1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #include <machine/bus.h> 79 #include <machine/resource.h> 80 #include <sys/rman.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 85 #include <net/bpf.h> 86 #include <net/if.h> 87 #include <net/if_arp.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <net80211/ieee80211_var.h> 94 #include <net80211/ieee80211_radiotap.h> 95 #include <net80211/ieee80211_regdomain.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_systm.h> 99 #include <netinet/in_var.h> 100 #include <netinet/ip.h> 101 #include <netinet/if_ether.h> 102 103 #include <dev/wpi/if_wpireg.h> 104 #include <dev/wpi/if_wpivar.h> 105 106 #define WPI_DEBUG 107 108 #ifdef WPI_DEBUG 109 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 110 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 111 112 enum { 113 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 114 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 115 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 116 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 117 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 118 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 119 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 120 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 121 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 122 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 123 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 124 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 125 WPI_DEBUG_ANY = 0xffffffff 126 }; 127 128 int wpi_debug = 0; 129 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 130 131 #else 132 #define DPRINTF(x) 133 #define DPRINTFN(n, x) 134 #endif 135 136 struct wpi_ident { 137 uint16_t vendor; 138 uint16_t device; 139 uint16_t subdevice; 140 const char *name; 141 }; 142 143 static const struct wpi_ident wpi_ident_table[] = { 144 /* The below entries support ABG regardless of the subid */ 145 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 146 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 147 /* The below entries only support BG */ 148 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB" }, 149 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB" }, 150 { 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB" }, 151 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB" }, 152 { 0, 0, 0, NULL } 153 }; 154 155 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 156 const char name[IFNAMSIZ], int unit, int opmode, 157 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 158 const uint8_t mac[IEEE80211_ADDR_LEN]); 159 static void wpi_vap_delete(struct ieee80211vap *); 160 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 161 void **, bus_size_t, bus_size_t, int); 162 static void wpi_dma_contig_free(struct wpi_dma_info *); 163 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 164 static int wpi_alloc_shared(struct wpi_softc *); 165 static void wpi_free_shared(struct wpi_softc *); 166 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 167 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 168 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 169 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 170 int, int); 171 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 172 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 173 static struct ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *); 174 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 175 static void wpi_mem_lock(struct wpi_softc *); 176 static void wpi_mem_unlock(struct wpi_softc *); 177 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 178 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 179 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 180 const uint32_t *, int); 181 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 182 static int wpi_alloc_fwmem(struct wpi_softc *); 183 static void wpi_free_fwmem(struct wpi_softc *); 184 static int wpi_load_firmware(struct wpi_softc *); 185 static void wpi_unload_firmware(struct wpi_softc *); 186 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 187 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 188 struct wpi_rx_data *); 189 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 190 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 191 static void wpi_notif_intr(struct wpi_softc *); 192 static void wpi_intr(void *); 193 static void wpi_ops(void *, int); 194 static uint8_t wpi_plcp_signal(int); 195 static int wpi_queue_cmd(struct wpi_softc *, int, int, int); 196 static void wpi_watchdog(void *); 197 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 198 struct ieee80211_node *, int); 199 static void wpi_start(struct ifnet *); 200 static void wpi_start_locked(struct ifnet *); 201 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 202 const struct ieee80211_bpf_params *); 203 static void wpi_scan_start(struct ieee80211com *); 204 static void wpi_scan_end(struct ieee80211com *); 205 static void wpi_set_channel(struct ieee80211com *); 206 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 207 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 208 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 209 static void wpi_read_eeprom(struct wpi_softc *); 210 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 211 static void wpi_read_eeprom_group(struct wpi_softc *, int); 212 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 213 static int wpi_wme_update(struct ieee80211com *); 214 static int wpi_mrr_setup(struct wpi_softc *); 215 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 216 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 217 #if 0 218 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 219 #endif 220 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 221 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 222 static int wpi_scan(struct wpi_softc *); 223 static int wpi_config(struct wpi_softc *); 224 static void wpi_stop_master(struct wpi_softc *); 225 static int wpi_power_up(struct wpi_softc *); 226 static int wpi_reset(struct wpi_softc *); 227 static void wpi_hw_config(struct wpi_softc *); 228 static void wpi_init(void *); 229 static void wpi_init_locked(struct wpi_softc *, int); 230 static void wpi_stop(struct wpi_softc *); 231 static void wpi_stop_locked(struct wpi_softc *); 232 233 static void wpi_newassoc(struct ieee80211_node *, int); 234 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 235 int); 236 static void wpi_calib_timeout(void *); 237 static void wpi_power_calibration(struct wpi_softc *, int); 238 static int wpi_get_power_index(struct wpi_softc *, 239 struct wpi_power_group *, struct ieee80211_channel *, int); 240 static const char *wpi_cmd_str(int); 241 static int wpi_probe(device_t); 242 static int wpi_attach(device_t); 243 static int wpi_detach(device_t); 244 static int wpi_shutdown(device_t); 245 static int wpi_suspend(device_t); 246 static int wpi_resume(device_t); 247 248 249 static device_method_t wpi_methods[] = { 250 /* Device interface */ 251 DEVMETHOD(device_probe, wpi_probe), 252 DEVMETHOD(device_attach, wpi_attach), 253 DEVMETHOD(device_detach, wpi_detach), 254 DEVMETHOD(device_shutdown, wpi_shutdown), 255 DEVMETHOD(device_suspend, wpi_suspend), 256 DEVMETHOD(device_resume, wpi_resume), 257 258 { 0, 0 } 259 }; 260 261 static driver_t wpi_driver = { 262 "wpi", 263 wpi_methods, 264 sizeof (struct wpi_softc) 265 }; 266 267 static devclass_t wpi_devclass; 268 269 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 270 271 static const uint8_t wpi_ridx_to_plcp[] = { 272 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 273 /* R1-R4 (ral/ural is R4-R1) */ 274 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 275 /* CCK: device-dependent */ 276 10, 20, 55, 110 277 }; 278 static const uint8_t wpi_ridx_to_rate[] = { 279 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 280 2, 4, 11, 22 /*CCK */ 281 }; 282 283 284 static int 285 wpi_probe(device_t dev) 286 { 287 const struct wpi_ident *ident; 288 289 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 290 if (pci_get_vendor(dev) == ident->vendor && 291 pci_get_device(dev) == ident->device) { 292 device_set_desc(dev, ident->name); 293 return 0; 294 } 295 } 296 return ENXIO; 297 } 298 299 /** 300 * Load the firmare image from disk to the allocated dma buffer. 301 * we also maintain the reference to the firmware pointer as there 302 * is times where we may need to reload the firmware but we are not 303 * in a context that can access the filesystem (ie taskq cause by restart) 304 * 305 * @return 0 on success, an errno on failure 306 */ 307 static int 308 wpi_load_firmware(struct wpi_softc *sc) 309 { 310 const struct firmware *fp; 311 struct wpi_dma_info *dma = &sc->fw_dma; 312 const struct wpi_firmware_hdr *hdr; 313 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 314 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 315 int error; 316 317 DPRINTFN(WPI_DEBUG_FIRMWARE, 318 ("Attempting Loading Firmware from wpi_fw module\n")); 319 320 WPI_UNLOCK(sc); 321 322 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 323 device_printf(sc->sc_dev, 324 "could not load firmware image 'wpifw'\n"); 325 error = ENOENT; 326 WPI_LOCK(sc); 327 goto fail; 328 } 329 330 fp = sc->fw_fp; 331 332 WPI_LOCK(sc); 333 334 /* Validate the firmware is minimum a particular version */ 335 if (fp->version < WPI_FW_MINVERSION) { 336 device_printf(sc->sc_dev, 337 "firmware version is too old. Need %d, got %d\n", 338 WPI_FW_MINVERSION, 339 fp->version); 340 error = ENXIO; 341 goto fail; 342 } 343 344 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 345 device_printf(sc->sc_dev, 346 "firmware file too short: %zu bytes\n", fp->datasize); 347 error = ENXIO; 348 goto fail; 349 } 350 351 hdr = (const struct wpi_firmware_hdr *)fp->data; 352 353 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 354 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 355 356 rtextsz = le32toh(hdr->rtextsz); 357 rdatasz = le32toh(hdr->rdatasz); 358 itextsz = le32toh(hdr->itextsz); 359 idatasz = le32toh(hdr->idatasz); 360 btextsz = le32toh(hdr->btextsz); 361 362 /* check that all firmware segments are present */ 363 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 364 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 365 device_printf(sc->sc_dev, 366 "firmware file too short: %zu bytes\n", fp->datasize); 367 error = ENXIO; /* XXX appropriate error code? */ 368 goto fail; 369 } 370 371 /* get pointers to firmware segments */ 372 rtext = (const uint8_t *)(hdr + 1); 373 rdata = rtext + rtextsz; 374 itext = rdata + rdatasz; 375 idata = itext + itextsz; 376 btext = idata + idatasz; 377 378 DPRINTFN(WPI_DEBUG_FIRMWARE, 379 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 380 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 381 (le32toh(hdr->version) & 0xff000000) >> 24, 382 (le32toh(hdr->version) & 0x00ff0000) >> 16, 383 (le32toh(hdr->version) & 0x0000ffff), 384 rtextsz, rdatasz, 385 itextsz, idatasz, btextsz)); 386 387 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 388 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 389 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 390 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 391 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 392 393 /* sanity checks */ 394 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 395 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 396 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 397 idatasz > WPI_FW_INIT_DATA_MAXSZ || 398 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 399 (btextsz & 3) != 0) { 400 device_printf(sc->sc_dev, "firmware invalid\n"); 401 error = EINVAL; 402 goto fail; 403 } 404 405 /* copy initialization images into pre-allocated DMA-safe memory */ 406 memcpy(dma->vaddr, idata, idatasz); 407 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 408 409 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 410 411 /* tell adapter where to find initialization images */ 412 wpi_mem_lock(sc); 413 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 414 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 415 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 416 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 417 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 418 wpi_mem_unlock(sc); 419 420 /* load firmware boot code */ 421 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 422 device_printf(sc->sc_dev, "Failed to load microcode\n"); 423 goto fail; 424 } 425 426 /* now press "execute" */ 427 WPI_WRITE(sc, WPI_RESET, 0); 428 429 /* wait at most one second for the first alive notification */ 430 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 431 device_printf(sc->sc_dev, 432 "timeout waiting for adapter to initialize\n"); 433 goto fail; 434 } 435 436 /* copy runtime images into pre-allocated DMA-sage memory */ 437 memcpy(dma->vaddr, rdata, rdatasz); 438 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 439 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 440 441 /* tell adapter where to find runtime images */ 442 wpi_mem_lock(sc); 443 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 444 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 445 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 446 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 447 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 448 wpi_mem_unlock(sc); 449 450 /* wait at most one second for the first alive notification */ 451 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 452 device_printf(sc->sc_dev, 453 "timeout waiting for adapter to initialize2\n"); 454 goto fail; 455 } 456 457 DPRINTFN(WPI_DEBUG_FIRMWARE, 458 ("Firmware loaded to driver successfully\n")); 459 return error; 460 fail: 461 wpi_unload_firmware(sc); 462 return error; 463 } 464 465 /** 466 * Free the referenced firmware image 467 */ 468 static void 469 wpi_unload_firmware(struct wpi_softc *sc) 470 { 471 472 if (sc->fw_fp) { 473 WPI_UNLOCK(sc); 474 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 475 WPI_LOCK(sc); 476 sc->fw_fp = NULL; 477 } 478 } 479 480 static int 481 wpi_attach(device_t dev) 482 { 483 struct wpi_softc *sc = device_get_softc(dev); 484 struct ifnet *ifp; 485 struct ieee80211com *ic; 486 int ac, error, supportsa = 1; 487 uint32_t tmp; 488 const struct wpi_ident *ident; 489 490 sc->sc_dev = dev; 491 492 if (bootverbose || wpi_debug) 493 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 494 495 /* 496 * Some card's only support 802.11b/g not a, check to see if 497 * this is one such card. A 0x0 in the subdevice table indicates 498 * the entire subdevice range is to be ignored. 