1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #include <machine/bus.h> 79 #include <machine/resource.h> 80 #include <sys/rman.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 85 #include <net/bpf.h> 86 #include <net/if.h> 87 #include <net/if_arp.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <net80211/ieee80211_var.h> 94 #include <net80211/ieee80211_radiotap.h> 95 #include <net80211/ieee80211_regdomain.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_systm.h> 99 #include <netinet/in_var.h> 100 #include <netinet/ip.h> 101 #include <netinet/if_ether.h> 102 103 #include <dev/wpi/if_wpireg.h> 104 #include <dev/wpi/if_wpivar.h> 105 106 #define WPI_DEBUG 107 108 #ifdef WPI_DEBUG 109 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 110 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 111 #define WPI_DEBUG_SET (wpi_debug != 0) 112 113 enum { 114 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 115 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 116 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 117 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 118 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 119 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 120 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 121 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 122 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 123 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 124 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 125 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 126 WPI_DEBUG_ANY = 0xffffffff 127 }; 128 129 static int wpi_debug = 1; 130 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 131 TUNABLE_INT("debug.wpi", &wpi_debug); 132 133 #else 134 #define DPRINTF(x) 135 #define DPRINTFN(n, x) 136 #define WPI_DEBUG_SET 0 137 #endif 138 139 struct wpi_ident { 140 uint16_t vendor; 141 uint16_t device; 142 uint16_t subdevice; 143 const char *name; 144 }; 145 146 static const struct wpi_ident wpi_ident_table[] = { 147 /* The below entries support ABG regardless of the subid */ 148 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 149 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 150 /* The below entries only support BG */ 151 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 152 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 153 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 154 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 155 { 0, 0, 0, NULL } 156 }; 157 158 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 159 const char name[IFNAMSIZ], int unit, int opmode, 160 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 161 const uint8_t mac[IEEE80211_ADDR_LEN]); 162 static void wpi_vap_delete(struct ieee80211vap *); 163 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 164 void **, bus_size_t, bus_size_t, int); 165 static void wpi_dma_contig_free(struct wpi_dma_info *); 166 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 167 static int wpi_alloc_shared(struct wpi_softc *); 168 static void wpi_free_shared(struct wpi_softc *); 169 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 170 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 171 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 172 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 173 int, int); 174 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 175 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 176 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 177 const uint8_t mac[IEEE80211_ADDR_LEN]); 178 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 179 static void wpi_mem_lock(struct wpi_softc *); 180 static void wpi_mem_unlock(struct wpi_softc *); 181 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 182 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 183 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 184 const uint32_t *, int); 185 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 186 static int wpi_alloc_fwmem(struct wpi_softc *); 187 static void wpi_free_fwmem(struct wpi_softc *); 188 static int wpi_load_firmware(struct wpi_softc *); 189 static void wpi_unload_firmware(struct wpi_softc *); 190 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 191 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 192 struct wpi_rx_data *); 193 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 194 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 195 static void wpi_bmiss(void *, int); 196 static void wpi_notif_intr(struct wpi_softc *); 197 static void wpi_intr(void *); 198 static void wpi_ops(void *, int); 199 static uint8_t wpi_plcp_signal(int); 200 static int wpi_queue_cmd(struct wpi_softc *, int, int, int); 201 static void wpi_watchdog(void *); 202 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 203 struct ieee80211_node *, int); 204 static void wpi_start(struct ifnet *); 205 static void wpi_start_locked(struct ifnet *); 206 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 207 const struct ieee80211_bpf_params *); 208 static void wpi_scan_start(struct ieee80211com *); 209 static void wpi_scan_end(struct ieee80211com *); 210 static void wpi_set_channel(struct ieee80211com *); 211 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 212 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 213 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 214 static void wpi_read_eeprom(struct wpi_softc *); 215 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 216 static void wpi_read_eeprom_group(struct wpi_softc *, int); 217 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 218 static int wpi_wme_update(struct ieee80211com *); 219 static int wpi_mrr_setup(struct wpi_softc *); 220 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 221 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 222 #if 0 223 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 224 #endif 225 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 226 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 227 static int wpi_scan(struct wpi_softc *); 228 static int wpi_config(struct wpi_softc *); 229 static void wpi_stop_master(struct wpi_softc *); 230 static int wpi_power_up(struct wpi_softc *); 231 static int wpi_reset(struct wpi_softc *); 232 static void wpi_hw_config(struct wpi_softc *); 233 static void wpi_init(void *); 234 static void wpi_init_locked(struct wpi_softc *, int); 235 static void wpi_stop(struct wpi_softc *); 236 static void wpi_stop_locked(struct wpi_softc *); 237 238 static void wpi_newassoc(struct ieee80211_node *, int); 239 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 240 int); 241 static void wpi_calib_timeout(void *); 242 static void wpi_power_calibration(struct wpi_softc *, int); 243 static int wpi_get_power_index(struct wpi_softc *, 244 struct wpi_power_group *, struct ieee80211_channel *, int); 245 #ifdef WPI_DEBUG 246 static const char *wpi_cmd_str(int); 247 #endif 248 static int wpi_probe(device_t); 249 static int wpi_attach(device_t); 250 static int wpi_detach(device_t); 251 static int wpi_shutdown(device_t); 252 static int wpi_suspend(device_t); 253 static int wpi_resume(device_t); 254 255 256 static device_method_t wpi_methods[] = { 257 /* Device interface */ 258 DEVMETHOD(device_probe, wpi_probe), 259 DEVMETHOD(device_attach, wpi_attach), 260 DEVMETHOD(device_detach, wpi_detach), 261 DEVMETHOD(device_shutdown, wpi_shutdown), 262 DEVMETHOD(device_suspend, wpi_suspend), 263 DEVMETHOD(device_resume, wpi_resume), 264 265 { 0, 0 } 266 }; 267 268 static driver_t wpi_driver = { 269 "wpi", 270 wpi_methods, 271 sizeof (struct wpi_softc) 272 }; 273 274 static devclass_t wpi_devclass; 275 276 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 277 278 static const uint8_t wpi_ridx_to_plcp[] = { 279 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 280 /* R1-R4 (ral/ural is R4-R1) */ 281 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 282 /* CCK: device-dependent */ 283 10, 20, 55, 110 284 }; 285 static const uint8_t wpi_ridx_to_rate[] = { 286 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 287 2, 4, 11, 22 /*CCK */ 288 }; 289 290 291 static int 292 wpi_probe(device_t dev) 293 { 294 const struct wpi_ident *ident; 295 296 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 297 if (pci_get_vendor(dev) == ident->vendor && 298 pci_get_device(dev) == ident->device) { 299 device_set_desc(dev, ident->name); 300 return 0; 301 } 302 } 303 return ENXIO; 304 } 305 306 /** 307 * Load the firmare image from disk to the allocated dma buffer. 308 * we also maintain the reference to the firmware pointer as there 309 * is times where we may need to reload the firmware but we are not 310 * in a context that can access the filesystem (ie taskq cause by restart) 311 * 312 * @return 0 on success, an errno on failure 313 */ 314 static int 315 wpi_load_firmware(struct wpi_softc *sc) 316 { 317 const struct firmware *fp; 318 struct wpi_dma_info *dma = &sc->fw_dma; 319 const struct wpi_firmware_hdr *hdr; 320 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 321 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 322 int error; 323 324 DPRINTFN(WPI_DEBUG_FIRMWARE, 325 ("Attempting Loading Firmware from wpi_fw module\n")); 326 327 WPI_UNLOCK(sc); 328 329 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 330 device_printf(sc->sc_dev, 331 "could not load firmware image 'wpifw'\n"); 332 error = ENOENT; 333 WPI_LOCK(sc); 334 goto fail; 335 } 336 337 fp = sc->fw_fp; 338 339 WPI_LOCK(sc); 340 341 /* Validate the firmware is minimum a particular version */ 342 if (fp->version < WPI_FW_MINVERSION) { 343 device_printf(sc->sc_dev, 344 "firmware version is too old. Need %d, got %d\n", 345 WPI_FW_MINVERSION, 346 fp->version); 347 error = ENXIO; 348 goto fail; 349 } 350 351 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 352 device_printf(sc->sc_dev, 353 "firmware file too short: %zu bytes\n", fp->datasize); 354 error = ENXIO; 355 goto fail; 356 } 357 358 hdr = (const struct wpi_firmware_hdr *)fp->data; 359 360 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 361 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 362 363 rtextsz = le32toh(hdr->rtextsz); 364 rdatasz = le32toh(hdr->rdatasz); 365 itextsz = le32toh(hdr->itextsz); 366 idatasz = le32toh(hdr->idatasz); 367 btextsz = le32toh(hdr->btextsz); 368 369 /* check that all firmware segments are present */ 370 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 371 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 372 device_printf(sc->sc_dev, 373 "firmware file too short: %zu bytes\n", fp->datasize); 374 error = ENXIO; /* XXX appropriate error code? */ 375 goto fail; 376 } 377 378 /* get pointers to firmware segments */ 379 rtext = (const uint8_t *)(hdr + 1); 380 rdata = rtext + rtextsz; 381 itext = rdata + rdatasz; 382 idata = itext + itextsz; 383 btext = idata + idatasz; 384 385 DPRINTFN(WPI_DEBUG_FIRMWARE, 386 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 387 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 388 (le32toh(hdr->version) & 0xff000000) >> 24, 389 (le32toh(hdr->version) & 0x00ff0000) >> 16, 390 (le32toh(hdr->version) & 0x0000ffff), 391 rtextsz, rdatasz, 392 itextsz, idatasz, btextsz)); 393 394 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 395 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 396 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 397 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 398 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 399 400 /* sanity checks */ 401 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 402 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 403 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 404 idatasz > WPI_FW_INIT_DATA_MAXSZ || 405 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 406 (btextsz & 3) != 0) { 407 device_printf(sc->sc_dev, "firmware invalid\n"); 408 error = EINVAL; 409 goto fail; 410 } 411 412 /* copy initialization images into pre-allocated DMA-safe memory */ 413 memcpy(dma->vaddr, idata, idatasz); 414 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 415 416 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 417 418 /* tell adapter where to find initialization images */ 419 wpi_mem_lock(sc); 420 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 421 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 422 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 423 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 424 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 425 wpi_mem_unlock(sc); 426 427 /* load firmware boot code */ 428 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 429 device_printf(sc->sc_dev, "Failed to load microcode\n"); 430 goto fail; 431 } 432 433 /* now press "execute" */ 434 WPI_WRITE(sc, WPI_RESET, 0); 435 436 /* wait at most one second for the first alive notification */ 437 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 438 device_printf(sc->sc_dev, 439 "timeout waiting for adapter to initialize\n"); 440 goto fail; 441 } 442 443 /* copy runtime images into pre-allocated DMA-sage memory */ 444 memcpy(dma->vaddr, rdata, rdatasz); 445 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 446 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 447 448 /* tell adapter where to find runtime images */ 449 wpi_mem_lock(sc); 450 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 451 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 452 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 453 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 454 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 455 wpi_mem_unlock(sc); 456 457 /* wait at most one second for the first alive notification */ 458 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 459 device_printf(sc->sc_dev, 460 "timeout waiting for adapter to initialize2\n"); 461 goto fail; 462 } 463 464 DPRINTFN(WPI_DEBUG_FIRMWARE, 465 ("Firmware loaded to driver successfully\n")); 466 return error; 467 fail: 468 wpi_unload_firmware(sc); 469 return error; 470 } 471 472 /** 473 * Free the referenced firmware image 474 */ 475 static void 476 wpi_unload_firmware(struct wpi_softc *sc) 477 { 478 479 if (sc->fw_fp) { 480 WPI_UNLOCK(sc); 481 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 482 WPI_LOCK(sc); 483 sc->fw_fp = NULL; 484 } 485 } 486 487 static int 488 wpi_attach(device_t dev) 489 { 490 struct wpi_softc *sc = device_get_softc(dev); 491 struct ifnet *ifp; 492 struct ieee80211com *ic; 493 int ac, error, supportsa = 1; 494 uint32_t tmp; 495 const struct wpi_ident *ident; 496 497 sc->sc_dev = dev; 498 499 if (bootverbose || WPI_DEBUG_SET) 500 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 501 502 /* 503 * Some card's only support 802.11b/g not a, check to see if 504 * this is one such card. A 0x0 in the subdevice table indicates 505 * the entire subdevice range is to be ignored. 