1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #include <machine/bus.h> 79 #include <machine/resource.h> 80 #include <sys/rman.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 85 #include <net/bpf.h> 86 #include <net/if.h> 87 #include <net/if_arp.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <net80211/ieee80211_var.h> 94 #include <net80211/ieee80211_radiotap.h> 95 #include <net80211/ieee80211_regdomain.h> 96 #include <net80211/ieee80211_ratectl.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_systm.h> 100 #include <netinet/in_var.h> 101 #include <netinet/ip.h> 102 #include <netinet/if_ether.h> 103 104 #include <dev/wpi/if_wpireg.h> 105 #include <dev/wpi/if_wpivar.h> 106 107 #define WPI_DEBUG 108 109 #ifdef WPI_DEBUG 110 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 111 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 112 #define WPI_DEBUG_SET (wpi_debug != 0) 113 114 enum { 115 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 116 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 117 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 118 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 119 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 120 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 121 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 122 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 123 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 124 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 125 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 126 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 127 WPI_DEBUG_ANY = 0xffffffff 128 }; 129 130 static int wpi_debug = 0; 131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 132 TUNABLE_INT("debug.wpi", &wpi_debug); 133 134 #else 135 #define DPRINTF(x) 136 #define DPRINTFN(n, x) 137 #define WPI_DEBUG_SET 0 138 #endif 139 140 struct wpi_ident { 141 uint16_t vendor; 142 uint16_t device; 143 uint16_t subdevice; 144 const char *name; 145 }; 146 147 static const struct wpi_ident wpi_ident_table[] = { 148 /* The below entries support ABG regardless of the subid */ 149 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 150 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 151 /* The below entries only support BG */ 152 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 153 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 154 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 155 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0, 0, 0, NULL } 157 }; 158 159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 160 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 161 const uint8_t [IEEE80211_ADDR_LEN], 162 const uint8_t [IEEE80211_ADDR_LEN]); 163 static void wpi_vap_delete(struct ieee80211vap *); 164 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 165 void **, bus_size_t, bus_size_t, int); 166 static void wpi_dma_contig_free(struct wpi_dma_info *); 167 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 168 static int wpi_alloc_shared(struct wpi_softc *); 169 static void wpi_free_shared(struct wpi_softc *); 170 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 171 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 172 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 173 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 174 int, int); 175 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 176 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 177 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 178 static void wpi_mem_lock(struct wpi_softc *); 179 static void wpi_mem_unlock(struct wpi_softc *); 180 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 181 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 182 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 183 const uint32_t *, int); 184 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 185 static int wpi_alloc_fwmem(struct wpi_softc *); 186 static void wpi_free_fwmem(struct wpi_softc *); 187 static int wpi_load_firmware(struct wpi_softc *); 188 static void wpi_unload_firmware(struct wpi_softc *); 189 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 190 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 191 struct wpi_rx_data *); 192 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 193 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 194 static void wpi_notif_intr(struct wpi_softc *); 195 static void wpi_intr(void *); 196 static uint8_t wpi_plcp_signal(int); 197 static void wpi_watchdog(void *); 198 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 199 struct ieee80211_node *, int); 200 static void wpi_start(struct ifnet *); 201 static void wpi_start_locked(struct ifnet *); 202 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 203 const struct ieee80211_bpf_params *); 204 static void wpi_scan_start(struct ieee80211com *); 205 static void wpi_scan_end(struct ieee80211com *); 206 static void wpi_set_channel(struct ieee80211com *); 207 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 208 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 209 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 210 static void wpi_read_eeprom(struct wpi_softc *, 211 uint8_t macaddr[IEEE80211_ADDR_LEN]); 212 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 213 static void wpi_read_eeprom_group(struct wpi_softc *, int); 214 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 215 static int wpi_wme_update(struct ieee80211com *); 216 static int wpi_mrr_setup(struct wpi_softc *); 217 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 218 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 219 #if 0 220 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 221 #endif 222 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 223 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 224 static int wpi_scan(struct wpi_softc *); 225 static int wpi_config(struct wpi_softc *); 226 static void wpi_stop_master(struct wpi_softc *); 227 static int wpi_power_up(struct wpi_softc *); 228 static int wpi_reset(struct wpi_softc *); 229 static void wpi_hwreset(void *, int); 230 static void wpi_rfreset(void *, int); 231 static void wpi_hw_config(struct wpi_softc *); 232 static void wpi_init(void *); 233 static void wpi_init_locked(struct wpi_softc *, int); 234 static void wpi_stop(struct wpi_softc *); 235 static void wpi_stop_locked(struct wpi_softc *); 236 237 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 238 int); 239 static void wpi_calib_timeout(void *); 240 static void wpi_power_calibration(struct wpi_softc *, int); 241 static int wpi_get_power_index(struct wpi_softc *, 242 struct wpi_power_group *, struct ieee80211_channel *, int); 243 #ifdef WPI_DEBUG 244 static const char *wpi_cmd_str(int); 245 #endif 246 static int wpi_probe(device_t); 247 static int wpi_attach(device_t); 248 static int wpi_detach(device_t); 249 static int wpi_shutdown(device_t); 250 static int wpi_suspend(device_t); 251 static int wpi_resume(device_t); 252 253 254 static device_method_t wpi_methods[] = { 255 /* Device interface */ 256 DEVMETHOD(device_probe, wpi_probe), 257 DEVMETHOD(device_attach, wpi_attach), 258 DEVMETHOD(device_detach, wpi_detach), 259 DEVMETHOD(device_shutdown, wpi_shutdown), 260 DEVMETHOD(device_suspend, wpi_suspend), 261 DEVMETHOD(device_resume, wpi_resume), 262 263 { 0, 0 } 264 }; 265 266 static driver_t wpi_driver = { 267 "wpi", 268 wpi_methods, 269 sizeof (struct wpi_softc) 270 }; 271 272 static devclass_t wpi_devclass; 273 274 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 275 276 MODULE_VERSION(wpi, 1); 277 278 static const uint8_t wpi_ridx_to_plcp[] = { 279 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 280 /* R1-R4 (ral/ural is R4-R1) */ 281 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 282 /* CCK: device-dependent */ 283 10, 20, 55, 110 284 }; 285 static const uint8_t wpi_ridx_to_rate[] = { 286 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 287 2, 4, 11, 22 /*CCK */ 288 }; 289 290 291 static int 292 wpi_probe(device_t dev) 293 { 294 const struct wpi_ident *ident; 295 296 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 297 if (pci_get_vendor(dev) == ident->vendor && 298 pci_get_device(dev) == ident->device) { 299 device_set_desc(dev, ident->name); 300 return 0; 301 } 302 } 303 return ENXIO; 304 } 305 306 /** 307 * Load the firmare image from disk to the allocated dma buffer. 308 * we also maintain the reference to the firmware pointer as there 309 * is times where we may need to reload the firmware but we are not 310 * in a context that can access the filesystem (ie taskq cause by restart) 311 * 312 * @return 0 on success, an errno on failure 313 */ 314 static int 315 wpi_load_firmware(struct wpi_softc *sc) 316 { 317 const struct firmware *fp; 318 struct wpi_dma_info *dma = &sc->fw_dma; 319 const struct wpi_firmware_hdr *hdr; 320 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 321 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 322 int error; 323 324 DPRINTFN(WPI_DEBUG_FIRMWARE, 325 ("Attempting Loading Firmware from wpi_fw module\n")); 326 327 WPI_UNLOCK(sc); 328 329 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 330 device_printf(sc->sc_dev, 331 "could not load firmware image 'wpifw'\n"); 332 error = ENOENT; 333 WPI_LOCK(sc); 334 goto fail; 335 } 336 337 fp = sc->fw_fp; 338 339 WPI_LOCK(sc); 340 341 /* Validate the firmware is minimum a particular version */ 342 if (fp->version < WPI_FW_MINVERSION) { 343 device_printf(sc->sc_dev, 344 "firmware version is too old. Need %d, got %d\n", 345 WPI_FW_MINVERSION, 346 fp->version); 347 error = ENXIO; 348 goto fail; 349 } 350 351 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 352 device_printf(sc->sc_dev, 353 "firmware file too short: %zu bytes\n", fp->datasize); 354 error = ENXIO; 355 goto fail; 356 } 357 358 hdr = (const struct wpi_firmware_hdr *)fp->data; 359 360 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 361 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 362 363 rtextsz = le32toh(hdr->rtextsz); 364 rdatasz = le32toh(hdr->rdatasz); 365 itextsz = le32toh(hdr->itextsz); 366 idatasz = le32toh(hdr->idatasz); 367 btextsz = le32toh(hdr->btextsz); 368 369 /* check that all firmware segments are present */ 370 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 371 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 372 device_printf(sc->sc_dev, 373 "firmware file too short: %zu bytes\n", fp->datasize); 374 error = ENXIO; /* XXX appropriate error code? */ 375 goto fail; 376 } 377 378 /* get pointers to firmware segments */ 379 rtext = (const uint8_t *)(hdr + 1); 380 rdata = rtext + rtextsz; 381 itext = rdata + rdatasz; 382 idata = itext + itextsz; 383 btext = idata + idatasz; 384 385 DPRINTFN(WPI_DEBUG_FIRMWARE, 386 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 387 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 388 (le32toh(hdr->version) & 0xff000000) >> 24, 389 (le32toh(hdr->version) & 0x00ff0000) >> 16, 390 (le32toh(hdr->version) & 0x0000ffff), 391 rtextsz, rdatasz, 392 itextsz, idatasz, btextsz)); 393 394 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 395 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 396 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 397 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 398 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 399 400 /* sanity checks */ 401 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 402 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 403 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 404 idatasz > WPI_FW_INIT_DATA_MAXSZ || 405 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 406 (btextsz & 3) != 0) { 407 device_printf(sc->sc_dev, "firmware invalid\n"); 408 error = EINVAL; 409 goto fail; 410 } 411 412 /* copy initialization images into pre-allocated DMA-safe memory */ 413 memcpy(dma->vaddr, idata, idatasz); 414 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 415 416 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 417 418 /* tell adapter where to find initialization images */ 419 wpi_mem_lock(sc); 420 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 421 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 422 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 423 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 424 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 425 wpi_mem_unlock(sc); 426 427 /* load firmware boot code */ 428 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 429 device_printf(sc->sc_dev, "Failed to load microcode\n"); 430 goto fail; 431 } 432 433 /* now press "execute" */ 434 WPI_WRITE(sc, WPI_RESET, 0); 435 436 /* wait at most one second for the first alive notification */ 437 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 438 device_printf(sc->sc_dev, 439 "timeout waiting for adapter to initialize\n"); 440 goto fail; 441 } 442 443 /* copy runtime images into pre-allocated DMA-sage memory */ 444 memcpy(dma->vaddr, rdata, rdatasz); 445 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 446 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 447 448 /* tell adapter where to find runtime images */ 449 wpi_mem_lock(sc); 450 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 451 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 452 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 453 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 454 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 455 wpi_mem_unlock(sc); 456 457 /* wait at most one second for the first alive notification */ 458 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 459 device_printf(sc->sc_dev, 460 "timeout waiting for adapter to initialize2\n"); 461 goto fail; 462 } 463 464 DPRINTFN(WPI_DEBUG_FIRMWARE, 465 ("Firmware loaded to driver successfully\n")); 466 return error; 467 fail: 468 wpi_unload_firmware(sc); 469 return error; 470 } 471 472 /** 473 * Free the referenced firmware image 474 */ 475 static void 476 wpi_unload_firmware(struct wpi_softc *sc) 477 { 478 479 if (sc->fw_fp) { 480 WPI_UNLOCK(sc); 481 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 482 WPI_LOCK(sc); 483 sc->fw_fp = NULL; 484 } 485 } 486 487 static int 488 wpi_attach(device_t dev) 489 { 490 struct wpi_softc *sc = device_get_softc(dev); 491 struct ifnet *ifp; 492 struct ieee80211com *ic; 493 int ac, error, supportsa = 1; 494 uint32_t tmp; 495 const struct wpi_ident *ident; 496 uint8_t macaddr[IEEE80211_ADDR_LEN]; 497 498 sc->sc_dev = dev; 499 500 if (bootverbose || WPI_DEBUG_SET) 501 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 502 503 /* 504 * Some card's only support 802.11b/g not a, check to see if 505 * this is one such card. A 0x0 in the subdevice table indicates 506 * the entire subdevice range is to be ignored. 