xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 39beb93c3f8bdbf72a61fda42300b5ebed7390c8)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/if_ether.h>
102 
103 #include <dev/wpi/if_wpireg.h>
104 #include <dev/wpi/if_wpivar.h>
105 
106 #define WPI_DEBUG
107 
108 #ifdef WPI_DEBUG
109 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111 #define	WPI_DEBUG_SET	(wpi_debug != 0)
112 
113 enum {
114 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
115 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
116 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
117 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
118 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
119 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
120 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
121 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
122 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
123 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
124 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
125 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
126 	WPI_DEBUG_ANY		= 0xffffffff
127 };
128 
129 static int wpi_debug = 1;
130 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
131 TUNABLE_INT("debug.wpi", &wpi_debug);
132 
133 #else
134 #define DPRINTF(x)
135 #define DPRINTFN(n, x)
136 #define WPI_DEBUG_SET	0
137 #endif
138 
139 struct wpi_ident {
140 	uint16_t	vendor;
141 	uint16_t	device;
142 	uint16_t	subdevice;
143 	const char	*name;
144 };
145 
146 static const struct wpi_ident wpi_ident_table[] = {
147 	/* The below entries support ABG regardless of the subid */
148 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
149 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150 	/* The below entries only support BG */
151 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
152 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
153 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
154 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
155 	{ 0, 0, 0, NULL }
156 };
157 
158 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
159 		    const char name[IFNAMSIZ], int unit, int opmode,
160 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
161 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
162 static void	wpi_vap_delete(struct ieee80211vap *);
163 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
164 		    void **, bus_size_t, bus_size_t, int);
165 static void	wpi_dma_contig_free(struct wpi_dma_info *);
166 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
167 static int	wpi_alloc_shared(struct wpi_softc *);
168 static void	wpi_free_shared(struct wpi_softc *);
169 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
170 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
173 		    int, int);
174 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
175 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
177 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
178 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179 static void	wpi_mem_lock(struct wpi_softc *);
180 static void	wpi_mem_unlock(struct wpi_softc *);
181 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184 		    const uint32_t *, int);
185 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186 static int	wpi_alloc_fwmem(struct wpi_softc *);
187 static void	wpi_free_fwmem(struct wpi_softc *);
188 static int	wpi_load_firmware(struct wpi_softc *);
189 static void	wpi_unload_firmware(struct wpi_softc *);
190 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192 		    struct wpi_rx_data *);
193 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_bmiss(void *, int);
196 static void	wpi_notif_intr(struct wpi_softc *);
197 static void	wpi_intr(void *);
198 static void	wpi_ops(void *, int);
199 static uint8_t	wpi_plcp_signal(int);
200 static int	wpi_queue_cmd(struct wpi_softc *, int, int, int);
201 static void	wpi_watchdog(void *);
202 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
203 		    struct ieee80211_node *, int);
204 static void	wpi_start(struct ifnet *);
205 static void	wpi_start_locked(struct ifnet *);
206 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
207 		    const struct ieee80211_bpf_params *);
208 static void	wpi_scan_start(struct ieee80211com *);
209 static void	wpi_scan_end(struct ieee80211com *);
210 static void	wpi_set_channel(struct ieee80211com *);
211 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
212 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
213 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
214 static void	wpi_read_eeprom(struct wpi_softc *);
215 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
216 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
217 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
218 static int	wpi_wme_update(struct ieee80211com *);
219 static int	wpi_mrr_setup(struct wpi_softc *);
220 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
221 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
222 #if 0
223 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
224 #endif
225 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
226 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
227 static int	wpi_scan(struct wpi_softc *);
228 static int	wpi_config(struct wpi_softc *);
229 static void	wpi_stop_master(struct wpi_softc *);
230 static int	wpi_power_up(struct wpi_softc *);
231 static int	wpi_reset(struct wpi_softc *);
232 static void	wpi_hw_config(struct wpi_softc *);
233 static void	wpi_init(void *);
234 static void	wpi_init_locked(struct wpi_softc *, int);
235 static void	wpi_stop(struct wpi_softc *);
236 static void	wpi_stop_locked(struct wpi_softc *);
237 
238 static void	wpi_newassoc(struct ieee80211_node *, int);
239 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240 		    int);
241 static void	wpi_calib_timeout(void *);
242 static void	wpi_power_calibration(struct wpi_softc *, int);
243 static int	wpi_get_power_index(struct wpi_softc *,
244 		    struct wpi_power_group *, struct ieee80211_channel *, int);
245 #ifdef WPI_DEBUG
246 static const char *wpi_cmd_str(int);
247 #endif
248 static int wpi_probe(device_t);
249 static int wpi_attach(device_t);
250 static int wpi_detach(device_t);
251 static int wpi_shutdown(device_t);
252 static int wpi_suspend(device_t);
253 static int wpi_resume(device_t);
254 
255 
256 static device_method_t wpi_methods[] = {
257 	/* Device interface */
258 	DEVMETHOD(device_probe,		wpi_probe),
259 	DEVMETHOD(device_attach,	wpi_attach),
260 	DEVMETHOD(device_detach,	wpi_detach),
261 	DEVMETHOD(device_shutdown,	wpi_shutdown),
262 	DEVMETHOD(device_suspend,	wpi_suspend),
263 	DEVMETHOD(device_resume,	wpi_resume),
264 
265 	{ 0, 0 }
266 };
267 
268 static driver_t wpi_driver = {
269 	"wpi",
270 	wpi_methods,
271 	sizeof (struct wpi_softc)
272 };
273 
274 static devclass_t wpi_devclass;
275 
276 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
277 
278 static const uint8_t wpi_ridx_to_plcp[] = {
279 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280 	/* R1-R4 (ral/ural is R4-R1) */
281 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282 	/* CCK: device-dependent */
283 	10, 20, 55, 110
284 };
285 static const uint8_t wpi_ridx_to_rate[] = {
286 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287 	2, 4, 11, 22 /*CCK */
288 };
289 
290 
291 static int
292 wpi_probe(device_t dev)
293 {
294 	const struct wpi_ident *ident;
295 
296 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297 		if (pci_get_vendor(dev) == ident->vendor &&
298 		    pci_get_device(dev) == ident->device) {
299 			device_set_desc(dev, ident->name);
300 			return 0;
301 		}
302 	}
303 	return ENXIO;
304 }
305 
306 /**
307  * Load the firmare image from disk to the allocated dma buffer.
308  * we also maintain the reference to the firmware pointer as there
309  * is times where we may need to reload the firmware but we are not
310  * in a context that can access the filesystem (ie taskq cause by restart)
311  *
312  * @return 0 on success, an errno on failure
313  */
314 static int
315 wpi_load_firmware(struct wpi_softc *sc)
316 {
317 	const struct firmware *fp;
318 	struct wpi_dma_info *dma = &sc->fw_dma;
319 	const struct wpi_firmware_hdr *hdr;
320 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322 	int error;
323 
324 	DPRINTFN(WPI_DEBUG_FIRMWARE,
325 	    ("Attempting Loading Firmware from wpi_fw module\n"));
326 
327 	WPI_UNLOCK(sc);
328 
329 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330 		device_printf(sc->sc_dev,
331 		    "could not load firmware image 'wpifw'\n");
332 		error = ENOENT;
333 		WPI_LOCK(sc);
334 		goto fail;
335 	}
336 
337 	fp = sc->fw_fp;
338 
339 	WPI_LOCK(sc);
340 
341 	/* Validate the firmware is minimum a particular version */
342 	if (fp->version < WPI_FW_MINVERSION) {
343 	    device_printf(sc->sc_dev,
344 			   "firmware version is too old. Need %d, got %d\n",
345 			   WPI_FW_MINVERSION,
346 			   fp->version);
347 	    error = ENXIO;
348 	    goto fail;
349 	}
350 
351 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352 		device_printf(sc->sc_dev,
353 		    "firmware file too short: %zu bytes\n", fp->datasize);
354 		error = ENXIO;
355 		goto fail;
356 	}
357 
358 	hdr = (const struct wpi_firmware_hdr *)fp->data;
359 
360 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362 
363 	rtextsz = le32toh(hdr->rtextsz);
364 	rdatasz = le32toh(hdr->rdatasz);
365 	itextsz = le32toh(hdr->itextsz);
366 	idatasz = le32toh(hdr->idatasz);
367 	btextsz = le32toh(hdr->btextsz);
368 
369 	/* check that all firmware segments are present */
370 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372 		device_printf(sc->sc_dev,
373 		    "firmware file too short: %zu bytes\n", fp->datasize);
374 		error = ENXIO; /* XXX appropriate error code? */
375 		goto fail;
376 	}
377 
378 	/* get pointers to firmware segments */
379 	rtext = (const uint8_t *)(hdr + 1);
380 	rdata = rtext + rtextsz;
381 	itext = rdata + rdatasz;
382 	idata = itext + itextsz;
383 	btext = idata + idatasz;
384 
385 	DPRINTFN(WPI_DEBUG_FIRMWARE,
386 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388 	     (le32toh(hdr->version) & 0xff000000) >> 24,
389 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
390 	     (le32toh(hdr->version) & 0x0000ffff),
391 	     rtextsz, rdatasz,
392 	     itextsz, idatasz, btextsz));
393 
394 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399 
400 	/* sanity checks */
401 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406 	    (btextsz & 3) != 0) {
407 		device_printf(sc->sc_dev, "firmware invalid\n");
408 		error = EINVAL;
409 		goto fail;
410 	}
411 
412 	/* copy initialization images into pre-allocated DMA-safe memory */
413 	memcpy(dma->vaddr, idata, idatasz);
414 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415 
416 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417 
418 	/* tell adapter where to find initialization images */
419 	wpi_mem_lock(sc);
420 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425 	wpi_mem_unlock(sc);
426 
427 	/* load firmware boot code */
428 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
430 	    goto fail;
431 	}
432 
433 	/* now press "execute" */
434 	WPI_WRITE(sc, WPI_RESET, 0);
435 
436 	/* wait at most one second for the first alive notification */
437 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438 		device_printf(sc->sc_dev,
439 		    "timeout waiting for adapter to initialize\n");
440 		goto fail;
441 	}
442 
443 	/* copy runtime images into pre-allocated DMA-sage memory */
444 	memcpy(dma->vaddr, rdata, rdatasz);
445 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447 
448 	/* tell adapter where to find runtime images */
449 	wpi_mem_lock(sc);
450 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455 	wpi_mem_unlock(sc);
456 
457 	/* wait at most one second for the first alive notification */
458 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459 		device_printf(sc->sc_dev,
460 		    "timeout waiting for adapter to initialize2\n");
461 		goto fail;
462 	}
463 
464 	DPRINTFN(WPI_DEBUG_FIRMWARE,
465 	    ("Firmware loaded to driver successfully\n"));
466 	return error;
467 fail:
468 	wpi_unload_firmware(sc);
469 	return error;
470 }
471 
472 /**
473  * Free the referenced firmware image
474  */
475 static void
476 wpi_unload_firmware(struct wpi_softc *sc)
477 {
478 
479 	if (sc->fw_fp) {
480 		WPI_UNLOCK(sc);
481 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482 		WPI_LOCK(sc);
483 		sc->fw_fp = NULL;
484 	}
485 }
486 
487 static int
488 wpi_attach(device_t dev)
489 {
490 	struct wpi_softc *sc = device_get_softc(dev);
491 	struct ifnet *ifp;
492 	struct ieee80211com *ic;
493 	int ac, error, supportsa = 1;
494 	uint32_t tmp;
495 	const struct wpi_ident *ident;
496 
497 	sc->sc_dev = dev;
498 
499 	if (bootverbose || WPI_DEBUG_SET)
500 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501 
502 	/*
503 	 * Some card's only support 802.11b/g not a, check to see if
504 	 * this is one such card. A 0x0 in the subdevice table indicates
505 	 * the entire subdevice range is to be ignored.
506 	 */
507 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508 		if (ident->subdevice &&
509 		    pci_get_subdevice(dev) == ident->subdevice) {
510 		    supportsa = 0;
511 		    break;
512 		}
513 	}
514 
515 	/*
516 	 * Create the taskqueues used by the driver. Primarily
517 	 * sc_tq handles most the task
518 	 */
519 	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
520 	    taskqueue_thread_enqueue, &sc->sc_tq);
521 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
522 	    device_get_nameunit(dev));
523 
524 	/* Create the tasks that can be queued */
525 	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
526 	TASK_INIT(&sc->sc_bmiss_task, 0, wpi_bmiss, sc);
527 
528 	WPI_LOCK_INIT(sc);
529 	WPI_CMD_LOCK_INIT(sc);
530 
531 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
532 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
533 
534 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
535 		device_printf(dev, "chip is in D%d power mode "
536 		    "-- setting to D0\n", pci_get_powerstate(dev));
537 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
538 	}
539 
540 	/* disable the retry timeout register */
541 	pci_write_config(dev, 0x41, 0, 1);
542 
543 	/* enable bus-mastering */
544 	pci_enable_busmaster(dev);
545 
546 	sc->mem_rid = PCIR_BAR(0);
547 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
548 	    RF_ACTIVE);
549 	if (sc->mem == NULL) {
550 		device_printf(dev, "could not allocate memory resource\n");
551 		error = ENOMEM;
552 		goto fail;
553 	}
554 
555 	sc->sc_st = rman_get_bustag(sc->mem);
556 	sc->sc_sh = rman_get_bushandle(sc->mem);
557 
558 	sc->irq_rid = 0;
559 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
560 	    RF_ACTIVE | RF_SHAREABLE);
561 	if (sc->irq == NULL) {
562 		device_printf(dev, "could not allocate interrupt resource\n");
563 		error = ENOMEM;
564 		goto fail;
565 	}
566 
567 	/*
568 	 * Allocate DMA memory for firmware transfers.