499 */ 500 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 501 if (ident->subdevice && 502 pci_get_subdevice(dev) == ident->subdevice) { 503 supportsa = 0; 504 break; 505 } 506 } 507 508 /* 509 * Create the taskqueues used by the driver. Primarily 510 * sc_tq handles most the task 511 */ 512 sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO, 513 taskqueue_thread_enqueue, &sc->sc_tq); 514 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 515 device_get_nameunit(dev)); 516 517 /* Create the tasks that can be queued */ 518 TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc); 519 520 WPI_LOCK_INIT(sc); 521 WPI_CMD_LOCK_INIT(sc); 522 523 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 524 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 525 526 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 527 device_printf(dev, "chip is in D%d power mode " 528 "-- setting to D0\n", pci_get_powerstate(dev)); 529 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 530 } 531 532 /* disable the retry timeout register */ 533 pci_write_config(dev, 0x41, 0, 1); 534 535 /* enable bus-mastering */ 536 pci_enable_busmaster(dev); 537 538 sc->mem_rid = PCIR_BAR(0); 539 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 540 RF_ACTIVE); 541 if (sc->mem == NULL) { 542 device_printf(dev, "could not allocate memory resource\n"); 543 error = ENOMEM; 544 goto fail; 545 } 546 547 sc->sc_st = rman_get_bustag(sc->mem); 548 sc->sc_sh = rman_get_bushandle(sc->mem); 549 550 sc->irq_rid = 0; 551 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 552 RF_ACTIVE | RF_SHAREABLE); 553 if (sc->irq == NULL) { 554 device_printf(dev, "could not allocate interrupt resource\n"); 555 error = ENOMEM; 556 goto fail; 557 } 558 559 /* 560 * Allocate DMA memory for firmware transfers. 561 */ 562 if ((error = wpi_alloc_fwmem(sc)) != 0) { 563 printf(": could not allocate firmware memory\n"); 564 error = ENOMEM; 565 goto fail; 566 } 567 568 /* 569 * Put adapter into a known state. 570 */ 571 if ((error = wpi_reset(sc)) != 0) { 572 device_printf(dev, "could not reset adapter\n"); 573 goto fail; 574 } 575 576 wpi_mem_lock(sc); 577 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 578 if (bootverbose || wpi_debug) 579 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 580 581 wpi_mem_unlock(sc); 582 583 /* Allocate shared page */ 584 if ((error = wpi_alloc_shared(sc)) != 0) { 585 device_printf(dev, "could not allocate shared page\n"); 586 goto fail; 587 } 588 589 /* tx data queues - 4 for QoS purposes */ 590 for (ac = 0; ac < WME_NUM_AC; ac++) { 591 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 592 if (error != 0) { 593 device_printf(dev, "could not allocate Tx ring %d\n",ac); 594 goto fail; 595 } 596 } 597 598 /* command queue to talk to the card's firmware */ 599 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 600 if (error != 0) { 601 device_printf(dev, "could not allocate command ring\n"); 602 goto fail; 603 } 604 605 /* receive data queue */ 606 error = wpi_alloc_rx_ring(sc, &sc->rxq); 607 if (error != 0) { 608 device_printf(dev, "could not allocate Rx ring\n"); 609 goto fail; 610 } 611 612 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 613 if (ifp == NULL) { 614 device_printf(dev, "can not if_alloc()\n"); 615 error = ENOMEM; 616 goto fail; 617 } 618 ic = ifp->if_l2com; 619 620 ic->ic_ifp = ifp; 621 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 622 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 623 624 /* set device capabilities */ 625 ic->ic_caps = 626 IEEE80211_C_MONITOR /* monitor mode supported */ 627 | IEEE80211_C_TXPMGT /* tx power management */ 628 | IEEE80211_C_SHSLOT /* short slot time supported */ 629 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 630 | IEEE80211_C_WPA /* 802.11i */ 631 /* XXX looks like WME is partly supported? */ 632 #if 0 633 | IEEE80211_C_IBSS /* IBSS mode support */ 634 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 635 | IEEE80211_C_WME /* 802.11e */ 636 | IEEE80211_C_HOSTAP /* Host access point mode */ 637 #endif 638 ; 639 640 /* 641 * Read in the eeprom and also setup the channels for 642 * net80211. We don't set the rates as net80211 does this for us 643 */ 644 wpi_read_eeprom(sc); 645 646 if (bootverbose || wpi_debug) { 647 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 648 device_printf(sc->sc_dev, "Hardware Type: %c\n", 649 sc->type > 1 ? 'B': '?'); 650 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 651 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 652 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 653 supportsa ? "does" : "does not"); 654 655 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 656 what sc->rev really represents - benjsc 20070615 */ 657 } 658 659 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 660 ifp->if_softc = sc; 661 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 662 ifp->if_init = wpi_init; 663 ifp->if_ioctl = wpi_ioctl; 664 ifp->if_start = wpi_start; 665 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 666 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 667 IFQ_SET_READY(&ifp->if_snd); 668 669 ieee80211_ifattach(ic); 670 /* override default methods */ 671 ic->ic_node_alloc = wpi_node_alloc; 672 ic->ic_newassoc = wpi_newassoc; 673 ic->ic_raw_xmit = wpi_raw_xmit; 674 ic->ic_wme.wme_update = wpi_wme_update; 675 ic->ic_scan_start = wpi_scan_start; 676 ic->ic_scan_end = wpi_scan_end; 677 ic->ic_set_channel = wpi_set_channel; 678 ic->ic_scan_curchan = wpi_scan_curchan; 679 ic->ic_scan_mindwell = wpi_scan_mindwell; 680 681 ic->ic_vap_create = wpi_vap_create; 682 ic->ic_vap_delete = wpi_vap_delete; 683 684 bpfattach(ifp, DLT_IEEE802_11_RADIO, 685 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap)); 686 687 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 688 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 689 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 690 691 sc->sc_txtap_len = sizeof sc->sc_txtap; 692 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 693 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 694 695 /* 696 * Hook our interrupt after all initialization is complete. 697 */ 698 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 699 NULL, wpi_intr, sc, &sc->sc_ih); 700 if (error != 0) { 701 device_printf(dev, "could not set up interrupt\n"); 702 goto fail; 703 } 704 705 if (bootverbose) 706 ieee80211_announce(ic); 707 #ifdef XXX_DEBUG 708 ieee80211_announce_channels(ic); 709 #endif 710 return 0; 711 712 fail: wpi_detach(dev); 713 return ENXIO; 714 } 715 716 static int 717 wpi_detach(device_t dev) 718 { 719 struct wpi_softc *sc = device_get_softc(dev); 720 struct ifnet *ifp = sc->sc_ifp; 721 struct ieee80211com *ic = ifp->if_l2com; 722 int ac; 723 724 if (ifp != NULL) { 725 wpi_stop(sc); 726 callout_drain(&sc->watchdog_to); 727 callout_drain(&sc->calib_to); 728 bpfdetach(ifp); 729 ieee80211_ifdetach(ic); 730 } 731 732 WPI_LOCK(sc); 733 if (sc->txq[0].data_dmat) { 734 for (ac = 0; ac < WME_NUM_AC; ac++) 735 wpi_free_tx_ring(sc, &sc->txq[ac]); 736 737 wpi_free_tx_ring(sc, &sc->cmdq); 738 wpi_free_rx_ring(sc, &sc->rxq); 739 wpi_free_shared(sc); 740 } 741 742 if (sc->fw_fp != NULL) { 743 wpi_unload_firmware(sc); 744 } 745 746 if (sc->fw_dma.tag) 747 wpi_free_fwmem(sc); 748 WPI_UNLOCK(sc); 749 750 if (sc->irq != NULL) { 751 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 752 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 753 } 754 755 if (sc->mem != NULL) 756 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 757 758 if (ifp != NULL) 759 if_free(ifp); 760 761 taskqueue_free(sc->sc_tq); 762 763 WPI_LOCK_DESTROY(sc); 764 WPI_CMD_LOCK_DESTROY(sc); 765 766 return 0; 767 } 768 769 static struct ieee80211vap * 770 wpi_vap_create(struct ieee80211com *ic, 771 const char name[IFNAMSIZ], int unit, int opmode, int flags, 772 const uint8_t bssid[IEEE80211_ADDR_LEN], 773 const uint8_t mac[IEEE80211_ADDR_LEN]) 774 { 775 struct wpi_vap *wvp; 776 struct ieee80211vap *vap; 777 778 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 779 return NULL; 780 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 781 M_80211_VAP, M_NOWAIT | M_ZERO); 782 if (wvp == NULL) 783 return NULL; 784 vap = &wvp->vap; 785 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 786 /* override with driver methods */ 787 wvp->newstate = vap->iv_newstate; 788 vap->iv_newstate = wpi_newstate; 789 790 ieee80211_amrr_init(&wvp->amrr, vap, 791 IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, 792 IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD, 793 500 /*ms*/); 794 795 /* complete setup */ 796 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 797 ic->ic_opmode = opmode; 798 return vap; 799 } 800 801 static void 802 wpi_vap_delete(struct ieee80211vap *vap) 803 { 804 struct wpi_vap *wvp = WPI_VAP(vap); 805 806 ieee80211_amrr_cleanup(&wvp->amrr); 807 ieee80211_vap_detach(vap); 808 free(wvp, M_80211_VAP); 809 } 810 811 static void 812 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 813 { 814 if (error != 0) 815 return; 816 817 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 818 819 *(bus_addr_t *)arg = segs[0].ds_addr; 820 } 821 822 /* 823 * Allocates a contiguous block of dma memory of the requested size and 824 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 825 * allocations greater than 4096 may fail. Hence if the requested alignment is 826 * greater we allocate 'alignment' size extra memory and shift the vaddr and 827 * paddr after the dma load. This bypasses the problem at the cost of a little 828 * more memory. 829 */ 830 static int 831 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 832 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 833 { 834 int error; 835 bus_size_t align; 836 bus_size_t reqsize; 837 838 DPRINTFN(WPI_DEBUG_DMA, 839 ("Size: %zd - alignment %zd\n", size, alignment)); 840 841 dma->size = size; 842 dma->tag = NULL; 843 844 if (alignment > 4096) { 845 align = PAGE_SIZE; 846 reqsize = size + alignment; 847 } else { 848 align = alignment; 849 reqsize = size; 850 } 851 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 852 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 853 NULL, NULL, reqsize, 854 1, reqsize, flags, 855 NULL, NULL, &dma->tag); 856 if (error != 0) { 857 device_printf(sc->sc_dev, 858 "could not create shared page DMA tag\n"); 859 goto fail; 860 } 861 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 862 flags | BUS_DMA_ZERO, &dma->map); 863 if (error != 0) { 864 device_printf(sc->sc_dev, 865 "could not allocate shared page DMA memory\n"); 866 goto fail; 867 } 868 869 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 870 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 871 872 /* Save the original pointers so we can free all the memory */ 873 dma->paddr = dma->paddr_start; 874 dma->vaddr = dma->vaddr_start; 875 876 /* 877 * Check the alignment and increment by 4096 until we get the 878 * requested alignment. Fail if can't obtain the alignment 879 * we requested. 880 */ 881 if ((dma->paddr & (alignment -1 )) != 0) { 882 int i; 883 884 for (i = 0; i < alignment / 4096; i++) { 885 if ((dma->paddr & (alignment - 1 )) == 0) 886 break; 887 dma->paddr += 4096; 888 dma->vaddr += 4096; 889 } 890 if (i == alignment / 4096) { 891 device_printf(sc->sc_dev, 892 "alignment requirement was not satisfied\n"); 893 goto fail; 894 } 895 } 896 897 if (error != 0) { 898 device_printf(sc->sc_dev, 899 "could not load shared page DMA map\n"); 900 goto fail; 901 } 902 903 if (kvap != NULL) 904 *kvap = dma->vaddr; 905 906 return 0; 907 908 fail: 909 wpi_dma_contig_free(dma); 910 return error; 911 } 912 913 static void 914 wpi_dma_contig_free(struct wpi_dma_info *dma) 915 { 916 if (dma->tag) { 917 if (dma->map != NULL) { 918 if (dma->paddr_start != 0) { 919 bus_dmamap_sync(dma->tag, dma->map, 920 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 921 bus_dmamap_unload(dma->tag, dma->map); 922 } 923 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 924 } 925 bus_dma_tag_destroy(dma->tag); 926 } 927 } 928 929 /* 930 * Allocate a shared page between host and NIC. 931 */ 932 static int 933 wpi_alloc_shared(struct wpi_softc *sc) 934 { 935 int error; 936 937 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 938 (void **)&sc->shared, sizeof (struct wpi_shared), 939 PAGE_SIZE, 940 BUS_DMA_NOWAIT); 941 942 if (error != 0) { 943 device_printf(sc->sc_dev, 944 "could not allocate shared area DMA memory\n"); 945 } 946 947 return error; 948 } 949 950 static void 951 wpi_free_shared(struct wpi_softc *sc) 952 { 953 wpi_dma_contig_free(&sc->shared_dma); 954 } 955 956 static int 957 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 958 { 959 960 int i, error; 961 962 ring->cur = 0; 963 964 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 965 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 966 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 967 968 if (error != 0) { 969 device_printf(sc->sc_dev, 970 "%s: could not allocate rx ring DMA memory, error %d\n", 971 __func__, error); 972 goto fail; 973 } 974 975 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 976 BUS_SPACE_MAXADDR_32BIT, 977 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 978 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 979 if (error != 0) { 980 device_printf(sc->sc_dev, 981 "%s: bus_dma_tag_create_failed, error %d\n", 982 __func__, error); 983 goto fail; 984 } 985 986 /* 987 * Setup Rx buffers. 