506 */ 507 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 508 if (ident->subdevice && 509 pci_get_subdevice(dev) == ident->subdevice) { 510 supportsa = 0; 511 break; 512 } 513 } 514 515 /* 516 * Create the taskqueues used by the driver. Primarily 517 * sc_tq handles most the task 518 */ 519 sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO, 520 taskqueue_thread_enqueue, &sc->sc_tq); 521 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 522 device_get_nameunit(dev)); 523 524 /* Create the tasks that can be queued */ 525 TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc); 526 TASK_INIT(&sc->sc_bmiss_task, 0, wpi_bmiss, sc); 527 528 WPI_LOCK_INIT(sc); 529 WPI_CMD_LOCK_INIT(sc); 530 531 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 532 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 533 534 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 535 device_printf(dev, "chip is in D%d power mode " 536 "-- setting to D0\n", pci_get_powerstate(dev)); 537 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 538 } 539 540 /* disable the retry timeout register */ 541 pci_write_config(dev, 0x41, 0, 1); 542 543 /* enable bus-mastering */ 544 pci_enable_busmaster(dev); 545 546 sc->mem_rid = PCIR_BAR(0); 547 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 548 RF_ACTIVE); 549 if (sc->mem == NULL) { 550 device_printf(dev, "could not allocate memory resource\n"); 551 error = ENOMEM; 552 goto fail; 553 } 554 555 sc->sc_st = rman_get_bustag(sc->mem); 556 sc->sc_sh = rman_get_bushandle(sc->mem); 557 558 sc->irq_rid = 0; 559 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 560 RF_ACTIVE | RF_SHAREABLE); 561 if (sc->irq == NULL) { 562 device_printf(dev, "could not allocate interrupt resource\n"); 563 error = ENOMEM; 564 goto fail; 565 } 566 567 /* 568 * Allocate DMA memory for firmware transfers. 569 */ 570 if ((error = wpi_alloc_fwmem(sc)) != 0) { 571 printf(": could not allocate firmware memory\n"); 572 error = ENOMEM; 573 goto fail; 574 } 575 576 /* 577 * Put adapter into a known state. 578 */ 579 if ((error = wpi_reset(sc)) != 0) { 580 device_printf(dev, "could not reset adapter\n"); 581 goto fail; 582 } 583 584 wpi_mem_lock(sc); 585 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 586 if (bootverbose || WPI_DEBUG_SET) 587 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 588 589 wpi_mem_unlock(sc); 590 591 /* Allocate shared page */ 592 if ((error = wpi_alloc_shared(sc)) != 0) { 593 device_printf(dev, "could not allocate shared page\n"); 594 goto fail; 595 } 596 597 /* tx data queues - 4 for QoS purposes */ 598 for (ac = 0; ac < WME_NUM_AC; ac++) { 599 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 600 if (error != 0) { 601 device_printf(dev, "could not allocate Tx ring %d\n",ac); 602 goto fail; 603 } 604 } 605 606 /* command queue to talk to the card's firmware */ 607 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 608 if (error != 0) { 609 device_printf(dev, "could not allocate command ring\n"); 610 goto fail; 611 } 612 613 /* receive data queue */ 614 error = wpi_alloc_rx_ring(sc, &sc->rxq); 615 if (error != 0) { 616 device_printf(dev, "could not allocate Rx ring\n"); 617 goto fail; 618 } 619 620 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 621 if (ifp == NULL) { 622 device_printf(dev, "can not if_alloc()\n"); 623 error = ENOMEM; 624 goto fail; 625 } 626 ic = ifp->if_l2com; 627 628 ic->ic_ifp = ifp; 629 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 630 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 631 632 /* set device capabilities */ 633 ic->ic_caps = 634 IEEE80211_C_STA /* station mode supported */ 635 | IEEE80211_C_MONITOR /* monitor mode supported */ 636 | IEEE80211_C_TXPMGT /* tx power management */ 637 | IEEE80211_C_SHSLOT /* short slot time supported */ 638 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 639 | IEEE80211_C_WPA /* 802.11i */ 640 /* XXX looks like WME is partly supported? */ 641 #if 0 642 | IEEE80211_C_IBSS /* IBSS mode support */ 643 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 644 | IEEE80211_C_WME /* 802.11e */ 645 | IEEE80211_C_HOSTAP /* Host access point mode */ 646 #endif 647 ; 648 649 /* 650 * Read in the eeprom and also setup the channels for 651 * net80211. We don't set the rates as net80211 does this for us 652 */ 653 wpi_read_eeprom(sc); 654 655 if (bootverbose || WPI_DEBUG_SET) { 656 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 657 device_printf(sc->sc_dev, "Hardware Type: %c\n", 658 sc->type > 1 ? 'B': '?'); 659 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 660 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 661 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 662 supportsa ? "does" : "does not"); 663 664 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 665 what sc->rev really represents - benjsc 20070615 */ 666 } 667 668 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 669 ifp->if_softc = sc; 670 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 671 ifp->if_init = wpi_init; 672 ifp->if_ioctl = wpi_ioctl; 673 ifp->if_start = wpi_start; 674 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 675 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 676 IFQ_SET_READY(&ifp->if_snd); 677 678 ieee80211_ifattach(ic); 679 /* override default methods */ 680 ic->ic_node_alloc = wpi_node_alloc; 681 ic->ic_newassoc = wpi_newassoc; 682 ic->ic_raw_xmit = wpi_raw_xmit; 683 ic->ic_wme.wme_update = wpi_wme_update; 684 ic->ic_scan_start = wpi_scan_start; 685 ic->ic_scan_end = wpi_scan_end; 686 ic->ic_set_channel = wpi_set_channel; 687 ic->ic_scan_curchan = wpi_scan_curchan; 688 ic->ic_scan_mindwell = wpi_scan_mindwell; 689 690 ic->ic_vap_create = wpi_vap_create; 691 ic->ic_vap_delete = wpi_vap_delete; 692 693 bpfattach(ifp, DLT_IEEE802_11_RADIO, 694 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap)); 695 696 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 697 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 698 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 699 700 sc->sc_txtap_len = sizeof sc->sc_txtap; 701 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 702 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 703 704 /* 705 * Hook our interrupt after all initialization is complete. 706 */ 707 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 708 NULL, wpi_intr, sc, &sc->sc_ih); 709 if (error != 0) { 710 device_printf(dev, "could not set up interrupt\n"); 711 goto fail; 712 } 713 714 if (bootverbose) 715 ieee80211_announce(ic); 716 #ifdef XXX_DEBUG 717 ieee80211_announce_channels(ic); 718 #endif 719 return 0; 720 721 fail: wpi_detach(dev); 722 return ENXIO; 723 } 724 725 static int 726 wpi_detach(device_t dev) 727 { 728 struct wpi_softc *sc = device_get_softc(dev); 729 struct ifnet *ifp = sc->sc_ifp; 730 struct ieee80211com *ic = ifp->if_l2com; 731 int ac; 732 733 if (ifp != NULL) { 734 wpi_stop(sc); 735 callout_drain(&sc->watchdog_to); 736 callout_drain(&sc->calib_to); 737 bpfdetach(ifp); 738 ieee80211_ifdetach(ic); 739 } 740 741 WPI_LOCK(sc); 742 if (sc->txq[0].data_dmat) { 743 for (ac = 0; ac < WME_NUM_AC; ac++) 744 wpi_free_tx_ring(sc, &sc->txq[ac]); 745 746 wpi_free_tx_ring(sc, &sc->cmdq); 747 wpi_free_rx_ring(sc, &sc->rxq); 748 wpi_free_shared(sc); 749 } 750 751 if (sc->fw_fp != NULL) { 752 wpi_unload_firmware(sc); 753 } 754 755 if (sc->fw_dma.tag) 756 wpi_free_fwmem(sc); 757 WPI_UNLOCK(sc); 758 759 if (sc->irq != NULL) { 760 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 761 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 762 } 763 764 if (sc->mem != NULL) 765 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 766 767 if (ifp != NULL) 768 if_free(ifp); 769 770 taskqueue_free(sc->sc_tq); 771 772 WPI_LOCK_DESTROY(sc); 773 WPI_CMD_LOCK_DESTROY(sc); 774 775 return 0; 776 } 777 778 static struct ieee80211vap * 779 wpi_vap_create(struct ieee80211com *ic, 780 const char name[IFNAMSIZ], int unit, int opmode, int flags, 781 const uint8_t bssid[IEEE80211_ADDR_LEN], 782 const uint8_t mac[IEEE80211_ADDR_LEN]) 783 { 784 struct wpi_vap *wvp; 785 struct ieee80211vap *vap; 786 787 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 788 return NULL; 789 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 790 M_80211_VAP, M_NOWAIT | M_ZERO); 791 if (wvp == NULL) 792 return NULL; 793 vap = &wvp->vap; 794 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 795 /* override with driver methods */ 796 wvp->newstate = vap->iv_newstate; 797 vap->iv_newstate = wpi_newstate; 798 799 ieee80211_amrr_init(&wvp->amrr, vap, 800 IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, 801 IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD, 802 500 /*ms*/); 803 804 /* complete setup */ 805 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 806 ic->ic_opmode = opmode; 807 return vap; 808 } 809 810 static void 811 wpi_vap_delete(struct ieee80211vap *vap) 812 { 813 struct wpi_vap *wvp = WPI_VAP(vap); 814 815 ieee80211_amrr_cleanup(&wvp->amrr); 816 ieee80211_vap_detach(vap); 817 free(wvp, M_80211_VAP); 818 } 819 820 static void 821 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 822 { 823 if (error != 0) 824 return; 825 826 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 827 828 *(bus_addr_t *)arg = segs[0].ds_addr; 829 } 830 831 /* 832 * Allocates a contiguous block of dma memory of the requested size and 833 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 834 * allocations greater than 4096 may fail. Hence if the requested alignment is 835 * greater we allocate 'alignment' size extra memory and shift the vaddr and 836 * paddr after the dma load. This bypasses the problem at the cost of a little 837 * more memory. 838 */ 839 static int 840 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 841 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 842 { 843 int error; 844 bus_size_t align; 845 bus_size_t reqsize; 846 847 DPRINTFN(WPI_DEBUG_DMA, 848 ("Size: %zd - alignment %zd\n", size, alignment)); 849 850 dma->size = size; 851 dma->tag = NULL; 852 853 if (alignment > 4096) { 854 align = PAGE_SIZE; 855 reqsize = size + alignment; 856 } else { 857 align = alignment; 858 reqsize = size; 859 } 860 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 861 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 862 NULL, NULL, reqsize, 863 1, reqsize, flags, 864 NULL, NULL, &dma->tag); 865 if (error != 0) { 866 device_printf(sc->sc_dev, 867 "could not create shared page DMA tag\n"); 868 goto fail; 869 } 870 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 871 flags | BUS_DMA_ZERO, &dma->map); 872 if (error != 0) { 873 device_printf(sc->sc_dev, 874 "could not allocate shared page DMA memory\n"); 875 goto fail; 876 } 877 878 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 879 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 880 881 /* Save the original pointers so we can free all the memory */ 882 dma->paddr = dma->paddr_start; 883 dma->vaddr = dma->vaddr_start; 884 885 /* 886 * Check the alignment and increment by 4096 until we get the 887 * requested alignment. Fail if can't obtain the alignment 888 * we requested. 889 */ 890 if ((dma->paddr & (alignment -1 )) != 0) { 891 int i; 892 893 for (i = 0; i < alignment / 4096; i++) { 894 if ((dma->paddr & (alignment - 1 )) == 0) 895 break; 896 dma->paddr += 4096; 897 dma->vaddr += 4096; 898 } 899 if (i == alignment / 4096) { 900 device_printf(sc->sc_dev, 901 "alignment requirement was not satisfied\n"); 902 goto fail; 903 } 904 } 905 906 if (error != 0) { 907 device_printf(sc->sc_dev, 908 "could not load shared page DMA map\n"); 909 goto fail; 910 } 911 912 if (kvap != NULL) 913 *kvap = dma->vaddr; 914 915 return 0; 916 917 fail: 918 wpi_dma_contig_free(dma); 919 return error; 920 } 921 922 static void 923 wpi_dma_contig_free(struct wpi_dma_info *dma) 924 { 925 if (dma->tag) { 926 if (dma->map != NULL) { 927 if (dma->paddr_start != 0) { 928 bus_dmamap_sync(dma->tag, dma->map, 929 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 930 bus_dmamap_unload(dma->tag, dma->map); 931 } 932 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 933 } 934 bus_dma_tag_destroy(dma->tag); 935 } 936 } 937 938 /* 939 * Allocate a shared page between host and NIC. 940 */ 941 static int 942 wpi_alloc_shared(struct wpi_softc *sc) 943 { 944 int error; 945 946 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 947 (void **)&sc->shared, sizeof (struct wpi_shared), 948 PAGE_SIZE, 949 BUS_DMA_NOWAIT); 950 951 if (error != 0) { 952 device_printf(sc->sc_dev, 953 "could not allocate shared area DMA memory\n"); 954 } 955 956 return error; 957 } 958 959 static void 960 wpi_free_shared(struct wpi_softc *sc) 961 { 962 wpi_dma_contig_free(&sc->shared_dma); 963 } 964 965 static int 966 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 967 { 968 969 int i, error; 970 971 ring->cur = 0; 972 973 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 974 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 975 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 976 977 if (error != 0) { 978 device_printf(sc->sc_dev, 979 "%s: could not allocate rx ring DMA memory, error %d\n", 980 __func__, error); 981 goto fail; 982 } 983 984 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 985 BUS_SPACE_MAXADDR_32BIT, 986 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 987 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 988 if (error != 0) { 989 device_printf(sc->sc_dev, 990 "%s: bus_dma_tag_create_failed, error %d\n", 991 __func__, error); 992 goto fail; 993 } 994 995 /* 996 * Setup Rx buffers. 