507 */ 508 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 509 if (ident->subdevice && 510 pci_get_subdevice(dev) == ident->subdevice) { 511 supportsa = 0; 512 break; 513 } 514 } 515 516 /* Create the tasks that can be queued */ 517 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc); 518 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc); 519 520 WPI_LOCK_INIT(sc); 521 522 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 523 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 524 525 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 526 device_printf(dev, "chip is in D%d power mode " 527 "-- setting to D0\n", pci_get_powerstate(dev)); 528 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 529 } 530 531 /* disable the retry timeout register */ 532 pci_write_config(dev, 0x41, 0, 1); 533 534 /* enable bus-mastering */ 535 pci_enable_busmaster(dev); 536 537 sc->mem_rid = PCIR_BAR(0); 538 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 539 RF_ACTIVE); 540 if (sc->mem == NULL) { 541 device_printf(dev, "could not allocate memory resource\n"); 542 error = ENOMEM; 543 goto fail; 544 } 545 546 sc->sc_st = rman_get_bustag(sc->mem); 547 sc->sc_sh = rman_get_bushandle(sc->mem); 548 549 sc->irq_rid = 0; 550 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 551 RF_ACTIVE | RF_SHAREABLE); 552 if (sc->irq == NULL) { 553 device_printf(dev, "could not allocate interrupt resource\n"); 554 error = ENOMEM; 555 goto fail; 556 } 557 558 /* 559 * Allocate DMA memory for firmware transfers. 560 */ 561 if ((error = wpi_alloc_fwmem(sc)) != 0) { 562 printf(": could not allocate firmware memory\n"); 563 error = ENOMEM; 564 goto fail; 565 } 566 567 /* 568 * Put adapter into a known state. 569 */ 570 if ((error = wpi_reset(sc)) != 0) { 571 device_printf(dev, "could not reset adapter\n"); 572 goto fail; 573 } 574 575 wpi_mem_lock(sc); 576 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 577 if (bootverbose || WPI_DEBUG_SET) 578 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 579 580 wpi_mem_unlock(sc); 581 582 /* Allocate shared page */ 583 if ((error = wpi_alloc_shared(sc)) != 0) { 584 device_printf(dev, "could not allocate shared page\n"); 585 goto fail; 586 } 587 588 /* tx data queues - 4 for QoS purposes */ 589 for (ac = 0; ac < WME_NUM_AC; ac++) { 590 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 591 if (error != 0) { 592 device_printf(dev, "could not allocate Tx ring %d\n",ac); 593 goto fail; 594 } 595 } 596 597 /* command queue to talk to the card's firmware */ 598 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 599 if (error != 0) { 600 device_printf(dev, "could not allocate command ring\n"); 601 goto fail; 602 } 603 604 /* receive data queue */ 605 error = wpi_alloc_rx_ring(sc, &sc->rxq); 606 if (error != 0) { 607 device_printf(dev, "could not allocate Rx ring\n"); 608 goto fail; 609 } 610 611 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 612 if (ifp == NULL) { 613 device_printf(dev, "can not if_alloc()\n"); 614 error = ENOMEM; 615 goto fail; 616 } 617 ic = ifp->if_l2com; 618 619 ic->ic_ifp = ifp; 620 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 621 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 622 623 /* set device capabilities */ 624 ic->ic_caps = 625 IEEE80211_C_STA /* station mode supported */ 626 | IEEE80211_C_MONITOR /* monitor mode supported */ 627 | IEEE80211_C_TXPMGT /* tx power management */ 628 | IEEE80211_C_SHSLOT /* short slot time supported */ 629 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 630 | IEEE80211_C_WPA /* 802.11i */ 631 /* XXX looks like WME is partly supported? */ 632 #if 0 633 | IEEE80211_C_IBSS /* IBSS mode support */ 634 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 635 | IEEE80211_C_WME /* 802.11e */ 636 | IEEE80211_C_HOSTAP /* Host access point mode */ 637 #endif 638 ; 639 640 /* 641 * Read in the eeprom and also setup the channels for 642 * net80211. We don't set the rates as net80211 does this for us 643 */ 644 wpi_read_eeprom(sc, macaddr); 645 646 if (bootverbose || WPI_DEBUG_SET) { 647 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 648 device_printf(sc->sc_dev, "Hardware Type: %c\n", 649 sc->type > 1 ? 'B': '?'); 650 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 651 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 652 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 653 supportsa ? "does" : "does not"); 654 655 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 656 what sc->rev really represents - benjsc 20070615 */ 657 } 658 659 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 660 ifp->if_softc = sc; 661 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 662 ifp->if_init = wpi_init; 663 ifp->if_ioctl = wpi_ioctl; 664 ifp->if_start = wpi_start; 665 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 666 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 667 IFQ_SET_READY(&ifp->if_snd); 668 669 ieee80211_ifattach(ic, macaddr); 670 /* override default methods */ 671 ic->ic_raw_xmit = wpi_raw_xmit; 672 ic->ic_wme.wme_update = wpi_wme_update; 673 ic->ic_scan_start = wpi_scan_start; 674 ic->ic_scan_end = wpi_scan_end; 675 ic->ic_set_channel = wpi_set_channel; 676 ic->ic_scan_curchan = wpi_scan_curchan; 677 ic->ic_scan_mindwell = wpi_scan_mindwell; 678 679 ic->ic_vap_create = wpi_vap_create; 680 ic->ic_vap_delete = wpi_vap_delete; 681 682 ieee80211_radiotap_attach(ic, 683 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 684 WPI_TX_RADIOTAP_PRESENT, 685 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 686 WPI_RX_RADIOTAP_PRESENT); 687 688 /* 689 * Hook our interrupt after all initialization is complete. 690 */ 691 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 692 NULL, wpi_intr, sc, &sc->sc_ih); 693 if (error != 0) { 694 device_printf(dev, "could not set up interrupt\n"); 695 goto fail; 696 } 697 698 if (bootverbose) 699 ieee80211_announce(ic); 700 #ifdef XXX_DEBUG 701 ieee80211_announce_channels(ic); 702 #endif 703 return 0; 704 705 fail: wpi_detach(dev); 706 return ENXIO; 707 } 708 709 static int 710 wpi_detach(device_t dev) 711 { 712 struct wpi_softc *sc = device_get_softc(dev); 713 struct ifnet *ifp = sc->sc_ifp; 714 struct ieee80211com *ic; 715 int ac; 716 717 if (ifp != NULL) { 718 ic = ifp->if_l2com; 719 720 ieee80211_draintask(ic, &sc->sc_restarttask); 721 ieee80211_draintask(ic, &sc->sc_radiotask); 722 wpi_stop(sc); 723 callout_drain(&sc->watchdog_to); 724 callout_drain(&sc->calib_to); 725 ieee80211_ifdetach(ic); 726 } 727 728 WPI_LOCK(sc); 729 if (sc->txq[0].data_dmat) { 730 for (ac = 0; ac < WME_NUM_AC; ac++) 731 wpi_free_tx_ring(sc, &sc->txq[ac]); 732 733 wpi_free_tx_ring(sc, &sc->cmdq); 734 wpi_free_rx_ring(sc, &sc->rxq); 735 wpi_free_shared(sc); 736 } 737 738 if (sc->fw_fp != NULL) { 739 wpi_unload_firmware(sc); 740 } 741 742 if (sc->fw_dma.tag) 743 wpi_free_fwmem(sc); 744 WPI_UNLOCK(sc); 745 746 if (sc->irq != NULL) { 747 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 748 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 749 } 750 751 if (sc->mem != NULL) 752 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 753 754 if (ifp != NULL) 755 if_free(ifp); 756 757 WPI_LOCK_DESTROY(sc); 758 759 return 0; 760 } 761 762 static struct ieee80211vap * 763 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 764 enum ieee80211_opmode opmode, int flags, 765 const uint8_t bssid[IEEE80211_ADDR_LEN], 766 const uint8_t mac[IEEE80211_ADDR_LEN]) 767 { 768 struct wpi_vap *wvp; 769 struct ieee80211vap *vap; 770 771 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 772 return NULL; 773 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 774 M_80211_VAP, M_NOWAIT | M_ZERO); 775 if (wvp == NULL) 776 return NULL; 777 vap = &wvp->vap; 778 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 779 /* override with driver methods */ 780 wvp->newstate = vap->iv_newstate; 781 vap->iv_newstate = wpi_newstate; 782 783 ieee80211_ratectl_init(vap); 784 /* complete setup */ 785 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 786 ic->ic_opmode = opmode; 787 return vap; 788 } 789 790 static void 791 wpi_vap_delete(struct ieee80211vap *vap) 792 { 793 struct wpi_vap *wvp = WPI_VAP(vap); 794 795 ieee80211_ratectl_deinit(vap); 796 ieee80211_vap_detach(vap); 797 free(wvp, M_80211_VAP); 798 } 799 800 static void 801 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 802 { 803 if (error != 0) 804 return; 805 806 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 807 808 *(bus_addr_t *)arg = segs[0].ds_addr; 809 } 810 811 /* 812 * Allocates a contiguous block of dma memory of the requested size and 813 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 814 * allocations greater than 4096 may fail. Hence if the requested alignment is 815 * greater we allocate 'alignment' size extra memory and shift the vaddr and 816 * paddr after the dma load. This bypasses the problem at the cost of a little 817 * more memory. 818 */ 819 static int 820 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 821 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 822 { 823 int error; 824 bus_size_t align; 825 bus_size_t reqsize; 826 827 DPRINTFN(WPI_DEBUG_DMA, 828 ("Size: %zd - alignment %zd\n", size, alignment)); 829 830 dma->size = size; 831 dma->tag = NULL; 832 833 if (alignment > 4096) { 834 align = PAGE_SIZE; 835 reqsize = size + alignment; 836 } else { 837 align = alignment; 838 reqsize = size; 839 } 840 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 841 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 842 NULL, NULL, reqsize, 843 1, reqsize, flags, 844 NULL, NULL, &dma->tag); 845 if (error != 0) { 846 device_printf(sc->sc_dev, 847 "could not create shared page DMA tag\n"); 848 goto fail; 849 } 850 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 851 flags | BUS_DMA_ZERO, &dma->map); 852 if (error != 0) { 853 device_printf(sc->sc_dev, 854 "could not allocate shared page DMA memory\n"); 855 goto fail; 856 } 857 858 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 859 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 860 861 /* Save the original pointers so we can free all the memory */ 862 dma->paddr = dma->paddr_start; 863 dma->vaddr = dma->vaddr_start; 864 865 /* 866 * Check the alignment and increment by 4096 until we get the 867 * requested alignment. Fail if can't obtain the alignment 868 * we requested. 869 */ 870 if ((dma->paddr & (alignment -1 )) != 0) { 871 int i; 872 873 for (i = 0; i < alignment / 4096; i++) { 874 if ((dma->paddr & (alignment - 1 )) == 0) 875 break; 876 dma->paddr += 4096; 877 dma->vaddr += 4096; 878 } 879 if (i == alignment / 4096) { 880 device_printf(sc->sc_dev, 881 "alignment requirement was not satisfied\n"); 882 goto fail; 883 } 884 } 885 886 if (error != 0) { 887 device_printf(sc->sc_dev, 888 "could not load shared page DMA map\n"); 889 goto fail; 890 } 891 892 if (kvap != NULL) 893 *kvap = dma->vaddr; 894 895 return 0; 896 897 fail: 898 wpi_dma_contig_free(dma); 899 return error; 900 } 901 902 static void 903 wpi_dma_contig_free(struct wpi_dma_info *dma) 904 { 905 if (dma->tag) { 906 if (dma->map != NULL) { 907 if (dma->paddr_start != 0) { 908 bus_dmamap_sync(dma->tag, dma->map, 909 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 910 bus_dmamap_unload(dma->tag, dma->map); 911 } 912 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 913 } 914 bus_dma_tag_destroy(dma->tag); 915 } 916 } 917 918 /* 919 * Allocate a shared page between host and NIC. 920 */ 921 static int 922 wpi_alloc_shared(struct wpi_softc *sc) 923 { 924 int error; 925 926 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 927 (void **)&sc->shared, sizeof (struct wpi_shared), 928 PAGE_SIZE, 929 BUS_DMA_NOWAIT); 930 931 if (error != 0) { 932 device_printf(sc->sc_dev, 933 "could not allocate shared area DMA memory\n"); 934 } 935 936 return error; 937 } 938 939 static void 940 wpi_free_shared(struct wpi_softc *sc) 941 { 942 wpi_dma_contig_free(&sc->shared_dma); 943 } 944 945 static int 946 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 947 { 948 949 int i, error; 950 951 ring->cur = 0; 952 953 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 954 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 955 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 956 957 if (error != 0) { 958 device_printf(sc->sc_dev, 959 "%s: could not allocate rx ring DMA memory, error %d\n", 960 __func__, error); 961 goto fail; 962 } 963 964 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 965 BUS_SPACE_MAXADDR_32BIT, 966 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 967 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 968 if (error != 0) { 969 device_printf(sc->sc_dev, 970 "%s: bus_dma_tag_create_failed, error %d\n", 971 __func__, error); 972 goto fail; 973 } 974 975 /* 976 * Setup Rx buffers. 