xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 /*
22  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
23  *
24  * The 3945ABG network adapter doesn't use traditional hardware as
25  * many other adaptors do. Instead at run time the eeprom is set into a known
26  * state and told to load boot firmware. The boot firmware loads an init and a
27  * main  binary firmware image into SRAM on the card via DMA.
28  * Once the firmware is loaded, the driver/hw then
29  * communicate by way of circular dma rings via the SRAM to the firmware.
30  *
31  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
32  * The 4 tx data rings allow for prioritization QoS.
33  *
34  * The rx data ring consists of 32 dma buffers. Two registers are used to
35  * indicate where in the ring the driver and the firmware are up to. The
36  * driver sets the initial read index (reg1) and the initial write index (reg2),
37  * the firmware updates the read index (reg1) on rx of a packet and fires an
38  * interrupt. The driver then processes the buffers starting at reg1 indicating
39  * to the firmware which buffers have been accessed by updating reg2. At the
40  * same time allocating new memory for the processed buffer.
41  *
42  * A similar thing happens with the tx rings. The difference is the firmware
43  * stop processing buffers once the queue is full and until confirmation
44  * of a successful transmition (tx_done) has occurred.
45  *
46  * The command ring operates in the same manner as the tx queues.
47  *
48  * All communication direct to the card (ie eeprom) is classed as Stage1
49  * communication
50  *
51  * All communication via the firmware to the card is classed as State2.
52  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
53  * firmware. The bootstrap firmware and runtime firmware are loaded
54  * from host memory via dma to the card then told to execute. From this point
55  * on the majority of communications between the driver and the card goes
56  * via the firmware.
57  */
58 
59 #include "opt_wlan.h"
60 #include "opt_wpi.h"
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_var.h>
88 #include <net/if_arp.h>
89 #include <net/ethernet.h>
90 #include <net/if_dl.h>
91 #include <net/if_media.h>
92 #include <net/if_types.h>
93 
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/in_var.h>
97 #include <netinet/if_ether.h>
98 #include <netinet/ip.h>
99 
100 #include <net80211/ieee80211_var.h>
101 #include <net80211/ieee80211_radiotap.h>
102 #include <net80211/ieee80211_regdomain.h>
103 #include <net80211/ieee80211_ratectl.h>
104 
105 #include <dev/wpi/if_wpireg.h>
106 #include <dev/wpi/if_wpivar.h>
107 #include <dev/wpi/if_wpi_debug.h>
108 
109 struct wpi_ident {
110 	uint16_t	vendor;
111 	uint16_t	device;
112 	uint16_t	subdevice;
113 	const char	*name;
114 };
115 
116 static const struct wpi_ident wpi_ident_table[] = {
117 	/* The below entries support ABG regardless of the subid */
118 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
119 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120 	/* The below entries only support BG */
121 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
122 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
123 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0, 0, 0, NULL }
126 };
127 
128 static int	wpi_probe(device_t);
129 static int	wpi_attach(device_t);
130 static void	wpi_radiotap_attach(struct wpi_softc *);
131 static void	wpi_sysctlattach(struct wpi_softc *);
132 static void	wpi_init_beacon(struct wpi_vap *);
133 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
134 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
135 		    const uint8_t [IEEE80211_ADDR_LEN],
136 		    const uint8_t [IEEE80211_ADDR_LEN]);
137 static void	wpi_vap_delete(struct ieee80211vap *);
138 static int	wpi_detach(device_t);
139 static int	wpi_shutdown(device_t);
140 static int	wpi_suspend(device_t);
141 static int	wpi_resume(device_t);
142 static int	wpi_nic_lock(struct wpi_softc *);
143 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
144 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
145 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
146 		    void **, bus_size_t, bus_size_t);
147 static void	wpi_dma_contig_free(struct wpi_dma_info *);
148 static int	wpi_alloc_shared(struct wpi_softc *);
149 static void	wpi_free_shared(struct wpi_softc *);
150 static int	wpi_alloc_fwmem(struct wpi_softc *);
151 static void	wpi_free_fwmem(struct wpi_softc *);
152 static int	wpi_alloc_rx_ring(struct wpi_softc *);
153 static void	wpi_update_rx_ring(struct wpi_softc *);
154 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
155 static void	wpi_reset_rx_ring(struct wpi_softc *);
156 static void	wpi_free_rx_ring(struct wpi_softc *);
157 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
158 		    uint8_t);
159 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
161 		    struct wpi_tx_ring *);
162 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
163 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
164 static int	wpi_read_eeprom(struct wpi_softc *,
165 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
166 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
167 static void	wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *,
168 		    struct ieee80211_channel[]);
169 static int	wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
170 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
171 		    struct ieee80211_channel *);
172 static void	wpi_getradiocaps(struct ieee80211com *, int, int *,
173 		    struct ieee80211_channel[]);
174 static int	wpi_setregdomain(struct ieee80211com *,
175 		    struct ieee80211_regdomain *, int,
176 		    struct ieee80211_channel[]);
177 static int	wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
178 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
179 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
180 static void	wpi_node_free(struct ieee80211_node *);
181 static void	wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
182 		    const struct ieee80211_rx_stats *,
183 		    int, int);
184 static void	wpi_restore_node(void *, struct ieee80211_node *);
185 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
186 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
187 static void	wpi_calib_timeout(void *);
188 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
189 		    struct wpi_rx_data *);
190 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
191 		    struct wpi_rx_data *);
192 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
193 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
194 static void	wpi_notif_intr(struct wpi_softc *);
195 static void	wpi_wakeup_intr(struct wpi_softc *);
196 #ifdef WPI_DEBUG
197 static void	wpi_debug_registers(struct wpi_softc *);
198 #endif
199 static void	wpi_fatal_intr(struct wpi_softc *);
200 static void	wpi_intr(void *);
201 static void	wpi_free_txfrags(struct wpi_softc *, uint16_t);
202 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
203 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
204 		    struct ieee80211_node *);
205 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
206 		    struct ieee80211_node *,
207 		    const struct ieee80211_bpf_params *);
208 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
209 		    const struct ieee80211_bpf_params *);
210 static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
211 static void	wpi_watchdog_rfkill(void *);
212 static void	wpi_scan_timeout(void *);
213 static void	wpi_tx_timeout(void *);
214 static void	wpi_parent(struct ieee80211com *);
215 static int	wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
216 		    int);
217 static int	wpi_mrr_setup(struct wpi_softc *);
218 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
219 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
220 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
221 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
222 static int	wpi_updateedca(struct ieee80211com *);
223 static void	wpi_set_promisc(struct wpi_softc *);
224 static void	wpi_update_promisc(struct ieee80211com *);
225 static void	wpi_update_mcast(struct ieee80211com *);
226 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
227 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
228 static void	wpi_power_calibration(struct wpi_softc *);
229 static int	wpi_set_txpower(struct wpi_softc *, int);
230 static int	wpi_get_power_index(struct wpi_softc *,
231 		    struct wpi_power_group *, uint8_t, int, int);
232 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
233 static int	wpi_send_btcoex(struct wpi_softc *);
234 static int	wpi_send_rxon(struct wpi_softc *, int, int);
235 static int	wpi_config(struct wpi_softc *);
236 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
237 		    struct ieee80211_channel *, uint8_t);
238 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
239 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
240 		    struct ieee80211_channel *);
241 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
242 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
243 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
244 static int	wpi_config_beacon(struct wpi_vap *);
245 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
246 static void	wpi_update_beacon(struct ieee80211vap *, int);
247 static void	wpi_newassoc(struct ieee80211_node *, int);
248 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
249 static int	wpi_load_key(struct ieee80211_node *,
250 		    const struct ieee80211_key *);
251 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
252 static int	wpi_set_global_keys(struct ieee80211_node *);
253 static int	wpi_del_key(struct ieee80211_node *,
254 		    const struct ieee80211_key *);
255 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
256 static int	wpi_process_key(struct ieee80211vap *,
257 		    const struct ieee80211_key *, int);
258 static int	wpi_key_set(struct ieee80211vap *,
259 		    const struct ieee80211_key *);
260 static int	wpi_key_delete(struct ieee80211vap *,
261 		    const struct ieee80211_key *);
262 static int	wpi_post_alive(struct wpi_softc *);
263 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
264 		    uint32_t);
265 static int	wpi_load_firmware(struct wpi_softc *);
266 static int	wpi_read_firmware(struct wpi_softc *);
267 static void	wpi_unload_firmware(struct wpi_softc *);
268 static int	wpi_clock_wait(struct wpi_softc *);
269 static int	wpi_apm_init(struct wpi_softc *);
270 static void	wpi_apm_stop_master(struct wpi_softc *);
271 static void	wpi_apm_stop(struct wpi_softc *);
272 static void	wpi_nic_config(struct wpi_softc *);
273 static int	wpi_hw_init(struct wpi_softc *);
274 static void	wpi_hw_stop(struct wpi_softc *);
275 static void	wpi_radio_on(void *, int);
276 static void	wpi_radio_off(void *, int);
277 static int	wpi_init(struct wpi_softc *);
278 static void	wpi_stop_locked(struct wpi_softc *);
279 static void	wpi_stop(struct wpi_softc *);
280 static void	wpi_scan_start(struct ieee80211com *);
281 static void	wpi_scan_end(struct ieee80211com *);
282 static void	wpi_set_channel(struct ieee80211com *);
283 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
284 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
285 
286 static device_method_t wpi_methods[] = {
287 	/* Device interface */
288 	DEVMETHOD(device_probe,		wpi_probe),
289 	DEVMETHOD(device_attach,	wpi_attach),
290 	DEVMETHOD(device_detach,	wpi_detach),
291 	DEVMETHOD(device_shutdown,	wpi_shutdown),
292 	DEVMETHOD(device_suspend,	wpi_suspend),
293 	DEVMETHOD(device_resume,	wpi_resume),
294 
295 	DEVMETHOD_END
296 };
297 
298 static driver_t wpi_driver = {
299 	"wpi",
300 	wpi_methods,
301 	sizeof (struct wpi_softc)
302 };
303 
304 DRIVER_MODULE(wpi, pci, wpi_driver, NULL, NULL);
305 
306 MODULE_VERSION(wpi, 1);
307 
308 MODULE_DEPEND(wpi, pci,  1, 1, 1);
309 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
310 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
311 
312 static int
313 wpi_probe(device_t dev)
314 {
315 	const struct wpi_ident *ident;
316 
317 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
318 		if (pci_get_vendor(dev) == ident->vendor &&
319 		    pci_get_device(dev) == ident->device) {
320 			device_set_desc(dev, ident->name);
321 			return (BUS_PROBE_DEFAULT);
322 		}
323 	}
324 	return ENXIO;
325 }
326 
327 static int
328 wpi_attach(device_t dev)
329 {
330 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
331 	struct ieee80211com *ic;
332 	uint8_t i;
333 	int error, rid;
334 #ifdef WPI_DEBUG
335 	int supportsa = 1;
336 	const struct wpi_ident *ident;
337 #endif
338 
339 	sc->sc_dev = dev;
340 
341 #ifdef WPI_DEBUG
342 	error = resource_int_value(device_get_name(sc->sc_dev),
343 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
344 	if (error != 0)
345 		sc->sc_debug = 0;
346 #else
347 	sc->sc_debug = 0;
348 #endif
349 
350 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
351 
352 	/*
353 	 * Get the offset of the PCI Express Capability Structure in PCI
354 	 * Configuration Space.
355 	 */
356 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
357 	if (error != 0) {
358 		device_printf(dev, "PCIe capability structure not found!\n");
359 		return error;
360 	}
361 
362 	/*
363 	 * Some card's only support 802.11b/g not a, check to see if
364 	 * this is one such card. A 0x0 in the subdevice table indicates
365 	 * the entire subdevice range is to be ignored.
366 	 */
367 #ifdef WPI_DEBUG
368 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
369 		if (ident->subdevice &&
370 		    pci_get_subdevice(dev) == ident->subdevice) {
371 		    supportsa = 0;
372 		    break;
373 		}
374 	}
375 #endif
376 
377 	/* Clear device-specific "PCI retry timeout" register (41h). */
378 	pci_write_config(dev, 0x41, 0, 1);
379 
380 	/* Enable bus-mastering. */
381 	pci_enable_busmaster(dev);
382 
383 	rid = PCIR_BAR(0);
384 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
385 	    RF_ACTIVE);
386 	if (sc->mem == NULL) {
387 		device_printf(dev, "can't map mem space\n");
388 		return ENOMEM;
389 	}
390 	sc->sc_st = rman_get_bustag(sc->mem);
391 	sc->sc_sh = rman_get_bushandle(sc->mem);
392 
393 	rid = 1;
394 	if (pci_alloc_msi(dev, &rid) == 0)
395 		rid = 1;
396 	else
397 		rid = 0;
398 	/* Install interrupt handler. */
399 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
400 	    (rid != 0 ? 0 : RF_SHAREABLE));
401 	if (sc->irq == NULL) {
402 		device_printf(dev, "can't map interrupt\n");
403 		error = ENOMEM;
404 		goto fail;
405 	}
406 
407 	WPI_LOCK_INIT(sc);
408 	WPI_TX_LOCK_INIT(sc);
409 	WPI_RXON_LOCK_INIT(sc);
410 	WPI_NT_LOCK_INIT(sc);
411 	WPI_TXQ_LOCK_INIT(sc);
412 	WPI_TXQ_STATE_LOCK_INIT(sc);
413 
414 	/* Allocate DMA memory for firmware transfers. */
415 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
416 		device_printf(dev,
417 		    "could not allocate memory for firmware, error %d\n",
418 		    error);
419 		goto fail;
420 	}
421 
422 	/* Allocate shared page. */
423 	if ((error = wpi_alloc_shared(sc)) != 0) {
424 		device_printf(dev, "could not allocate shared page\n");
425 		goto fail;
426 	}
427 
428 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
429 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
430 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
431 			device_printf(dev,
432 			    "could not allocate TX ring %d, error %d\n", i,
433 			    error);
434 			goto fail;
435 		}
436 	}
437 
438 	/* Allocate RX ring. */
439 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
440 		device_printf(dev, "could not allocate RX ring, error %d\n",
441 		    error);
442 		goto fail;
443 	}
444 
445 	/* Clear pending interrupts. */
446 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
447 
448 	ic = &sc->sc_ic;
449 	ic->ic_softc = sc;
450 	ic->ic_name = device_get_nameunit(dev);
451 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
452 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
453 
454 	/* Set device capabilities. */
455 	ic->ic_caps =
456 		  IEEE80211_C_STA		/* station mode supported */
457 		| IEEE80211_C_IBSS		/* IBSS mode supported */
458 		| IEEE80211_C_HOSTAP		/* Host access point mode */
459 		| IEEE80211_C_MONITOR		/* monitor mode supported */
460 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
461 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
462 		| IEEE80211_C_TXFRAG		/* handle tx frags */
463 		| IEEE80211_C_TXPMGT		/* tx power management */
464 		| IEEE80211_C_SHSLOT		/* short slot time supported */
465 		| IEEE80211_C_WPA		/* 802.11i */
466 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
467 		| IEEE80211_C_WME		/* 802.11e */
468 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
469 		;
470 
471 	ic->ic_cryptocaps =
472 		  IEEE80211_CRYPTO_AES_CCM;
473 
474 	/*
475 	 * Read in the eeprom and also setup the channels for
476 	 * net80211. We don't set the rates as net80211 does this for us
477 	 */
478 	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
479 		device_printf(dev, "could not read EEPROM, error %d\n",
480 		    error);
481 		goto fail;
482 	}
483 
484 #ifdef WPI_DEBUG
485 	if (bootverbose) {
486 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
487 		    sc->domain);
488 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
489 		    sc->type > 1 ? 'B': '?');
490 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
491 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
492 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
493 		    supportsa ? "does" : "does not");
494 
495 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
496 		   check what sc->rev really represents - benjsc 20070615 */
497 	}
498 #endif
499 
500 	ieee80211_ifattach(ic);
501 	ic->ic_vap_create = wpi_vap_create;
502 	ic->ic_vap_delete = wpi_vap_delete;
503 	ic->ic_parent = wpi_parent;
504 	ic->ic_raw_xmit = wpi_raw_xmit;
505 	ic->ic_transmit = wpi_transmit;
506 	ic->ic_node_alloc = wpi_node_alloc;
507 	sc->sc_node_free = ic->ic_node_free;
508 	ic->ic_node_free = wpi_node_free;
509 	ic->ic_wme.wme_update = wpi_updateedca;
510 	ic->ic_update_promisc = wpi_update_promisc;
511 	ic->ic_update_mcast = wpi_update_mcast;
512 	ic->ic_newassoc = wpi_newassoc;
513 	ic->ic_scan_start = wpi_scan_start;
514 	ic->ic_scan_end = wpi_scan_end;
515 	ic->ic_set_channel = wpi_set_channel;
516 	ic->ic_scan_curchan = wpi_scan_curchan;
517 	ic->ic_scan_mindwell = wpi_scan_mindwell;
518 	ic->ic_getradiocaps = wpi_getradiocaps;
519 	ic->ic_setregdomain = wpi_setregdomain;
520 
521 	sc->sc_update_rx_ring = wpi_update_rx_ring;
522 	sc->sc_update_tx_ring = wpi_update_tx_ring;
523 
524 	wpi_radiotap_attach(sc);
525 
526 	/* Setup Tx status flags (constant). */
527 	sc->sc_txs.flags = IEEE80211_RATECTL_STATUS_PKTLEN |
528 	    IEEE80211_RATECTL_STATUS_SHORT_RETRY |
529 	    IEEE80211_RATECTL_STATUS_LONG_RETRY;
530 
531 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
532 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
533 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
534 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
535 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
536 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
537 
538 	wpi_sysctlattach(sc);
539 
540 	/*
541 	 * Hook our interrupt after all initialization is complete.
542 	 */
543 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
544 	    NULL, wpi_intr, sc, &sc->sc_ih);
545 	if (error != 0) {
546 		device_printf(dev, "can't establish interrupt, error %d\n",
547 		    error);
548 		goto fail;
549 	}
550 
551 	if (bootverbose)
552 		ieee80211_announce(ic);
553 
554 #ifdef WPI_DEBUG
555 	if (sc->sc_debug & WPI_DEBUG_HW)
556 		ieee80211_announce_channels(ic);
557 #endif
558 
559 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
560 	return 0;
561 
562 fail:	wpi_detach(dev);
563 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
564 	return error;
565 }
566 
567 /*
568  * Attach the interface to 802.11 radiotap.