988 */ 989 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 990 struct wpi_rx_data *data = &ring->data[i]; 991 struct mbuf *m; 992 bus_addr_t paddr; 993 994 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 995 if (error != 0) { 996 device_printf(sc->sc_dev, 997 "%s: bus_dmamap_create failed, error %d\n", 998 __func__, error); 999 goto fail; 1000 } 1001 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1002 if (m == NULL) { 1003 device_printf(sc->sc_dev, 1004 "%s: could not allocate rx mbuf\n", __func__); 1005 error = ENOMEM; 1006 goto fail; 1007 } 1008 /* map page */ 1009 error = bus_dmamap_load(ring->data_dmat, data->map, 1010 mtod(m, caddr_t), MJUMPAGESIZE, 1011 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1012 if (error != 0 && error != EFBIG) { 1013 device_printf(sc->sc_dev, 1014 "%s: bus_dmamap_load failed, error %d\n", 1015 __func__, error); 1016 m_freem(m); 1017 error = ENOMEM; /* XXX unique code */ 1018 goto fail; 1019 } 1020 bus_dmamap_sync(ring->data_dmat, data->map, 1021 BUS_DMASYNC_PREWRITE); 1022 1023 data->m = m; 1024 ring->desc[i] = htole32(paddr); 1025 } 1026 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1027 BUS_DMASYNC_PREWRITE); 1028 return 0; 1029 fail: 1030 wpi_free_rx_ring(sc, ring); 1031 return error; 1032 } 1033 1034 static void 1035 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1036 { 1037 int ntries; 1038 1039 wpi_mem_lock(sc); 1040 1041 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1042 1043 for (ntries = 0; ntries < 100; ntries++) { 1044 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1045 break; 1046 DELAY(10); 1047 } 1048 1049 wpi_mem_unlock(sc); 1050 1051 #ifdef WPI_DEBUG 1052 if (ntries == 100) 1053 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1054 #endif 1055 1056 ring->cur = 0; 1057 } 1058 1059 static void 1060 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1061 { 1062 int i; 1063 1064 wpi_dma_contig_free(&ring->desc_dma); 1065 1066 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1067 if (ring->data[i].m != NULL) 1068 m_freem(ring->data[i].m); 1069 } 1070 1071 static int 1072 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1073 int qid) 1074 { 1075 struct wpi_tx_data *data; 1076 int i, error; 1077 1078 ring->qid = qid; 1079 ring->count = count; 1080 ring->queued = 0; 1081 ring->cur = 0; 1082 ring->data = NULL; 1083 1084 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1085 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1086 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1087 1088 if (error != 0) { 1089 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1090 goto fail; 1091 } 1092 1093 /* update shared page with ring's base address */ 1094 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1095 1096 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1097 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1098 BUS_DMA_NOWAIT); 1099 1100 if (error != 0) { 1101 device_printf(sc->sc_dev, 1102 "could not allocate tx command DMA memory\n"); 1103 goto fail; 1104 } 1105 1106 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1107 M_NOWAIT | M_ZERO); 1108 if (ring->data == NULL) { 1109 device_printf(sc->sc_dev, 1110 "could not allocate tx data slots\n"); 1111 goto fail; 1112 } 1113 1114 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1115 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1116 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1117 &ring->data_dmat); 1118 if (error != 0) { 1119 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1120 goto fail; 1121 } 1122 1123 for (i = 0; i < count; i++) { 1124 data = &ring->data[i]; 1125 1126 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1127 if (error != 0) { 1128 device_printf(sc->sc_dev, 1129 "could not create tx buf DMA map\n"); 1130 goto fail; 1131 } 1132 bus_dmamap_sync(ring->data_dmat, data->map, 1133 BUS_DMASYNC_PREWRITE); 1134 } 1135 1136 return 0; 1137 1138 fail: 1139 wpi_free_tx_ring(sc, ring); 1140 return error; 1141 } 1142 1143 static void 1144 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1145 { 1146 struct wpi_tx_data *data; 1147 int i, ntries; 1148 1149 wpi_mem_lock(sc); 1150 1151 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1152 for (ntries = 0; ntries < 100; ntries++) { 1153 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1154 break; 1155 DELAY(10); 1156 } 1157 #ifdef WPI_DEBUG 1158 if (ntries == 100) 1159 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1160 ring->qid); 1161 #endif 1162 wpi_mem_unlock(sc); 1163 1164 for (i = 0; i < ring->count; i++) { 1165 data = &ring->data[i]; 1166 1167 if (data->m != NULL) { 1168 bus_dmamap_unload(ring->data_dmat, data->map); 1169 m_freem(data->m); 1170 data->m = NULL; 1171 } 1172 } 1173 1174 ring->queued = 0; 1175 ring->cur = 0; 1176 } 1177 1178 static void 1179 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1180 { 1181 struct wpi_tx_data *data; 1182 int i; 1183 1184 wpi_dma_contig_free(&ring->desc_dma); 1185 wpi_dma_contig_free(&ring->cmd_dma); 1186 1187 if (ring->data != NULL) { 1188 for (i = 0; i < ring->count; i++) { 1189 data = &ring->data[i]; 1190 1191 if (data->m != NULL) { 1192 bus_dmamap_sync(ring->data_dmat, data->map, 1193 BUS_DMASYNC_POSTWRITE); 1194 bus_dmamap_unload(ring->data_dmat, data->map); 1195 m_freem(data->m); 1196 data->m = NULL; 1197 } 1198 } 1199 free(ring->data, M_DEVBUF); 1200 } 1201 1202 if (ring->data_dmat != NULL) 1203 bus_dma_tag_destroy(ring->data_dmat); 1204 } 1205 1206 static int 1207 wpi_shutdown(device_t dev) 1208 { 1209 struct wpi_softc *sc = device_get_softc(dev); 1210 1211 WPI_LOCK(sc); 1212 wpi_stop_locked(sc); 1213 wpi_unload_firmware(sc); 1214 WPI_UNLOCK(sc); 1215 1216 return 0; 1217 } 1218 1219 static int 1220 wpi_suspend(device_t dev) 1221 { 1222 struct wpi_softc *sc = device_get_softc(dev); 1223 1224 wpi_stop(sc); 1225 return 0; 1226 } 1227 1228 static int 1229 wpi_resume(device_t dev) 1230 { 1231 struct wpi_softc *sc = device_get_softc(dev); 1232 struct ifnet *ifp = sc->sc_ifp; 1233 1234 pci_write_config(dev, 0x41, 0, 1); 1235 1236 if (ifp->if_flags & IFF_UP) { 1237 wpi_init(ifp->if_softc); 1238 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1239 wpi_start(ifp); 1240 } 1241 return 0; 1242 } 1243 1244 /* ARGSUSED */ 1245 static struct ieee80211_node * 1246 wpi_node_alloc(struct ieee80211_node_table *ic) 1247 { 1248 struct wpi_node *wn; 1249 1250 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1251 1252 return &wn->ni; 1253 } 1254 1255 /** 1256 * Called by net80211 when ever there is a change to 80211 state machine 1257 */ 1258 static int 1259 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1260 { 1261 struct wpi_vap *wvp = WPI_VAP(vap); 1262 struct ieee80211com *ic = vap->iv_ic; 1263 struct ifnet *ifp = ic->ic_ifp; 1264 struct wpi_softc *sc = ifp->if_softc; 1265 int error; 1266 1267 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1268 ieee80211_state_name[vap->iv_state], 1269 ieee80211_state_name[nstate], sc->flags)); 1270 1271 if (nstate == IEEE80211_S_AUTH) { 1272 /* Delay the auth transition until we can update the firmware */ 1273 error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL); 1274 return (error != 0 ? error : EINPROGRESS); 1275 } 1276 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1277 /* set the association id first */ 1278 error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL); 1279 return (error != 0 ? error : EINPROGRESS); 1280 } 1281 if (nstate == IEEE80211_S_RUN) { 1282 /* RUN -> RUN transition; just restart the timers */ 1283 wpi_calib_timeout(sc); 1284 /* XXX split out rate control timer */ 1285 } 1286 return wvp->newstate(vap, nstate, arg); 1287 } 1288 1289 /* 1290 * Grab exclusive access to NIC memory. 1291 */ 1292 static void 1293 wpi_mem_lock(struct wpi_softc *sc) 1294 { 1295 int ntries; 1296 uint32_t tmp; 1297 1298 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1299 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1300 1301 /* spin until we actually get the lock */ 1302 for (ntries = 0; ntries < 100; ntries++) { 1303 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1304 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1305 break; 1306 DELAY(10); 1307 } 1308 if (ntries == 100) 1309 device_printf(sc->sc_dev, "could not lock memory\n"); 1310 } 1311 1312 /* 1313 * Release lock on NIC memory. 1314 */ 1315 static void 1316 wpi_mem_unlock(struct wpi_softc *sc) 1317 { 1318 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1319 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1320 } 1321 1322 static uint32_t 1323 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1324 { 1325 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1326 return WPI_READ(sc, WPI_READ_MEM_DATA); 1327 } 1328 1329 static void 1330 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1331 { 1332 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1333 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1334 } 1335 1336 static void 1337 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1338 const uint32_t *data, int wlen) 1339 { 1340 for (; wlen > 0; wlen--, data++, addr+=4) 1341 wpi_mem_write(sc, addr, *data); 1342 } 1343 1344 /* 1345 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1346 * using the traditional bit-bang method. Data is read up until len bytes have 1347 * been obtained. 1348 */ 1349 static uint16_t 1350 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1351 { 1352 int ntries; 1353 uint32_t val; 1354 uint8_t *out = data; 1355 1356 wpi_mem_lock(sc); 1357 1358 for (; len > 0; len -= 2, addr++) { 1359 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1360 1361 for (ntries = 0; ntries < 10; ntries++) { 1362 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1363 break; 1364 DELAY(5); 1365 } 1366 1367 if (ntries == 10) { 1368 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1369 return ETIMEDOUT; 1370 } 1371 1372 *out++= val >> 16; 1373 if (len > 1) 1374 *out ++= val >> 24; 1375 } 1376 1377 wpi_mem_unlock(sc); 1378 1379 return 0; 1380 } 1381 1382 /* 1383 * The firmware text and data segments are transferred to the NIC using DMA. 1384 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1385 * where to find it. Once the NIC has copied the firmware into its internal 1386 * memory, we can free our local copy in the driver. 1387 */ 1388 static int 1389 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1390 { 1391 int error, ntries; 1392 1393 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1394 1395 size /= sizeof(uint32_t); 1396 1397 wpi_mem_lock(sc); 1398 1399 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1400 (const uint32_t *)fw, size); 1401 1402 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1403 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1404 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1405 1406 /* run microcode */ 1407 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1408 1409 /* wait while the adapter is busy copying the firmware */ 1410 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1411 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1412 DPRINTFN(WPI_DEBUG_HW, 1413 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1414 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1415 if (status & WPI_TX_IDLE(6)) { 1416 DPRINTFN(WPI_DEBUG_HW, 1417 ("Status Match! - ntries = %d\n", ntries)); 1418 break; 1419 } 1420 DELAY(10); 1421 } 1422 if (ntries == 1000) { 1423 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1424 error = ETIMEDOUT; 1425 } 1426 1427 /* start the microcode executing */ 1428 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1429 1430 wpi_mem_unlock(sc); 1431 1432 return (error); 1433 } 1434 1435 static void 1436 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1437 struct wpi_rx_data *data) 1438 { 1439 struct ifnet *ifp = sc->sc_ifp; 1440 struct ieee80211com *ic = ifp->if_l2com; 1441 struct wpi_rx_ring *ring = &sc->rxq; 1442 struct wpi_rx_stat *stat; 1443 struct wpi_rx_head *head; 1444 struct wpi_rx_tail *tail; 1445 struct ieee80211_node *ni; 1446 struct mbuf *m, *mnew; 1447 bus_addr_t paddr; 1448 int error; 1449 1450 stat = (struct wpi_rx_stat *)(desc + 1); 1451 1452 if (stat->len > WPI_STAT_MAXLEN) { 1453 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1454 ifp->if_ierrors++; 1455 return; 1456 } 1457 1458 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1459 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1460 1461 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1462 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1463 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1464 (uintmax_t)le64toh(tail->tstamp))); 1465 1466 /* XXX don't need mbuf, just dma buffer */ 1467 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1468 if (mnew == NULL) { 1469 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1470 __func__)); 1471 ic->ic_stats.is_rx_nobuf++; 1472 ifp->if_ierrors++; 1473 return; 1474 } 1475 error = bus_dmamap_load(ring->data_dmat, data->map, 1476 mtod(mnew, caddr_t), MJUMPAGESIZE, 1477 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1478 if (error != 0 && error != EFBIG) { 1479 device_printf(sc->sc_dev, 1480 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1481 m_freem(mnew); 1482 ic->ic_stats.is_rx_nobuf++; /* XXX need stat */ 1483 ifp->if_ierrors++; 1484 return; 1485 } 1486 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1487 1488 /* finalize mbuf and swap in new one */ 1489 m = data->m; 1490 m->m_pkthdr.rcvif = ifp; 1491 m->m_data = (caddr_t)(head + 1); 1492 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1493 1494 data->m = mnew; 1495 /* update Rx descriptor */ 1496 ring->desc[ring->cur] = htole32(paddr); 1497 1498 if (bpf_peers_present(ifp->if_bpf)) { 1499 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1500 1501 tap->wr_flags = 0; 1502 tap->wr_chan_freq = 1503 htole16(ic->ic_channels[head->chan].ic_freq); 1504 tap->wr_chan_flags = 1505 htole16(ic->ic_channels[head->chan].ic_flags); 1506 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1507 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1508 tap->wr_tsft = tail->tstamp; 1509 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1510 switch (head->rate) { 1511 /* CCK rates */ 1512 case 10: tap->wr_rate = 2; break; 1513 case 20: tap->wr_rate = 4; break; 1514 case 55: tap->wr_rate = 11; break; 1515 case 110: tap->wr_rate = 22; break; 1516 /* OFDM rates */ 1517 case 0xd: tap->wr_rate = 12; break; 1518 case 0xf: tap->wr_rate = 18; break; 1519 case 0x5: tap->wr_rate = 24; break; 1520 case 0x7: tap->wr_rate = 36; break; 1521 case 0x9: tap->wr_rate = 48; break; 1522 case 0xb: tap->wr_rate = 72; break; 1523 case 0x1: tap->wr_rate = 96; break; 1524 case 0x3: tap->wr_rate = 108; break; 1525 /* unknown rate: should not happen */ 1526 default: tap->wr_rate = 0; 1527 } 1528 if (le16toh(head->flags) & 0x4) 1529 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1530 1531 bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m); 1532 } 1533 1534 WPI_UNLOCK(sc); 1535 1536 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1537 if (ni != NULL) { 1538 (void) ieee80211_input(ni, m, stat->rssi, 0, 0); 1539 ieee80211_free_node(ni); 1540 } else 1541 (void) ieee80211_input_all(ic, m, stat->rssi, 0, 0); 1542 1543 WPI_LOCK(sc); 1544 } 1545 1546 static void 1547 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1548 { 1549 struct ifnet *ifp = sc->sc_ifp; 1550 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1551 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1552 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1553 struct wpi_node *wn = (struct wpi_node *)txdata->ni; 1554 1555 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1556 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1557 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1558 le32toh(stat->status))); 1559 1560 /* 1561 * Update rate control statistics for the node. 1562 * XXX we should not count mgmt frames since they're always sent at 1563 * the lowest available bit-rate. 1564 * XXX frames w/o ACK shouldn't be used either 1565 */ 1566 wn->amn.amn_txcnt++; 1567 if (stat->ntries > 0) { 1568 DPRINTFN(3, ("%d retries\n", stat->ntries)); 1569 wn->amn.amn_retrycnt++; 1570 } 1571 1572 /* XXX oerrors should only count errors !maxtries */ 1573 if ((le32toh(stat->status) & 0xff) != 1) 1574 ifp->if_oerrors++; 1575 else 1576 ifp->if_opackets++; 1577 1578 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1579 bus_dmamap_unload(ring->data_dmat, txdata->map); 1580 /* XXX handle M_TXCB? */ 1581 m_freem(txdata->m); 1582 txdata->m = NULL; 1583 ieee80211_free_node(txdata->ni); 1584 txdata->ni = NULL; 1585 1586 ring->queued--; 1587 1588 sc->sc_tx_timer = 0; 1589 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1590 wpi_start_locked(ifp); 1591 } 1592 1593 static void 1594 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1595 { 1596 struct wpi_tx_ring *ring = &sc->cmdq; 1597 struct wpi_tx_data *data; 1598 1599 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1600 "type=%s len=%d\n", desc->qid, desc->idx, 1601 desc->flags, wpi_cmd_str(desc->type), 1602 le32toh(desc->len))); 1603 1604 if ((desc->qid & 7) != 4) 1605 return; /* not a command ack */ 1606 1607 data = &ring->data[desc->idx]; 1608 1609 /* if the command was mapped in a mbuf, free it */ 1610 if (data->m != NULL) { 1611 bus_dmamap_unload(ring->data_dmat, data->map); 1612 m_freem(data->m); 1613 data->m = NULL; 1614 } 1615 1616 sc->flags &= ~WPI_FLAG_BUSY; 1617 wakeup(&ring->cmd[desc->idx]); 1618 } 1619 1620 static void 1621 wpi_notif_intr(struct wpi_softc *sc) 1622 { 1623 struct ifnet *ifp = sc->sc_ifp; 1624 struct ieee80211com *ic = ifp->if_l2com; 1625 struct wpi_rx_desc *desc; 1626 struct wpi_rx_data *data; 1627 uint32_t hw; 1628 1629 hw = le32toh(sc->shared->next); 1630 while (sc->rxq.cur != hw) { 1631 data = &sc->rxq.data[sc->rxq.cur]; 1632 desc = (void *)data->m->m_ext.ext_buf; 1633 1634 DPRINTFN(WPI_DEBUG_NOTIFY, 1635 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1636 desc->qid, 1637 desc->idx, 1638 desc->flags, 1639 desc->type, 1640 le32toh(desc->len))); 1641 1642 if (!(desc->qid & 0x80)) /* reply to a command */ 1643 wpi_cmd_intr(sc, desc); 1644 1645 switch (desc->type) { 1646 case WPI_RX_DONE: 1647 /* a 802.11 frame was received */ 1648 wpi_rx_intr(sc, desc, data); 1649 break; 1650 1651 case WPI_TX_DONE: 1652 /* a 802.11 frame has been transmitted */ 1653 wpi_tx_intr(sc, desc); 1654 break; 1655 1656 case WPI_UC_READY: 1657 { 1658 struct wpi_ucode_info *uc = 1659 (struct wpi_ucode_info *)(desc + 1); 1660 1661 /* the microcontroller is ready */ 1662 DPRINTF(("microcode alive notification version %x " 1663 "alive %x\n", le32toh(uc->version), 1664 le32toh(uc->valid))); 1665 1666 if (le32toh(uc->valid) != 1) { 1667 device_printf(sc->sc_dev, 1668 "microcontroller initialization failed\n"); 1669 wpi_stop_locked(sc); 1670 } 1671 break; 1672 } 1673 case WPI_STATE_CHANGED: 1674 { 1675 uint32_t *status = (uint32_t *)(desc + 1); 1676 1677 /* enabled/disabled notification */ 1678 DPRINTF(("state changed to %x\n", le32toh(*status))); 1679 1680 if (le32toh(*status) & 1) { 1681 device_printf(sc->sc_dev, 1682 "Radio transmitter is switched off\n"); 1683 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1684 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1685 /* Disable firmware commands */ 1686 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1687 } 1688 break; 1689 } 1690 case WPI_START_SCAN: 1691 { 1692 struct wpi_start_scan *scan = 1693 (struct wpi_start_scan *)(desc + 1); 1694 1695 DPRINTFN(WPI_DEBUG_SCANNING, 1696 ("scanning channel %d status %x\n", 1697 scan->chan, le32toh(scan->status))); 1698 break; 1699 } 1700 case WPI_STOP_SCAN: 1701 { 1702 struct wpi_stop_scan *scan = 1703 (struct wpi_stop_scan *)(desc + 1); 1704 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1705 1706 DPRINTFN(WPI_DEBUG_SCANNING, 1707 ("scan finished nchan=%d status=%d chan=%d\n", 1708 scan->nchan, scan->status, scan->chan)); 1709 1710 sc->sc_scan_timer = 0; 1711 ieee80211_scan_next(vap); 1712 break; 1713 } 1714 case WPI_MISSED_BEACON: 1715 { 1716 struct wpi_missed_beacon *beacon = 1717 (struct wpi_missed_beacon *)(desc + 1); 1718 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1719 1720 if (le32toh(beacon->consecutive) >= 1721 vap->iv_bmissthreshold) { 1722 DPRINTF(("Beacon miss: %u >= %u\n", 1723 le32toh(beacon->consecutive), 1724 vap->iv_bmissthreshold)); 1725 ieee80211_beacon_miss(ic); 1726 } 1727 break; 1728 } 1729 } 1730 1731 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1732 } 1733 1734 /* tell the firmware what we have processed */ 1735 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1736 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1737 } 1738 1739 static void 1740 wpi_intr(void *arg) 1741 { 1742 struct wpi_softc *sc = arg; 1743 uint32_t r; 1744 1745 WPI_LOCK(sc); 1746 1747 r = WPI_READ(sc, WPI_INTR); 1748 if (r == 0 || r == 0xffffffff) { 1749 WPI_UNLOCK(sc); 1750 return; 1751 } 1752 1753 /* disable interrupts */ 1754 WPI_WRITE(sc, WPI_MASK, 0); 1755 /* ack interrupts */ 1756 WPI_WRITE(sc, WPI_INTR, r); 1757 1758 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1759 device_printf(sc->sc_dev, "fatal firmware error\n"); 1760 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1761 "(Hardware Error)")); 1762 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 1763 sc->flags &= ~WPI_FLAG_BUSY; 1764 WPI_UNLOCK(sc); 1765 return; 1766 } 1767 1768 if (r & WPI_RX_INTR) 1769 wpi_notif_intr(sc); 1770 1771 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1772 wakeup(sc); 1773 1774 /* re-enable interrupts */ 1775 if (sc->sc_ifp->if_flags & IFF_UP) 1776 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1777 1778 WPI_UNLOCK(sc); 1779 } 1780 1781 static uint8_t 1782 wpi_plcp_signal(int rate) 1783 { 1784 switch (rate) { 1785 /* CCK rates (returned values are device-dependent) */ 1786 case 2: return 10; 1787 case 4: return 20; 1788 case 11: return 55; 1789 case 22: return 110; 1790 1791 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1792 /* R1-R4 (ral/ural is R4-R1) */ 1793 case 12: return 0xd; 1794 case 18: return 0xf; 1795 case 24: return 0x5; 1796 case 36: return 0x7; 1797 case 48: return 0x9; 1798 case 72: return 0xb; 1799 case 96: return 0x1; 1800 case 108: return 0x3; 1801 1802 /* unsupported rates (should not get there) */ 1803 default: return 0; 1804 } 1805 } 1806 1807 /* quickly determine if a given rate is CCK or OFDM */ 1808 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1809 1810 /* 1811 * Construct the data packet for a transmit buffer and acutally put 1812 * the buffer onto the transmit ring, kicking the card to process the 1813 * the buffer. 1814 */ 1815 static int 1816 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1817 int ac) 1818 { 1819 struct ieee80211vap *vap = ni->ni_vap; 1820 struct ifnet *ifp = sc->sc_ifp; 1821 struct ieee80211com *ic = ifp->if_l2com; 1822 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1823 struct wpi_tx_ring *ring = &sc->txq[ac]; 1824 struct wpi_tx_desc *desc; 1825 struct wpi_tx_data *data; 1826 struct wpi_tx_cmd *cmd; 1827 struct wpi_cmd_data *tx; 1828 struct ieee80211_frame *wh; 1829 const struct ieee80211_txparam *tp; 1830 struct ieee80211_key *k; 1831 struct mbuf *mnew; 1832 int i, error, nsegs, rate, hdrlen, ismcast; 1833 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1834 1835 desc = &ring->desc[ring->cur]; 1836 data = &ring->data[ring->cur]; 1837 1838 wh = mtod(m0, struct ieee80211_frame *); 1839 1840 hdrlen = ieee80211_hdrsize(wh); 1841 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1842 1843 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1844 k = ieee80211_crypto_encap(ni, m0); 1845 if (k == NULL) { 1846 m_freem(m0); 1847 return ENOBUFS; 1848 } 1849 /* packet header may have moved, reset our local pointer */ 1850 wh = mtod(m0, struct ieee80211_frame *); 1851 } 1852 1853 cmd = &ring->cmd[ring->cur]; 1854 cmd->code = WPI_CMD_TX_DATA; 1855 cmd->flags = 0; 1856 cmd->qid = ring->qid; 1857 cmd->idx = ring->cur; 1858 1859 tx = (struct wpi_cmd_data *)cmd->data; 1860 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1861 tx->timeout = htole16(0); 1862 tx->ofdm_mask = 0xff; 1863 tx->cck_mask = 0x0f; 1864 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1865 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1866 tx->len = htole16(m0->m_pkthdr.len); 1867 1868 if (!ismcast) { 1869 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1870 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1871 tx->flags |= htole32(WPI_TX_NEED_ACK); 1872 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1873 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1874 tx->rts_ntries = 7; 1875 } 1876 } 1877 /* pick a rate */ 1878 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1879 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1880 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1881 /* tell h/w to set timestamp in probe responses */ 1882 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1883 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1884 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1885 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1886 tx->timeout = htole16(3); 1887 else 1888 tx->timeout = htole16(2); 1889 rate = tp->mgmtrate; 1890 } else if (ismcast) { 1891 rate = tp->mcastrate; 1892 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1893 rate = tp->ucastrate; 1894 } else { 1895 (void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn); 1896 rate = ni->ni_txrate; 1897 } 1898 tx->rate = wpi_plcp_signal(rate); 1899 1900 /* be very persistant at sending frames out */ 1901 #if 0 1902 tx->data_ntries = tp->maxretry; 1903 #else 1904 tx->data_ntries = 15; /* XXX way too high */ 1905 #endif 1906 1907 if (bpf_peers_present(ifp->if_bpf)) { 1908 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1909 tap->wt_flags = 0; 1910 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1911 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1912 tap->wt_rate = rate; 1913 tap->wt_hwqueue = ac; 1914 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1915 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1916 1917 bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0); 1918 } 1919 1920 /* save and trim IEEE802.11 header */ 1921 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1922 m_adj(m0, hdrlen); 1923 1924 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1925 &nsegs, BUS_DMA_NOWAIT); 1926 if (error != 0 && error != EFBIG) { 1927 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1928 error); 1929 m_freem(m0); 1930 return error; 1931 } 1932 if (error != 0) { 1933 /* XXX use m_collapse */ 1934 mnew = m_defrag(m0, M_DONTWAIT); 1935 if (mnew == NULL) { 1936 device_printf(sc->sc_dev, 1937 "could not defragment mbuf\n"); 1938 m_freem(m0); 1939 return ENOBUFS; 1940 } 1941 m0 = mnew; 1942 1943 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1944 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1945 if (error != 0) { 1946 device_printf(sc->sc_dev, 1947 "could not map mbuf (error %d)\n", error); 1948 m_freem(m0); 1949 return error; 1950 } 1951 } 1952 1953 data->m = m0; 1954 data->ni = ni; 1955 1956 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1957 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1958 1959 /* first scatter/gather segment is used by the tx data command */ 1960 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1961 (1 + nsegs) << 24); 1962 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1963 ring->cur * sizeof (struct wpi_tx_cmd)); 1964 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 1965 for (i = 1; i <= nsegs; i++) { 1966 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 1967 desc->segs[i].len = htole32(segs[i - 1].ds_len); 1968 } 1969 1970 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1971 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1972 BUS_DMASYNC_PREWRITE); 1973 1974 ring->queued++; 1975 1976 /* kick ring */ 1977 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 1978 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 1979 1980 return 0; 1981 } 1982 1983 /** 1984 * Process data waiting to be sent on the IFNET output queue 1985 */ 1986 static void 1987 wpi_start(struct ifnet *ifp) 