977 */ 978 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 979 struct wpi_rx_data *data = &ring->data[i]; 980 struct mbuf *m; 981 bus_addr_t paddr; 982 983 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 984 if (error != 0) { 985 device_printf(sc->sc_dev, 986 "%s: bus_dmamap_create failed, error %d\n", 987 __func__, error); 988 goto fail; 989 } 990 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 991 if (m == NULL) { 992 device_printf(sc->sc_dev, 993 "%s: could not allocate rx mbuf\n", __func__); 994 error = ENOMEM; 995 goto fail; 996 } 997 /* map page */ 998 error = bus_dmamap_load(ring->data_dmat, data->map, 999 mtod(m, caddr_t), MJUMPAGESIZE, 1000 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1001 if (error != 0 && error != EFBIG) { 1002 device_printf(sc->sc_dev, 1003 "%s: bus_dmamap_load failed, error %d\n", 1004 __func__, error); 1005 m_freem(m); 1006 error = ENOMEM; /* XXX unique code */ 1007 goto fail; 1008 } 1009 bus_dmamap_sync(ring->data_dmat, data->map, 1010 BUS_DMASYNC_PREWRITE); 1011 1012 data->m = m; 1013 ring->desc[i] = htole32(paddr); 1014 } 1015 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1016 BUS_DMASYNC_PREWRITE); 1017 return 0; 1018 fail: 1019 wpi_free_rx_ring(sc, ring); 1020 return error; 1021 } 1022 1023 static void 1024 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1025 { 1026 int ntries; 1027 1028 wpi_mem_lock(sc); 1029 1030 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1031 1032 for (ntries = 0; ntries < 100; ntries++) { 1033 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1034 break; 1035 DELAY(10); 1036 } 1037 1038 wpi_mem_unlock(sc); 1039 1040 #ifdef WPI_DEBUG 1041 if (ntries == 100 && wpi_debug > 0) 1042 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1043 #endif 1044 1045 ring->cur = 0; 1046 } 1047 1048 static void 1049 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1050 { 1051 int i; 1052 1053 wpi_dma_contig_free(&ring->desc_dma); 1054 1055 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1056 struct wpi_rx_data *data = &ring->data[i]; 1057 1058 if (data->m != NULL) { 1059 bus_dmamap_sync(ring->data_dmat, data->map, 1060 BUS_DMASYNC_POSTREAD); 1061 bus_dmamap_unload(ring->data_dmat, data->map); 1062 m_freem(data->m); 1063 } 1064 if (data->map != NULL) 1065 bus_dmamap_destroy(ring->data_dmat, data->map); 1066 } 1067 } 1068 1069 static int 1070 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1071 int qid) 1072 { 1073 struct wpi_tx_data *data; 1074 int i, error; 1075 1076 ring->qid = qid; 1077 ring->count = count; 1078 ring->queued = 0; 1079 ring->cur = 0; 1080 ring->data = NULL; 1081 1082 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1083 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1084 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1085 1086 if (error != 0) { 1087 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1088 goto fail; 1089 } 1090 1091 /* update shared page with ring's base address */ 1092 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1093 1094 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1095 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1096 BUS_DMA_NOWAIT); 1097 1098 if (error != 0) { 1099 device_printf(sc->sc_dev, 1100 "could not allocate tx command DMA memory\n"); 1101 goto fail; 1102 } 1103 1104 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1105 M_NOWAIT | M_ZERO); 1106 if (ring->data == NULL) { 1107 device_printf(sc->sc_dev, 1108 "could not allocate tx data slots\n"); 1109 goto fail; 1110 } 1111 1112 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1113 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1114 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1115 &ring->data_dmat); 1116 if (error != 0) { 1117 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1118 goto fail; 1119 } 1120 1121 for (i = 0; i < count; i++) { 1122 data = &ring->data[i]; 1123 1124 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1125 if (error != 0) { 1126 device_printf(sc->sc_dev, 1127 "could not create tx buf DMA map\n"); 1128 goto fail; 1129 } 1130 bus_dmamap_sync(ring->data_dmat, data->map, 1131 BUS_DMASYNC_PREWRITE); 1132 } 1133 1134 return 0; 1135 1136 fail: 1137 wpi_free_tx_ring(sc, ring); 1138 return error; 1139 } 1140 1141 static void 1142 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1143 { 1144 struct wpi_tx_data *data; 1145 int i, ntries; 1146 1147 wpi_mem_lock(sc); 1148 1149 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1150 for (ntries = 0; ntries < 100; ntries++) { 1151 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1152 break; 1153 DELAY(10); 1154 } 1155 #ifdef WPI_DEBUG 1156 if (ntries == 100 && wpi_debug > 0) 1157 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1158 ring->qid); 1159 #endif 1160 wpi_mem_unlock(sc); 1161 1162 for (i = 0; i < ring->count; i++) { 1163 data = &ring->data[i]; 1164 1165 if (data->m != NULL) { 1166 bus_dmamap_unload(ring->data_dmat, data->map); 1167 m_freem(data->m); 1168 data->m = NULL; 1169 } 1170 } 1171 1172 ring->queued = 0; 1173 ring->cur = 0; 1174 } 1175 1176 static void 1177 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1178 { 1179 struct wpi_tx_data *data; 1180 int i; 1181 1182 wpi_dma_contig_free(&ring->desc_dma); 1183 wpi_dma_contig_free(&ring->cmd_dma); 1184 1185 if (ring->data != NULL) { 1186 for (i = 0; i < ring->count; i++) { 1187 data = &ring->data[i]; 1188 1189 if (data->m != NULL) { 1190 bus_dmamap_sync(ring->data_dmat, data->map, 1191 BUS_DMASYNC_POSTWRITE); 1192 bus_dmamap_unload(ring->data_dmat, data->map); 1193 m_freem(data->m); 1194 data->m = NULL; 1195 } 1196 } 1197 free(ring->data, M_DEVBUF); 1198 } 1199 1200 if (ring->data_dmat != NULL) 1201 bus_dma_tag_destroy(ring->data_dmat); 1202 } 1203 1204 static int 1205 wpi_shutdown(device_t dev) 1206 { 1207 struct wpi_softc *sc = device_get_softc(dev); 1208 1209 WPI_LOCK(sc); 1210 wpi_stop_locked(sc); 1211 wpi_unload_firmware(sc); 1212 WPI_UNLOCK(sc); 1213 1214 return 0; 1215 } 1216 1217 static int 1218 wpi_suspend(device_t dev) 1219 { 1220 struct wpi_softc *sc = device_get_softc(dev); 1221 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1222 1223 ieee80211_suspend_all(ic); 1224 return 0; 1225 } 1226 1227 static int 1228 wpi_resume(device_t dev) 1229 { 1230 struct wpi_softc *sc = device_get_softc(dev); 1231 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1232 1233 pci_write_config(dev, 0x41, 0, 1); 1234 1235 ieee80211_resume_all(ic); 1236 return 0; 1237 } 1238 1239 /** 1240 * Called by net80211 when ever there is a change to 80211 state machine 1241 */ 1242 static int 1243 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1244 { 1245 struct wpi_vap *wvp = WPI_VAP(vap); 1246 struct ieee80211com *ic = vap->iv_ic; 1247 struct ifnet *ifp = ic->ic_ifp; 1248 struct wpi_softc *sc = ifp->if_softc; 1249 int error; 1250 1251 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1252 ieee80211_state_name[vap->iv_state], 1253 ieee80211_state_name[nstate], sc->flags)); 1254 1255 IEEE80211_UNLOCK(ic); 1256 WPI_LOCK(sc); 1257 if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) { 1258 /* 1259 * On !INIT -> SCAN transitions, we need to clear any possible 1260 * knowledge about associations. 1261 */ 1262 error = wpi_config(sc); 1263 if (error != 0) { 1264 device_printf(sc->sc_dev, 1265 "%s: device config failed, error %d\n", 1266 __func__, error); 1267 } 1268 } 1269 if (nstate == IEEE80211_S_AUTH || 1270 (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) { 1271 /* 1272 * The node must be registered in the firmware before auth. 1273 * Also the associd must be cleared on RUN -> ASSOC 1274 * transitions. 1275 */ 1276 error = wpi_auth(sc, vap); 1277 if (error != 0) { 1278 device_printf(sc->sc_dev, 1279 "%s: could not move to auth state, error %d\n", 1280 __func__, error); 1281 } 1282 } 1283 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1284 error = wpi_run(sc, vap); 1285 if (error != 0) { 1286 device_printf(sc->sc_dev, 1287 "%s: could not move to run state, error %d\n", 1288 __func__, error); 1289 } 1290 } 1291 if (nstate == IEEE80211_S_RUN) { 1292 /* RUN -> RUN transition; just restart the timers */ 1293 wpi_calib_timeout(sc); 1294 /* XXX split out rate control timer */ 1295 } 1296 WPI_UNLOCK(sc); 1297 IEEE80211_LOCK(ic); 1298 return wvp->newstate(vap, nstate, arg); 1299 } 1300 1301 /* 1302 * Grab exclusive access to NIC memory. 1303 */ 1304 static void 1305 wpi_mem_lock(struct wpi_softc *sc) 1306 { 1307 int ntries; 1308 uint32_t tmp; 1309 1310 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1311 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1312 1313 /* spin until we actually get the lock */ 1314 for (ntries = 0; ntries < 100; ntries++) { 1315 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1316 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1317 break; 1318 DELAY(10); 1319 } 1320 if (ntries == 100) 1321 device_printf(sc->sc_dev, "could not lock memory\n"); 1322 } 1323 1324 /* 1325 * Release lock on NIC memory. 1326 */ 1327 static void 1328 wpi_mem_unlock(struct wpi_softc *sc) 1329 { 1330 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1331 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1332 } 1333 1334 static uint32_t 1335 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1336 { 1337 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1338 return WPI_READ(sc, WPI_READ_MEM_DATA); 1339 } 1340 1341 static void 1342 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1343 { 1344 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1345 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1346 } 1347 1348 static void 1349 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1350 const uint32_t *data, int wlen) 1351 { 1352 for (; wlen > 0; wlen--, data++, addr+=4) 1353 wpi_mem_write(sc, addr, *data); 1354 } 1355 1356 /* 1357 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1358 * using the traditional bit-bang method. Data is read up until len bytes have 1359 * been obtained. 1360 */ 1361 static uint16_t 1362 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1363 { 1364 int ntries; 1365 uint32_t val; 1366 uint8_t *out = data; 1367 1368 wpi_mem_lock(sc); 1369 1370 for (; len > 0; len -= 2, addr++) { 1371 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1372 1373 for (ntries = 0; ntries < 10; ntries++) { 1374 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1375 break; 1376 DELAY(5); 1377 } 1378 1379 if (ntries == 10) { 1380 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1381 return ETIMEDOUT; 1382 } 1383 1384 *out++= val >> 16; 1385 if (len > 1) 1386 *out ++= val >> 24; 1387 } 1388 1389 wpi_mem_unlock(sc); 1390 1391 return 0; 1392 } 1393 1394 /* 1395 * The firmware text and data segments are transferred to the NIC using DMA. 1396 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1397 * where to find it. Once the NIC has copied the firmware into its internal 1398 * memory, we can free our local copy in the driver. 1399 */ 1400 static int 1401 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1402 { 1403 int error, ntries; 1404 1405 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1406 1407 size /= sizeof(uint32_t); 1408 1409 wpi_mem_lock(sc); 1410 1411 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1412 (const uint32_t *)fw, size); 1413 1414 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1415 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1416 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1417 1418 /* run microcode */ 1419 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1420 1421 /* wait while the adapter is busy copying the firmware */ 1422 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1423 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1424 DPRINTFN(WPI_DEBUG_HW, 1425 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1426 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1427 if (status & WPI_TX_IDLE(6)) { 1428 DPRINTFN(WPI_DEBUG_HW, 1429 ("Status Match! - ntries = %d\n", ntries)); 1430 break; 1431 } 1432 DELAY(10); 1433 } 1434 if (ntries == 1000) { 1435 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1436 error = ETIMEDOUT; 1437 } 1438 1439 /* start the microcode executing */ 1440 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1441 1442 wpi_mem_unlock(sc); 1443 1444 return (error); 1445 } 1446 1447 static void 1448 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1449 struct wpi_rx_data *data) 1450 { 1451 struct ifnet *ifp = sc->sc_ifp; 1452 struct ieee80211com *ic = ifp->if_l2com; 1453 struct wpi_rx_ring *ring = &sc->rxq; 1454 struct wpi_rx_stat *stat; 1455 struct wpi_rx_head *head; 1456 struct wpi_rx_tail *tail; 1457 struct ieee80211_node *ni; 1458 struct mbuf *m, *mnew; 1459 bus_addr_t paddr; 1460 int error; 1461 1462 stat = (struct wpi_rx_stat *)(desc + 1); 1463 1464 if (stat->len > WPI_STAT_MAXLEN) { 1465 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1466 ifp->if_ierrors++; 1467 return; 1468 } 1469 1470 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 1471 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1472 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1473 1474 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1475 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1476 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1477 (uintmax_t)le64toh(tail->tstamp))); 1478 1479 /* discard Rx frames with bad CRC early */ 1480 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1481 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1482 le32toh(tail->flags))); 1483 ifp->if_ierrors++; 1484 return; 1485 } 1486 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1487 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1488 le16toh(head->len))); 1489 ifp->if_ierrors++; 1490 return; 1491 } 1492 1493 /* XXX don't need mbuf, just dma buffer */ 1494 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1495 if (mnew == NULL) { 1496 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1497 __func__)); 1498 ifp->if_ierrors++; 1499 return; 1500 } 1501 bus_dmamap_unload(ring->data_dmat, data->map); 1502 1503 error = bus_dmamap_load(ring->data_dmat, data->map, 1504 mtod(mnew, caddr_t), MJUMPAGESIZE, 1505 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1506 if (error != 0 && error != EFBIG) { 1507 device_printf(sc->sc_dev, 1508 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1509 m_freem(mnew); 1510 ifp->if_ierrors++; 1511 return; 1512 } 1513 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1514 1515 /* finalize mbuf and swap in new one */ 1516 m = data->m; 1517 m->m_pkthdr.rcvif = ifp; 1518 m->m_data = (caddr_t)(head + 1); 1519 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1520 1521 data->m = mnew; 1522 /* update Rx descriptor */ 1523 ring->desc[ring->cur] = htole32(paddr); 1524 1525 if (ieee80211_radiotap_active(ic)) { 1526 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1527 1528 tap->wr_flags = 0; 1529 tap->wr_chan_freq = 1530 htole16(ic->ic_channels[head->chan].ic_freq); 1531 tap->wr_chan_flags = 1532 htole16(ic->ic_channels[head->chan].ic_flags); 1533 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1534 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1535 tap->wr_tsft = tail->tstamp; 1536 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1537 switch (head->rate) { 1538 /* CCK rates */ 1539 case 10: tap->wr_rate = 2; break; 1540 case 20: tap->wr_rate = 4; break; 1541 case 55: tap->wr_rate = 11; break; 1542 case 110: tap->wr_rate = 22; break; 1543 /* OFDM rates */ 1544 case 0xd: tap->wr_rate = 12; break; 1545 case 0xf: tap->wr_rate = 18; break; 1546 case 0x5: tap->wr_rate = 24; break; 1547 case 0x7: tap->wr_rate = 36; break; 1548 case 0x9: tap->wr_rate = 48; break; 1549 case 0xb: tap->wr_rate = 72; break; 1550 case 0x1: tap->wr_rate = 96; break; 1551 case 0x3: tap->wr_rate = 108; break; 1552 /* unknown rate: should not happen */ 1553 default: tap->wr_rate = 0; 1554 } 1555 if (le16toh(head->flags) & 0x4) 1556 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1557 } 1558 1559 WPI_UNLOCK(sc); 1560 1561 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1562 if (ni != NULL) { 1563 (void) ieee80211_input(ni, m, stat->rssi, 0); 1564 ieee80211_free_node(ni); 1565 } else 1566 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1567 1568 WPI_LOCK(sc); 1569 } 1570 1571 static void 1572 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1573 { 1574 struct ifnet *ifp = sc->sc_ifp; 1575 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1576 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1577 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1578 struct ieee80211_node *ni = txdata->ni; 1579 struct ieee80211vap *vap = ni->ni_vap; 1580 int retrycnt = 0; 1581 1582 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1583 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1584 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1585 le32toh(stat->status))); 1586 1587 /* 1588 * Update rate control statistics for the node. 1589 * XXX we should not count mgmt frames since they're always sent at 1590 * the lowest available bit-rate. 1591 * XXX frames w/o ACK shouldn't be used either 1592 */ 1593 if (stat->ntries > 0) { 1594 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1595 retrycnt = 1; 1596 } 1597 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1598 &retrycnt, NULL); 1599 1600 /* XXX oerrors should only count errors !maxtries */ 1601 if ((le32toh(stat->status) & 0xff) != 1) 1602 ifp->if_oerrors++; 1603 else 1604 ifp->if_opackets++; 1605 1606 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1607 bus_dmamap_unload(ring->data_dmat, txdata->map); 1608 /* XXX handle M_TXCB? */ 1609 m_freem(txdata->m); 1610 txdata->m = NULL; 1611 ieee80211_free_node(txdata->ni); 1612 txdata->ni = NULL; 1613 1614 ring->queued--; 1615 1616 sc->sc_tx_timer = 0; 1617 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1618 wpi_start_locked(ifp); 1619 } 1620 1621 static void 1622 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1623 { 1624 struct wpi_tx_ring *ring = &sc->cmdq; 1625 struct wpi_tx_data *data; 1626 1627 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1628 "type=%s len=%d\n", desc->qid, desc->idx, 1629 desc->flags, wpi_cmd_str(desc->type), 1630 le32toh(desc->len))); 1631 1632 if ((desc->qid & 7) != 4) 1633 return; /* not a command ack */ 1634 1635 data = &ring->data[desc->idx]; 1636 1637 /* if the command was mapped in a mbuf, free it */ 1638 if (data->m != NULL) { 1639 bus_dmamap_unload(ring->data_dmat, data->map); 1640 m_freem(data->m); 1641 data->m = NULL; 1642 } 1643 1644 sc->flags &= ~WPI_FLAG_BUSY; 1645 wakeup(&ring->cmd[desc->idx]); 1646 } 1647 1648 static void 1649 wpi_notif_intr(struct wpi_softc *sc) 1650 { 1651 struct ifnet *ifp = sc->sc_ifp; 1652 struct ieee80211com *ic = ifp->if_l2com; 1653 struct wpi_rx_desc *desc; 1654 struct wpi_rx_data *data; 1655 uint32_t hw; 1656 1657 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 1658 BUS_DMASYNC_POSTREAD); 1659 1660 hw = le32toh(sc->shared->next); 1661 while (sc->rxq.cur != hw) { 1662 data = &sc->rxq.data[sc->rxq.cur]; 1663 1664 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1665 BUS_DMASYNC_POSTREAD); 1666 desc = (void *)data->m->m_ext.ext_buf; 1667 1668 DPRINTFN(WPI_DEBUG_NOTIFY, 1669 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1670 desc->qid, 1671 desc->idx, 1672 desc->flags, 1673 desc->type, 1674 le32toh(desc->len))); 1675 1676 if (!(desc->qid & 0x80)) /* reply to a command */ 1677 wpi_cmd_intr(sc, desc); 1678 1679 switch (desc->type) { 1680 case WPI_RX_DONE: 1681 /* a 802.11 frame was received */ 1682 wpi_rx_intr(sc, desc, data); 1683 break; 1684 1685 case WPI_TX_DONE: 1686 /* a 802.11 frame has been transmitted */ 1687 wpi_tx_intr(sc, desc); 1688 break; 1689 1690 case WPI_UC_READY: 1691 { 1692 struct wpi_ucode_info *uc = 1693 (struct wpi_ucode_info *)(desc + 1); 1694 1695 /* the microcontroller is ready */ 1696 DPRINTF(("microcode alive notification version %x " 1697 "alive %x\n", le32toh(uc->version), 1698 le32toh(uc->valid))); 1699 1700 if (le32toh(uc->valid) != 1) { 1701 device_printf(sc->sc_dev, 1702 "microcontroller initialization failed\n"); 1703 wpi_stop_locked(sc); 1704 } 1705 break; 1706 } 1707 case WPI_STATE_CHANGED: 1708 { 1709 uint32_t *status = (uint32_t *)(desc + 1); 1710 1711 /* enabled/disabled notification */ 1712 DPRINTF(("state changed to %x\n", le32toh(*status))); 1713 1714 if (le32toh(*status) & 1) { 1715 device_printf(sc->sc_dev, 1716 "Radio transmitter is switched off\n"); 1717 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1718 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1719 /* Disable firmware commands */ 1720 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1721 } 1722 break; 1723 } 1724 case WPI_START_SCAN: 1725 { 1726 #ifdef WPI_DEBUG 1727 struct wpi_start_scan *scan = 1728 (struct wpi_start_scan *)(desc + 1); 1729 #endif 1730 1731 DPRINTFN(WPI_DEBUG_SCANNING, 1732 ("scanning channel %d status %x\n", 1733 scan->chan, le32toh(scan->status))); 1734 break; 1735 } 1736 case WPI_STOP_SCAN: 1737 { 1738 #ifdef WPI_DEBUG 1739 struct wpi_stop_scan *scan = 1740 (struct wpi_stop_scan *)(desc + 1); 1741 #endif 1742 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1743 1744 DPRINTFN(WPI_DEBUG_SCANNING, 1745 ("scan finished nchan=%d status=%d chan=%d\n", 1746 scan->nchan, scan->status, scan->chan)); 1747 1748 sc->sc_scan_timer = 0; 1749 ieee80211_scan_next(vap); 1750 break; 1751 } 1752 case WPI_MISSED_BEACON: 1753 { 1754 struct wpi_missed_beacon *beacon = 1755 (struct wpi_missed_beacon *)(desc + 1); 1756 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1757 1758 if (le32toh(beacon->consecutive) >= 1759 vap->iv_bmissthreshold) { 1760 DPRINTF(("Beacon miss: %u >= %u\n", 1761 le32toh(beacon->consecutive), 1762 vap->iv_bmissthreshold)); 1763 ieee80211_beacon_miss(ic); 1764 } 1765 break; 1766 } 1767 } 1768 1769 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1770 } 1771 1772 /* tell the firmware what we have processed */ 1773 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1774 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1775 } 1776 1777 static void 1778 wpi_intr(void *arg) 1779 { 1780 struct wpi_softc *sc = arg; 1781 uint32_t r; 1782 1783 WPI_LOCK(sc); 1784 1785 r = WPI_READ(sc, WPI_INTR); 1786 if (r == 0 || r == 0xffffffff) { 1787 WPI_UNLOCK(sc); 1788 return; 1789 } 1790 1791 /* disable interrupts */ 1792 WPI_WRITE(sc, WPI_MASK, 0); 1793 /* ack interrupts */ 1794 WPI_WRITE(sc, WPI_INTR, r); 1795 1796 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1797 struct ifnet *ifp = sc->sc_ifp; 1798 struct ieee80211com *ic = ifp->if_l2com; 1799 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1800 1801 device_printf(sc->sc_dev, "fatal firmware error\n"); 1802 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1803 "(Hardware Error)")); 1804 if (vap != NULL) 1805 ieee80211_cancel_scan(vap); 1806 ieee80211_runtask(ic, &sc->sc_restarttask); 1807 sc->flags &= ~WPI_FLAG_BUSY; 1808 WPI_UNLOCK(sc); 1809 return; 1810 } 1811 1812 if (r & WPI_RX_INTR) 1813 wpi_notif_intr(sc); 1814 1815 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1816 wakeup(sc); 1817 1818 /* re-enable interrupts */ 1819 if (sc->sc_ifp->if_flags & IFF_UP) 1820 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1821 1822 WPI_UNLOCK(sc); 1823 } 1824 1825 static uint8_t 1826 wpi_plcp_signal(int rate) 1827 { 1828 switch (rate) { 1829 /* CCK rates (returned values are device-dependent) */ 1830 case 2: return 10; 1831 case 4: return 20; 1832 case 11: return 55; 1833 case 22: return 110; 1834 1835 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1836 /* R1-R4 (ral/ural is R4-R1) */ 1837 case 12: return 0xd; 1838 case 18: return 0xf; 1839 case 24: return 0x5; 1840 case 36: return 0x7; 1841 case 48: return 0x9; 1842 case 72: return 0xb; 1843 case 96: return 0x1; 1844 case 108: return 0x3; 1845 1846 /* unsupported rates (should not get there) */ 1847 default: return 0; 1848 } 1849 } 1850 1851 /* quickly determine if a given rate is CCK or OFDM */ 1852 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1853 1854 /* 1855 * Construct the data packet for a transmit buffer and acutally put 1856 * the buffer onto the transmit ring, kicking the card to process the 1857 * the buffer. 1858 */ 1859 static int 1860 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1861 int ac) 1862 { 1863 struct ieee80211vap *vap = ni->ni_vap; 1864 struct ifnet *ifp = sc->sc_ifp; 1865 struct ieee80211com *ic = ifp->if_l2com; 1866 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1867 struct wpi_tx_ring *ring = &sc->txq[ac]; 1868 struct wpi_tx_desc *desc; 1869 struct wpi_tx_data *data; 1870 struct wpi_tx_cmd *cmd; 1871 struct wpi_cmd_data *tx; 1872 struct ieee80211_frame *wh; 1873 const struct ieee80211_txparam *tp; 1874 struct ieee80211_key *k; 1875 struct mbuf *mnew; 1876 int i, error, nsegs, rate, hdrlen, ismcast; 1877 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1878 1879 desc = &ring->desc[ring->cur]; 1880 data = &ring->data[ring->cur]; 1881 1882 wh = mtod(m0, struct ieee80211_frame *); 1883 1884 hdrlen = ieee80211_hdrsize(wh); 1885 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1886 1887 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1888 k = ieee80211_crypto_encap(ni, m0); 1889 if (k == NULL) { 1890 m_freem(m0); 1891 return ENOBUFS; 1892 } 1893 /* packet header may have moved, reset our local pointer */ 1894 wh = mtod(m0, struct ieee80211_frame *); 1895 } 1896 1897 cmd = &ring->cmd[ring->cur]; 1898 cmd->code = WPI_CMD_TX_DATA; 1899 cmd->flags = 0; 1900 cmd->qid = ring->qid; 1901 cmd->idx = ring->cur; 1902 1903 tx = (struct wpi_cmd_data *)cmd->data; 1904 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1905 tx->timeout = htole16(0); 1906 tx->ofdm_mask = 0xff; 1907 tx->cck_mask = 0x0f; 1908 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1909 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1910 tx->len = htole16(m0->m_pkthdr.len); 1911 1912 if (!ismcast) { 1913 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1914 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1915 tx->flags |= htole32(WPI_TX_NEED_ACK); 1916 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1917 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1918 tx->rts_ntries = 7; 1919 } 1920 } 1921 /* pick a rate */ 1922 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1923 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1924 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1925 /* tell h/w to set timestamp in probe responses */ 1926 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1927 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1928 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1929 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1930 tx->timeout = htole16(3); 1931 else 1932 tx->timeout = htole16(2); 1933 rate = tp->mgmtrate; 1934 } else if (ismcast) { 1935 rate = tp->mcastrate; 