569  */
570 static void
571 wpi_radiotap_attach(struct wpi_softc *sc)
572 {
573 	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
574 	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
575 
576 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
577 	ieee80211_radiotap_attach(&sc->sc_ic,
578 	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
579 	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
580 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
581 }
582 
583 static void
584 wpi_sysctlattach(struct wpi_softc *sc)
585 {
586 #ifdef WPI_DEBUG
587 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
588 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
589 
590 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
591 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
592 		"control debugging printfs");
593 #endif
594 }
595 
596 static void
597 wpi_init_beacon(struct wpi_vap *wvp)
598 {
599 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
600 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
601 
602 	cmd->id = WPI_ID_BROADCAST;
603 	cmd->ofdm_mask = 0xff;
604 	cmd->cck_mask = 0x0f;
605 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
606 
607 	/*
608 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
609 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
610 	 */
611 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
612 
613 	bcn->code = WPI_CMD_SET_BEACON;
614 	bcn->ac = WPI_CMD_QUEUE_NUM;
615 	bcn->size = sizeof(struct wpi_cmd_beacon);
616 }
617 
618 static struct ieee80211vap *
619 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
620     enum ieee80211_opmode opmode, int flags,
621     const uint8_t bssid[IEEE80211_ADDR_LEN],
622     const uint8_t mac[IEEE80211_ADDR_LEN])
623 {
624 	struct wpi_vap *wvp;
625 	struct ieee80211vap *vap;
626 
627 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
628 		return NULL;
629 
630 	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
631 	vap = &wvp->wv_vap;
632 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
633 
634 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
635 		WPI_VAP_LOCK_INIT(wvp);
636 		wpi_init_beacon(wvp);
637 	}
638 
639 	/* Override with driver methods. */
640 	vap->iv_key_set = wpi_key_set;
641 	vap->iv_key_delete = wpi_key_delete;
642 	if (opmode == IEEE80211_M_IBSS) {
643 		wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
644 		vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
645 	}
646 	wvp->wv_newstate = vap->iv_newstate;
647 	vap->iv_newstate = wpi_newstate;
648 	vap->iv_update_beacon = wpi_update_beacon;
649 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
650 
651 	ieee80211_ratectl_init(vap);
652 	/* Complete setup. */
653 	ieee80211_vap_attach(vap, ieee80211_media_change,
654 	    ieee80211_media_status, mac);
655 	ic->ic_opmode = opmode;
656 	return vap;
657 }
658 
659 static void
660 wpi_vap_delete(struct ieee80211vap *vap)
661 {
662 	struct wpi_vap *wvp = WPI_VAP(vap);
663 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
664 	enum ieee80211_opmode opmode = vap->iv_opmode;
665 
666 	ieee80211_ratectl_deinit(vap);
667 	ieee80211_vap_detach(vap);
668 
669 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
670 		if (bcn->m != NULL)
671 			m_freem(bcn->m);
672 
673 		WPI_VAP_LOCK_DESTROY(wvp);
674 	}
675 
676 	free(wvp, M_80211_VAP);
677 }
678 
679 static int
680 wpi_detach(device_t dev)
681 {
682 	struct wpi_softc *sc = device_get_softc(dev);
683 	struct ieee80211com *ic = &sc->sc_ic;
684 	uint8_t qid;
685 
686 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
687 
688 	if (ic->ic_vap_create == wpi_vap_create) {
689 		ieee80211_draintask(ic, &sc->sc_radioon_task);
690 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
691 
692 		wpi_stop(sc);
693 
694 		callout_drain(&sc->watchdog_rfkill);
695 		callout_drain(&sc->tx_timeout);
696 		callout_drain(&sc->scan_timeout);
697 		callout_drain(&sc->calib_to);
698 		ieee80211_ifdetach(ic);
699 	}
700 
701 	/* Uninstall interrupt handler. */
702 	if (sc->irq != NULL) {
703 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
704 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
705 		    sc->irq);
706 		pci_release_msi(dev);
707 	}
708 
709 	if (sc->txq[0].data_dmat) {
710 		/* Free DMA resources. */
711 		for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
712 			wpi_free_tx_ring(sc, &sc->txq[qid]);
713 
714 		wpi_free_rx_ring(sc);
715 		wpi_free_shared(sc);
716 	}
717 
718 	if (sc->fw_dma.tag)
719 		wpi_free_fwmem(sc);
720 
721 	if (sc->mem != NULL)
722 		bus_release_resource(dev, SYS_RES_MEMORY,
723 		    rman_get_rid(sc->mem), sc->mem);
724 
725 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
726 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
727 	WPI_TXQ_LOCK_DESTROY(sc);
728 	WPI_NT_LOCK_DESTROY(sc);
729 	WPI_RXON_LOCK_DESTROY(sc);
730 	WPI_TX_LOCK_DESTROY(sc);
731 	WPI_LOCK_DESTROY(sc);
732 	return 0;
733 }
734 
735 static int
736 wpi_shutdown(device_t dev)
737 {
738 	struct wpi_softc *sc = device_get_softc(dev);
739 
740 	wpi_stop(sc);
741 	return 0;
742 }
743 
744 static int
745 wpi_suspend(device_t dev)
746 {
747 	struct wpi_softc *sc = device_get_softc(dev);
748 	struct ieee80211com *ic = &sc->sc_ic;
749 
750 	ieee80211_suspend_all(ic);
751 	return 0;
752 }
753 
754 static int
755 wpi_resume(device_t dev)
756 {
757 	struct wpi_softc *sc = device_get_softc(dev);
758 	struct ieee80211com *ic = &sc->sc_ic;
759 
760 	/* Clear device-specific "PCI retry timeout" register (41h). */
761 	pci_write_config(dev, 0x41, 0, 1);
762 
763 	ieee80211_resume_all(ic);
764 	return 0;
765 }
766 
767 /*
768  * Grab exclusive access to NIC memory.
769  */
770 static int
771 wpi_nic_lock(struct wpi_softc *sc)
772 {
773 	int ntries;
774 
775 	/* Request exclusive access to NIC. */
776 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
777 
778 	/* Spin until we actually get the lock. */
779 	for (ntries = 0; ntries < 1000; ntries++) {
780 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
781 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
782 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
783 			return 0;
784 		DELAY(10);
785 	}
786 
787 	device_printf(sc->sc_dev, "could not lock memory\n");
788 
789 	return ETIMEDOUT;
790 }
791 
792 /*
793  * Release lock on NIC memory.
794  */
795 static __inline void
796 wpi_nic_unlock(struct wpi_softc *sc)
797 {
798 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
799 }
800 
801 static __inline uint32_t
802 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
803 {
804 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
805 	WPI_BARRIER_READ_WRITE(sc);
806 	return WPI_READ(sc, WPI_PRPH_RDATA);
807 }
808 
809 static __inline void
810 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
811 {
812 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
813 	WPI_BARRIER_WRITE(sc);
814 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
815 }
816 
817 static __inline void
818 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
819 {
820 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
821 }
822 
823 static __inline void
824 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
825 {
826 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
827 }
828 
829 static __inline void
830 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
831     const uint32_t *data, uint32_t count)
832 {
833 	for (; count != 0; count--, data++, addr += 4)
834 		wpi_prph_write(sc, addr, *data);
835 }
836 
837 static __inline uint32_t
838 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
839 {
840 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
841 	WPI_BARRIER_READ_WRITE(sc);
842 	return WPI_READ(sc, WPI_MEM_RDATA);
843 }
844 
845 static __inline void
846 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
847     int count)
848 {
849 	for (; count > 0; count--, addr += 4)
850 		*data++ = wpi_mem_read(sc, addr);
851 }
852 
853 static int
854 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
855 {
856 	uint8_t *out = data;
857 	uint32_t val;
858 	int error, ntries;
859 
860 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
861 
862 	if ((error = wpi_nic_lock(sc)) != 0)
863 		return error;
864 
865 	for (; count > 0; count -= 2, addr++) {
866 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
867 		for (ntries = 0; ntries < 10; ntries++) {
868 			val = WPI_READ(sc, WPI_EEPROM);
869 			if (val & WPI_EEPROM_READ_VALID)
870 				break;
871 			DELAY(5);
872 		}
873 		if (ntries == 10) {
874 			device_printf(sc->sc_dev,
875 			    "timeout reading ROM at 0x%x\n", addr);
876 			return ETIMEDOUT;
877 		}
878 		*out++= val >> 16;
879 		if (count > 1)
880 			*out ++= val >> 24;
881 	}
882 
883 	wpi_nic_unlock(sc);
884 
885 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
886 
887 	return 0;
888 }
889 
890 static void
891 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
892 {
893 	if (error != 0)
894 		return;
895 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
896 	*(bus_addr_t *)arg = segs[0].ds_addr;
897 }
898 
899 /*
900  * Allocates a contiguous block of dma memory of the requested size and
901  * alignment.
902  */
903 static int
904 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
905     void **kvap, bus_size_t size, bus_size_t alignment)
906 {
907 	int error;
908 
909 	dma->tag = NULL;
910 	dma->size = size;
911 
912 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
913 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
914 	    1, size, 0, NULL, NULL, &dma->tag);
915 	if (error != 0)
916 		goto fail;
917 
918 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
919 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
920 	if (error != 0)
921 		goto fail;
922 
923 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
924 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
925 	if (error != 0)
926 		goto fail;
927 
928 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
929 
930 	if (kvap != NULL)
931 		*kvap = dma->vaddr;
932 
933 	return 0;
934 
935 fail:	wpi_dma_contig_free(dma);
936 	return error;
937 }
938 
939 static void
940 wpi_dma_contig_free(struct wpi_dma_info *dma)
941 {
942 	if (dma->vaddr != NULL) {
943 		bus_dmamap_sync(dma->tag, dma->map,
944 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
945 		bus_dmamap_unload(dma->tag, dma->map);
946 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
947 		dma->vaddr = NULL;
948 	}
949 	if (dma->tag != NULL) {
950 		bus_dma_tag_destroy(dma->tag);
951 		dma->tag = NULL;
952 	}
953 }
954 
955 /*
956  * Allocate a shared page between host and NIC.
957  */
958 static int
959 wpi_alloc_shared(struct wpi_softc *sc)
960 {
961 	/* Shared buffer must be aligned on a 4KB boundary. */
962 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
963 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
964 }
965 
966 static void
967 wpi_free_shared(struct wpi_softc *sc)
968 {
969 	wpi_dma_contig_free(&sc->shared_dma);
970 }
971 
972 /*
973  * Allocate DMA-safe memory for firmware transfer.
974  */
975 static int
976 wpi_alloc_fwmem(struct wpi_softc *sc)
977 {
978 	/* Must be aligned on a 16-byte boundary. */
979 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
980 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
981 }
982 
983 static void
984 wpi_free_fwmem(struct wpi_softc *sc)
985 {
986 	wpi_dma_contig_free(&sc->fw_dma);
987 }
988 
989 static int
990 wpi_alloc_rx_ring(struct wpi_softc *sc)
991 {
992 	struct wpi_rx_ring *ring = &sc->rxq;
993 	bus_size_t size;
994 	int i, error;
995 
996 	ring->cur = 0;
997 	ring->update = 0;
998 
999 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1000 
1001 	/* Allocate RX descriptors (16KB aligned.) */
1002 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1003 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1004 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1005 	if (error != 0) {
1006 		device_printf(sc->sc_dev,
1007 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1008 		    __func__, error);
1009 		goto fail;
1010 	}
1011 
1012 	/* Create RX buffer DMA tag. */
1013 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1014 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1015 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
1016 	if (error != 0) {
1017 		device_printf(sc->sc_dev,
1018 		    "%s: could not create RX buf DMA tag, error %d\n",
1019 		    __func__, error);
1020 		goto fail;
1021 	}
1022 
1023 	/*
1024 	 * Allocate and map RX buffers.
1025 	 */
1026 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1027 		struct wpi_rx_data *data = &ring->data[i];
1028 		bus_addr_t paddr;
1029 
1030 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1031 		if (error != 0) {
1032 			device_printf(sc->sc_dev,
1033 			    "%s: could not create RX buf DMA map, error %d\n",
1034 			    __func__, error);
1035 			goto fail;
1036 		}
1037 
1038 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1039 		if (data->m == NULL) {
1040 			device_printf(sc->sc_dev,
1041 			    "%s: could not allocate RX mbuf\n", __func__);
1042 			error = ENOBUFS;
1043 			goto fail;
1044 		}
1045 
1046 		error = bus_dmamap_load(ring->data_dmat, data->map,
1047 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1048 		    &paddr, BUS_DMA_NOWAIT);
1049 		if (error != 0 && error != EFBIG) {
1050 			device_printf(sc->sc_dev,
1051 			    "%s: can't map mbuf (error %d)\n", __func__,
1052 			    error);
1053 			goto fail;
1054 		}
1055 
1056 		/* Set physical address of RX buffer. */
1057 		ring->desc[i] = htole32(paddr);
1058 	}
1059 
1060 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1061 	    BUS_DMASYNC_PREWRITE);
1062 
1063 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1064 
1065 	return 0;
1066 
1067 fail:	wpi_free_rx_ring(sc);
1068 
1069 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1070 
1071 	return error;
1072 }
1073 
1074 static void
1075 wpi_update_rx_ring(struct wpi_softc *sc)
1076 {
1077 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1078 }
1079 
1080 static void
1081 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1082 {
1083 	struct wpi_rx_ring *ring = &sc->rxq;
1084 
1085 	if (ring->update != 0) {
1086 		/* Wait for INT_WAKEUP event. */
1087 		return;
1088 	}
1089 
1090 	WPI_TXQ_LOCK(sc);
1091 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1092 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1093 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1094 		    __func__);
1095 		ring->update = 1;
1096 	} else {
1097 		wpi_update_rx_ring(sc);
1098 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1099 	}
1100 	WPI_TXQ_UNLOCK(sc);
1101 }
1102 
1103 static void
1104 wpi_reset_rx_ring(struct wpi_softc *sc)
1105 {
1106 	struct wpi_rx_ring *ring = &sc->rxq;
1107 	int ntries;
1108 
1109 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1110 
1111 	if (wpi_nic_lock(sc) == 0) {
1112 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1113 		for (ntries = 0; ntries < 1000; ntries++) {
1114 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1115 			    WPI_FH_RX_STATUS_IDLE)
1116 				break;
1117 			DELAY(10);
1118 		}
1119 		wpi_nic_unlock(sc);
1120 	}
1121 
1122 	ring->cur = 0;
1123 	ring->update = 0;
1124 }
1125 
1126 static void
1127 wpi_free_rx_ring(struct wpi_softc *sc)
1128 {
1129 	struct wpi_rx_ring *ring = &sc->rxq;
1130 	int i;
1131 
1132 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1133 
1134 	wpi_dma_contig_free(&ring->desc_dma);
1135 
1136 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1137 		struct wpi_rx_data *data = &ring->data[i];
1138 
1139 		if (data->m != NULL) {
1140 			bus_dmamap_sync(ring->data_dmat, data->map,
1141 			    BUS_DMASYNC_POSTREAD);
1142 			bus_dmamap_unload(ring->data_dmat, data->map);
1143 			m_freem(data->m);
1144 			data->m = NULL;
1145 		}
1146 		if (data->map != NULL)
1147 			bus_dmamap_destroy(ring->data_dmat, data->map);
1148 	}
1149 	if (ring->data_dmat != NULL) {
1150 		bus_dma_tag_destroy(ring->data_dmat);
1151 		ring->data_dmat = NULL;
1152 	}
1153 }
1154 
1155 static int
1156 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
1157 {
1158 	bus_addr_t paddr;
1159 	bus_size_t size;
1160 	int i, error;
1161 
1162 	ring->qid = qid;
1163 	ring->queued = 0;
1164 	ring->cur = 0;
1165 	ring->pending = 0;
1166 	ring->update = 0;
1167 
1168 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1169 
1170 	/* Allocate TX descriptors (16KB aligned.) */
1171 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1172 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1173 	    size, WPI_RING_DMA_ALIGN);
1174 	if (error != 0) {
1175 		device_printf(sc->sc_dev,
1176 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1177 		    __func__, error);
1178 		goto fail;
1179 	}
1180 
1181 	/* Update shared area with ring physical address. */
1182 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1183 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1184 	    BUS_DMASYNC_PREWRITE);
1185 
1186 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1187 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1188 	    size, 4);
1189 	if (error != 0) {
1190 		device_printf(sc->sc_dev,
1191 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1192 		    __func__, error);
1193 		goto fail;
1194 	}
1195 
1196 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1197 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1198 	    WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
1199 	if (error != 0) {
1200 		device_printf(sc->sc_dev,
1201 		    "%s: could not create TX buf DMA tag, error %d\n",
1202 		    __func__, error);
1203 		goto fail;
1204 	}
1205 
1206 	paddr = ring->cmd_dma.paddr;
1207 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1208 		struct wpi_tx_data *data = &ring->data[i];
1209 
1210 		data->cmd_paddr = paddr;
1211 		paddr += sizeof (struct wpi_tx_cmd);
1212 
1213 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1214 		if (error != 0) {
1215 			device_printf(sc->sc_dev,
1216 			    "%s: could not create TX buf DMA map, error %d\n",
1217 			    __func__, error);
1218 			goto fail;
1219 		}
1220 	}
1221 
1222 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1223 
1224 	return 0;
1225 
1226 fail:	wpi_free_tx_ring(sc, ring);
1227 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1228 	return error;
1229 }
1230 
1231 static void
1232 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1233 {
1234 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1235 }
1236 
1237 static void
1238 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1239 {
1240 
1241 	if (ring->update != 0) {
1242 		/* Wait for INT_WAKEUP event. */
1243 		return;
1244 	}
1245 
1246 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1247 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1248 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1249 		    __func__, ring->qid);
1250 		ring->update = 1;
1251 	} else {
1252 		wpi_update_tx_ring(sc, ring);
1253 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1254 	}
1255 }
1256 
1257 static void
1258 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1259 {
1260 	int i;
1261 
1262 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1263 
1264 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1265 		struct wpi_tx_data *data = &ring->data[i];
1266 
1267 		if (data->m != NULL) {
1268 			bus_dmamap_sync(ring->data_dmat, data->map,
1269 			    BUS_DMASYNC_POSTWRITE);
1270 			bus_dmamap_unload(ring->data_dmat, data->map);
1271 			m_freem(data->m);
1272 			data->m = NULL;
1273 		}
1274 		if (data->ni != NULL) {
1275 			ieee80211_free_node(data->ni);
1276 			data->ni = NULL;
1277 		}
1278 	}
1279 	/* Clear TX descriptors. */
1280 	memset(ring->desc, 0, ring->desc_dma.size);
1281 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1282 	    BUS_DMASYNC_PREWRITE);
1283 	ring->queued = 0;
1284 	ring->cur = 0;
1285 	ring->pending = 0;
1286 	ring->update = 0;
1287 }
1288 
1289 static void
1290 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1291 {
1292 	int i;
1293 
1294 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1295 
1296 	wpi_dma_contig_free(&ring->desc_dma);
1297 	wpi_dma_contig_free(&ring->cmd_dma);
1298 
1299 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1300 		struct wpi_tx_data *data = &ring->data[i];
1301 
1302 		if (data->m != NULL) {
1303 			bus_dmamap_sync(ring->data_dmat, data->map,
1304 			    BUS_DMASYNC_POSTWRITE);
1305 			bus_dmamap_unload(ring->data_dmat, data->map);
1306 			m_freem(data->m);
1307 		}
1308 		if (data->map != NULL)
1309 			bus_dmamap_destroy(ring->data_dmat, data->map);
1310 	}
1311 	if (ring->data_dmat != NULL) {
1312 		bus_dma_tag_destroy(ring->data_dmat);
1313 		ring->data_dmat = NULL;
1314 	}
1315 }
1316 
1317 /*
1318  * Extract various information from EEPROM.
1319  */
1320 static int
1321 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1322 {
1323 #define WPI_CHK(res) do {		\
1324 	if ((error = res) != 0)		\
1325 		goto fail;		\
1326 } while (0)
1327 	uint8_t i;
1328 	int error;
1329 
1330 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1331 
1332 	/* Adapter has to be powered on for EEPROM access to work. */
1333 	if ((error = wpi_apm_init(sc)) != 0) {
1334 		device_printf(sc->sc_dev,
1335 		    "%s: could not power ON adapter, error %d\n", __func__,
1336 		    error);
1337 		return error;
1338 	}
1339 
1340 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1341 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1342 		error = EIO;
1343 		goto fail;
1344 	}
1345 	/* Clear HW ownership of EEPROM. */
1346 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1347 
1348 	/* Read the hardware capabilities, revision and SKU type. */
1349 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1350 	    sizeof(sc->cap)));
1351 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1352 	    sizeof(sc->rev)));
1353 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1354 	    sizeof(sc->type)));
1355 
1356 	sc->rev = le16toh(sc->rev);
1357 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1358 	    sc->rev, sc->type);
1359 
1360 	/* Read the regulatory domain (4 ASCII characters.) */
1361 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1362 	    sizeof(sc->domain)));
1363 
1364 	/* Read MAC address. */
1365 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1366 	    IEEE80211_ADDR_LEN));
1367 
1368 	/* Read the list of authorized channels. */
1369 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1370 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1371 
1372 	/* Read the list of TX power groups. */
1373 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1374 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1375 
1376 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1377 
1378 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1379 	    __func__);
1380 
1381 	return error;
1382 #undef WPI_CHK
1383 }
1384 
1385 /*
1386  * Translate EEPROM flags to net80211.