569 	 */
570 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
571 		printf(": could not allocate firmware memory\n");
572 		error = ENOMEM;
573 		goto fail;
574 	}
575 
576 	/*
577 	 * Put adapter into a known state.
578 	 */
579 	if ((error = wpi_reset(sc)) != 0) {
580 		device_printf(dev, "could not reset adapter\n");
581 		goto fail;
582 	}
583 
584 	wpi_mem_lock(sc);
585 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
586 	if (bootverbose || WPI_DEBUG_SET)
587 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
588 
589 	wpi_mem_unlock(sc);
590 
591 	/* Allocate shared page */
592 	if ((error = wpi_alloc_shared(sc)) != 0) {
593 		device_printf(dev, "could not allocate shared page\n");
594 		goto fail;
595 	}
596 
597 	/* tx data queues  - 4 for QoS purposes */
598 	for (ac = 0; ac < WME_NUM_AC; ac++) {
599 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
600 		if (error != 0) {
601 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
602 		    goto fail;
603 		}
604 	}
605 
606 	/* command queue to talk to the card's firmware */
607 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
608 	if (error != 0) {
609 		device_printf(dev, "could not allocate command ring\n");
610 		goto fail;
611 	}
612 
613 	/* receive data queue */
614 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
615 	if (error != 0) {
616 		device_printf(dev, "could not allocate Rx ring\n");
617 		goto fail;
618 	}
619 
620 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
621 	if (ifp == NULL) {
622 		device_printf(dev, "can not if_alloc()\n");
623 		error = ENOMEM;
624 		goto fail;
625 	}
626 	ic = ifp->if_l2com;
627 
628 	ic->ic_ifp = ifp;
629 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
630 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
631 
632 	/* set device capabilities */
633 	ic->ic_caps =
634 		  IEEE80211_C_STA		/* station mode supported */
635 		| IEEE80211_C_MONITOR		/* monitor mode supported */
636 		| IEEE80211_C_TXPMGT		/* tx power management */
637 		| IEEE80211_C_SHSLOT		/* short slot time supported */
638 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
639 		| IEEE80211_C_WPA		/* 802.11i */
640 /* XXX looks like WME is partly supported? */
641 #if 0
642 		| IEEE80211_C_IBSS		/* IBSS mode support */
643 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
644 		| IEEE80211_C_WME		/* 802.11e */
645 		| IEEE80211_C_HOSTAP		/* Host access point mode */
646 #endif
647 		;
648 
649 	/*
650 	 * Read in the eeprom and also setup the channels for
651 	 * net80211. We don't set the rates as net80211 does this for us
652 	 */
653 	wpi_read_eeprom(sc);
654 
655 	if (bootverbose || WPI_DEBUG_SET) {
656 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
657 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
658 			  sc->type > 1 ? 'B': '?');
659 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
660 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
661 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
662 			  supportsa ? "does" : "does not");
663 
664 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
665 	       what sc->rev really represents - benjsc 20070615 */
666 	}
667 
668 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
669 	ifp->if_softc = sc;
670 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
671 	ifp->if_init = wpi_init;
672 	ifp->if_ioctl = wpi_ioctl;
673 	ifp->if_start = wpi_start;
674 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
675 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
676 	IFQ_SET_READY(&ifp->if_snd);
677 
678 	ieee80211_ifattach(ic);
679 	/* override default methods */
680 	ic->ic_node_alloc = wpi_node_alloc;
681 	ic->ic_newassoc = wpi_newassoc;
682 	ic->ic_raw_xmit = wpi_raw_xmit;
683 	ic->ic_wme.wme_update = wpi_wme_update;
684 	ic->ic_scan_start = wpi_scan_start;
685 	ic->ic_scan_end = wpi_scan_end;
686 	ic->ic_set_channel = wpi_set_channel;
687 	ic->ic_scan_curchan = wpi_scan_curchan;
688 	ic->ic_scan_mindwell = wpi_scan_mindwell;
689 
690 	ic->ic_vap_create = wpi_vap_create;
691 	ic->ic_vap_delete = wpi_vap_delete;
692 
693 	bpfattach(ifp, DLT_IEEE802_11_RADIO,
694 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
695 
696 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
697 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
698 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
699 
700 	sc->sc_txtap_len = sizeof sc->sc_txtap;
701 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
702 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
703 
704 	/*
705 	 * Hook our interrupt after all initialization is complete.
706 	 */
707 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
708 	    NULL, wpi_intr, sc, &sc->sc_ih);
709 	if (error != 0) {
710 		device_printf(dev, "could not set up interrupt\n");
711 		goto fail;
712 	}
713 
714 	if (bootverbose)
715 		ieee80211_announce(ic);
716 #ifdef XXX_DEBUG
717 	ieee80211_announce_channels(ic);
718 #endif
719 	return 0;
720 
721 fail:	wpi_detach(dev);
722 	return ENXIO;
723 }
724 
725 static int
726 wpi_detach(device_t dev)
727 {
728 	struct wpi_softc *sc = device_get_softc(dev);
729 	struct ifnet *ifp = sc->sc_ifp;
730 	struct ieee80211com *ic = ifp->if_l2com;
731 	int ac;
732 
733 	if (ifp != NULL) {
734 		wpi_stop(sc);
735 		callout_drain(&sc->watchdog_to);
736 		callout_drain(&sc->calib_to);
737 		bpfdetach(ifp);
738 		ieee80211_ifdetach(ic);
739 	}
740 
741 	WPI_LOCK(sc);
742 	if (sc->txq[0].data_dmat) {
743 		for (ac = 0; ac < WME_NUM_AC; ac++)
744 			wpi_free_tx_ring(sc, &sc->txq[ac]);
745 
746 		wpi_free_tx_ring(sc, &sc->cmdq);
747 		wpi_free_rx_ring(sc, &sc->rxq);
748 		wpi_free_shared(sc);
749 	}
750 
751 	if (sc->fw_fp != NULL) {
752 		wpi_unload_firmware(sc);
753 	}
754 
755 	if (sc->fw_dma.tag)
756 		wpi_free_fwmem(sc);
757 	WPI_UNLOCK(sc);
758 
759 	if (sc->irq != NULL) {
760 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
761 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
762 	}
763 
764 	if (sc->mem != NULL)
765 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
766 
767 	if (ifp != NULL)
768 		if_free(ifp);
769 
770 	taskqueue_free(sc->sc_tq);
771 
772 	WPI_LOCK_DESTROY(sc);
773 	WPI_CMD_LOCK_DESTROY(sc);
774 
775 	return 0;
776 }
777 
778 static struct ieee80211vap *
779 wpi_vap_create(struct ieee80211com *ic,
780 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
781 	const uint8_t bssid[IEEE80211_ADDR_LEN],
782 	const uint8_t mac[IEEE80211_ADDR_LEN])
783 {
784 	struct wpi_vap *wvp;
785 	struct ieee80211vap *vap;
786 
787 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
788 		return NULL;
789 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
790 	    M_80211_VAP, M_NOWAIT | M_ZERO);
791 	if (wvp == NULL)
792 		return NULL;
793 	vap = &wvp->vap;
794 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
795 	/* override with driver methods */
796 	wvp->newstate = vap->iv_newstate;
797 	vap->iv_newstate = wpi_newstate;
798 
799 	ieee80211_amrr_init(&wvp->amrr, vap,
800 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
801 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
802 	    500 /*ms*/);
803 
804 	/* complete setup */
805 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
806 	ic->ic_opmode = opmode;
807 	return vap;
808 }
809 
810 static void
811 wpi_vap_delete(struct ieee80211vap *vap)
812 {
813 	struct wpi_vap *wvp = WPI_VAP(vap);
814 
815 	ieee80211_amrr_cleanup(&wvp->amrr);
816 	ieee80211_vap_detach(vap);
817 	free(wvp, M_80211_VAP);
818 }
819 
820 static void
821 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
822 {
823 	if (error != 0)
824 		return;
825 
826 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
827 
828 	*(bus_addr_t *)arg = segs[0].ds_addr;
829 }
830 
831 /*
832  * Allocates a contiguous block of dma memory of the requested size and
833  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
834  * allocations greater than 4096 may fail. Hence if the requested alignment is
835  * greater we allocate 'alignment' size extra memory and shift the vaddr and
836  * paddr after the dma load. This bypasses the problem at the cost of a little
837  * more memory.
838  */
839 static int
840 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
841     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
842 {
843 	int error;
844 	bus_size_t align;
845 	bus_size_t reqsize;
846 
847 	DPRINTFN(WPI_DEBUG_DMA,
848 	    ("Size: %zd - alignment %zd\n", size, alignment));
849 
850 	dma->size = size;
851 	dma->tag = NULL;
852 
853 	if (alignment > 4096) {
854 		align = PAGE_SIZE;
855 		reqsize = size + alignment;
856 	} else {
857 		align = alignment;
858 		reqsize = size;
859 	}
860 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
861 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
862 	    NULL, NULL, reqsize,
863 	    1, reqsize, flags,
864 	    NULL, NULL, &dma->tag);
865 	if (error != 0) {
866 		device_printf(sc->sc_dev,
867 		    "could not create shared page DMA tag\n");
868 		goto fail;
869 	}
870 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
871 	    flags | BUS_DMA_ZERO, &dma->map);
872 	if (error != 0) {
873 		device_printf(sc->sc_dev,
874 		    "could not allocate shared page DMA memory\n");
875 		goto fail;
876 	}
877 
878 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
879 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
880 
881 	/* Save the original pointers so we can free all the memory */
882 	dma->paddr = dma->paddr_start;
883 	dma->vaddr = dma->vaddr_start;
884 
885 	/*
886 	 * Check the alignment and increment by 4096 until we get the
887 	 * requested alignment. Fail if can't obtain the alignment
888 	 * we requested.
889 	 */
890 	if ((dma->paddr & (alignment -1 )) != 0) {
891 		int i;
892 
893 		for (i = 0; i < alignment / 4096; i++) {
894 			if ((dma->paddr & (alignment - 1 )) == 0)
895 				break;
896 			dma->paddr += 4096;
897 			dma->vaddr += 4096;
898 		}
899 		if (i == alignment / 4096) {
900 			device_printf(sc->sc_dev,
901 			    "alignment requirement was not satisfied\n");
902 			goto fail;
903 		}
904 	}
905 
906 	if (error != 0) {
907 		device_printf(sc->sc_dev,
908 		    "could not load shared page DMA map\n");
909 		goto fail;
910 	}
911 
912 	if (kvap != NULL)
913 		*kvap = dma->vaddr;
914 
915 	return 0;
916 
917 fail:
918 	wpi_dma_contig_free(dma);
919 	return error;
920 }
921 
922 static void
923 wpi_dma_contig_free(struct wpi_dma_info *dma)
924 {
925 	if (dma->tag) {
926 		if (dma->map != NULL) {
927 			if (dma->paddr_start != 0) {
928 				bus_dmamap_sync(dma->tag, dma->map,
929 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
930 				bus_dmamap_unload(dma->tag, dma->map);
931 			}
932 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
933 		}
934 		bus_dma_tag_destroy(dma->tag);
935 	}
936 }
937 
938 /*
939  * Allocate a shared page between host and NIC.
940  */
941 static int
942 wpi_alloc_shared(struct wpi_softc *sc)
943 {
944 	int error;
945 
946 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
947 	    (void **)&sc->shared, sizeof (struct wpi_shared),
948 	    PAGE_SIZE,
949 	    BUS_DMA_NOWAIT);
950 
951 	if (error != 0) {
952 		device_printf(sc->sc_dev,
953 		    "could not allocate shared area DMA memory\n");
954 	}
955 
956 	return error;
957 }
958 
959 static void
960 wpi_free_shared(struct wpi_softc *sc)
961 {
962 	wpi_dma_contig_free(&sc->shared_dma);
963 }
964 
965 static int
966 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
967 {
968 
969 	int i, error;
970 
971 	ring->cur = 0;
972 
973 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
974 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
975 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
976 
977 	if (error != 0) {
978 		device_printf(sc->sc_dev,
979 		    "%s: could not allocate rx ring DMA memory, error %d\n",
980 		    __func__, error);
981 		goto fail;
982 	}
983 
984         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
985 	    BUS_SPACE_MAXADDR_32BIT,
986             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
987             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
988         if (error != 0) {
989                 device_printf(sc->sc_dev,
990 		    "%s: bus_dma_tag_create_failed, error %d\n",
991 		    __func__, error);
992                 goto fail;
993         }
994 
995 	/*
996 	 * Setup Rx buffers.