1936 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1937 rate = tp->ucastrate; 1938 } else { 1939 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1940 rate = ni->ni_txrate; 1941 } 1942 tx->rate = wpi_plcp_signal(rate); 1943 1944 /* be very persistant at sending frames out */ 1945 #if 0 1946 tx->data_ntries = tp->maxretry; 1947 #else 1948 tx->data_ntries = 15; /* XXX way too high */ 1949 #endif 1950 1951 if (ieee80211_radiotap_active_vap(vap)) { 1952 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1953 tap->wt_flags = 0; 1954 tap->wt_rate = rate; 1955 tap->wt_hwqueue = ac; 1956 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1957 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1958 1959 ieee80211_radiotap_tx(vap, m0); 1960 } 1961 1962 /* save and trim IEEE802.11 header */ 1963 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1964 m_adj(m0, hdrlen); 1965 1966 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1967 &nsegs, BUS_DMA_NOWAIT); 1968 if (error != 0 && error != EFBIG) { 1969 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1970 error); 1971 m_freem(m0); 1972 return error; 1973 } 1974 if (error != 0) { 1975 /* XXX use m_collapse */ 1976 mnew = m_defrag(m0, M_DONTWAIT); 1977 if (mnew == NULL) { 1978 device_printf(sc->sc_dev, 1979 "could not defragment mbuf\n"); 1980 m_freem(m0); 1981 return ENOBUFS; 1982 } 1983 m0 = mnew; 1984 1985 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1986 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1987 if (error != 0) { 1988 device_printf(sc->sc_dev, 1989 "could not map mbuf (error %d)\n", error); 1990 m_freem(m0); 1991 return error; 1992 } 1993 } 1994 1995 data->m = m0; 1996 data->ni = ni; 1997 1998 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1999 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 2000 2001 /* first scatter/gather segment is used by the tx data command */ 2002 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2003 (1 + nsegs) << 24); 2004 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2005 ring->cur * sizeof (struct wpi_tx_cmd)); 2006 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 2007 for (i = 1; i <= nsegs; i++) { 2008 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 2009 desc->segs[i].len = htole32(segs[i - 1].ds_len); 2010 } 2011 2012 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2013 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2014 BUS_DMASYNC_PREWRITE); 2015 2016 ring->queued++; 2017 2018 /* kick ring */ 2019 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2020 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2021 2022 return 0; 2023 } 2024 2025 /** 2026 * Process data waiting to be sent on the IFNET output queue 2027 */ 2028 static void 2029 wpi_start(struct ifnet *ifp) 2030 { 2031 struct wpi_softc *sc = ifp->if_softc; 2032 2033 WPI_LOCK(sc); 2034 wpi_start_locked(ifp); 2035 WPI_UNLOCK(sc); 2036 } 2037 2038 static void 2039 wpi_start_locked(struct ifnet *ifp) 2040 { 2041 struct wpi_softc *sc = ifp->if_softc; 2042 struct ieee80211_node *ni; 2043 struct mbuf *m; 2044 int ac; 2045 2046 WPI_LOCK_ASSERT(sc); 2047 2048 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2049 return; 2050 2051 for (;;) { 2052 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2053 if (m == NULL) 2054 break; 2055 ac = M_WME_GETAC(m); 2056 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2057 /* there is no place left in this ring */ 2058 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2059 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2060 break; 2061 } 2062 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2063 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2064 ieee80211_free_node(ni); 2065 ifp->if_oerrors++; 2066 break; 2067 } 2068 sc->sc_tx_timer = 5; 2069 } 2070 } 2071 2072 static int 2073 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2074 const struct ieee80211_bpf_params *params) 2075 { 2076 struct ieee80211com *ic = ni->ni_ic; 2077 struct ifnet *ifp = ic->ic_ifp; 2078 struct wpi_softc *sc = ifp->if_softc; 2079 2080 /* prevent management frames from being sent if we're not ready */ 2081 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2082 m_freem(m); 2083 ieee80211_free_node(ni); 2084 return ENETDOWN; 2085 } 2086 WPI_LOCK(sc); 2087 2088 /* management frames go into ring 0 */ 2089 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2090 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2091 m_freem(m); 2092 WPI_UNLOCK(sc); 2093 ieee80211_free_node(ni); 2094 return ENOBUFS; /* XXX */ 2095 } 2096 2097 ifp->if_opackets++; 2098 if (wpi_tx_data(sc, m, ni, 0) != 0) 2099 goto bad; 2100 sc->sc_tx_timer = 5; 2101 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2102 2103 WPI_UNLOCK(sc); 2104 return 0; 2105 bad: 2106 ifp->if_oerrors++; 2107 WPI_UNLOCK(sc); 2108 ieee80211_free_node(ni); 2109 return EIO; /* XXX */ 2110 } 2111 2112 static int 2113 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2114 { 2115 struct wpi_softc *sc = ifp->if_softc; 2116 struct ieee80211com *ic = ifp->if_l2com; 2117 struct ifreq *ifr = (struct ifreq *) data; 2118 int error = 0, startall = 0; 2119 2120 switch (cmd) { 2121 case SIOCSIFFLAGS: 2122 WPI_LOCK(sc); 2123 if ((ifp->if_flags & IFF_UP)) { 2124 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2125 wpi_init_locked(sc, 0); 2126 startall = 1; 2127 } 2128 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2129 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2130 wpi_stop_locked(sc); 2131 WPI_UNLOCK(sc); 2132 if (startall) 2133 ieee80211_start_all(ic); 2134 break; 2135 case SIOCGIFMEDIA: 2136 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2137 break; 2138 case SIOCGIFADDR: 2139 error = ether_ioctl(ifp, cmd, data); 2140 break; 2141 default: 2142 error = EINVAL; 2143 break; 2144 } 2145 return error; 2146 } 2147 2148 /* 2149 * Extract various information from EEPROM. 2150 */ 2151 static void 2152 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2153 { 2154 int i; 2155 2156 /* read the hardware capabilities, revision and SKU type */ 2157 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2158 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2159 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2160 2161 /* read the regulatory domain */ 2162 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2163 2164 /* read in the hw MAC address */ 2165 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2166 2167 /* read the list of authorized channels */ 2168 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2169 wpi_read_eeprom_channels(sc,i); 2170 2171 /* read the power level calibration info for each group */ 2172 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2173 wpi_read_eeprom_group(sc,i); 2174 } 2175 2176 /* 2177 * Send a command to the firmware. 2178 */ 2179 static int 2180 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2181 { 2182 struct wpi_tx_ring *ring = &sc->cmdq; 2183 struct wpi_tx_desc *desc; 2184 struct wpi_tx_cmd *cmd; 2185 2186 #ifdef WPI_DEBUG 2187 if (!async) { 2188 WPI_LOCK_ASSERT(sc); 2189 } 2190 #endif 2191 2192 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2193 async)); 2194 2195 if (sc->flags & WPI_FLAG_BUSY) { 2196 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2197 __func__, code); 2198 return EAGAIN; 2199 } 2200 sc->flags|= WPI_FLAG_BUSY; 2201 2202 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2203 code, size)); 2204 2205 desc = &ring->desc[ring->cur]; 2206 cmd = &ring->cmd[ring->cur]; 2207 2208 cmd->code = code; 2209 cmd->flags = 0; 2210 cmd->qid = ring->qid; 2211 cmd->idx = ring->cur; 2212 memcpy(cmd->data, buf, size); 2213 2214 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2215 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2216 ring->cur * sizeof (struct wpi_tx_cmd)); 2217 desc->segs[0].len = htole32(4 + size); 2218 2219 /* kick cmd ring */ 2220 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2221 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2222 2223 if (async) { 2224 sc->flags &= ~ WPI_FLAG_BUSY; 2225 return 0; 2226 } 2227 2228 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2229 } 2230 2231 static int 2232 wpi_wme_update(struct ieee80211com *ic) 2233 { 2234 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2235 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2236 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2237 const struct wmeParams *wmep; 2238 struct wpi_wme_setup wme; 2239 int ac; 2240 2241 /* don't override default WME values if WME is not actually enabled */ 2242 if (!(ic->ic_flags & IEEE80211_F_WME)) 2243 return 0; 2244 2245 wme.flags = 0; 2246 for (ac = 0; ac < WME_NUM_AC; ac++) { 2247 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2248 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2249 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2250 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2251 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2252 2253 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2254 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2255 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2256 } 2257 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2258 #undef WPI_USEC 2259 #undef WPI_EXP2 2260 } 2261 2262 /* 2263 * Configure h/w multi-rate retries. 2264 */ 2265 static int 2266 wpi_mrr_setup(struct wpi_softc *sc) 2267 { 2268 struct ifnet *ifp = sc->sc_ifp; 2269 struct ieee80211com *ic = ifp->if_l2com; 2270 struct wpi_mrr_setup mrr; 2271 int i, error; 2272 2273 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2274 2275 /* CCK rates (not used with 802.11a) */ 2276 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2277 mrr.rates[i].flags = 0; 2278 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2279 /* fallback to the immediate lower CCK rate (if any) */ 2280 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2281 /* try one time at this rate before falling back to "next" */ 2282 mrr.rates[i].ntries = 1; 2283 } 2284 2285 /* OFDM rates (not used with 802.11b) */ 2286 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2287 mrr.rates[i].flags = 0; 2288 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2289 /* fallback to the immediate lower OFDM rate (if any) */ 2290 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2291 mrr.rates[i].next = (i == WPI_OFDM6) ? 2292 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2293 WPI_OFDM6 : WPI_CCK2) : 2294 i - 1; 2295 /* try one time at this rate before falling back to "next" */ 2296 mrr.rates[i].ntries = 1; 2297 } 2298 2299 /* setup MRR for control frames */ 2300 mrr.which = WPI_MRR_CTL; 2301 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2302 if (error != 0) { 2303 device_printf(sc->sc_dev, 2304 "could not setup MRR for control frames\n"); 2305 return error; 2306 } 2307 2308 /* setup MRR for data frames */ 2309 mrr.which = WPI_MRR_DATA; 2310 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2311 if (error != 0) { 2312 device_printf(sc->sc_dev, 2313 "could not setup MRR for data frames\n"); 2314 return error; 2315 } 2316 2317 return 0; 2318 } 2319 2320 static void 2321 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2322 { 2323 struct wpi_cmd_led led; 2324 2325 led.which = which; 2326 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2327 led.off = off; 2328 led.on = on; 2329 2330 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2331 } 2332 2333 static void 2334 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2335 { 2336 struct wpi_cmd_tsf tsf; 2337 uint64_t val, mod; 2338 2339 memset(&tsf, 0, sizeof tsf); 2340 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2341 tsf.bintval = htole16(ni->ni_intval); 2342 tsf.lintval = htole16(10); 2343 2344 /* compute remaining time until next beacon */ 2345 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2346 mod = le64toh(tsf.tstamp) % val; 2347 tsf.binitval = htole32((uint32_t)(val - mod)); 2348 2349 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2350 device_printf(sc->sc_dev, "could not enable TSF\n"); 2351 } 2352 2353 #if 0 2354 /* 2355 * Build a beacon frame that the firmware will broadcast periodically in 2356 * IBSS or HostAP modes. 