1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include "opt_wlan.h" 63 64 #include <sys/param.h> 65 #include <sys/sysctl.h> 66 #include <sys/sockio.h> 67 #include <sys/mbuf.h> 68 #include <sys/kernel.h> 69 #include <sys/socket.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/queue.h> 73 #include <sys/taskqueue.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/endian.h> 77 #include <sys/linker.h> 78 #include <sys/firmware.h> 79 80 #include <machine/bus.h> 81 #include <machine/resource.h> 82 #include <sys/rman.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 87 #include <net/bpf.h> 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/if_arp.h> 91 #include <net/ethernet.h> 92 #include <net/if_dl.h> 93 #include <net/if_media.h> 94 #include <net/if_types.h> 95 96 #include <net80211/ieee80211_var.h> 97 #include <net80211/ieee80211_radiotap.h> 98 #include <net80211/ieee80211_regdomain.h> 99 #include <net80211/ieee80211_ratectl.h> 100 101 #include <netinet/in.h> 102 #include <netinet/in_systm.h> 103 #include <netinet/in_var.h> 104 #include <netinet/ip.h> 105 #include <netinet/if_ether.h> 106 107 #include <dev/wpi/if_wpireg.h> 108 #include <dev/wpi/if_wpivar.h> 109 110 #define WPI_DEBUG 111 112 #ifdef WPI_DEBUG 113 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 114 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 115 #define WPI_DEBUG_SET (wpi_debug != 0) 116 117 enum { 118 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 119 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 120 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 121 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 122 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 123 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 124 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 125 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 126 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 127 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 128 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 129 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 130 WPI_DEBUG_ANY = 0xffffffff 131 }; 132 133 static int wpi_debug = 0; 134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 135 TUNABLE_INT("debug.wpi", &wpi_debug); 136 137 #else 138 #define DPRINTF(x) 139 #define DPRINTFN(n, x) 140 #define WPI_DEBUG_SET 0 141 #endif 142 143 struct wpi_ident { 144 uint16_t vendor; 145 uint16_t device; 146 uint16_t subdevice; 147 const char *name; 148 }; 149 150 static const struct wpi_ident wpi_ident_table[] = { 151 /* The below entries support ABG regardless of the subid */ 152 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 153 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 154 /* The below entries only support BG */ 155 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 157 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 158 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 159 { 0, 0, 0, NULL } 160 }; 161 162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 163 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 164 const uint8_t [IEEE80211_ADDR_LEN], 165 const uint8_t [IEEE80211_ADDR_LEN]); 166 static void wpi_vap_delete(struct ieee80211vap *); 167 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 168 void **, bus_size_t, bus_size_t, int); 169 static void wpi_dma_contig_free(struct wpi_dma_info *); 170 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 171 static int wpi_alloc_shared(struct wpi_softc *); 172 static void wpi_free_shared(struct wpi_softc *); 173 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 174 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 175 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 176 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 177 int, int); 178 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 179 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 180 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 181 static void wpi_mem_lock(struct wpi_softc *); 182 static void wpi_mem_unlock(struct wpi_softc *); 183 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 184 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 185 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 186 const uint32_t *, int); 187 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 188 static int wpi_alloc_fwmem(struct wpi_softc *); 189 static void wpi_free_fwmem(struct wpi_softc *); 190 static int wpi_load_firmware(struct wpi_softc *); 191 static void wpi_unload_firmware(struct wpi_softc *); 192 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 193 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 194 struct wpi_rx_data *); 195 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 196 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 197 static void wpi_notif_intr(struct wpi_softc *); 198 static void wpi_intr(void *); 199 static uint8_t wpi_plcp_signal(int); 200 static void wpi_watchdog(void *); 201 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 202 struct ieee80211_node *, int); 203 static void wpi_start(struct ifnet *); 204 static void wpi_start_locked(struct ifnet *); 205 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 206 const struct ieee80211_bpf_params *); 207 static void wpi_scan_start(struct ieee80211com *); 208 static void wpi_scan_end(struct ieee80211com *); 209 static void wpi_set_channel(struct ieee80211com *); 210 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 211 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 212 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 213 static void wpi_read_eeprom(struct wpi_softc *, 214 uint8_t macaddr[IEEE80211_ADDR_LEN]); 215 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 216 static void wpi_read_eeprom_group(struct wpi_softc *, int); 217 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 218 static int wpi_wme_update(struct ieee80211com *); 219 static int wpi_mrr_setup(struct wpi_softc *); 220 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 221 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 222 #if 0 223 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 224 #endif 225 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 226 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 227 static int wpi_scan(struct wpi_softc *); 228 static int wpi_config(struct wpi_softc *); 229 static void wpi_stop_master(struct wpi_softc *); 230 static int wpi_power_up(struct wpi_softc *); 231 static int wpi_reset(struct wpi_softc *); 232 static void wpi_hwreset(void *, int); 233 static void wpi_rfreset(void *, int); 234 static void wpi_hw_config(struct wpi_softc *); 235 static void wpi_init(void *); 236 static void wpi_init_locked(struct wpi_softc *, int); 237 static void wpi_stop(struct wpi_softc *); 238 static void wpi_stop_locked(struct wpi_softc *); 239 240 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 241 int); 242 static void wpi_calib_timeout(void *); 243 static void wpi_power_calibration(struct wpi_softc *, int); 244 static int wpi_get_power_index(struct wpi_softc *, 245 struct wpi_power_group *, struct ieee80211_channel *, int); 246 #ifdef WPI_DEBUG 247 static const char *wpi_cmd_str(int); 248 #endif 249 static int wpi_probe(device_t); 250 static int wpi_attach(device_t); 251 static int wpi_detach(device_t); 252 static int wpi_shutdown(device_t); 253 static int wpi_suspend(device_t); 254 static int wpi_resume(device_t); 255 256 static device_method_t wpi_methods[] = { 257 /* Device interface */ 258 DEVMETHOD(device_probe, wpi_probe), 259 DEVMETHOD(device_attach, wpi_attach), 260 DEVMETHOD(device_detach, wpi_detach), 261 DEVMETHOD(device_shutdown, wpi_shutdown), 262 DEVMETHOD(device_suspend, wpi_suspend), 263 DEVMETHOD(device_resume, wpi_resume), 264 265 DEVMETHOD_END 266 }; 267 268 static driver_t wpi_driver = { 269 "wpi", 270 wpi_methods, 271 sizeof (struct wpi_softc) 272 }; 273 274 static devclass_t wpi_devclass; 275 276 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL); 277 278 MODULE_VERSION(wpi, 1); 279 280 static const uint8_t wpi_ridx_to_plcp[] = { 281 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 282 /* R1-R4 (ral/ural is R4-R1) */ 283 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 284 /* CCK: device-dependent */ 285 10, 20, 55, 110 286 }; 287 288 static const uint8_t wpi_ridx_to_rate[] = { 289 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 290 2, 4, 11, 22 /*CCK */ 291 }; 292 293 static int 294 wpi_probe(device_t dev) 295 { 296 const struct wpi_ident *ident; 297 298 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 299 if (pci_get_vendor(dev) == ident->vendor && 300 pci_get_device(dev) == ident->device) { 301 device_set_desc(dev, ident->name); 302 return (BUS_PROBE_DEFAULT); 303 } 304 } 305 return ENXIO; 306 } 307 308 /** 309 * Load the firmare image from disk to the allocated dma buffer. 310 * we also maintain the reference to the firmware pointer as there 311 * is times where we may need to reload the firmware but we are not 312 * in a context that can access the filesystem (ie taskq cause by restart) 313 * 314 * @return 0 on success, an errno on failure 315 */ 316 static int 317 wpi_load_firmware(struct wpi_softc *sc) 318 { 319 const struct firmware *fp; 320 struct wpi_dma_info *dma = &sc->fw_dma; 321 const struct wpi_firmware_hdr *hdr; 322 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 323 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 324 int error; 325 326 DPRINTFN(WPI_DEBUG_FIRMWARE, 327 ("Attempting Loading Firmware from wpi_fw module\n")); 328 329 WPI_UNLOCK(sc); 330 331 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 332 device_printf(sc->sc_dev, 333 "could not load firmware image 'wpifw'\n"); 334 error = ENOENT; 335 WPI_LOCK(sc); 336 goto fail; 337 } 338 339 fp = sc->fw_fp; 340 341 WPI_LOCK(sc); 342 343 /* Validate the firmware is minimum a particular version */ 344 if (fp->version < WPI_FW_MINVERSION) { 345 device_printf(sc->sc_dev, 346 "firmware version is too old. Need %d, got %d\n", 347 WPI_FW_MINVERSION, 348 fp->version); 349 error = ENXIO; 350 goto fail; 351 } 352 353 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 354 device_printf(sc->sc_dev, 355 "firmware file too short: %zu bytes\n", fp->datasize); 356 error = ENXIO; 357 goto fail; 358 } 359 360 hdr = (const struct wpi_firmware_hdr *)fp->data; 361 362 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 363 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 364 365 rtextsz = le32toh(hdr->rtextsz); 366 rdatasz = le32toh(hdr->rdatasz); 367 itextsz = le32toh(hdr->itextsz); 368 idatasz = le32toh(hdr->idatasz); 369 btextsz = le32toh(hdr->btextsz); 370 371 /* check that all firmware segments are present */ 372 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 373 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 374 device_printf(sc->sc_dev, 375 "firmware file too short: %zu bytes\n", fp->datasize); 376 error = ENXIO; /* XXX appropriate error code? */ 377 goto fail; 378 } 379 380 /* get pointers to firmware segments */ 381 rtext = (const uint8_t *)(hdr + 1); 382 rdata = rtext + rtextsz; 383 itext = rdata + rdatasz; 384 idata = itext + itextsz; 385 btext = idata + idatasz; 386 387 DPRINTFN(WPI_DEBUG_FIRMWARE, 388 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 389 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 390 (le32toh(hdr->version) & 0xff000000) >> 24, 391 (le32toh(hdr->version) & 0x00ff0000) >> 16, 392 (le32toh(hdr->version) & 0x0000ffff), 393 rtextsz, rdatasz, 394 itextsz, idatasz, btextsz)); 395 396 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 397 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 398 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 399 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 400 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 401 402 /* sanity checks */ 403 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 404 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 405 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 406 idatasz > WPI_FW_INIT_DATA_MAXSZ || 407 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 408 (btextsz & 3) != 0) { 409 device_printf(sc->sc_dev, "firmware invalid\n"); 410 error = EINVAL; 411 goto fail; 412 } 413 414 /* copy initialization images into pre-allocated DMA-safe memory */ 415 memcpy(dma->vaddr, idata, idatasz); 416 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 417 418 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 419 420 /* tell adapter where to find initialization images */ 421 wpi_mem_lock(sc); 422 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 423 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 424 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 425 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 426 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 427 wpi_mem_unlock(sc); 428 429 /* load firmware boot code */ 430 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 431 device_printf(sc->sc_dev, "Failed to load microcode\n"); 432 goto fail; 433 } 434 435 /* now press "execute" */ 436 WPI_WRITE(sc, WPI_RESET, 0); 437 438 /* wait at most one second for the first alive notification */ 439 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 440 device_printf(sc->sc_dev, 441 "timeout waiting for adapter to initialize\n"); 442 goto fail; 443 } 444 445 /* copy runtime images into pre-allocated DMA-sage memory */ 446 memcpy(dma->vaddr, rdata, rdatasz); 447 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 448 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 449 450 /* tell adapter where to find runtime images */ 451 wpi_mem_lock(sc); 452 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 453 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 454 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 455 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 456 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 457 wpi_mem_unlock(sc); 458 459 /* wait at most one second for the first alive notification */ 460 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 461 device_printf(sc->sc_dev, 462 "timeout waiting for adapter to initialize2\n"); 463 goto fail; 464 } 465 466 DPRINTFN(WPI_DEBUG_FIRMWARE, 467 ("Firmware loaded to driver successfully\n")); 468 return error; 469 fail: 470 wpi_unload_firmware(sc); 471 return error; 472 } 473 474 /** 475 * Free the referenced firmware image 476 */ 477 static void 478 wpi_unload_firmware(struct wpi_softc *sc) 479 { 480 481 if (sc->fw_fp) { 482 WPI_UNLOCK(sc); 483 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 484 WPI_LOCK(sc); 485 sc->fw_fp = NULL; 486 } 487 } 488 489 static int 490 wpi_attach(device_t dev) 491 { 492 struct wpi_softc *sc = device_get_softc(dev); 493 struct ifnet *ifp; 494 struct ieee80211com *ic; 495 int ac, error, rid, supportsa = 1; 496 uint32_t tmp; 497 const struct wpi_ident *ident; 498 uint8_t macaddr[IEEE80211_ADDR_LEN]; 499 500 sc->sc_dev = dev; 501 502 if (bootverbose || WPI_DEBUG_SET) 503 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 504 505 /* 506 * Some card's only support 802.11b/g not a, check to see if 507 * this is one such card. A 0x0 in the subdevice table indicates 508 * the entire subdevice range is to be ignored. 