997 	 */
998 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
999 		struct wpi_rx_data *data = &ring->data[i];
1000 		struct mbuf *m;
1001 		bus_addr_t paddr;
1002 
1003 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1004 		if (error != 0) {
1005 			device_printf(sc->sc_dev,
1006 			    "%s: bus_dmamap_create failed, error %d\n",
1007 			    __func__, error);
1008 			goto fail;
1009 		}
1010 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1011 		if (m == NULL) {
1012 			device_printf(sc->sc_dev,
1013 			   "%s: could not allocate rx mbuf\n", __func__);
1014 			error = ENOMEM;
1015 			goto fail;
1016 		}
1017 		/* map page */
1018 		error = bus_dmamap_load(ring->data_dmat, data->map,
1019 		    mtod(m, caddr_t), MJUMPAGESIZE,
1020 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1021 		if (error != 0 && error != EFBIG) {
1022 			device_printf(sc->sc_dev,
1023 			    "%s: bus_dmamap_load failed, error %d\n",
1024 			    __func__, error);
1025 			m_freem(m);
1026 			error = ENOMEM;	/* XXX unique code */
1027 			goto fail;
1028 		}
1029 		bus_dmamap_sync(ring->data_dmat, data->map,
1030 		    BUS_DMASYNC_PREWRITE);
1031 
1032 		data->m = m;
1033 		ring->desc[i] = htole32(paddr);
1034 	}
1035 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1036 	    BUS_DMASYNC_PREWRITE);
1037 	return 0;
1038 fail:
1039 	wpi_free_rx_ring(sc, ring);
1040 	return error;
1041 }
1042 
1043 static void
1044 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1045 {
1046 	int ntries;
1047 
1048 	wpi_mem_lock(sc);
1049 
1050 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1051 
1052 	for (ntries = 0; ntries < 100; ntries++) {
1053 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1054 			break;
1055 		DELAY(10);
1056 	}
1057 
1058 	wpi_mem_unlock(sc);
1059 
1060 #ifdef WPI_DEBUG
1061 	if (ntries == 100 && wpi_debug > 0)
1062 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1063 #endif
1064 
1065 	ring->cur = 0;
1066 }
1067 
1068 static void
1069 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1070 {
1071 	int i;
1072 
1073 	wpi_dma_contig_free(&ring->desc_dma);
1074 
1075 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1076 		if (ring->data[i].m != NULL)
1077 			m_freem(ring->data[i].m);
1078 }
1079 
1080 static int
1081 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1082 	int qid)
1083 {
1084 	struct wpi_tx_data *data;
1085 	int i, error;
1086 
1087 	ring->qid = qid;
1088 	ring->count = count;
1089 	ring->queued = 0;
1090 	ring->cur = 0;
1091 	ring->data = NULL;
1092 
1093 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1094 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1095 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1096 
1097 	if (error != 0) {
1098 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1099 	    goto fail;
1100 	}
1101 
1102 	/* update shared page with ring's base address */
1103 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1104 
1105 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1106 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1107 		BUS_DMA_NOWAIT);
1108 
1109 	if (error != 0) {
1110 		device_printf(sc->sc_dev,
1111 		    "could not allocate tx command DMA memory\n");
1112 		goto fail;
1113 	}
1114 
1115 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1116 	    M_NOWAIT | M_ZERO);
1117 	if (ring->data == NULL) {
1118 		device_printf(sc->sc_dev,
1119 		    "could not allocate tx data slots\n");
1120 		goto fail;
1121 	}
1122 
1123 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1124 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1125 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1126 	    &ring->data_dmat);
1127 	if (error != 0) {
1128 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1129 		goto fail;
1130 	}
1131 
1132 	for (i = 0; i < count; i++) {
1133 		data = &ring->data[i];
1134 
1135 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1136 		if (error != 0) {
1137 			device_printf(sc->sc_dev,
1138 			    "could not create tx buf DMA map\n");
1139 			goto fail;
1140 		}
1141 		bus_dmamap_sync(ring->data_dmat, data->map,
1142 		    BUS_DMASYNC_PREWRITE);
1143 	}
1144 
1145 	return 0;
1146 
1147 fail:
1148 	wpi_free_tx_ring(sc, ring);
1149 	return error;
1150 }
1151 
1152 static void
1153 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1154 {
1155 	struct wpi_tx_data *data;
1156 	int i, ntries;
1157 
1158 	wpi_mem_lock(sc);
1159 
1160 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1161 	for (ntries = 0; ntries < 100; ntries++) {
1162 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1163 			break;
1164 		DELAY(10);
1165 	}
1166 #ifdef WPI_DEBUG
1167 	if (ntries == 100 && wpi_debug > 0)
1168 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1169 		    ring->qid);
1170 #endif
1171 	wpi_mem_unlock(sc);
1172 
1173 	for (i = 0; i < ring->count; i++) {
1174 		data = &ring->data[i];
1175 
1176 		if (data->m != NULL) {
1177 			bus_dmamap_unload(ring->data_dmat, data->map);
1178 			m_freem(data->m);
1179 			data->m = NULL;
1180 		}
1181 	}
1182 
1183 	ring->queued = 0;
1184 	ring->cur = 0;
1185 }
1186 
1187 static void
1188 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1189 {
1190 	struct wpi_tx_data *data;
1191 	int i;
1192 
1193 	wpi_dma_contig_free(&ring->desc_dma);
1194 	wpi_dma_contig_free(&ring->cmd_dma);
1195 
1196 	if (ring->data != NULL) {
1197 		for (i = 0; i < ring->count; i++) {
1198 			data = &ring->data[i];
1199 
1200 			if (data->m != NULL) {
1201 				bus_dmamap_sync(ring->data_dmat, data->map,
1202 				    BUS_DMASYNC_POSTWRITE);
1203 				bus_dmamap_unload(ring->data_dmat, data->map);
1204 				m_freem(data->m);
1205 				data->m = NULL;
1206 			}
1207 		}
1208 		free(ring->data, M_DEVBUF);
1209 	}
1210 
1211 	if (ring->data_dmat != NULL)
1212 		bus_dma_tag_destroy(ring->data_dmat);
1213 }
1214 
1215 static int
1216 wpi_shutdown(device_t dev)
1217 {
1218 	struct wpi_softc *sc = device_get_softc(dev);
1219 
1220 	WPI_LOCK(sc);
1221 	wpi_stop_locked(sc);
1222 	wpi_unload_firmware(sc);
1223 	WPI_UNLOCK(sc);
1224 
1225 	return 0;
1226 }
1227 
1228 static int
1229 wpi_suspend(device_t dev)
1230 {
1231 	struct wpi_softc *sc = device_get_softc(dev);
1232 
1233 	wpi_stop(sc);
1234 	return 0;
1235 }
1236 
1237 static int
1238 wpi_resume(device_t dev)
1239 {
1240 	struct wpi_softc *sc = device_get_softc(dev);
1241 	struct ifnet *ifp = sc->sc_ifp;
1242 
1243 	pci_write_config(dev, 0x41, 0, 1);
1244 
1245 	if (ifp->if_flags & IFF_UP) {
1246 		wpi_init(ifp->if_softc);
1247 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1248 			wpi_start(ifp);
1249 	}
1250 	return 0;
1251 }
1252 
1253 /* ARGSUSED */
1254 static struct ieee80211_node *
1255 wpi_node_alloc(struct ieee80211vap *vap __unused,
1256 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1257 {
1258 	struct wpi_node *wn;
1259 
1260 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1261 
1262 	return &wn->ni;
1263 }
1264 
1265 /**
1266  * Called by net80211 when ever there is a change to 80211 state machine
1267  */
1268 static int
1269 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1270 {
1271 	struct wpi_vap *wvp = WPI_VAP(vap);
1272 	struct ieee80211com *ic = vap->iv_ic;
1273 	struct ifnet *ifp = ic->ic_ifp;
1274 	struct wpi_softc *sc = ifp->if_softc;
1275 	int error;
1276 
1277 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1278 		ieee80211_state_name[vap->iv_state],
1279 		ieee80211_state_name[nstate], sc->flags));
1280 
1281 	if (nstate == IEEE80211_S_AUTH) {
1282 		/* Delay the auth transition until we can update the firmware */
1283 		error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1284 		return (error != 0 ? error : EINPROGRESS);
1285 	}
1286 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1287 		/* set the association id first */
1288 		error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL);
1289 		return (error != 0 ? error : EINPROGRESS);
1290 	}
1291 	if (nstate == IEEE80211_S_RUN) {
1292 		/* RUN -> RUN transition; just restart the timers */
1293 		wpi_calib_timeout(sc);
1294 		/* XXX split out rate control timer */
1295 	}
1296 	return wvp->newstate(vap, nstate, arg);
1297 }
1298 
1299 /*
1300  * Grab exclusive access to NIC memory.
1301  */
1302 static void
1303 wpi_mem_lock(struct wpi_softc *sc)
1304 {
1305 	int ntries;
1306 	uint32_t tmp;
1307 
1308 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1309 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1310 
1311 	/* spin until we actually get the lock */
1312 	for (ntries = 0; ntries < 100; ntries++) {
1313 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1314 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1315 			break;
1316 		DELAY(10);
1317 	}
1318 	if (ntries == 100)
1319 		device_printf(sc->sc_dev, "could not lock memory\n");
1320 }
1321 
1322 /*
1323  * Release lock on NIC memory.
1324  */
1325 static void
1326 wpi_mem_unlock(struct wpi_softc *sc)
1327 {
1328 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1329 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1330 }
1331 
1332 static uint32_t
1333 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1334 {
1335 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1336 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1337 }
1338 
1339 static void
1340 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1341 {
1342 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1343 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1344 }
1345 
1346 static void
1347 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1348     const uint32_t *data, int wlen)
1349 {
1350 	for (; wlen > 0; wlen--, data++, addr+=4)
1351 		wpi_mem_write(sc, addr, *data);
1352 }
1353 
1354 /*
1355  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1356  * using the traditional bit-bang method. Data is read up until len bytes have
1357  * been obtained.
1358  */
1359 static uint16_t
1360 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1361 {
1362 	int ntries;
1363 	uint32_t val;
1364 	uint8_t *out = data;
1365 
1366 	wpi_mem_lock(sc);
1367 
1368 	for (; len > 0; len -= 2, addr++) {
1369 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1370 
1371 		for (ntries = 0; ntries < 10; ntries++) {
1372 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1373 				break;
1374 			DELAY(5);
1375 		}
1376 
1377 		if (ntries == 10) {
1378 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1379 			return ETIMEDOUT;
1380 		}
1381 
1382 		*out++= val >> 16;
1383 		if (len > 1)
1384 			*out ++= val >> 24;
1385 	}
1386 
1387 	wpi_mem_unlock(sc);
1388 
1389 	return 0;
1390 }
1391 
1392 /*
1393  * The firmware text and data segments are transferred to the NIC using DMA.
1394  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1395  * where to find it.  Once the NIC has copied the firmware into its internal
1396  * memory, we can free our local copy in the driver.
1397  */
1398 static int
1399 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1400 {
1401 	int error, ntries;
1402 
1403 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1404 
1405 	size /= sizeof(uint32_t);
1406 
1407 	wpi_mem_lock(sc);
1408 
1409 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1410 	    (const uint32_t *)fw, size);
1411 
1412 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1413 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1414 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1415 
1416 	/* run microcode */
1417 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1418 
1419 	/* wait while the adapter is busy copying the firmware */
1420 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1421 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1422 		DPRINTFN(WPI_DEBUG_HW,
1423 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1424 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1425 		if (status & WPI_TX_IDLE(6)) {
1426 			DPRINTFN(WPI_DEBUG_HW,
1427 			    ("Status Match! - ntries = %d\n", ntries));
1428 			break;
1429 		}
1430 		DELAY(10);
1431 	}
1432 	if (ntries == 1000) {
1433 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1434 		error = ETIMEDOUT;
1435 	}
1436 
1437 	/* start the microcode executing */
1438 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1439 
1440 	wpi_mem_unlock(sc);
1441 
1442 	return (error);
1443 }
1444 
1445 static void
1446 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1447 	struct wpi_rx_data *data)
1448 {
1449 	struct ifnet *ifp = sc->sc_ifp;
1450 	struct ieee80211com *ic = ifp->if_l2com;
1451 	struct wpi_rx_ring *ring = &sc->rxq;
1452 	struct wpi_rx_stat *stat;
1453 	struct wpi_rx_head *head;
1454 	struct wpi_rx_tail *tail;
1455 	struct ieee80211_node *ni;
1456 	struct mbuf *m, *mnew;
1457 	bus_addr_t paddr;
1458 	int error;
1459 
1460 	stat = (struct wpi_rx_stat *)(desc + 1);
1461 
1462 	if (stat->len > WPI_STAT_MAXLEN) {
1463 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1464 		ifp->if_ierrors++;
1465 		return;
1466 	}
1467 
1468 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1469 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1470 
1471 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1472 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1473 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1474 	    (uintmax_t)le64toh(tail->tstamp)));
1475 
1476 	/* XXX don't need mbuf, just dma buffer */
1477 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1478 	if (mnew == NULL) {
1479 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1480 		    __func__));
1481 		ifp->if_ierrors++;
1482 		return;
1483 	}
1484 	error = bus_dmamap_load(ring->data_dmat, data->map,
1485 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1486 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1487 	if (error != 0 && error != EFBIG) {
1488 		device_printf(sc->sc_dev,
1489 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1490 		m_freem(mnew);
1491 		ifp->if_ierrors++;
1492 		return;
1493 	}
1494 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1495 
1496 	/* finalize mbuf and swap in new one */
1497 	m = data->m;
1498 	m->m_pkthdr.rcvif = ifp;
1499 	m->m_data = (caddr_t)(head + 1);
1500 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1501 
1502 	data->m = mnew;
1503 	/* update Rx descriptor */
1504 	ring->desc[ring->cur] = htole32(paddr);
1505 
1506 	if (bpf_peers_present(ifp->if_bpf)) {
1507 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1508 
1509 		tap->wr_flags = 0;
1510 		tap->wr_chan_freq =
1511 			htole16(ic->ic_channels[head->chan].ic_freq);
1512 		tap->wr_chan_flags =
1513 			htole16(ic->ic_channels[head->chan].ic_flags);
1514 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1515 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1516 		tap->wr_tsft = tail->tstamp;
1517 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1518 		switch (head->rate) {
1519 		/* CCK rates */
1520 		case  10: tap->wr_rate =   2; break;
1521 		case  20: tap->wr_rate =   4; break;
1522 		case  55: tap->wr_rate =  11; break;
1523 		case 110: tap->wr_rate =  22; break;
1524 		/* OFDM rates */
1525 		case 0xd: tap->wr_rate =  12; break;
1526 		case 0xf: tap->wr_rate =  18; break;
1527 		case 0x5: tap->wr_rate =  24; break;
1528 		case 0x7: tap->wr_rate =  36; break;
1529 		case 0x9: tap->wr_rate =  48; break;
1530 		case 0xb: tap->wr_rate =  72; break;
1531 		case 0x1: tap->wr_rate =  96; break;
1532 		case 0x3: tap->wr_rate = 108; break;
1533 		/* unknown rate: should not happen */
1534 		default:  tap->wr_rate =   0;
1535 		}
1536 		if (le16toh(head->flags) & 0x4)
1537 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1538 
1539 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1540 	}
1541 
1542 	WPI_UNLOCK(sc);
1543 
1544 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1545 	if (ni != NULL) {
1546 		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1547 		ieee80211_free_node(ni);
1548 	} else
1549 		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1550 
1551 	WPI_LOCK(sc);
1552 }
1553 
1554 static void
1555 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1556 {
1557 	struct ifnet *ifp = sc->sc_ifp;
1558 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1559 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1560 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1561 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1562 
1563 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1564 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1565 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1566 	    le32toh(stat->status)));
1567 
1568 	/*
1569 	 * Update rate control statistics for the node.