2357 */ 2358 static int 2359 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2360 { 2361 struct ifnet *ifp = sc->sc_ifp; 2362 struct ieee80211com *ic = ifp->if_l2com; 2363 struct wpi_tx_ring *ring = &sc->cmdq; 2364 struct wpi_tx_desc *desc; 2365 struct wpi_tx_data *data; 2366 struct wpi_tx_cmd *cmd; 2367 struct wpi_cmd_beacon *bcn; 2368 struct ieee80211_beacon_offsets bo; 2369 struct mbuf *m0; 2370 bus_addr_t physaddr; 2371 int error; 2372 2373 desc = &ring->desc[ring->cur]; 2374 data = &ring->data[ring->cur]; 2375 2376 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2377 if (m0 == NULL) { 2378 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2379 return ENOMEM; 2380 } 2381 2382 cmd = &ring->cmd[ring->cur]; 2383 cmd->code = WPI_CMD_SET_BEACON; 2384 cmd->flags = 0; 2385 cmd->qid = ring->qid; 2386 cmd->idx = ring->cur; 2387 2388 bcn = (struct wpi_cmd_beacon *)cmd->data; 2389 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2390 bcn->id = WPI_ID_BROADCAST; 2391 bcn->ofdm_mask = 0xff; 2392 bcn->cck_mask = 0x0f; 2393 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2394 bcn->len = htole16(m0->m_pkthdr.len); 2395 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2396 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2397 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2398 2399 /* save and trim IEEE802.11 header */ 2400 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2401 m_adj(m0, sizeof (struct ieee80211_frame)); 2402 2403 /* assume beacon frame is contiguous */ 2404 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2405 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2406 if (error != 0) { 2407 device_printf(sc->sc_dev, "could not map beacon\n"); 2408 m_freem(m0); 2409 return error; 2410 } 2411 2412 data->m = m0; 2413 2414 /* first scatter/gather segment is used by the beacon command */ 2415 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2416 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2417 ring->cur * sizeof (struct wpi_tx_cmd)); 2418 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2419 desc->segs[1].addr = htole32(physaddr); 2420 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2421 2422 /* kick cmd ring */ 2423 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2424 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2425 2426 return 0; 2427 } 2428 #endif 2429 2430 static int 2431 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2432 { 2433 struct ieee80211com *ic = vap->iv_ic; 2434 struct ieee80211_node *ni = vap->iv_bss; 2435 struct wpi_node_info node; 2436 int error; 2437 2438 2439 /* update adapter's configuration */ 2440 sc->config.associd = 0; 2441 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2442 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2443 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2444 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2445 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2446 WPI_CONFIG_24GHZ); 2447 } else { 2448 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO | 2449 WPI_CONFIG_24GHZ); 2450 } 2451 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2452 sc->config.cck_mask = 0; 2453 sc->config.ofdm_mask = 0x15; 2454 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2455 sc->config.cck_mask = 0x03; 2456 sc->config.ofdm_mask = 0; 2457 } else { 2458 /* XXX assume 802.11b/g */ 2459 sc->config.cck_mask = 0x0f; 2460 sc->config.ofdm_mask = 0x15; 2461 } 2462 2463 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2464 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2465 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2466 sizeof (struct wpi_config), 1); 2467 if (error != 0) { 2468 device_printf(sc->sc_dev, "could not configure\n"); 2469 return error; 2470 } 2471 2472 /* configuration has changed, set Tx power accordingly */ 2473 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2474 device_printf(sc->sc_dev, "could not set Tx power\n"); 2475 return error; 2476 } 2477 2478 /* add default node */ 2479 memset(&node, 0, sizeof node); 2480 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2481 node.id = WPI_ID_BSS; 2482 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2483 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2484 node.action = htole32(WPI_ACTION_SET_RATE); 2485 node.antenna = WPI_ANTENNA_BOTH; 2486 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2487 if (error != 0) 2488 device_printf(sc->sc_dev, "could not add BSS node\n"); 2489 2490 return (error); 2491 } 2492 2493 static int 2494 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2495 { 2496 struct ieee80211com *ic = vap->iv_ic; 2497 struct ieee80211_node *ni = vap->iv_bss; 2498 int error; 2499 2500 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2501 /* link LED blinks while monitoring */ 2502 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2503 return 0; 2504 } 2505 2506 wpi_enable_tsf(sc, ni); 2507 2508 /* update adapter's configuration */ 2509 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2510 /* short preamble/slot time are negotiated when associating */ 2511 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2512 WPI_CONFIG_SHSLOT); 2513 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2514 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2515 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2516 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2517 sc->config.filter |= htole32(WPI_FILTER_BSS); 2518 2519 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2520 2521 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2522 sc->config.flags)); 2523 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2524 wpi_config), 1); 2525 if (error != 0) { 2526 device_printf(sc->sc_dev, "could not update configuration\n"); 2527 return error; 2528 } 2529 2530 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2531 if (error != 0) { 2532 device_printf(sc->sc_dev, "could set txpower\n"); 2533 return error; 2534 } 2535 2536 /* link LED always on while associated */ 2537 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2538 2539 /* start automatic rate control timer */ 2540 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2541 2542 return (error); 2543 } 2544 2545 /* 2546 * Send a scan request to the firmware. Since this command is huge, we map it 2547 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2548 * much of this code is similar to that in wpi_cmd but because we must manually 2549 * construct the probe & channels, we duplicate what's needed here. XXX In the 2550 * future, this function should be modified to use wpi_cmd to help cleanup the 2551 * code base. 2552 */ 2553 static int 2554 wpi_scan(struct wpi_softc *sc) 2555 { 2556 struct ifnet *ifp = sc->sc_ifp; 2557 struct ieee80211com *ic = ifp->if_l2com; 2558 struct ieee80211_scan_state *ss = ic->ic_scan; 2559 struct wpi_tx_ring *ring = &sc->cmdq; 2560 struct wpi_tx_desc *desc; 2561 struct wpi_tx_data *data; 2562 struct wpi_tx_cmd *cmd; 2563 struct wpi_scan_hdr *hdr; 2564 struct wpi_scan_chan *chan; 2565 struct ieee80211_frame *wh; 2566 struct ieee80211_rateset *rs; 2567 struct ieee80211_channel *c; 2568 enum ieee80211_phymode mode; 2569 uint8_t *frm; 2570 int nrates, pktlen, error, i, nssid; 2571 bus_addr_t physaddr; 2572 2573 desc = &ring->desc[ring->cur]; 2574 data = &ring->data[ring->cur]; 2575 2576 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2577 if (data->m == NULL) { 2578 device_printf(sc->sc_dev, 2579 "could not allocate mbuf for scan command\n"); 2580 return ENOMEM; 2581 } 2582 2583 cmd = mtod(data->m, struct wpi_tx_cmd *); 2584 cmd->code = WPI_CMD_SCAN; 2585 cmd->flags = 0; 2586 cmd->qid = ring->qid; 2587 cmd->idx = ring->cur; 2588 2589 hdr = (struct wpi_scan_hdr *)cmd->data; 2590 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2591 2592 /* 2593 * Move to the next channel if no packets are received within 5 msecs 2594 * after sending the probe request (this helps to reduce the duration 2595 * of active scans). 2596 */ 2597 hdr->quiet = htole16(5); 2598 hdr->threshold = htole16(1); 2599 2600 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2601 /* send probe requests at 6Mbps */ 2602 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2603 2604 /* Enable crc checking */ 2605 hdr->promotion = htole16(1); 2606 } else { 2607 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2608 /* send probe requests at 1Mbps */ 2609 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2610 } 2611 hdr->tx.id = WPI_ID_BROADCAST; 2612 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2613 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2614 2615 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2616 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2617 for (i = 0; i < nssid; i++) { 2618 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2619 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2620 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2621 hdr->scan_essids[i].esslen); 2622 #ifdef WPI_DEBUG 2623 if (wpi_debug & WPI_DEBUG_SCANNING) { 2624 printf("Scanning Essid: "); 2625 ieee80211_print_essid(hdr->scan_essids[i].essid, 2626 hdr->scan_essids[i].esslen); 2627 printf("\n"); 2628 } 2629 #endif 2630 } 2631 2632 /* 2633 * Build a probe request frame. Most of the following code is a 2634 * copy & paste of what is done in net80211. 2635 */ 2636 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2637 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2638 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2639 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2640 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2641 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2642 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2643 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2644 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2645 2646 frm = (uint8_t *)(wh + 1); 2647 2648 /* add essid IE, the hardware will fill this in for us */ 2649 *frm++ = IEEE80211_ELEMID_SSID; 2650 *frm++ = 0; 2651 2652 mode = ieee80211_chan2mode(ic->ic_curchan); 2653 rs = &ic->ic_sup_rates[mode]; 2654 2655 /* add supported rates IE */ 2656 *frm++ = IEEE80211_ELEMID_RATES; 2657 nrates = rs->rs_nrates; 2658 if (nrates > IEEE80211_RATE_SIZE) 2659 nrates = IEEE80211_RATE_SIZE; 2660 *frm++ = nrates; 2661 memcpy(frm, rs->rs_rates, nrates); 2662 frm += nrates; 2663 2664 /* add supported xrates IE */ 2665 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2666 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2667 *frm++ = IEEE80211_ELEMID_XRATES; 2668 *frm++ = nrates; 2669 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2670 frm += nrates; 2671 } 2672 2673 /* setup length of probe request */ 2674 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2675 2676 /* 2677 * Construct information about the channel that we 2678 * want to scan. The firmware expects this to be directly 2679 * after the scan probe request 2680 */ 2681 c = ic->ic_curchan; 2682 chan = (struct wpi_scan_chan *)frm; 2683 chan->chan = ieee80211_chan2ieee(ic, c); 2684 chan->flags = 0; 2685 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2686 chan->flags |= WPI_CHAN_ACTIVE; 2687 if (nssid != 0) 2688 chan->flags |= WPI_CHAN_DIRECT; 2689 } 2690 chan->gain_dsp = 0x6e; /* Default level */ 2691 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2692 chan->active = htole16(10); 2693 chan->passive = htole16(ss->ss_maxdwell); 2694 chan->gain_radio = 0x3b; 2695 } else { 2696 chan->active = htole16(20); 2697 chan->passive = htole16(ss->ss_maxdwell); 2698 chan->gain_radio = 0x28; 2699 } 2700 2701 DPRINTFN(WPI_DEBUG_SCANNING, 2702 ("Scanning %u Passive: %d\n", 2703 chan->chan, 2704 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2705 2706 hdr->nchan++; 2707 chan++; 2708 2709 frm += sizeof (struct wpi_scan_chan); 2710 #if 0 2711 // XXX All Channels.... 2712 for (c = &ic->ic_channels[1]; 2713 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2714 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2715 continue; 2716 2717 chan->chan = ieee80211_chan2ieee(ic, c); 2718 chan->flags = 0; 2719 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2720 chan->flags |= WPI_CHAN_ACTIVE; 2721 if (ic->ic_des_ssid[0].len != 0) 2722 chan->flags |= WPI_CHAN_DIRECT; 2723 } 2724 chan->gain_dsp = 0x6e; /* Default level */ 2725 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2726 chan->active = htole16(10); 2727 chan->passive = htole16(110); 2728 chan->gain_radio = 0x3b; 2729 } else { 2730 chan->active = htole16(20); 2731 chan->passive = htole16(120); 2732 chan->gain_radio = 0x28; 2733 } 2734 2735 DPRINTFN(WPI_DEBUG_SCANNING, 2736 ("Scanning %u Passive: %d\n", 2737 chan->chan, 2738 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2739 2740 hdr->nchan++; 2741 chan++; 2742 2743 frm += sizeof (struct wpi_scan_chan); 2744 } 2745 #endif 2746 2747 hdr->len = htole16(frm - (uint8_t *)hdr); 2748 pktlen = frm - (uint8_t *)cmd; 2749 2750 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2751 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2752 if (error != 0) { 2753 device_printf(sc->sc_dev, "could not map scan command\n"); 2754 m_freem(data->m); 2755 data->m = NULL; 2756 return error; 2757 } 2758 2759 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2760 desc->segs[0].addr = htole32(physaddr); 2761 desc->segs[0].len = htole32(pktlen); 2762 2763 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2764 BUS_DMASYNC_PREWRITE); 2765 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2766 2767 /* kick cmd ring */ 2768 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2769 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2770 2771 sc->sc_scan_timer = 5; 2772 return 0; /* will be notified async. of failure/success */ 2773 } 2774 2775 /** 2776 * Configure the card to listen to a particular channel, this transisions the 2777 * card in to being able to receive frames from remote devices. 