1387  */
1388 static uint32_t
1389 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1390 {
1391 	uint32_t nflags;
1392 
1393 	nflags = 0;
1394 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1395 		nflags |= IEEE80211_CHAN_PASSIVE;
1396 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1397 		nflags |= IEEE80211_CHAN_NOADHOC;
1398 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1399 		nflags |= IEEE80211_CHAN_DFS;
1400 		/* XXX apparently IBSS may still be marked */
1401 		nflags |= IEEE80211_CHAN_NOADHOC;
1402 	}
1403 
1404 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1405 	if (nflags & IEEE80211_CHAN_NOADHOC)
1406 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1407 
1408 	return nflags;
1409 }
1410 
1411 static void
1412 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans,
1413     int *nchans, struct ieee80211_channel chans[])
1414 {
1415 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1416 	const struct wpi_chan_band *band = &wpi_bands[n];
1417 	uint32_t nflags;
1418 	uint8_t bands[IEEE80211_MODE_BYTES];
1419 	uint8_t chan, i;
1420 	int error;
1421 
1422 	memset(bands, 0, sizeof(bands));
1423 
1424 	if (n == 0) {
1425 		setbit(bands, IEEE80211_MODE_11B);
1426 		setbit(bands, IEEE80211_MODE_11G);
1427 	} else
1428 		setbit(bands, IEEE80211_MODE_11A);
1429 
1430 	for (i = 0; i < band->nchan; i++) {
1431 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1432 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1433 			    "Channel Not Valid: %d, band %d\n",
1434 			     band->chan[i],n);
1435 			continue;
1436 		}
1437 
1438 		chan = band->chan[i];
1439 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1440 		error = ieee80211_add_channel(chans, maxchans, nchans,
1441 		    chan, 0, channels[i].maxpwr, nflags, bands);
1442 		if (error != 0)
1443 			break;
1444 
1445 		/* Save maximum allowed TX power for this channel. */
1446 		sc->maxpwr[chan] = channels[i].maxpwr;
1447 
1448 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1449 		    "adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
1450 		    chan, channels[i].flags, sc->maxpwr[chan], *nchans);
1451 	}
1452 }
1453 
1454 /**
1455  * Read the eeprom to find out what channels are valid for the given
1456  * band and update net80211 with what we find.
1457  */
1458 static int
1459 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
1460 {
1461 	struct ieee80211com *ic = &sc->sc_ic;
1462 	const struct wpi_chan_band *band = &wpi_bands[n];
1463 	int error;
1464 
1465 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1466 
1467 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1468 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1469 	if (error != 0) {
1470 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1471 		return error;
1472 	}
1473 
1474 	wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
1475 	    ic->ic_channels);
1476 
1477 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1478 
1479 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1480 
1481 	return 0;
1482 }
1483 
1484 static struct wpi_eeprom_chan *
1485 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1486 {
1487 	int i, j;
1488 
1489 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1490 		for (i = 0; i < wpi_bands[j].nchan; i++)
1491 			if (wpi_bands[j].chan[i] == c->ic_ieee &&
1492 			    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
1493 				return &sc->eeprom_channels[j][i];
1494 
1495 	return NULL;
1496 }
1497 
1498 static void
1499 wpi_getradiocaps(struct ieee80211com *ic,
1500     int maxchans, int *nchans, struct ieee80211_channel chans[])
1501 {
1502 	struct wpi_softc *sc = ic->ic_softc;
1503 	int i;
1504 
1505 	/* Parse the list of authorized channels. */
1506 	for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++)
1507 		wpi_read_eeprom_band(sc, i, maxchans, nchans, chans);
1508 }
1509 
1510 /*
1511  * Enforce flags read from EEPROM.
1512  */
1513 static int
1514 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1515     int nchan, struct ieee80211_channel chans[])
1516 {
1517 	struct wpi_softc *sc = ic->ic_softc;
1518 	int i;
1519 
1520 	for (i = 0; i < nchan; i++) {
1521 		struct ieee80211_channel *c = &chans[i];
1522 		struct wpi_eeprom_chan *channel;
1523 
1524 		channel = wpi_find_eeprom_channel(sc, c);
1525 		if (channel == NULL) {
1526 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1527 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1528 			return EINVAL;
1529 		}
1530 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1531 	}
1532 
1533 	return 0;
1534 }
1535 
1536 static int
1537 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
1538 {
1539 	struct wpi_power_group *group = &sc->groups[n];
1540 	struct wpi_eeprom_group rgroup;
1541 	int i, error;
1542 
1543 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1544 
1545 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1546 	    &rgroup, sizeof rgroup)) != 0) {
1547 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1548 		return error;
1549 	}
1550 
1551 	/* Save TX power group information. */
1552 	group->chan   = rgroup.chan;
1553 	group->maxpwr = rgroup.maxpwr;
1554 	/* Retrieve temperature at which the samples were taken. */
1555 	group->temp   = (int16_t)le16toh(rgroup.temp);
1556 
1557 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1558 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1559 	    group->maxpwr, group->temp);
1560 
1561 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1562 		group->samples[i].index = rgroup.samples[i].index;
1563 		group->samples[i].power = rgroup.samples[i].power;
1564 
1565 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1566 		    "\tsample %d: index=%d power=%d\n", i,
1567 		    group->samples[i].index, group->samples[i].power);
1568 	}
1569 
1570 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1571 
1572 	return 0;
1573 }
1574 
1575 static __inline uint8_t
1576 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1577 {
1578 	uint8_t newid = WPI_ID_IBSS_MIN;
1579 
1580 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1581 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1582 			sc->nodesmsk |= 1 << newid;
1583 			return newid;
1584 		}
1585 	}
1586 
1587 	return WPI_ID_UNDEFINED;
1588 }
1589 
1590 static __inline uint8_t
1591 wpi_add_node_entry_sta(struct wpi_softc *sc)
1592 {
1593 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1594 
1595 	return WPI_ID_BSS;
1596 }
1597 
1598 static __inline int
1599 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1600 {
1601 	if (id == WPI_ID_UNDEFINED)
1602 		return 0;
1603 
1604 	return (sc->nodesmsk >> id) & 1;
1605 }
1606 
1607 static __inline void
1608 wpi_clear_node_table(struct wpi_softc *sc)
1609 {
1610 	sc->nodesmsk = 0;
1611 }
1612 
1613 static __inline void
1614 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1615 {
1616 	sc->nodesmsk &= ~(1 << id);
1617 }
1618 
1619 static struct ieee80211_node *
1620 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1621 {
1622 	struct wpi_node *wn;
1623 
1624 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1625 	    M_NOWAIT | M_ZERO);
1626 
1627 	if (wn == NULL)
1628 		return NULL;
1629 
1630 	wn->id = WPI_ID_UNDEFINED;
1631 
1632 	return &wn->ni;
1633 }
1634 
1635 static void
1636 wpi_node_free(struct ieee80211_node *ni)
1637 {
1638 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1639 	struct wpi_node *wn = WPI_NODE(ni);
1640 
1641 	if (wn->id != WPI_ID_UNDEFINED) {
1642 		WPI_NT_LOCK(sc);
1643 		if (wpi_check_node_entry(sc, wn->id)) {
1644 			wpi_del_node_entry(sc, wn->id);
1645 			wpi_del_node(sc, ni);
1646 		}
1647 		WPI_NT_UNLOCK(sc);
1648 	}
1649 
1650 	sc->sc_node_free(ni);
1651 }
1652 
1653 static __inline int
1654 wpi_check_bss_filter(struct wpi_softc *sc)
1655 {
1656 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1657 }
1658 
1659 static void
1660 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1661     const struct ieee80211_rx_stats *rxs,
1662     int rssi, int nf)
1663 {
1664 	struct ieee80211vap *vap = ni->ni_vap;
1665 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1666 	struct wpi_vap *wvp = WPI_VAP(vap);
1667 	uint64_t ni_tstamp, rx_tstamp;
1668 
1669 	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1670 
1671 	if (vap->iv_state == IEEE80211_S_RUN &&
1672 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1673 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1674 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1675 		rx_tstamp = le64toh(sc->rx_tstamp);
1676 
1677 		if (ni_tstamp >= rx_tstamp) {
1678 			DPRINTF(sc, WPI_DEBUG_STATE,
1679 			    "ibss merge, tsf %ju tstamp %ju\n",
1680 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1681 			(void) ieee80211_ibss_merge(ni);
1682 		}
1683 	}
1684 }
1685 
1686 static void
1687 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1688 {
1689 	struct wpi_softc *sc = arg;
1690 	struct wpi_node *wn = WPI_NODE(ni);
1691 	int error;
1692 
1693 	WPI_NT_LOCK(sc);
1694 	if (wn->id != WPI_ID_UNDEFINED) {
1695 		wn->id = WPI_ID_UNDEFINED;
1696 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1697 			device_printf(sc->sc_dev,
1698 			    "%s: could not add IBSS node, error %d\n",
1699 			    __func__, error);
1700 		}
1701 	}
1702 	WPI_NT_UNLOCK(sc);
1703 }
1704 
1705 static void
1706 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1707 {
1708 	struct ieee80211com *ic = &sc->sc_ic;
1709 
1710 	/* Set group keys once. */
1711 	WPI_NT_LOCK(sc);
1712 	wvp->wv_gtk = 0;
1713 	WPI_NT_UNLOCK(sc);
1714 
1715 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1716 	ieee80211_crypto_reload_keys(ic);
1717 }
1718 
1719 /**
1720  * Called by net80211 when ever there is a change to 80211 state machine
1721  */
1722 static int
1723 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1724 {
1725 	struct wpi_vap *wvp = WPI_VAP(vap);
1726 	struct ieee80211com *ic = vap->iv_ic;
1727 	struct wpi_softc *sc = ic->ic_softc;
1728 	int error = 0;
1729 
1730 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1731 
1732 	WPI_TXQ_LOCK(sc);
1733 	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1734 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1735 		WPI_TXQ_UNLOCK(sc);
1736 
1737 		return ENXIO;
1738 	}
1739 	WPI_TXQ_UNLOCK(sc);
1740 
1741 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1742 		ieee80211_state_name[vap->iv_state],
1743 		ieee80211_state_name[nstate]);
1744 
1745 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1746 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1747 			device_printf(sc->sc_dev,
1748 			    "%s: could not set power saving level\n",
1749 			    __func__);
1750 			return error;
1751 		}
1752 
1753 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1754 	}
1755 
1756 	switch (nstate) {
1757 	case IEEE80211_S_SCAN:
1758 		WPI_RXON_LOCK(sc);
1759 		if (wpi_check_bss_filter(sc) != 0) {
1760 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1761 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1762 				device_printf(sc->sc_dev,
1763 				    "%s: could not send RXON\n", __func__);
1764 			}
1765 		}
1766 		WPI_RXON_UNLOCK(sc);
1767 		break;
1768 
1769 	case IEEE80211_S_ASSOC:
1770 		if (vap->iv_state != IEEE80211_S_RUN)
1771 			break;
1772 		/* FALLTHROUGH */
1773 	case IEEE80211_S_AUTH:
1774 		/*
1775 		 * NB: do not optimize AUTH -> AUTH state transmission -
1776 		 * this will break powersave with non-QoS AP!
1777 		 */
1778 
1779 		/*
1780 		 * The node must be registered in the firmware before auth.
1781 		 * Also the associd must be cleared on RUN -> ASSOC
1782 		 * transitions.
1783 		 */
1784 		if ((error = wpi_auth(sc, vap)) != 0) {
1785 			device_printf(sc->sc_dev,
1786 			    "%s: could not move to AUTH state, error %d\n",
1787 			    __func__, error);
1788 		}
1789 		break;
1790 
1791 	case IEEE80211_S_RUN:
1792 		/*
1793 		 * RUN -> RUN transition:
1794 		 * STA mode: Just restart the timers.
1795 		 * IBSS mode: Process IBSS merge.
1796 		 */
1797 		if (vap->iv_state == IEEE80211_S_RUN) {
1798 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1799 				WPI_RXON_LOCK(sc);
1800 				wpi_calib_timeout(sc);
1801 				WPI_RXON_UNLOCK(sc);
1802 				break;
1803 			} else {
1804 				/*
1805 				 * Drop the BSS_FILTER bit
1806 				 * (there is no another way to change bssid).
1807 				 */
1808 				WPI_RXON_LOCK(sc);
1809 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1810 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1811 					device_printf(sc->sc_dev,
1812 					    "%s: could not send RXON\n",
1813 					    __func__);
1814 				}
1815 				WPI_RXON_UNLOCK(sc);
1816 
1817 				/* Restore all what was lost. */
1818 				wpi_restore_node_table(sc, wvp);
1819 
1820 				/* XXX set conditionally? */
1821 				wpi_updateedca(ic);
1822 			}
1823 		}
1824 
1825 		/*
1826 		 * !RUN -> RUN requires setting the association id
1827 		 * which is done with a firmware cmd.  We also defer
1828 		 * starting the timers until that work is done.
1829 		 */
1830 		if ((error = wpi_run(sc, vap)) != 0) {
1831 			device_printf(sc->sc_dev,
1832 			    "%s: could not move to RUN state\n", __func__);
1833 		}
1834 		break;
1835 
1836 	default:
1837 		break;
1838 	}
1839 	if (error != 0) {
1840 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1841 		return error;
1842 	}
1843 
1844 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1845 
1846 	return wvp->wv_newstate(vap, nstate, arg);
1847 }
1848 
1849 static void
1850 wpi_calib_timeout(void *arg)
1851 {
1852 	struct wpi_softc *sc = arg;
1853 
1854 	if (wpi_check_bss_filter(sc) == 0)
1855 		return;
1856 
1857 	wpi_power_calibration(sc);
1858 
1859 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1860 }
1861 
1862 static __inline uint8_t
1863 rate2plcp(const uint8_t rate)
1864 {
1865 	switch (rate) {
1866 	case 12:	return 0xd;
1867 	case 18:	return 0xf;
1868 	case 24:	return 0x5;
1869 	case 36:	return 0x7;
1870 	case 48:	return 0x9;
1871 	case 72:	return 0xb;
1872 	case 96:	return 0x1;
1873 	case 108:	return 0x3;
1874 	case 2:		return 10;
1875 	case 4:		return 20;
1876 	case 11:	return 55;
1877 	case 22:	return 110;
1878 	default:	return 0;
1879 	}
1880 }
1881 
1882 static __inline uint8_t
1883 plcp2rate(const uint8_t plcp)
1884 {
1885 	switch (plcp) {
1886 	case 0xd:	return 12;
1887 	case 0xf:	return 18;
1888 	case 0x5:	return 24;
1889 	case 0x7:	return 36;
1890 	case 0x9:	return 48;
1891 	case 0xb:	return 72;
1892 	case 0x1:	return 96;
1893 	case 0x3:	return 108;
1894 	case 10:	return 2;
1895 	case 20:	return 4;
1896 	case 55:	return 11;
1897 	case 110:	return 22;
1898 	default:	return 0;
1899 	}
1900 }
1901 
1902 /* Quickly determine if a given rate is CCK or OFDM. */
1903 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1904 
1905 static void
1906 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1907     struct wpi_rx_data *data)
1908 {
1909 	struct ieee80211com *ic = &sc->sc_ic;
1910 	struct wpi_rx_ring *ring = &sc->rxq;
1911 	struct wpi_rx_stat *stat;
1912 	struct wpi_rx_head *head;
1913 	struct wpi_rx_tail *tail;
1914 	struct ieee80211_frame *wh;
1915 	struct ieee80211_node *ni;
1916 	struct mbuf *m, *m1;
1917 	bus_addr_t paddr;
1918 	uint32_t flags;
1919 	uint16_t len;
1920 	int error;
1921 
1922 	stat = (struct wpi_rx_stat *)(desc + 1);
1923 
1924 	if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
1925 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1926 		goto fail1;
1927 	}
1928 
1929 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1930 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1931 	len = le16toh(head->len);
1932 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1933 	flags = le32toh(tail->flags);
1934 
1935 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1936 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1937 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1938 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1939 
1940 	/* Discard frames with a bad FCS early. */
1941 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1942 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1943 		    __func__, flags);
1944 		goto fail1;
1945 	}
1946 	/* Discard frames that are too short. */
1947 	if (len < sizeof (struct ieee80211_frame_ack)) {
1948 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1949 		    __func__, len);
1950 		goto fail1;
1951 	}
1952 
1953 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1954 	if (__predict_false(m1 == NULL)) {
1955 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1956 		    __func__);
1957 		goto fail1;
1958 	}
1959 	bus_dmamap_unload(ring->data_dmat, data->map);
1960 
1961 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1962 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1963 	if (__predict_false(error != 0 && error != EFBIG)) {
1964 		device_printf(sc->sc_dev,
1965 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1966 		m_freem(m1);
1967 
1968 		/* Try to reload the old mbuf. */
1969 		error = bus_dmamap_load(ring->data_dmat, data->map,
1970 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1971 		    &paddr, BUS_DMA_NOWAIT);
1972 		if (error != 0 && error != EFBIG) {
1973 			panic("%s: could not load old RX mbuf", __func__);
1974 		}
1975 		/* Physical address may have changed. */
1976 		ring->desc[ring->cur] = htole32(paddr);
1977 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1978 		    BUS_DMASYNC_PREWRITE);
1979 		goto fail1;
1980 	}
1981 
1982 	m = data->m;
1983 	data->m = m1;
1984 	/* Update RX descriptor. */
1985 	ring->desc[ring->cur] = htole32(paddr);
1986 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1987 	    BUS_DMASYNC_PREWRITE);
1988 
1989 	/* Finalize mbuf. */
1990 	m->m_data = (caddr_t)(head + 1);
1991 	m->m_pkthdr.len = m->m_len = len;
1992 
1993 	/* Grab a reference to the source node. */
1994 	wh = mtod(m, struct ieee80211_frame *);
1995 
1996 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1997 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
1998 		/* Check whether decryption was successful or not. */
1999 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2000 			DPRINTF(sc, WPI_DEBUG_RECV,
2001 			    "CCMP decryption failed 0x%x\n", flags);
2002 			goto fail2;
2003 		}
2004 		m->m_flags |= M_WEP;
2005 	}
2006 
2007 	if (len >= sizeof(struct ieee80211_frame_min))
2008 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2009 	else
2010 		ni = NULL;
2011 
2012 	sc->rx_tstamp = tail->tstamp;
2013 
2014 	if (ieee80211_radiotap_active(ic)) {
2015 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2016 
2017 		tap->wr_flags = 0;
2018 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2019 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2020 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2021 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2022 		tap->wr_tsft = tail->tstamp;
2023 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2024 		tap->wr_rate = plcp2rate(head->plcp);
2025 	}
2026 
2027 	WPI_UNLOCK(sc);
2028 
2029 	/* Send the frame to the 802.11 layer. */
2030 	if (ni != NULL) {
2031 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2032 		/* Node is no longer needed. */
2033 		ieee80211_free_node(ni);
2034 	} else
2035 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2036 
2037 	WPI_LOCK(sc);
2038 
2039 	return;
2040 
2041 fail2:	m_freem(m);
2042 
2043 fail1:	counter_u64_add(ic->ic_ierrors, 1);
2044 }
2045 
2046 static void
2047 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2048     struct wpi_rx_data *data)
2049 {
2050 	/* Ignore */
2051 }
2052 
2053 static void
2054 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2055 {
2056 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
2057 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2058 	struct wpi_tx_data *data = &ring->data[desc->idx];
2059 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2060 	struct mbuf *m;
2061 	struct ieee80211_node *ni;
2062 	uint32_t status = le32toh(stat->status);
2063 
2064 	KASSERT(data->ni != NULL, ("no node"));
2065 	KASSERT(data->m != NULL, ("no mbuf"));
2066 
2067 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2068 
2069 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2070 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2071 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2072 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2073 
2074 	/* Unmap and free mbuf. */
2075 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2076 	bus_dmamap_unload(ring->data_dmat, data->map);
2077 	m = data->m, data->m = NULL;
2078 	ni = data->ni, data->ni = NULL;
2079 
2080 	/* Restore frame header. */
2081 	KASSERT(M_LEADINGSPACE(m) >= data->hdrlen, ("no frame header!"));
2082 	M_PREPEND(m, data->hdrlen, M_NOWAIT);
2083 	KASSERT(m != NULL, ("%s: m is NULL\n", __func__));
2084 
2085 	/*
2086 	 * Update rate control statistics for the node.