1570 	 * XXX we should not count mgmt frames since they're always sent at
1571 	 * the lowest available bit-rate.
1572 	 * XXX frames w/o ACK shouldn't be used either
1573 	 */
1574 	wn->amn.amn_txcnt++;
1575 	if (stat->ntries > 0) {
1576 		DPRINTFN(3, ("%d retries\n", stat->ntries));
1577 		wn->amn.amn_retrycnt++;
1578 	}
1579 
1580 	/* XXX oerrors should only count errors !maxtries */
1581 	if ((le32toh(stat->status) & 0xff) != 1)
1582 		ifp->if_oerrors++;
1583 	else
1584 		ifp->if_opackets++;
1585 
1586 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1587 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1588 	/* XXX handle M_TXCB? */
1589 	m_freem(txdata->m);
1590 	txdata->m = NULL;
1591 	ieee80211_free_node(txdata->ni);
1592 	txdata->ni = NULL;
1593 
1594 	ring->queued--;
1595 
1596 	sc->sc_tx_timer = 0;
1597 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1598 	wpi_start_locked(ifp);
1599 }
1600 
1601 static void
1602 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1603 {
1604 	struct wpi_tx_ring *ring = &sc->cmdq;
1605 	struct wpi_tx_data *data;
1606 
1607 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1608 				 "type=%s len=%d\n", desc->qid, desc->idx,
1609 				 desc->flags, wpi_cmd_str(desc->type),
1610 				 le32toh(desc->len)));
1611 
1612 	if ((desc->qid & 7) != 4)
1613 		return;	/* not a command ack */
1614 
1615 	data = &ring->data[desc->idx];
1616 
1617 	/* if the command was mapped in a mbuf, free it */
1618 	if (data->m != NULL) {
1619 		bus_dmamap_unload(ring->data_dmat, data->map);
1620 		m_freem(data->m);
1621 		data->m = NULL;
1622 	}
1623 
1624 	sc->flags &= ~WPI_FLAG_BUSY;
1625 	wakeup(&ring->cmd[desc->idx]);
1626 }
1627 
1628 static void
1629 wpi_bmiss(void *arg, int npending)
1630 {
1631 	struct wpi_softc *sc = arg;
1632 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1633 
1634 	ieee80211_beacon_miss(ic);
1635 }
1636 
1637 static void
1638 wpi_notif_intr(struct wpi_softc *sc)
1639 {
1640 	struct ifnet *ifp = sc->sc_ifp;
1641 	struct ieee80211com *ic = ifp->if_l2com;
1642 	struct wpi_rx_desc *desc;
1643 	struct wpi_rx_data *data;
1644 	uint32_t hw;
1645 
1646 	hw = le32toh(sc->shared->next);
1647 	while (sc->rxq.cur != hw) {
1648 		data = &sc->rxq.data[sc->rxq.cur];
1649 		desc = (void *)data->m->m_ext.ext_buf;
1650 
1651 		DPRINTFN(WPI_DEBUG_NOTIFY,
1652 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1653 			  desc->qid,
1654 			  desc->idx,
1655 			  desc->flags,
1656 			  desc->type,
1657 			  le32toh(desc->len)));
1658 
1659 		if (!(desc->qid & 0x80))	/* reply to a command */
1660 			wpi_cmd_intr(sc, desc);
1661 
1662 		switch (desc->type) {
1663 		case WPI_RX_DONE:
1664 			/* a 802.11 frame was received */
1665 			wpi_rx_intr(sc, desc, data);
1666 			break;
1667 
1668 		case WPI_TX_DONE:
1669 			/* a 802.11 frame has been transmitted */
1670 			wpi_tx_intr(sc, desc);
1671 			break;
1672 
1673 		case WPI_UC_READY:
1674 		{
1675 			struct wpi_ucode_info *uc =
1676 				(struct wpi_ucode_info *)(desc + 1);
1677 
1678 			/* the microcontroller is ready */
1679 			DPRINTF(("microcode alive notification version %x "
1680 				"alive %x\n", le32toh(uc->version),
1681 				le32toh(uc->valid)));
1682 
1683 			if (le32toh(uc->valid) != 1) {
1684 				device_printf(sc->sc_dev,
1685 				    "microcontroller initialization failed\n");
1686 				wpi_stop_locked(sc);
1687 			}
1688 			break;
1689 		}
1690 		case WPI_STATE_CHANGED:
1691 		{
1692 			uint32_t *status = (uint32_t *)(desc + 1);
1693 
1694 			/* enabled/disabled notification */
1695 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1696 
1697 			if (le32toh(*status) & 1) {
1698 				device_printf(sc->sc_dev,
1699 				    "Radio transmitter is switched off\n");
1700 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1701 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1702 				/* Disable firmware commands */
1703 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1704 			}
1705 			break;
1706 		}
1707 		case WPI_START_SCAN:
1708 		{
1709 #ifdef WPI_DEBUG
1710 			struct wpi_start_scan *scan =
1711 				(struct wpi_start_scan *)(desc + 1);
1712 #endif
1713 
1714 			DPRINTFN(WPI_DEBUG_SCANNING,
1715 				 ("scanning channel %d status %x\n",
1716 			    scan->chan, le32toh(scan->status)));
1717 			break;
1718 		}
1719 		case WPI_STOP_SCAN:
1720 		{
1721 #ifdef WPI_DEBUG
1722 			struct wpi_stop_scan *scan =
1723 				(struct wpi_stop_scan *)(desc + 1);
1724 #endif
1725 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1726 
1727 			DPRINTFN(WPI_DEBUG_SCANNING,
1728 			    ("scan finished nchan=%d status=%d chan=%d\n",
1729 			     scan->nchan, scan->status, scan->chan));
1730 
1731 			sc->sc_scan_timer = 0;
1732 			ieee80211_scan_next(vap);
1733 			break;
1734 		}
1735 		case WPI_MISSED_BEACON:
1736 		{
1737 			struct wpi_missed_beacon *beacon =
1738 				(struct wpi_missed_beacon *)(desc + 1);
1739 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1740 
1741 			if (le32toh(beacon->consecutive) >=
1742 			    vap->iv_bmissthreshold) {
1743 				DPRINTF(("Beacon miss: %u >= %u\n",
1744 					 le32toh(beacon->consecutive),
1745 					 vap->iv_bmissthreshold));
1746 				taskqueue_enqueue(taskqueue_swi,
1747 				    &sc->sc_bmiss_task);
1748 			}
1749 			break;
1750 		}
1751 		}
1752 
1753 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1754 	}
1755 
1756 	/* tell the firmware what we have processed */
1757 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1758 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1759 }
1760 
1761 static void
1762 wpi_intr(void *arg)
1763 {
1764 	struct wpi_softc *sc = arg;
1765 	uint32_t r;
1766 
1767 	WPI_LOCK(sc);
1768 
1769 	r = WPI_READ(sc, WPI_INTR);
1770 	if (r == 0 || r == 0xffffffff) {
1771 		WPI_UNLOCK(sc);
1772 		return;
1773 	}
1774 
1775 	/* disable interrupts */
1776 	WPI_WRITE(sc, WPI_MASK, 0);
1777 	/* ack interrupts */
1778 	WPI_WRITE(sc, WPI_INTR, r);
1779 
1780 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1781 		device_printf(sc->sc_dev, "fatal firmware error\n");
1782 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1783 				"(Hardware Error)"));
1784 		wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1785 		sc->flags &= ~WPI_FLAG_BUSY;
1786 		WPI_UNLOCK(sc);
1787 		return;
1788 	}
1789 
1790 	if (r & WPI_RX_INTR)
1791 		wpi_notif_intr(sc);
1792 
1793 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1794 		wakeup(sc);
1795 
1796 	/* re-enable interrupts */
1797 	if (sc->sc_ifp->if_flags & IFF_UP)
1798 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1799 
1800 	WPI_UNLOCK(sc);
1801 }
1802 
1803 static uint8_t
1804 wpi_plcp_signal(int rate)
1805 {
1806 	switch (rate) {
1807 	/* CCK rates (returned values are device-dependent) */
1808 	case 2:		return 10;
1809 	case 4:		return 20;
1810 	case 11:	return 55;
1811 	case 22:	return 110;
1812 
1813 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1814 	/* R1-R4 (ral/ural is R4-R1) */
1815 	case 12:	return 0xd;
1816 	case 18:	return 0xf;
1817 	case 24:	return 0x5;
1818 	case 36:	return 0x7;
1819 	case 48:	return 0x9;
1820 	case 72:	return 0xb;
1821 	case 96:	return 0x1;
1822 	case 108:	return 0x3;
1823 
1824 	/* unsupported rates (should not get there) */
1825 	default:	return 0;
1826 	}
1827 }
1828 
1829 /* quickly determine if a given rate is CCK or OFDM */
1830 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1831 
1832 /*
1833  * Construct the data packet for a transmit buffer and acutally put
1834  * the buffer onto the transmit ring, kicking the card to process the
1835  * the buffer.