1988 { 1989 struct wpi_softc *sc = ifp->if_softc; 1990 1991 WPI_LOCK(sc); 1992 wpi_start_locked(ifp); 1993 WPI_UNLOCK(sc); 1994 } 1995 1996 static void 1997 wpi_start_locked(struct ifnet *ifp) 1998 { 1999 struct wpi_softc *sc = ifp->if_softc; 2000 struct ieee80211_node *ni; 2001 struct mbuf *m; 2002 int ac; 2003 2004 WPI_LOCK_ASSERT(sc); 2005 2006 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2007 return; 2008 2009 for (;;) { 2010 IFQ_POLL(&ifp->if_snd, m); 2011 if (m == NULL) 2012 break; 2013 /* no QoS encapsulation for EAPOL frames */ 2014 ac = M_WME_GETAC(m); 2015 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2016 /* there is no place left in this ring */ 2017 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2018 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2019 break; 2020 } 2021 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2022 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2023 m = ieee80211_encap(ni, m); 2024 if (m == NULL) { 2025 ieee80211_free_node(ni); 2026 ifp->if_oerrors++; 2027 continue; 2028 } 2029 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2030 ieee80211_free_node(ni); 2031 ifp->if_oerrors++; 2032 break; 2033 } 2034 sc->sc_tx_timer = 5; 2035 } 2036 } 2037 2038 static int 2039 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2040 const struct ieee80211_bpf_params *params) 2041 { 2042 struct ieee80211com *ic = ni->ni_ic; 2043 struct ifnet *ifp = ic->ic_ifp; 2044 struct wpi_softc *sc = ifp->if_softc; 2045 2046 /* prevent management frames from being sent if we're not ready */ 2047 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2048 m_freem(m); 2049 ieee80211_free_node(ni); 2050 return ENETDOWN; 2051 } 2052 WPI_LOCK(sc); 2053 2054 /* management frames go into ring 0 */ 2055 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2056 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2057 m_freem(m); 2058 WPI_UNLOCK(sc); 2059 ieee80211_free_node(ni); 2060 return ENOBUFS; /* XXX */ 2061 } 2062 2063 ifp->if_opackets++; 2064 if (wpi_tx_data(sc, m, ni, 0) != 0) 2065 goto bad; 2066 sc->sc_tx_timer = 5; 2067 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2068 2069 WPI_UNLOCK(sc); 2070 return 0; 2071 bad: 2072 ifp->if_oerrors++; 2073 WPI_UNLOCK(sc); 2074 ieee80211_free_node(ni); 2075 return EIO; /* XXX */ 2076 } 2077 2078 static int 2079 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2080 { 2081 struct wpi_softc *sc = ifp->if_softc; 2082 struct ieee80211com *ic = ifp->if_l2com; 2083 struct ifreq *ifr = (struct ifreq *) data; 2084 int error = 0, startall = 0; 2085 2086 switch (cmd) { 2087 case SIOCSIFFLAGS: 2088 WPI_LOCK(sc); 2089 if ((ifp->if_flags & IFF_UP)) { 2090 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2091 wpi_init_locked(sc, 0); 2092 startall = 1; 2093 } 2094 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2095 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2096 wpi_stop_locked(sc); 2097 WPI_UNLOCK(sc); 2098 if (startall) 2099 ieee80211_start_all(ic); 2100 break; 2101 case SIOCGIFMEDIA: 2102 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2103 break; 2104 case SIOCGIFADDR: 2105 error = ether_ioctl(ifp, cmd, data); 2106 break; 2107 default: 2108 error = EINVAL; 2109 break; 2110 } 2111 return error; 2112 } 2113 2114 /* 2115 * Extract various information from EEPROM. 2116 */ 2117 static void 2118 wpi_read_eeprom(struct wpi_softc *sc) 2119 { 2120 struct ifnet *ifp = sc->sc_ifp; 2121 struct ieee80211com *ic = ifp->if_l2com; 2122 int i; 2123 2124 /* read the hardware capabilities, revision and SKU type */ 2125 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2126 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2127 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2128 2129 /* read the regulatory domain */ 2130 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2131 2132 /* read in the hw MAC address */ 2133 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 2134 2135 /* read the list of authorized channels */ 2136 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2137 wpi_read_eeprom_channels(sc,i); 2138 2139 /* read the power level calibration info for each group */ 2140 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2141 wpi_read_eeprom_group(sc,i); 2142 } 2143 2144 /* 2145 * Send a command to the firmware. 2146 */ 2147 static int 2148 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2149 { 2150 struct wpi_tx_ring *ring = &sc->cmdq; 2151 struct wpi_tx_desc *desc; 2152 struct wpi_tx_cmd *cmd; 2153 2154 #ifdef WPI_DEBUG 2155 if (!async) { 2156 WPI_LOCK_ASSERT(sc); 2157 } 2158 #endif 2159 2160 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2161 async)); 2162 2163 if (sc->flags & WPI_FLAG_BUSY) { 2164 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2165 __func__, code); 2166 return EAGAIN; 2167 } 2168 sc->flags|= WPI_FLAG_BUSY; 2169 2170 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2171 code, size)); 2172 2173 desc = &ring->desc[ring->cur]; 2174 cmd = &ring->cmd[ring->cur]; 2175 2176 cmd->code = code; 2177 cmd->flags = 0; 2178 cmd->qid = ring->qid; 2179 cmd->idx = ring->cur; 2180 memcpy(cmd->data, buf, size); 2181 2182 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2183 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2184 ring->cur * sizeof (struct wpi_tx_cmd)); 2185 desc->segs[0].len = htole32(4 + size); 2186 2187 /* kick cmd ring */ 2188 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2189 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2190 2191 if (async) { 2192 sc->flags &= ~ WPI_FLAG_BUSY; 2193 return 0; 2194 } 2195 2196 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2197 } 2198 2199 static int 2200 wpi_wme_update(struct ieee80211com *ic) 2201 { 2202 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2203 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2204 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2205 const struct wmeParams *wmep; 2206 struct wpi_wme_setup wme; 2207 int ac; 2208 2209 /* don't override default WME values if WME is not actually enabled */ 2210 if (!(ic->ic_flags & IEEE80211_F_WME)) 2211 return 0; 2212 2213 wme.flags = 0; 2214 for (ac = 0; ac < WME_NUM_AC; ac++) { 2215 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2216 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2217 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2218 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2219 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2220 2221 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2222 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2223 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2224 } 2225 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2226 #undef WPI_USEC 2227 #undef WPI_EXP2 2228 } 2229 2230 /* 2231 * Configure h/w multi-rate retries. 2232 */ 2233 static int 2234 wpi_mrr_setup(struct wpi_softc *sc) 2235 { 2236 struct ifnet *ifp = sc->sc_ifp; 2237 struct ieee80211com *ic = ifp->if_l2com; 2238 struct wpi_mrr_setup mrr; 2239 int i, error; 2240 2241 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2242 2243 /* CCK rates (not used with 802.11a) */ 2244 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2245 mrr.rates[i].flags = 0; 2246 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2247 /* fallback to the immediate lower CCK rate (if any) */ 2248 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2249 /* try one time at this rate before falling back to "next" */ 2250 mrr.rates[i].ntries = 1; 2251 } 2252 2253 /* OFDM rates (not used with 802.11b) */ 2254 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2255 mrr.rates[i].flags = 0; 2256 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2257 /* fallback to the immediate lower OFDM rate (if any) */ 2258 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2259 mrr.rates[i].next = (i == WPI_OFDM6) ? 2260 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2261 WPI_OFDM6 : WPI_CCK2) : 2262 i - 1; 2263 /* try one time at this rate before falling back to "next" */ 2264 mrr.rates[i].ntries = 1; 2265 } 2266 2267 /* setup MRR for control frames */ 2268 mrr.which = htole32(WPI_MRR_CTL); 2269 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2270 if (error != 0) { 2271 device_printf(sc->sc_dev, 2272 "could not setup MRR for control frames\n"); 2273 return error; 2274 } 2275 2276 /* setup MRR for data frames */ 2277 mrr.which = htole32(WPI_MRR_DATA); 2278 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2279 if (error != 0) { 2280 device_printf(sc->sc_dev, 2281 "could not setup MRR for data frames\n"); 2282 return error; 2283 } 2284 2285 return 0; 2286 } 2287 2288 static void 2289 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2290 { 2291 struct wpi_cmd_led led; 2292 2293 led.which = which; 2294 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2295 led.off = off; 2296 led.on = on; 2297 2298 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2299 } 2300 2301 static void 2302 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2303 { 2304 struct wpi_cmd_tsf tsf; 2305 uint64_t val, mod; 2306 2307 memset(&tsf, 0, sizeof tsf); 2308 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2309 tsf.bintval = htole16(ni->ni_intval); 2310 tsf.lintval = htole16(10); 2311 2312 /* compute remaining time until next beacon */ 2313 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2314 mod = le64toh(tsf.tstamp) % val; 2315 tsf.binitval = htole32((uint32_t)(val - mod)); 2316 2317 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2318 device_printf(sc->sc_dev, "could not enable TSF\n"); 2319 } 2320 2321 #if 0 2322 /* 2323 * Build a beacon frame that the firmware will broadcast periodically in 2324 * IBSS or HostAP modes. 2325 */ 2326 static int 2327 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2328 { 2329 struct ifnet *ifp = sc->sc_ifp; 2330 struct ieee80211com *ic = ifp->if_l2com; 2331 struct wpi_tx_ring *ring = &sc->cmdq; 2332 struct wpi_tx_desc *desc; 2333 struct wpi_tx_data *data; 2334 struct wpi_tx_cmd *cmd; 2335 struct wpi_cmd_beacon *bcn; 2336 struct ieee80211_beacon_offsets bo; 2337 struct mbuf *m0; 2338 bus_addr_t physaddr; 2339 int error; 2340 2341 desc = &ring->desc[ring->cur]; 2342 data = &ring->data[ring->cur]; 2343 2344 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2345 if (m0 == NULL) { 2346 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2347 return ENOMEM; 2348 } 2349 2350 cmd = &ring->cmd[ring->cur]; 2351 cmd->code = WPI_CMD_SET_BEACON; 2352 cmd->flags = 0; 2353 cmd->qid = ring->qid; 2354 cmd->idx = ring->cur; 2355 2356 bcn = (struct wpi_cmd_beacon *)cmd->data; 2357 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2358 bcn->id = WPI_ID_BROADCAST; 2359 bcn->ofdm_mask = 0xff; 2360 bcn->cck_mask = 0x0f; 2361 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2362 bcn->len = htole16(m0->m_pkthdr.len); 2363 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2364 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2365 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2366 2367 /* save and trim IEEE802.11 header */ 2368 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2369 m_adj(m0, sizeof (struct ieee80211_frame)); 2370 2371 /* assume beacon frame is contiguous */ 2372 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2373 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2374 if (error != 0) { 2375 device_printf(sc->sc_dev, "could not map beacon\n"); 2376 m_freem(m0); 2377 return error; 2378 } 2379 2380 data->m = m0; 2381 2382 /* first scatter/gather segment is used by the beacon command */ 2383 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2384 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2385 ring->cur * sizeof (struct wpi_tx_cmd)); 2386 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2387 desc->segs[1].addr = htole32(physaddr); 2388 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2389 2390 /* kick cmd ring */ 2391 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2392 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2393 2394 return 0; 2395 } 2396 #endif 2397 2398 static int 2399 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2400 { 2401 struct ieee80211com *ic = vap->iv_ic; 2402 struct ieee80211_node *ni = vap->iv_bss; 2403 struct wpi_node_info node; 2404 int error; 2405 2406 2407 /* update adapter's configuration */ 2408 sc->config.associd = 0; 2409 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2410 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2411 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2412 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2413 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2414 WPI_CONFIG_24GHZ); 2415 } 2416 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2417 sc->config.cck_mask = 0; 2418 sc->config.ofdm_mask = 0x15; 2419 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2420 sc->config.cck_mask = 0x03; 2421 sc->config.ofdm_mask = 0; 2422 } else { 2423 /* XXX assume 802.11b/g */ 2424 sc->config.cck_mask = 0x0f; 2425 sc->config.ofdm_mask = 0x15; 2426 } 2427 2428 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2429 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2430 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2431 sizeof (struct wpi_config), 1); 2432 if (error != 0) { 2433 device_printf(sc->sc_dev, "could not configure\n"); 2434 return error; 2435 } 2436 2437 /* configuration has changed, set Tx power accordingly */ 2438 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2439 device_printf(sc->sc_dev, "could not set Tx power\n"); 2440 return error; 2441 } 2442 2443 /* add default node */ 2444 memset(&node, 0, sizeof node); 2445 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2446 node.id = WPI_ID_BSS; 2447 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2448 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2449 node.action = htole32(WPI_ACTION_SET_RATE); 2450 node.antenna = WPI_ANTENNA_BOTH; 2451 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2452 if (error != 0) 2453 device_printf(sc->sc_dev, "could not add BSS node\n"); 2454 2455 return (error); 