2087 	 */
2088 	txs->pktlen = m->m_pkthdr.len;
2089 	txs->short_retries = stat->rtsfailcnt;
2090 	txs->long_retries = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2091 	if (!(status & WPI_TX_STATUS_FAIL))
2092 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
2093 	else {
2094 		switch (status & 0xff) {
2095 		case WPI_TX_STATUS_FAIL_SHORT_LIMIT:
2096 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
2097 			break;
2098 		case WPI_TX_STATUS_FAIL_LONG_LIMIT:
2099 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
2100 			break;
2101 		case WPI_TX_STATUS_FAIL_LIFE_EXPIRE:
2102 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
2103 			break;
2104 		default:
2105 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
2106 			break;
2107 		}
2108 	}
2109 
2110 	ieee80211_ratectl_tx_complete(ni, txs);
2111 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2112 
2113 	WPI_TXQ_STATE_LOCK(sc);
2114 	if (--ring->queued > 0)
2115 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2116 	else
2117 		callout_stop(&sc->tx_timeout);
2118 	WPI_TXQ_STATE_UNLOCK(sc);
2119 
2120 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2121 }
2122 
2123 /*
2124  * Process a "command done" firmware notification.  This is where we wakeup
2125  * processes waiting for a synchronous command completion.
2126  */
2127 static void
2128 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2129 {
2130 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2131 	struct wpi_tx_data *data;
2132 	struct wpi_tx_cmd *cmd;
2133 
2134 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2135 				   "type %s len %d\n", desc->qid, desc->idx,
2136 				   desc->flags, wpi_cmd_str(desc->type),
2137 				   le32toh(desc->len));
2138 
2139 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2140 		return;	/* Not a command ack. */
2141 
2142 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2143 
2144 	data = &ring->data[desc->idx];
2145 	cmd = &ring->cmd[desc->idx];
2146 
2147 	/* If the command was mapped in an mbuf, free it. */
2148 	if (data->m != NULL) {
2149 		bus_dmamap_sync(ring->data_dmat, data->map,
2150 		    BUS_DMASYNC_POSTWRITE);
2151 		bus_dmamap_unload(ring->data_dmat, data->map);
2152 		m_freem(data->m);
2153 		data->m = NULL;
2154 	}
2155 
2156 	wakeup(cmd);
2157 
2158 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2159 		struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
2160 
2161 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2162 		    BUS_DMASYNC_POSTREAD);
2163 
2164 		WPI_TXQ_LOCK(sc);
2165 		if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
2166 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2167 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2168 		} else {
2169 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2170 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2171 		}
2172 		WPI_TXQ_UNLOCK(sc);
2173 	}
2174 }
2175 
2176 static void
2177 wpi_notif_intr(struct wpi_softc *sc)
2178 {
2179 	struct ieee80211com *ic = &sc->sc_ic;
2180 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2181 	uint32_t hw;
2182 
2183 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2184 	    BUS_DMASYNC_POSTREAD);
2185 
2186 	hw = le32toh(sc->shared->next) & 0xfff;
2187 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2188 
2189 	while (sc->rxq.cur != hw) {
2190 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2191 
2192 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2193 		struct wpi_rx_desc *desc;
2194 
2195 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2196 		    BUS_DMASYNC_POSTREAD);
2197 		desc = mtod(data->m, struct wpi_rx_desc *);
2198 
2199 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2200 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2201 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2202 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2203 
2204 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2205 			/* Reply to a command. */
2206 			wpi_cmd_done(sc, desc);
2207 		}
2208 
2209 		switch (desc->type) {
2210 		case WPI_RX_DONE:
2211 			/* An 802.11 frame has been received. */
2212 			wpi_rx_done(sc, desc, data);
2213 
2214 			if (__predict_false(sc->sc_running == 0)) {
2215 				/* wpi_stop() was called. */
2216 				return;
2217 			}
2218 
2219 			break;
2220 
2221 		case WPI_TX_DONE:
2222 			/* An 802.11 frame has been transmitted. */
2223 			wpi_tx_done(sc, desc);
2224 			break;
2225 
2226 		case WPI_RX_STATISTICS:
2227 		case WPI_BEACON_STATISTICS:
2228 			wpi_rx_statistics(sc, desc, data);
2229 			break;
2230 
2231 		case WPI_BEACON_MISSED:
2232 		{
2233 			struct wpi_beacon_missed *miss =
2234 			    (struct wpi_beacon_missed *)(desc + 1);
2235 			uint32_t expected, misses, received, threshold;
2236 
2237 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2238 			    BUS_DMASYNC_POSTREAD);
2239 
2240 			misses = le32toh(miss->consecutive);
2241 			expected = le32toh(miss->expected);
2242 			received = le32toh(miss->received);
2243 			threshold = MAX(2, vap->iv_bmissthreshold);
2244 
2245 			DPRINTF(sc, WPI_DEBUG_BMISS,
2246 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2247 			    __func__, misses, le32toh(miss->total), received,
2248 			    expected);
2249 
2250 			if (misses >= threshold ||
2251 			    (received == 0 && expected >= threshold)) {
2252 				WPI_RXON_LOCK(sc);
2253 				if (callout_pending(&sc->scan_timeout)) {
2254 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2255 					    0, 1);
2256 				}
2257 				WPI_RXON_UNLOCK(sc);
2258 				if (vap->iv_state == IEEE80211_S_RUN &&
2259 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2260 					ieee80211_beacon_miss(ic);
2261 			}
2262 
2263 			break;
2264 		}
2265 #ifdef WPI_DEBUG
2266 		case WPI_BEACON_SENT:
2267 		{
2268 			struct wpi_tx_stat *stat =
2269 			    (struct wpi_tx_stat *)(desc + 1);
2270 			uint64_t *tsf = (uint64_t *)(stat + 1);
2271 			uint32_t *mode = (uint32_t *)(tsf + 1);
2272 
2273 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2274 			    BUS_DMASYNC_POSTREAD);
2275 
2276 			DPRINTF(sc, WPI_DEBUG_BEACON,
2277 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2278 			    "duration %u, status %x, tsf %ju, mode %x\n",
2279 			    stat->rtsfailcnt, stat->ackfailcnt,
2280 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2281 			    le32toh(stat->status), le64toh(*tsf),
2282 			    le32toh(*mode));
2283 
2284 			break;
2285 		}
2286 #endif
2287 		case WPI_UC_READY:
2288 		{
2289 			struct wpi_ucode_info *uc =
2290 			    (struct wpi_ucode_info *)(desc + 1);
2291 
2292 			/* The microcontroller is ready. */
2293 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2294 			    BUS_DMASYNC_POSTREAD);
2295 			DPRINTF(sc, WPI_DEBUG_RESET,
2296 			    "microcode alive notification version=%d.%d "
2297 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2298 			    uc->subtype, le32toh(uc->valid));
2299 
2300 			if (le32toh(uc->valid) != 1) {
2301 				device_printf(sc->sc_dev,
2302 				    "microcontroller initialization failed\n");
2303 				wpi_stop_locked(sc);
2304 				return;
2305 			}
2306 			/* Save the address of the error log in SRAM. */
2307 			sc->errptr = le32toh(uc->errptr);
2308 			break;
2309 		}
2310 		case WPI_STATE_CHANGED:
2311 		{
2312 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2313 			    BUS_DMASYNC_POSTREAD);
2314 
2315 			uint32_t *status = (uint32_t *)(desc + 1);
2316 
2317 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2318 			    le32toh(*status));
2319 
2320 			if (le32toh(*status) & 1) {
2321 				WPI_NT_LOCK(sc);
2322 				wpi_clear_node_table(sc);
2323 				WPI_NT_UNLOCK(sc);
2324 				ieee80211_runtask(ic,
2325 				    &sc->sc_radiooff_task);
2326 				return;
2327 			}
2328 			break;
2329 		}
2330 #ifdef WPI_DEBUG
2331 		case WPI_START_SCAN:
2332 		{
2333 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2334 			    BUS_DMASYNC_POSTREAD);
2335 
2336 			struct wpi_start_scan *scan =
2337 			    (struct wpi_start_scan *)(desc + 1);
2338 			DPRINTF(sc, WPI_DEBUG_SCAN,
2339 			    "%s: scanning channel %d status %x\n",
2340 			    __func__, scan->chan, le32toh(scan->status));
2341 
2342 			break;
2343 		}
2344 #endif
2345 		case WPI_STOP_SCAN:
2346 		{
2347 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2348 			    BUS_DMASYNC_POSTREAD);
2349 
2350 			struct wpi_stop_scan *scan =
2351 			    (struct wpi_stop_scan *)(desc + 1);
2352 
2353 			DPRINTF(sc, WPI_DEBUG_SCAN,
2354 			    "scan finished nchan=%d status=%d chan=%d\n",
2355 			    scan->nchan, scan->status, scan->chan);
2356 
2357 			WPI_RXON_LOCK(sc);
2358 			callout_stop(&sc->scan_timeout);
2359 			WPI_RXON_UNLOCK(sc);
2360 			if (scan->status == WPI_SCAN_ABORTED)
2361 				ieee80211_cancel_scan(vap);
2362 			else
2363 				ieee80211_scan_next(vap);
2364 			break;
2365 		}
2366 		}
2367 
2368 		if (sc->rxq.cur % 8 == 0) {
2369 			/* Tell the firmware what we have processed. */
2370 			sc->sc_update_rx_ring(sc);
2371 		}
2372 	}
2373 }
2374 
2375 /*
2376  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2377  * from power-down sleep mode.
2378  */
2379 static void
2380 wpi_wakeup_intr(struct wpi_softc *sc)
2381 {
2382 	int qid;
2383 
2384 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2385 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2386 
2387 	/* Wakeup RX and TX rings. */
2388 	if (sc->rxq.update) {
2389 		sc->rxq.update = 0;
2390 		wpi_update_rx_ring(sc);
2391 	}
2392 	WPI_TXQ_LOCK(sc);
2393 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2394 		struct wpi_tx_ring *ring = &sc->txq[qid];
2395 
2396 		if (ring->update) {
2397 			ring->update = 0;
2398 			wpi_update_tx_ring(sc, ring);
2399 		}
2400 	}
2401 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2402 	WPI_TXQ_UNLOCK(sc);
2403 }
2404 
2405 /*
2406  * This function prints firmware registers
2407  */
2408 #ifdef WPI_DEBUG
2409 static void
2410 wpi_debug_registers(struct wpi_softc *sc)
2411 {
2412 	size_t i;
2413 	static const uint32_t csr_tbl[] = {
2414 		WPI_HW_IF_CONFIG,
2415 		WPI_INT,
2416 		WPI_INT_MASK,
2417 		WPI_FH_INT,
2418 		WPI_GPIO_IN,
2419 		WPI_RESET,
2420 		WPI_GP_CNTRL,
2421 		WPI_EEPROM,
2422 		WPI_EEPROM_GP,
2423 		WPI_GIO,
2424 		WPI_UCODE_GP1,
2425 		WPI_UCODE_GP2,
2426 		WPI_GIO_CHICKEN,
2427 		WPI_ANA_PLL,
2428 		WPI_DBG_HPET_MEM,
2429 	};
2430 	static const uint32_t prph_tbl[] = {
2431 		WPI_APMG_CLK_CTRL,
2432 		WPI_APMG_PS,
2433 		WPI_APMG_PCI_STT,
2434 		WPI_APMG_RFKILL,
2435 	};
2436 
2437 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2438 
2439 	for (i = 0; i < nitems(csr_tbl); i++) {
2440 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2441 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2442 
2443 		if ((i + 1) % 2 == 0)
2444 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2445 	}
2446 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2447 
2448 	if (wpi_nic_lock(sc) == 0) {
2449 		for (i = 0; i < nitems(prph_tbl); i++) {
2450 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2451 			    wpi_get_prph_string(prph_tbl[i]),
2452 			    wpi_prph_read(sc, prph_tbl[i]));
2453 
2454 			if ((i + 1) % 2 == 0)
2455 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2456 		}
2457 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2458 		wpi_nic_unlock(sc);
2459 	} else {
2460 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2461 		    "Cannot access internal registers.\n");
2462 	}
2463 }
2464 #endif
2465 
2466 /*
2467  * Dump the error log of the firmware when a firmware panic occurs.  Although
2468  * we can't debug the firmware because it is neither open source nor free, it
2469  * can help us to identify certain classes of problems.
2470  */
2471 static void
2472 wpi_fatal_intr(struct wpi_softc *sc)
2473 {
2474 	struct wpi_fw_dump dump;
2475 	uint32_t i, offset, count;
2476 
2477 	/* Check that the error log address is valid. */
2478 	if (sc->errptr < WPI_FW_DATA_BASE ||
2479 	    sc->errptr + sizeof (dump) >
2480 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2481 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2482 		    sc->errptr);
2483 		return;
2484 	}
2485 	if (wpi_nic_lock(sc) != 0) {
2486 		printf("%s: could not read firmware error log\n", __func__);
2487 		return;
2488 	}
2489 	/* Read number of entries in the log. */
2490 	count = wpi_mem_read(sc, sc->errptr);
2491 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2492 		printf("%s: invalid count field (count = %u)\n", __func__,
2493 		    count);
2494 		wpi_nic_unlock(sc);
2495 		return;
2496 	}
2497 	/* Skip "count" field. */
2498 	offset = sc->errptr + sizeof (uint32_t);
2499 	printf("firmware error log (count = %u):\n", count);
2500 	for (i = 0; i < count; i++) {
2501 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2502 		    sizeof (dump) / sizeof (uint32_t));
2503 
2504 		printf("  error type = \"%s\" (0x%08X)\n",
2505 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2506 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2507 		    dump.desc);
2508 		printf("  error data      = 0x%08X\n",
2509 		    dump.data);
2510 		printf("  branch link     = 0x%08X%08X\n",
2511 		    dump.blink[0], dump.blink[1]);
2512 		printf("  interrupt link  = 0x%08X%08X\n",
2513 		    dump.ilink[0], dump.ilink[1]);
2514 		printf("  time            = %u\n", dump.time);
2515 
2516 		offset += sizeof (dump);
2517 	}
2518 	wpi_nic_unlock(sc);
2519 	/* Dump driver status (TX and RX rings) while we're here. */
2520 	printf("driver status:\n");
2521 	WPI_TXQ_LOCK(sc);
2522 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2523 		struct wpi_tx_ring *ring = &sc->txq[i];
2524 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2525 		    i, ring->qid, ring->cur, ring->queued);
2526 	}
2527 	WPI_TXQ_UNLOCK(sc);
2528 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2529 }
2530 
2531 static void
2532 wpi_intr(void *arg)
2533 {
2534 	struct wpi_softc *sc = arg;
2535 	uint32_t r1, r2;
2536 
2537 	WPI_LOCK(sc);
2538 
2539 	/* Disable interrupts. */
2540 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2541 
2542 	r1 = WPI_READ(sc, WPI_INT);
2543 
2544 	if (__predict_false(r1 == 0xffffffff ||
2545 			   (r1 & 0xfffffff0) == 0xa5a5a5a0))
2546 		goto end;	/* Hardware gone! */
2547 
2548 	r2 = WPI_READ(sc, WPI_FH_INT);
2549 
2550 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2551 	    r1, r2);
2552 
2553 	if (r1 == 0 && r2 == 0)
2554 		goto done;	/* Interrupt not for us. */
2555 
2556 	/* Acknowledge interrupts. */
2557 	WPI_WRITE(sc, WPI_INT, r1);
2558 	WPI_WRITE(sc, WPI_FH_INT, r2);
2559 
2560 	if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
2561 		struct ieee80211com *ic = &sc->sc_ic;
2562 
2563 		device_printf(sc->sc_dev, "fatal firmware error\n");
2564 #ifdef WPI_DEBUG
2565 		wpi_debug_registers(sc);
2566 #endif
2567 		wpi_fatal_intr(sc);
2568 		DPRINTF(sc, WPI_DEBUG_HW,
2569 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2570 		    "(Hardware Error)");
2571 		ieee80211_restart_all(ic);
2572 		goto end;
2573 	}
2574 
2575 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2576 	    (r2 & WPI_FH_INT_RX))
2577 		wpi_notif_intr(sc);
2578 
2579 	if (r1 & WPI_INT_ALIVE)
2580 		wakeup(sc);	/* Firmware is alive. */
2581 
2582 	if (r1 & WPI_INT_WAKEUP)
2583 		wpi_wakeup_intr(sc);
2584 
2585 done:
2586 	/* Re-enable interrupts. */
2587 	if (__predict_true(sc->sc_running))
2588 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2589 
2590 end:	WPI_UNLOCK(sc);
2591 }
2592 
2593 static void
2594 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
2595 {
2596 	struct wpi_tx_ring *ring;
2597 	struct wpi_tx_data *data;
2598 	uint8_t cur;
2599 
2600 	WPI_TXQ_LOCK(sc);
2601 	ring = &sc->txq[ac];
2602 
2603 	while (ring->pending != 0) {
2604 		ring->pending--;
2605 		cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2606 		data = &ring->data[cur];
2607 
2608 		bus_dmamap_sync(ring->data_dmat, data->map,
2609 		    BUS_DMASYNC_POSTWRITE);
2610 		bus_dmamap_unload(ring->data_dmat, data->map);
2611 		m_freem(data->m);
2612 		data->m = NULL;
2613 
2614 		ieee80211_node_decref(data->ni);
2615 		data->ni = NULL;
2616 	}
2617 
2618 	WPI_TXQ_UNLOCK(sc);
2619 }
2620 
2621 static int
2622 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2623 {
2624 	struct ieee80211_frame *wh;
2625 	struct wpi_tx_cmd *cmd;
2626 	struct wpi_tx_data *data;
2627 	struct wpi_tx_desc *desc;
2628 	struct wpi_tx_ring *ring;
2629 	struct mbuf *m1;
2630 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2631 	uint8_t cur, pad;
2632 	uint16_t hdrlen;
2633 	int error, i, nsegs, totlen, frag;
2634 
2635 	WPI_TXQ_LOCK(sc);
2636 
2637 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2638 
2639 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2640 
2641 	if (__predict_false(sc->sc_running == 0)) {
2642 		/* wpi_stop() was called */
2643 		error = ENETDOWN;
2644 		goto end;
2645 	}
2646 
2647 	wh = mtod(buf->m, struct ieee80211_frame *);
2648 	hdrlen = ieee80211_anyhdrsize(wh);
2649 	totlen = buf->m->m_pkthdr.len;
2650 	frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
2651 
2652 	if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
2653 		error = EINVAL;
2654 		goto end;
2655 	}
2656 
2657 	if (hdrlen & 3) {
2658 		/* First segment length must be a multiple of 4. */
2659 		pad = 4 - (hdrlen & 3);
2660 	} else
2661 		pad = 0;
2662 
2663 	ring = &sc->txq[buf->ac];
2664 	cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2665 	desc = &ring->desc[cur];
2666 	data = &ring->data[cur];
2667 
2668 	/* Prepare TX firmware command. */
2669 	cmd = &ring->cmd[cur];
2670 	cmd->code = buf->code;
2671 	cmd->flags = 0;
2672 	cmd->qid = ring->qid;
2673 	cmd->idx = cur;
2674 
2675 	memcpy(cmd->data, buf->data, buf->size);
2676 
2677 	/* Save and trim IEEE802.11 header. */
2678 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2679 	m_adj(buf->m, hdrlen);
2680 
2681 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2682 	    segs, &nsegs, BUS_DMA_NOWAIT);
2683 	if (error != 0 && error != EFBIG) {
2684 		device_printf(sc->sc_dev,
2685 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2686 		goto end;
2687 	}
2688 	if (error != 0) {
2689 		/* Too many DMA segments, linearize mbuf. */
2690 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2691 		if (m1 == NULL) {
2692 			device_printf(sc->sc_dev,
2693 			    "%s: could not defrag mbuf\n", __func__);
2694 			error = ENOBUFS;
2695 			goto end;
2696 		}
2697 		buf->m = m1;
2698 
2699 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2700 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2701 		if (__predict_false(error != 0)) {
2702 			/* XXX fix this (applicable to the iwn(4) too) */
2703 			/*
2704 			 * NB: Do not return error;
2705 			 * original mbuf does not exist anymore.