1836  */
1837 static int
1838 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1839 	int ac)
1840 {
1841 	struct ieee80211vap *vap = ni->ni_vap;
1842 	struct ifnet *ifp = sc->sc_ifp;
1843 	struct ieee80211com *ic = ifp->if_l2com;
1844 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1845 	struct wpi_tx_ring *ring = &sc->txq[ac];
1846 	struct wpi_tx_desc *desc;
1847 	struct wpi_tx_data *data;
1848 	struct wpi_tx_cmd *cmd;
1849 	struct wpi_cmd_data *tx;
1850 	struct ieee80211_frame *wh;
1851 	const struct ieee80211_txparam *tp;
1852 	struct ieee80211_key *k;
1853 	struct mbuf *mnew;
1854 	int i, error, nsegs, rate, hdrlen, ismcast;
1855 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1856 
1857 	desc = &ring->desc[ring->cur];
1858 	data = &ring->data[ring->cur];
1859 
1860 	wh = mtod(m0, struct ieee80211_frame *);
1861 
1862 	hdrlen = ieee80211_hdrsize(wh);
1863 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1864 
1865 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1866 		k = ieee80211_crypto_encap(ni, m0);
1867 		if (k == NULL) {
1868 			m_freem(m0);
1869 			return ENOBUFS;
1870 		}
1871 		/* packet header may have moved, reset our local pointer */
1872 		wh = mtod(m0, struct ieee80211_frame *);
1873 	}
1874 
1875 	cmd = &ring->cmd[ring->cur];
1876 	cmd->code = WPI_CMD_TX_DATA;
1877 	cmd->flags = 0;
1878 	cmd->qid = ring->qid;
1879 	cmd->idx = ring->cur;
1880 
1881 	tx = (struct wpi_cmd_data *)cmd->data;
1882 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1883 	tx->timeout = htole16(0);
1884 	tx->ofdm_mask = 0xff;
1885 	tx->cck_mask = 0x0f;
1886 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1887 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1888 	tx->len = htole16(m0->m_pkthdr.len);
1889 
1890 	if (!ismcast) {
1891 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1892 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1893 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1894 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1895 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1896 			tx->rts_ntries = 7;
1897 		}
1898 	}
1899 	/* pick a rate */
1900 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1901 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1902 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1903 		/* tell h/w to set timestamp in probe responses */
1904 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1905 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1906 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1907 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1908 			tx->timeout = htole16(3);
1909 		else
1910 			tx->timeout = htole16(2);
1911 		rate = tp->mgmtrate;
1912 	} else if (ismcast) {
1913 		rate = tp->mcastrate;
1914 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1915 		rate = tp->ucastrate;
1916 	} else {
1917 		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1918 		rate = ni->ni_txrate;
1919 	}
1920 	tx->rate = wpi_plcp_signal(rate);
1921 
1922 	/* be very persistant at sending frames out */
1923 #if 0
1924 	tx->data_ntries = tp->maxretry;
1925 #else
1926 	tx->data_ntries = 15;		/* XXX way too high */
1927 #endif
1928 
1929 	if (bpf_peers_present(ifp->if_bpf)) {
1930 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1931 		tap->wt_flags = 0;
1932 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1933 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1934 		tap->wt_rate = rate;
1935 		tap->wt_hwqueue = ac;
1936 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1937 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1938 
1939 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1940 	}
1941 
1942 	/* save and trim IEEE802.11 header */
1943 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1944 	m_adj(m0, hdrlen);
1945 
1946 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1947 	    &nsegs, BUS_DMA_NOWAIT);
1948 	if (error != 0 && error != EFBIG) {
1949 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1950 		    error);
1951 		m_freem(m0);
1952 		return error;
1953 	}
1954 	if (error != 0) {
1955 		/* XXX use m_collapse */
1956 		mnew = m_defrag(m0, M_DONTWAIT);
1957 		if (mnew == NULL) {
1958 			device_printf(sc->sc_dev,
1959 			    "could not defragment mbuf\n");
1960 			m_freem(m0);
1961 			return ENOBUFS;
1962 		}
1963 		m0 = mnew;
1964 
1965 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1966 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1967 		if (error != 0) {
1968 			device_printf(sc->sc_dev,
1969 			    "could not map mbuf (error %d)\n", error);
1970 			m_freem(m0);
1971 			return error;
1972 		}
1973 	}
1974 
1975 	data->m = m0;
1976 	data->ni = ni;
1977 
1978 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1979 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1980 
1981 	/* first scatter/gather segment is used by the tx data command */
1982 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1983 	    (1 + nsegs) << 24);
1984 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1985 	    ring->cur * sizeof (struct wpi_tx_cmd));
1986 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1987 	for (i = 1; i <= nsegs; i++) {
1988 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1989 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1990 	}
1991 
1992 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1993 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1994 	    BUS_DMASYNC_PREWRITE);
1995 
1996 	ring->queued++;
1997 
1998 	/* kick ring */
1999 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2000 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2001 
2002 	return 0;
2003 }
2004 
2005 /**
2006  * Process data waiting to be sent on the IFNET output queue
2007  */
2008 static void
2009 wpi_start(struct ifnet *ifp)
2010 {
2011 	struct wpi_softc *sc = ifp->if_softc;
2012 
2013 	WPI_LOCK(sc);
2014 	wpi_start_locked(ifp);
2015 	WPI_UNLOCK(sc);
2016 }
2017 
2018 static void
2019 wpi_start_locked(struct ifnet *ifp)
2020 {
2021 	struct wpi_softc *sc = ifp->if_softc;
2022 	struct ieee80211_node *ni;
2023 	struct mbuf *m;
2024 	int ac;
2025 
2026 	WPI_LOCK_ASSERT(sc);
2027 
2028 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2029 		return;
2030 
2031 	for (;;) {
2032 		IFQ_POLL(&ifp->if_snd, m);
2033 		if (m == NULL)
2034 			break;
2035 		/* no QoS encapsulation for EAPOL frames */
2036 		ac = M_WME_GETAC(m);
2037 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2038 			/* there is no place left in this ring */
2039 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2040 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2041 			break;
2042 		}
2043 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2044 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2045 		m = ieee80211_encap(ni, m);
2046 		if (m == NULL) {
2047 			ieee80211_free_node(ni);
2048 			ifp->if_oerrors++;
2049 			continue;
2050 		}
2051 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2052 			ieee80211_free_node(ni);
2053 			ifp->if_oerrors++;
2054 			break;
2055 		}
2056 		sc->sc_tx_timer = 5;
2057 	}
2058 }
2059 
2060 static int
2061 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2062 	const struct ieee80211_bpf_params *params)
2063 {
2064 	struct ieee80211com *ic = ni->ni_ic;
2065 	struct ifnet *ifp = ic->ic_ifp;
2066 	struct wpi_softc *sc = ifp->if_softc;
2067 
2068 	/* prevent management frames from being sent if we're not ready */
2069 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2070 		m_freem(m);
2071 		ieee80211_free_node(ni);
2072 		return ENETDOWN;
2073 	}
2074 	WPI_LOCK(sc);
2075 
2076 	/* management frames go into ring 0 */
2077 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2078 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2079 		m_freem(m);
2080 		WPI_UNLOCK(sc);
2081 		ieee80211_free_node(ni);
2082 		return ENOBUFS;		/* XXX */
2083 	}
2084 
2085 	ifp->if_opackets++;
2086 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2087 		goto bad;
2088 	sc->sc_tx_timer = 5;
2089 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2090 
2091 	WPI_UNLOCK(sc);
2092 	return 0;
2093 bad:
2094 	ifp->if_oerrors++;
2095 	WPI_UNLOCK(sc);
2096 	ieee80211_free_node(ni);
2097 	return EIO;		/* XXX */
2098 }
2099 
2100 static int
2101 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2102 {
2103 	struct wpi_softc *sc = ifp->if_softc;
2104 	struct ieee80211com *ic = ifp->if_l2com;
2105 	struct ifreq *ifr = (struct ifreq *) data;
2106 	int error = 0, startall = 0;
2107 
2108 	switch (cmd) {
2109 	case SIOCSIFFLAGS:
2110 		WPI_LOCK(sc);
2111 		if ((ifp->if_flags & IFF_UP)) {
2112 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2113 				wpi_init_locked(sc, 0);
2114 				startall = 1;
2115 			}
2116 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2117 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2118 			wpi_stop_locked(sc);
2119 		WPI_UNLOCK(sc);
2120 		if (startall)
2121 			ieee80211_start_all(ic);
2122 		break;
2123 	case SIOCGIFMEDIA:
2124 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2125 		break;
2126 	case SIOCGIFADDR:
2127 		error = ether_ioctl(ifp, cmd, data);
2128 		break;
2129 	default:
2130 		error = EINVAL;
2131 		break;
2132 	}
2133 	return error;
2134 }
2135 
2136 /*
2137  * Extract various information from EEPROM.
2138  */
2139 static void
2140 wpi_read_eeprom(struct wpi_softc *sc)
2141 {
2142 	struct ifnet *ifp = sc->sc_ifp;
2143 	struct ieee80211com *ic = ifp->if_l2com;
2144 	int i;
2145 
2146 	/* read the hardware capabilities, revision and SKU type */
2147 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2148 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2149 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2150 
2151 	/* read the regulatory domain */
2152 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2153 
2154 	/* read in the hw MAC address */
2155 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2156 
2157 	/* read the list of authorized channels */
2158 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2159 		wpi_read_eeprom_channels(sc,i);
2160 
2161 	/* read the power level calibration info for each group */
2162 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2163 		wpi_read_eeprom_group(sc,i);
2164 }
2165 
2166 /*
2167  * Send a command to the firmware.
2168  */
2169 static int
2170 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2171 {
2172 	struct wpi_tx_ring *ring = &sc->cmdq;
2173 	struct wpi_tx_desc *desc;
2174 	struct wpi_tx_cmd *cmd;
2175 
2176 #ifdef WPI_DEBUG
2177 	if (!async) {
2178 		WPI_LOCK_ASSERT(sc);
2179 	}
2180 #endif
2181 
2182 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2183 		    async));
2184 
2185 	if (sc->flags & WPI_FLAG_BUSY) {
2186 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2187 		    __func__, code);
2188 		return EAGAIN;
2189 	}
2190 	sc->flags|= WPI_FLAG_BUSY;
2191 
2192 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2193 	    code, size));
2194 
2195 	desc = &ring->desc[ring->cur];
2196 	cmd = &ring->cmd[ring->cur];
2197 
2198 	cmd->code = code;
2199 	cmd->flags = 0;
2200 	cmd->qid = ring->qid;
2201 	cmd->idx = ring->cur;
2202 	memcpy(cmd->data, buf, size);
2203 
2204 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2205 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2206 		ring->cur * sizeof (struct wpi_tx_cmd));
2207 	desc->segs[0].len  = htole32(4 + size);
2208 
2209 	/* kick cmd ring */
2210 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2211 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2212 
2213 	if (async) {
2214 		sc->flags &= ~ WPI_FLAG_BUSY;
2215 		return 0;
2216 	}
2217 
2218 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2219 }
2220 
2221 static int
2222 wpi_wme_update(struct ieee80211com *ic)
2223 {
2224 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2225 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2226 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2227 	const struct wmeParams *wmep;
2228 	struct wpi_wme_setup wme;
2229 	int ac;
2230 
2231 	/* don't override default WME values if WME is not actually enabled */
2232 	if (!(ic->ic_flags & IEEE80211_F_WME))
2233 		return 0;
2234 
2235 	wme.flags = 0;
2236 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2237 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2238 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2239 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2240 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2241 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2242 
2243 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2244 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2245 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2246 	}
2247 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2248 #undef WPI_USEC
2249 #undef WPI_EXP2
2250 }
2251 
2252 /*
2253  * Configure h/w multi-rate retries.
2254  */
2255 static int
2256 wpi_mrr_setup(struct wpi_softc *sc)
2257 {
2258 	struct ifnet *ifp = sc->sc_ifp;
2259 	struct ieee80211com *ic = ifp->if_l2com;
2260 	struct wpi_mrr_setup mrr;
2261 	int i, error;
2262 
2263 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2264 
2265 	/* CCK rates (not used with 802.11a) */
2266 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2267 		mrr.rates[i].flags = 0;
2268 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2269 		/* fallback to the immediate lower CCK rate (if any) */
2270 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2271 		/* try one time at this rate before falling back to "next" */
2272 		mrr.rates[i].ntries = 1;
2273 	}
2274 
2275 	/* OFDM rates (not used with 802.11b) */
2276 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2277 		mrr.rates[i].flags = 0;
2278 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2279 		/* fallback to the immediate lower OFDM rate (if any) */
2280 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2281 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2282 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2283 			WPI_OFDM6 : WPI_CCK2) :
2284 		    i - 1;
2285 		/* try one time at this rate before falling back to "next" */
2286 		mrr.rates[i].ntries = 1;
2287 	}
2288 
2289 	/* setup MRR for control frames */
2290 	mrr.which = htole32(WPI_MRR_CTL);
2291 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2292 	if (error != 0) {
2293 		device_printf(sc->sc_dev,
2294 		    "could not setup MRR for control frames\n");
2295 		return error;
2296 	}
2297 
2298 	/* setup MRR for data frames */
2299 	mrr.which = htole32(WPI_MRR_DATA);
2300 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2301 	if (error != 0) {
2302 		device_printf(sc->sc_dev,
2303 		    "could not setup MRR for data frames\n");
2304 		return error;
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 static void
2311 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2312 {
2313 	struct wpi_cmd_led led;
2314 
2315 	led.which = which;
2316 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2317 	led.off = off;
2318 	led.on = on;
2319 
2320 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2321 }
2322 
2323 static void
2324 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2325 {
2326 	struct wpi_cmd_tsf tsf;
2327 	uint64_t val, mod;
2328 
2329 	memset(&tsf, 0, sizeof tsf);
2330 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2331 	tsf.bintval = htole16(ni->ni_intval);
2332 	tsf.lintval = htole16(10);
2333 
2334 	/* compute remaining time until next beacon */
2335 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2336 	mod = le64toh(tsf.tstamp) % val;
2337 	tsf.binitval = htole32((uint32_t)(val - mod));
2338 
2339 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2340 		device_printf(sc->sc_dev, "could not enable TSF\n");
2341 }
2342 
2343 #if 0
2344 /*
2345  * Build a beacon frame that the firmware will broadcast periodically in
2346  * IBSS or HostAP modes.
2347  */
2348 static int
2349 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2350 {
2351 	struct ifnet *ifp = sc->sc_ifp;
2352 	struct ieee80211com *ic = ifp->if_l2com;
2353 	struct wpi_tx_ring *ring = &sc->cmdq;
2354 	struct wpi_tx_desc *desc;
2355 	struct wpi_tx_data *data;
2356 	struct wpi_tx_cmd *cmd;
2357 	struct wpi_cmd_beacon *bcn;
2358 	struct ieee80211_beacon_offsets bo;
2359 	struct mbuf *m0;
2360 	bus_addr_t physaddr;
2361 	int error;
2362 
2363 	desc = &ring->desc[ring->cur];
2364 	data = &ring->data[ring->cur];
2365 
2366 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2367 	if (m0 == NULL) {
2368 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2369 		return ENOMEM;
2370 	}
2371 
2372 	cmd = &ring->cmd[ring->cur];
2373 	cmd->code = WPI_CMD_SET_BEACON;
2374 	cmd->flags = 0;
2375 	cmd->qid = ring->qid;
2376 	cmd->idx = ring->cur;
2377 
2378 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2379 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2380 	bcn->id = WPI_ID_BROADCAST;
2381 	bcn->ofdm_mask = 0xff;
2382 	bcn->cck_mask = 0x0f;
2383 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2384 	bcn->len = htole16(m0->m_pkthdr.len);
2385 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2386 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2387 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2388 
2389 	/* save and trim IEEE802.11 header */
2390 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2391 	m_adj(m0, sizeof (struct ieee80211_frame));
2392 
2393 	/* assume beacon frame is contiguous */
2394 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2395 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2396 	if (error != 0) {
2397 		device_printf(sc->sc_dev, "could not map beacon\n");
2398 		m_freem(m0);
2399 		return error;
2400 	}
2401 
2402 	data->m = m0;
2403 
2404 	/* first scatter/gather segment is used by the beacon command */
2405 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2406 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2407 		ring->cur * sizeof (struct wpi_tx_cmd));
2408 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2409 	desc->segs[1].addr = htole32(physaddr);
2410 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2411 
2412 	/* kick cmd ring */
2413 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2414 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2415 
2416 	return 0;
2417 }
2418 #endif
2419 
2420 static int
2421 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2422 {
2423 	struct ieee80211com *ic = vap->iv_ic;
2424 	struct ieee80211_node *ni = vap->iv_bss;
2425 	struct wpi_node_info node;
2426 	int error;
2427 
2428 
2429 	/* update adapter's configuration */
2430 	sc->config.associd = 0;
2431 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2432 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2433 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2434 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2435 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2436 		    WPI_CONFIG_24GHZ);
2437 	}
2438 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2439 		sc->config.cck_mask  = 0;
2440 		sc->config.ofdm_mask = 0x15;
2441 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2442 		sc->config.cck_mask  = 0x03;
2443 		sc->config.ofdm_mask = 0;
2444 	} else {
2445 		/* XXX assume 802.11b/g */
2446 		sc->config.cck_mask  = 0x0f;
2447 		sc->config.ofdm_mask = 0x15;
2448 	}
2449 
2450 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2451 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2452 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2453 		sizeof (struct wpi_config), 1);
2454 	if (error != 0) {
2455 		device_printf(sc->sc_dev, "could not configure\n");
2456 		return error;
2457 	}
2458 
2459 	/* configuration has changed, set Tx power accordingly */
2460 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2461 		device_printf(sc->sc_dev, "could not set Tx power\n");
2462 		return error;
2463 	}
2464 
2465 	/* add default node */
2466 	memset(&node, 0, sizeof node);
2467 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2468 	node.id = WPI_ID_BSS;
2469 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2470 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2471 	node.action = htole32(WPI_ACTION_SET_RATE);
2472 	node.antenna = WPI_ANTENNA_BOTH;
2473 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2474 	if (error != 0)
2475 		device_printf(sc->sc_dev, "could not add BSS node\n");
2476 
2477 	return (error);
2478 }
2479 
2480 static int
2481 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2482 {
2483 	struct ieee80211com *ic = vap->iv_ic;
2484 	struct ieee80211_node *ni = vap->iv_bss;
2485 	int error;
2486 
2487 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2488 		/* link LED blinks while monitoring */
2489 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2490 		return 0;
2491 	}
2492 
2493 	wpi_enable_tsf(sc, ni);
2494 
2495 	/* update adapter's configuration */
2496 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2497 	/* short preamble/slot time are negotiated when associating */
2498 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2499 	    WPI_CONFIG_SHSLOT);
2500 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2501 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2502 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2503 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2504 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2505 
2506 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2507 
2508 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2509 		    sc->config.flags));
2510 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2511 		    wpi_config), 1);
2512 	if (error != 0) {
2513 		device_printf(sc->sc_dev, "could not update configuration\n");
2514 		return error;
2515 	}
2516 
2517 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2518 	if (error != 0) {
2519 		device_printf(sc->sc_dev, "could set txpower\n");
2520 		return error;
2521 	}
2522 
2523 	/* link LED always on while associated */
2524 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2525 
2526 	/* start automatic rate control timer */
2527 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2528 
2529 	return (error);
2530 }
2531 
2532 /*
2533  * Send a scan request to the firmware.  Since this command is huge, we map it
2534  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2535  * much of this code is similar to that in wpi_cmd but because we must manually
2536  * construct the probe & channels, we duplicate what's needed here. XXX In the
2537  * future, this function should be modified to use wpi_cmd to help cleanup the
2538  * code base.