997 */ 998 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 999 struct wpi_rx_data *data = &ring->data[i]; 1000 struct mbuf *m; 1001 bus_addr_t paddr; 1002 1003 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1004 if (error != 0) { 1005 device_printf(sc->sc_dev, 1006 "%s: bus_dmamap_create failed, error %d\n", 1007 __func__, error); 1008 goto fail; 1009 } 1010 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1011 if (m == NULL) { 1012 device_printf(sc->sc_dev, 1013 "%s: could not allocate rx mbuf\n", __func__); 1014 error = ENOMEM; 1015 goto fail; 1016 } 1017 /* map page */ 1018 error = bus_dmamap_load(ring->data_dmat, data->map, 1019 mtod(m, caddr_t), MJUMPAGESIZE, 1020 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1021 if (error != 0 && error != EFBIG) { 1022 device_printf(sc->sc_dev, 1023 "%s: bus_dmamap_load failed, error %d\n", 1024 __func__, error); 1025 m_freem(m); 1026 error = ENOMEM; /* XXX unique code */ 1027 goto fail; 1028 } 1029 bus_dmamap_sync(ring->data_dmat, data->map, 1030 BUS_DMASYNC_PREWRITE); 1031 1032 data->m = m; 1033 ring->desc[i] = htole32(paddr); 1034 } 1035 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1036 BUS_DMASYNC_PREWRITE); 1037 return 0; 1038 fail: 1039 wpi_free_rx_ring(sc, ring); 1040 return error; 1041 } 1042 1043 static void 1044 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1045 { 1046 int ntries; 1047 1048 wpi_mem_lock(sc); 1049 1050 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1051 1052 for (ntries = 0; ntries < 100; ntries++) { 1053 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1054 break; 1055 DELAY(10); 1056 } 1057 1058 wpi_mem_unlock(sc); 1059 1060 #ifdef WPI_DEBUG 1061 if (ntries == 100 && wpi_debug > 0) 1062 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1063 #endif 1064 1065 ring->cur = 0; 1066 } 1067 1068 static void 1069 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1070 { 1071 int i; 1072 1073 wpi_dma_contig_free(&ring->desc_dma); 1074 1075 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1076 if (ring->data[i].m != NULL) 1077 m_freem(ring->data[i].m); 1078 } 1079 1080 static int 1081 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1082 int qid) 1083 { 1084 struct wpi_tx_data *data; 1085 int i, error; 1086 1087 ring->qid = qid; 1088 ring->count = count; 1089 ring->queued = 0; 1090 ring->cur = 0; 1091 ring->data = NULL; 1092 1093 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1094 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1095 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1096 1097 if (error != 0) { 1098 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1099 goto fail; 1100 } 1101 1102 /* update shared page with ring's base address */ 1103 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1104 1105 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1106 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1107 BUS_DMA_NOWAIT); 1108 1109 if (error != 0) { 1110 device_printf(sc->sc_dev, 1111 "could not allocate tx command DMA memory\n"); 1112 goto fail; 1113 } 1114 1115 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1116 M_NOWAIT | M_ZERO); 1117 if (ring->data == NULL) { 1118 device_printf(sc->sc_dev, 1119 "could not allocate tx data slots\n"); 1120 goto fail; 1121 } 1122 1123 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1124 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1125 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1126 &ring->data_dmat); 1127 if (error != 0) { 1128 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1129 goto fail; 1130 } 1131 1132 for (i = 0; i < count; i++) { 1133 data = &ring->data[i]; 1134 1135 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1136 if (error != 0) { 1137 device_printf(sc->sc_dev, 1138 "could not create tx buf DMA map\n"); 1139 goto fail; 1140 } 1141 bus_dmamap_sync(ring->data_dmat, data->map, 1142 BUS_DMASYNC_PREWRITE); 1143 } 1144 1145 return 0; 1146 1147 fail: 1148 wpi_free_tx_ring(sc, ring); 1149 return error; 1150 } 1151 1152 static void 1153 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1154 { 1155 struct wpi_tx_data *data; 1156 int i, ntries; 1157 1158 wpi_mem_lock(sc); 1159 1160 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1161 for (ntries = 0; ntries < 100; ntries++) { 1162 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1163 break; 1164 DELAY(10); 1165 } 1166 #ifdef WPI_DEBUG 1167 if (ntries == 100 && wpi_debug > 0) 1168 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1169 ring->qid); 1170 #endif 1171 wpi_mem_unlock(sc); 1172 1173 for (i = 0; i < ring->count; i++) { 1174 data = &ring->data[i]; 1175 1176 if (data->m != NULL) { 1177 bus_dmamap_unload(ring->data_dmat, data->map); 1178 m_freem(data->m); 1179 data->m = NULL; 1180 } 1181 } 1182 1183 ring->queued = 0; 1184 ring->cur = 0; 1185 } 1186 1187 static void 1188 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1189 { 1190 struct wpi_tx_data *data; 1191 int i; 1192 1193 wpi_dma_contig_free(&ring->desc_dma); 1194 wpi_dma_contig_free(&ring->cmd_dma); 1195 1196 if (ring->data != NULL) { 1197 for (i = 0; i < ring->count; i++) { 1198 data = &ring->data[i]; 1199 1200 if (data->m != NULL) { 1201 bus_dmamap_sync(ring->data_dmat, data->map, 1202 BUS_DMASYNC_POSTWRITE); 1203 bus_dmamap_unload(ring->data_dmat, data->map); 1204 m_freem(data->m); 1205 data->m = NULL; 1206 } 1207 } 1208 free(ring->data, M_DEVBUF); 1209 } 1210 1211 if (ring->data_dmat != NULL) 1212 bus_dma_tag_destroy(ring->data_dmat); 1213 } 1214 1215 static int 1216 wpi_shutdown(device_t dev) 1217 { 1218 struct wpi_softc *sc = device_get_softc(dev); 1219 1220 WPI_LOCK(sc); 1221 wpi_stop_locked(sc); 1222 wpi_unload_firmware(sc); 1223 WPI_UNLOCK(sc); 1224 1225 return 0; 1226 } 1227 1228 static int 1229 wpi_suspend(device_t dev) 1230 { 1231 struct wpi_softc *sc = device_get_softc(dev); 1232 1233 wpi_stop(sc); 1234 return 0; 1235 } 1236 1237 static int 1238 wpi_resume(device_t dev) 1239 { 1240 struct wpi_softc *sc = device_get_softc(dev); 1241 struct ifnet *ifp = sc->sc_ifp; 1242 1243 pci_write_config(dev, 0x41, 0, 1); 1244 1245 if (ifp->if_flags & IFF_UP) { 1246 wpi_init(ifp->if_softc); 1247 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1248 wpi_start(ifp); 1249 } 1250 return 0; 1251 } 1252 1253 /* ARGSUSED */ 1254 static struct ieee80211_node * 1255 wpi_node_alloc(struct ieee80211vap *vap __unused, 1256 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 1257 { 1258 struct wpi_node *wn; 1259 1260 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1261 1262 return &wn->ni; 1263 } 1264 1265 /** 1266 * Called by net80211 when ever there is a change to 80211 state machine 1267 */ 1268 static int 1269 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1270 { 1271 struct wpi_vap *wvp = WPI_VAP(vap); 1272 struct ieee80211com *ic = vap->iv_ic; 1273 struct ifnet *ifp = ic->ic_ifp; 1274 struct wpi_softc *sc = ifp->if_softc; 1275 int error; 1276 1277 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1278 ieee80211_state_name[vap->iv_state], 1279 ieee80211_state_name[nstate], sc->flags)); 1280 1281 if (nstate == IEEE80211_S_AUTH) { 1282 /* Delay the auth transition until we can update the firmware */ 1283 error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL); 1284 return (error != 0 ? error : EINPROGRESS); 1285 } 1286 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1287 /* set the association id first */ 1288 error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL); 1289 return (error != 0 ? error : EINPROGRESS); 1290 } 1291 if (nstate == IEEE80211_S_RUN) { 1292 /* RUN -> RUN transition; just restart the timers */ 1293 wpi_calib_timeout(sc); 1294 /* XXX split out rate control timer */ 1295 } 1296 return wvp->newstate(vap, nstate, arg); 1297 } 1298 1299 /* 1300 * Grab exclusive access to NIC memory. 1301 */ 1302 static void 1303 wpi_mem_lock(struct wpi_softc *sc) 1304 { 1305 int ntries; 1306 uint32_t tmp; 1307 1308 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1309 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1310 1311 /* spin until we actually get the lock */ 1312 for (ntries = 0; ntries < 100; ntries++) { 1313 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1314 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1315 break; 1316 DELAY(10); 1317 } 1318 if (ntries == 100) 1319 device_printf(sc->sc_dev, "could not lock memory\n"); 1320 } 1321 1322 /* 1323 * Release lock on NIC memory. 1324 */ 1325 static void 1326 wpi_mem_unlock(struct wpi_softc *sc) 1327 { 1328 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1329 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1330 } 1331 1332 static uint32_t 1333 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1334 { 1335 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1336 return WPI_READ(sc, WPI_READ_MEM_DATA); 1337 } 1338 1339 static void 1340 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1341 { 1342 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1343 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1344 } 1345 1346 static void 1347 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1348 const uint32_t *data, int wlen) 1349 { 1350 for (; wlen > 0; wlen--, data++, addr+=4) 1351 wpi_mem_write(sc, addr, *data); 1352 } 1353 1354 /* 1355 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1356 * using the traditional bit-bang method. Data is read up until len bytes have 1357 * been obtained. 1358 */ 1359 static uint16_t 1360 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1361 { 1362 int ntries; 1363 uint32_t val; 1364 uint8_t *out = data; 1365 1366 wpi_mem_lock(sc); 1367 1368 for (; len > 0; len -= 2, addr++) { 1369 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1370 1371 for (ntries = 0; ntries < 10; ntries++) { 1372 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1373 break; 1374 DELAY(5); 1375 } 1376 1377 if (ntries == 10) { 1378 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1379 return ETIMEDOUT; 1380 } 1381 1382 *out++= val >> 16; 1383 if (len > 1) 1384 *out ++= val >> 24; 1385 } 1386 1387 wpi_mem_unlock(sc); 1388 1389 return 0; 1390 } 1391 1392 /* 1393 * The firmware text and data segments are transferred to the NIC using DMA. 1394 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1395 * where to find it. Once the NIC has copied the firmware into its internal 1396 * memory, we can free our local copy in the driver. 1397 */ 1398 static int 1399 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1400 { 1401 int error, ntries; 1402 1403 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1404 1405 size /= sizeof(uint32_t); 1406 1407 wpi_mem_lock(sc); 1408 1409 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1410 (const uint32_t *)fw, size); 1411 1412 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1413 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1414 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1415 1416 /* run microcode */ 1417 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1418 1419 /* wait while the adapter is busy copying the firmware */ 1420 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1421 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1422 DPRINTFN(WPI_DEBUG_HW, 1423 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1424 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1425 if (status & WPI_TX_IDLE(6)) { 1426 DPRINTFN(WPI_DEBUG_HW, 1427 ("Status Match! - ntries = %d\n", ntries)); 1428 break; 1429 } 1430 DELAY(10); 1431 } 1432 if (ntries == 1000) { 1433 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1434 error = ETIMEDOUT; 1435 } 1436 1437 /* start the microcode executing */ 1438 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1439 1440 wpi_mem_unlock(sc); 1441 1442 return (error); 1443 } 1444 1445 static void 1446 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1447 struct wpi_rx_data *data) 1448 { 1449 struct ifnet *ifp = sc->sc_ifp; 1450 struct ieee80211com *ic = ifp->if_l2com; 1451 struct wpi_rx_ring *ring = &sc->rxq; 1452 struct wpi_rx_stat *stat; 1453 struct wpi_rx_head *head; 1454 struct wpi_rx_tail *tail; 1455 struct ieee80211_node *ni; 1456 struct mbuf *m, *mnew; 1457 bus_addr_t paddr; 1458 int error; 1459 1460 stat = (struct wpi_rx_stat *)(desc + 1); 1461 1462 if (stat->len > WPI_STAT_MAXLEN) { 1463 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1464 ifp->if_ierrors++; 1465 return; 1466 } 1467 1468 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1469 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1470 1471 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1472 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1473 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1474 (uintmax_t)le64toh(tail->tstamp))); 1475 1476 /* XXX don't need mbuf, just dma buffer */ 1477 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1478 if (mnew == NULL) { 1479 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1480 __func__)); 1481 ifp->if_ierrors++; 1482 return; 1483 } 1484 error = bus_dmamap_load(ring->data_dmat, data->map, 1485 mtod(mnew, caddr_t), MJUMPAGESIZE, 1486 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1487 if (error != 0 && error != EFBIG) { 1488 device_printf(sc->sc_dev, 1489 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1490 m_freem(mnew); 1491 ifp->if_ierrors++; 1492 return; 1493 } 1494 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1495 1496 /* finalize mbuf and swap in new one */ 1497 m = data->m; 1498 m->m_pkthdr.rcvif = ifp; 1499 m->m_data = (caddr_t)(head + 1); 1500 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1501 1502 data->m = mnew; 1503 /* update Rx descriptor */ 1504 ring->desc[ring->cur] = htole32(paddr); 1505 1506 if (bpf_peers_present(ifp->if_bpf)) { 1507 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1508 1509 tap->wr_flags = 0; 1510 tap->wr_chan_freq = 1511 htole16(ic->ic_channels[head->chan].ic_freq); 1512 tap->wr_chan_flags = 1513 htole16(ic->ic_channels[head->chan].ic_flags); 1514 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1515 