2706 			 */
2707 			device_printf(sc->sc_dev,
2708 			    "%s: can't map mbuf (error %d)\n", __func__,
2709 			    error);
2710 			if (ring->qid < WPI_CMD_QUEUE_NUM) {
2711 				if_inc_counter(buf->ni->ni_vap->iv_ifp,
2712 				    IFCOUNTER_OERRORS, 1);
2713 				if (!frag)
2714 					ieee80211_free_node(buf->ni);
2715 			}
2716 			m_freem(buf->m);
2717 			error = 0;
2718 			goto end;
2719 		}
2720 	}
2721 
2722 	KASSERT(nsegs < WPI_MAX_SCATTER,
2723 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2724 	     nsegs, WPI_MAX_SCATTER));
2725 
2726 	data->m = buf->m;
2727 	data->ni = buf->ni;
2728 	data->hdrlen = hdrlen;
2729 
2730 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2731 	    __func__, ring->qid, cur, totlen, nsegs);
2732 
2733 	/* Fill TX descriptor. */
2734 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2735 	/* First DMA segment is used by the TX command. */
2736 	desc->segs[0].addr = htole32(data->cmd_paddr);
2737 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2738 	/* Other DMA segments are for data payload. */
2739 	seg = &segs[0];
2740 	for (i = 1; i <= nsegs; i++) {
2741 		desc->segs[i].addr = htole32(seg->ds_addr);
2742 		desc->segs[i].len  = htole32(seg->ds_len);
2743 		seg++;
2744 	}
2745 
2746 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2747 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2748 	    BUS_DMASYNC_PREWRITE);
2749 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2750 	    BUS_DMASYNC_PREWRITE);
2751 
2752 	ring->pending += 1;
2753 
2754 	if (!frag) {
2755 		if (ring->qid < WPI_CMD_QUEUE_NUM) {
2756 			WPI_TXQ_STATE_LOCK(sc);
2757 			ring->queued += ring->pending;
2758 			callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
2759 			    sc);
2760 			WPI_TXQ_STATE_UNLOCK(sc);
2761 		}
2762 
2763 		/* Kick TX ring. */
2764 		ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2765 		ring->pending = 0;
2766 		sc->sc_update_tx_ring(sc, ring);
2767 	} else
2768 		(void) ieee80211_ref_node(data->ni);
2769 
2770 end:	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
2771 	    __func__);
2772 
2773 	WPI_TXQ_UNLOCK(sc);
2774 
2775 	return (error);
2776 }
2777 
2778 /*
2779  * Construct the data packet for a transmit buffer.
2780  */
2781 static int
2782 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2783 {
2784 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2785 	struct ieee80211vap *vap = ni->ni_vap;
2786 	struct ieee80211com *ic = ni->ni_ic;
2787 	struct wpi_node *wn = WPI_NODE(ni);
2788 	struct ieee80211_frame *wh;
2789 	struct ieee80211_key *k = NULL;
2790 	struct wpi_buf tx_data;
2791 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2792 	uint32_t flags;
2793 	uint16_t ac, qos;
2794 	uint8_t tid, type, rate;
2795 	int swcrypt, ismcast, totlen;
2796 
2797 	wh = mtod(m, struct ieee80211_frame *);
2798 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2799 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2800 	swcrypt = 1;
2801 
2802 	/* Select EDCA Access Category and TX ring for this frame. */
2803 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2804 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2805 		tid = qos & IEEE80211_QOS_TID;
2806 	} else {
2807 		qos = 0;
2808 		tid = 0;
2809 	}
2810 	ac = M_WME_GETAC(m);
2811 
2812 	/* Choose a TX rate index. */
2813 	if (type == IEEE80211_FC0_TYPE_MGT ||
2814 	    type == IEEE80211_FC0_TYPE_CTL ||
2815 	    (m->m_flags & M_EAPOL) != 0)
2816 		rate = tp->mgmtrate;
2817 	else if (ismcast)
2818 		rate = tp->mcastrate;
2819 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2820 		rate = tp->ucastrate;
2821 	else {
2822 		/* XXX pass pktlen */
2823 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2824 		rate = ni->ni_txrate;
2825 	}
2826 
2827 	/* Encrypt the frame if need be. */
2828 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2829 		/* Retrieve key for TX. */
2830 		k = ieee80211_crypto_encap(ni, m);
2831 		if (k == NULL)
2832 			return (ENOBUFS);
2833 
2834 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2835 
2836 		/* 802.11 header may have moved. */
2837 		wh = mtod(m, struct ieee80211_frame *);
2838 	}
2839 	totlen = m->m_pkthdr.len;
2840 
2841 	if (ieee80211_radiotap_active_vap(vap)) {
2842 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2843 
2844 		tap->wt_flags = 0;
2845 		tap->wt_rate = rate;
2846 		if (k != NULL)
2847 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2848 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2849 			tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2850 
2851 		ieee80211_radiotap_tx(vap, m);
2852 	}
2853 
2854 	flags = 0;
2855 	if (!ismcast) {
2856 		/* Unicast frame, check if an ACK is expected. */
2857 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2858 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2859 			flags |= WPI_TX_NEED_ACK;
2860 	}
2861 
2862 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2863 		flags |= WPI_TX_AUTO_SEQ;
2864 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2865 		flags |= WPI_TX_MORE_FRAG;
2866 
2867 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2868 	if (!ismcast) {
2869 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2870 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2871 			flags |= WPI_TX_NEED_RTS;
2872 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2873 		    WPI_RATE_IS_OFDM(rate)) {
2874 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2875 				flags |= WPI_TX_NEED_CTS;
2876 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2877 				flags |= WPI_TX_NEED_RTS;
2878 		}
2879 
2880 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2881 			flags |= WPI_TX_FULL_TXOP;
2882 	}
2883 
2884 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2885 	if (type == IEEE80211_FC0_TYPE_MGT) {
2886 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2887 
2888 		/* Tell HW to set timestamp in probe responses. */
2889 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2890 			flags |= WPI_TX_INSERT_TSTAMP;
2891 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2892 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2893 			tx->timeout = htole16(3);
2894 		else
2895 			tx->timeout = htole16(2);
2896 	}
2897 
2898 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2899 		tx->id = WPI_ID_BROADCAST;
2900 	else {
2901 		if (wn->id == WPI_ID_UNDEFINED) {
2902 			device_printf(sc->sc_dev,
2903 			    "%s: undefined node id\n", __func__);
2904 			return (EINVAL);
2905 		}
2906 
2907 		tx->id = wn->id;
2908 	}
2909 
2910 	if (!swcrypt) {
2911 		switch (k->wk_cipher->ic_cipher) {
2912 		case IEEE80211_CIPHER_AES_CCM:
2913 			tx->security = WPI_CIPHER_CCMP;
2914 			break;
2915 
2916 		default:
2917 			break;
2918 		}
2919 
2920 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2921 	}
2922 
2923 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
2924 		struct mbuf *next = m->m_nextpkt;
2925 
2926 		tx->lnext = htole16(next->m_pkthdr.len);
2927 		tx->fnext = htole32(tx->security |
2928 				    (flags & WPI_TX_NEED_ACK) |
2929 				    WPI_NEXT_STA_ID(tx->id));
2930 	}
2931 
2932 	tx->len = htole16(totlen);
2933 	tx->flags = htole32(flags);
2934 	tx->plcp = rate2plcp(rate);
2935 	tx->tid = tid;
2936 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2937 	tx->ofdm_mask = 0xff;
2938 	tx->cck_mask = 0x0f;
2939 	tx->rts_ntries = 7;
2940 	tx->data_ntries = tp->maxretry;
2941 
2942 	tx_data.ni = ni;
2943 	tx_data.m = m;
2944 	tx_data.size = sizeof(struct wpi_cmd_data);
2945 	tx_data.code = WPI_CMD_TX_DATA;
2946 	tx_data.ac = ac;
2947 
2948 	return wpi_cmd2(sc, &tx_data);
2949 }
2950 
2951 static int
2952 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2953     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2954 {
2955 	struct ieee80211vap *vap = ni->ni_vap;
2956 	struct ieee80211_key *k = NULL;
2957 	struct ieee80211_frame *wh;
2958 	struct wpi_buf tx_data;
2959 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2960 	uint32_t flags;
2961 	uint8_t ac, type, rate;
2962 	int swcrypt, totlen;
2963 
2964 	wh = mtod(m, struct ieee80211_frame *);
2965 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2966 	swcrypt = 1;
2967 
2968 	ac = params->ibp_pri & 3;
2969 
2970 	/* Choose a TX rate index. */
2971 	rate = params->ibp_rate0;
2972 
2973 	flags = 0;
2974 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2975 		flags |= WPI_TX_AUTO_SEQ;
2976 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2977 		flags |= WPI_TX_NEED_ACK;
2978 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2979 		flags |= WPI_TX_NEED_RTS;
2980 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2981 		flags |= WPI_TX_NEED_CTS;
2982 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2983 		flags |= WPI_TX_FULL_TXOP;
2984 
2985 	/* Encrypt the frame if need be. */
2986 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2987 		/* Retrieve key for TX. */
2988 		k = ieee80211_crypto_encap(ni, m);
2989 		if (k == NULL)
2990 			return (ENOBUFS);
2991 
2992 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2993 
2994 		/* 802.11 header may have moved. */
2995 		wh = mtod(m, struct ieee80211_frame *);
2996 	}
2997 	totlen = m->m_pkthdr.len;
2998 
2999 	if (ieee80211_radiotap_active_vap(vap)) {
3000 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
3001 
3002 		tap->wt_flags = 0;
3003 		tap->wt_rate = rate;
3004 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
3005 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3006 
3007 		ieee80211_radiotap_tx(vap, m);
3008 	}
3009 
3010 	memset(tx, 0, sizeof (struct wpi_cmd_data));
3011 	if (type == IEEE80211_FC0_TYPE_MGT) {
3012 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3013 
3014 		/* Tell HW to set timestamp in probe responses. */
3015 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3016 			flags |= WPI_TX_INSERT_TSTAMP;
3017 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3018 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3019 			tx->timeout = htole16(3);
3020 		else
3021 			tx->timeout = htole16(2);
3022 	}
3023 
3024 	if (!swcrypt) {
3025 		switch (k->wk_cipher->ic_cipher) {
3026 		case IEEE80211_CIPHER_AES_CCM:
3027 			tx->security = WPI_CIPHER_CCMP;
3028 			break;
3029 
3030 		default:
3031 			break;
3032 		}
3033 
3034 		memcpy(tx->key, k->wk_key, k->wk_keylen);
3035 	}
3036 
3037 	tx->len = htole16(totlen);
3038 	tx->flags = htole32(flags);
3039 	tx->plcp = rate2plcp(rate);
3040 	tx->id = WPI_ID_BROADCAST;
3041 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3042 	tx->rts_ntries = params->ibp_try1;
3043 	tx->data_ntries = params->ibp_try0;
3044 
3045 	tx_data.ni = ni;
3046 	tx_data.m = m;
3047 	tx_data.size = sizeof(struct wpi_cmd_data);
3048 	tx_data.code = WPI_CMD_TX_DATA;
3049 	tx_data.ac = ac;
3050 
3051 	return wpi_cmd2(sc, &tx_data);
3052 }
3053 
3054 static __inline int
3055 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
3056 {
3057 	struct wpi_tx_ring *ring = &sc->txq[ac];
3058 	int retval;
3059 
3060 	WPI_TXQ_STATE_LOCK(sc);
3061 	retval = WPI_TX_RING_HIMARK - ring->queued;
3062 	WPI_TXQ_STATE_UNLOCK(sc);
3063 
3064 	return retval;
3065 }
3066 
3067 static int
3068 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3069     const struct ieee80211_bpf_params *params)
3070 {
3071 	struct ieee80211com *ic = ni->ni_ic;
3072 	struct wpi_softc *sc = ic->ic_softc;
3073 	uint16_t ac;
3074 	int error = 0;
3075 
3076 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3077 
3078 	ac = M_WME_GETAC(m);
3079 
3080 	WPI_TX_LOCK(sc);
3081 
3082 	/* NB: no fragments here */
3083 	if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
3084 		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3085 		goto unlock;
3086 	}
3087 
3088 	if (params == NULL) {
3089 		/*
3090 		 * Legacy path; interpret frame contents to decide
3091 		 * precisely how to send the frame.
3092 		 */
3093 		error = wpi_tx_data(sc, m, ni);
3094 	} else {
3095 		/*
3096 		 * Caller supplied explicit parameters to use in
3097 		 * sending the frame.
3098 		 */
3099 		error = wpi_tx_data_raw(sc, m, ni, params);
3100 	}
3101 
3102 unlock:	WPI_TX_UNLOCK(sc);
3103 
3104 	if (error != 0) {
3105 		m_freem(m);
3106 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3107 
3108 		return error;
3109 	}
3110 
3111 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3112 
3113 	return 0;
3114 }
3115 
3116 static int
3117 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3118 {
3119 	struct wpi_softc *sc = ic->ic_softc;
3120 	struct ieee80211_node *ni;
3121 	struct mbuf *mnext;
3122 	uint16_t ac;
3123 	int error, nmbufs;
3124 
3125 	WPI_TX_LOCK(sc);
3126 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3127 
3128 	/* Check if interface is up & running. */
3129 	if (__predict_false(sc->sc_running == 0)) {
3130 		error = ENXIO;
3131 		goto unlock;
3132 	}
3133 
3134 	nmbufs = 1;
3135 	for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
3136 		nmbufs++;
3137 
3138 	/* Check for available space. */
3139 	ac = M_WME_GETAC(m);
3140 	if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
3141 		error = ENOBUFS;
3142 		goto unlock;
3143 	}
3144 
3145 	error = 0;
3146 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3147 	do {
3148 		mnext = m->m_nextpkt;
3149 		if (wpi_tx_data(sc, m, ni) != 0) {
3150 			if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
3151 			    nmbufs);
3152 			wpi_free_txfrags(sc, ac);
3153 			ieee80211_free_mbuf(m);
3154 			ieee80211_free_node(ni);
3155 			break;
3156 		}
3157 	} while((m = mnext) != NULL);
3158 
3159 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3160 
3161 unlock:	WPI_TX_UNLOCK(sc);
3162 
3163 	return (error);
3164 }
3165 
3166 static void
3167 wpi_watchdog_rfkill(void *arg)
3168 {
3169 	struct wpi_softc *sc = arg;
3170 	struct ieee80211com *ic = &sc->sc_ic;
3171 
3172 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3173 
3174 	/* No need to lock firmware memory. */
3175 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3176 		/* Radio kill switch is still off. */
3177 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3178 		    sc);
3179 	} else
3180 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3181 }
3182 
3183 static void
3184 wpi_scan_timeout(void *arg)
3185 {
3186 	struct wpi_softc *sc = arg;
3187 	struct ieee80211com *ic = &sc->sc_ic;
3188 
3189 	ic_printf(ic, "scan timeout\n");
3190 	ieee80211_restart_all(ic);
3191 }
3192 
3193 static void
3194 wpi_tx_timeout(void *arg)
3195 {
3196 	struct wpi_softc *sc = arg;
3197 	struct ieee80211com *ic = &sc->sc_ic;
3198 
3199 	ic_printf(ic, "device timeout\n");
3200 	ieee80211_restart_all(ic);
3201 }
3202 
3203 static void
3204 wpi_parent(struct ieee80211com *ic)
3205 {
3206 	struct wpi_softc *sc = ic->ic_softc;
3207 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3208 
3209 	if (ic->ic_nrunning > 0) {
3210 		if (wpi_init(sc) == 0) {
3211 			ieee80211_notify_radio(ic, 1);
3212 			ieee80211_start_all(ic);
3213 		} else {
3214 			ieee80211_notify_radio(ic, 0);
3215 			ieee80211_stop(vap);
3216 		}
3217 	} else {
3218 		ieee80211_notify_radio(ic, 0);
3219 		wpi_stop(sc);
3220 	}
3221 }
3222 
3223 /*
3224  * Send a command to the firmware.
3225  */
3226 static int
3227 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
3228     int async)
3229 {
3230 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3231 	struct wpi_tx_desc *desc;
3232 	struct wpi_tx_data *data;
3233 	struct wpi_tx_cmd *cmd;
3234 	struct mbuf *m;
3235 	bus_addr_t paddr;
3236 	uint16_t totlen;
3237 	int error;
3238 
3239 	WPI_TXQ_LOCK(sc);
3240 
3241 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3242 
3243 	if (__predict_false(sc->sc_running == 0)) {
3244 		/* wpi_stop() was called */
3245 		if (code == WPI_CMD_SCAN)
3246 			error = ENETDOWN;
3247 		else
3248 			error = 0;
3249 
3250 		goto fail;
3251 	}
3252 
3253 	if (async == 0)
3254 		WPI_LOCK_ASSERT(sc);
3255 
3256 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
3257 	    __func__, wpi_cmd_str(code), size, async);
3258 
3259 	desc = &ring->desc[ring->cur];
3260 	data = &ring->data[ring->cur];
3261 	totlen = 4 + size;
3262 
3263 	if (size > sizeof cmd->data) {
3264 		/* Command is too large to fit in a descriptor. */
3265 		if (totlen > MCLBYTES) {
3266 			error = EINVAL;
3267 			goto fail;
3268 		}
3269 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3270 		if (m == NULL) {
3271 			error = ENOMEM;
3272 			goto fail;
3273 		}
3274 		cmd = mtod(m, struct wpi_tx_cmd *);
3275 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3276 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3277 		if (error != 0) {
3278 			m_freem(m);
3279 			goto fail;
3280 		}
3281 		data->m = m;
3282 	} else {
3283 		cmd = &ring->cmd[ring->cur];
3284 		paddr = data->cmd_paddr;
3285 	}
3286 
3287 	cmd->code = code;
3288 	cmd->flags = 0;
3289 	cmd->qid = ring->qid;
3290 	cmd->idx = ring->cur;
3291 	memcpy(cmd->data, buf, size);
3292 
3293 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3294 	desc->segs[0].addr = htole32(paddr);
3295 	desc->segs[0].len  = htole32(totlen);
3296 
3297 	if (size > sizeof cmd->data) {
3298 		bus_dmamap_sync(ring->data_dmat, data->map,
3299 		    BUS_DMASYNC_PREWRITE);
3300 	} else {
3301 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3302 		    BUS_DMASYNC_PREWRITE);
3303 	}
3304 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3305 	    BUS_DMASYNC_PREWRITE);
3306 
3307 	/* Kick command ring. */
3308 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3309 	sc->sc_update_tx_ring(sc, ring);
3310 
3311 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3312 
3313 	WPI_TXQ_UNLOCK(sc);
3314 
3315 	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3316 
3317 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3318 
3319 	WPI_TXQ_UNLOCK(sc);
3320 
3321 	return error;
3322 }
3323 
3324 /*
3325  * Configure HW multi-rate retries.