2539  */
2540 static int
2541 wpi_scan(struct wpi_softc *sc)
2542 {
2543 	struct ifnet *ifp = sc->sc_ifp;
2544 	struct ieee80211com *ic = ifp->if_l2com;
2545 	struct ieee80211_scan_state *ss = ic->ic_scan;
2546 	struct wpi_tx_ring *ring = &sc->cmdq;
2547 	struct wpi_tx_desc *desc;
2548 	struct wpi_tx_data *data;
2549 	struct wpi_tx_cmd *cmd;
2550 	struct wpi_scan_hdr *hdr;
2551 	struct wpi_scan_chan *chan;
2552 	struct ieee80211_frame *wh;
2553 	struct ieee80211_rateset *rs;
2554 	struct ieee80211_channel *c;
2555 	enum ieee80211_phymode mode;
2556 	uint8_t *frm;
2557 	int nrates, pktlen, error, i, nssid;
2558 	bus_addr_t physaddr;
2559 
2560 	desc = &ring->desc[ring->cur];
2561 	data = &ring->data[ring->cur];
2562 
2563 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2564 	if (data->m == NULL) {
2565 		device_printf(sc->sc_dev,
2566 		    "could not allocate mbuf for scan command\n");
2567 		return ENOMEM;
2568 	}
2569 
2570 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2571 	cmd->code = WPI_CMD_SCAN;
2572 	cmd->flags = 0;
2573 	cmd->qid = ring->qid;
2574 	cmd->idx = ring->cur;
2575 
2576 	hdr = (struct wpi_scan_hdr *)cmd->data;
2577 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2578 
2579 	/*
2580 	 * Move to the next channel if no packets are received within 5 msecs
2581 	 * after sending the probe request (this helps to reduce the duration
2582 	 * of active scans).
2583 	 */
2584 	hdr->quiet = htole16(5);
2585 	hdr->threshold = htole16(1);
2586 
2587 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2588 		/* send probe requests at 6Mbps */
2589 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2590 
2591 		/* Enable crc checking */
2592 		hdr->promotion = htole16(1);
2593 	} else {
2594 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2595 		/* send probe requests at 1Mbps */
2596 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2597 	}
2598 	hdr->tx.id = WPI_ID_BROADCAST;
2599 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2600 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2601 
2602 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2603 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2604 	for (i = 0; i < nssid; i++) {
2605 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2606 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2607 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2608 		    hdr->scan_essids[i].esslen);
2609 #ifdef WPI_DEBUG
2610 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2611 			printf("Scanning Essid: ");
2612 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2613 			    hdr->scan_essids[i].esslen);
2614 			printf("\n");
2615 		}
2616 #endif
2617 	}
2618 
2619 	/*
2620 	 * Build a probe request frame.  Most of the following code is a
2621 	 * copy & paste of what is done in net80211.
2622 	 */
2623 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2624 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2625 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2626 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2627 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2628 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2629 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2630 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2631 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2632 
2633 	frm = (uint8_t *)(wh + 1);
2634 
2635 	/* add essid IE, the hardware will fill this in for us */
2636 	*frm++ = IEEE80211_ELEMID_SSID;
2637 	*frm++ = 0;
2638 
2639 	mode = ieee80211_chan2mode(ic->ic_curchan);
2640 	rs = &ic->ic_sup_rates[mode];
2641 
2642 	/* add supported rates IE */
2643 	*frm++ = IEEE80211_ELEMID_RATES;
2644 	nrates = rs->rs_nrates;
2645 	if (nrates > IEEE80211_RATE_SIZE)
2646 		nrates = IEEE80211_RATE_SIZE;
2647 	*frm++ = nrates;
2648 	memcpy(frm, rs->rs_rates, nrates);
2649 	frm += nrates;
2650 
2651 	/* add supported xrates IE */
2652 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2653 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2654 		*frm++ = IEEE80211_ELEMID_XRATES;
2655 		*frm++ = nrates;
2656 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2657 		frm += nrates;
2658 	}
2659 
2660 	/* setup length of probe request */
2661 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2662 
2663 	/*
2664 	 * Construct information about the channel that we
2665 	 * want to scan. The firmware expects this to be directly
2666 	 * after the scan probe request
2667 	 */
2668 	c = ic->ic_curchan;
2669 	chan = (struct wpi_scan_chan *)frm;
2670 	chan->chan = ieee80211_chan2ieee(ic, c);
2671 	chan->flags = 0;
2672 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2673 		chan->flags |= WPI_CHAN_ACTIVE;
2674 		if (nssid != 0)
2675 			chan->flags |= WPI_CHAN_DIRECT;
2676 	}
2677 	chan->gain_dsp = 0x6e; /* Default level */
2678 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2679 		chan->active = htole16(10);
2680 		chan->passive = htole16(ss->ss_maxdwell);
2681 		chan->gain_radio = 0x3b;
2682 	} else {
2683 		chan->active = htole16(20);
2684 		chan->passive = htole16(ss->ss_maxdwell);
2685 		chan->gain_radio = 0x28;
2686 	}
2687 
2688 	DPRINTFN(WPI_DEBUG_SCANNING,
2689 	    ("Scanning %u Passive: %d\n",
2690 	     chan->chan,
2691 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2692 
2693 	hdr->nchan++;
2694 	chan++;
2695 
2696 	frm += sizeof (struct wpi_scan_chan);
2697 #if 0
2698 	// XXX All Channels....
2699 	for (c  = &ic->ic_channels[1];
2700 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2701 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2702 			continue;
2703 
2704 		chan->chan = ieee80211_chan2ieee(ic, c);
2705 		chan->flags = 0;
2706 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2707 		    chan->flags |= WPI_CHAN_ACTIVE;
2708 		    if (ic->ic_des_ssid[0].len != 0)
2709 			chan->flags |= WPI_CHAN_DIRECT;
2710 		}
2711 		chan->gain_dsp = 0x6e; /* Default level */
2712 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2713 			chan->active = htole16(10);
2714 			chan->passive = htole16(110);
2715 			chan->gain_radio = 0x3b;
2716 		} else {
2717 			chan->active = htole16(20);
2718 			chan->passive = htole16(120);
2719 			chan->gain_radio = 0x28;
2720 		}
2721 
2722 		DPRINTFN(WPI_DEBUG_SCANNING,
2723 			 ("Scanning %u Passive: %d\n",
2724 			  chan->chan,
2725 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2726 
2727 		hdr->nchan++;
2728 		chan++;
2729 
2730 		frm += sizeof (struct wpi_scan_chan);
2731 	}
2732 #endif
2733 
2734 	hdr->len = htole16(frm - (uint8_t *)hdr);
2735 	pktlen = frm - (uint8_t *)cmd;
2736 
2737 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2738 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2739 	if (error != 0) {
2740 		device_printf(sc->sc_dev, "could not map scan command\n");
2741 		m_freem(data->m);
2742 		data->m = NULL;
2743 		return error;
2744 	}
2745 
2746 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2747 	desc->segs[0].addr = htole32(physaddr);
2748 	desc->segs[0].len  = htole32(pktlen);
2749 
2750 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2751 	    BUS_DMASYNC_PREWRITE);
2752 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2753 
2754 	/* kick cmd ring */
2755 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2756 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2757 
2758 	sc->sc_scan_timer = 5;
2759 	return 0;	/* will be notified async. of failure/success */
2760 }
2761 
2762 /**
2763  * Configure the card to listen to a particular channel, this transisions the
2764  * card in to being able to receive frames from remote devices.
