80211_cancel_scan(vap);
3578 	WPI_UNLOCK(sc);
3579 }
3580 
3581 /**
3582  * Called by the net80211 framework to indicate
3583  * the minimum dwell time has been met, terminate the scan.
3584  * We don't actually terminate the scan as the firmware will notify
3585  * us when it's finished and we have no way to interrupt it.
3586  */
3587 static void
3588 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3589 {
3590 	/* NB: don't try to abort scan; wait for firmware to finish */
3591 }
3592 
3593 static void
3594 wpi_hwreset(void *arg, int pending)
3595 {
3596 	struct wpi_softc *sc = arg;
3597 
3598 	WPI_LOCK(sc);
3599 	wpi_init_locked(sc, 0);
3600 	WPI_UNLOCK(sc);
3601 }
3602 
3603 static void
3604 wpi_rfreset(void *arg, int pending)
3605 {
3606 	struct wpi_softc *sc = arg;
3607 
3608 	WPI_LOCK(sc);
3609 	wpi_rfkill_resume(sc);
3610 	WPI_UNLOCK(sc);
3611 }
3612 
3613 /*
3614  * Allocate DMA-safe memory for firmware transfer.
3615  */
3616 static int
3617 wpi_alloc_fwmem(struct wpi_softc *sc)
3618 {
3619 	/* allocate enough contiguous space to store text and data */
3620 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3621 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3622 	    BUS_DMA_NOWAIT);
3623 }
3624 
3625 static void
3626 wpi_free_fwmem(struct wpi_softc *sc)
3627 {
3628 	wpi_dma_contig_free(&sc->fw_dma);
3629 }
3630 
3631 /**
3632  * Called every second, wpi_watchdog used by the watch dog timer
3633  * to check that the card is still alive
3634  */
3635 static void
3636 wpi_watchdog(void *arg)
3637 {
3638 	struct wpi_softc *sc = arg;
3639 	struct ifnet *ifp = sc->sc_ifp;
3640 	struct ieee80211com *ic = ifp->if_l2com;
3641 	uint32_t tmp;
3642 
3643 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3644 
3645 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3646 		/* No need to lock firmware memory */
3647 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3648 
3649 		if ((tmp & 0x1) == 0) {
3650 			/* Radio kill switch is still off */
3651 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3652 			return;
3653 		}
3654 
3655 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3656 		ieee80211_runtask(ic, &sc->sc_radiotask);
3657 		return;
3658 	}
3659 
3660 	if (sc->sc_tx_timer > 0) {
3661 		if (--sc->sc_tx_timer == 0) {
3662 			device_printf(sc->sc_dev,"device timeout\n");
3663 			ifp->if_oerrors++;
3664 			ieee80211_runtask(ic, &sc->sc_restarttask);
3665 		}
3666 	}
3667 	if (sc->sc_scan_timer > 0) {
3668 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3669 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3670 			device_printf(sc->sc_dev,"scan timeout\n");
3671 			ieee80211_cancel_scan(vap);
3672 			ieee80211_runtask(ic, &sc->sc_restarttask);
3673 		}
3674 	}
3675 
3676 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3677 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3678 }
3679 
3680 #ifdef WPI_DEBUG
3681 static const char *wpi_cmd_str(int cmd)
3682 {
3683 	switch (cmd) {
3684 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3685 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3686 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3687 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3688 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3689 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3690 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3691 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3692 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3693 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3694 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3695 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3696 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3697 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3698 
3699 	default:
3700 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3701 		return "UNKNOWN CMD";	/* Make the compiler happy */
3702 	}
3703 }
3704 #endif
3705 
3706 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3707 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3708 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3709 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3710