3326  */
3327 static int
3328 wpi_mrr_setup(struct wpi_softc *sc)
3329 {
3330 	struct ieee80211com *ic = &sc->sc_ic;
3331 	struct wpi_mrr_setup mrr;
3332 	uint8_t i;
3333 	int error;
3334 
3335 	/* CCK rates (not used with 802.11a). */
3336 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3337 		mrr.rates[i].flags = 0;
3338 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3339 		/* Fallback to the immediate lower CCK rate (if any.) */
3340 		mrr.rates[i].next =
3341 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3342 		/* Try twice at this rate before falling back to "next". */
3343 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3344 	}
3345 	/* OFDM rates (not used with 802.11b). */
3346 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3347 		mrr.rates[i].flags = 0;
3348 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3349 		/* Fallback to the immediate lower rate (if any.) */
3350 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3351 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3352 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3353 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3354 		    i - 1;
3355 		/* Try twice at this rate before falling back to "next". */
3356 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3357 	}
3358 	/* Setup MRR for control frames. */
3359 	mrr.which = htole32(WPI_MRR_CTL);
3360 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3361 	if (error != 0) {
3362 		device_printf(sc->sc_dev,
3363 		    "could not setup MRR for control frames\n");
3364 		return error;
3365 	}
3366 	/* Setup MRR for data frames. */
3367 	mrr.which = htole32(WPI_MRR_DATA);
3368 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3369 	if (error != 0) {
3370 		device_printf(sc->sc_dev,
3371 		    "could not setup MRR for data frames\n");
3372 		return error;
3373 	}
3374 	return 0;
3375 }
3376 
3377 static int
3378 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3379 {
3380 	struct ieee80211com *ic = ni->ni_ic;
3381 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3382 	struct wpi_node *wn = WPI_NODE(ni);
3383 	struct wpi_node_info node;
3384 	int error;
3385 
3386 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3387 
3388 	if (wn->id == WPI_ID_UNDEFINED)
3389 		return EINVAL;
3390 
3391 	memset(&node, 0, sizeof node);
3392 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3393 	node.id = wn->id;
3394 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3395 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3396 	node.action = htole32(WPI_ACTION_SET_RATE);
3397 	node.antenna = WPI_ANTENNA_BOTH;
3398 
3399 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3400 	    wn->id, ether_sprintf(ni->ni_macaddr));
3401 
3402 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3403 	if (error != 0) {
3404 		device_printf(sc->sc_dev,
3405 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3406 		    error);
3407 		return error;
3408 	}
3409 
3410 	if (wvp->wv_gtk != 0) {
3411 		error = wpi_set_global_keys(ni);
3412 		if (error != 0) {
3413 			device_printf(sc->sc_dev,
3414 			    "%s: error while setting global keys\n", __func__);
3415 			return ENXIO;
3416 		}
3417 	}
3418 
3419 	return 0;
3420 }
3421 
3422 /*
3423  * Broadcast node is used to send group-addressed and management frames.
3424  */
3425 static int
3426 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3427 {
3428 	struct ieee80211com *ic = &sc->sc_ic;
3429 	struct wpi_node_info node;
3430 
3431 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3432 
3433 	memset(&node, 0, sizeof node);
3434 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3435 	node.id = WPI_ID_BROADCAST;
3436 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3437 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3438 	node.action = htole32(WPI_ACTION_SET_RATE);
3439 	node.antenna = WPI_ANTENNA_BOTH;
3440 
3441 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3442 
3443 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3444 }
3445 
3446 static int
3447 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3448 {
3449 	struct wpi_node *wn = WPI_NODE(ni);
3450 	int error;
3451 
3452 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3453 
3454 	wn->id = wpi_add_node_entry_sta(sc);
3455 
3456 	if ((error = wpi_add_node(sc, ni)) != 0) {
3457 		wpi_del_node_entry(sc, wn->id);
3458 		wn->id = WPI_ID_UNDEFINED;
3459 		return error;
3460 	}
3461 
3462 	return 0;
3463 }
3464 
3465 static int
3466 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3467 {
3468 	struct wpi_node *wn = WPI_NODE(ni);
3469 	int error;
3470 
3471 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3472 	    ("the node %d was added before", wn->id));
3473 
3474 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3475 
3476 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3477 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3478 		return ENOMEM;
3479 	}
3480 
3481 	if ((error = wpi_add_node(sc, ni)) != 0) {
3482 		wpi_del_node_entry(sc, wn->id);
3483 		wn->id = WPI_ID_UNDEFINED;
3484 		return error;
3485 	}
3486 
3487 	return 0;
3488 }
3489 
3490 static void
3491 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3492 {
3493 	struct wpi_node *wn = WPI_NODE(ni);
3494 	struct wpi_cmd_del_node node;
3495 	int error;
3496 
3497 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3498 
3499 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3500 
3501 	memset(&node, 0, sizeof node);
3502 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3503 	node.count = 1;
3504 
3505 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3506 	    wn->id, ether_sprintf(ni->ni_macaddr));
3507 
3508 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3509 	if (error != 0) {
3510 		device_printf(sc->sc_dev,
3511 		    "%s: could not delete node %u, error %d\n", __func__,
3512 		    wn->id, error);
3513 	}
3514 }
3515 
3516 static int
3517 wpi_updateedca(struct ieee80211com *ic)
3518 {
3519 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3520 	struct wpi_softc *sc = ic->ic_softc;
3521 	struct chanAccParams chp;
3522 	struct wpi_edca_params cmd;
3523 	int aci, error;
3524 
3525 	ieee80211_wme_ic_getparams(ic, &chp);
3526 
3527 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3528 
3529 	memset(&cmd, 0, sizeof cmd);
3530 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3531 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3532 		const struct wmeParams *ac = &chp.cap_wmeParams[aci];
3533 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3534 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3535 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3536 		cmd.ac[aci].txoplimit =
3537 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3538 
3539 		DPRINTF(sc, WPI_DEBUG_EDCA,
3540 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3541 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3542 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3543 		    cmd.ac[aci].txoplimit);
3544 	}
3545 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3546 
3547 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3548 
3549 	return error;
3550 #undef WPI_EXP2
3551 }
3552 
3553 static void
3554 wpi_set_promisc(struct wpi_softc *sc)
3555 {
3556 	struct ieee80211com *ic = &sc->sc_ic;
3557 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3558 	uint32_t promisc_filter;
3559 
3560 	promisc_filter = WPI_FILTER_CTL;
3561 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3562 		promisc_filter |= WPI_FILTER_PROMISC;
3563 
3564 	if (ic->ic_promisc > 0)
3565 		sc->rxon.filter |= htole32(promisc_filter);
3566 	else
3567 		sc->rxon.filter &= ~htole32(promisc_filter);
3568 }
3569 
3570 static void
3571 wpi_update_promisc(struct ieee80211com *ic)
3572 {
3573 	struct wpi_softc *sc = ic->ic_softc;
3574 
3575 	WPI_LOCK(sc);
3576 	if (sc->sc_running == 0) {
3577 		WPI_UNLOCK(sc);
3578 		return;
3579 	}
3580 	WPI_UNLOCK(sc);
3581 
3582 	WPI_RXON_LOCK(sc);
3583 	wpi_set_promisc(sc);
3584 
3585 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3586 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3587 		    __func__);
3588 	}
3589 	WPI_RXON_UNLOCK(sc);
3590 }
3591 
3592 static void
3593 wpi_update_mcast(struct ieee80211com *ic)
3594 {
3595 	/* Ignore */
3596 }
3597 
3598 static void
3599 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3600 {
3601 	struct wpi_cmd_led led;
3602 
3603 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3604 
3605 	led.which = which;
3606 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3607 	led.off = off;
3608 	led.on = on;
3609 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3610 }
3611 
3612 static int
3613 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3614 {
3615 	struct wpi_cmd_timing cmd;
3616 	uint64_t val, mod;
3617 
3618 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3619 
3620 	memset(&cmd, 0, sizeof cmd);
3621 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3622 	cmd.bintval = htole16(ni->ni_intval);
3623 	cmd.lintval = htole16(10);
3624 
3625 	/* Compute remaining time until next beacon. */
3626 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3627 	mod = le64toh(cmd.tstamp) % val;
3628 	cmd.binitval = htole32((uint32_t)(val - mod));
3629 
3630 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3631 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3632 
3633 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3634 }
3635 
3636 /*
3637  * This function is called periodically (every 60 seconds) to adjust output
3638  * power to temperature changes.
3639  */
3640 static void
3641 wpi_power_calibration(struct wpi_softc *sc)
3642 {
3643 	int temp;
3644 
3645 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3646 
3647 	/* Update sensor data. */
3648 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3649 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3650 
3651 	/* Sanity-check read value. */
3652 	if (temp < -260 || temp > 25) {
3653 		/* This can't be correct, ignore. */
3654 		DPRINTF(sc, WPI_DEBUG_TEMP,
3655 		    "out-of-range temperature reported: %d\n", temp);
3656 		return;
3657 	}
3658 
3659 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3660 
3661 	/* Adjust Tx power if need be. */
3662 	if (abs(temp - sc->temp) <= 6)
3663 		return;
3664 
3665 	sc->temp = temp;
3666 
3667 	if (wpi_set_txpower(sc, 1) != 0) {
3668 		/* just warn, too bad for the automatic calibration... */
3669 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3670 	}
3671 }
3672 
3673 /*
3674  * Set TX power for current channel.
3675  */
3676 static int
3677 wpi_set_txpower(struct wpi_softc *sc, int async)
3678 {
3679 	struct wpi_power_group *group;
3680 	struct wpi_cmd_txpower cmd;
3681 	uint8_t chan;
3682 	int idx, is_chan_5ghz, i;
3683 
3684 	/* Retrieve current channel from last RXON. */
3685 	chan = sc->rxon.chan;
3686 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3687 
3688 	/* Find the TX power group to which this channel belongs. */
3689 	if (is_chan_5ghz) {
3690 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3691 			if (chan <= group->chan)
3692 				break;
3693 	} else
3694 		group = &sc->groups[0];
3695 
3696 	memset(&cmd, 0, sizeof cmd);
3697 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3698 	cmd.chan = htole16(chan);
3699 
3700 	/* Set TX power for all OFDM and CCK rates. */
3701 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3702 		/* Retrieve TX power for this channel/rate. */
3703 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3704 
3705 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3706 
3707 		if (is_chan_5ghz) {
3708 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3709 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3710 		} else {
3711 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3712 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3713 		}
3714 		DPRINTF(sc, WPI_DEBUG_TEMP,
3715 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3716 	}
3717 
3718 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3719 }
3720 
3721 /*
3722  * Determine Tx power index for a given channel/rate combination.
3723  * This takes into account the regulatory information from EEPROM and the
3724  * current temperature.
3725  */
3726 static int
3727 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3728     uint8_t chan, int is_chan_5ghz, int ridx)
3729 {
3730 /* Fixed-point arithmetic division using a n-bit fractional part. */
3731 #define fdivround(a, b, n)	\
3732 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3733 
3734 /* Linear interpolation. */
3735 #define interpolate(x, x1, y1, x2, y2, n)	\
3736 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3737 
3738 	struct wpi_power_sample *sample;
3739 	int pwr, idx;
3740 
3741 	/* Default TX power is group maximum TX power minus 3dB. */
3742 	pwr = group->maxpwr / 2;
3743 
3744 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3745 	switch (ridx) {
3746 	case WPI_RIDX_OFDM36:
3747 		pwr -= is_chan_5ghz ?  5 : 0;
3748 		break;
3749 	case WPI_RIDX_OFDM48:
3750 		pwr -= is_chan_5ghz ? 10 : 7;
3751 		break;
3752 	case WPI_RIDX_OFDM54:
3753 		pwr -= is_chan_5ghz ? 12 : 9;
3754 		break;
3755 	}
3756 
3757 	/* Never exceed the channel maximum allowed TX power. */
3758 	pwr = min(pwr, sc->maxpwr[chan]);
3759 
3760 	/* Retrieve TX power index into gain tables from samples. */
3761 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3762 		if (pwr > sample[1].power)
3763 			break;
3764 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3765 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3766 	    sample[1].power, sample[1].index, 19);
3767 
3768 	/*-
3769 	 * Adjust power index based on current temperature:
3770 	 * - if cooler than factory-calibrated: decrease output power
3771 	 * - if warmer than factory-calibrated: increase output power
3772 	 */
3773 	idx -= (sc->temp - group->temp) * 11 / 100;
3774 
3775 	/* Decrease TX power for CCK rates (-5dB). */
3776 	if (ridx >= WPI_RIDX_CCK1)
3777 		idx += 10;
3778 
3779 	/* Make sure idx stays in a valid range. */
3780 	if (idx < 0)
3781 		return 0;
3782 	if (idx > WPI_MAX_PWR_INDEX)
3783 		return WPI_MAX_PWR_INDEX;
3784 	return idx;
3785 
3786 #undef interpolate
3787 #undef fdivround
3788 }
3789 
3790 /*
3791  * Set STA mode power saving level (between 0 and 5).
3792  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3793  */
3794 static int
3795 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3796 {
3797 	struct wpi_pmgt_cmd cmd;
3798 	const struct wpi_pmgt *pmgt;
3799 	uint32_t max, reg;
3800 	uint8_t skip_dtim;
3801 	int i;
3802 
3803 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3804 	    "%s: dtim=%d, level=%d, async=%d\n",
3805 	    __func__, dtim, level, async);
3806 
3807 	/* Select which PS parameters to use. */
3808 	if (dtim <= 10)
3809 		pmgt = &wpi_pmgt[0][level];
3810 	else
3811 		pmgt = &wpi_pmgt[1][level];
3812 
3813 	memset(&cmd, 0, sizeof cmd);
3814 	if (level != 0)	/* not CAM */
3815 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3816 	/* Retrieve PCIe Active State Power Management (ASPM). */
3817 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
3818 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
3819 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3820 
3821 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3822 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3823 
3824 	if (dtim == 0) {
3825 		dtim = 1;
3826 		skip_dtim = 0;
3827 	} else
3828 		skip_dtim = pmgt->skip_dtim;
3829 
3830 	if (skip_dtim != 0) {
3831 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3832 		max = pmgt->intval[4];
3833 		if (max == (uint32_t)-1)
3834 			max = dtim * (skip_dtim + 1);
3835 		else if (max > dtim)
3836 			max = rounddown(max, dtim);
3837 	} else
3838 		max = dtim;
3839 
3840 	for (i = 0; i < 5; i++)
3841 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3842 
3843 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3844 }
3845 
3846 static int
3847 wpi_send_btcoex(struct wpi_softc *sc)
3848 {
3849 	struct wpi_bluetooth cmd;
3850 
3851 	memset(&cmd, 0, sizeof cmd);
3852 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3853 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3854 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3855 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3856 	    __func__);
3857 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3858 }
3859 
3860 static int
3861 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3862 {
3863 	int error;
3864 
3865 	if (async)
3866 		WPI_RXON_LOCK_ASSERT(sc);
3867 
3868 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3869 		struct wpi_assoc rxon_assoc;
3870 
3871 		rxon_assoc.flags = sc->rxon.flags;
3872 		rxon_assoc.filter = sc->rxon.filter;
3873 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3874 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3875 		rxon_assoc.reserved = 0;
3876 
3877 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3878 		    sizeof (struct wpi_assoc), async);
3879 		if (error != 0) {
3880 			device_printf(sc->sc_dev,
3881 			    "RXON_ASSOC command failed, error %d\n", error);
3882 			return error;
3883 		}
3884 	} else {
3885 		if (async) {
3886 			WPI_NT_LOCK(sc);
3887 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3888 			    sizeof (struct wpi_rxon), async);
3889 			if (error == 0)
3890 				wpi_clear_node_table(sc);
3891 			WPI_NT_UNLOCK(sc);
3892 		} else {
3893 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3894 			    sizeof (struct wpi_rxon), async);
3895 			if (error == 0)
3896 				wpi_clear_node_table(sc);
3897 		}
3898 
3899 		if (error != 0) {
3900 			device_printf(sc->sc_dev,
3901 			    "RXON command failed, error %d\n", error);
3902 			return error;
3903 		}
3904 
3905 		/* Add broadcast node. */
3906 		error = wpi_add_broadcast_node(sc, async);
3907 		if (error != 0) {
3908 			device_printf(sc->sc_dev,
3909 			    "could not add broadcast node, error %d\n", error);
3910 			return error;
3911 		}
3912 	}
3913 
3914 	/* Configuration has changed, set Tx power accordingly. */
3915 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3916 		device_printf(sc->sc_dev,
3917 		    "%s: could not set TX power, error %d\n", __func__, error);
3918 		return error;
3919 	}
3920 
3921 	return 0;
3922 }
3923 
3924 /**
3925  * Configure the card to listen to a particular channel, this transisions the
3926  * card in to being able to receive frames from remote devices.
3927  */
3928 static int
3929 wpi_config(struct wpi_softc *sc)
3930 {
3931 	struct ieee80211com *ic = &sc->sc_ic;
3932 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3933 	struct ieee80211_channel *c = ic->ic_curchan;
3934 	int error;
3935 
3936 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3937 
3938 	/* Set power saving level to CAM during initialization. */
3939 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3940 		device_printf(sc->sc_dev,
3941 		    "%s: could not set power saving level\n", __func__);
3942 		return error;
3943 	}
3944 
3945 	/* Configure bluetooth coexistence. */
3946 	if ((error = wpi_send_btcoex(sc)) != 0) {
3947 		device_printf(sc->sc_dev,
3948 		    "could not configure bluetooth coexistence\n");
3949 		return error;
3950 	}
3951 
3952 	/* Configure adapter. */
3953 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3954 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3955 
3956 	/* Set default channel. */
3957 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3958 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3959 	if (IEEE80211_IS_CHAN_2GHZ(c))
3960 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3961 
3962 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3963 	switch (ic->ic_opmode) {
3964 	case IEEE80211_M_STA:
3965 		sc->rxon.mode = WPI_MODE_STA;
3966 		break;
3967 	case IEEE80211_M_IBSS:
3968 		sc->rxon.mode = WPI_MODE_IBSS;
3969 		sc->rxon.filter |= WPI_FILTER_BEACON;
3970 		break;
3971 	case IEEE80211_M_HOSTAP:
3972 		/* XXX workaround for beaconing */
3973 		sc->rxon.mode = WPI_MODE_IBSS;
3974 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3975 		break;
3976 	case IEEE80211_M_AHDEMO:
3977 		sc->rxon.mode = WPI_MODE_HOSTAP;
3978 		break;
3979 	case IEEE80211_M_MONITOR:
3980 		sc->rxon.mode = WPI_MODE_MONITOR;
3981 		break;
3982 	default:
3983 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3984 		    ic->ic_opmode);
3985 		return EINVAL;
3986 	}
3987 	sc->rxon.filter = htole32(sc->rxon.filter);
3988 	wpi_set_promisc(sc);
3989 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3990 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3991 
3992 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3993 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3994 		    __func__);
3995 		return error;
3996 	}
3997 
3998 	/* Setup rate scalling. */
3999 	if ((error = wpi_mrr_setup(sc)) != 0) {
4000 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
4001 		    error);
4002 		return error;
4003 	}
4004 
4005 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4006 
4007 	return 0;
4008 }
4009 
4010 static uint16_t
4011 wpi_get_active_dwell_time(struct wpi_softc *sc,
4012     struct ieee80211_channel *c, uint8_t n_probes)
4013 {
4014 	/* No channel? Default to 2GHz settings. */
4015 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
4016 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
4017 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
4018 	}
4019 
4020 	/* 5GHz dwell time. */
4021 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4022 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4023 }
4024 
4025 /*
4026  * Limit the total dwell time.
4027  *
4028  * Returns the dwell time in milliseconds.
4029  */
4030 static uint16_t
4031 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4032 {
4033 	struct ieee80211com *ic = &sc->sc_ic;
4034 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4035 	uint16_t bintval = 0;
4036 
4037 	/* bintval is in TU (1.024mS) */
4038 	if (vap != NULL)
4039 		bintval = vap->iv_bss->ni_intval;
4040 
4041 	/*
4042 	 * If it's non-zero, we should calculate the minimum of
4043 	 * it and the DWELL_BASE.
4044 	 *
4045 	 * XXX Yes, the math should take into account that bintval
4046 	 * is 1.024mS, not 1mS..