2765  */
2766 static int
2767 wpi_config(struct wpi_softc *sc)
2768 {
2769 	struct ifnet *ifp = sc->sc_ifp;
2770 	struct ieee80211com *ic = ifp->if_l2com;
2771 	struct wpi_power power;
2772 	struct wpi_bluetooth bluetooth;
2773 	struct wpi_node_info node;
2774 	int error;
2775 
2776 	/* set power mode */
2777 	memset(&power, 0, sizeof power);
2778 	power.flags = htole32(WPI_POWER_CAM|0x8);
2779 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2780 	if (error != 0) {
2781 		device_printf(sc->sc_dev, "could not set power mode\n");
2782 		return error;
2783 	}
2784 
2785 	/* configure bluetooth coexistence */
2786 	memset(&bluetooth, 0, sizeof bluetooth);
2787 	bluetooth.flags = 3;
2788 	bluetooth.lead = 0xaa;
2789 	bluetooth.kill = 1;
2790 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2791 	    0);
2792 	if (error != 0) {
2793 		device_printf(sc->sc_dev,
2794 		    "could not configure bluetooth coexistence\n");
2795 		return error;
2796 	}
2797 
2798 	/* configure adapter */
2799 	memset(&sc->config, 0, sizeof (struct wpi_config));
2800 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2801 	/*set default channel*/
2802 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2803 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2804 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2805 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2806 		    WPI_CONFIG_24GHZ);
2807 	}
2808 	sc->config.filter = 0;
2809 	switch (ic->ic_opmode) {
2810 	case IEEE80211_M_STA:
2811 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2812 		sc->config.mode = WPI_MODE_STA;
2813 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2814 		break;
2815 	case IEEE80211_M_IBSS:
2816 	case IEEE80211_M_AHDEMO:
2817 		sc->config.mode = WPI_MODE_IBSS;
2818 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2819 					     WPI_FILTER_MULTICAST);
2820 		break;
2821 	case IEEE80211_M_HOSTAP:
2822 		sc->config.mode = WPI_MODE_HOSTAP;
2823 		break;
2824 	case IEEE80211_M_MONITOR:
2825 		sc->config.mode = WPI_MODE_MONITOR;
2826 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2827 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2828 		break;
2829 	}
2830 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2831 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2832 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2833 		sizeof (struct wpi_config), 0);
2834 	if (error != 0) {
2835 		device_printf(sc->sc_dev, "configure command failed\n");
2836 		return error;
2837 	}
2838 
2839 	/* configuration has changed, set Tx power accordingly */
2840 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2841 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2842 	    return error;
2843 	}
2844 
2845 	/* add broadcast node */
2846 	memset(&node, 0, sizeof node);
2847 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2848 	node.id = WPI_ID_BROADCAST;
2849 	node.rate = wpi_plcp_signal(2);
2850 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2851 	if (error != 0) {
2852 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2853 		return error;
2854 	}
2855 
2856 	/* Setup rate scalling */
2857 	error = wpi_mrr_setup(sc);
2858 	if (error != 0) {
2859 		device_printf(sc->sc_dev, "could not setup MRR\n");
2860 		return error;
2861 	}
2862 
2863 	return 0;
2864 }
2865 
2866 static void
2867 wpi_stop_master(struct wpi_softc *sc)
2868 {
2869 	uint32_t tmp;
2870 	int ntries;
2871 
2872 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2873 
2874 	tmp = WPI_READ(sc, WPI_RESET);
2875 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2876 
2877 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2878 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2879 		return;	/* already asleep */
2880 
2881 	for (ntries = 0; ntries < 100; ntries++) {
2882 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2883 			break;
2884 		DELAY(10);
2885 	}
2886 	if (ntries == 100) {
2887 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2888 	}
2889 }
2890 
2891 static int
2892 wpi_power_up(struct wpi_softc *sc)
2893 {
2894 	uint32_t tmp;
2895 	int ntries;
2896 
2897 	wpi_mem_lock(sc);
2898 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2899 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2900 	wpi_mem_unlock(sc);
2901 
2902 	for (ntries = 0; ntries < 5000; ntries++) {
2903 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2904 			break;
2905 		DELAY(10);
2906 	}
2907 	if (ntries == 5000) {
2908 		device_printf(sc->sc_dev,
2909 		    "timeout waiting for NIC to power up\n");
2910 		return ETIMEDOUT;
2911 	}
2912 	return 0;
2913 }
2914 
2915 static int
2916 wpi_reset(struct wpi_softc *sc)
2917 {
2918 	uint32_t tmp;
2919 	int ntries;
2920 
2921 	DPRINTFN(WPI_DEBUG_HW,
2922 	    ("Resetting the card - clearing any uploaded firmware\n"));
2923 
2924 	/* clear any pending interrupts */
2925 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2926 
2927 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2928 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2929 
2930 	tmp = WPI_READ(sc, WPI_CHICKEN);
2931 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2932 
2933 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2934 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2935 
2936 	/* wait for clock stabilization */
2937 	for (ntries = 0; ntries < 25000; ntries++) {
2938 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2939 			break;
2940 		DELAY(10);
2941 	}
2942 	if (ntries == 25000) {
2943 		device_printf(sc->sc_dev,
2944 		    "timeout waiting for clock stabilization\n");
2945 		return ETIMEDOUT;
2946 	}
2947 
2948 	/* initialize EEPROM */
2949 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2950 
2951 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2952 		device_printf(sc->sc_dev, "EEPROM not found\n");
2953 		return EIO;
2954 	}
2955 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2956 
2957 	return 0;
2958 }
2959 
2960 static void
2961 wpi_hw_config(struct wpi_softc *sc)
2962 {
2963 	uint32_t rev, hw;
2964 
2965 	/* voodoo from the Linux "driver".. */
2966 	hw = WPI_READ(sc, WPI_HWCONFIG);
2967 
2968 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2969 	if ((rev & 0xc0) == 0x40)
2970 		hw |= WPI_HW_ALM_MB;
2971 	else if (!(rev & 0x80))
2972 		hw |= WPI_HW_ALM_MM;
2973 
2974 	if (sc->cap == 0x80)
2975 		hw |= WPI_HW_SKU_MRC;
2976 
2977 	hw &= ~WPI_HW_REV_D;
2978 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2979 		hw |= WPI_HW_REV_D;
2980 
2981 	if (sc->type > 1)
2982 		hw |= WPI_HW_TYPE_B;
2983 
2984 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2985 }
2986 
2987 static void
2988 wpi_rfkill_resume(struct wpi_softc *sc)
2989 {
2990 	struct ifnet *ifp = sc->sc_ifp;
2991 	struct ieee80211com *ic = ifp->if_l2com;
2992 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2993 	int ntries;
2994 
2995 	/* enable firmware again */
2996 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2997 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2998 
2999 	/* wait for thermal sensors to calibrate */
3000 	for (ntries = 0; ntries < 1000; ntries++) {
3001 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3002 			break;
3003 		DELAY(10);
3004 	}
3005 
3006 	if (ntries == 1000) {
3007 		device_printf(sc->sc_dev,
3008 		    "timeout waiting for thermal calibration\n");
3009 		WPI_UNLOCK(sc);
3010 		return;
3011 	}
3012 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3013 
3014 	if (wpi_config(sc) != 0) {
3015 		device_printf(sc->sc_dev, "device config failed\n");
3016 		WPI_UNLOCK(sc);
3017 		return;
3018 	}
3019 
3020 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3021 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3022 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3023 
3024 	if (vap != NULL) {
3025 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3026 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3027 				taskqueue_enqueue(taskqueue_swi,
3028 				    &sc->sc_bmiss_task);
3029 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3030 			} else
3031 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3032 		} else {
3033 			ieee80211_scan_next(vap);
3034 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3035 		}
3036 	}
3037 
3038 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3039 }
3040 
3041 static void
3042 wpi_init_locked(struct wpi_softc *sc, int force)
3043 {
3044 	struct ifnet *ifp = sc->sc_ifp;
3045 	uint32_t tmp;
3046 	int ntries, qid;
3047 
3048 	wpi_stop_locked(sc);
3049 	(void)wpi_reset(sc);
3050 
3051 	wpi_mem_lock(sc);
3052 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3053 	DELAY(20);
3054 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3055 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3056 	wpi_mem_unlock(sc);
3057 
3058 	(void)wpi_power_up(sc);
3059 	wpi_hw_config(sc);
3060 
3061 	/* init Rx ring */
3062 	wpi_mem_lock(sc);
3063 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3064 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3065 	    offsetof(struct wpi_shared, next));
3066 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3067 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3068 	wpi_mem_unlock(sc);
3069 
3070 	/* init Tx rings */
3071 	wpi_mem_lock(sc);
3072 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3073 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3074 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3075 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3076 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3077 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3078 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3079 
3080 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3081 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3082 
3083 	for (qid = 0; qid < 6; qid++) {
3084 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3085 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3086 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3087 	}
3088 	wpi_mem_unlock(sc);
3089 
3090 	/* clear "radio off" and "disable command" bits (reversed logic) */
3091 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3092 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3093 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3094 
3095 	/* clear any pending interrupts */
3096 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3097 
3098 	/* enable interrupts */
3099 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3100 
3101 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3102 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3103 
3104 	if ((wpi_load_firmware(sc)) != 0) {
3105 	    device_printf(sc->sc_dev,
3106 		"A problem occurred loading the firmware to the driver\n");
3107 	    return;
3108 	}
3109 
3110 	/* At this point the firmware is up and running. If the hardware
3111 	 * RF switch is turned off thermal calibration will fail, though
3112 	 * the card is still happy to continue to accept commands, catch
3113 	 * this case and schedule a task to watch for it to be turned on.
3114 	 */
3115 	wpi_mem_lock(sc);
3116 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3117 	wpi_mem_unlock(sc);
3118 
3119 	if (!(tmp & 0x1)) {
3120 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3121 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3122 		goto out;
3123 	}
3124 
3125 	/* wait for thermal sensors to calibrate */
3126 	for (ntries = 0; ntries < 1000; ntries++) {
3127 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3128 			break;
3129 		DELAY(10);
3130 	}
3131 
3132 	if (ntries == 1000) {
3133 		device_printf(sc->sc_dev,
3134 		    "timeout waiting for thermal sensors calibration\n");
3135 		return;
3136 	}
3137 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3138 
3139 	if (wpi_config(sc) != 0) {
3140 		device_printf(sc->sc_dev, "device config failed\n");
3141 		return;
3142 	}
3143 
3144 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3145 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3146 out:
3147 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3148 }
3149 
3150 static void
3151 wpi_init(void *arg)
3152 {
3153 	struct wpi_softc *sc = arg;
3154 	struct ifnet *ifp = sc->sc_ifp;
3155 	struct ieee80211com *ic = ifp->if_l2com;
3156 
3157 	WPI_LOCK(sc);
3158 	wpi_init_locked(sc, 0);
3159 	WPI_UNLOCK(sc);
3160 
3161 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3162 		ieee80211_start_all(ic);		/* start all vaps */
3163 }
3164 
3165 static void
3166 wpi_stop_locked(struct wpi_softc *sc)
3167 {
3168 	struct ifnet *ifp = sc->sc_ifp;
3169 	uint32_t tmp;
3170 	int ac;
3171 
3172 	sc->sc_tx_timer = 0;
3173 	sc->sc_scan_timer = 0;
3174 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3175 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3176 	callout_stop(&sc->watchdog_to);
3177 	callout_stop(&sc->calib_to);
3178 
3179 
3180 	/* disable interrupts */
3181 	WPI_WRITE(sc, WPI_MASK, 0);
3182 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3183 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3184 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3185 
3186 	/* Clear any commands left in the command buffer */
3187 	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3188 	memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3189 	sc->sc_cmd_cur = 0;
3190 	sc->sc_cmd_next = 0;
3191 
3192 	wpi_mem_lock(sc);
3193 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3194 	wpi_mem_unlock(sc);
3195 
3196 	/* reset all Tx rings */
3197 	for (ac = 0; ac < 4; ac++)
3198 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3199 	wpi_reset_tx_ring(sc, &sc->cmdq);
3200 
3201 	/* reset Rx ring */
3202 	wpi_reset_rx_ring(sc, &sc->rxq);
3203 
3204 	wpi_mem_lock(sc);
3205 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3206 	wpi_mem_unlock(sc);
3207 
3208 	DELAY(5);
3209 
3210 	wpi_stop_master(sc);
3211 
3212 	tmp = WPI_READ(sc, WPI_RESET);
3213 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3214 	sc->flags &= ~WPI_FLAG_BUSY;
3215 }
3216 
3217 static void
3218 wpi_stop(struct wpi_softc *sc)
3219 {
3220 	WPI_LOCK(sc);
3221 	wpi_stop_locked(sc);
3222 	WPI_UNLOCK(sc);
3223 }
3224 
3225 static void
3226 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3227 {
3228 	struct ieee80211vap *vap = ni->ni_vap;
3229 	struct wpi_vap *wvp = WPI_VAP(vap);
3230 
3231 	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3232 }
3233 
3234 static void
3235 wpi_calib_timeout(void *arg)
3236 {
3237 	struct wpi_softc *sc = arg;
3238 	struct ifnet *ifp = sc->sc_ifp;
3239 	struct ieee80211com *ic = ifp->if_l2com;
3240 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3241 	int temp;
3242 
3243 	if (vap->iv_state != IEEE80211_S_RUN)
3244 		return;
3245 
3246 	/* update sensor data */
3247 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3248 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3249 
3250 	wpi_power_calibration(sc, temp);
3251 
3252 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3253 }
3254 
3255 /*
3256  * This function is called periodically (every 60 seconds) to adjust output
3257  * power to temperature changes.
3258  */
3259 static void
3260 wpi_power_calibration(struct wpi_softc *sc, int temp)
3261 {
3262 	struct ifnet *ifp = sc->sc_ifp;
3263 	struct ieee80211com *ic = ifp->if_l2com;
3264 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3265 
3266 	/* sanity-check read value */
3267 	if (temp < -260 || temp > 25) {
3268 		/* this can't be correct, ignore */
3269 		DPRINTFN(WPI_DEBUG_TEMP,
3270 		    ("out-of-range temperature reported: %d\n", temp));
3271 		return;
3272 	}
3273 
3274 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3275 
3276 	/* adjust Tx power if need be */
3277 	if (abs(temp - sc->temp) <= 6)
3278 		return;
3279 
3280 	sc->temp = temp;
3281 
3282 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3283 		/* just warn, too bad for the automatic calibration... */
3284 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3285 	}
3286 }
3287 
3288 /**
3289  * Read the eeprom to find out what channels are valid for the given
3290  * band and update net80211 with what we find.
3291  */
3292 static void
3293 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3294 {
3295 	struct ifnet *ifp = sc->sc_ifp;
3296 	struct ieee80211com *ic = ifp->if_l2com;
3297 	const struct wpi_chan_band *band = &wpi_bands[n];
3298 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3299 	struct ieee80211_channel *c;
3300 	int chan, i, passive;
3301 
3302 	wpi_read_prom_data(sc, band->addr, channels,
3303 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3304 
3305 	for (i = 0; i < band->nchan; i++) {
3306 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3307 			DPRINTFN(WPI_DEBUG_HW,
3308 			    ("Channel Not Valid: %d, band %d\n",
3309 			     band->chan[i],n));
3310 			continue;
3311 		}
3312 
3313 		passive = 0;
3314 		chan = band->chan[i];
3315 		c = &ic->ic_channels[ic->ic_nchans++];
3316 
3317 		/* is active scan allowed on this channel? */
3318 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3319 			passive = IEEE80211_CHAN_PASSIVE;
3320 		}
3321 
3322 		if (n == 0) {	/* 2GHz band */
3323 			c->ic_ieee = chan;
3324 			c->ic_freq = ieee80211_ieee2mhz(chan,
3325 			    IEEE80211_CHAN_2GHZ);
3326 			c->ic_flags = IEEE80211_CHAN_B | passive;
3327 
3328 			c = &ic->ic_channels[ic->ic_nchans++];
3329 			c->ic_ieee = chan;
3330 			c->ic_freq = ieee80211_ieee2mhz(chan,
3331 			    IEEE80211_CHAN_2GHZ);
3332 			c->ic_flags = IEEE80211_CHAN_G | passive;
3333 
3334 		} else {	/* 5GHz band */
3335 			/*
3336 			 * Some 3945ABG adapters support channels 7, 8, 11
3337 			 * and 12 in the 2GHz *and* 5GHz bands.
3338 			 * Because of limitations in our net80211(9) stack,
3339 			 * we can't support these channels in 5GHz band.
3340 			 * XXX not true; just need to map to proper frequency
3341 			 */
3342 			if (chan <= 14)
3343 				continue;
3344 
3345 			c->ic_ieee = chan;
3346 			c->ic_freq = ieee80211_ieee2mhz(chan,
3347 			    IEEE80211_CHAN_5GHZ);
3348 			c->ic_flags = IEEE80211_CHAN_A | passive;
3349 		}
3350 
3351 		/* save maximum allowed power for this channel */
3352 		sc->maxpwr[chan] = channels[i].maxpwr;
3353 
3354 #if 0
3355 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3356 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3357 		//ic->ic_channels[chan].ic_minpower...
3358 		//ic->ic_channels[chan].ic_maxregtxpower...