509 */ 510 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 511 if (ident->subdevice && 512 pci_get_subdevice(dev) == ident->subdevice) { 513 supportsa = 0; 514 break; 515 } 516 } 517 518 /* Create the tasks that can be queued */ 519 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc); 520 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc); 521 522 WPI_LOCK_INIT(sc); 523 524 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 525 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 526 527 /* disable the retry timeout register */ 528 pci_write_config(dev, 0x41, 0, 1); 529 530 /* enable bus-mastering */ 531 pci_enable_busmaster(dev); 532 533 rid = PCIR_BAR(0); 534 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 535 RF_ACTIVE); 536 if (sc->mem == NULL) { 537 device_printf(dev, "could not allocate memory resource\n"); 538 error = ENOMEM; 539 goto fail; 540 } 541 542 sc->sc_st = rman_get_bustag(sc->mem); 543 sc->sc_sh = rman_get_bushandle(sc->mem); 544 545 rid = 0; 546 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 547 RF_ACTIVE | RF_SHAREABLE); 548 if (sc->irq == NULL) { 549 device_printf(dev, "could not allocate interrupt resource\n"); 550 error = ENOMEM; 551 goto fail; 552 } 553 554 /* 555 * Allocate DMA memory for firmware transfers. 556 */ 557 if ((error = wpi_alloc_fwmem(sc)) != 0) { 558 printf(": could not allocate firmware memory\n"); 559 error = ENOMEM; 560 goto fail; 561 } 562 563 /* 564 * Put adapter into a known state. 565 */ 566 if ((error = wpi_reset(sc)) != 0) { 567 device_printf(dev, "could not reset adapter\n"); 568 goto fail; 569 } 570 571 wpi_mem_lock(sc); 572 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 573 if (bootverbose || WPI_DEBUG_SET) 574 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 575 576 wpi_mem_unlock(sc); 577 578 /* Allocate shared page */ 579 if ((error = wpi_alloc_shared(sc)) != 0) { 580 device_printf(dev, "could not allocate shared page\n"); 581 goto fail; 582 } 583 584 /* tx data queues - 4 for QoS purposes */ 585 for (ac = 0; ac < WME_NUM_AC; ac++) { 586 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 587 if (error != 0) { 588 device_printf(dev, "could not allocate Tx ring %d\n",ac); 589 goto fail; 590 } 591 } 592 593 /* command queue to talk to the card's firmware */ 594 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 595 if (error != 0) { 596 device_printf(dev, "could not allocate command ring\n"); 597 goto fail; 598 } 599 600 /* receive data queue */ 601 error = wpi_alloc_rx_ring(sc, &sc->rxq); 602 if (error != 0) { 603 device_printf(dev, "could not allocate Rx ring\n"); 604 goto fail; 605 } 606 607 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 608 if (ifp == NULL) { 609 device_printf(dev, "can not if_alloc()\n"); 610 error = ENOMEM; 611 goto fail; 612 } 613 ic = ifp->if_l2com; 614 615 ic->ic_ifp = ifp; 616 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 617 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 618 619 /* set device capabilities */ 620 ic->ic_caps = 621 IEEE80211_C_STA /* station mode supported */ 622 | IEEE80211_C_MONITOR /* monitor mode supported */ 623 | IEEE80211_C_TXPMGT /* tx power management */ 624 | IEEE80211_C_SHSLOT /* short slot time supported */ 625 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 626 | IEEE80211_C_WPA /* 802.11i */ 627 /* XXX looks like WME is partly supported? */ 628 #if 0 629 | IEEE80211_C_IBSS /* IBSS mode support */ 630 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 631 | IEEE80211_C_WME /* 802.11e */ 632 | IEEE80211_C_HOSTAP /* Host access point mode */ 633 #endif 634 ; 635 636 /* 637 * Read in the eeprom and also setup the channels for 638 * net80211. We don't set the rates as net80211 does this for us 639 */ 640 wpi_read_eeprom(sc, macaddr); 641 642 if (bootverbose || WPI_DEBUG_SET) { 643 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 644 device_printf(sc->sc_dev, "Hardware Type: %c\n", 645 sc->type > 1 ? 'B': '?'); 646 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 647 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 648 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 649 supportsa ? "does" : "does not"); 650 651 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 652 what sc->rev really represents - benjsc 20070615 */ 653 } 654 655 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 656 ifp->if_softc = sc; 657 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 658 ifp->if_init = wpi_init; 659 ifp->if_ioctl = wpi_ioctl; 660 ifp->if_start = wpi_start; 661 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 662 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 663 IFQ_SET_READY(&ifp->if_snd); 664 665 ieee80211_ifattach(ic, macaddr); 666 /* override default methods */ 667 ic->ic_raw_xmit = wpi_raw_xmit; 668 ic->ic_wme.wme_update = wpi_wme_update; 669 ic->ic_scan_start = wpi_scan_start; 670 ic->ic_scan_end = wpi_scan_end; 671 ic->ic_set_channel = wpi_set_channel; 672 ic->ic_scan_curchan = wpi_scan_curchan; 673 ic->ic_scan_mindwell = wpi_scan_mindwell; 674 675 ic->ic_vap_create = wpi_vap_create; 676 ic->ic_vap_delete = wpi_vap_delete; 677 678 ieee80211_radiotap_attach(ic, 679 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 680 WPI_TX_RADIOTAP_PRESENT, 681 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 682 WPI_RX_RADIOTAP_PRESENT); 683 684 /* 685 * Hook our interrupt after all initialization is complete. 686 */ 687 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 688 NULL, wpi_intr, sc, &sc->sc_ih); 689 if (error != 0) { 690 device_printf(dev, "could not set up interrupt\n"); 691 goto fail; 692 } 693 694 if (bootverbose) 695 ieee80211_announce(ic); 696 #ifdef XXX_DEBUG 697 ieee80211_announce_channels(ic); 698 #endif 699 return 0; 700 701 fail: wpi_detach(dev); 702 return ENXIO; 703 } 704 705 static int 706 wpi_detach(device_t dev) 707 { 708 struct wpi_softc *sc = device_get_softc(dev); 709 struct ifnet *ifp = sc->sc_ifp; 710 struct ieee80211com *ic; 711 int ac; 712 713 if (sc->irq != NULL) 714 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 715 716 if (ifp != NULL) { 717 ic = ifp->if_l2com; 718 719 ieee80211_draintask(ic, &sc->sc_restarttask); 720 ieee80211_draintask(ic, &sc->sc_radiotask); 721 wpi_stop(sc); 722 callout_drain(&sc->watchdog_to); 723 callout_drain(&sc->calib_to); 724 ieee80211_ifdetach(ic); 725 } 726 727 WPI_LOCK(sc); 728 if (sc->txq[0].data_dmat) { 729 for (ac = 0; ac < WME_NUM_AC; ac++) 730 wpi_free_tx_ring(sc, &sc->txq[ac]); 731 732 wpi_free_tx_ring(sc, &sc->cmdq); 733 wpi_free_rx_ring(sc, &sc->rxq); 734 wpi_free_shared(sc); 735 } 736 737 if (sc->fw_fp != NULL) { 738 wpi_unload_firmware(sc); 739 } 740 741 if (sc->fw_dma.tag) 742 wpi_free_fwmem(sc); 743 WPI_UNLOCK(sc); 744 745 if (sc->irq != NULL) 746 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), 747 sc->irq); 748 if (sc->mem != NULL) 749 bus_release_resource(dev, SYS_RES_MEMORY, 750 rman_get_rid(sc->mem), sc->mem); 751 752 if (ifp != NULL) 753 if_free(ifp); 754 755 WPI_LOCK_DESTROY(sc); 756 757 return 0; 758 } 759 760 static struct ieee80211vap * 761 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 762 enum ieee80211_opmode opmode, int flags, 763 const uint8_t bssid[IEEE80211_ADDR_LEN], 764 const uint8_t mac[IEEE80211_ADDR_LEN]) 765 { 766 struct wpi_vap *wvp; 767 struct ieee80211vap *vap; 768 769 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 770 return NULL; 771 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 772 M_80211_VAP, M_NOWAIT | M_ZERO); 773 if (wvp == NULL) 774 return NULL; 775 vap = &wvp->vap; 776 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 777 /* override with driver methods */ 778 wvp->newstate = vap->iv_newstate; 779 vap->iv_newstate = wpi_newstate; 780 781 ieee80211_ratectl_init(vap); 782 /* complete setup */ 783 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 784 ic->ic_opmode = opmode; 785 return vap; 786 } 787 788 static void 789 wpi_vap_delete(struct ieee80211vap *vap) 790 { 791 struct wpi_vap *wvp = WPI_VAP(vap); 792 793 ieee80211_ratectl_deinit(vap); 794 ieee80211_vap_detach(vap); 795 free(wvp, M_80211_VAP); 796 } 797 798 static void 799 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 800 { 801 if (error != 0) 802 return; 803 804 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 805 806 *(bus_addr_t *)arg = segs[0].ds_addr; 807 } 808 809 /* 810 * Allocates a contiguous block of dma memory of the requested size and 811 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 812 * allocations greater than 4096 may fail. Hence if the requested alignment is 813 * greater we allocate 'alignment' size extra memory and shift the vaddr and 814 * paddr after the dma load. This bypasses the problem at the cost of a little 815 * more memory. 816 */ 817 static int 818 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 819 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 820 { 821 int error; 822 bus_size_t align; 823 bus_size_t reqsize; 824 825 DPRINTFN(WPI_DEBUG_DMA, 826 ("Size: %zd - alignment %zd\n", size, alignment)); 827 828 dma->size = size; 829 dma->tag = NULL; 830 831 if (alignment > 4096) { 832 align = PAGE_SIZE; 833 reqsize = size + alignment; 834 } else { 835 align = alignment; 836 reqsize = size; 837 } 838 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 839 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 840 NULL, NULL, reqsize, 841 1, reqsize, flags, 842 NULL, NULL, &dma->tag); 843 if (error != 0) { 844 device_printf(sc->sc_dev, 845 "could not create shared page DMA tag\n"); 846 goto fail; 847 } 848 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 849 flags | BUS_DMA_ZERO, &dma->map); 850 if (error != 0) { 851 device_printf(sc->sc_dev, 852 "could not allocate shared page DMA memory\n"); 853 goto fail; 854 } 855 856 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 857 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 858 859 /* Save the original pointers so we can free all the memory */ 860 dma->paddr = dma->paddr_start; 861 dma->vaddr = dma->vaddr_start; 862 863 /* 864 * Check the alignment and increment by 4096 until we get the 865 * requested alignment. Fail if can't obtain the alignment 866 * we requested. 867 */ 868 if ((dma->paddr & (alignment -1 )) != 0) { 869 int i; 870 871 for (i = 0; i < alignment / 4096; i++) { 872 if ((dma->paddr & (alignment - 1 )) == 0) 873 break; 874 dma->paddr += 4096; 875 dma->vaddr += 4096; 876 } 877 if (i == alignment / 4096) { 878 device_printf(sc->sc_dev, 879 "alignment requirement was not satisfied\n"); 880 goto fail; 881 } 882 } 883 884 if (error != 0) { 885 device_printf(sc->sc_dev, 886 "could not load shared page DMA map\n"); 887 goto fail; 888 } 889 890 if (kvap != NULL) 891 *kvap = dma->vaddr; 892 893 return 0; 894 895 fail: 896 wpi_dma_contig_free(dma); 897 return error; 898 } 899 900 static void 901 wpi_dma_contig_free(struct wpi_dma_info *dma) 902 { 903 if (dma->tag) { 904 if (dma->map != NULL) { 905 if (dma->paddr_start != 0) { 906 bus_dmamap_sync(dma->tag, dma->map, 907 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 908 bus_dmamap_unload(dma->tag, dma->map); 909 } 910 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 911 } 912 bus_dma_tag_destroy(dma->tag); 913 } 914 } 915 916 /* 917 * Allocate a shared page between host and NIC. 918 */ 919 static int 920 wpi_alloc_shared(struct wpi_softc *sc) 921 { 922 int error; 923 924 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 925 (void **)&sc->shared, sizeof (struct wpi_shared), 926 PAGE_SIZE, 927 BUS_DMA_NOWAIT); 928 929 if (error != 0) { 930 device_printf(sc->sc_dev, 931 "could not allocate shared area DMA memory\n"); 932 } 933 934 return error; 935 } 936 937 static void 938 wpi_free_shared(struct wpi_softc *sc) 939 { 940 wpi_dma_contig_free(&sc->shared_dma); 941 } 942 943 static int 944 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 945 { 946 947 int i, error; 948 949 ring->cur = 0; 950 951 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 952 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 953 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 954 955 if (error != 0) { 956 device_printf(sc->sc_dev, 957 "%s: could not allocate rx ring DMA memory, error %d\n", 958 __func__, error); 959 goto fail; 960 } 961 962 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 963 BUS_SPACE_MAXADDR_32BIT, 964 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 965 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 966 if (error != 0) { 967 device_printf(sc->sc_dev, 968 "%s: bus_dma_tag_create_failed, error %d\n", 969 __func__, error); 970 goto fail; 971 } 972 973 /* 974 * Setup Rx buffers. 