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1516 tap->wr_tsft = tail->tstamp; 1517 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1518 switch (head->rate) { 1519 /* CCK rates */ 1520 case 10: tap->wr_rate = 2; break; 1521 case 20: tap->wr_rate = 4; break; 1522 case 55: tap->wr_rate = 11; break; 1523 case 110: tap->wr_rate = 22; break; 1524 /* OFDM rates */ 1525 case 0xd: tap->wr_rate = 12; break; 1526 case 0xf: tap->wr_rate = 18; break; 1527 case 0x5: tap->wr_rate = 24; break; 1528 case 0x7: tap->wr_rate = 36; break; 1529 case 0x9: tap->wr_rate = 48; break; 1530 case 0xb: tap->wr_rate = 72; break; 1531 case 0x1: tap->wr_rate = 96; break; 1532 case 0x3: tap->wr_rate = 108; break; 1533 /* unknown rate: should not happen */ 1534 default: tap->wr_rate = 0; 1535 } 1536 if (le16toh(head->flags) & 0x4) 1537 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1538 1539 bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m); 1540 } 1541 1542 WPI_UNLOCK(sc); 1543 1544 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1545 if (ni != NULL) { 1546 (void) ieee80211_input(ni, m, stat->rssi, 0, 0); 1547 ieee80211_free_node(ni); 1548 } else 1549 (void) ieee80211_input_all(ic, m, stat->rssi, 0, 0); 1550 1551 WPI_LOCK(sc); 1552 } 1553 1554 static void 1555 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1556 { 1557 struct ifnet *ifp = sc->sc_ifp; 1558 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1559 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1560 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1561 struct wpi_node *wn = (struct wpi_node *)txdata->ni; 1562 1563 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1564 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1565 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1566 le32toh(stat->status))); 1567 1568 /* 1569 * Update rate control statistics for the node. 1570 * XXX we should not count mgmt frames since they're always sent at 1571 * the lowest available bit-rate. 1572 * XXX frames w/o ACK shouldn't be used either 1573 */ 1574 wn->amn.amn_txcnt++; 1575 if (stat->ntries > 0) { 1576 DPRINTFN(3, ("%d retries\n", stat->ntries)); 1577 wn->amn.amn_retrycnt++; 1578 } 1579 1580 /* XXX oerrors should only count errors !maxtries */ 1581 if ((le32toh(stat->status) & 0xff) != 1) 1582 ifp->if_oerrors++; 1583 else 1584 ifp->if_opackets++; 1585 1586 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1587 bus_dmamap_unload(ring->data_dmat, txdata->map); 1588 /* XXX handle M_TXCB? */ 1589 m_freem(txdata->m); 1590 txdata->m = NULL; 1591 ieee80211_free_node(txdata->ni); 1592 txdata->ni = NULL; 1593 1594 ring->queued--; 1595 1596 sc->sc_tx_timer = 0; 1597 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1598 wpi_start_locked(ifp); 1599 } 1600 1601 static void 1602 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1603 { 1604 struct wpi_tx_ring *ring = &sc->cmdq; 1605 struct wpi_tx_data *data; 1606 1607 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1608 "type=%s len=%d\n", desc->qid, desc->idx, 1609 desc->flags, wpi_cmd_str(desc->type), 1610 le32toh(desc->len))); 1611 1612 if ((desc->qid & 7) != 4) 1613 return; /* not a command ack */ 1614 1615 data = &ring->data[desc->idx]; 1616 1617 /* if the command was mapped in a mbuf, free it */ 1618 if (data->m != NULL) { 1619 bus_dmamap_unload(ring->data_dmat, data->map); 1620 m_freem(data->m); 1621 data->m = NULL; 1622 } 1623 1624 sc->flags &= ~WPI_FLAG_BUSY; 1625 wakeup(&ring->cmd[desc->idx]); 1626 } 1627 1628 static void 1629 wpi_bmiss(void *arg, int npending) 1630 { 1631 struct wpi_softc *sc = arg; 1632 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1633 1634 ieee80211_beacon_miss(ic); 1635 } 1636 1637 static void 1638 wpi_notif_intr(struct wpi_softc *sc) 1639 { 1640 struct ifnet *ifp = sc->sc_ifp; 1641 struct ieee80211com *ic = ifp->if_l2com; 1642 struct wpi_rx_desc *desc; 1643 struct wpi_rx_data *data; 1644 uint32_t hw; 1645 1646 hw = le32toh(sc->shared->next); 1647 while (sc->rxq.cur != hw) { 1648 data = &sc->rxq.data[sc->rxq.cur]; 1649 desc = (void *)data->m->m_ext.ext_buf; 1650 1651 DPRINTFN(WPI_DEBUG_NOTIFY, 1652 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1653 desc->qid, 1654 desc->idx, 1655 desc->flags, 1656 desc->type, 1657 le32toh(desc->len))); 1658 1659 if (!(desc->qid & 0x80)) /* reply to a command */ 1660 wpi_cmd_intr(sc, desc); 1661 1662 switch (desc->type) { 1663 case WPI_RX_DONE: 1664 /* a 802.11 frame was received */ 1665 wpi_rx_intr(sc, desc, data); 1666 break; 1667 1668 case WPI_TX_DONE: 1669 /* a 802.11 frame has been transmitted */ 1670 wpi_tx_intr(sc, desc); 1671 break; 1672 1673 case WPI_UC_READY: 1674 { 1675 struct wpi_ucode_info *uc = 1676 (struct wpi_ucode_info *)(desc + 1); 1677 1678 /* the microcontroller is ready */ 1679 DPRINTF(("microcode alive notification version %x " 1680 "alive %x\n", le32toh(uc->version), 1681 le32toh(uc->valid))); 1682 1683 if (le32toh(uc->valid) != 1) { 1684 device_printf(sc->sc_dev, 1685 "microcontroller initialization failed\n"); 1686 wpi_stop_locked(sc); 1687 } 1688 break; 1689 } 1690 case WPI_STATE_CHANGED: 1691 { 1692 uint32_t *status = (uint32_t *)(desc + 1); 1693 1694 /* enabled/disabled notification */ 1695 DPRINTF(("state changed to %x\n", le32toh(*status))); 1696 1697 if (le32toh(*status) & 1) { 1698 device_printf(sc->sc_dev, 1699 "Radio transmitter is switched off\n"); 1700 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1701 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1702 /* Disable firmware commands */ 1703 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1704 } 1705 break; 1706 } 1707 case WPI_START_SCAN: 1708 { 1709 #ifdef WPI_DEBUG 1710 struct wpi_start_scan *scan = 1711 (struct wpi_start_scan *)(desc + 1); 1712 #endif 1713 1714 DPRINTFN(WPI_DEBUG_SCANNING, 1715 ("scanning channel %d status %x\n", 1716 scan->chan, le32toh(scan->status))); 1717 break; 1718 } 1719 case WPI_STOP_SCAN: 1720 { 1721 #ifdef WPI_DEBUG 1722 struct wpi_stop_scan *scan = 1723 (struct wpi_stop_scan *)(desc + 1); 1724 #endif 1725 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1726 1727 DPRINTFN(WPI_DEBUG_SCANNING, 1728 ("scan finished nchan=%d status=%d chan=%d\n", 1729 scan->nchan, scan->status, scan->chan)); 1730 1731 sc->sc_scan_timer = 0; 1732 ieee80211_scan_next(vap); 1733 break; 1734 } 1735 case WPI_MISSED_BEACON: 1736 { 1737 struct wpi_missed_beacon *beacon = 1738 (struct wpi_missed_beacon *)(desc + 1); 1739 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1740 1741 if (le32toh(beacon->consecutive) >= 1742 vap->iv_bmissthreshold) { 1743 DPRINTF(("Beacon miss: %u >= %u\n", 1744 le32toh(beacon->consecutive), 1745 vap->iv_bmissthreshold)); 1746 taskqueue_enqueue(taskqueue_swi, 1747 &sc->sc_bmiss_task); 1748 } 1749 break; 1750 } 1751 } 1752 1753 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1754 } 1755 1756 /* tell the firmware what we have processed */ 1757 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1758 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1759 } 1760 1761 static void 1762 wpi_intr(void *arg) 1763 { 1764 struct wpi_softc *sc = arg; 1765 uint32_t r; 1766 1767 WPI_LOCK(sc); 1768 1769 r = WPI_READ(sc, WPI_INTR); 1770 if (r == 0 || r == 0xffffffff) { 1771 WPI_UNLOCK(sc); 1772 return; 1773 } 1774 1775 /* disable interrupts */ 1776 WPI_WRITE(sc, WPI_MASK, 0); 1777 /* ack interrupts */ 1778 WPI_WRITE(sc, WPI_INTR, r); 1779 1780 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1781 device_printf(sc->sc_dev, "fatal firmware error\n"); 1782 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1783 "(Hardware Error)")); 1784 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 1785 sc->flags &= ~WPI_FLAG_BUSY; 1786 WPI_UNLOCK(sc); 1787 return; 1788 } 1789 1790 if (r & WPI_RX_INTR) 1791 wpi_notif_intr(sc); 1792 1793 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1794 wakeup(sc); 1795 1796 /* re-enable interrupts */ 1797 if (sc->sc_ifp->if_flags & IFF_UP) 1798 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1799 1800 WPI_UNLOCK(sc); 1801 } 1802 1803 static uint8_t 1804 wpi_plcp_signal(int rate) 1805 { 1806 switch (rate) { 1807 /* CCK rates (returned values are device-dependent) */ 1808 case 2: return 10; 1809 case 4: return 20; 1810 case 11: return 55; 1811 case 22: return 110; 1812 1813 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1814 /* R1-R4 (ral/ural is R4-R1) */ 1815 case 12: return 0xd; 1816 case 18: return 0xf; 1817 case 24: return 0x5; 1818 case 36: return 0x7; 1819 case 48: return 0x9; 1820 case 72: return 0xb; 1821 case 96: return 0x1; 1822 case 108: return 0x3; 1823 1824 /* unsupported rates (should not get there) */ 1825 default: return 0; 1826 } 1827 } 1828 1829 /* quickly determine if a given rate is CCK or OFDM */ 1830 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1831 1832 /* 1833 * Construct the data packet for a transmit buffer and acutally put 1834 * the buffer onto the transmit ring, kicking the card to process the 1835 * the buffer. 1836 */ 1837 static int 1838 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1839 int ac) 1840 { 1841 struct ieee80211vap *vap = ni->ni_vap; 1842 struct ifnet *ifp = sc->sc_ifp; 1843 struct ieee80211com *ic = ifp->if_l2com; 1844 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1845 struct wpi_tx_ring *ring = &sc->txq[ac]; 1846 struct wpi_tx_desc *desc; 1847 struct wpi_tx_data *data; 1848 struct wpi_tx_cmd *cmd; 1849 struct wpi_cmd_data *tx; 1850 struct ieee80211_frame *wh; 1851 const struct ieee80211_txparam *tp; 1852 struct ieee80211_key *k; 1853 struct mbuf *mnew; 1854 int i, error, nsegs, rate, hdrlen, ismcast; 1855 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1856 1857 desc = &ring->desc[ring->cur]; 1858 data = &ring->data[ring->cur]; 1859 1860 wh = mtod(m0, struct ieee80211_frame *); 1861 1862 hdrlen = ieee80211_hdrsize(wh); 1863 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1864 1865 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1866 k = ieee80211_crypto_encap(ni, m0); 1867 if (k == NULL) { 1868 m_freem(m0); 1869 return ENOBUFS; 1870 } 1871 /* packet header may have moved, reset our local pointer */ 1872 wh = mtod(m0, struct ieee80211_frame *); 1873 } 1874 1875 cmd = &ring->cmd[ring->cur]; 1876 cmd->code = WPI_CMD_TX_DATA; 1877 cmd->flags = 0; 1878 cmd->qid = ring->qid; 1879 cmd->idx = ring->cur; 1880 1881 tx = (struct wpi_cmd_data *)cmd->data; 1882 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1883 tx->timeout = htole16(0); 1884 tx->ofdm_mask = 0xff; 1885 tx->cck_mask = 0x0f; 1886 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1887 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1888 tx->len = htole16(m0->m_pkthdr.len); 1889 1890 if (!ismcast) { 1891 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1892 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1893 tx->flags |= htole32(WPI_TX_NEED_ACK); 1894 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1895 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1896 tx->rts_ntries = 7; 1897 } 1898 } 1899 /* pick a rate */ 1900 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1901 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1902 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1903 /* tell h/w to set timestamp in probe responses */ 1904 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1905 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1906 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1907 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1908 tx->timeout = htole16(3); 1909 else 1910 tx->timeout = htole16(2); 1911 rate = tp->mgmtrate; 1912 } else if (ismcast) { 1913 rate = tp->mcastrate; 1914 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1915 rate = tp->ucastrate; 1916 } else { 1917 (void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn); 1918 rate = ni->ni_txrate; 1919 } 1920 tx->rate = wpi_plcp_signal(rate); 1921 1922 /* be very persistant at sending frames out */ 1923 #if 0 1924 tx->data_ntries = tp->maxretry; 1925 #else 1926 tx->data_ntries = 15; /* XXX way too high */ 1927 #endif 1928 1929 if (bpf_peers_present(ifp->if_bpf)) { 1930 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1931 tap->wt_flags = 0; 1932 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1933 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1934 tap->wt_rate = rate; 1935 tap->wt_hwqueue = ac; 1936 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1937 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1938 1939 bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0); 1940 } 1941 1942 /* save and trim IEEE802.11 header */ 1943 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1944 m_adj(m0, hdrlen); 1945 1946 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1947 &nsegs, BUS_DMA_NOWAIT); 1948 if (error != 0 && error != EFBIG) { 1949 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1950 error); 1951 m_freem(m0); 1952 return error; 1953 } 1954 if (error != 0) { 1955 /* XXX use m_collapse */ 1956 mnew = m_defrag(m0, M_DONTWAIT); 1957 if (mnew == NULL) { 1958 device_printf(sc->sc_dev, 1959 "could not defragment mbuf\n"); 1960 m_freem(m0); 1961 return ENOBUFS; 1962 } 1963 m0 = mnew; 1964 1965 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1966 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1967 if (error != 0) { 1968 device_printf(sc->sc_dev, 1969 "could not map mbuf (error %d)\n", error); 1970 m_freem(m0); 1971 return error; 1972 } 1973 } 1974 1975 data->m = m0; 1976 data->ni = ni; 1977 1978 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1979 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1980 1981 /* first scatter/gather segment is used by the tx data command */ 1982 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1983 (1 + nsegs) << 24); 1984 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1985 ring->cur * sizeof (struct wpi_tx_cmd)); 1986 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 1987 for (i = 1; i <= nsegs; i++) { 1988 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 1989 desc->segs[i].len = htole32(segs[i - 1].ds_len); 1990 } 1991 1992 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1993 