2456 } 2457 2458 static int 2459 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2460 { 2461 struct ieee80211com *ic = vap->iv_ic; 2462 struct ieee80211_node *ni = vap->iv_bss; 2463 int error; 2464 2465 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2466 /* link LED blinks while monitoring */ 2467 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2468 return 0; 2469 } 2470 2471 wpi_enable_tsf(sc, ni); 2472 2473 /* update adapter's configuration */ 2474 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2475 /* short preamble/slot time are negotiated when associating */ 2476 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2477 WPI_CONFIG_SHSLOT); 2478 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2479 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2480 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2481 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2482 sc->config.filter |= htole32(WPI_FILTER_BSS); 2483 2484 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2485 2486 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2487 sc->config.flags)); 2488 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2489 wpi_config), 1); 2490 if (error != 0) { 2491 device_printf(sc->sc_dev, "could not update configuration\n"); 2492 return error; 2493 } 2494 2495 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2496 if (error != 0) { 2497 device_printf(sc->sc_dev, "could set txpower\n"); 2498 return error; 2499 } 2500 2501 if (vap->iv_opmode == IEEE80211_M_STA) { 2502 /* fake a join to init the tx rate */ 2503 wpi_newassoc(ni, 1); 2504 } 2505 2506 /* link LED always on while associated */ 2507 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2508 2509 /* start automatic rate control timer */ 2510 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2511 2512 return (error); 2513 } 2514 2515 /* 2516 * Send a scan request to the firmware. Since this command is huge, we map it 2517 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2518 * much of this code is similar to that in wpi_cmd but because we must manually 2519 * construct the probe & channels, we duplicate what's needed here. XXX In the 2520 * future, this function should be modified to use wpi_cmd to help cleanup the 2521 * code base. 2522 */ 2523 static int 2524 wpi_scan(struct wpi_softc *sc) 2525 { 2526 struct ifnet *ifp = sc->sc_ifp; 2527 struct ieee80211com *ic = ifp->if_l2com; 2528 struct ieee80211_scan_state *ss = ic->ic_scan; 2529 struct wpi_tx_ring *ring = &sc->cmdq; 2530 struct wpi_tx_desc *desc; 2531 struct wpi_tx_data *data; 2532 struct wpi_tx_cmd *cmd; 2533 struct wpi_scan_hdr *hdr; 2534 struct wpi_scan_chan *chan; 2535 struct ieee80211_frame *wh; 2536 struct ieee80211_rateset *rs; 2537 struct ieee80211_channel *c; 2538 enum ieee80211_phymode mode; 2539 uint8_t *frm; 2540 int nrates, pktlen, error, i, nssid; 2541 bus_addr_t physaddr; 2542 2543 desc = &ring->desc[ring->cur]; 2544 data = &ring->data[ring->cur]; 2545 2546 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2547 if (data->m == NULL) { 2548 device_printf(sc->sc_dev, 2549 "could not allocate mbuf for scan command\n"); 2550 return ENOMEM; 2551 } 2552 2553 cmd = mtod(data->m, struct wpi_tx_cmd *); 2554 cmd->code = WPI_CMD_SCAN; 2555 cmd->flags = 0; 2556 cmd->qid = ring->qid; 2557 cmd->idx = ring->cur; 2558 2559 hdr = (struct wpi_scan_hdr *)cmd->data; 2560 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2561 2562 /* 2563 * Move to the next channel if no packets are received within 5 msecs 2564 * after sending the probe request (this helps to reduce the duration 2565 * of active scans). 2566 */ 2567 hdr->quiet = htole16(5); 2568 hdr->threshold = htole16(1); 2569 2570 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2571 /* send probe requests at 6Mbps */ 2572 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2573 2574 /* Enable crc checking */ 2575 hdr->promotion = htole16(1); 2576 } else { 2577 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2578 /* send probe requests at 1Mbps */ 2579 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2580 } 2581 hdr->tx.id = WPI_ID_BROADCAST; 2582 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2583 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2584 2585 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2586 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2587 for (i = 0; i < nssid; i++) { 2588 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2589 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2590 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2591 hdr->scan_essids[i].esslen); 2592 if (wpi_debug & WPI_DEBUG_SCANNING) { 2593 printf("Scanning Essid: "); 2594 ieee80211_print_essid(hdr->scan_essids[i].essid, 2595 hdr->scan_essids[i].esslen); 2596 printf("\n"); 2597 } 2598 } 2599 2600 /* 2601 * Build a probe request frame. Most of the following code is a 2602 * copy & paste of what is done in net80211. 2603 */ 2604 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2605 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2606 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2607 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2608 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2609 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2610 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2611 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2612 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2613 2614 frm = (uint8_t *)(wh + 1); 2615 2616 /* add essid IE, the hardware will fill this in for us */ 2617 *frm++ = IEEE80211_ELEMID_SSID; 2618 *frm++ = 0; 2619 2620 mode = ieee80211_chan2mode(ic->ic_curchan); 2621 rs = &ic->ic_sup_rates[mode]; 2622 2623 /* add supported rates IE */ 2624 *frm++ = IEEE80211_ELEMID_RATES; 2625 nrates = rs->rs_nrates; 2626 if (nrates > IEEE80211_RATE_SIZE) 2627 nrates = IEEE80211_RATE_SIZE; 2628 *frm++ = nrates; 2629 memcpy(frm, rs->rs_rates, nrates); 2630 frm += nrates; 2631 2632 /* add supported xrates IE */ 2633 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2634 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2635 *frm++ = IEEE80211_ELEMID_XRATES; 2636 *frm++ = nrates; 2637 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2638 frm += nrates; 2639 } 2640 2641 /* setup length of probe request */ 2642 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2643 2644 /* 2645 * Construct information about the channel that we 2646 * want to scan. The firmware expects this to be directly 2647 * after the scan probe request 2648 */ 2649 c = ic->ic_curchan; 2650 chan = (struct wpi_scan_chan *)frm; 2651 chan->chan = ieee80211_chan2ieee(ic, c); 2652 chan->flags = 0; 2653 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2654 chan->flags |= WPI_CHAN_ACTIVE; 2655 if (nssid != 0) 2656 chan->flags |= WPI_CHAN_DIRECT; 2657 } 2658 chan->gain_dsp = 0x6e; /* Default level */ 2659 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2660 chan->active = htole16(10); 2661 chan->passive = htole16(ss->ss_maxdwell); 2662 chan->gain_radio = 0x3b; 2663 } else { 2664 chan->active = htole16(20); 2665 chan->passive = htole16(ss->ss_maxdwell); 2666 chan->gain_radio = 0x28; 2667 } 2668 2669 DPRINTFN(WPI_DEBUG_SCANNING, 2670 ("Scanning %u Passive: %d\n", 2671 chan->chan, 2672 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2673 2674 hdr->nchan++; 2675 chan++; 2676 2677 frm += sizeof (struct wpi_scan_chan); 2678 #if 0 2679 // XXX All Channels.... 2680 for (c = &ic->ic_channels[1]; 2681 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2682 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2683 continue; 2684 2685 chan->chan = ieee80211_chan2ieee(ic, c); 2686 chan->flags = 0; 2687 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2688 chan->flags |= WPI_CHAN_ACTIVE; 2689 if (ic->ic_des_ssid[0].len != 0) 2690 chan->flags |= WPI_CHAN_DIRECT; 2691 } 2692 chan->gain_dsp = 0x6e; /* Default level */ 2693 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2694 chan->active = htole16(10); 2695 chan->passive = htole16(110); 2696 chan->gain_radio = 0x3b; 2697 } else { 2698 chan->active = htole16(20); 2699 chan->passive = htole16(120); 2700 chan->gain_radio = 0x28; 2701 } 2702 2703 DPRINTFN(WPI_DEBUG_SCANNING, 2704 ("Scanning %u Passive: %d\n", 2705 chan->chan, 2706 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2707 2708 hdr->nchan++; 2709 chan++; 2710 2711 frm += sizeof (struct wpi_scan_chan); 2712 } 2713 #endif 2714 2715 hdr->len = htole16(frm - (uint8_t *)hdr); 2716 pktlen = frm - (uint8_t *)cmd; 2717 2718 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2719 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2720 if (error != 0) { 2721 device_printf(sc->sc_dev, "could not map scan command\n"); 2722 m_freem(data->m); 2723 data->m = NULL; 2724 return error; 2725 } 2726 2727 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2728 desc->segs[0].addr = htole32(physaddr); 2729 desc->segs[0].len = htole32(pktlen); 2730 2731 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2732 BUS_DMASYNC_PREWRITE); 2733 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2734 2735 /* kick cmd ring */ 2736 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2737 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2738 2739 sc->sc_scan_timer = 5; 2740 return 0; /* will be notified async. of failure/success */ 2741 } 2742 2743 /** 2744 * Configure the card to listen to a particular channel, this transisions the 2745 * card in to being able to receive frames from remote devices. 2746 */ 2747 static int 2748 wpi_config(struct wpi_softc *sc) 2749 { 2750 struct ifnet *ifp = sc->sc_ifp; 2751 struct ieee80211com *ic = ifp->if_l2com; 2752 struct wpi_power power; 2753 struct wpi_bluetooth bluetooth; 2754 struct wpi_node_info node; 2755 int error; 2756 2757 /* set power mode */ 2758 memset(&power, 0, sizeof power); 2759 power.flags = htole32(WPI_POWER_CAM|0x8); 2760 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2761 if (error != 0) { 2762 device_printf(sc->sc_dev, "could not set power mode\n"); 2763 return error; 2764 } 2765 2766 /* configure bluetooth coexistence */ 2767 memset(&bluetooth, 0, sizeof bluetooth); 2768 bluetooth.flags = 3; 2769 bluetooth.lead = 0xaa; 2770 bluetooth.kill = 1; 2771 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2772 0); 2773 if (error != 0) { 2774 device_printf(sc->sc_dev, 2775 "could not configure bluetooth coexistence\n"); 2776 return error; 2777 } 2778 2779 /* configure adapter */ 2780 memset(&sc->config, 0, sizeof (struct wpi_config)); 2781 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); 2782 /*set default channel*/ 2783 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2784 sc->config.flags = htole32(WPI_CONFIG_TSF); 2785 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2786 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2787 WPI_CONFIG_24GHZ); 2788 } 2789 sc->config.filter = 0; 2790 switch (ic->ic_opmode) { 2791 case IEEE80211_M_STA: 2792 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2793 sc->config.mode = WPI_MODE_STA; 2794 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2795 break; 2796 case IEEE80211_M_IBSS: 2797 case IEEE80211_M_AHDEMO: 2798 sc->config.mode = WPI_MODE_IBSS; 2799 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2800 WPI_FILTER_MULTICAST); 2801 break; 2802 case IEEE80211_M_HOSTAP: 2803 sc->config.mode = WPI_MODE_HOSTAP; 2804 break; 2805 case IEEE80211_M_MONITOR: 2806 sc->config.mode = WPI_MODE_MONITOR; 2807 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2808 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2809 break; 2810 } 2811 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2812 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2813 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2814 sizeof (struct wpi_config), 0); 2815 if (error != 0) { 2816 device_printf(sc->sc_dev, "configure command failed\n"); 2817 return error; 2818 } 2819 2820 /* configuration has changed, set Tx power accordingly */ 2821 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2822 device_printf(sc->sc_dev, "could not set Tx power\n"); 2823 return error; 2824 } 2825 2826 /* add broadcast node */ 2827 memset(&node, 0, sizeof node); 2828 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2829 node.id = WPI_ID_BROADCAST; 2830 node.rate = wpi_plcp_signal(2); 2831 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2832 if (error != 0) { 2833 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2834 return error; 2835 } 2836 2837 /* Setup rate scalling */ 2838 error = wpi_mrr_setup(sc); 2839 if (error != 0) { 2840 device_printf(sc->sc_dev, "could not setup MRR\n"); 2841 return error; 2842 } 2843 2844 return 0; 2845 } 2846 2847 static void 2848 wpi_stop_master(struct wpi_softc *sc) 2849 { 2850 uint32_t tmp; 2851 int ntries; 2852 2853 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2854 2855 tmp = WPI_READ(sc, WPI_RESET); 2856 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2857 2858 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2859 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2860 return; /* already asleep */ 2861 2862 for (ntries = 0; ntries < 100; ntries++) { 2863 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2864 break; 2865 DELAY(10); 2866 } 2867 if (ntries == 100) { 2868 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2869 } 2870 } 2871 2872 static int 2873 wpi_power_up(struct wpi_softc *sc) 2874 { 2875 uint32_t tmp; 2876 int ntries; 2877 2878 wpi_mem_lock(sc); 2879 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2880 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2881 wpi_mem_unlock(sc); 2882 2883 for (ntries = 0; ntries < 5000; ntries++) { 2884 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2885 break; 2886 DELAY(10); 2887 } 2888 if (ntries == 5000) { 2889 device_printf(sc->sc_dev, 2890 "timeout waiting for NIC to power up\n"); 2891 return ETIMEDOUT; 2892 } 2893 return 0; 2894 } 2895 2896 static int 2897 wpi_reset(struct wpi_softc *sc) 2898 { 2899 uint32_t tmp; 2900 int ntries; 2901 2902 DPRINTFN(WPI_DEBUG_HW, 2903 ("Resetting the card - clearing any uploaded firmware\n")); 2904 2905 /* clear any pending interrupts */ 2906 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2907 2908 tmp = WPI_READ(sc, WPI_PLL_CTL); 2909 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2910 2911 tmp = WPI_READ(sc, WPI_CHICKEN); 2912 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2913 2914 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2915 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2916 2917 /* wait for clock stabilization */ 2918 for (ntries = 0; ntries < 25000; ntries++) { 2919 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2920 break; 2921 DELAY(10); 2922 } 2923 if (ntries == 25000) { 2924 device_printf(sc->sc_dev, 2925 "timeout waiting for clock stabilization\n"); 2926 return ETIMEDOUT; 2927 } 2928 2929 /* initialize EEPROM */ 2930 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2931 2932 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2933 device_printf(sc->sc_dev, "EEPROM not found\n"); 2934 return EIO; 2935 } 2936 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2937 2938 return 0; 2939 } 2940 2941 static void 2942 wpi_hw_config(struct wpi_softc *sc) 2943 { 2944 uint32_t rev, hw; 2945 2946 /* voodoo from the Linux "driver".. */ 2947 hw = WPI_READ(sc, WPI_HWCONFIG); 2948 2949 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2950 if ((rev & 0xc0) == 0x40) 2951 hw |= WPI_HW_ALM_MB; 2952 else if (!