975 */ 976 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 977 struct wpi_rx_data *data = &ring->data[i]; 978 struct mbuf *m; 979 bus_addr_t paddr; 980 981 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 982 if (error != 0) { 983 device_printf(sc->sc_dev, 984 "%s: bus_dmamap_create failed, error %d\n", 985 __func__, error); 986 goto fail; 987 } 988 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 989 if (m == NULL) { 990 device_printf(sc->sc_dev, 991 "%s: could not allocate rx mbuf\n", __func__); 992 error = ENOMEM; 993 goto fail; 994 } 995 /* map page */ 996 error = bus_dmamap_load(ring->data_dmat, data->map, 997 mtod(m, caddr_t), MJUMPAGESIZE, 998 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 999 if (error != 0 && error != EFBIG) { 1000 device_printf(sc->sc_dev, 1001 "%s: bus_dmamap_load failed, error %d\n", 1002 __func__, error); 1003 m_freem(m); 1004 error = ENOMEM; /* XXX unique code */ 1005 goto fail; 1006 } 1007 bus_dmamap_sync(ring->data_dmat, data->map, 1008 BUS_DMASYNC_PREWRITE); 1009 1010 data->m = m; 1011 ring->desc[i] = htole32(paddr); 1012 } 1013 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1014 BUS_DMASYNC_PREWRITE); 1015 return 0; 1016 fail: 1017 wpi_free_rx_ring(sc, ring); 1018 return error; 1019 } 1020 1021 static void 1022 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1023 { 1024 int ntries; 1025 1026 wpi_mem_lock(sc); 1027 1028 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1029 1030 for (ntries = 0; ntries < 100; ntries++) { 1031 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1032 break; 1033 DELAY(10); 1034 } 1035 1036 wpi_mem_unlock(sc); 1037 1038 #ifdef WPI_DEBUG 1039 if (ntries == 100 && wpi_debug > 0) 1040 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1041 #endif 1042 1043 ring->cur = 0; 1044 } 1045 1046 static void 1047 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1048 { 1049 int i; 1050 1051 wpi_dma_contig_free(&ring->desc_dma); 1052 1053 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1054 struct wpi_rx_data *data = &ring->data[i]; 1055 1056 if (data->m != NULL) { 1057 bus_dmamap_sync(ring->data_dmat, data->map, 1058 BUS_DMASYNC_POSTREAD); 1059 bus_dmamap_unload(ring->data_dmat, data->map); 1060 m_freem(data->m); 1061 } 1062 if (data->map != NULL) 1063 bus_dmamap_destroy(ring->data_dmat, data->map); 1064 } 1065 } 1066 1067 static int 1068 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1069 int qid) 1070 { 1071 struct wpi_tx_data *data; 1072 int i, error; 1073 1074 ring->qid = qid; 1075 ring->count = count; 1076 ring->queued = 0; 1077 ring->cur = 0; 1078 ring->data = NULL; 1079 1080 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1081 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1082 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1083 1084 if (error != 0) { 1085 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1086 goto fail; 1087 } 1088 1089 /* update shared page with ring's base address */ 1090 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1091 1092 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1093 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1094 BUS_DMA_NOWAIT); 1095 1096 if (error != 0) { 1097 device_printf(sc->sc_dev, 1098 "could not allocate tx command DMA memory\n"); 1099 goto fail; 1100 } 1101 1102 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1103 M_NOWAIT | M_ZERO); 1104 if (ring->data == NULL) { 1105 device_printf(sc->sc_dev, 1106 "could not allocate tx data slots\n"); 1107 goto fail; 1108 } 1109 1110 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1111 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1112 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1113 &ring->data_dmat); 1114 if (error != 0) { 1115 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1116 goto fail; 1117 } 1118 1119 for (i = 0; i < count; i++) { 1120 data = &ring->data[i]; 1121 1122 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1123 if (error != 0) { 1124 device_printf(sc->sc_dev, 1125 "could not create tx buf DMA map\n"); 1126 goto fail; 1127 } 1128 bus_dmamap_sync(ring->data_dmat, data->map, 1129 BUS_DMASYNC_PREWRITE); 1130 } 1131 1132 return 0; 1133 1134 fail: 1135 wpi_free_tx_ring(sc, ring); 1136 return error; 1137 } 1138 1139 static void 1140 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1141 { 1142 struct wpi_tx_data *data; 1143 int i, ntries; 1144 1145 wpi_mem_lock(sc); 1146 1147 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1148 for (ntries = 0; ntries < 100; ntries++) { 1149 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1150 break; 1151 DELAY(10); 1152 } 1153 #ifdef WPI_DEBUG 1154 if (ntries == 100 && wpi_debug > 0) 1155 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1156 ring->qid); 1157 #endif 1158 wpi_mem_unlock(sc); 1159 1160 for (i = 0; i < ring->count; i++) { 1161 data = &ring->data[i]; 1162 1163 if (data->m != NULL) { 1164 bus_dmamap_unload(ring->data_dmat, data->map); 1165 m_freem(data->m); 1166 data->m = NULL; 1167 } 1168 } 1169 1170 ring->queued = 0; 1171 ring->cur = 0; 1172 } 1173 1174 static void 1175 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1176 { 1177 struct wpi_tx_data *data; 1178 int i; 1179 1180 wpi_dma_contig_free(&ring->desc_dma); 1181 wpi_dma_contig_free(&ring->cmd_dma); 1182 1183 if (ring->data != NULL) { 1184 for (i = 0; i < ring->count; i++) { 1185 data = &ring->data[i]; 1186 1187 if (data->m != NULL) { 1188 bus_dmamap_sync(ring->data_dmat, data->map, 1189 BUS_DMASYNC_POSTWRITE); 1190 bus_dmamap_unload(ring->data_dmat, data->map); 1191 m_freem(data->m); 1192 data->m = NULL; 1193 } 1194 } 1195 free(ring->data, M_DEVBUF); 1196 } 1197 1198 if (ring->data_dmat != NULL) 1199 bus_dma_tag_destroy(ring->data_dmat); 1200 } 1201 1202 static int 1203 wpi_shutdown(device_t dev) 1204 { 1205 struct wpi_softc *sc = device_get_softc(dev); 1206 1207 WPI_LOCK(sc); 1208 wpi_stop_locked(sc); 1209 wpi_unload_firmware(sc); 1210 WPI_UNLOCK(sc); 1211 1212 return 0; 1213 } 1214 1215 static int 1216 wpi_suspend(device_t dev) 1217 { 1218 struct wpi_softc *sc = device_get_softc(dev); 1219 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1220 1221 ieee80211_suspend_all(ic); 1222 return 0; 1223 } 1224 1225 static int 1226 wpi_resume(device_t dev) 1227 { 1228 struct wpi_softc *sc = device_get_softc(dev); 1229 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1230 1231 pci_write_config(dev, 0x41, 0, 1); 1232 1233 ieee80211_resume_all(ic); 1234 return 0; 1235 } 1236 1237 /** 1238 * Called by net80211 when ever there is a change to 80211 state machine 1239 */ 1240 static int 1241 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1242 { 1243 struct wpi_vap *wvp = WPI_VAP(vap); 1244 struct ieee80211com *ic = vap->iv_ic; 1245 struct ifnet *ifp = ic->ic_ifp; 1246 struct wpi_softc *sc = ifp->if_softc; 1247 int error; 1248 1249 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1250 ieee80211_state_name[vap->iv_state], 1251 ieee80211_state_name[nstate], sc->flags)); 1252 1253 IEEE80211_UNLOCK(ic); 1254 WPI_LOCK(sc); 1255 if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) { 1256 /* 1257 * On !INIT -> SCAN transitions, we need to clear any possible 1258 * knowledge about associations. 1259 */ 1260 error = wpi_config(sc); 1261 if (error != 0) { 1262 device_printf(sc->sc_dev, 1263 "%s: device config failed, error %d\n", 1264 __func__, error); 1265 } 1266 } 1267 if (nstate == IEEE80211_S_AUTH || 1268 (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) { 1269 /* 1270 * The node must be registered in the firmware before auth. 1271 * Also the associd must be cleared on RUN -> ASSOC 1272 * transitions. 1273 */ 1274 error = wpi_auth(sc, vap); 1275 if (error != 0) { 1276 device_printf(sc->sc_dev, 1277 "%s: could not move to auth state, error %d\n", 1278 __func__, error); 1279 } 1280 } 1281 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1282 error = wpi_run(sc, vap); 1283 if (error != 0) { 1284 device_printf(sc->sc_dev, 1285 "%s: could not move to run state, error %d\n", 1286 __func__, error); 1287 } 1288 } 1289 if (nstate == IEEE80211_S_RUN) { 1290 /* RUN -> RUN transition; just restart the timers */ 1291 wpi_calib_timeout(sc); 1292 /* XXX split out rate control timer */ 1293 } 1294 WPI_UNLOCK(sc); 1295 IEEE80211_LOCK(ic); 1296 return wvp->newstate(vap, nstate, arg); 1297 } 1298 1299 /* 1300 * Grab exclusive access to NIC memory. 1301 */ 1302 static void 1303 wpi_mem_lock(struct wpi_softc *sc) 1304 { 1305 int ntries; 1306 uint32_t tmp; 1307 1308 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1309 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1310 1311 /* spin until we actually get the lock */ 1312 for (ntries = 0; ntries < 100; ntries++) { 1313 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1314 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1315 break; 1316 DELAY(10); 1317 } 1318 if (ntries == 100) 1319 device_printf(sc->sc_dev, "could not lock memory\n"); 1320 } 1321 1322 /* 1323 * Release lock on NIC memory. 1324 */ 1325 static void 1326 wpi_mem_unlock(struct wpi_softc *sc) 1327 { 1328 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1329 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1330 } 1331 1332 static uint32_t 1333 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1334 { 1335 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1336 return WPI_READ(sc, WPI_READ_MEM_DATA); 1337 } 1338 1339 static void 1340 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1341 { 1342 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1343 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1344 } 1345 1346 static void 1347 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1348 const uint32_t *data, int wlen) 1349 { 1350 for (; wlen > 0; wlen--, data++, addr+=4) 1351 wpi_mem_write(sc, addr, *data); 1352 } 1353 1354 /* 1355 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1356 * using the traditional bit-bang method. Data is read up until len bytes have 1357 * been obtained. 1358 */ 1359 static uint16_t 1360 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1361 { 1362 int ntries; 1363 uint32_t val; 1364 uint8_t *out = data; 1365 1366 wpi_mem_lock(sc); 1367 1368 for (; len > 0; len -= 2, addr++) { 1369 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1370 1371 for (ntries = 0; ntries < 10; ntries++) { 1372 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1373 break; 1374 DELAY(5); 1375 } 1376 1377 if (ntries == 10) { 1378 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1379 return ETIMEDOUT; 1380 } 1381 1382 *out++= val >> 16; 1383 if (len > 1) 1384 *out ++= val >> 24; 1385 } 1386 1387 wpi_mem_unlock(sc); 1388 1389 return 0; 1390 } 1391 1392 /* 1393 * The firmware text and data segments are transferred to the NIC using DMA. 1394 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1395 * where to find it. Once the NIC has copied the firmware into its internal 1396 * memory, we can free our local copy in the driver. 1397 */ 1398 static int 1399 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1400 { 1401 int error, ntries; 1402 1403 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1404 1405 size /= sizeof(uint32_t); 1406 1407 wpi_mem_lock(sc); 1408 1409 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1410 (const uint32_t *)fw, size); 1411 1412 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1413 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1414 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1415 1416 /* run microcode */ 1417 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1418 1419 /* wait while the adapter is busy copying the firmware */ 1420 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1421 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1422 DPRINTFN(WPI_DEBUG_HW, 1423 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1424 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1425 if (status & WPI_TX_IDLE(6)) { 1426 DPRINTFN(WPI_DEBUG_HW, 1427 ("Status Match! - ntries = %d\n", ntries)); 1428 break; 1429 } 1430 DELAY(10); 1431 } 1432 if (ntries == 1000) { 1433 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1434 error = ETIMEDOUT; 1435 } 1436 1437 /* start the microcode executing */ 1438 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1439 1440 wpi_mem_unlock(sc); 1441 1442 return (error); 1443 } 1444 1445 static void 1446 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1447 struct wpi_rx_data *data) 1448 { 1449 struct ifnet *ifp = sc->sc_ifp; 1450 struct ieee80211com *ic = ifp->if_l2com; 1451 struct wpi_rx_ring *ring = &sc->rxq; 1452 struct wpi_rx_stat *stat; 1453 struct wpi_rx_head *head; 1454 struct wpi_rx_tail *tail; 1455 struct ieee80211_node *ni; 1456 struct mbuf *m, *mnew; 1457 bus_addr_t paddr; 1458 int error; 1459 1460 stat = (struct wpi_rx_stat *)(desc + 1); 1461 1462 if (stat->len > WPI_STAT_MAXLEN) { 1463 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1464 ifp->if_ierrors++; 1465 return; 1466 } 1467 1468 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 1469 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1470 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1471 1472 