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1994 BUS_DMASYNC_PREWRITE); 1995 1996 ring->queued++; 1997 1998 /* kick ring */ 1999 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2000 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2001 2002 return 0; 2003 } 2004 2005 /** 2006 * Process data waiting to be sent on the IFNET output queue 2007 */ 2008 static void 2009 wpi_start(struct ifnet *ifp) 2010 { 2011 struct wpi_softc *sc = ifp->if_softc; 2012 2013 WPI_LOCK(sc); 2014 wpi_start_locked(ifp); 2015 WPI_UNLOCK(sc); 2016 } 2017 2018 static void 2019 wpi_start_locked(struct ifnet *ifp) 2020 { 2021 struct wpi_softc *sc = ifp->if_softc; 2022 struct ieee80211_node *ni; 2023 struct mbuf *m; 2024 int ac; 2025 2026 WPI_LOCK_ASSERT(sc); 2027 2028 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2029 return; 2030 2031 for (;;) { 2032 IFQ_POLL(&ifp->if_snd, m); 2033 if (m == NULL) 2034 break; 2035 /* no QoS encapsulation for EAPOL frames */ 2036 ac = M_WME_GETAC(m); 2037 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2038 /* there is no place left in this ring */ 2039 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2040 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2041 break; 2042 } 2043 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2044 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2045 m = ieee80211_encap(ni, m); 2046 if (m == NULL) { 2047 ieee80211_free_node(ni); 2048 ifp->if_oerrors++; 2049 continue; 2050 } 2051 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2052 ieee80211_free_node(ni); 2053 ifp->if_oerrors++; 2054 break; 2055 } 2056 sc->sc_tx_timer = 5; 2057 } 2058 } 2059 2060 static int 2061 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2062 const struct ieee80211_bpf_params *params) 2063 { 2064 struct ieee80211com *ic = ni->ni_ic; 2065 struct ifnet *ifp = ic->ic_ifp; 2066 struct wpi_softc *sc = ifp->if_softc; 2067 2068 /* prevent management frames from being sent if we're not ready */ 2069 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2070 m_freem(m); 2071 ieee80211_free_node(ni); 2072 return ENETDOWN; 2073 } 2074 WPI_LOCK(sc); 2075 2076 /* management frames go into ring 0 */ 2077 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2078 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2079 m_freem(m); 2080 WPI_UNLOCK(sc); 2081 ieee80211_free_node(ni); 2082 return ENOBUFS; /* XXX */ 2083 } 2084 2085 ifp->if_opackets++; 2086 if (wpi_tx_data(sc, m, ni, 0) != 0) 2087 goto bad; 2088 sc->sc_tx_timer = 5; 2089 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2090 2091 WPI_UNLOCK(sc); 2092 return 0; 2093 bad: 2094 ifp->if_oerrors++; 2095 WPI_UNLOCK(sc); 2096 ieee80211_free_node(ni); 2097 return EIO; /* XXX */ 2098 } 2099 2100 static int 2101 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2102 { 2103 struct wpi_softc *sc = ifp->if_softc; 2104 struct ieee80211com *ic = ifp->if_l2com; 2105 struct ifreq *ifr = (struct ifreq *) data; 2106 int error = 0, startall = 0; 2107 2108 switch (cmd) { 2109 case SIOCSIFFLAGS: 2110 WPI_LOCK(sc); 2111 if ((ifp->if_flags & IFF_UP)) { 2112 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2113 wpi_init_locked(sc, 0); 2114 startall = 1; 2115 } 2116 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2117 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2118 wpi_stop_locked(sc); 2119 WPI_UNLOCK(sc); 2120 if (startall) 2121 ieee80211_start_all(ic); 2122 break; 2123 case SIOCGIFMEDIA: 2124 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2125 break; 2126 case SIOCGIFADDR: 2127 error = ether_ioctl(ifp, cmd, data); 2128 break; 2129 default: 2130 error = EINVAL; 2131 break; 2132 } 2133 return error; 2134 } 2135 2136 /* 2137 * Extract various information from EEPROM. 2138 */ 2139 static void 2140 wpi_read_eeprom(struct wpi_softc *sc) 2141 { 2142 struct ifnet *ifp = sc->sc_ifp; 2143 struct ieee80211com *ic = ifp->if_l2com; 2144 int i; 2145 2146 /* read the hardware capabilities, revision and SKU type */ 2147 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2148 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2149 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2150 2151 /* read the regulatory domain */ 2152 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2153 2154 /* read in the hw MAC address */ 2155 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 2156 2157 /* read the list of authorized channels */ 2158 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2159 wpi_read_eeprom_channels(sc,i); 2160 2161 /* read the power level calibration info for each group */ 2162 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2163 wpi_read_eeprom_group(sc,i); 2164 } 2165 2166 /* 2167 * Send a command to the firmware. 2168 */ 2169 static int 2170 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2171 { 2172 struct wpi_tx_ring *ring = &sc->cmdq; 2173 struct wpi_tx_desc *desc; 2174 struct wpi_tx_cmd *cmd; 2175 2176 #ifdef WPI_DEBUG 2177 if (!async) { 2178 WPI_LOCK_ASSERT(sc); 2179 } 2180 #endif 2181 2182 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2183 async)); 2184 2185 if (sc->flags & WPI_FLAG_BUSY) { 2186 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2187 __func__, code); 2188 return EAGAIN; 2189 } 2190 sc->flags|= WPI_FLAG_BUSY; 2191 2192 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2193 code, size)); 2194 2195 desc = &ring->desc[ring->cur]; 2196 cmd = &ring->cmd[ring->cur]; 2197 2198 cmd->code = code; 2199 cmd->flags = 0; 2200 cmd->qid = ring->qid; 2201 cmd->idx = ring->cur; 2202 memcpy(cmd->data, buf, size); 2203 2204 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2205 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2206 ring->cur * sizeof (struct wpi_tx_cmd)); 2207 desc->segs[0].len = htole32(4 + size); 2208 2209 /* kick cmd ring */ 2210 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2211 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2212 2213 if (async) { 2214 sc->flags &= ~ WPI_FLAG_BUSY; 2215 return 0; 2216 } 2217 2218 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2219 } 2220 2221 static int 2222 wpi_wme_update(struct ieee80211com *ic) 2223 { 2224 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2225 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2226 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2227 const struct wmeParams *wmep; 2228 struct wpi_wme_setup wme; 2229 int ac; 2230 2231 /* don't override default WME values if WME is not actually enabled */ 2232 if (!(ic->ic_flags & IEEE80211_F_WME)) 2233 return 0; 2234 2235 wme.flags = 0; 2236 for (ac = 0; ac < WME_NUM_AC; ac++) { 2237 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2238 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2239 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2240 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2241 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2242 2243 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2244 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2245 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2246 } 2247 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2248 #undef WPI_USEC 2249 #undef WPI_EXP2 2250 } 2251 2252 /* 2253 * Configure h/w multi-rate retries. 2254 */ 2255 static int 2256 wpi_mrr_setup(struct wpi_softc *sc) 2257 { 2258 struct ifnet *ifp = sc->sc_ifp; 2259 struct ieee80211com *ic = ifp->if_l2com; 2260 struct wpi_mrr_setup mrr; 2261 int i, error; 2262 2263 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2264 2265 /* CCK rates (not used with 802.11a) */ 2266 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2267 mrr.rates[i].flags = 0; 2268 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2269 /* fallback to the immediate lower CCK rate (if any) */ 2270 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2271 /* try one time at this rate before falling back to "next" */ 2272 mrr.rates[i].ntries = 1; 2273 } 2274 2275 /* OFDM rates (not used with 802.11b) */ 2276 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2277 mrr.rates[i].flags = 0; 2278 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2279 /* fallback to the immediate lower OFDM rate (if any) */ 2280 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2281 mrr.rates[i].next = (i == WPI_OFDM6) ? 2282 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2283 WPI_OFDM6 : WPI_CCK2) : 2284 i - 1; 2285 /* try one time at this rate before falling back to "next" */ 2286 mrr.rates[i].ntries = 1; 2287 } 2288 2289 /* setup MRR for control frames */ 2290 mrr.which = htole32(WPI_MRR_CTL); 2291 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2292 if (error != 0) { 2293 device_printf(sc->sc_dev, 2294 "could not setup MRR for control frames\n"); 2295 return error; 2296 } 2297 2298 /* setup MRR for data frames */ 2299 mrr.which = htole32(WPI_MRR_DATA); 2300 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2301 if (error != 0) { 2302 device_printf(sc->sc_dev, 2303 "could not setup MRR for data frames\n"); 2304 return error; 2305 } 2306 2307 return 0; 2308 } 2309 2310 static void 2311 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2312 { 2313 struct wpi_cmd_led led; 2314 2315 led.which = which; 2316 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2317 led.off = off; 2318 led.on = on; 2319 2320 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2321 } 2322 2323 static void 2324 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2325 { 2326 struct wpi_cmd_tsf tsf; 2327 uint64_t val, mod; 2328 2329 memset(&tsf, 0, sizeof tsf); 2330 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2331 tsf.bintval = htole16(ni->ni_intval); 2332 tsf.lintval = htole16(10); 2333 2334 /* compute remaining time until next beacon */ 2335 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2336 mod = le64toh(tsf.tstamp) % val; 2337 tsf.binitval = htole32((uint32_t)(val - mod)); 2338 2339 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2340 device_printf(sc->sc_dev, "could not enable TSF\n"); 2341 } 2342 2343 #if 0 2344 /* 2345 * Build a beacon frame that the firmware will broadcast periodically in 2346 * IBSS or HostAP modes. 2347 */ 2348 static int 2349 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2350 { 2351 struct ifnet *ifp = sc->sc_ifp; 2352 struct ieee80211com *ic = ifp->if_l2com; 2353 struct wpi_tx_ring *ring = &sc->cmdq; 2354 struct wpi_tx_desc *desc; 2355 struct wpi_tx_data *data; 2356 struct wpi_tx_cmd *cmd; 2357 struct wpi_cmd_beacon *bcn; 2358 struct ieee80211_beacon_offsets bo; 2359 struct mbuf *m0; 2360 bus_addr_t physaddr; 2361 int error; 2362 2363 desc = &ring->desc[ring->cur]; 2364 data = &ring->data[ring->cur]; 2365 2366 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2367 if (m0 == NULL) { 2368 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2369 return ENOMEM; 2370 } 2371 2372 cmd = &ring->cmd[ring->cur]; 2373 cmd->code = WPI_CMD_SET_BEACON; 2374 cmd->flags = 0; 2375 cmd->qid = ring->qid; 2376 cmd->idx = ring->cur; 2377 2378 bcn = (struct wpi_cmd_beacon *)cmd->data; 2379 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2380 bcn->id = WPI_ID_BROADCAST; 2381 bcn->ofdm_mask = 0xff; 2382 bcn->cck_mask = 0x0f; 2383 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2384 bcn->len = htole16(m0->m_pkthdr.len); 2385 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2386 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2387 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2388 2389 /* save and trim IEEE802.11 header */ 2390 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2391 m_adj(m0, sizeof (struct ieee80211_frame)); 2392 2393 /* assume beacon frame is contiguous */ 2394 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2395 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2396 if (error != 0) { 2397 device_printf(sc->sc_dev, "could not map beacon\n"); 2398 m_freem(m0); 2399 return error; 2400 } 2401 2402 data->m = m0; 2403 2404 /* first scatter/gather segment is used by the beacon command */ 2405 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2406 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2407 ring->cur * sizeof (struct wpi_tx_cmd)); 2408 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2409 desc->segs[1].addr = htole32(physaddr); 2410 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2411 2412 /* kick cmd ring */ 2413 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2414 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2415 2416 return 0; 2417 } 2418 #endif 2419 2420 static int 2421 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2422 { 2423 struct ieee80211com *ic = vap->iv_ic; 2424 struct ieee80211_node *ni = vap->iv_bss; 2425 struct wpi_node_info node; 2426 int error; 2427 2428 2429 /* update adapter's configuration */ 2430 sc->config.associd = 0; 2431 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2432 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2433 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2434 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2435 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2436 WPI_CONFIG_24GHZ); 2437 } 2438 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2439 sc->config.cck_mask = 0; 2440 sc->config.ofdm_mask = 0x15; 2441 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2442 sc->config.cck_mask = 0x03; 2443 sc->config.ofdm_mask = 0; 2444 } else { 2445 /* XXX assume 802.11b/g */ 2446 sc->config.cck_mask = 0x0f; 2447 sc->config.ofdm_mask = 0x15; 2448 } 2449 2450 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2451 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2452 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2453 sizeof (struct wpi_config), 1); 2454 if (error != 0) { 2455 device_printf(sc->sc_dev, "could not configure\n"); 2456 return error; 2457 } 2458 2459 /* configuration has changed, set Tx power accordingly */ 2460 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2461 device_printf(sc->sc_dev, "could not set Tx power\n"); 2462 return error; 2463 } 2464 2465 /* add default node */ 2466 memset(&node, 0, sizeof node); 2467 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2468 node.id = WPI_ID_BSS; 2469 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2470 