(rev & 0x80)) 2953 hw |= WPI_HW_ALM_MM; 2954 2955 if (sc->cap == 0x80) 2956 hw |= WPI_HW_SKU_MRC; 2957 2958 hw &= ~WPI_HW_REV_D; 2959 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2960 hw |= WPI_HW_REV_D; 2961 2962 if (sc->type > 1) 2963 hw |= WPI_HW_TYPE_B; 2964 2965 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2966 } 2967 2968 static void 2969 wpi_rfkill_resume(struct wpi_softc *sc) 2970 { 2971 struct ifnet *ifp = sc->sc_ifp; 2972 struct ieee80211com *ic = ifp->if_l2com; 2973 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2974 int ntries; 2975 2976 /* enable firmware again */ 2977 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 2978 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 2979 2980 /* wait for thermal sensors to calibrate */ 2981 for (ntries = 0; ntries < 1000; ntries++) { 2982 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 2983 break; 2984 DELAY(10); 2985 } 2986 2987 if (ntries == 1000) { 2988 device_printf(sc->sc_dev, 2989 "timeout waiting for thermal calibration\n"); 2990 WPI_UNLOCK(sc); 2991 return; 2992 } 2993 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 2994 2995 if (wpi_config(sc) != 0) { 2996 device_printf(sc->sc_dev, "device config failed\n"); 2997 WPI_UNLOCK(sc); 2998 return; 2999 } 3000 3001 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3002 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3003 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3004 3005 if (vap != NULL) { 3006 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3007 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3008 ieee80211_beacon_miss(ic); 3009 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3010 } else 3011 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3012 } else { 3013 ieee80211_scan_next(vap); 3014 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3015 } 3016 } 3017 3018 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3019 } 3020 3021 static void 3022 wpi_init_locked(struct wpi_softc *sc, int force) 3023 { 3024 struct ifnet *ifp = sc->sc_ifp; 3025 uint32_t tmp; 3026 int ntries, qid; 3027 3028 wpi_stop_locked(sc); 3029 (void)wpi_reset(sc); 3030 3031 wpi_mem_lock(sc); 3032 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3033 DELAY(20); 3034 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3035 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3036 wpi_mem_unlock(sc); 3037 3038 (void)wpi_power_up(sc); 3039 wpi_hw_config(sc); 3040 3041 /* init Rx ring */ 3042 wpi_mem_lock(sc); 3043 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3044 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3045 offsetof(struct wpi_shared, next)); 3046 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3047 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3048 wpi_mem_unlock(sc); 3049 3050 /* init Tx rings */ 3051 wpi_mem_lock(sc); 3052 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3053 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3054 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3055 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3056 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3057 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3058 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3059 3060 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3061 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3062 3063 for (qid = 0; qid < 6; qid++) { 3064 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3065 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3066 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3067 } 3068 wpi_mem_unlock(sc); 3069 3070 /* clear "radio off" and "disable command" bits (reversed logic) */ 3071 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3072 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3073 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3074 3075 /* clear any pending interrupts */ 3076 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3077 3078 /* enable interrupts */ 3079 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3080 3081 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3082 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3083 3084 if ((wpi_load_firmware(sc)) != 0) { 3085 device_printf(sc->sc_dev, 3086 "A problem occurred loading the firmware to the driver\n"); 3087 return; 3088 } 3089 3090 /* At this point the firmware is up and running. If the hardware 3091 * RF switch is turned off thermal calibration will fail, though 3092 * the card is still happy to continue to accept commands, catch 3093 * this case and schedule a task to watch for it to be turned on. 3094 */ 3095 wpi_mem_lock(sc); 3096 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3097 wpi_mem_unlock(sc); 3098 3099 if (!(tmp & 0x1)) { 3100 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3101 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3102 goto out; 3103 } 3104 3105 /* wait for thermal sensors to calibrate */ 3106 for (ntries = 0; ntries < 1000; ntries++) { 3107 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3108 break; 3109 DELAY(10); 3110 } 3111 3112 if (ntries == 1000) { 3113 device_printf(sc->sc_dev, 3114 "timeout waiting for thermal sensors calibration\n"); 3115 return; 3116 } 3117 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3118 3119 if (wpi_config(sc) != 0) { 3120 device_printf(sc->sc_dev, "device config failed\n"); 3121 return; 3122 } 3123 3124 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3125 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3126 out: 3127 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3128 } 3129 3130 static void 3131 wpi_init(void *arg) 3132 { 3133 struct wpi_softc *sc = arg; 3134 struct ifnet *ifp = sc->sc_ifp; 3135 struct ieee80211com *ic = ifp->if_l2com; 3136 3137 WPI_LOCK(sc); 3138 wpi_init_locked(sc, 0); 3139 WPI_UNLOCK(sc); 3140 3141 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3142 ieee80211_start_all(ic); /* start all vaps */ 3143 } 3144 3145 static void 3146 wpi_stop_locked(struct wpi_softc *sc) 3147 { 3148 struct ifnet *ifp = sc->sc_ifp; 3149 uint32_t tmp; 3150 int ac; 3151 3152 sc->sc_tx_timer = 0; 3153 sc->sc_scan_timer = 0; 3154 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3155 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3156 callout_stop(&sc->watchdog_to); 3157 callout_stop(&sc->calib_to); 3158 3159 3160 /* disable interrupts */ 3161 WPI_WRITE(sc, WPI_MASK, 0); 3162 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3163 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3164 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3165 3166 /* Clear any commands left in the command buffer */ 3167 memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd)); 3168 memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg)); 3169 sc->sc_cmd_cur = 0; 3170 sc->sc_cmd_next = 0; 3171 3172 wpi_mem_lock(sc); 3173 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3174 wpi_mem_unlock(sc); 3175 3176 /* reset all Tx rings */ 3177 for (ac = 0; ac < 4; ac++) 3178 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3179 wpi_reset_tx_ring(sc, &sc->cmdq); 3180 3181 /* reset Rx ring */ 3182 wpi_reset_rx_ring(sc, &sc->rxq); 3183 3184 wpi_mem_lock(sc); 3185 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3186 wpi_mem_unlock(sc); 3187 3188 DELAY(5); 3189 3190 wpi_stop_master(sc); 3191 3192 tmp = WPI_READ(sc, WPI_RESET); 3193 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3194 sc->flags &= ~WPI_FLAG_BUSY; 3195 } 3196 3197 static void 3198 wpi_stop(struct wpi_softc *sc) 3199 { 3200 WPI_LOCK(sc); 3201 wpi_stop_locked(sc); 3202 WPI_UNLOCK(sc); 3203 } 3204 3205 static void 3206 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3207 { 3208 struct ieee80211vap *vap = ni->ni_vap; 3209 struct wpi_vap *wvp = WPI_VAP(vap); 3210 3211 ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni); 3212 } 3213 3214 static void 3215 wpi_calib_timeout(void *arg) 3216 { 3217 struct wpi_softc *sc = arg; 3218 struct ifnet *ifp = sc->sc_ifp; 3219 struct ieee80211com *ic = ifp->if_l2com; 3220 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3221 int temp; 3222 3223 if (vap->iv_state != IEEE80211_S_RUN) 3224 return; 3225 3226 /* update sensor data */ 3227 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3228 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3229 3230 wpi_power_calibration(sc, temp); 3231 3232 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3233 } 3234 3235 /* 3236 * This function is called periodically (every 60 seconds) to adjust output 3237 * power to temperature changes. 3238 */ 3239 static void 3240 wpi_power_calibration(struct wpi_softc *sc, int temp) 3241 { 3242 struct ifnet *ifp = sc->sc_ifp; 3243 struct ieee80211com *ic = ifp->if_l2com; 3244 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3245 3246 /* sanity-check read value */ 3247 if (temp < -260 || temp > 25) { 3248 /* this can't be correct, ignore */ 3249 DPRINTFN(WPI_DEBUG_TEMP, 3250 ("out-of-range temperature reported: %d\n", temp)); 3251 return; 3252 } 3253 3254 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3255 3256 /* adjust Tx power if need be */ 3257 if (abs(temp - sc->temp) <= 6) 3258 return; 3259 3260 sc->temp = temp; 3261 3262 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3263 /* just warn, too bad for the automatic calibration... */ 3264 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3265 } 3266 } 3267 3268 /** 3269 * Read the eeprom to find out what channels are valid for the given 3270 * band and update net80211 with what we find. 3271 */ 3272 static void 3273 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3274 { 3275 struct ifnet *ifp = sc->sc_ifp; 3276 struct ieee80211com *ic = ifp->if_l2com; 3277 const struct wpi_chan_band *band = &wpi_bands[n]; 3278 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3279 int chan, i, offset, passive; 3280 3281 wpi_read_prom_data(sc, band->addr, channels, 3282 band->nchan * sizeof (struct wpi_eeprom_chan)); 3283 3284 for (i = 0; i < band->nchan; i++) { 3285 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3286 DPRINTFN(WPI_DEBUG_HW, 3287 ("Channel Not Valid: %d, band %d\n", 3288 band->chan[i],n)); 3289 continue; 3290 } 3291 3292 passive = 0; 3293 chan = band->chan[i]; 3294 offset = ic->ic_nchans; 3295 3296 /* is active scan allowed on this channel? */ 3297 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3298 passive = IEEE80211_CHAN_PASSIVE; 3299 } 3300 3301 if (n == 0) { /* 2GHz band */ 3302 ic->ic_channels[offset].ic_ieee = chan; 3303 ic->ic_channels[offset].ic_freq = 3304 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 3305 ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive; 3306 offset++; 3307 ic->ic_channels[offset].ic_ieee = chan; 3308 ic->ic_channels[offset].ic_freq = 3309 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 3310 ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive; 3311 offset++; 3312 3313 } else { /* 5GHz band */ 3314 /* 3315 * Some 3945ABG adapters support channels 7, 8, 11 3316 * and 12 in the 2GHz *and* 5GHz bands. 3317 * Because of limitations in our net80211(9) stack, 3318 * we can't support these channels in 5GHz band. 3319 * XXX not true; just need to map to proper frequency 3320 */ 3321 if (chan <= 14) 3322 continue; 3323 3324 ic->ic_channels[offset].ic_ieee = chan; 3325 ic->ic_channels[offset].ic_freq = 3326 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 3327 ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive; 3328 offset++; 3329 } 3330 3331 /* save maximum allowed power for this channel */ 3332 sc->maxpwr[chan] = channels[i].maxpwr; 3333 3334 ic->ic_nchans = offset; 3335 3336 #if 0 3337 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3338 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3339 //ic->ic_channels[chan].ic_minpower... 3340 //ic->ic_channels[chan].ic_maxregtxpower... 3341 #endif 3342 3343 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n", 3344 chan, channels[i].flags, sc->maxpwr[chan], offset)); 3345 } 3346 } 3347 3348 static void 3349 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3350 { 3351 struct wpi_power_group *group = &sc->groups[n]; 3352 struct wpi_eeprom_group rgroup; 3353 int i; 3354 3355 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3356 sizeof rgroup); 3357 3358 /* save power group information */ 3359 group->chan = rgroup.chan; 3360 group->maxpwr = rgroup.maxpwr; 3361 /* temperature at which the samples were taken */ 3362 group->temp = (int16_t)le16toh(rgroup.temp); 3363 3364 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3365 group->chan, group->maxpwr, group->temp)); 3366 3367 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3368 group->samples[i].index = rgroup.samples[i].index; 3369 group->samples[i].power = rgroup.samples[i].power; 3370 3371 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3372 group->samples[i].index, group->samples[i].power)); 3373 } 3374 } 3375 3376 /* 3377 * Update Tx power to match what is defined for channel `c'. 