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1473 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1474 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1475 (uintmax_t)le64toh(tail->tstamp))); 1476 1477 /* discard Rx frames with bad CRC early */ 1478 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1479 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1480 le32toh(tail->flags))); 1481 ifp->if_ierrors++; 1482 return; 1483 } 1484 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1485 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1486 le16toh(head->len))); 1487 ifp->if_ierrors++; 1488 return; 1489 } 1490 1491 /* XXX don't need mbuf, just dma buffer */ 1492 mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1493 if (mnew == NULL) { 1494 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1495 __func__)); 1496 ifp->if_ierrors++; 1497 return; 1498 } 1499 bus_dmamap_unload(ring->data_dmat, data->map); 1500 1501 error = bus_dmamap_load(ring->data_dmat, data->map, 1502 mtod(mnew, caddr_t), MJUMPAGESIZE, 1503 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1504 if (error != 0 && error != EFBIG) { 1505 device_printf(sc->sc_dev, 1506 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1507 m_freem(mnew); 1508 ifp->if_ierrors++; 1509 return; 1510 } 1511 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1512 1513 /* finalize mbuf and swap in new one */ 1514 m = data->m; 1515 m->m_pkthdr.rcvif = ifp; 1516 m->m_data = (caddr_t)(head + 1); 1517 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1518 1519 data->m = mnew; 1520 /* update Rx descriptor */ 1521 ring->desc[ring->cur] = htole32(paddr); 1522 1523 if (ieee80211_radiotap_active(ic)) { 1524 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1525 1526 tap->wr_flags = 0; 1527 tap->wr_chan_freq = 1528 htole16(ic->ic_channels[head->chan].ic_freq); 1529 tap->wr_chan_flags = 1530 htole16(ic->ic_channels[head->chan].ic_flags); 1531 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1532 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1533 tap->wr_tsft = tail->tstamp; 1534 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1535 switch (head->rate) { 1536 /* CCK rates */ 1537 case 10: tap->wr_rate = 2; break; 1538 case 20: tap->wr_rate = 4; break; 1539 case 55: tap->wr_rate = 11; break; 1540 case 110: tap->wr_rate = 22; break; 1541 /* OFDM rates */ 1542 case 0xd: tap->wr_rate = 12; break; 1543 case 0xf: tap->wr_rate = 18; break; 1544 case 0x5: tap->wr_rate = 24; break; 1545 case 0x7: tap->wr_rate = 36; break; 1546 case 0x9: tap->wr_rate = 48; break; 1547 case 0xb: tap->wr_rate = 72; break; 1548 case 0x1: tap->wr_rate = 96; break; 1549 case 0x3: tap->wr_rate = 108; break; 1550 /* unknown rate: should not happen */ 1551 default: tap->wr_rate = 0; 1552 } 1553 if (le16toh(head->flags) & 0x4) 1554 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1555 } 1556 1557 WPI_UNLOCK(sc); 1558 1559 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1560 if (ni != NULL) { 1561 (void) ieee80211_input(ni, m, stat->rssi, 0); 1562 ieee80211_free_node(ni); 1563 } else 1564 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1565 1566 WPI_LOCK(sc); 1567 } 1568 1569 static void 1570 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1571 { 1572 struct ifnet *ifp = sc->sc_ifp; 1573 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1574 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1575 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1576 struct ieee80211_node *ni = txdata->ni; 1577 struct ieee80211vap *vap = ni->ni_vap; 1578 int retrycnt = 0; 1579 1580 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1581 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1582 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1583 le32toh(stat->status))); 1584 1585 /* 1586 * Update rate control statistics for the node. 1587 * XXX we should not count mgmt frames since they're always sent at 1588 * the lowest available bit-rate. 1589 * XXX frames w/o ACK shouldn't be used either 1590 */ 1591 if (stat->ntries > 0) { 1592 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1593 retrycnt = 1; 1594 } 1595 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1596 &retrycnt, NULL); 1597 1598 /* XXX oerrors should only count errors !maxtries */ 1599 if ((le32toh(stat->status) & 0xff) != 1) 1600 ifp->if_oerrors++; 1601 else 1602 ifp->if_opackets++; 1603 1604 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1605 bus_dmamap_unload(ring->data_dmat, txdata->map); 1606 /* XXX handle M_TXCB? */ 1607 m_freem(txdata->m); 1608 txdata->m = NULL; 1609 ieee80211_free_node(txdata->ni); 1610 txdata->ni = NULL; 1611 1612 ring->queued--; 1613 1614 sc->sc_tx_timer = 0; 1615 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1616 wpi_start_locked(ifp); 1617 } 1618 1619 static void 1620 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1621 { 1622 struct wpi_tx_ring *ring = &sc->cmdq; 1623 struct wpi_tx_data *data; 1624 1625 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1626 "type=%s len=%d\n", desc->qid, desc->idx, 1627 desc->flags, wpi_cmd_str(desc->type), 1628 le32toh(desc->len))); 1629 1630 if ((desc->qid & 7) != 4) 1631 return; /* not a command ack */ 1632 1633 data = &ring->data[desc->idx]; 1634 1635 /* if the command was mapped in a mbuf, free it */ 1636 if (data->m != NULL) { 1637 bus_dmamap_unload(ring->data_dmat, data->map); 1638 m_freem(data->m); 1639 data->m = NULL; 1640 } 1641 1642 sc->flags &= ~WPI_FLAG_BUSY; 1643 wakeup(&ring->cmd[desc->idx]); 1644 } 1645 1646 static void 1647 wpi_notif_intr(struct wpi_softc *sc) 1648 { 1649 struct ifnet *ifp = sc->sc_ifp; 1650 struct ieee80211com *ic = ifp->if_l2com; 1651 struct wpi_rx_desc *desc; 1652 struct wpi_rx_data *data; 1653 uint32_t hw; 1654 1655 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 1656 BUS_DMASYNC_POSTREAD); 1657 1658 hw = le32toh(sc->shared->next); 1659 while (sc->rxq.cur != hw) { 1660 data = &sc->rxq.data[sc->rxq.cur]; 1661 1662 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1663 BUS_DMASYNC_POSTREAD); 1664 desc = (void *)data->m->m_ext.ext_buf; 1665 1666 DPRINTFN(WPI_DEBUG_NOTIFY, 1667 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1668 desc->qid, 1669 desc->idx, 1670 desc->flags, 1671 desc->type, 1672 le32toh(desc->len))); 1673 1674 if (!(desc->qid & 0x80)) /* reply to a command */ 1675 wpi_cmd_intr(sc, desc); 1676 1677 switch (desc->type) { 1678 case WPI_RX_DONE: 1679 /* a 802.11 frame was received */ 1680 wpi_rx_intr(sc, desc, data); 1681 break; 1682 1683 case WPI_TX_DONE: 1684 /* a 802.11 frame has been transmitted */ 1685 wpi_tx_intr(sc, desc); 1686 break; 1687 1688 case WPI_UC_READY: 1689 { 1690 struct wpi_ucode_info *uc = 1691 (struct wpi_ucode_info *)(desc + 1); 1692 1693 /* the microcontroller is ready */ 1694 DPRINTF(("microcode alive notification version %x " 1695 "alive %x\n", le32toh(uc->version), 1696 le32toh(uc->valid))); 1697 1698 if (le32toh(uc->valid) != 1) { 1699 device_printf(sc->sc_dev, 1700 "microcontroller initialization failed\n"); 1701 wpi_stop_locked(sc); 1702 } 1703 break; 1704 } 1705 case WPI_STATE_CHANGED: 1706 { 1707 uint32_t *status = (uint32_t *)(desc + 1); 1708 1709 /* enabled/disabled notification */ 1710 DPRINTF(("state changed to %x\n", le32toh(*status))); 1711 1712 if (le32toh(*status) & 1) { 1713 device_printf(sc->sc_dev, 1714 "Radio transmitter is switched off\n"); 1715 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1716 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1717 /* Disable firmware commands */ 1718 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1719 } 1720 break; 1721 } 1722 case WPI_START_SCAN: 1723 { 1724 #ifdef WPI_DEBUG 1725 struct wpi_start_scan *scan = 1726 (struct wpi_start_scan *)(desc + 1); 1727 #endif 1728 1729 DPRINTFN(WPI_DEBUG_SCANNING, 1730 ("scanning channel %d status %x\n", 1731 scan->chan, le32toh(scan->status))); 1732 break; 1733 } 1734 case WPI_STOP_SCAN: 1735 { 1736 #ifdef WPI_DEBUG 1737 struct wpi_stop_scan *scan = 1738 (struct wpi_stop_scan *)(desc + 1); 1739 #endif 1740 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1741 1742 DPRINTFN(WPI_DEBUG_SCANNING, 1743 ("scan finished nchan=%d status=%d chan=%d\n", 1744 scan->nchan, scan->status, scan->chan)); 1745 1746 sc->sc_scan_timer = 0; 1747 ieee80211_scan_next(vap); 1748 break; 1749 } 1750 case WPI_MISSED_BEACON: 1751 { 1752 struct wpi_missed_beacon *beacon = 1753 (struct wpi_missed_beacon *)(desc + 1); 1754 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1755 1756 if (le32toh(beacon->consecutive) >= 1757 vap->iv_bmissthreshold) { 1758 DPRINTF(("Beacon miss: %u >= %u\n", 1759 le32toh(beacon->consecutive), 1760 vap->iv_bmissthreshold)); 1761 ieee80211_beacon_miss(ic); 1762 } 1763 break; 1764 } 1765 } 1766 1767 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1768 } 1769 1770 /* tell the firmware what we have processed */ 1771 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1772 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1773 } 1774 1775 static void 1776 wpi_intr(void *arg) 1777 { 1778 struct wpi_softc *sc = arg; 1779 uint32_t r; 1780 1781 WPI_LOCK(sc); 1782 1783 r = WPI_READ(sc, WPI_INTR); 1784 if (r == 0 || r == 0xffffffff) { 1785 WPI_UNLOCK(sc); 1786 return; 1787 } 1788 1789 /* disable interrupts */ 1790 WPI_WRITE(sc, WPI_MASK, 0); 1791 /* ack interrupts */ 1792 WPI_WRITE(sc, WPI_INTR, r); 1793 1794 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1795 struct ifnet *ifp = sc->sc_ifp; 1796 struct ieee80211com *ic = ifp->if_l2com; 1797 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1798 1799 device_printf(sc->sc_dev, "fatal firmware error\n"); 1800 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1801 "(Hardware Error)")); 1802 if (vap != NULL) 1803 ieee80211_cancel_scan(vap); 1804 ieee80211_runtask(ic, &sc->sc_restarttask); 1805 sc->flags &= ~WPI_FLAG_BUSY; 1806 WPI_UNLOCK(sc); 1807 return; 1808 } 1809 1810 if (r & WPI_RX_INTR) 1811 wpi_notif_intr(sc); 1812 1813 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1814 wakeup(sc); 1815 1816 /* re-enable interrupts */ 1817 if (sc->sc_ifp->if_flags & IFF_UP) 1818 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1819 1820 WPI_UNLOCK(sc); 1821 } 1822 1823 static uint8_t 1824 wpi_plcp_signal(int rate) 1825 { 1826 switch (rate) { 1827 /* CCK rates (returned values are device-dependent) */ 1828 case 2: return 10; 1829 case 4: return 20; 1830 case 11: return 55; 1831 case 22: return 110; 1832 1833 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1834 /* R1-R4 (ral/ural is R4-R1) */ 1835 case 12: return 0xd; 1836 case 18: return 0xf; 1837 case 24: return 0x5; 1838 case 36: return 0x7; 1839 case 48: return 0x9; 1840 case 72: return 0xb; 1841 case 96: return 0x1; 1842 case 108: return 0x3; 1843 1844 /* unsupported rates (should not get there) */ 1845 default: return 0; 1846 } 1847 } 1848 1849 /* quickly determine if a given rate is CCK or OFDM */ 1850 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1851 1852 /* 1853 * Construct the data packet for a transmit buffer and acutally put 1854 * the buffer onto the transmit ring, kicking the card to process the 1855 * the buffer. 1856 */ 1857 static int 1858 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1859 int ac) 1860 { 1861 struct ieee80211vap *vap = ni->ni_vap; 1862 struct ifnet *ifp = sc->sc_ifp; 1863 struct ieee80211com *ic = ifp->if_l2com; 1864 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1865 struct wpi_tx_ring *ring = &sc->txq[ac]; 1866 struct wpi_tx_desc *desc; 1867 struct wpi_tx_data *data; 1868 struct wpi_tx_cmd *cmd; 1869 struct wpi_cmd_data *tx; 1870 struct ieee80211_frame *wh; 1871 const struct ieee80211_txparam *tp; 1872 struct ieee80211_key *k; 1873 struct mbuf *mnew; 1874 int i, error, nsegs, rate, hdrlen, ismcast; 1875 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1876 1877 desc = &ring->desc[ring->cur]; 1878 data = &ring->data[ring->cur]; 1879 1880 wh = mtod(m0, struct ieee80211_frame *); 1881 1882 hdrlen = ieee80211_hdrsize(wh); 1883 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1884 1885 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1886 k = ieee80211_crypto_encap(ni, m0); 1887 if (k == NULL) { 1888 m_freem(m0); 1889 return ENOBUFS; 1890 } 1891 /* packet header may have moved, reset our local pointer */ 1892 wh = mtod(m0, struct ieee80211_frame *); 1893 } 1894 1895 cmd = &ring->cmd[ring->cur]; 1896 cmd->code = WPI_CMD_TX_DATA; 1897 cmd->flags = 0; 1898 cmd->qid = ring->qid; 1899 cmd->idx = ring->cur; 1900 1901 tx = (struct wpi_cmd_data *)cmd->data; 1902 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1903 tx->timeout = htole16(0); 1904 tx->ofdm_mask = 0xff; 1905 tx->cck_mask = 0x0f; 1906 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1907 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1908 tx->len = htole16(m0->m_pkthdr.len); 1909 1910 if (!ismcast) { 1911 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1912 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1913 tx->flags |= htole32(WPI_TX_NEED_ACK); 1914 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1915 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1916 tx->rts_ntries = 7; 1917 } 1918 } 1919 /* pick a rate */ 1920 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1921 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1922 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1923 /* tell h/w to set timestamp in probe responses */ 1924 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1925 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1926 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1927 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1928 