4047 	 */
4048 	if (bintval > 0) {
4049 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4050 		    bintval);
4051 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4052 	}
4053 
4054 	/* No association context? Default. */
4055 	return dwell_time;
4056 }
4057 
4058 static uint16_t
4059 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4060 {
4061 	uint16_t passive;
4062 
4063 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4064 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4065 	else
4066 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4067 
4068 	/* Clamp to the beacon interval if we're associated. */
4069 	return (wpi_limit_dwell(sc, passive));
4070 }
4071 
4072 static uint32_t
4073 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4074 {
4075 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4076 	uint32_t nbeacons = time / bintval;
4077 
4078 	if (mod > WPI_PAUSE_MAX_TIME)
4079 		mod = WPI_PAUSE_MAX_TIME;
4080 
4081 	return WPI_PAUSE_SCAN(nbeacons, mod);
4082 }
4083 
4084 /*
4085  * Send a scan request to the firmware.
4086  */
4087 static int
4088 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4089 {
4090 	struct ieee80211com *ic = &sc->sc_ic;
4091 	struct ieee80211_scan_state *ss = ic->ic_scan;
4092 	struct ieee80211vap *vap = ss->ss_vap;
4093 	struct wpi_scan_hdr *hdr;
4094 	struct wpi_cmd_data *tx;
4095 	struct wpi_scan_essid *essids;
4096 	struct wpi_scan_chan *chan;
4097 	struct ieee80211_frame *wh;
4098 	struct ieee80211_rateset *rs;
4099 	uint16_t bintval, buflen, dwell_active, dwell_passive;
4100 	uint8_t *buf, *frm, i, nssid;
4101 	int bgscan, error;
4102 
4103 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4104 
4105 	/*
4106 	 * We are absolutely not allowed to send a scan command when another
4107 	 * scan command is pending.
4108 	 */
4109 	if (callout_pending(&sc->scan_timeout)) {
4110 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4111 		    __func__);
4112 		error = EAGAIN;
4113 		goto fail;
4114 	}
4115 
4116 	bgscan = wpi_check_bss_filter(sc);
4117 	bintval = vap->iv_bss->ni_intval;
4118 	if (bgscan != 0 &&
4119 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4120 		error = EOPNOTSUPP;
4121 		goto fail;
4122 	}
4123 
4124 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4125 	if (buf == NULL) {
4126 		device_printf(sc->sc_dev,
4127 		    "%s: could not allocate buffer for scan command\n",
4128 		    __func__);
4129 		error = ENOMEM;
4130 		goto fail;
4131 	}
4132 	hdr = (struct wpi_scan_hdr *)buf;
4133 
4134 	/*
4135 	 * Move to the next channel if no packets are received within 10 msecs
4136 	 * after sending the probe request.
4137 	 */
4138 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4139 	hdr->quiet_threshold = htole16(1);
4140 
4141 	if (bgscan != 0) {
4142 		/*
4143 		 * Max needs to be greater than active and passive and quiet!
4144 		 * It's also in microseconds!
4145 		 */
4146 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4147 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4148 		    bintval));
4149 	}
4150 
4151 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4152 
4153 	tx = (struct wpi_cmd_data *)(hdr + 1);
4154 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4155 	tx->id = WPI_ID_BROADCAST;
4156 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4157 
4158 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4159 		/* Send probe requests at 6Mbps. */
4160 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4161 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4162 	} else {
4163 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4164 		/* Send probe requests at 1Mbps. */
4165 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4166 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4167 	}
4168 
4169 	essids = (struct wpi_scan_essid *)(tx + 1);
4170 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4171 	for (i = 0; i < nssid; i++) {
4172 		essids[i].id = IEEE80211_ELEMID_SSID;
4173 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4174 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4175 #ifdef WPI_DEBUG
4176 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4177 			printf("Scanning Essid: ");
4178 			ieee80211_print_essid(essids[i].data, essids[i].len);
4179 			printf("\n");
4180 		}
4181 #endif
4182 	}
4183 
4184 	/*
4185 	 * Build a probe request frame.  Most of the following code is a
4186 	 * copy & paste of what is done in net80211.
4187 	 */
4188 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4189 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4190 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4191 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4192 	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4193 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4194 	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4195 
4196 	frm = (uint8_t *)(wh + 1);
4197 	frm = ieee80211_add_ssid(frm, NULL, 0);
4198 	frm = ieee80211_add_rates(frm, rs);
4199 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4200 		frm = ieee80211_add_xrates(frm, rs);
4201 
4202 	/* Set length of probe request. */
4203 	tx->len = htole16(frm - (uint8_t *)wh);
4204 
4205 	/*
4206 	 * Construct information about the channel that we
4207 	 * want to scan. The firmware expects this to be directly
4208 	 * after the scan probe request
4209 	 */
4210 	chan = (struct wpi_scan_chan *)frm;
4211 	chan->chan = ieee80211_chan2ieee(ic, c);
4212 	chan->flags = 0;
4213 	if (nssid) {
4214 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4215 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4216 	} else
4217 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4218 
4219 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4220 		chan->flags |= WPI_CHAN_ACTIVE;
4221 
4222 	/*
4223 	 * Calculate the active/passive dwell times.
4224 	 */
4225 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4226 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4227 
4228 	/* Make sure they're valid. */
4229 	if (dwell_active > dwell_passive)
4230 		dwell_active = dwell_passive;
4231 
4232 	chan->active = htole16(dwell_active);
4233 	chan->passive = htole16(dwell_passive);
4234 
4235 	chan->dsp_gain = 0x6e;  /* Default level */
4236 
4237 	if (IEEE80211_IS_CHAN_5GHZ(c))
4238 		chan->rf_gain = 0x3b;
4239 	else
4240 		chan->rf_gain = 0x28;
4241 
4242 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4243 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4244 
4245 	hdr->nchan++;
4246 
4247 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4248 		/* XXX Force probe request transmission. */
4249 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4250 
4251 		chan++;
4252 
4253 		/* Reduce unnecessary delay. */
4254 		chan->flags = 0;
4255 		chan->passive = chan->active = hdr->quiet_time;
4256 
4257 		hdr->nchan++;
4258 	}
4259 
4260 	chan++;
4261 
4262 	buflen = (uint8_t *)chan - buf;
4263 	hdr->len = htole16(buflen);
4264 
4265 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4266 	    hdr->nchan);
4267 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4268 	free(buf, M_DEVBUF);
4269 
4270 	if (error != 0)
4271 		goto fail;
4272 
4273 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4274 
4275 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4276 
4277 	return 0;
4278 
4279 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4280 
4281 	return error;
4282 }
4283 
4284 static int
4285 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4286 {
4287 	struct ieee80211com *ic = vap->iv_ic;
4288 	struct ieee80211_node *ni = vap->iv_bss;
4289 	struct ieee80211_channel *c = ni->ni_chan;
4290 	int error;
4291 
4292 	WPI_RXON_LOCK(sc);
4293 
4294 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4295 
4296 	/* Update adapter configuration. */
4297 	sc->rxon.associd = 0;
4298 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4299 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4300 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4301 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4302 	if (IEEE80211_IS_CHAN_2GHZ(c))
4303 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4304 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4305 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4306 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4307 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4308 	if (IEEE80211_IS_CHAN_A(c)) {
4309 		sc->rxon.cck_mask  = 0;
4310 		sc->rxon.ofdm_mask = 0x15;
4311 	} else if (IEEE80211_IS_CHAN_B(c)) {
4312 		sc->rxon.cck_mask  = 0x03;
4313 		sc->rxon.ofdm_mask = 0;
4314 	} else {
4315 		/* Assume 802.11b/g. */
4316 		sc->rxon.cck_mask  = 0x0f;
4317 		sc->rxon.ofdm_mask = 0x15;
4318 	}
4319 
4320 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4321 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4322 	    sc->rxon.ofdm_mask);
4323 
4324 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4325 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4326 		    __func__);
4327 	}
4328 
4329 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4330 
4331 	WPI_RXON_UNLOCK(sc);
4332 
4333 	return error;
4334 }
4335 
4336 static int
4337 wpi_config_beacon(struct wpi_vap *wvp)
4338 {
4339 	struct ieee80211vap *vap = &wvp->wv_vap;
4340 	struct ieee80211com *ic = vap->iv_ic;
4341 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4342 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4343 	struct wpi_softc *sc = ic->ic_softc;
4344 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4345 	struct ieee80211_tim_ie *tie;
4346 	struct mbuf *m;
4347 	uint8_t *ptr;
4348 	int error;
4349 
4350 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4351 
4352 	WPI_VAP_LOCK_ASSERT(wvp);
4353 
4354 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4355 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4356 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4357 
4358 	/* XXX seems to be unused */
4359 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4360 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4361 		ptr = mtod(bcn->m, uint8_t *);
4362 
4363 		cmd->tim = htole16(bo->bo_tim - ptr);
4364 		cmd->timsz = tie->tim_len;
4365 	}
4366 
4367 	/* Necessary for recursion in ieee80211_beacon_update(). */
4368 	m = bcn->m;
4369 	bcn->m = m_dup(m, M_NOWAIT);
4370 	if (bcn->m == NULL) {
4371 		device_printf(sc->sc_dev,
4372 		    "%s: could not copy beacon frame\n", __func__);
4373 		error = ENOMEM;
4374 		goto end;
4375 	}
4376 
4377 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4378 		device_printf(sc->sc_dev,
4379 		    "%s: could not update beacon frame, error %d", __func__,
4380 		    error);
4381 		m_freem(bcn->m);
4382 	}
4383 
4384 	/* Restore mbuf. */
4385 end:	bcn->m = m;
4386 
4387 	return error;
4388 }
4389 
4390 static int
4391 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4392 {
4393 	struct ieee80211vap *vap = ni->ni_vap;
4394 	struct wpi_vap *wvp = WPI_VAP(vap);
4395 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4396 	struct mbuf *m;
4397 	int error;
4398 
4399 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4400 
4401 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4402 		return EINVAL;
4403 
4404 	m = ieee80211_beacon_alloc(ni);
4405 	if (m == NULL) {
4406 		device_printf(sc->sc_dev,
4407 		    "%s: could not allocate beacon frame\n", __func__);
4408 		return ENOMEM;
4409 	}
4410 
4411 	WPI_VAP_LOCK(wvp);
4412 	if (bcn->m != NULL)
4413 		m_freem(bcn->m);
4414 
4415 	bcn->m = m;
4416 
4417 	error = wpi_config_beacon(wvp);
4418 	WPI_VAP_UNLOCK(wvp);
4419 
4420 	return error;
4421 }
4422 
4423 static void
4424 wpi_update_beacon(struct ieee80211vap *vap, int item)
4425 {
4426 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4427 	struct wpi_vap *wvp = WPI_VAP(vap);
4428 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4429 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4430 	struct ieee80211_node *ni = vap->iv_bss;
4431 	int mcast = 0;
4432 
4433 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4434 
4435 	WPI_VAP_LOCK(wvp);
4436 	if (bcn->m == NULL) {
4437 		bcn->m = ieee80211_beacon_alloc(ni);
4438 		if (bcn->m == NULL) {
4439 			device_printf(sc->sc_dev,
4440 			    "%s: could not allocate beacon frame\n", __func__);
4441 
4442 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4443 			    __func__);
4444 
4445 			WPI_VAP_UNLOCK(wvp);
4446 			return;
4447 		}
4448 	}
4449 	WPI_VAP_UNLOCK(wvp);
4450 
4451 	if (item == IEEE80211_BEACON_TIM)
4452 		mcast = 1;	/* TODO */
4453 
4454 	setbit(bo->bo_flags, item);
4455 	ieee80211_beacon_update(ni, bcn->m, mcast);
4456 
4457 	WPI_VAP_LOCK(wvp);
4458 	wpi_config_beacon(wvp);
4459 	WPI_VAP_UNLOCK(wvp);
4460 
4461 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4462 }
4463 
4464 static void
4465 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4466 {
4467 	struct ieee80211vap *vap = ni->ni_vap;
4468 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4469 	struct wpi_node *wn = WPI_NODE(ni);
4470 	int error;
4471 
4472 	WPI_NT_LOCK(sc);
4473 
4474 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4475 
4476 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4477 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4478 			device_printf(sc->sc_dev,
4479 			    "%s: could not add IBSS node, error %d\n",
4480 			    __func__, error);
4481 		}
4482 	}
4483 	WPI_NT_UNLOCK(sc);
4484 }
4485 
4486 static int
4487 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4488 {
4489 	struct ieee80211com *ic = vap->iv_ic;
4490 	struct ieee80211_node *ni = vap->iv_bss;
4491 	struct ieee80211_channel *c = ni->ni_chan;
4492 	int error;
4493 
4494 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4495 
4496 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4497 		/* Link LED blinks while monitoring. */
4498 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4499 		return 0;
4500 	}
4501 
4502 	/* XXX kernel panic workaround */
4503 	if (c == IEEE80211_CHAN_ANYC) {
4504 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4505 		    __func__);
4506 		return EINVAL;
4507 	}
4508 
4509 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4510 		device_printf(sc->sc_dev,
4511 		    "%s: could not set timing, error %d\n", __func__, error);
4512 		return error;
4513 	}
4514 
4515 	/* Update adapter configuration. */
4516 	WPI_RXON_LOCK(sc);
4517 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4518 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4519 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4520 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4521 	if (IEEE80211_IS_CHAN_2GHZ(c))
4522 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4523 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4524 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4525 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4526 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4527 	if (IEEE80211_IS_CHAN_A(c)) {
4528 		sc->rxon.cck_mask  = 0;
4529 		sc->rxon.ofdm_mask = 0x15;
4530 	} else if (IEEE80211_IS_CHAN_B(c)) {
4531 		sc->rxon.cck_mask  = 0x03;
4532 		sc->rxon.ofdm_mask = 0;
4533 	} else {
4534 		/* Assume 802.11b/g. */
4535 		sc->rxon.cck_mask  = 0x0f;
4536 		sc->rxon.ofdm_mask = 0x15;
4537 	}
4538 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4539 
4540 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4541 	    sc->rxon.chan, sc->rxon.flags);
4542 
4543 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4544 		WPI_RXON_UNLOCK(sc);
4545 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4546 		    __func__);
4547 		return error;
4548 	}
4549 
4550 	/* Start periodic calibration timer. */
4551 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4552 
4553 	WPI_RXON_UNLOCK(sc);
4554 
4555 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4556 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4557 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4558 			device_printf(sc->sc_dev,
4559 			    "%s: could not setup beacon, error %d\n", __func__,
4560 			    error);
4561 			return error;
4562 		}
4563 	}
4564 
4565 	if (vap->iv_opmode == IEEE80211_M_STA) {
4566 		/* Add BSS node. */
4567 		WPI_NT_LOCK(sc);
4568 		error = wpi_add_sta_node(sc, ni);
4569 		WPI_NT_UNLOCK(sc);
4570 		if (error != 0) {
4571 			device_printf(sc->sc_dev,
4572 			    "%s: could not add BSS node, error %d\n", __func__,
4573 			    error);
4574 			return error;
4575 		}
4576 	}
4577 
4578 	/* Link LED always on while associated. */
4579 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4580 
4581 	/* Enable power-saving mode if requested by user. */
4582 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4583 	    vap->iv_opmode != IEEE80211_M_IBSS)
4584 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4585 
4586 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4587 
4588 	return 0;
4589 }
4590 
4591 static int
4592 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4593 {
4594 	const struct ieee80211_cipher *cip = k->wk_cipher;
4595 	struct ieee80211vap *vap = ni->ni_vap;
4596 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4597 	struct wpi_node *wn = WPI_NODE(ni);
4598 	struct wpi_node_info node;
4599 	uint16_t kflags;
4600 	int error;
4601 
4602 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4603 
4604 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4605 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4606 		    __func__);
4607 		return 0;
4608 	}
4609 
4610 	switch (cip->ic_cipher) {
4611 	case IEEE80211_CIPHER_AES_CCM:
4612 		kflags = WPI_KFLAG_CCMP;
4613 		break;
4614 
4615 	default:
4616 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4617 		    cip->ic_cipher);
4618 		return 0;
4619 	}
4620 
4621 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4622 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4623 		kflags |= WPI_KFLAG_MULTICAST;
4624 
4625 	memset(&node, 0, sizeof node);
4626 	node.id = wn->id;
4627 	node.control = WPI_NODE_UPDATE;
4628 	node.flags = WPI_FLAG_KEY_SET;
4629 	node.kflags = htole16(kflags);
4630 	memcpy(node.key, k->wk_key, k->wk_keylen);
4631 again:
4632 	DPRINTF(sc, WPI_DEBUG_KEY,
4633 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4634 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4635 	    node.id, ether_sprintf(ni->ni_macaddr));
4636 
4637 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4638 	if (error != 0) {
4639 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4640 		    error);
4641 		return !error;
4642 	}
4643 
4644 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4645 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4646 		kflags |= WPI_KFLAG_MULTICAST;
4647 		node.kflags = htole16(kflags);
4648 
4649 		goto again;
4650 	}
4651 
4652 	return 1;
4653 }
4654 
4655 static void
4656 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4657 {
4658 	const struct ieee80211_key *k = arg;
4659 	struct ieee80211vap *vap = ni->ni_vap;
4660 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4661 	struct wpi_node *wn = WPI_NODE(ni);
4662 	int error;
4663 
4664 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4665 		return;
4666 
4667 	WPI_NT_LOCK(sc);
4668 	error = wpi_load_key(ni, k);
4669 	WPI_NT_UNLOCK(sc);
4670 
4671 	if (error == 0) {
4672 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4673 		    __func__);
4674 	}
4675 }
4676 
4677 static int
4678 wpi_set_global_keys(struct ieee80211_node *ni)
4679 {
4680 	struct ieee80211vap *vap = ni->ni_vap;
4681 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4682 	int error = 1;
4683 
4684 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4685 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4686 			error = wpi_load_key(ni, wk);
4687 
4688 	return !error;
4689 }
4690 
4691 static int
4692 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4693 {
4694 	struct ieee80211vap *vap = ni->ni_vap;
4695 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4696 	struct wpi_node *wn = WPI_NODE(ni);
4697 	struct wpi_node_info node;
4698 	uint16_t kflags;
4699 	int error;
4700 
4701 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4702 
4703 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4704 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4705 		return 1;	/* Nothing to do. */
4706 	}
4707 
4708 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4709 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4710 		kflags |= WPI_KFLAG_MULTICAST;
4711 
4712 	memset(&node, 0, sizeof node);
4713 	node.id = wn->id;
4714 	node.control = WPI_NODE_UPDATE;
4715 	node.flags = WPI_FLAG_KEY_SET;
4716 	node.kflags = htole16(kflags);
4717 again:
4718 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4719 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4720 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4721 
4722 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4723 	if (error != 0) {
4724 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4725 		    error);
4726 		return !error;
4727 	}
4728 
4729 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4730 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4731 		kflags |= WPI_KFLAG_MULTICAST;
4732 		node.kflags = htole16(kflags);
4733 
4734 		goto again;
4735 	}
4736 
4737 	return 1;
4738 }
4739 
4740 static void
4741 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4742 {
4743 	const struct ieee80211_key *k = arg;
4744 	struct ieee80211vap *vap = ni->ni_vap;
4745 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4746 	struct wpi_node *wn = WPI_NODE(ni);
4747 	int error;
4748 
4749 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4750 		return;
4751 
4752 	WPI_NT_LOCK(sc);
4753 	error = wpi_del_key(ni, k);
4754 	WPI_NT_UNLOCK(sc);
4755 
4756 	if (error == 0) {
4757 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4758 		    __func__);
4759 	}
4760 }
4761 
4762 static int
4763 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4764     int set)
4765 {
4766 	struct ieee80211com *ic = vap->iv_ic;
4767 	struct wpi_softc *sc = ic->ic_softc;
4768 	struct wpi_vap *wvp = WPI_VAP(vap);
4769 	struct ieee80211_node *ni;
4770 	int error, ni_ref = 0;
4771 
4772 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4773 
4774 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4775 		/* Not for us. */
4776 		return 1;
4777 	}
4778 
4779 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4780 		/* XMIT keys are handled in wpi_tx_data(). */
4781 		return 1;
4782 	}
4783 
4784 	/* Handle group keys. */
4785 	if (&vap->iv_nw_keys[0] <= k &&
4786 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4787 		WPI_NT_LOCK(sc);
4788 		if (set)
4789 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4790 		else
4791 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4792 		WPI_NT_UNLOCK(sc);
4793 
4794 		if (vap->iv_state == IEEE80211_S_RUN) {
4795 			ieee80211_iterate_nodes(&ic->ic_sta,
4796 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4797 			    __DECONST(void *, k));
4798 		}
4799 
4800 		return 1;
4801 	}
4802 
4803 	switch (vap->iv_opmode) {
4804 	case IEEE80211_M_STA:
4805 		ni = vap->iv_bss;
4806 		break;
4807 
4808 	case IEEE80211_M_IBSS:
4809 	case IEEE80211_M_AHDEMO:
4810 	case IEEE80211_M_HOSTAP:
4811 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4812 		if (ni == NULL)
4813 			return 0;	/* should not happen */
4814 
4815 		ni_ref = 1;
4816 		break;
4817 
4818 	default:
4819 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4820 		    vap->iv_opmode);
4821 		return 0;
4822 	}
4823 
4824 	WPI_NT_LOCK(sc);
4825 	if (set)
4826 		error = wpi_load_key(ni, k);
4827 	else
4828 		error = wpi_del_key(ni, k);
4829 	WPI_NT_UNLOCK(sc);
4830 
4831 	if (ni_ref)
4832 		ieee80211_node_decref(ni);
4833 
4834 	return error;
4835 }
4836 
4837 static int
4838 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4839 {
4840 	return wpi_process_key(vap, k, 1);
4841 }
4842 
4843 static int
4844 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4845 {
4846 	return wpi_process_key(vap, k, 0);
4847 }
4848 
4849 /*
4850  * This function is called after the runtime firmware notifies us of its
4851  * readiness (called in a process context).