3378 */ 3379 static int 3380 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3381 { 3382 struct ifnet *ifp = sc->sc_ifp; 3383 struct ieee80211com *ic = ifp->if_l2com; 3384 struct wpi_power_group *group; 3385 struct wpi_cmd_txpower txpower; 3386 u_int chan; 3387 int i; 3388 3389 /* get channel number */ 3390 chan = ieee80211_chan2ieee(ic, c); 3391 3392 /* find the power group to which this channel belongs */ 3393 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3394 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3395 if (chan <= group->chan) 3396 break; 3397 } else 3398 group = &sc->groups[0]; 3399 3400 memset(&txpower, 0, sizeof txpower); 3401 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3402 txpower.channel = htole16(chan); 3403 3404 /* set Tx power for all OFDM and CCK rates */ 3405 for (i = 0; i <= 11 ; i++) { 3406 /* retrieve Tx power for this channel/rate combination */ 3407 int idx = wpi_get_power_index(sc, group, c, 3408 wpi_ridx_to_rate[i]); 3409 3410 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3411 3412 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3413 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3414 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3415 } else { 3416 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3417 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3418 } 3419 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3420 chan, wpi_ridx_to_rate[i], idx)); 3421 } 3422 3423 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3424 } 3425 3426 /* 3427 * Determine Tx power index for a given channel/rate combination. 3428 * This takes into account the regulatory information from EEPROM and the 3429 * current temperature. 3430 */ 3431 static int 3432 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3433 struct ieee80211_channel *c, int rate) 3434 { 3435 /* fixed-point arithmetic division using a n-bit fractional part */ 3436 #define fdivround(a, b, n) \ 3437 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3438 3439 /* linear interpolation */ 3440 #define interpolate(x, x1, y1, x2, y2, n) \ 3441 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3442 3443 struct ifnet *ifp = sc->sc_ifp; 3444 struct ieee80211com *ic = ifp->if_l2com; 3445 struct wpi_power_sample *sample; 3446 int pwr, idx; 3447 u_int chan; 3448 3449 /* get channel number */ 3450 chan = ieee80211_chan2ieee(ic, c); 3451 3452 /* default power is group's maximum power - 3dB */ 3453 pwr = group->maxpwr / 2; 3454 3455 /* decrease power for highest OFDM rates to reduce distortion */ 3456 switch (rate) { 3457 case 72: /* 36Mb/s */ 3458 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3459 break; 3460 case 96: /* 48Mb/s */ 3461 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3462 break; 3463 case 108: /* 54Mb/s */ 3464 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3465 break; 3466 } 3467 3468 /* never exceed channel's maximum allowed Tx power */ 3469 pwr = min(pwr, sc->maxpwr[chan]); 3470 3471 /* retrieve power index into gain tables from samples */ 3472 for (sample = group->samples; sample < &group->samples[3]; sample++) 3473 if (pwr > sample[1].power) 3474 break; 3475 /* fixed-point linear interpolation using a 19-bit fractional part */ 3476 idx = interpolate(pwr, sample[0].power, sample[0].index, 3477 sample[1].power, sample[1].index, 19); 3478 3479 /* 3480 * Adjust power index based on current temperature 3481 * - if colder than factory-calibrated: decreate output power 3482 * - if warmer than factory-calibrated: increase output power 3483 */ 3484 idx -= (sc->temp - group->temp) * 11 / 100; 3485 3486 /* decrease power for CCK rates (-5dB) */ 3487 if (!WPI_RATE_IS_OFDM(rate)) 3488 idx += 10; 3489 3490 /* keep power index in a valid range */ 3491 if (idx < 0) 3492 return 0; 3493 if (idx > WPI_MAX_PWR_INDEX) 3494 return WPI_MAX_PWR_INDEX; 3495 return idx; 3496 3497 #undef interpolate 3498 #undef fdivround 3499 } 3500 3501 /** 3502 * Called by net80211 framework to indicate that a scan 3503 * is starting. This function doesn't actually do the scan, 3504 * wpi_scan_curchan starts things off. This function is more 3505 * of an early warning from the framework we should get ready 3506 * for the scan. 3507 */ 3508 static void 3509 wpi_scan_start(struct ieee80211com *ic) 3510 { 3511 struct ifnet *ifp = ic->ic_ifp; 3512 struct wpi_softc *sc = ifp->if_softc; 3513 3514 wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL); 3515 } 3516 3517 /** 3518 * Called by the net80211 framework, indicates that the 3519 * scan has ended. If there is a scan in progress on the card 3520 * then it should be aborted. 3521 */ 3522 static void 3523 wpi_scan_end(struct ieee80211com *ic) 3524 { 3525 struct ifnet *ifp = ic->ic_ifp; 3526 struct wpi_softc *sc = ifp->if_softc; 3527 3528 wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL); 3529 } 3530 3531 /** 3532 * Called by the net80211 framework to indicate to the driver 3533 * that the channel should be changed 3534 */ 3535 static void 3536 wpi_set_channel(struct ieee80211com *ic) 3537 { 3538 struct ifnet *ifp = ic->ic_ifp; 3539 struct wpi_softc *sc = ifp->if_softc; 3540 3541 /* 3542 * Only need to set the channel in Monitor mode. AP scanning and auth 3543 * are already taken care of by their respective firmware commands. 3544 */ 3545 if (ic->ic_opmode == IEEE80211_M_MONITOR) 3546 wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL); 3547 } 3548 3549 /** 3550 * Called by net80211 to indicate that we need to scan the current 3551 * channel. The channel is previously be set via the wpi_set_channel 3552 * callback. 3553 */ 3554 static void 3555 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3556 { 3557 struct ieee80211vap *vap = ss->ss_vap; 3558 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3559 struct wpi_softc *sc = ifp->if_softc; 3560 3561 wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL); 3562 } 3563 3564 /** 3565 * Called by the net80211 framework to indicate 3566 * the minimum dwell time has been met, terminate the scan. 3567 * We don't actually terminate the scan as the firmware will notify 3568 * us when it's finished and we have no way to interrupt it. 3569 */ 3570 static void 3571 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3572 { 3573 /* NB: don't try to abort scan; wait for firmware to finish */ 3574 } 3575 3576 /** 3577 * The ops function is called to perform some actual work. 3578 * because we can't sleep from any of the ic callbacks, we queue an 3579 * op task with wpi_queue_cmd and have the taskqueue process that task. 3580 * The task that gets cued is a op task, which ends up calling this function. 3581 */ 3582 static void 3583 wpi_ops(void *arg0, int pending) 3584 { 3585 struct wpi_softc *sc = arg0; 3586 struct ifnet *ifp = sc->sc_ifp; 3587 struct ieee80211com *ic = ifp->if_l2com; 3588 int cmd, arg, error; 3589 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3590 3591 again: 3592 WPI_CMD_LOCK(sc); 3593 cmd = sc->sc_cmd[sc->sc_cmd_cur]; 3594 arg = sc->sc_cmd_arg[sc->sc_cmd_cur]; 3595 3596 if (cmd == 0) { 3597 /* No more commands to process */ 3598 WPI_CMD_UNLOCK(sc); 3599 return; 3600 } 3601 sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */ 3602 sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */ 3603 sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS; 3604 WPI_CMD_UNLOCK(sc); 3605 WPI_LOCK(sc); 3606 3607 DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd)); 3608 3609 switch (cmd) { 3610 case WPI_RESTART: 3611 wpi_init_locked(sc, 0); 3612 WPI_UNLOCK(sc); 3613 return; 3614 3615 case WPI_RF_RESTART: 3616 wpi_rfkill_resume(sc); 3617 WPI_UNLOCK(sc); 3618 return; 3619 } 3620 3621 if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3622 WPI_UNLOCK(sc); 3623 return; 3624 } 3625 3626 switch (cmd) { 3627 case WPI_SCAN_START: 3628 /* make the link LED blink while we're scanning */ 3629 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3630 sc->flags |= WPI_FLAG_SCANNING; 3631 break; 3632 3633 case WPI_SCAN_STOP: 3634 sc->flags &= ~WPI_FLAG_SCANNING; 3635 break; 3636 3637 case WPI_SCAN_CURCHAN: 3638 if (wpi_scan(sc)) 3639 ieee80211_cancel_scan(vap); 3640 break; 3641 3642 case WPI_SET_CHAN: 3643 error = wpi_config(sc); 3644 if (error != 0) 3645 device_printf(sc->sc_dev, 3646 "error %d settting channel\n", error); 3647 break; 3648 3649 case WPI_AUTH: 3650 /* The node must be registered in the firmware before auth */ 3651 error = wpi_auth(sc, vap); 3652 WPI_UNLOCK(sc); 3653 if (error != 0) { 3654 device_printf(sc->sc_dev, 3655 "%s: could not move to auth state, error %d\n", 3656 __func__, error); 3657 return; 3658 } 3659 IEEE80211_LOCK(ic); 3660 WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg); 3661 if (vap->iv_newstate_cb != NULL) 3662 vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg); 3663 IEEE80211_UNLOCK(ic); 3664 goto again; 3665 3666 case WPI_RUN: 3667 error = wpi_run(sc, vap); 3668 WPI_UNLOCK(sc); 3669 if (error != 0) { 3670 device_printf(sc->sc_dev, 3671 "%s: could not move to run state, error %d\n", 3672 __func__, error); 3673 return; 3674 } 3675 IEEE80211_LOCK(ic); 3676 WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg); 3677 if (vap->iv_newstate_cb != NULL) 3678 vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg); 3679 IEEE80211_UNLOCK(ic); 3680 goto again; 3681 } 3682 WPI_UNLOCK(sc); 3683 3684 /* Take another pass */ 3685 goto again; 3686 } 3687 3688 /** 3689 * queue a command for later execution in a different thread. 3690 * This is needed as the net80211 callbacks do not allow 3691 * sleeping, since we need to sleep to confirm commands have 3692 * been processed by the firmware, we must defer execution to 3693 * a sleep enabled thread. 3694 */ 3695 static int 3696 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush) 3697 { 3698 WPI_CMD_LOCK(sc); 3699 3700 if (flush) { 3701 memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd)); 3702 memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg)); 3703 sc->sc_cmd_cur = 0; 3704 sc->sc_cmd_next = 0; 3705 } 3706 3707 if (sc->sc_cmd[sc->sc_cmd_next] != 0) { 3708 WPI_CMD_UNLOCK(sc); 3709 DPRINTF(("%s: command %d dropped\n", __func__, cmd)); 3710 return (EBUSY); 3711 } 3712 3713 sc->sc_cmd[sc->sc_cmd_next] = cmd; 3714 sc->sc_cmd_arg[sc->sc_cmd_next] = arg; 3715 sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS; 3716 3717 taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask); 3718 3719 WPI_CMD_UNLOCK(sc); 3720 3721 return 0; 3722 } 3723 3724 /* 3725 * Allocate DMA-safe memory for firmware transfer. 3726 */ 3727 static int 3728 wpi_alloc_fwmem(struct wpi_softc *sc) 3729 { 3730 /* allocate enough contiguous space to store text and data */ 3731 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3732 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3733 BUS_DMA_NOWAIT); 3734 } 3735 3736 static void 3737 wpi_free_fwmem(struct wpi_softc *sc) 3738 { 3739 wpi_dma_contig_free(&sc->fw_dma); 3740 } 3741 3742 /** 3743 * Called every second, wpi_watchdog used by the watch dog timer 3744 * to check that the card is still alive 3745 */ 3746 static void 3747 wpi_watchdog(void *arg) 3748 { 3749 struct wpi_softc *sc = arg; 3750 struct ifnet *ifp = sc->sc_ifp; 3751 uint32_t tmp; 3752 3753 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3754 3755 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3756 /* No need to lock firmware memory */ 3757 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3758 3759 if ((tmp & 0x1) == 0) { 3760 /* Radio kill switch is still off */ 3761 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3762 return; 3763 } 3764 3765 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3766 wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR); 3767 return; 3768 } 3769 3770 if (sc->sc_tx_timer > 0) { 3771 if (--sc->sc_tx_timer == 0) { 3772 device_printf(sc->sc_dev,"device timeout\n"); 3773 ifp->if_oerrors++; 3774 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 3775 } 3776 } 3777 if (sc->sc_scan_timer > 0) { 3778 struct ifnet *ifp = sc->sc_ifp; 3779 struct ieee80211com *ic = ifp->if_l2com; 3780 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3781 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3782 device_printf(sc->sc_dev,"scan timeout\n"); 3783 ieee80211_cancel_scan(vap); 3784 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 3785 } 3786 } 3787 3788 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3789 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3790 } 3791 3792 #ifdef WPI_DEBUG 3793 static const char *wpi_cmd_str(int cmd) 3794 { 3795 switch (cmd) { 3796 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3797 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3798 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3799 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3800 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3801 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3802 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3803 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3804 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3805 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3806 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3807 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3808 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3809 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3810 3811 default: 3812 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3813 return "UNKNOWN CMD"; /* Make the compiler happy */ 3814 } 3815 } 3816 #endif 3817 3818 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3819 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3820 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3821 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3822