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2471 node.action = htole32(WPI_ACTION_SET_RATE); 2472 node.antenna = WPI_ANTENNA_BOTH; 2473 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2474 if (error != 0) 2475 device_printf(sc->sc_dev, "could not add BSS node\n"); 2476 2477 return (error); 2478 } 2479 2480 static int 2481 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2482 { 2483 struct ieee80211com *ic = vap->iv_ic; 2484 struct ieee80211_node *ni = vap->iv_bss; 2485 int error; 2486 2487 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2488 /* link LED blinks while monitoring */ 2489 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2490 return 0; 2491 } 2492 2493 wpi_enable_tsf(sc, ni); 2494 2495 /* update adapter's configuration */ 2496 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2497 /* short preamble/slot time are negotiated when associating */ 2498 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2499 WPI_CONFIG_SHSLOT); 2500 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2501 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2502 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2503 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2504 sc->config.filter |= htole32(WPI_FILTER_BSS); 2505 2506 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2507 2508 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2509 sc->config.flags)); 2510 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2511 wpi_config), 1); 2512 if (error != 0) { 2513 device_printf(sc->sc_dev, "could not update configuration\n"); 2514 return error; 2515 } 2516 2517 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2518 if (error != 0) { 2519 device_printf(sc->sc_dev, "could set txpower\n"); 2520 return error; 2521 } 2522 2523 /* link LED always on while associated */ 2524 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2525 2526 /* start automatic rate control timer */ 2527 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2528 2529 return (error); 2530 } 2531 2532 /* 2533 * Send a scan request to the firmware. Since this command is huge, we map it 2534 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2535 * much of this code is similar to that in wpi_cmd but because we must manually 2536 * construct the probe & channels, we duplicate what's needed here. XXX In the 2537 * future, this function should be modified to use wpi_cmd to help cleanup the 2538 * code base. 2539 */ 2540 static int 2541 wpi_scan(struct wpi_softc *sc) 2542 { 2543 struct ifnet *ifp = sc->sc_ifp; 2544 struct ieee80211com *ic = ifp->if_l2com; 2545 struct ieee80211_scan_state *ss = ic->ic_scan; 2546 struct wpi_tx_ring *ring = &sc->cmdq; 2547 struct wpi_tx_desc *desc; 2548 struct wpi_tx_data *data; 2549 struct wpi_tx_cmd *cmd; 2550 struct wpi_scan_hdr *hdr; 2551 struct wpi_scan_chan *chan; 2552 struct ieee80211_frame *wh; 2553 struct ieee80211_rateset *rs; 2554 struct ieee80211_channel *c; 2555 enum ieee80211_phymode mode; 2556 uint8_t *frm; 2557 int nrates, pktlen, error, i, nssid; 2558 bus_addr_t physaddr; 2559 2560 desc = &ring->desc[ring->cur]; 2561 data = &ring->data[ring->cur]; 2562 2563 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2564 if (data->m == NULL) { 2565 device_printf(sc->sc_dev, 2566 "could not allocate mbuf for scan command\n"); 2567 return ENOMEM; 2568 } 2569 2570 cmd = mtod(data->m, struct wpi_tx_cmd *); 2571 cmd->code = WPI_CMD_SCAN; 2572 cmd->flags = 0; 2573 cmd->qid = ring->qid; 2574 cmd->idx = ring->cur; 2575 2576 hdr = (struct wpi_scan_hdr *)cmd->data; 2577 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2578 2579 /* 2580 * Move to the next channel if no packets are received within 5 msecs 2581 * after sending the probe request (this helps to reduce the duration 2582 * of active scans). 2583 */ 2584 hdr->quiet = htole16(5); 2585 hdr->threshold = htole16(1); 2586 2587 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2588 /* send probe requests at 6Mbps */ 2589 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2590 2591 /* Enable crc checking */ 2592 hdr->promotion = htole16(1); 2593 } else { 2594 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2595 /* send probe requests at 1Mbps */ 2596 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2597 } 2598 hdr->tx.id = WPI_ID_BROADCAST; 2599 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2600 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2601 2602 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2603 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2604 for (i = 0; i < nssid; i++) { 2605 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2606 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2607 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2608 hdr->scan_essids[i].esslen); 2609 #ifdef WPI_DEBUG 2610 if (wpi_debug & WPI_DEBUG_SCANNING) { 2611 printf("Scanning Essid: "); 2612 ieee80211_print_essid(hdr->scan_essids[i].essid, 2613 hdr->scan_essids[i].esslen); 2614 printf("\n"); 2615 } 2616 #endif 2617 } 2618 2619 /* 2620 * Build a probe request frame. Most of the following code is a 2621 * copy & paste of what is done in net80211. 2622 */ 2623 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2624 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2625 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2626 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2627 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2628 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2629 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2630 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2631 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2632 2633 frm = (uint8_t *)(wh + 1); 2634 2635 /* add essid IE, the hardware will fill this in for us */ 2636 *frm++ = IEEE80211_ELEMID_SSID; 2637 *frm++ = 0; 2638 2639 mode = ieee80211_chan2mode(ic->ic_curchan); 2640 rs = &ic->ic_sup_rates[mode]; 2641 2642 /* add supported rates IE */ 2643 *frm++ = IEEE80211_ELEMID_RATES; 2644 nrates = rs->rs_nrates; 2645 if (nrates > IEEE80211_RATE_SIZE) 2646 nrates = IEEE80211_RATE_SIZE; 2647 *frm++ = nrates; 2648 memcpy(frm, rs->rs_rates, nrates); 2649 frm += nrates; 2650 2651 /* add supported xrates IE */ 2652 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2653 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2654 *frm++ = IEEE80211_ELEMID_XRATES; 2655 *frm++ = nrates; 2656 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2657 frm += nrates; 2658 } 2659 2660 /* setup length of probe request */ 2661 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2662 2663 /* 2664 * Construct information about the channel that we 2665 * want to scan. The firmware expects this to be directly 2666 * after the scan probe request 2667 */ 2668 c = ic->ic_curchan; 2669 chan = (struct wpi_scan_chan *)frm; 2670 chan->chan = ieee80211_chan2ieee(ic, c); 2671 chan->flags = 0; 2672 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2673 chan->flags |= WPI_CHAN_ACTIVE; 2674 if (nssid != 0) 2675 chan->flags |= WPI_CHAN_DIRECT; 2676 } 2677 chan->gain_dsp = 0x6e; /* Default level */ 2678 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2679 chan->active = htole16(10); 2680 chan->passive = htole16(ss->ss_maxdwell); 2681 chan->gain_radio = 0x3b; 2682 } else { 2683 chan->active = htole16(20); 2684 chan->passive = htole16(ss->ss_maxdwell); 2685 chan->gain_radio = 0x28; 2686 } 2687 2688 DPRINTFN(WPI_DEBUG_SCANNING, 2689 ("Scanning %u Passive: %d\n", 2690 chan->chan, 2691 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2692 2693 hdr->nchan++; 2694 chan++; 2695 2696 frm += sizeof (struct wpi_scan_chan); 2697 #if 0 2698 // XXX All Channels.... 2699 for (c = &ic->ic_channels[1]; 2700 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2701 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2702 continue; 2703 2704 chan->chan = ieee80211_chan2ieee(ic, c); 2705 chan->flags = 0; 2706 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2707 chan->flags |= WPI_CHAN_ACTIVE; 2708 if (ic->ic_des_ssid[0].len != 0) 2709 chan->flags |= WPI_CHAN_DIRECT; 2710 } 2711 chan->gain_dsp = 0x6e; /* Default level */ 2712 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2713 chan->active = htole16(10); 2714 chan->passive = htole16(110); 2715 chan->gain_radio = 0x3b; 2716 } else { 2717 chan->active = htole16(20); 2718 chan->passive = htole16(120); 2719 chan->gain_radio = 0x28; 2720 } 2721 2722 DPRINTFN(WPI_DEBUG_SCANNING, 2723 ("Scanning %u Passive: %d\n", 2724 chan->chan, 2725 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2726 2727 hdr->nchan++; 2728 chan++; 2729 2730 frm += sizeof (struct wpi_scan_chan); 2731 } 2732 #endif 2733 2734 hdr->len = htole16(frm - (uint8_t *)hdr); 2735 pktlen = frm - (uint8_t *)cmd; 2736 2737 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2738 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2739 if (error != 0) { 2740 device_printf(sc->sc_dev, "could not map scan command\n"); 2741 m_freem(data->m); 2742 data->m = NULL; 2743 return error; 2744 } 2745 2746 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2747 desc->segs[0].addr = htole32(physaddr); 2748 desc->segs[0].len = htole32(pktlen); 2749 2750 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2751 BUS_DMASYNC_PREWRITE); 2752 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2753 2754 /* kick cmd ring */ 2755 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2756 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2757 2758 sc->sc_scan_timer = 5; 2759 return 0; /* will be notified async. of failure/success */ 2760 } 2761 2762 /** 2763 * Configure the card to listen to a particular channel, this transisions the 2764 * card in to being able to receive frames from remote devices. 2765 */ 2766 static int 2767 wpi_config(struct wpi_softc *sc) 2768 { 2769 struct ifnet *ifp = sc->sc_ifp; 2770 struct ieee80211com *ic = ifp->if_l2com; 2771 struct wpi_power power; 2772 struct wpi_bluetooth bluetooth; 2773 struct wpi_node_info node; 2774 int error; 2775 2776 /* set power mode */ 2777 memset(&power, 0, sizeof power); 2778 power.flags = htole32(WPI_POWER_CAM|0x8); 2779 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2780 if (error != 0) { 2781 device_printf(sc->sc_dev, "could not set power mode\n"); 2782 return error; 2783 } 2784 2785 /* configure bluetooth coexistence */ 2786 memset(&bluetooth, 0, sizeof bluetooth); 2787 bluetooth.flags = 3; 2788 bluetooth.lead = 0xaa; 2789 bluetooth.kill = 1; 2790 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2791 0); 2792 if (error != 0) { 2793 device_printf(sc->sc_dev, 2794 "could not configure bluetooth coexistence\n"); 2795 return error; 2796 } 2797 2798 /* configure adapter */ 2799 memset(&sc->config, 0, sizeof (struct wpi_config)); 2800 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); 2801 /*set default channel*/ 2802 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2803 sc->config.flags = htole32(WPI_CONFIG_TSF); 2804 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2805 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2806 WPI_CONFIG_24GHZ); 2807 } 2808 sc->config.filter = 0; 2809 switch (ic->ic_opmode) { 2810 case IEEE80211_M_STA: 2811 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2812 sc->config.mode = WPI_MODE_STA; 2813 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2814 break; 2815 case IEEE80211_M_IBSS: 2816 case IEEE80211_M_AHDEMO: 2817 sc->config.mode = WPI_MODE_IBSS; 2818 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2819 WPI_FILTER_MULTICAST); 2820 break; 2821 case IEEE80211_M_HOSTAP: 2822 sc->config.mode = WPI_MODE_HOSTAP; 2823 break; 2824 case IEEE80211_M_MONITOR: 2825 sc->config.mode = WPI_MODE_MONITOR; 2826 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2827 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2828 break; 2829 } 2830 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2831 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2832 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2833 sizeof (struct wpi_config), 0); 2834 if (error != 0) { 2835 device_printf(sc->sc_dev, "configure command failed\n"); 2836 return error; 2837 } 2838 2839 /* configuration has changed, set Tx power accordingly */ 2840 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2841 device_printf(sc->sc_dev, "could not set Tx power\n"); 2842 return error; 2843 } 2844 2845 /* add broadcast node */ 2846 memset(&node, 0, sizeof node); 2847 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2848 node.id = WPI_ID_BROADCAST; 2849 node.rate = wpi_plcp_signal(2); 2850 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2851 if (error != 0) { 2852 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2853 return error; 2854 } 2855 2856 /* Setup rate scalling */ 2857 error = wpi_mrr_setup(sc); 2858 if (error != 0) { 2859 device_printf(sc->sc_dev, "could not setup MRR\n"); 2860 return error; 2861 } 2862 2863 return 0; 2864 } 2865 2866 static void 2867 wpi_stop_master(struct wpi_softc *sc) 2868 { 2869 uint32_t tmp; 2870 int ntries; 2871 2872 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2873 2874 tmp = WPI_READ(sc, WPI_RESET); 2875 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2876 2877 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2878 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2879 return; /* already asleep */ 2880 2881 for (ntries = 0; ntries < 100; ntries++) { 2882 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2883 break; 2884 DELAY(10); 2885 } 2886 if (ntries == 100) { 2887 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2888 } 2889 } 2890 2891 static int 2892 wpi_power_up(struct wpi_softc *sc) 2893 { 2894 uint32_t tmp; 2895 int ntries; 2896 2897 wpi_mem_lock(sc); 2898 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2899 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2900 wpi_mem_unlock(sc); 2901 2902 for (ntries = 0; ntries < 5000; ntries++) { 2903 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2904 break; 2905 DELAY(10); 2906 } 2907 if (ntries == 5000) { 2908 device_printf(sc->sc_dev, 2909 "timeout waiting for NIC to power up\n"); 2910 return ETIMEDOUT; 2911 } 2912 return 0; 2913 } 2914 2915 static int 2916 wpi_reset(struct wpi_softc *sc) 2917 { 2918 uint32_t tmp; 2919 int ntries; 2920 2921 DPRINTFN(WPI_DEBUG_HW, 2922 ("Resetting the card - clearing any uploaded firmware\n")); 2923 2924 /* clear any pending interrupts */ 2925 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2926 2927 tmp = WPI_READ(sc, WPI_PLL_CTL); 2928 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2929 2930 tmp = WPI_READ(sc, WPI_CHICKEN); 2931 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2932 2933 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2934 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2935 2936 /* wait for clock stabilization */ 2937 for (ntries = 0; ntries < 25000; ntries++) { 2938 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2939 break; 2940 DELAY(10); 2941 } 2942 if (ntries == 25000) { 2943 device_printf(sc->sc_dev, 2944 "timeout waiting for clock stabilization\n"); 2945 return ETIMEDOUT; 2946 } 2947 2948 /* initialize EEPROM */ 2949 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2950 2951 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2952 device_printf(sc->sc_dev, "EEPROM not found\n"); 2953 return EIO; 2954 } 2955 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2956 2957 return 0; 2958 } 2959 2960 static void 2961 wpi_hw_config(struct wpi_softc *sc) 2962 { 2963 uint32_t rev, hw; 2964 2965 /* voodoo from the Linux "driver".. */ 2966 hw = WPI_READ(sc, WPI_HWCONFIG); 2967 2968 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2969 if ((rev & 0xc0) == 0x40) 2970 hw |= WPI_HW_ALM_MB; 2971 else if (!