tx->timeout = htole16(3); 1929 else 1930 tx->timeout = htole16(2); 1931 rate = tp->mgmtrate; 1932 } else if (ismcast) { 1933 rate = tp->mcastrate; 1934 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1935 rate = tp->ucastrate; 1936 } else { 1937 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1938 rate = ni->ni_txrate; 1939 } 1940 tx->rate = wpi_plcp_signal(rate); 1941 1942 /* be very persistant at sending frames out */ 1943 #if 0 1944 tx->data_ntries = tp->maxretry; 1945 #else 1946 tx->data_ntries = 15; /* XXX way too high */ 1947 #endif 1948 1949 if (ieee80211_radiotap_active_vap(vap)) { 1950 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1951 tap->wt_flags = 0; 1952 tap->wt_rate = rate; 1953 tap->wt_hwqueue = ac; 1954 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) 1955 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1956 1957 ieee80211_radiotap_tx(vap, m0); 1958 } 1959 1960 /* save and trim IEEE802.11 header */ 1961 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1962 m_adj(m0, hdrlen); 1963 1964 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1965 &nsegs, BUS_DMA_NOWAIT); 1966 if (error != 0 && error != EFBIG) { 1967 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1968 error); 1969 m_freem(m0); 1970 return error; 1971 } 1972 if (error != 0) { 1973 /* XXX use m_collapse */ 1974 mnew = m_defrag(m0, M_NOWAIT); 1975 if (mnew == NULL) { 1976 device_printf(sc->sc_dev, 1977 "could not defragment mbuf\n"); 1978 m_freem(m0); 1979 return ENOBUFS; 1980 } 1981 m0 = mnew; 1982 1983 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1984 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1985 if (error != 0) { 1986 device_printf(sc->sc_dev, 1987 "could not map mbuf (error %d)\n", error); 1988 m_freem(m0); 1989 return error; 1990 } 1991 } 1992 1993 data->m = m0; 1994 data->ni = ni; 1995 1996 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1997 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1998 1999 /* first scatter/gather segment is used by the tx data command */ 2000 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2001 (1 + nsegs) << 24); 2002 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2003 ring->cur * sizeof (struct wpi_tx_cmd)); 2004 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 2005 for (i = 1; i <= nsegs; i++) { 2006 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 2007 desc->segs[i].len = htole32(segs[i - 1].ds_len); 2008 } 2009 2010 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2011 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2012 BUS_DMASYNC_PREWRITE); 2013 2014 ring->queued++; 2015 2016 /* kick ring */ 2017 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2018 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2019 2020 return 0; 2021 } 2022 2023 /** 2024 * Process data waiting to be sent on the IFNET output queue 2025 */ 2026 static void 2027 wpi_start(struct ifnet *ifp) 2028 { 2029 struct wpi_softc *sc = ifp->if_softc; 2030 2031 WPI_LOCK(sc); 2032 wpi_start_locked(ifp); 2033 WPI_UNLOCK(sc); 2034 } 2035 2036 static void 2037 wpi_start_locked(struct ifnet *ifp) 2038 { 2039 struct wpi_softc *sc = ifp->if_softc; 2040 struct ieee80211_node *ni; 2041 struct mbuf *m; 2042 int ac; 2043 2044 WPI_LOCK_ASSERT(sc); 2045 2046 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2047 return; 2048 2049 for (;;) { 2050 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2051 if (m == NULL) 2052 break; 2053 ac = M_WME_GETAC(m); 2054 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2055 /* there is no place left in this ring */ 2056 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2057 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2058 break; 2059 } 2060 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2061 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2062 ieee80211_free_node(ni); 2063 ifp->if_oerrors++; 2064 break; 2065 } 2066 sc->sc_tx_timer = 5; 2067 } 2068 } 2069 2070 static int 2071 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2072 const struct ieee80211_bpf_params *params) 2073 { 2074 struct ieee80211com *ic = ni->ni_ic; 2075 struct ifnet *ifp = ic->ic_ifp; 2076 struct wpi_softc *sc = ifp->if_softc; 2077 2078 /* prevent management frames from being sent if we're not ready */ 2079 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2080 m_freem(m); 2081 ieee80211_free_node(ni); 2082 return ENETDOWN; 2083 } 2084 WPI_LOCK(sc); 2085 2086 /* management frames go into ring 0 */ 2087 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2088 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2089 m_freem(m); 2090 WPI_UNLOCK(sc); 2091 ieee80211_free_node(ni); 2092 return ENOBUFS; /* XXX */ 2093 } 2094 2095 ifp->if_opackets++; 2096 if (wpi_tx_data(sc, m, ni, 0) != 0) 2097 goto bad; 2098 sc->sc_tx_timer = 5; 2099 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2100 2101 WPI_UNLOCK(sc); 2102 return 0; 2103 bad: 2104 ifp->if_oerrors++; 2105 WPI_UNLOCK(sc); 2106 ieee80211_free_node(ni); 2107 return EIO; /* XXX */ 2108 } 2109 2110 static int 2111 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2112 { 2113 struct wpi_softc *sc = ifp->if_softc; 2114 struct ieee80211com *ic = ifp->if_l2com; 2115 struct ifreq *ifr = (struct ifreq *) data; 2116 int error = 0, startall = 0; 2117 2118 switch (cmd) { 2119 case SIOCSIFFLAGS: 2120 WPI_LOCK(sc); 2121 if ((ifp->if_flags & IFF_UP)) { 2122 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2123 wpi_init_locked(sc, 0); 2124 startall = 1; 2125 } 2126 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2127 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2128 wpi_stop_locked(sc); 2129 WPI_UNLOCK(sc); 2130 if (startall) 2131 ieee80211_start_all(ic); 2132 break; 2133 case SIOCGIFMEDIA: 2134 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2135 break; 2136 case SIOCGIFADDR: 2137 error = ether_ioctl(ifp, cmd, data); 2138 break; 2139 default: 2140 error = EINVAL; 2141 break; 2142 } 2143 return error; 2144 } 2145 2146 /* 2147 * Extract various information from EEPROM. 2148 */ 2149 static void 2150 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2151 { 2152 int i; 2153 2154 /* read the hardware capabilities, revision and SKU type */ 2155 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2156 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2157 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2158 2159 /* read the regulatory domain */ 2160 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2161 2162 /* read in the hw MAC address */ 2163 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2164 2165 /* read the list of authorized channels */ 2166 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2167 wpi_read_eeprom_channels(sc,i); 2168 2169 /* read the power level calibration info for each group */ 2170 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2171 wpi_read_eeprom_group(sc,i); 2172 } 2173 2174 /* 2175 * Send a command to the firmware. 2176 */ 2177 static int 2178 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2179 { 2180 struct wpi_tx_ring *ring = &sc->cmdq; 2181 struct wpi_tx_desc *desc; 2182 struct wpi_tx_cmd *cmd; 2183 2184 #ifdef WPI_DEBUG 2185 if (!async) { 2186 WPI_LOCK_ASSERT(sc); 2187 } 2188 #endif 2189 2190 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2191 async)); 2192 2193 if (sc->flags & WPI_FLAG_BUSY) { 2194 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2195 __func__, code); 2196 return EAGAIN; 2197 } 2198 sc->flags|= WPI_FLAG_BUSY; 2199 2200 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2201 code, size)); 2202 2203 desc = &ring->desc[ring->cur]; 2204 cmd = &ring->cmd[ring->cur]; 2205 2206 cmd->code = code; 2207 cmd->flags = 0; 2208 cmd->qid = ring->qid; 2209 cmd->idx = ring->cur; 2210 memcpy(cmd->data, buf, size); 2211 2212 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2213 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2214 ring->cur * sizeof (struct wpi_tx_cmd)); 2215 desc->segs[0].len = htole32(4 + size); 2216 2217 /* kick cmd ring */ 2218 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2219 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2220 2221 if (async) { 2222 sc->flags &= ~ WPI_FLAG_BUSY; 2223 return 0; 2224 } 2225 2226 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2227 } 2228 2229 static int 2230 wpi_wme_update(struct ieee80211com *ic) 2231 { 2232 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2233 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2234 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2235 const struct wmeParams *wmep; 2236 struct wpi_wme_setup wme; 2237 int ac; 2238 2239 /* don't override default WME values if WME is not actually enabled */ 2240 if (!(ic->ic_flags & IEEE80211_F_WME)) 2241 return 0; 2242 2243 wme.flags = 0; 2244 for (ac = 0; ac < WME_NUM_AC; ac++) { 2245 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2246 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2247 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2248 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2249 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2250 2251 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2252 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2253 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2254 } 2255 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2256 #undef WPI_USEC 2257 #undef WPI_EXP2 2258 } 2259 2260 /* 2261 * Configure h/w multi-rate retries. 2262 */ 2263 static int 2264 wpi_mrr_setup(struct wpi_softc *sc) 2265 { 2266 struct ifnet *ifp = sc->sc_ifp; 2267 struct ieee80211com *ic = ifp->if_l2com; 2268 struct wpi_mrr_setup mrr; 2269 int i, error; 2270 2271 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2272 2273 /* CCK rates (not used with 802.11a) */ 2274 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2275 mrr.rates[i].flags = 0; 2276 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2277 /* fallback to the immediate lower CCK rate (if any) */ 2278 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2279 /* try one time at this rate before falling back to "next" */ 2280 mrr.rates[i].ntries = 1; 2281 } 2282 2283 /* OFDM rates (not used with 802.11b) */ 2284 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2285 mrr.rates[i].flags = 0; 2286 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2287 /* fallback to the immediate lower OFDM rate (if any) */ 2288 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2289 mrr.rates[i].next = (i == WPI_OFDM6) ? 2290 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2291 WPI_OFDM6 : WPI_CCK2) : 2292 i - 1; 2293 /* try one time at this rate before falling back to "next" */ 2294 mrr.rates[i].ntries = 1; 2295 } 2296 2297 /* setup MRR for control frames */ 2298 mrr.which = WPI_MRR_CTL; 2299 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2300 if (error != 0) { 2301 device_printf(sc->sc_dev, 2302 "could not setup MRR for control frames\n"); 2303 return error; 2304 } 2305 2306 /* setup MRR for data frames */ 2307 mrr.which = WPI_MRR_DATA; 2308 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2309 if (error != 0) { 2310 device_printf(sc->sc_dev, 2311 "could not setup MRR for data frames\n"); 2312 return error; 2313 } 2314 2315 return 0; 2316 } 2317 2318 static void 2319 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2320 { 2321 struct wpi_cmd_led led; 2322 2323 led.which = which; 2324 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2325 led.off = off; 2326 led.on = on; 2327 2328 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2329 } 2330 2331 static void 2332 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2333 { 2334 struct wpi_cmd_tsf tsf; 2335 uint64_t val, mod; 2336 2337 memset(&tsf, 0, sizeof tsf); 2338 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2339 tsf.bintval = htole16(ni->ni_intval); 2340 tsf.lintval = htole16(10); 2341 2342 /* compute remaining time until next beacon */ 2343 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2344 mod = le64toh(tsf.tstamp) % val; 2345 tsf.binitval = htole32((uint32_t)(val - mod)); 2346 2347 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2348 device_printf(sc->sc_dev, "could not enable TSF\n"); 2349 } 2350 2351 #if 0 2352 /* 2353 * Build a beacon frame that the firmware will broadcast periodically in 2354 * IBSS or HostAP modes. 