2778 */ 2779 static int 2780 wpi_config(struct wpi_softc *sc) 2781 { 2782 struct ifnet *ifp = sc->sc_ifp; 2783 struct ieee80211com *ic = ifp->if_l2com; 2784 struct wpi_power power; 2785 struct wpi_bluetooth bluetooth; 2786 struct wpi_node_info node; 2787 int error; 2788 2789 /* set power mode */ 2790 memset(&power, 0, sizeof power); 2791 power.flags = htole32(WPI_POWER_CAM|0x8); 2792 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2793 if (error != 0) { 2794 device_printf(sc->sc_dev, "could not set power mode\n"); 2795 return error; 2796 } 2797 2798 /* configure bluetooth coexistence */ 2799 memset(&bluetooth, 0, sizeof bluetooth); 2800 bluetooth.flags = 3; 2801 bluetooth.lead = 0xaa; 2802 bluetooth.kill = 1; 2803 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2804 0); 2805 if (error != 0) { 2806 device_printf(sc->sc_dev, 2807 "could not configure bluetooth coexistence\n"); 2808 return error; 2809 } 2810 2811 /* configure adapter */ 2812 memset(&sc->config, 0, sizeof (struct wpi_config)); 2813 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2814 /*set default channel*/ 2815 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2816 sc->config.flags = htole32(WPI_CONFIG_TSF); 2817 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2818 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2819 WPI_CONFIG_24GHZ); 2820 } 2821 sc->config.filter = 0; 2822 switch (ic->ic_opmode) { 2823 case IEEE80211_M_STA: 2824 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2825 sc->config.mode = WPI_MODE_STA; 2826 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2827 break; 2828 case IEEE80211_M_IBSS: 2829 case IEEE80211_M_AHDEMO: 2830 sc->config.mode = WPI_MODE_IBSS; 2831 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2832 WPI_FILTER_MULTICAST); 2833 break; 2834 case IEEE80211_M_HOSTAP: 2835 sc->config.mode = WPI_MODE_HOSTAP; 2836 break; 2837 case IEEE80211_M_MONITOR: 2838 sc->config.mode = WPI_MODE_MONITOR; 2839 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2840 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2841 break; 2842 default: 2843 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2844 return EINVAL; 2845 } 2846 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2847 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2848 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2849 sizeof (struct wpi_config), 0); 2850 if (error != 0) { 2851 device_printf(sc->sc_dev, "configure command failed\n"); 2852 return error; 2853 } 2854 2855 /* configuration has changed, set Tx power accordingly */ 2856 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2857 device_printf(sc->sc_dev, "could not set Tx power\n"); 2858 return error; 2859 } 2860 2861 /* add broadcast node */ 2862 memset(&node, 0, sizeof node); 2863 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2864 node.id = WPI_ID_BROADCAST; 2865 node.rate = wpi_plcp_signal(2); 2866 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2867 if (error != 0) { 2868 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2869 return error; 2870 } 2871 2872 /* Setup rate scalling */ 2873 error = wpi_mrr_setup(sc); 2874 if (error != 0) { 2875 device_printf(sc->sc_dev, "could not setup MRR\n"); 2876 return error; 2877 } 2878 2879 return 0; 2880 } 2881 2882 static void 2883 wpi_stop_master(struct wpi_softc *sc) 2884 { 2885 uint32_t tmp; 2886 int ntries; 2887 2888 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2889 2890 tmp = WPI_READ(sc, WPI_RESET); 2891 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2892 2893 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2894 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2895 return; /* already asleep */ 2896 2897 for (ntries = 0; ntries < 100; ntries++) { 2898 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2899 break; 2900 DELAY(10); 2901 } 2902 if (ntries == 100) { 2903 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2904 } 2905 } 2906 2907 static int 2908 wpi_power_up(struct wpi_softc *sc) 2909 { 2910 uint32_t tmp; 2911 int ntries; 2912 2913 wpi_mem_lock(sc); 2914 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2915 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2916 wpi_mem_unlock(sc); 2917 2918 for (ntries = 0; ntries < 5000; ntries++) { 2919 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2920 break; 2921 DELAY(10); 2922 } 2923 if (ntries == 5000) { 2924 device_printf(sc->sc_dev, 2925 "timeout waiting for NIC to power up\n"); 2926 return ETIMEDOUT; 2927 } 2928 return 0; 2929 } 2930 2931 static int 2932 wpi_reset(struct wpi_softc *sc) 2933 { 2934 uint32_t tmp; 2935 int ntries; 2936 2937 DPRINTFN(WPI_DEBUG_HW, 2938 ("Resetting the card - clearing any uploaded firmware\n")); 2939 2940 /* clear any pending interrupts */ 2941 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2942 2943 tmp = WPI_READ(sc, WPI_PLL_CTL); 2944 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2945 2946 tmp = WPI_READ(sc, WPI_CHICKEN); 2947 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2948 2949 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2950 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2951 2952 /* wait for clock stabilization */ 2953 for (ntries = 0; ntries < 25000; ntries++) { 2954 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2955 break; 2956 DELAY(10); 2957 } 2958 if (ntries == 25000) { 2959 device_printf(sc->sc_dev, 2960 "timeout waiting for clock stabilization\n"); 2961 return ETIMEDOUT; 2962 } 2963 2964 /* initialize EEPROM */ 2965 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2966 2967 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2968 device_printf(sc->sc_dev, "EEPROM not found\n"); 2969 return EIO; 2970 } 2971 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2972 2973 return 0; 2974 } 2975 2976 static void 2977 wpi_hw_config(struct wpi_softc *sc) 2978 { 2979 uint32_t rev, hw; 2980 2981 /* voodoo from the Linux "driver".. */ 2982 hw = WPI_READ(sc, WPI_HWCONFIG); 2983 2984 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2985 if ((rev & 0xc0) == 0x40) 2986 hw |= WPI_HW_ALM_MB; 2987 else if (!(rev & 0x80)) 2988 hw |= WPI_HW_ALM_MM; 2989 2990 if (sc->cap == 0x80) 2991 hw |= WPI_HW_SKU_MRC; 2992 2993 hw &= ~WPI_HW_REV_D; 2994 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2995 hw |= WPI_HW_REV_D; 2996 2997 if (sc->type > 1) 2998 hw |= WPI_HW_TYPE_B; 2999 3000 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3001 } 3002 3003 static void 3004 wpi_rfkill_resume(struct wpi_softc *sc) 3005 { 3006 struct ifnet *ifp = sc->sc_ifp; 3007 struct ieee80211com *ic = ifp->if_l2com; 3008 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3009 int ntries; 3010 3011 /* enable firmware again */ 3012 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3013 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3014 3015 /* wait for thermal sensors to calibrate */ 3016 for (ntries = 0; ntries < 1000; ntries++) { 3017 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3018 break; 3019 DELAY(10); 3020 } 3021 3022 if (ntries == 1000) { 3023 device_printf(sc->sc_dev, 3024 "timeout waiting for thermal calibration\n"); 3025 return; 3026 } 3027 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3028 3029 if (wpi_config(sc) != 0) { 3030 device_printf(sc->sc_dev, "device config failed\n"); 3031 return; 3032 } 3033 3034 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3035 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3036 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3037 3038 if (vap != NULL) { 3039 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3040 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3041 ieee80211_beacon_miss(ic); 3042 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3043 } else 3044 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3045 } else { 3046 ieee80211_scan_next(vap); 3047 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3048 } 3049 } 3050 3051 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3052 } 3053 3054 static void 3055 wpi_init_locked(struct wpi_softc *sc, int force) 3056 { 3057 struct ifnet *ifp = sc->sc_ifp; 3058 uint32_t tmp; 3059 int ntries, qid; 3060 3061 wpi_stop_locked(sc); 3062 (void)wpi_reset(sc); 3063 3064 wpi_mem_lock(sc); 3065 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3066 DELAY(20); 3067 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3068 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3069 wpi_mem_unlock(sc); 3070 3071 (void)wpi_power_up(sc); 3072 wpi_hw_config(sc); 3073 3074 /* init Rx ring */ 3075 wpi_mem_lock(sc); 3076 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3077 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3078 offsetof(struct wpi_shared, next)); 3079 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3080 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3081 wpi_mem_unlock(sc); 3082 3083 /* init Tx rings */ 3084 wpi_mem_lock(sc); 3085 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3086 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3087 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3088 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3089 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3090 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3091 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3092 3093 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3094 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3095 3096 for (qid = 0; qid < 6; qid++) { 3097 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3098 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3099 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3100 } 3101 wpi_mem_unlock(sc); 3102 3103 /* clear "radio off" and "disable command" bits (reversed logic) */ 3104 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3105 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3106 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3107 3108 /* clear any pending interrupts */ 3109 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3110 3111 /* enable interrupts */ 3112 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3113 3114 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3115 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3116 3117 if ((wpi_load_firmware(sc)) != 0) { 3118 device_printf(sc->sc_dev, 3119 "A problem occurred loading the firmware to the driver\n"); 3120 return; 3121 } 3122 3123 /* At this point the firmware is up and running. If the hardware 3124 * RF switch is turned off thermal calibration will fail, though 3125 * the card is still happy to continue to accept commands, catch 3126 * this case and schedule a task to watch for it to be turned on. 3127 */ 3128 wpi_mem_lock(sc); 3129 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3130 wpi_mem_unlock(sc); 3131 3132 if (!(tmp & 0x1)) { 3133 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3134 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3135 goto out; 3136 } 3137 3138 /* wait for thermal sensors to calibrate */ 3139 for (ntries = 0; ntries < 1000; ntries++) { 3140 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3141 break; 3142 DELAY(10); 3143 } 3144 3145 if (ntries == 1000) { 3146 device_printf(sc->sc_dev, 3147 "timeout waiting for thermal sensors calibration\n"); 3148 return; 3149 } 3150 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3151 3152 if (wpi_config(sc) != 0) { 3153 device_printf(sc->sc_dev, "device config failed\n"); 3154 return; 3155 } 3156 3157 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3158 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3159 out: 3160 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3161 } 3162 3163 static void 3164 wpi_init(void *arg) 3165 { 3166 struct wpi_softc *sc = arg; 3167 struct ifnet *ifp = sc->sc_ifp; 3168 struct ieee80211com *ic = ifp->if_l2com; 3169 3170 WPI_LOCK(sc); 3171 wpi_init_locked(sc, 0); 3172 WPI_UNLOCK(sc); 3173 3174 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3175 ieee80211_start_all(ic); /* start all vaps */ 3176 } 3177 3178 static void 3179 wpi_stop_locked(struct wpi_softc *sc) 3180 { 3181 struct ifnet *ifp = sc->sc_ifp; 3182 uint32_t tmp; 3183 int ac; 3184 3185 sc->sc_tx_timer = 0; 3186 sc->sc_scan_timer = 0; 3187 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3188 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3189 callout_stop(&sc->watchdog_to); 3190 callout_stop(&sc->calib_to); 3191 3192 3193 /* disable interrupts */ 3194 WPI_WRITE(sc, WPI_MASK, 0); 3195 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3196 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3197 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3198 3199 wpi_mem_lock(sc); 3200 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3201 wpi_mem_unlock(sc); 3202 3203 /* reset all Tx rings */ 3204 for (ac = 0; ac < 4; ac++) 3205 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3206 wpi_reset_tx_ring(sc, &sc->cmdq); 3207 3208 /* reset Rx ring */ 3209 wpi_reset_rx_ring(sc, &sc->rxq); 3210 3211 wpi_mem_lock(sc); 3212 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3213 wpi_mem_unlock(sc); 3214 3215 DELAY(5); 3216 3217 wpi_stop_master(sc); 3218 3219 tmp = WPI_READ(sc, WPI_RESET); 3220 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3221 sc->flags &= ~WPI_FLAG_BUSY; 3222 } 3223 3224 static void 3225 wpi_stop(struct wpi_softc *sc) 3226 { 3227 WPI_LOCK(sc); 3228 wpi_stop_locked(sc); 3229 WPI_UNLOCK(sc); 3230 } 3231 3232 static void 3233 wpi_calib_timeout(void *arg) 3234 { 3235 struct wpi_softc *sc = arg; 3236 struct ifnet *ifp = sc->sc_ifp; 3237 struct ieee80211com *ic = ifp->if_l2com; 3238 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3239 int temp; 3240 3241 if (vap->iv_state != IEEE80211_S_RUN) 3242 return; 3243 3244 /* update sensor data */ 3245 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3246 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3247 3248 wpi_power_calibration(sc, temp); 3249 3250 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3251 } 3252 3253 /* 3254 * This function is called periodically (every 60 seconds) to adjust output 3255 * power to temperature changes. 