(rev & 0x80)) 2972 hw |= WPI_HW_ALM_MM; 2973 2974 if (sc->cap == 0x80) 2975 hw |= WPI_HW_SKU_MRC; 2976 2977 hw &= ~WPI_HW_REV_D; 2978 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2979 hw |= WPI_HW_REV_D; 2980 2981 if (sc->type > 1) 2982 hw |= WPI_HW_TYPE_B; 2983 2984 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2985 } 2986 2987 static void 2988 wpi_rfkill_resume(struct wpi_softc *sc) 2989 { 2990 struct ifnet *ifp = sc->sc_ifp; 2991 struct ieee80211com *ic = ifp->if_l2com; 2992 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2993 int ntries; 2994 2995 /* enable firmware again */ 2996 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 2997 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 2998 2999 /* wait for thermal sensors to calibrate */ 3000 for (ntries = 0; ntries < 1000; ntries++) { 3001 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3002 break; 3003 DELAY(10); 3004 } 3005 3006 if (ntries == 1000) { 3007 device_printf(sc->sc_dev, 3008 "timeout waiting for thermal calibration\n"); 3009 WPI_UNLOCK(sc); 3010 return; 3011 } 3012 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3013 3014 if (wpi_config(sc) != 0) { 3015 device_printf(sc->sc_dev, "device config failed\n"); 3016 WPI_UNLOCK(sc); 3017 return; 3018 } 3019 3020 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3021 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3022 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3023 3024 if (vap != NULL) { 3025 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3026 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3027 taskqueue_enqueue(taskqueue_swi, 3028 &sc->sc_bmiss_task); 3029 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3030 } else 3031 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3032 } else { 3033 ieee80211_scan_next(vap); 3034 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3035 } 3036 } 3037 3038 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3039 } 3040 3041 static void 3042 wpi_init_locked(struct wpi_softc *sc, int force) 3043 { 3044 struct ifnet *ifp = sc->sc_ifp; 3045 uint32_t tmp; 3046 int ntries, qid; 3047 3048 wpi_stop_locked(sc); 3049 (void)wpi_reset(sc); 3050 3051 wpi_mem_lock(sc); 3052 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3053 DELAY(20); 3054 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3055 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3056 wpi_mem_unlock(sc); 3057 3058 (void)wpi_power_up(sc); 3059 wpi_hw_config(sc); 3060 3061 /* init Rx ring */ 3062 wpi_mem_lock(sc); 3063 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3064 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3065 offsetof(struct wpi_shared, next)); 3066 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3067 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3068 wpi_mem_unlock(sc); 3069 3070 /* init Tx rings */ 3071 wpi_mem_lock(sc); 3072 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3073 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3074 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3075 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3076 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3077 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3078 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3079 3080 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3081 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3082 3083 for (qid = 0; qid < 6; qid++) { 3084 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3085 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3086 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3087 } 3088 wpi_mem_unlock(sc); 3089 3090 /* clear "radio off" and "disable command" bits (reversed logic) */ 3091 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3092 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3093 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3094 3095 /* clear any pending interrupts */ 3096 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3097 3098 /* enable interrupts */ 3099 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3100 3101 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3102 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3103 3104 if ((wpi_load_firmware(sc)) != 0) { 3105 device_printf(sc->sc_dev, 3106 "A problem occurred loading the firmware to the driver\n"); 3107 return; 3108 } 3109 3110 /* At this point the firmware is up and running. If the hardware 3111 * RF switch is turned off thermal calibration will fail, though 3112 * the card is still happy to continue to accept commands, catch 3113 * this case and schedule a task to watch for it to be turned on. 3114 */ 3115 wpi_mem_lock(sc); 3116 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3117 wpi_mem_unlock(sc); 3118 3119 if (!(tmp & 0x1)) { 3120 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3121 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3122 goto out; 3123 } 3124 3125 /* wait for thermal sensors to calibrate */ 3126 for (ntries = 0; ntries < 1000; ntries++) { 3127 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3128 break; 3129 DELAY(10); 3130 } 3131 3132 if (ntries == 1000) { 3133 device_printf(sc->sc_dev, 3134 "timeout waiting for thermal sensors calibration\n"); 3135 return; 3136 } 3137 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3138 3139 if (wpi_config(sc) != 0) { 3140 device_printf(sc->sc_dev, "device config failed\n"); 3141 return; 3142 } 3143 3144 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3145 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3146 out: 3147 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3148 } 3149 3150 static void 3151 wpi_init(void *arg) 3152 { 3153 struct wpi_softc *sc = arg; 3154 struct ifnet *ifp = sc->sc_ifp; 3155 struct ieee80211com *ic = ifp->if_l2com; 3156 3157 WPI_LOCK(sc); 3158 wpi_init_locked(sc, 0); 3159 WPI_UNLOCK(sc); 3160 3161 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3162 ieee80211_start_all(ic); /* start all vaps */ 3163 } 3164 3165 static void 3166 wpi_stop_locked(struct wpi_softc *sc) 3167 { 3168 struct ifnet *ifp = sc->sc_ifp; 3169 uint32_t tmp; 3170 int ac; 3171 3172 sc->sc_tx_timer = 0; 3173 sc->sc_scan_timer = 0; 3174 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3175 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3176 callout_stop(&sc->watchdog_to); 3177 callout_stop(&sc->calib_to); 3178 3179 3180 /* disable interrupts */ 3181 WPI_WRITE(sc, WPI_MASK, 0); 3182 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3183 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3184 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3185 3186 /* Clear any commands left in the command buffer */ 3187 memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd)); 3188 memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg)); 3189 sc->sc_cmd_cur = 0; 3190 sc->sc_cmd_next = 0; 3191 3192 wpi_mem_lock(sc); 3193 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3194 wpi_mem_unlock(sc); 3195 3196 /* reset all Tx rings */ 3197 for (ac = 0; ac < 4; ac++) 3198 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3199 wpi_reset_tx_ring(sc, &sc->cmdq); 3200 3201 /* reset Rx ring */ 3202 wpi_reset_rx_ring(sc, &sc->rxq); 3203 3204 wpi_mem_lock(sc); 3205 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3206 wpi_mem_unlock(sc); 3207 3208 DELAY(5); 3209 3210 wpi_stop_master(sc); 3211 3212 tmp = WPI_READ(sc, WPI_RESET); 3213 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3214 sc->flags &= ~WPI_FLAG_BUSY; 3215 } 3216 3217 static void 3218 wpi_stop(struct wpi_softc *sc) 3219 { 3220 WPI_LOCK(sc); 3221 wpi_stop_locked(sc); 3222 WPI_UNLOCK(sc); 3223 } 3224 3225 static void 3226 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3227 { 3228 struct ieee80211vap *vap = ni->ni_vap; 3229 struct wpi_vap *wvp = WPI_VAP(vap); 3230 3231 ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni); 3232 } 3233 3234 static void 3235 wpi_calib_timeout(void *arg) 3236 { 3237 struct wpi_softc *sc = arg; 3238 struct ifnet *ifp = sc->sc_ifp; 3239 struct ieee80211com *ic = ifp->if_l2com; 3240 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3241 int temp; 3242 3243 if (vap->iv_state != IEEE80211_S_RUN) 3244 return; 3245 3246 /* update sensor data */ 3247 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3248 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3249 3250 wpi_power_calibration(sc, temp); 3251 3252 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3253 } 3254 3255 /* 3256 * This function is called periodically (every 60 seconds) to adjust output 3257 * power to temperature changes. 3258 */ 3259 static void 3260 wpi_power_calibration(struct wpi_softc *sc, int temp) 3261 { 3262 struct ifnet *ifp = sc->sc_ifp; 3263 struct ieee80211com *ic = ifp->if_l2com; 3264 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3265 3266 /* sanity-check read value */ 3267 if (temp < -260 || temp > 25) { 3268 /* this can't be correct, ignore */ 3269 DPRINTFN(WPI_DEBUG_TEMP, 3270 ("out-of-range temperature reported: %d\n", temp)); 3271 return; 3272 } 3273 3274 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3275 3276 /* adjust Tx power if need be */ 3277 if (abs(temp - sc->temp) <= 6) 3278 return; 3279 3280 sc->temp = temp; 3281 3282 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3283 /* just warn, too bad for the automatic calibration... */ 3284 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3285 } 3286 } 3287 3288 /** 3289 * Read the eeprom to find out what channels are valid for the given 3290 * band and update net80211 with what we find. 3291 */ 3292 static void 3293 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3294 { 3295 struct ifnet *ifp = sc->sc_ifp; 3296 struct ieee80211com *ic = ifp->if_l2com; 3297 const struct wpi_chan_band *band = &wpi_bands[n]; 3298 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3299 struct ieee80211_channel *c; 3300 int chan, i, passive; 3301 3302 wpi_read_prom_data(sc, band->addr, channels, 3303 band->nchan * sizeof (struct wpi_eeprom_chan)); 3304 3305 for (i = 0; i < band->nchan; i++) { 3306 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3307 DPRINTFN(WPI_DEBUG_HW, 3308 ("Channel Not Valid: %d, band %d\n", 3309 band->chan[i],n)); 3310 continue; 3311 } 3312 3313 passive = 0; 3314 chan = band->chan[i]; 3315 c = &ic->ic_channels[ic->ic_nchans++]; 3316 3317 /* is active scan allowed on this channel? */ 3318 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3319 passive = IEEE80211_CHAN_PASSIVE; 3320 } 3321 3322 if (n == 0) { /* 2GHz band */ 3323 c->ic_ieee = chan; 3324 c->ic_freq = ieee80211_ieee2mhz(chan, 3325 IEEE80211_CHAN_2GHZ); 3326 c->ic_flags = IEEE80211_CHAN_B | passive; 3327 3328 c = &ic->ic_channels[ic->ic_nchans++]; 3329 c->ic_ieee = chan; 3330 c->ic_freq = ieee80211_ieee2mhz(chan, 3331 IEEE80211_CHAN_2GHZ); 3332 c->ic_flags = IEEE80211_CHAN_G | passive; 3333 3334 } else { /* 5GHz band */ 3335 /* 3336 * Some 3945ABG adapters support channels 7, 8, 11 3337 * and 12 in the 2GHz *and* 5GHz bands. 3338 * Because of limitations in our net80211(9) stack, 3339 * we can't support these channels in 5GHz band. 3340 * XXX not true; just need to map to proper frequency 3341 */ 3342 if (chan <= 14) 3343 continue; 3344 3345 c->ic_ieee = chan; 3346 c->ic_freq = ieee80211_ieee2mhz(chan, 3347 IEEE80211_CHAN_5GHZ); 3348 c->ic_flags = IEEE80211_CHAN_A | passive; 3349 } 3350 3351 /* save maximum allowed power for this channel */ 3352 sc->maxpwr[chan] = channels[i].maxpwr; 3353 3354 #if 0 3355 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3356 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3357 //ic->ic_channels[chan].ic_minpower... 3358 //ic->ic_channels[chan].ic_maxregtxpower... 3359 #endif 3360 3361 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3362 " passive=%d, offset %d\n", chan, c->ic_freq, 3363 channels[i].flags, sc->maxpwr[chan], 3364 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3365 ic->ic_nchans)); 3366 } 3367 } 3368 3369 static void 3370 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3371 { 3372 struct wpi_power_group *group = &sc->groups[n]; 3373 struct wpi_eeprom_group rgroup; 3374 int i; 3375 3376 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3377 sizeof rgroup); 3378 3379 /* save power group information */ 3380 group->chan = rgroup.chan; 3381 group->maxpwr = rgroup.maxpwr; 3382 /* temperature at which the samples were taken */ 3383 group->temp = (int16_t)le16toh(rgroup.temp); 3384 3385 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3386 group->chan, group->maxpwr, group->temp)); 3387 3388 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3389 group->samples[i].index = rgroup.samples[i].index; 3390 group->samples[i].power = rgroup.samples[i].power; 3391 3392 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3393 group->samples[i].index, group->samples[i].power)); 3394 } 3395 } 3396 3397 /* 3398 * Update Tx power to match what is defined for channel `c'. 