2355 */ 2356 static int 2357 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2358 { 2359 struct ifnet *ifp = sc->sc_ifp; 2360 struct ieee80211com *ic = ifp->if_l2com; 2361 struct wpi_tx_ring *ring = &sc->cmdq; 2362 struct wpi_tx_desc *desc; 2363 struct wpi_tx_data *data; 2364 struct wpi_tx_cmd *cmd; 2365 struct wpi_cmd_beacon *bcn; 2366 struct ieee80211_beacon_offsets bo; 2367 struct mbuf *m0; 2368 bus_addr_t physaddr; 2369 int error; 2370 2371 desc = &ring->desc[ring->cur]; 2372 data = &ring->data[ring->cur]; 2373 2374 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2375 if (m0 == NULL) { 2376 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2377 return ENOMEM; 2378 } 2379 2380 cmd = &ring->cmd[ring->cur]; 2381 cmd->code = WPI_CMD_SET_BEACON; 2382 cmd->flags = 0; 2383 cmd->qid = ring->qid; 2384 cmd->idx = ring->cur; 2385 2386 bcn = (struct wpi_cmd_beacon *)cmd->data; 2387 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2388 bcn->id = WPI_ID_BROADCAST; 2389 bcn->ofdm_mask = 0xff; 2390 bcn->cck_mask = 0x0f; 2391 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2392 bcn->len = htole16(m0->m_pkthdr.len); 2393 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2394 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2395 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2396 2397 /* save and trim IEEE802.11 header */ 2398 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2399 m_adj(m0, sizeof (struct ieee80211_frame)); 2400 2401 /* assume beacon frame is contiguous */ 2402 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2403 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2404 if (error != 0) { 2405 device_printf(sc->sc_dev, "could not map beacon\n"); 2406 m_freem(m0); 2407 return error; 2408 } 2409 2410 data->m = m0; 2411 2412 /* first scatter/gather segment is used by the beacon command */ 2413 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2414 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2415 ring->cur * sizeof (struct wpi_tx_cmd)); 2416 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2417 desc->segs[1].addr = htole32(physaddr); 2418 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2419 2420 /* kick cmd ring */ 2421 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2422 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2423 2424 return 0; 2425 } 2426 #endif 2427 2428 static int 2429 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2430 { 2431 struct ieee80211com *ic = vap->iv_ic; 2432 struct ieee80211_node *ni = vap->iv_bss; 2433 struct wpi_node_info node; 2434 int error; 2435 2436 2437 /* update adapter's configuration */ 2438 sc->config.associd = 0; 2439 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2440 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2441 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2442 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2443 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2444 WPI_CONFIG_24GHZ); 2445 } else { 2446 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO | 2447 WPI_CONFIG_24GHZ); 2448 } 2449 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2450 sc->config.cck_mask = 0; 2451 sc->config.ofdm_mask = 0x15; 2452 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2453 sc->config.cck_mask = 0x03; 2454 sc->config.ofdm_mask = 0; 2455 } else { 2456 /* XXX assume 802.11b/g */ 2457 sc->config.cck_mask = 0x0f; 2458 sc->config.ofdm_mask = 0x15; 2459 } 2460 2461 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2462 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2463 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2464 sizeof (struct wpi_config), 1); 2465 if (error != 0) { 2466 device_printf(sc->sc_dev, "could not configure\n"); 2467 return error; 2468 } 2469 2470 /* configuration has changed, set Tx power accordingly */ 2471 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2472 device_printf(sc->sc_dev, "could not set Tx power\n"); 2473 return error; 2474 } 2475 2476 /* add default node */ 2477 memset(&node, 0, sizeof node); 2478 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2479 node.id = WPI_ID_BSS; 2480 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2481 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2482 node.action = htole32(WPI_ACTION_SET_RATE); 2483 node.antenna = WPI_ANTENNA_BOTH; 2484 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2485 if (error != 0) 2486 device_printf(sc->sc_dev, "could not add BSS node\n"); 2487 2488 return (error); 2489 } 2490 2491 static int 2492 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2493 { 2494 struct ieee80211com *ic = vap->iv_ic; 2495 struct ieee80211_node *ni = vap->iv_bss; 2496 int error; 2497 2498 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2499 /* link LED blinks while monitoring */ 2500 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2501 return 0; 2502 } 2503 2504 wpi_enable_tsf(sc, ni); 2505 2506 /* update adapter's configuration */ 2507 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2508 /* short preamble/slot time are negotiated when associating */ 2509 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2510 WPI_CONFIG_SHSLOT); 2511 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2512 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2513 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2514 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2515 sc->config.filter |= htole32(WPI_FILTER_BSS); 2516 2517 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2518 2519 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2520 sc->config.flags)); 2521 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2522 wpi_config), 1); 2523 if (error != 0) { 2524 device_printf(sc->sc_dev, "could not update configuration\n"); 2525 return error; 2526 } 2527 2528 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2529 if (error != 0) { 2530 device_printf(sc->sc_dev, "could set txpower\n"); 2531 return error; 2532 } 2533 2534 /* link LED always on while associated */ 2535 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2536 2537 /* start automatic rate control timer */ 2538 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2539 2540 return (error); 2541 } 2542 2543 /* 2544 * Send a scan request to the firmware. Since this command is huge, we map it 2545 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2546 * much of this code is similar to that in wpi_cmd but because we must manually 2547 * construct the probe & channels, we duplicate what's needed here. XXX In the 2548 * future, this function should be modified to use wpi_cmd to help cleanup the 2549 * code base. 2550 */ 2551 static int 2552 wpi_scan(struct wpi_softc *sc) 2553 { 2554 struct ifnet *ifp = sc->sc_ifp; 2555 struct ieee80211com *ic = ifp->if_l2com; 2556 struct ieee80211_scan_state *ss = ic->ic_scan; 2557 struct wpi_tx_ring *ring = &sc->cmdq; 2558 struct wpi_tx_desc *desc; 2559 struct wpi_tx_data *data; 2560 struct wpi_tx_cmd *cmd; 2561 struct wpi_scan_hdr *hdr; 2562 struct wpi_scan_chan *chan; 2563 struct ieee80211_frame *wh; 2564 struct ieee80211_rateset *rs; 2565 struct ieee80211_channel *c; 2566 enum ieee80211_phymode mode; 2567 uint8_t *frm; 2568 int nrates, pktlen, error, i, nssid; 2569 bus_addr_t physaddr; 2570 2571 desc = &ring->desc[ring->cur]; 2572 data = &ring->data[ring->cur]; 2573 2574 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2575 if (data->m == NULL) { 2576 device_printf(sc->sc_dev, 2577 "could not allocate mbuf for scan command\n"); 2578 return ENOMEM; 2579 } 2580 2581 cmd = mtod(data->m, struct wpi_tx_cmd *); 2582 cmd->code = WPI_CMD_SCAN; 2583 cmd->flags = 0; 2584 cmd->qid = ring->qid; 2585 cmd->idx = ring->cur; 2586 2587 hdr = (struct wpi_scan_hdr *)cmd->data; 2588 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2589 2590 /* 2591 * Move to the next channel if no packets are received within 5 msecs 2592 * after sending the probe request (this helps to reduce the duration 2593 * of active scans). 2594 */ 2595 hdr->quiet = htole16(5); 2596 hdr->threshold = htole16(1); 2597 2598 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2599 /* send probe requests at 6Mbps */ 2600 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2601 2602 /* Enable crc checking */ 2603 hdr->promotion = htole16(1); 2604 } else { 2605 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2606 /* send probe requests at 1Mbps */ 2607 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2608 } 2609 hdr->tx.id = WPI_ID_BROADCAST; 2610 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2611 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2612 2613 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2614 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2615 for (i = 0; i < nssid; i++) { 2616 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2617 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2618 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2619 hdr->scan_essids[i].esslen); 2620 #ifdef WPI_DEBUG 2621 if (wpi_debug & WPI_DEBUG_SCANNING) { 2622 printf("Scanning Essid: "); 2623 ieee80211_print_essid(hdr->scan_essids[i].essid, 2624 hdr->scan_essids[i].esslen); 2625 printf("\n"); 2626 } 2627 #endif 2628 } 2629 2630 /* 2631 * Build a probe request frame. Most of the following code is a 2632 * copy & paste of what is done in net80211. 2633 */ 2634 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2635 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2636 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2637 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2638 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2639 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2640 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2641 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2642 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2643 2644 frm = (uint8_t *)(wh + 1); 2645 2646 /* add essid IE, the hardware will fill this in for us */ 2647 *frm++ = IEEE80211_ELEMID_SSID; 2648 *frm++ = 0; 2649 2650 mode = ieee80211_chan2mode(ic->ic_curchan); 2651 rs = &ic->ic_sup_rates[mode]; 2652 2653 /* add supported rates IE */ 2654 *frm++ = IEEE80211_ELEMID_RATES; 2655 nrates = rs->rs_nrates; 2656 if (nrates > IEEE80211_RATE_SIZE) 2657 nrates = IEEE80211_RATE_SIZE; 2658 *frm++ = nrates; 2659 memcpy(frm, rs->rs_rates, nrates); 2660 frm += nrates; 2661 2662 /* add supported xrates IE */ 2663 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2664 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2665 *frm++ = IEEE80211_ELEMID_XRATES; 2666 *frm++ = nrates; 2667 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2668 frm += nrates; 2669 } 2670 2671 /* setup length of probe request */ 2672 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2673 2674 /* 2675 * Construct information about the channel that we 2676 * want to scan. The firmware expects this to be directly 2677 * after the scan probe request 2678 */ 2679 c = ic->ic_curchan; 2680 chan = (struct wpi_scan_chan *)frm; 2681 chan->chan = ieee80211_chan2ieee(ic, c); 2682 chan->flags = 0; 2683 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2684 chan->flags |= WPI_CHAN_ACTIVE; 2685 if (nssid != 0) 2686 chan->flags |= WPI_CHAN_DIRECT; 2687 } 2688 chan->gain_dsp = 0x6e; /* Default level */ 2689 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2690 chan->active = htole16(10); 2691 chan->passive = htole16(ss->ss_maxdwell); 2692 chan->gain_radio = 0x3b; 2693 } else { 2694 chan->active = htole16(20); 2695 chan->passive = htole16(ss->ss_maxdwell); 2696 chan->gain_radio = 0x28; 2697 } 2698 2699 DPRINTFN(WPI_DEBUG_SCANNING, 2700 ("Scanning %u Passive: %d\n", 2701 chan->chan, 2702 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2703 2704 hdr->nchan++; 2705 chan++; 2706 2707 frm += sizeof (struct wpi_scan_chan); 2708 #if 0 2709 // XXX All Channels.... 2710 for (c = &ic->ic_channels[1]; 2711 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2712 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2713 continue; 2714 2715 chan->chan = ieee80211_chan2ieee(ic, c); 2716 chan->flags = 0; 2717 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2718 chan->flags |= WPI_CHAN_ACTIVE; 2719 if (ic->ic_des_ssid[0].len != 0) 2720 chan->flags |= WPI_CHAN_DIRECT; 2721 } 2722 chan->gain_dsp = 0x6e; /* Default level */ 2723 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2724 chan->active = htole16(10); 2725 chan->passive = htole16(110); 2726 chan->gain_radio = 0x3b; 2727 } else { 2728 chan->active = htole16(20); 2729 chan->passive = htole16(120); 2730 chan->gain_radio = 0x28; 2731 } 2732 2733 DPRINTFN(WPI_DEBUG_SCANNING, 2734 ("Scanning %u Passive: %d\n", 2735 chan->chan, 2736 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2737 2738 hdr->nchan++; 2739 chan++; 2740 2741 frm += sizeof (struct wpi_scan_chan); 2742 } 2743 #endif 2744 2745 hdr->len = htole16(frm - (uint8_t *)hdr); 2746 pktlen = frm - (uint8_t *)cmd; 2747 2748 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2749 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2750 if (error != 0) { 2751 device_printf(sc->sc_dev, "could not map scan command\n"); 2752 m_freem(data->m); 2753 data->m = NULL; 2754 return error; 2755 } 2756 2757 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2758 desc->segs[0].addr = htole32(physaddr); 2759 desc->segs[0].len = htole32(pktlen); 2760 2761 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2762 BUS_DMASYNC_PREWRITE); 2763 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2764 2765 /* kick cmd ring */ 2766 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2767 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2768 2769 sc->sc_scan_timer = 5; 2770 return 0; /* will be notified async. of failure/success */ 2771 } 2772 2773 /** 2774 * Configure the card to listen to a particular channel, this transisions the 2775 * card in to being able to receive frames from remote devices. 