3359 #endif
3360 
3361 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3362 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3363 		    channels[i].flags, sc->maxpwr[chan],
3364 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3365 		    ic->ic_nchans));
3366 	}
3367 }
3368 
3369 static void
3370 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3371 {
3372 	struct wpi_power_group *group = &sc->groups[n];
3373 	struct wpi_eeprom_group rgroup;
3374 	int i;
3375 
3376 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3377 	    sizeof rgroup);
3378 
3379 	/* save power group information */
3380 	group->chan   = rgroup.chan;
3381 	group->maxpwr = rgroup.maxpwr;
3382 	/* temperature at which the samples were taken */
3383 	group->temp   = (int16_t)le16toh(rgroup.temp);
3384 
3385 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3386 		    group->chan, group->maxpwr, group->temp));
3387 
3388 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3389 		group->samples[i].index = rgroup.samples[i].index;
3390 		group->samples[i].power = rgroup.samples[i].power;
3391 
3392 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3393 			    group->samples[i].index, group->samples[i].power));
3394 	}
3395 }
3396 
3397 /*
3398  * Update Tx power to match what is defined for channel `c'.
3399  */
3400 static int
3401 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3402 {
3403 	struct ifnet *ifp = sc->sc_ifp;
3404 	struct ieee80211com *ic = ifp->if_l2com;
3405 	struct wpi_power_group *group;
3406 	struct wpi_cmd_txpower txpower;
3407 	u_int chan;
3408 	int i;
3409 
3410 	/* get channel number */
3411 	chan = ieee80211_chan2ieee(ic, c);
3412 
3413 	/* find the power group to which this channel belongs */
3414 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3415 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3416 			if (chan <= group->chan)
3417 				break;
3418 	} else
3419 		group = &sc->groups[0];
3420 
3421 	memset(&txpower, 0, sizeof txpower);
3422 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3423 	txpower.channel = htole16(chan);
3424 
3425 	/* set Tx power for all OFDM and CCK rates */
3426 	for (i = 0; i <= 11 ; i++) {
3427 		/* retrieve Tx power for this channel/rate combination */
3428 		int idx = wpi_get_power_index(sc, group, c,
3429 		    wpi_ridx_to_rate[i]);
3430 
3431 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3432 
3433 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3434 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3435 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3436 		} else {
3437 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3438 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3439 		}
3440 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3441 			    chan, wpi_ridx_to_rate[i], idx));
3442 	}
3443 
3444 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3445 }
3446 
3447 /*
3448  * Determine Tx power index for a given channel/rate combination.
3449  * This takes into account the regulatory information from EEPROM and the
3450  * current temperature.
3451  */
3452 static int
3453 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3454     struct ieee80211_channel *c, int rate)
3455 {
3456 /* fixed-point arithmetic division using a n-bit fractional part */
3457 #define fdivround(a, b, n)      \
3458 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3459 
3460 /* linear interpolation */
3461 #define interpolate(x, x1, y1, x2, y2, n)       \
3462 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3463 
3464 	struct ifnet *ifp = sc->sc_ifp;
3465 	struct ieee80211com *ic = ifp->if_l2com;
3466 	struct wpi_power_sample *sample;
3467 	int pwr, idx;
3468 	u_int chan;
3469 
3470 	/* get channel number */
3471 	chan = ieee80211_chan2ieee(ic, c);
3472 
3473 	/* default power is group's maximum power - 3dB */
3474 	pwr = group->maxpwr / 2;
3475 
3476 	/* decrease power for highest OFDM rates to reduce distortion */
3477 	switch (rate) {
3478 		case 72:	/* 36Mb/s */
3479 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3480 			break;
3481 		case 96:	/* 48Mb/s */
3482 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3483 			break;
3484 		case 108:	/* 54Mb/s */
3485 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3486 			break;
3487 	}
3488 
3489 	/* never exceed channel's maximum allowed Tx power */
3490 	pwr = min(pwr, sc->maxpwr[chan]);
3491 
3492 	/* retrieve power index into gain tables from samples */
3493 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3494 		if (pwr > sample[1].power)
3495 			break;
3496 	/* fixed-point linear interpolation using a 19-bit fractional part */
3497 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3498 	    sample[1].power, sample[1].index, 19);
3499 
3500 	/*
3501 	 *  Adjust power index based on current temperature
3502 	 *	- if colder than factory-calibrated: decreate output power
3503 	 *	- if warmer than factory-calibrated: increase output power
3504 	 */
3505 	idx -= (sc->temp - group->temp) * 11 / 100;
3506 
3507 	/* decrease power for CCK rates (-5dB) */
3508 	if (!WPI_RATE_IS_OFDM(rate))
3509 		idx += 10;
3510 
3511 	/* keep power index in a valid range */
3512 	if (idx < 0)
3513 		return 0;
3514 	if (idx > WPI_MAX_PWR_INDEX)
3515 		return WPI_MAX_PWR_INDEX;
3516 	return idx;
3517 
3518 #undef interpolate
3519 #undef fdivround
3520 }
3521 
3522 /**
3523  * Called by net80211 framework to indicate that a scan
3524  * is starting. This function doesn't actually do the scan,
3525  * wpi_scan_curchan starts things off. This function is more
3526  * of an early warning from the framework we should get ready
3527  * for the scan.
3528  */
3529 static void
3530 wpi_scan_start(struct ieee80211com *ic)
3531 {
3532 	struct ifnet *ifp = ic->ic_ifp;
3533 	struct wpi_softc *sc = ifp->if_softc;
3534 
3535 	wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3536 }
3537 
3538 /**
3539  * Called by the net80211 framework, indicates that the
3540  * scan has ended. If there is a scan in progress on the card
3541  * then it should be aborted.
3542  */
3543 static void
3544 wpi_scan_end(struct ieee80211com *ic)
3545 {
3546 	struct ifnet *ifp = ic->ic_ifp;
3547 	struct wpi_softc *sc = ifp->if_softc;
3548 
3549 	wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3550 }
3551 
3552 /**
3553  * Called by the net80211 framework to indicate to the driver
3554  * that the channel should be changed
3555  */
3556 static void
3557 wpi_set_channel(struct ieee80211com *ic)
3558 {
3559 	struct ifnet *ifp = ic->ic_ifp;
3560 	struct wpi_softc *sc = ifp->if_softc;
3561 
3562 	/*
3563 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3564 	 * are already taken care of by their respective firmware commands.
3565 	 */
3566 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3567 		wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3568 }
3569 
3570 /**
3571  * Called by net80211 to indicate that we need to scan the current
3572  * channel. The channel is previously be set via the wpi_set_channel
3573  * callback.
3574  */
3575 static void
3576 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3577 {
3578 	struct ieee80211vap *vap = ss->ss_vap;
3579 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3580 	struct wpi_softc *sc = ifp->if_softc;
3581 
3582 	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3583 }
3584 
3585 /**
3586  * Called by the net80211 framework to indicate
3587  * the minimum dwell time has been met, terminate the scan.
3588  * We don't actually terminate the scan as the firmware will notify
3589  * us when it's finished and we have no way to interrupt it.
3590  */
3591 static void
3592 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3593 {
3594 	/* NB: don't try to abort scan; wait for firmware to finish */
3595 }
3596 
3597 /**
3598  * The ops function is called to perform some actual work.
3599  * because we can't sleep from any of the ic callbacks, we queue an
3600  * op task with wpi_queue_cmd and have the taskqueue process that task.
3601  * The task that gets cued is a op task, which ends up calling this function.
3602  */
3603 static void
3604 wpi_ops(void *arg0, int pending)
3605 {
3606 	struct wpi_softc *sc = arg0;
3607 	struct ifnet *ifp = sc->sc_ifp;
3608 	struct ieee80211com *ic = ifp->if_l2com;
3609 	int cmd, arg, error;
3610 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3611 
3612 again:
3613 	WPI_CMD_LOCK(sc);
3614 	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3615 	arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3616 
3617 	if (cmd == 0) {
3618 		/* No more commands to process */
3619 		WPI_CMD_UNLOCK(sc);
3620 		return;
3621 	}
3622 	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3623 	sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3624 	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3625 	WPI_CMD_UNLOCK(sc);
3626 	WPI_LOCK(sc);
3627 
3628 	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3629 
3630 	switch (cmd) {
3631 	case WPI_RESTART:
3632 		wpi_init_locked(sc, 0);
3633 		WPI_UNLOCK(sc);
3634 		return;
3635 
3636 	case WPI_RF_RESTART:
3637 		wpi_rfkill_resume(sc);
3638 		WPI_UNLOCK(sc);
3639 		return;
3640 	}
3641 
3642 	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3643 		WPI_UNLOCK(sc);
3644 		return;
3645 	}
3646 
3647 	switch (cmd) {
3648 	case WPI_SCAN_START:
3649 		/* make the link LED blink while we're scanning */
3650 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3651 		sc->flags |= WPI_FLAG_SCANNING;
3652 		break;
3653 
3654 	case WPI_SCAN_STOP:
3655 		sc->flags &= ~WPI_FLAG_SCANNING;
3656 		break;
3657 
3658 	case WPI_SCAN_CURCHAN:
3659 		if (wpi_scan(sc))
3660 			ieee80211_cancel_scan(vap);
3661 		break;
3662 
3663 	case WPI_SET_CHAN:
3664 		error = wpi_config(sc);
3665 		if (error != 0)
3666 			device_printf(sc->sc_dev,
3667 			    "error %d settting channel\n", error);
3668 		break;
3669 
3670 	case WPI_AUTH:
3671 		/* The node must be registered in the firmware before auth */
3672 		error = wpi_auth(sc, vap);
3673 		WPI_UNLOCK(sc);
3674 		if (error != 0) {
3675 			device_printf(sc->sc_dev,
3676 			    "%s: could not move to auth state, error %d\n",
3677 			    __func__, error);
3678 			return;
3679 		}
3680 		IEEE80211_LOCK(ic);
3681 		WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg);
3682 		if (vap->iv_newstate_cb != NULL)
3683 			vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg);
3684 		IEEE80211_UNLOCK(ic);
3685 		goto again;
3686 
3687 	case WPI_RUN:
3688 		error = wpi_run(sc, vap);
3689 		WPI_UNLOCK(sc);
3690 		if (error != 0) {
3691 			device_printf(sc->sc_dev,
3692 			    "%s: could not move to run state, error %d\n",
3693 			    __func__, error);
3694 			return;
3695 		}
3696 		IEEE80211_LOCK(ic);
3697 		WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg);
3698 		if (vap->iv_newstate_cb != NULL)
3699 			vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg);
3700 		IEEE80211_UNLOCK(ic);
3701 		goto again;
3702 	}
3703 	WPI_UNLOCK(sc);
3704 
3705 	/* Take another pass */
3706 	goto again;
3707 }
3708 
3709 /**
3710  * queue a command for later execution in a different thread.
3711  * This is needed as the net80211 callbacks do not allow
3712  * sleeping, since we need to sleep to confirm commands have
3713  * been processed by the firmware, we must defer execution to
3714  * a sleep enabled thread.
3715  */
3716 static int
3717 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3718 {
3719 	WPI_CMD_LOCK(sc);
3720 
3721 	if (flush) {
3722 		memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3723 		memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3724 		sc->sc_cmd_cur = 0;
3725 		sc->sc_cmd_next = 0;
3726 	}
3727 
3728 	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3729 		WPI_CMD_UNLOCK(sc);
3730 		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3731 		return (EBUSY);
3732 	}
3733 
3734 	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3735 	sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3736 	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3737 
3738 	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3739 
3740 	WPI_CMD_UNLOCK(sc);
3741 
3742 	return 0;
3743 }
3744 
3745 /*
3746  * Allocate DMA-safe memory for firmware transfer.
3747  */
3748 static int
3749 wpi_alloc_fwmem(struct wpi_softc *sc)
3750 {
3751 	/* allocate enough contiguous space to store text and data */
3752 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3753 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3754 	    BUS_DMA_NOWAIT);
3755 }
3756 
3757 static void
3758 wpi_free_fwmem(struct wpi_softc *sc)
3759 {
3760 	wpi_dma_contig_free(&sc->fw_dma);
3761 }
3762 
3763 /**
3764  * Called every second, wpi_watchdog used by the watch dog timer
3765  * to check that the card is still alive
3766  */
3767 static void
3768 wpi_watchdog(void *arg)
3769 {
3770 	struct wpi_softc *sc = arg;
3771 	struct ifnet *ifp = sc->sc_ifp;
3772 	uint32_t tmp;
3773 
3774 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3775 
3776 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3777 		/* No need to lock firmware memory */
3778 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3779 
3780 		if ((tmp & 0x1) == 0) {
3781 			/* Radio kill switch is still off */
3782 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3783 			return;
3784 		}
3785 
3786 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3787 		wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3788 		return;
3789 	}
3790 
3791 	if (sc->sc_tx_timer > 0) {
3792 		if (--sc->sc_tx_timer == 0) {
3793 			device_printf(sc->sc_dev,"device timeout\n");
3794 			ifp->if_oerrors++;
3795 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3796 		}
3797 	}
3798 	if (sc->sc_scan_timer > 0) {
3799 		struct ifnet *ifp = sc->sc_ifp;
3800 		struct ieee80211com *ic = ifp->if_l2com;
3801 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3802 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3803 			device_printf(sc->sc_dev,"scan timeout\n");
3804 			ieee80211_cancel_scan(vap);
3805 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3806 		}
3807 	}
3808 
3809 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3810 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3811 }
3812 
3813 #ifdef WPI_DEBUG
3814 static const char *wpi_cmd_str(int cmd)
3815 {
3816 	switch (cmd) {
3817 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3818 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3819 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3820 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3821 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3822 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3823 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3824 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3825 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3826 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3827 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3828 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3829 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3830 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3831 
3832 	default:
3833 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3834 		return "UNKNOWN CMD";	/* Make the compiler happy */
3835 	}
3836 }
3837 #endif
3838 
3839 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3840 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3841 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3842 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3843