3399 */ 3400 static int 3401 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3402 { 3403 struct ifnet *ifp = sc->sc_ifp; 3404 struct ieee80211com *ic = ifp->if_l2com; 3405 struct wpi_power_group *group; 3406 struct wpi_cmd_txpower txpower; 3407 u_int chan; 3408 int i; 3409 3410 /* get channel number */ 3411 chan = ieee80211_chan2ieee(ic, c); 3412 3413 /* find the power group to which this channel belongs */ 3414 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3415 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3416 if (chan <= group->chan) 3417 break; 3418 } else 3419 group = &sc->groups[0]; 3420 3421 memset(&txpower, 0, sizeof txpower); 3422 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3423 txpower.channel = htole16(chan); 3424 3425 /* set Tx power for all OFDM and CCK rates */ 3426 for (i = 0; i <= 11 ; i++) { 3427 /* retrieve Tx power for this channel/rate combination */ 3428 int idx = wpi_get_power_index(sc, group, c, 3429 wpi_ridx_to_rate[i]); 3430 3431 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3432 3433 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3434 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3435 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3436 } else { 3437 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3438 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3439 } 3440 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3441 chan, wpi_ridx_to_rate[i], idx)); 3442 } 3443 3444 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3445 } 3446 3447 /* 3448 * Determine Tx power index for a given channel/rate combination. 3449 * This takes into account the regulatory information from EEPROM and the 3450 * current temperature. 3451 */ 3452 static int 3453 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3454 struct ieee80211_channel *c, int rate) 3455 { 3456 /* fixed-point arithmetic division using a n-bit fractional part */ 3457 #define fdivround(a, b, n) \ 3458 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3459 3460 /* linear interpolation */ 3461 #define interpolate(x, x1, y1, x2, y2, n) \ 3462 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3463 3464 struct ifnet *ifp = sc->sc_ifp; 3465 struct ieee80211com *ic = ifp->if_l2com; 3466 struct wpi_power_sample *sample; 3467 int pwr, idx; 3468 u_int chan; 3469 3470 /* get channel number */ 3471 chan = ieee80211_chan2ieee(ic, c); 3472 3473 /* default power is group's maximum power - 3dB */ 3474 pwr = group->maxpwr / 2; 3475 3476 /* decrease power for highest OFDM rates to reduce distortion */ 3477 switch (rate) { 3478 case 72: /* 36Mb/s */ 3479 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3480 break; 3481 case 96: /* 48Mb/s */ 3482 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3483 break; 3484 case 108: /* 54Mb/s */ 3485 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3486 break; 3487 } 3488 3489 /* never exceed channel's maximum allowed Tx power */ 3490 pwr = min(pwr, sc->maxpwr[chan]); 3491 3492 /* retrieve power index into gain tables from samples */ 3493 for (sample = group->samples; sample < &group->samples[3]; sample++) 3494 if (pwr > sample[1].power) 3495 break; 3496 /* fixed-point linear interpolation using a 19-bit fractional part */ 3497 idx = interpolate(pwr, sample[0].power, sample[0].index, 3498 sample[1].power, sample[1].index, 19); 3499 3500 /* 3501 * Adjust power index based on current temperature 3502 * - if colder than factory-calibrated: decreate output power 3503 * - if warmer than factory-calibrated: increase output power 3504 */ 3505 idx -= (sc->temp - group->temp) * 11 / 100; 3506 3507 /* decrease power for CCK rates (-5dB) */ 3508 if (!WPI_RATE_IS_OFDM(rate)) 3509 idx += 10; 3510 3511 /* keep power index in a valid range */ 3512 if (idx < 0) 3513 return 0; 3514 if (idx > WPI_MAX_PWR_INDEX) 3515 return WPI_MAX_PWR_INDEX; 3516 return idx; 3517 3518 #undef interpolate 3519 #undef fdivround 3520 } 3521 3522 /** 3523 * Called by net80211 framework to indicate that a scan 3524 * is starting. This function doesn't actually do the scan, 3525 * wpi_scan_curchan starts things off. This function is more 3526 * of an early warning from the framework we should get ready 3527 * for the scan. 3528 */ 3529 static void 3530 wpi_scan_start(struct ieee80211com *ic) 3531 { 3532 struct ifnet *ifp = ic->ic_ifp; 3533 struct wpi_softc *sc = ifp->if_softc; 3534 3535 wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL); 3536 } 3537 3538 /** 3539 * Called by the net80211 framework, indicates that the 3540 * scan has ended. If there is a scan in progress on the card 3541 * then it should be aborted. 3542 */ 3543 static void 3544 wpi_scan_end(struct ieee80211com *ic) 3545 { 3546 struct ifnet *ifp = ic->ic_ifp; 3547 struct wpi_softc *sc = ifp->if_softc; 3548 3549 wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL); 3550 } 3551 3552 /** 3553 * Called by the net80211 framework to indicate to the driver 3554 * that the channel should be changed 3555 */ 3556 static void 3557 wpi_set_channel(struct ieee80211com *ic) 3558 { 3559 struct ifnet *ifp = ic->ic_ifp; 3560 struct wpi_softc *sc = ifp->if_softc; 3561 3562 /* 3563 * Only need to set the channel in Monitor mode. AP scanning and auth 3564 * are already taken care of by their respective firmware commands. 3565 */ 3566 if (ic->ic_opmode == IEEE80211_M_MONITOR) 3567 wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL); 3568 } 3569 3570 /** 3571 * Called by net80211 to indicate that we need to scan the current 3572 * channel. The channel is previously be set via the wpi_set_channel 3573 * callback. 3574 */ 3575 static void 3576 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3577 { 3578 struct ieee80211vap *vap = ss->ss_vap; 3579 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3580 struct wpi_softc *sc = ifp->if_softc; 3581 3582 wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL); 3583 } 3584 3585 /** 3586 * Called by the net80211 framework to indicate 3587 * the minimum dwell time has been met, terminate the scan. 3588 * We don't actually terminate the scan as the firmware will notify 3589 * us when it's finished and we have no way to interrupt it. 3590 */ 3591 static void 3592 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3593 { 3594 /* NB: don't try to abort scan; wait for firmware to finish */ 3595 } 3596 3597 /** 3598 * The ops function is called to perform some actual work. 3599 * because we can't sleep from any of the ic callbacks, we queue an 3600 * op task with wpi_queue_cmd and have the taskqueue process that task. 3601 * The task that gets cued is a op task, which ends up calling this function. 3602 */ 3603 static void 3604 wpi_ops(void *arg0, int pending) 3605 { 3606 struct wpi_softc *sc = arg0; 3607 struct ifnet *ifp = sc->sc_ifp; 3608 struct ieee80211com *ic = ifp->if_l2com; 3609 int cmd, arg, error; 3610 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3611 3612 again: 3613 WPI_CMD_LOCK(sc); 3614 cmd = sc->sc_cmd[sc->sc_cmd_cur]; 3615 arg = sc->sc_cmd_arg[sc->sc_cmd_cur]; 3616 3617 if (cmd == 0) { 3618 /* No more commands to process */ 3619 WPI_CMD_UNLOCK(sc); 3620 return; 3621 } 3622 sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */ 3623 sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */ 3624 sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS; 3625 WPI_CMD_UNLOCK(sc); 3626 WPI_LOCK(sc); 3627 3628 DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd)); 3629 3630 switch (cmd) { 3631 case WPI_RESTART: 3632 wpi_init_locked(sc, 0); 3633 WPI_UNLOCK(sc); 3634 return; 3635 3636 case WPI_RF_RESTART: 3637 wpi_rfkill_resume(sc); 3638 WPI_UNLOCK(sc); 3639 return; 3640 } 3641 3642 if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3643 WPI_UNLOCK(sc); 3644 return; 3645 } 3646 3647 switch (cmd) { 3648 case WPI_SCAN_START: 3649 /* make the link LED blink while we're scanning */ 3650 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3651 sc->flags |= WPI_FLAG_SCANNING; 3652 break; 3653 3654 case WPI_SCAN_STOP: 3655 sc->flags &= ~WPI_FLAG_SCANNING; 3656 break; 3657 3658 case WPI_SCAN_CURCHAN: 3659 if (wpi_scan(sc)) 3660 ieee80211_cancel_scan(vap); 3661 break; 3662 3663 case WPI_SET_CHAN: 3664 error = wpi_config(sc); 3665 if (error != 0) 3666 device_printf(sc->sc_dev, 3667 "error %d settting channel\n", error); 3668 break; 3669 3670 case WPI_AUTH: 3671 /* The node must be registered in the firmware before auth */ 3672 error = wpi_auth(sc, vap); 3673 WPI_UNLOCK(sc); 3674 if (error != 0) { 3675 device_printf(sc->sc_dev, 3676 "%s: could not move to auth state, error %d\n", 3677 __func__, error); 3678 return; 3679 } 3680 IEEE80211_LOCK(ic); 3681 WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg); 3682 if (vap->iv_newstate_cb != NULL) 3683 vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg); 3684 IEEE80211_UNLOCK(ic); 3685 goto again; 3686 3687 case WPI_RUN: 3688 error = wpi_run(sc, vap); 3689 WPI_UNLOCK(sc); 3690 if (error != 0) { 3691 device_printf(sc->sc_dev, 3692 "%s: could not move to run state, error %d\n", 3693 __func__, error); 3694 return; 3695 } 3696 IEEE80211_LOCK(ic); 3697 WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg); 3698 if (vap->iv_newstate_cb != NULL) 3699 vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg); 3700 IEEE80211_UNLOCK(ic); 3701 goto again; 3702 } 3703 WPI_UNLOCK(sc); 3704 3705 /* Take another pass */ 3706 goto again; 3707 } 3708 3709 /** 3710 * queue a command for later execution in a different thread. 3711 * This is needed as the net80211 callbacks do not allow 3712 * sleeping, since we need to sleep to confirm commands have 3713 * been processed by the firmware, we must defer execution to 3714 * a sleep enabled thread. 3715 */ 3716 static int 3717 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush) 3718 { 3719 WPI_CMD_LOCK(sc); 3720 3721 if (flush) { 3722 memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd)); 3723 memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg)); 3724 sc->sc_cmd_cur = 0; 3725 sc->sc_cmd_next = 0; 3726 } 3727 3728 if (sc->sc_cmd[sc->sc_cmd_next] != 0) { 3729 WPI_CMD_UNLOCK(sc); 3730 DPRINTF(("%s: command %d dropped\n", __func__, cmd)); 3731 return (EBUSY); 3732 } 3733 3734 sc->sc_cmd[sc->sc_cmd_next] = cmd; 3735 sc->sc_cmd_arg[sc->sc_cmd_next] = arg; 3736 sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS; 3737 3738 taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask); 3739 3740 WPI_CMD_UNLOCK(sc); 3741 3742 return 0; 3743 } 3744 3745 /* 3746 * Allocate DMA-safe memory for firmware transfer. 3747 */ 3748 static int 3749 wpi_alloc_fwmem(struct wpi_softc *sc) 3750 { 3751 /* allocate enough contiguous space to store text and data */ 3752 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3753 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3754 BUS_DMA_NOWAIT); 3755 } 3756 3757 static void 3758 wpi_free_fwmem(struct wpi_softc *sc) 3759 { 3760 wpi_dma_contig_free(&sc->fw_dma); 3761 } 3762 3763 /** 3764 * Called every second, wpi_watchdog used by the watch dog timer 3765 * to check that the card is still alive 3766 */ 3767 static void 3768 wpi_watchdog(void *arg) 3769 { 3770 struct wpi_softc *sc = arg; 3771 struct ifnet *ifp = sc->sc_ifp; 3772 uint32_t tmp; 3773 3774 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3775 3776 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3777 /* No need to lock firmware memory */ 3778 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3779 3780 if ((tmp & 0x1) == 0) { 3781 /* Radio kill switch is still off */ 3782 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3783 return; 3784 } 3785 3786 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3787 wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR); 3788 return; 3789 } 3790 3791 if (sc->sc_tx_timer > 0) { 3792 if (--sc->sc_tx_timer == 0) { 3793 device_printf(sc->sc_dev,"device timeout\n"); 3794 ifp->if_oerrors++; 3795 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 3796 } 3797 } 3798 if (sc->sc_scan_timer > 0) { 3799 struct ifnet *ifp = sc->sc_ifp; 3800 struct ieee80211com *ic = ifp->if_l2com; 3801 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3802 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3803 device_printf(sc->sc_dev,"scan timeout\n"); 3804 ieee80211_cancel_scan(vap); 3805 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 3806 } 3807 } 3808 3809 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3810 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3811 } 3812 3813 #ifdef WPI_DEBUG 3814 static const char *wpi_cmd_str(int cmd) 3815 { 3816 switch (cmd) { 3817 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3818 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3819 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3820 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3821 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3822 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3823 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3824 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3825 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3826 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3827 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3828 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3829 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3830 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3831 3832 default: 3833 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3834 return "UNKNOWN CMD"; /* Make the compiler happy */ 3835 } 3836 } 3837 #endif 3838 3839 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3840 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3841 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3842 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3843