2776 */ 2777 static int 2778 wpi_config(struct wpi_softc *sc) 2779 { 2780 struct ifnet *ifp = sc->sc_ifp; 2781 struct ieee80211com *ic = ifp->if_l2com; 2782 struct wpi_power power; 2783 struct wpi_bluetooth bluetooth; 2784 struct wpi_node_info node; 2785 int error; 2786 2787 /* set power mode */ 2788 memset(&power, 0, sizeof power); 2789 power.flags = htole32(WPI_POWER_CAM|0x8); 2790 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2791 if (error != 0) { 2792 device_printf(sc->sc_dev, "could not set power mode\n"); 2793 return error; 2794 } 2795 2796 /* configure bluetooth coexistence */ 2797 memset(&bluetooth, 0, sizeof bluetooth); 2798 bluetooth.flags = 3; 2799 bluetooth.lead = 0xaa; 2800 bluetooth.kill = 1; 2801 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2802 0); 2803 if (error != 0) { 2804 device_printf(sc->sc_dev, 2805 "could not configure bluetooth coexistence\n"); 2806 return error; 2807 } 2808 2809 /* configure adapter */ 2810 memset(&sc->config, 0, sizeof (struct wpi_config)); 2811 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2812 /*set default channel*/ 2813 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2814 sc->config.flags = htole32(WPI_CONFIG_TSF); 2815 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2816 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2817 WPI_CONFIG_24GHZ); 2818 } 2819 sc->config.filter = 0; 2820 switch (ic->ic_opmode) { 2821 case IEEE80211_M_STA: 2822 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2823 sc->config.mode = WPI_MODE_STA; 2824 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2825 break; 2826 case IEEE80211_M_IBSS: 2827 case IEEE80211_M_AHDEMO: 2828 sc->config.mode = WPI_MODE_IBSS; 2829 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2830 WPI_FILTER_MULTICAST); 2831 break; 2832 case IEEE80211_M_HOSTAP: 2833 sc->config.mode = WPI_MODE_HOSTAP; 2834 break; 2835 case IEEE80211_M_MONITOR: 2836 sc->config.mode = WPI_MODE_MONITOR; 2837 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2838 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2839 break; 2840 default: 2841 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2842 return EINVAL; 2843 } 2844 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2845 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2846 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2847 sizeof (struct wpi_config), 0); 2848 if (error != 0) { 2849 device_printf(sc->sc_dev, "configure command failed\n"); 2850 return error; 2851 } 2852 2853 /* configuration has changed, set Tx power accordingly */ 2854 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2855 device_printf(sc->sc_dev, "could not set Tx power\n"); 2856 return error; 2857 } 2858 2859 /* add broadcast node */ 2860 memset(&node, 0, sizeof node); 2861 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2862 node.id = WPI_ID_BROADCAST; 2863 node.rate = wpi_plcp_signal(2); 2864 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2865 if (error != 0) { 2866 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2867 return error; 2868 } 2869 2870 /* Setup rate scalling */ 2871 error = wpi_mrr_setup(sc); 2872 if (error != 0) { 2873 device_printf(sc->sc_dev, "could not setup MRR\n"); 2874 return error; 2875 } 2876 2877 return 0; 2878 } 2879 2880 static void 2881 wpi_stop_master(struct wpi_softc *sc) 2882 { 2883 uint32_t tmp; 2884 int ntries; 2885 2886 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2887 2888 tmp = WPI_READ(sc, WPI_RESET); 2889 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2890 2891 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2892 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2893 return; /* already asleep */ 2894 2895 for (ntries = 0; ntries < 100; ntries++) { 2896 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2897 break; 2898 DELAY(10); 2899 } 2900 if (ntries == 100) { 2901 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2902 } 2903 } 2904 2905 static int 2906 wpi_power_up(struct wpi_softc *sc) 2907 { 2908 uint32_t tmp; 2909 int ntries; 2910 2911 wpi_mem_lock(sc); 2912 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2913 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2914 wpi_mem_unlock(sc); 2915 2916 for (ntries = 0; ntries < 5000; ntries++) { 2917 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2918 break; 2919 DELAY(10); 2920 } 2921 if (ntries == 5000) { 2922 device_printf(sc->sc_dev, 2923 "timeout waiting for NIC to power up\n"); 2924 return ETIMEDOUT; 2925 } 2926 return 0; 2927 } 2928 2929 static int 2930 wpi_reset(struct wpi_softc *sc) 2931 { 2932 uint32_t tmp; 2933 int ntries; 2934 2935 DPRINTFN(WPI_DEBUG_HW, 2936 ("Resetting the card - clearing any uploaded firmware\n")); 2937 2938 /* clear any pending interrupts */ 2939 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2940 2941 tmp = WPI_READ(sc, WPI_PLL_CTL); 2942 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2943 2944 tmp = WPI_READ(sc, WPI_CHICKEN); 2945 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2946 2947 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2948 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2949 2950 /* wait for clock stabilization */ 2951 for (ntries = 0; ntries < 25000; ntries++) { 2952 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2953 break; 2954 DELAY(10); 2955 } 2956 if (ntries == 25000) { 2957 device_printf(sc->sc_dev, 2958 "timeout waiting for clock stabilization\n"); 2959 return ETIMEDOUT; 2960 } 2961 2962 /* initialize EEPROM */ 2963 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2964 2965 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2966 device_printf(sc->sc_dev, "EEPROM not found\n"); 2967 return EIO; 2968 } 2969 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2970 2971 return 0; 2972 } 2973 2974 static void 2975 wpi_hw_config(struct wpi_softc *sc) 2976 { 2977 uint32_t rev, hw; 2978 2979 /* voodoo from the Linux "driver".. */ 2980 hw = WPI_READ(sc, WPI_HWCONFIG); 2981 2982 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2983 if ((rev & 0xc0) == 0x40) 2984 hw |= WPI_HW_ALM_MB; 2985 else if (!(rev & 0x80)) 2986 hw |= WPI_HW_ALM_MM; 2987 2988 if (sc->cap == 0x80) 2989 hw |= WPI_HW_SKU_MRC; 2990 2991 hw &= ~WPI_HW_REV_D; 2992 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2993 hw |= WPI_HW_REV_D; 2994 2995 if (sc->type > 1) 2996 hw |= WPI_HW_TYPE_B; 2997 2998 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2999 } 3000 3001 static void 3002 wpi_rfkill_resume(struct wpi_softc *sc) 3003 { 3004 struct ifnet *ifp = sc->sc_ifp; 3005 struct ieee80211com *ic = ifp->if_l2com; 3006 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3007 int ntries; 3008 3009 /* enable firmware again */ 3010 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3011 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3012 3013 /* wait for thermal sensors to calibrate */ 3014 for (ntries = 0; ntries < 1000; ntries++) { 3015 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3016 break; 3017 DELAY(10); 3018 } 3019 3020 if (ntries == 1000) { 3021 device_printf(sc->sc_dev, 3022 "timeout waiting for thermal calibration\n"); 3023 return; 3024 } 3025 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3026 3027 if (wpi_config(sc) != 0) { 3028 device_printf(sc->sc_dev, "device config failed\n"); 3029 return; 3030 } 3031 3032 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3033 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3034 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3035 3036 if (vap != NULL) { 3037 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3038 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3039 ieee80211_beacon_miss(ic); 3040 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3041 } else 3042 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3043 } else { 3044 ieee80211_scan_next(vap); 3045 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3046 } 3047 } 3048 3049 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3050 } 3051 3052 static void 3053 wpi_init_locked(struct wpi_softc *sc, int force) 3054 { 3055 struct ifnet *ifp = sc->sc_ifp; 3056 uint32_t tmp; 3057 int ntries, qid; 3058 3059 wpi_stop_locked(sc); 3060 (void)wpi_reset(sc); 3061 3062 wpi_mem_lock(sc); 3063 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3064 DELAY(20); 3065 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3066 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3067 wpi_mem_unlock(sc); 3068 3069 (void)wpi_power_up(sc); 3070 wpi_hw_config(sc); 3071 3072 /* init Rx ring */ 3073 wpi_mem_lock(sc); 3074 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3075 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3076 offsetof(struct wpi_shared, next)); 3077 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3078 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3079 wpi_mem_unlock(sc); 3080 3081 /* init Tx rings */ 3082 wpi_mem_lock(sc); 3083 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3084 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3085 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3086 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3087 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3088 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3089 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3090 3091 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3092 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3093 3094 for (qid = 0; qid < 6; qid++) { 3095 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3096 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3097 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3098 } 3099 wpi_mem_unlock(sc); 3100 3101 /* clear "radio off" and "disable command" bits (reversed logic) */ 3102 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3103 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3104 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3105 3106 /* clear any pending interrupts */ 3107 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3108 3109 /* enable interrupts */ 3110 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3111 3112 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3113 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3114 3115 if ((wpi_load_firmware(sc)) != 0) { 3116 device_printf(sc->sc_dev, 3117 "A problem occurred loading the firmware to the driver\n"); 3118 return; 3119 } 3120 3121 /* At this point the firmware is up and running. If the hardware 3122 * RF switch is turned off thermal calibration will fail, though 3123 * the card is still happy to continue to accept commands, catch 3124 * this case and schedule a task to watch for it to be turned on. 3125 */ 3126 wpi_mem_lock(sc); 3127 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3128 wpi_mem_unlock(sc); 3129 3130 if (!(tmp & 0x1)) { 3131 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3132 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3133 goto out; 3134 } 3135 3136 /* wait for thermal sensors to calibrate */ 3137 for (ntries = 0; ntries < 1000; ntries++) { 3138 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3139 break; 3140 DELAY(10); 3141 } 3142 3143 if (ntries == 1000) { 3144 device_printf(sc->sc_dev, 3145 "timeout waiting for thermal sensors calibration\n"); 3146 return; 3147 } 3148 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3149 3150 if (wpi_config(sc) != 0) { 3151 device_printf(sc->sc_dev, "device config failed\n"); 3152 return; 3153 } 3154 3155 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3156 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3157 out: 3158 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3159 } 3160 3161 static void 3162 wpi_init(void *arg) 3163 { 3164 struct wpi_softc *sc = arg; 3165 struct ifnet *ifp = sc->sc_ifp; 3166 struct ieee80211com *ic = ifp->if_l2com; 3167 3168 WPI_LOCK(sc); 3169 wpi_init_locked(sc, 0); 3170 WPI_UNLOCK(sc); 3171 3172 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3173 ieee80211_start_all(ic); /* start all vaps */ 3174 } 3175 3176 static void 3177 wpi_stop_locked(struct wpi_softc *sc) 3178 { 3179 struct ifnet *ifp = sc->sc_ifp; 3180 uint32_t tmp; 3181 int ac; 3182 3183 sc->sc_tx_timer = 0; 3184 sc->sc_scan_timer = 0; 3185 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3186 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3187 callout_stop(&sc->watchdog_to); 3188 callout_stop(&sc->calib_to); 3189 3190 /* disable interrupts */ 3191 WPI_WRITE(sc, WPI_MASK, 0); 3192 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3193 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3194 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3195 3196 wpi_mem_lock(sc); 3197 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3198 wpi_mem_unlock(sc); 3199 3200 /* reset all Tx rings */ 3201 for (ac = 0; ac < 4; ac++) 3202 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3203 wpi_reset_tx_ring(sc, &sc->cmdq); 3204 3205 /* reset Rx ring */ 3206 wpi_reset_rx_ring(sc, &sc->rxq); 3207 3208 wpi_mem_lock(sc); 3209 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3210 wpi_mem_unlock(sc); 3211 3212 DELAY(5); 3213 3214 wpi_stop_master(sc); 3215 3216 tmp = WPI_READ(sc, WPI_RESET); 3217 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3218 sc->flags &= ~WPI_FLAG_BUSY; 3219 } 3220 3221 static void 3222 wpi_stop(struct wpi_softc *sc) 3223 { 3224 WPI_LOCK(sc); 3225 wpi_stop_locked(sc); 3226 WPI_UNLOCK(sc); 3227 } 3228 3229 static void 3230 wpi_calib_timeout(void *arg) 3231 { 3232 struct wpi_softc *sc = arg; 3233 struct ifnet *ifp = sc->sc_ifp; 3234 struct ieee80211com *ic = ifp->if_l2com; 3235 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3236 int temp; 3237 3238 if (vap->iv_state != IEEE80211_S_RUN) 3239 return; 3240 3241 /* update sensor data */ 3242 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3243 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3244 3245 wpi_power_calibration(sc, temp); 3246 3247 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3248 } 3249 3250 /* 3251 * This function is called periodically (every 60 seconds) to adjust output 3252 * power to temperature changes. 