3256 */ 3257 static void 3258 wpi_power_calibration(struct wpi_softc *sc, int temp) 3259 { 3260 struct ifnet *ifp = sc->sc_ifp; 3261 struct ieee80211com *ic = ifp->if_l2com; 3262 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3263 3264 /* sanity-check read value */ 3265 if (temp < -260 || temp > 25) { 3266 /* this can't be correct, ignore */ 3267 DPRINTFN(WPI_DEBUG_TEMP, 3268 ("out-of-range temperature reported: %d\n", temp)); 3269 return; 3270 } 3271 3272 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3273 3274 /* adjust Tx power if need be */ 3275 if (abs(temp - sc->temp) <= 6) 3276 return; 3277 3278 sc->temp = temp; 3279 3280 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3281 /* just warn, too bad for the automatic calibration... */ 3282 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3283 } 3284 } 3285 3286 /** 3287 * Read the eeprom to find out what channels are valid for the given 3288 * band and update net80211 with what we find. 3289 */ 3290 static void 3291 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3292 { 3293 struct ifnet *ifp = sc->sc_ifp; 3294 struct ieee80211com *ic = ifp->if_l2com; 3295 const struct wpi_chan_band *band = &wpi_bands[n]; 3296 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3297 struct ieee80211_channel *c; 3298 int chan, i, passive; 3299 3300 wpi_read_prom_data(sc, band->addr, channels, 3301 band->nchan * sizeof (struct wpi_eeprom_chan)); 3302 3303 for (i = 0; i < band->nchan; i++) { 3304 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3305 DPRINTFN(WPI_DEBUG_HW, 3306 ("Channel Not Valid: %d, band %d\n", 3307 band->chan[i],n)); 3308 continue; 3309 } 3310 3311 passive = 0; 3312 chan = band->chan[i]; 3313 c = &ic->ic_channels[ic->ic_nchans++]; 3314 3315 /* is active scan allowed on this channel? */ 3316 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3317 passive = IEEE80211_CHAN_PASSIVE; 3318 } 3319 3320 if (n == 0) { /* 2GHz band */ 3321 c->ic_ieee = chan; 3322 c->ic_freq = ieee80211_ieee2mhz(chan, 3323 IEEE80211_CHAN_2GHZ); 3324 c->ic_flags = IEEE80211_CHAN_B | passive; 3325 3326 c = &ic->ic_channels[ic->ic_nchans++]; 3327 c->ic_ieee = chan; 3328 c->ic_freq = ieee80211_ieee2mhz(chan, 3329 IEEE80211_CHAN_2GHZ); 3330 c->ic_flags = IEEE80211_CHAN_G | passive; 3331 3332 } else { /* 5GHz band */ 3333 /* 3334 * Some 3945ABG adapters support channels 7, 8, 11 3335 * and 12 in the 2GHz *and* 5GHz bands. 3336 * Because of limitations in our net80211(9) stack, 3337 * we can't support these channels in 5GHz band. 3338 * XXX not true; just need to map to proper frequency 3339 */ 3340 if (chan <= 14) 3341 continue; 3342 3343 c->ic_ieee = chan; 3344 c->ic_freq = ieee80211_ieee2mhz(chan, 3345 IEEE80211_CHAN_5GHZ); 3346 c->ic_flags = IEEE80211_CHAN_A | passive; 3347 } 3348 3349 /* save maximum allowed power for this channel */ 3350 sc->maxpwr[chan] = channels[i].maxpwr; 3351 3352 #if 0 3353 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3354 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3355 //ic->ic_channels[chan].ic_minpower... 3356 //ic->ic_channels[chan].ic_maxregtxpower... 3357 #endif 3358 3359 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3360 " passive=%d, offset %d\n", chan, c->ic_freq, 3361 channels[i].flags, sc->maxpwr[chan], 3362 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3363 ic->ic_nchans)); 3364 } 3365 } 3366 3367 static void 3368 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3369 { 3370 struct wpi_power_group *group = &sc->groups[n]; 3371 struct wpi_eeprom_group rgroup; 3372 int i; 3373 3374 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3375 sizeof rgroup); 3376 3377 /* save power group information */ 3378 group->chan = rgroup.chan; 3379 group->maxpwr = rgroup.maxpwr; 3380 /* temperature at which the samples were taken */ 3381 group->temp = (int16_t)le16toh(rgroup.temp); 3382 3383 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3384 group->chan, group->maxpwr, group->temp)); 3385 3386 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3387 group->samples[i].index = rgroup.samples[i].index; 3388 group->samples[i].power = rgroup.samples[i].power; 3389 3390 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3391 group->samples[i].index, group->samples[i].power)); 3392 } 3393 } 3394 3395 /* 3396 * Update Tx power to match what is defined for channel `c'. 3397 */ 3398 static int 3399 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3400 { 3401 struct ifnet *ifp = sc->sc_ifp; 3402 struct ieee80211com *ic = ifp->if_l2com; 3403 struct wpi_power_group *group; 3404 struct wpi_cmd_txpower txpower; 3405 u_int chan; 3406 int i; 3407 3408 /* get channel number */ 3409 chan = ieee80211_chan2ieee(ic, c); 3410 3411 /* find the power group to which this channel belongs */ 3412 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3413 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3414 if (chan <= group->chan) 3415 break; 3416 } else 3417 group = &sc->groups[0]; 3418 3419 memset(&txpower, 0, sizeof txpower); 3420 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3421 txpower.channel = htole16(chan); 3422 3423 /* set Tx power for all OFDM and CCK rates */ 3424 for (i = 0; i <= 11 ; i++) { 3425 /* retrieve Tx power for this channel/rate combination */ 3426 int idx = wpi_get_power_index(sc, group, c, 3427 wpi_ridx_to_rate[i]); 3428 3429 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3430 3431 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3432 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3433 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3434 } else { 3435 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3436 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3437 } 3438 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3439 chan, wpi_ridx_to_rate[i], idx)); 3440 } 3441 3442 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3443 } 3444 3445 /* 3446 * Determine Tx power index for a given channel/rate combination. 3447 * This takes into account the regulatory information from EEPROM and the 3448 * current temperature. 3449 */ 3450 static int 3451 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3452 struct ieee80211_channel *c, int rate) 3453 { 3454 /* fixed-point arithmetic division using a n-bit fractional part */ 3455 #define fdivround(a, b, n) \ 3456 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3457 3458 /* linear interpolation */ 3459 #define interpolate(x, x1, y1, x2, y2, n) \ 3460 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3461 3462 struct ifnet *ifp = sc->sc_ifp; 3463 struct ieee80211com *ic = ifp->if_l2com; 3464 struct wpi_power_sample *sample; 3465 int pwr, idx; 3466 u_int chan; 3467 3468 /* get channel number */ 3469 chan = ieee80211_chan2ieee(ic, c); 3470 3471 /* default power is group's maximum power - 3dB */ 3472 pwr = group->maxpwr / 2; 3473 3474 /* decrease power for highest OFDM rates to reduce distortion */ 3475 switch (rate) { 3476 case 72: /* 36Mb/s */ 3477 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3478 break; 3479 case 96: /* 48Mb/s */ 3480 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3481 break; 3482 case 108: /* 54Mb/s */ 3483 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3484 break; 3485 } 3486 3487 /* never exceed channel's maximum allowed Tx power */ 3488 pwr = min(pwr, sc->maxpwr[chan]); 3489 3490 /* retrieve power index into gain tables from samples */ 3491 for (sample = group->samples; sample < &group->samples[3]; sample++) 3492 if (pwr > sample[1].power) 3493 break; 3494 /* fixed-point linear interpolation using a 19-bit fractional part */ 3495 idx = interpolate(pwr, sample[0].power, sample[0].index, 3496 sample[1].power, sample[1].index, 19); 3497 3498 /* 3499 * Adjust power index based on current temperature 3500 * - if colder than factory-calibrated: decreate output power 3501 * - if warmer than factory-calibrated: increase output power 3502 */ 3503 idx -= (sc->temp - group->temp) * 11 / 100; 3504 3505 /* decrease power for CCK rates (-5dB) */ 3506 if (!WPI_RATE_IS_OFDM(rate)) 3507 idx += 10; 3508 3509 /* keep power index in a valid range */ 3510 if (idx < 0) 3511 return 0; 3512 if (idx > WPI_MAX_PWR_INDEX) 3513 return WPI_MAX_PWR_INDEX; 3514 return idx; 3515 3516 #undef interpolate 3517 #undef fdivround 3518 } 3519 3520 /** 3521 * Called by net80211 framework to indicate that a scan 3522 * is starting. This function doesn't actually do the scan, 3523 * wpi_scan_curchan starts things off. This function is more 3524 * of an early warning from the framework we should get ready 3525 * for the scan. 3526 */ 3527 static void 3528 wpi_scan_start(struct ieee80211com *ic) 3529 { 3530 struct ifnet *ifp = ic->ic_ifp; 3531 struct wpi_softc *sc = ifp->if_softc; 3532 3533 WPI_LOCK(sc); 3534 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3535 WPI_UNLOCK(sc); 3536 } 3537 3538 /** 3539 * Called by the net80211 framework, indicates that the 3540 * scan has ended. If there is a scan in progress on the card 3541 * then it should be aborted. 3542 */ 3543 static void 3544 wpi_scan_end(struct ieee80211com *ic) 3545 { 3546 /* XXX ignore */ 3547 } 3548 3549 /** 3550 * Called by the net80211 framework to indicate to the driver 3551 * that the channel should be changed 3552 */ 3553 static void 3554 wpi_set_channel(struct ieee80211com *ic) 3555 { 3556 struct ifnet *ifp = ic->ic_ifp; 3557 struct wpi_softc *sc = ifp->if_softc; 3558 int error; 3559 3560 /* 3561 * Only need to set the channel in Monitor mode. AP scanning and auth 3562 * are already taken care of by their respective firmware commands. 3563 */ 3564 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3565 WPI_LOCK(sc); 3566 error = wpi_config(sc); 3567 WPI_UNLOCK(sc); 3568 if (error != 0) 3569 device_printf(sc->sc_dev, 3570 "error %d settting channel\n", error); 3571 } 3572 } 3573 3574 /** 3575 * Called by net80211 to indicate that we need to scan the current 3576 * channel. The channel is previously be set via the wpi_set_channel 3577 * callback. 3578 */ 3579 static void 3580 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3581 { 3582 struct ieee80211vap *vap = ss->ss_vap; 3583 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3584 struct wpi_softc *sc = ifp->if_softc; 3585 3586 WPI_LOCK(sc); 3587 if (wpi_scan(sc)) 3588 ieee80211_cancel_scan(vap); 3589 WPI_UNLOCK(sc); 3590 } 3591 3592 /** 3593 * Called by the net80211 framework to indicate 3594 * the minimum dwell time has been met, terminate the scan. 3595 * We don't actually terminate the scan as the firmware will notify 3596 * us when it's finished and we have no way to interrupt it. 3597 */ 3598 static void 3599 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3600 { 3601 /* NB: don't try to abort scan; wait for firmware to finish */ 3602 } 3603 3604 static void 3605 wpi_hwreset(void *arg, int pending) 3606 { 3607 struct wpi_softc *sc = arg; 3608 3609 WPI_LOCK(sc); 3610 wpi_init_locked(sc, 0); 3611 WPI_UNLOCK(sc); 3612 } 3613 3614 static void 3615 wpi_rfreset(void *arg, int pending) 3616 { 3617 struct wpi_softc *sc = arg; 3618 3619 WPI_LOCK(sc); 3620 wpi_rfkill_resume(sc); 3621 WPI_UNLOCK(sc); 3622 } 3623 3624 /* 3625 * Allocate DMA-safe memory for firmware transfer. 3626 */ 3627 static int 3628 wpi_alloc_fwmem(struct wpi_softc *sc) 3629 { 3630 /* allocate enough contiguous space to store text and data */ 3631 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3632 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3633 BUS_DMA_NOWAIT); 3634 } 3635 3636 static void 3637 wpi_free_fwmem(struct wpi_softc *sc) 3638 { 3639 wpi_dma_contig_free(&sc->fw_dma); 3640 } 3641 3642 /** 3643 * Called every second, wpi_watchdog used by the watch dog timer 3644 * to check that the card is still alive 3645 */ 3646 static void 3647 wpi_watchdog(void *arg) 3648 { 3649 struct wpi_softc *sc = arg; 3650 struct ifnet *ifp = sc->sc_ifp; 3651 struct ieee80211com *ic = ifp->if_l2com; 3652 uint32_t tmp; 3653 3654 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3655 3656 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3657 /* No need to lock firmware memory */ 3658 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3659 3660 if ((tmp & 0x1) == 0) { 3661 /* Radio kill switch is still off */ 3662 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3663 return; 3664 } 3665 3666 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3667 ieee80211_runtask(ic, &sc->sc_radiotask); 3668 return; 3669 } 3670 3671 if (sc->sc_tx_timer > 0) { 3672 if (--sc->sc_tx_timer == 0) { 3673 device_printf(sc->sc_dev,"device timeout\n"); 3674 ifp->if_oerrors++; 3675 ieee80211_runtask(ic, &sc->sc_restarttask); 3676 } 3677 } 3678 if (sc->sc_scan_timer > 0) { 3679 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3680 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3681 device_printf(sc->sc_dev,"scan timeout\n"); 3682 ieee80211_cancel_scan(vap); 3683 ieee80211_runtask(ic, &sc->sc_restarttask); 3684 } 3685 } 3686 3687 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3688 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3689 } 3690 3691 #ifdef WPI_DEBUG 3692 static const char *wpi_cmd_str(int cmd) 3693 { 3694 switch (cmd) { 3695 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3696 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3697 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3698 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3699 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3700 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3701 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3702 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3703 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3704 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3705 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3706 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3707 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3708 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3709 3710 default: 3711 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3712 return "UNKNOWN CMD"; /* Make the compiler happy */ 3713 } 3714 } 3715 #endif 3716 3717 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3718 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3719 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3720