3253 */ 3254 static void 3255 wpi_power_calibration(struct wpi_softc *sc, int temp) 3256 { 3257 struct ifnet *ifp = sc->sc_ifp; 3258 struct ieee80211com *ic = ifp->if_l2com; 3259 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3260 3261 /* sanity-check read value */ 3262 if (temp < -260 || temp > 25) { 3263 /* this can't be correct, ignore */ 3264 DPRINTFN(WPI_DEBUG_TEMP, 3265 ("out-of-range temperature reported: %d\n", temp)); 3266 return; 3267 } 3268 3269 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3270 3271 /* adjust Tx power if need be */ 3272 if (abs(temp - sc->temp) <= 6) 3273 return; 3274 3275 sc->temp = temp; 3276 3277 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3278 /* just warn, too bad for the automatic calibration... */ 3279 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3280 } 3281 } 3282 3283 /** 3284 * Read the eeprom to find out what channels are valid for the given 3285 * band and update net80211 with what we find. 3286 */ 3287 static void 3288 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3289 { 3290 struct ifnet *ifp = sc->sc_ifp; 3291 struct ieee80211com *ic = ifp->if_l2com; 3292 const struct wpi_chan_band *band = &wpi_bands[n]; 3293 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3294 struct ieee80211_channel *c; 3295 int chan, i, passive; 3296 3297 wpi_read_prom_data(sc, band->addr, channels, 3298 band->nchan * sizeof (struct wpi_eeprom_chan)); 3299 3300 for (i = 0; i < band->nchan; i++) { 3301 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3302 DPRINTFN(WPI_DEBUG_HW, 3303 ("Channel Not Valid: %d, band %d\n", 3304 band->chan[i],n)); 3305 continue; 3306 } 3307 3308 passive = 0; 3309 chan = band->chan[i]; 3310 c = &ic->ic_channels[ic->ic_nchans++]; 3311 3312 /* is active scan allowed on this channel? */ 3313 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3314 passive = IEEE80211_CHAN_PASSIVE; 3315 } 3316 3317 if (n == 0) { /* 2GHz band */ 3318 c->ic_ieee = chan; 3319 c->ic_freq = ieee80211_ieee2mhz(chan, 3320 IEEE80211_CHAN_2GHZ); 3321 c->ic_flags = IEEE80211_CHAN_B | passive; 3322 3323 c = &ic->ic_channels[ic->ic_nchans++]; 3324 c->ic_ieee = chan; 3325 c->ic_freq = ieee80211_ieee2mhz(chan, 3326 IEEE80211_CHAN_2GHZ); 3327 c->ic_flags = IEEE80211_CHAN_G | passive; 3328 3329 } else { /* 5GHz band */ 3330 /* 3331 * Some 3945ABG adapters support channels 7, 8, 11 3332 * and 12 in the 2GHz *and* 5GHz bands. 3333 * Because of limitations in our net80211(9) stack, 3334 * we can't support these channels in 5GHz band. 3335 * XXX not true; just need to map to proper frequency 3336 */ 3337 if (chan <= 14) 3338 continue; 3339 3340 c->ic_ieee = chan; 3341 c->ic_freq = ieee80211_ieee2mhz(chan, 3342 IEEE80211_CHAN_5GHZ); 3343 c->ic_flags = IEEE80211_CHAN_A | passive; 3344 } 3345 3346 /* save maximum allowed power for this channel */ 3347 sc->maxpwr[chan] = channels[i].maxpwr; 3348 3349 #if 0 3350 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3351 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3352 //ic->ic_channels[chan].ic_minpower... 3353 //ic->ic_channels[chan].ic_maxregtxpower... 3354 #endif 3355 3356 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3357 " passive=%d, offset %d\n", chan, c->ic_freq, 3358 channels[i].flags, sc->maxpwr[chan], 3359 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3360 ic->ic_nchans)); 3361 } 3362 } 3363 3364 static void 3365 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3366 { 3367 struct wpi_power_group *group = &sc->groups[n]; 3368 struct wpi_eeprom_group rgroup; 3369 int i; 3370 3371 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3372 sizeof rgroup); 3373 3374 /* save power group information */ 3375 group->chan = rgroup.chan; 3376 group->maxpwr = rgroup.maxpwr; 3377 /* temperature at which the samples were taken */ 3378 group->temp = (int16_t)le16toh(rgroup.temp); 3379 3380 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3381 group->chan, group->maxpwr, group->temp)); 3382 3383 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3384 group->samples[i].index = rgroup.samples[i].index; 3385 group->samples[i].power = rgroup.samples[i].power; 3386 3387 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3388 group->samples[i].index, group->samples[i].power)); 3389 } 3390 } 3391 3392 /* 3393 * Update Tx power to match what is defined for channel `c'. 3394 */ 3395 static int 3396 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3397 { 3398 struct ifnet *ifp = sc->sc_ifp; 3399 struct ieee80211com *ic = ifp->if_l2com; 3400 struct wpi_power_group *group; 3401 struct wpi_cmd_txpower txpower; 3402 u_int chan; 3403 int i; 3404 3405 /* get channel number */ 3406 chan = ieee80211_chan2ieee(ic, c); 3407 3408 /* find the power group to which this channel belongs */ 3409 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3410 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3411 if (chan <= group->chan) 3412 break; 3413 } else 3414 group = &sc->groups[0]; 3415 3416 memset(&txpower, 0, sizeof txpower); 3417 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3418 txpower.channel = htole16(chan); 3419 3420 /* set Tx power for all OFDM and CCK rates */ 3421 for (i = 0; i <= 11 ; i++) { 3422 /* retrieve Tx power for this channel/rate combination */ 3423 int idx = wpi_get_power_index(sc, group, c, 3424 wpi_ridx_to_rate[i]); 3425 3426 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3427 3428 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3429 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3430 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3431 } else { 3432 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3433 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3434 } 3435 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3436 chan, wpi_ridx_to_rate[i], idx)); 3437 } 3438 3439 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3440 } 3441 3442 /* 3443 * Determine Tx power index for a given channel/rate combination. 3444 * This takes into account the regulatory information from EEPROM and the 3445 * current temperature. 3446 */ 3447 static int 3448 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3449 struct ieee80211_channel *c, int rate) 3450 { 3451 /* fixed-point arithmetic division using a n-bit fractional part */ 3452 #define fdivround(a, b, n) \ 3453 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3454 3455 /* linear interpolation */ 3456 #define interpolate(x, x1, y1, x2, y2, n) \ 3457 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3458 3459 struct ifnet *ifp = sc->sc_ifp; 3460 struct ieee80211com *ic = ifp->if_l2com; 3461 struct wpi_power_sample *sample; 3462 int pwr, idx; 3463 u_int chan; 3464 3465 /* get channel number */ 3466 chan = ieee80211_chan2ieee(ic, c); 3467 3468 /* default power is group's maximum power - 3dB */ 3469 pwr = group->maxpwr / 2; 3470 3471 /* decrease power for highest OFDM rates to reduce distortion */ 3472 switch (rate) { 3473 case 72: /* 36Mb/s */ 3474 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3475 break; 3476 case 96: /* 48Mb/s */ 3477 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3478 break; 3479 case 108: /* 54Mb/s */ 3480 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3481 break; 3482 } 3483 3484 /* never exceed channel's maximum allowed Tx power */ 3485 pwr = min(pwr, sc->maxpwr[chan]); 3486 3487 /* retrieve power index into gain tables from samples */ 3488 for (sample = group->samples; sample < &group->samples[3]; sample++) 3489 if (pwr > sample[1].power) 3490 break; 3491 /* fixed-point linear interpolation using a 19-bit fractional part */ 3492 idx = interpolate(pwr, sample[0].power, sample[0].index, 3493 sample[1].power, sample[1].index, 19); 3494 3495 /* 3496 * Adjust power index based on current temperature 3497 * - if colder than factory-calibrated: decreate output power 3498 * - if warmer than factory-calibrated: increase output power 3499 */ 3500 idx -= (sc->temp - group->temp) * 11 / 100; 3501 3502 /* decrease power for CCK rates (-5dB) */ 3503 if (!WPI_RATE_IS_OFDM(rate)) 3504 idx += 10; 3505 3506 /* keep power index in a valid range */ 3507 if (idx < 0) 3508 return 0; 3509 if (idx > WPI_MAX_PWR_INDEX) 3510 return WPI_MAX_PWR_INDEX; 3511 return idx; 3512 3513 #undef interpolate 3514 #undef fdivround 3515 } 3516 3517 /** 3518 * Called by net80211 framework to indicate that a scan 3519 * is starting. This function doesn't actually do the scan, 3520 * wpi_scan_curchan starts things off. This function is more 3521 * of an early warning from the framework we should get ready 3522 * for the scan. 3523 */ 3524 static void 3525 wpi_scan_start(struct ieee80211com *ic) 3526 { 3527 struct ifnet *ifp = ic->ic_ifp; 3528 struct wpi_softc *sc = ifp->if_softc; 3529 3530 WPI_LOCK(sc); 3531 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3532 WPI_UNLOCK(sc); 3533 } 3534 3535 /** 3536 * Called by the net80211 framework, indicates that the 3537 * scan has ended. If there is a scan in progress on the card 3538 * then it should be aborted. 3539 */ 3540 static void 3541 wpi_scan_end(struct ieee80211com *ic) 3542 { 3543 /* XXX ignore */ 3544 } 3545 3546 /** 3547 * Called by the net80211 framework to indicate to the driver 3548 * that the channel should be changed 3549 */ 3550 static void 3551 wpi_set_channel(struct ieee80211com *ic) 3552 { 3553 struct ifnet *ifp = ic->ic_ifp; 3554 struct wpi_softc *sc = ifp->if_softc; 3555 int error; 3556 3557 /* 3558 * Only need to set the channel in Monitor mode. AP scanning and auth 3559 * are already taken care of by their respective firmware commands. 3560 */ 3561 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3562 WPI_LOCK(sc); 3563 error = wpi_config(sc); 3564 WPI_UNLOCK(sc); 3565 if (error != 0) 3566 device_printf(sc->sc_dev, 3567 "error %d settting channel\n", error); 3568 } 3569 } 3570 3571 /** 3572 * Called by net80211 to indicate that we need to scan the current 3573 * channel. The channel is previously be set via the wpi_set_channel 3574 * callback. 3575 */ 3576 static void 3577 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3578 { 3579 struct ieee80211vap *vap = ss->ss_vap; 3580 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3581 struct wpi_softc *sc = ifp->if_softc; 3582 3583 WPI_LOCK(sc); 3584 if (wpi_scan(sc)) 3585 ieee80211_cancel_scan(vap); 3586 WPI_UNLOCK(sc); 3587 } 3588 3589 /** 3590 * Called by the net80211 framework to indicate 3591 * the minimum dwell time has been met, terminate the scan. 3592 * We don't actually terminate the scan as the firmware will notify 3593 * us when it's finished and we have no way to interrupt it. 3594 */ 3595 static void 3596 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3597 { 3598 /* NB: don't try to abort scan; wait for firmware to finish */ 3599 } 3600 3601 static void 3602 wpi_hwreset(void *arg, int pending) 3603 { 3604 struct wpi_softc *sc = arg; 3605 3606 WPI_LOCK(sc); 3607 wpi_init_locked(sc, 0); 3608 WPI_UNLOCK(sc); 3609 } 3610 3611 static void 3612 wpi_rfreset(void *arg, int pending) 3613 { 3614 struct wpi_softc *sc = arg; 3615 3616 WPI_LOCK(sc); 3617 wpi_rfkill_resume(sc); 3618 WPI_UNLOCK(sc); 3619 } 3620 3621 /* 3622 * Allocate DMA-safe memory for firmware transfer. 3623 */ 3624 static int 3625 wpi_alloc_fwmem(struct wpi_softc *sc) 3626 { 3627 /* allocate enough contiguous space to store text and data */ 3628 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3629 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3630 BUS_DMA_NOWAIT); 3631 } 3632 3633 static void 3634 wpi_free_fwmem(struct wpi_softc *sc) 3635 { 3636 wpi_dma_contig_free(&sc->fw_dma); 3637 } 3638 3639 /** 3640 * Called every second, wpi_watchdog used by the watch dog timer 3641 * to check that the card is still alive 3642 */ 3643 static void 3644 wpi_watchdog(void *arg) 3645 { 3646 struct wpi_softc *sc = arg; 3647 struct ifnet *ifp = sc->sc_ifp; 3648 struct ieee80211com *ic = ifp->if_l2com; 3649 uint32_t tmp; 3650 3651 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3652 3653 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3654 /* No need to lock firmware memory */ 3655 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3656 3657 if ((tmp & 0x1) == 0) { 3658 /* Radio kill switch is still off */ 3659 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3660 return; 3661 } 3662 3663 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3664 ieee80211_runtask(ic, &sc->sc_radiotask); 3665 return; 3666 } 3667 3668 if (sc->sc_tx_timer > 0) { 3669 if (--sc->sc_tx_timer == 0) { 3670 device_printf(sc->sc_dev,"device timeout\n"); 3671 ifp->if_oerrors++; 3672 ieee80211_runtask(ic, &sc->sc_restarttask); 3673 } 3674 } 3675 if (sc->sc_scan_timer > 0) { 3676 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3677 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3678 device_printf(sc->sc_dev,"scan timeout\n"); 3679 ieee80211_cancel_scan(vap); 3680 ieee80211_runtask(ic, &sc->sc_restarttask); 3681 } 3682 } 3683 3684 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3685 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3686 } 3687 3688 #ifdef WPI_DEBUG 3689 static const char *wpi_cmd_str(int cmd) 3690 { 3691 switch (cmd) { 3692 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3693 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3694 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3695 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3696 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3697 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3698 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3699 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3700 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3701 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3702 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3703 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3704 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3705 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3706 3707 default: 3708 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3709 return "UNKNOWN CMD"; /* Make the compiler happy */ 3710 } 3711 } 3712 #endif 3713 3714 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3715 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3716 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3717