4852  */
4853 static int
4854 wpi_post_alive(struct wpi_softc *sc)
4855 {
4856 	int ntries, error;
4857 
4858 	/* Check (again) that the radio is not disabled. */
4859 	if ((error = wpi_nic_lock(sc)) != 0)
4860 		return error;
4861 
4862 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4863 
4864 	/* NB: Runtime firmware must be up and running. */
4865 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4866 		device_printf(sc->sc_dev,
4867 		    "RF switch: radio disabled (%s)\n", __func__);
4868 		wpi_nic_unlock(sc);
4869 		return EPERM;   /* :-) */
4870 	}
4871 	wpi_nic_unlock(sc);
4872 
4873 	/* Wait for thermal sensor to calibrate. */
4874 	for (ntries = 0; ntries < 1000; ntries++) {
4875 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4876 			break;
4877 		DELAY(10);
4878 	}
4879 
4880 	if (ntries == 1000) {
4881 		device_printf(sc->sc_dev,
4882 		    "timeout waiting for thermal sensor calibration\n");
4883 		return ETIMEDOUT;
4884 	}
4885 
4886 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4887 	return 0;
4888 }
4889 
4890 /*
4891  * The firmware boot code is small and is intended to be copied directly into
4892  * the NIC internal memory (no DMA transfer).
4893  */
4894 static int
4895 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
4896 {
4897 	int error, ntries;
4898 
4899 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4900 
4901 	size /= sizeof (uint32_t);
4902 
4903 	if ((error = wpi_nic_lock(sc)) != 0)
4904 		return error;
4905 
4906 	/* Copy microcode image into NIC memory. */
4907 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4908 	    (const uint32_t *)ucode, size);
4909 
4910 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4911 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4912 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4913 
4914 	/* Start boot load now. */
4915 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4916 
4917 	/* Wait for transfer to complete. */
4918 	for (ntries = 0; ntries < 1000; ntries++) {
4919 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4920 		DPRINTF(sc, WPI_DEBUG_HW,
4921 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4922 		    WPI_FH_TX_STATUS_IDLE(6),
4923 		    status & WPI_FH_TX_STATUS_IDLE(6));
4924 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4925 			DPRINTF(sc, WPI_DEBUG_HW,
4926 			    "Status Match! - ntries = %d\n", ntries);
4927 			break;
4928 		}
4929 		DELAY(10);
4930 	}
4931 	if (ntries == 1000) {
4932 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4933 		    __func__);
4934 		wpi_nic_unlock(sc);
4935 		return ETIMEDOUT;
4936 	}
4937 
4938 	/* Enable boot after power up. */
4939 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4940 
4941 	wpi_nic_unlock(sc);
4942 	return 0;
4943 }
4944 
4945 static int
4946 wpi_load_firmware(struct wpi_softc *sc)
4947 {
4948 	struct wpi_fw_info *fw = &sc->fw;
4949 	struct wpi_dma_info *dma = &sc->fw_dma;
4950 	int error;
4951 
4952 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4953 
4954 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4955 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4956 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4957 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4958 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4959 
4960 	/* Tell adapter where to find initialization sections. */
4961 	if ((error = wpi_nic_lock(sc)) != 0)
4962 		return error;
4963 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4964 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4965 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4966 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4967 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4968 	wpi_nic_unlock(sc);
4969 
4970 	/* Load firmware boot code. */
4971 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4972 	if (error != 0) {
4973 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4974 		    __func__);
4975 		return error;
4976 	}
4977 
4978 	/* Now press "execute". */
4979 	WPI_WRITE(sc, WPI_RESET, 0);
4980 
4981 	/* Wait at most one second for first alive notification. */
4982 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4983 		device_printf(sc->sc_dev,
4984 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4985 		    __func__, error);
4986 		return error;
4987 	}
4988 
4989 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4990 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4991 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4992 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4993 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4994 
4995 	/* Tell adapter where to find runtime sections. */
4996 	if ((error = wpi_nic_lock(sc)) != 0)
4997 		return error;
4998 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4999 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5000 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
5001 	    dma->paddr + WPI_FW_DATA_MAXSZ);
5002 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
5003 	    WPI_FW_UPDATED | fw->main.textsz);
5004 	wpi_nic_unlock(sc);
5005 
5006 	return 0;
5007 }
5008 
5009 static int
5010 wpi_read_firmware(struct wpi_softc *sc)
5011 {
5012 	const struct firmware *fp;
5013 	struct wpi_fw_info *fw = &sc->fw;
5014 	const struct wpi_firmware_hdr *hdr;
5015 	int error;
5016 
5017 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5018 
5019 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5020 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5021 
5022 	WPI_UNLOCK(sc);
5023 	fp = firmware_get(WPI_FW_NAME);
5024 	WPI_LOCK(sc);
5025 
5026 	if (fp == NULL) {
5027 		device_printf(sc->sc_dev,
5028 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5029 		return EINVAL;
5030 	}
5031 
5032 	sc->fw_fp = fp;
5033 
5034 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5035 		device_printf(sc->sc_dev,
5036 		    "firmware file too short: %zu bytes\n", fp->datasize);
5037 		error = EINVAL;
5038 		goto fail;
5039 	}
5040 
5041 	fw->size = fp->datasize;
5042 	fw->data = (const uint8_t *)fp->data;
5043 
5044 	/* Extract firmware header information. */
5045 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5046 
5047 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5048 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5049 
5050 	fw->main.textsz = le32toh(hdr->rtextsz);
5051 	fw->main.datasz = le32toh(hdr->rdatasz);
5052 	fw->init.textsz = le32toh(hdr->itextsz);
5053 	fw->init.datasz = le32toh(hdr->idatasz);
5054 	fw->boot.textsz = le32toh(hdr->btextsz);
5055 	fw->boot.datasz = 0;
5056 
5057 	/* Sanity-check firmware header. */
5058 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5059 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5060 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5061 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5062 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5063 	    (fw->boot.textsz & 3) != 0) {
5064 		device_printf(sc->sc_dev, "invalid firmware header\n");
5065 		error = EINVAL;
5066 		goto fail;
5067 	}
5068 
5069 	/* Check that all firmware sections fit. */
5070 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5071 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5072 		device_printf(sc->sc_dev,
5073 		    "firmware file too short: %zu bytes\n", fw->size);
5074 		error = EINVAL;
5075 		goto fail;
5076 	}
5077 
5078 	/* Get pointers to firmware sections. */
5079 	fw->main.text = (const uint8_t *)(hdr + 1);
5080 	fw->main.data = fw->main.text + fw->main.textsz;
5081 	fw->init.text = fw->main.data + fw->main.datasz;
5082 	fw->init.data = fw->init.text + fw->init.textsz;
5083 	fw->boot.text = fw->init.data + fw->init.datasz;
5084 
5085 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5086 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5087 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5088 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5089 	    fw->main.textsz, fw->main.datasz,
5090 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5091 
5092 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5093 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5094 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5095 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5096 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5097 
5098 	return 0;
5099 
5100 fail:	wpi_unload_firmware(sc);
5101 	return error;
5102 }
5103 
5104 /**
5105  * Free the referenced firmware image
5106  */
5107 static void
5108 wpi_unload_firmware(struct wpi_softc *sc)
5109 {
5110 	if (sc->fw_fp != NULL) {
5111 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5112 		sc->fw_fp = NULL;
5113 	}
5114 }
5115 
5116 static int
5117 wpi_clock_wait(struct wpi_softc *sc)
5118 {
5119 	int ntries;
5120 
5121 	/* Set "initialization complete" bit. */
5122 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5123 
5124 	/* Wait for clock stabilization. */
5125 	for (ntries = 0; ntries < 2500; ntries++) {
5126 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5127 			return 0;
5128 		DELAY(100);
5129 	}
5130 	device_printf(sc->sc_dev,
5131 	    "%s: timeout waiting for clock stabilization\n", __func__);
5132 
5133 	return ETIMEDOUT;
5134 }
5135 
5136 static int
5137 wpi_apm_init(struct wpi_softc *sc)
5138 {
5139 	uint32_t reg;
5140 	int error;
5141 
5142 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5143 
5144 	/* Disable L0s exit timer (NMI bug workaround). */
5145 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5146 	/* Don't wait for ICH L0s (ICH bug workaround). */
5147 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5148 
5149 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5150 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5151 
5152 	/* Retrieve PCIe Active State Power Management (ASPM). */
5153 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
5154 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5155 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
5156 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5157 	else
5158 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5159 
5160 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5161 
5162 	/* Wait for clock stabilization before accessing prph. */
5163 	if ((error = wpi_clock_wait(sc)) != 0)
5164 		return error;
5165 
5166 	if ((error = wpi_nic_lock(sc)) != 0)
5167 		return error;
5168 	/* Cleanup. */
5169 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5170 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5171 
5172 	/* Enable DMA and BSM (Bootstrap State Machine). */
5173 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5174 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5175 	DELAY(20);
5176 	/* Disable L1-Active. */
5177 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5178 	wpi_nic_unlock(sc);
5179 
5180 	return 0;
5181 }
5182 
5183 static void
5184 wpi_apm_stop_master(struct wpi_softc *sc)
5185 {
5186 	int ntries;
5187 
5188 	/* Stop busmaster DMA activity. */
5189 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5190 
5191 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5192 	    WPI_GP_CNTRL_MAC_PS)
5193 		return; /* Already asleep. */
5194 
5195 	for (ntries = 0; ntries < 100; ntries++) {
5196 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5197 			return;
5198 		DELAY(10);
5199 	}
5200 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5201 	    __func__);
5202 }
5203 
5204 static void
5205 wpi_apm_stop(struct wpi_softc *sc)
5206 {
5207 	wpi_apm_stop_master(sc);
5208 
5209 	/* Reset the entire device. */
5210 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5211 	DELAY(10);
5212 	/* Clear "initialization complete" bit. */
5213 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5214 }
5215 
5216 static void
5217 wpi_nic_config(struct wpi_softc *sc)
5218 {
5219 	uint32_t rev;
5220 
5221 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5222 
5223 	/* voodoo from the Linux "driver".. */
5224 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5225 	if ((rev & 0xc0) == 0x40)
5226 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5227 	else if (!(rev & 0x80))
5228 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5229 
5230 	if (sc->cap == 0x80)
5231 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5232 
5233 	if ((sc->rev & 0xf0) == 0xd0)
5234 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5235 	else
5236 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5237 
5238 	if (sc->type > 1)
5239 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5240 }
5241 
5242 static int
5243 wpi_hw_init(struct wpi_softc *sc)
5244 {
5245 	uint8_t chnl;
5246 	int ntries, error;
5247 
5248 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5249 
5250 	/* Clear pending interrupts. */
5251 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5252 
5253 	if ((error = wpi_apm_init(sc)) != 0) {
5254 		device_printf(sc->sc_dev,
5255 		    "%s: could not power ON adapter, error %d\n", __func__,
5256 		    error);
5257 		return error;
5258 	}
5259 
5260 	/* Select VMAIN power source. */
5261 	if ((error = wpi_nic_lock(sc)) != 0)
5262 		return error;
5263 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5264 	wpi_nic_unlock(sc);
5265 	/* Spin until VMAIN gets selected. */
5266 	for (ntries = 0; ntries < 5000; ntries++) {
5267 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5268 			break;
5269 		DELAY(10);
5270 	}
5271 	if (ntries == 5000) {
5272 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5273 		return ETIMEDOUT;
5274 	}
5275 
5276 	/* Perform adapter initialization. */
5277 	wpi_nic_config(sc);
5278 
5279 	/* Initialize RX ring. */
5280 	if ((error = wpi_nic_lock(sc)) != 0)
5281 		return error;
5282 	/* Set physical address of RX ring. */
5283 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5284 	/* Set physical address of RX read pointer. */
5285 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5286 	    offsetof(struct wpi_shared, next));
5287 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5288 	/* Enable RX. */
5289 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5290 	    WPI_FH_RX_CONFIG_DMA_ENA |
5291 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5292 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5293 	    WPI_FH_RX_CONFIG_MAXFRAG |
5294 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5295 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5296 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5297 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5298 	wpi_nic_unlock(sc);
5299 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5300 
5301 	/* Initialize TX rings. */
5302 	if ((error = wpi_nic_lock(sc)) != 0)
5303 		return error;
5304 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5305 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5306 	/* Enable all 6 TX rings. */
5307 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5308 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5309 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5310 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5311 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5312 	/* Set physical address of TX rings. */
5313 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5314 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5315 
5316 	/* Enable all DMA channels. */
5317 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5318 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5319 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5320 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5321 	}
5322 	wpi_nic_unlock(sc);
5323 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5324 
5325 	/* Clear "radio off" and "commands blocked" bits. */
5326 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5327 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5328 
5329 	/* Clear pending interrupts. */
5330 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5331 	/* Enable interrupts. */
5332 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5333 
5334 	/* _Really_ make sure "radio off" bit is cleared! */
5335 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5336 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5337 
5338 	if ((error = wpi_load_firmware(sc)) != 0) {
5339 		device_printf(sc->sc_dev,
5340 		    "%s: could not load firmware, error %d\n", __func__,
5341 		    error);
5342 		return error;
5343 	}
5344 	/* Wait at most one second for firmware alive notification. */
5345 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5346 		device_printf(sc->sc_dev,
5347 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5348 		    __func__, error);
5349 		return error;
5350 	}
5351 
5352 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5353 
5354 	/* Do post-firmware initialization. */
5355 	return wpi_post_alive(sc);
5356 }
5357 
5358 static void
5359 wpi_hw_stop(struct wpi_softc *sc)
5360 {
5361 	uint8_t chnl, qid;
5362 	int ntries;
5363 
5364 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5365 
5366 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5367 		wpi_nic_lock(sc);
5368 
5369 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5370 
5371 	/* Disable interrupts. */
5372 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5373 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5374 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5375 
5376 	/* Make sure we no longer hold the NIC lock. */
5377 	wpi_nic_unlock(sc);
5378 
5379 	if (wpi_nic_lock(sc) == 0) {
5380 		/* Stop TX scheduler. */
5381 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5382 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5383 
5384 		/* Stop all DMA channels. */
5385 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5386 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5387 			for (ntries = 0; ntries < 200; ntries++) {
5388 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5389 				    WPI_FH_TX_STATUS_IDLE(chnl))
5390 					break;
5391 				DELAY(10);
5392 			}
5393 		}
5394 		wpi_nic_unlock(sc);
5395 	}
5396 
5397 	/* Stop RX ring. */
5398 	wpi_reset_rx_ring(sc);
5399 
5400 	/* Reset all TX rings. */
5401 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
5402 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5403 
5404 	if (wpi_nic_lock(sc) == 0) {
5405 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5406 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5407 		wpi_nic_unlock(sc);
5408 	}
5409 	DELAY(5);
5410 	/* Power OFF adapter. */
5411 	wpi_apm_stop(sc);
5412 }
5413 
5414 static void
5415 wpi_radio_on(void *arg0, int pending)
5416 {
5417 	struct wpi_softc *sc = arg0;
5418 	struct ieee80211com *ic = &sc->sc_ic;
5419 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5420 
5421 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5422 
5423 	WPI_LOCK(sc);
5424 	callout_stop(&sc->watchdog_rfkill);
5425 	WPI_UNLOCK(sc);
5426 
5427 	if (vap != NULL)
5428 		ieee80211_init(vap);
5429 }
5430 
5431 static void
5432 wpi_radio_off(void *arg0, int pending)
5433 {
5434 	struct wpi_softc *sc = arg0;
5435 	struct ieee80211com *ic = &sc->sc_ic;
5436 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5437 
5438 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5439 
5440 	ieee80211_notify_radio(ic, 0);
5441 	wpi_stop(sc);
5442 	if (vap != NULL)
5443 		ieee80211_stop(vap);
5444 
5445 	WPI_LOCK(sc);
5446 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5447 	WPI_UNLOCK(sc);
5448 }
5449 
5450 static int
5451 wpi_init(struct wpi_softc *sc)
5452 {
5453 	int error = 0;
5454 
5455 	WPI_LOCK(sc);
5456 
5457 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5458 
5459 	if (sc->sc_running != 0)
5460 		goto end;
5461 
5462 	/* Check that the radio is not disabled by hardware switch. */
5463 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5464 		device_printf(sc->sc_dev,
5465 		    "RF switch: radio disabled (%s)\n", __func__);
5466 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5467 		    sc);
5468 		error = EINPROGRESS;
5469 		goto end;
5470 	}
5471 
5472 	/* Read firmware images from the filesystem. */
5473 	if ((error = wpi_read_firmware(sc)) != 0) {
5474 		device_printf(sc->sc_dev,
5475 		    "%s: could not read firmware, error %d\n", __func__,
5476 		    error);
5477 		goto end;
5478 	}
5479 
5480 	sc->sc_running = 1;
5481 
5482 	/* Initialize hardware and upload firmware. */
5483 	error = wpi_hw_init(sc);
5484 	wpi_unload_firmware(sc);
5485 	if (error != 0) {
5486 		device_printf(sc->sc_dev,
5487 		    "%s: could not initialize hardware, error %d\n", __func__,
5488 		    error);
5489 		goto fail;
5490 	}
5491 
5492 	/* Configure adapter now that it is ready. */
5493 	if ((error = wpi_config(sc)) != 0) {
5494 		device_printf(sc->sc_dev,
5495 		    "%s: could not configure device, error %d\n", __func__,
5496 		    error);
5497 		goto fail;
5498 	}
5499 
5500 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5501 
5502 	WPI_UNLOCK(sc);
5503 
5504 	return 0;
5505 
5506 fail:	wpi_stop_locked(sc);
5507 
5508 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5509 	WPI_UNLOCK(sc);
5510 
5511 	return error;
5512 }
5513 
5514 static void
5515 wpi_stop_locked(struct wpi_softc *sc)
5516 {
5517 
5518 	WPI_LOCK_ASSERT(sc);
5519 
5520 	if (sc->sc_running == 0)
5521 		return;
5522 
5523 	WPI_TX_LOCK(sc);
5524 	WPI_TXQ_LOCK(sc);
5525 	sc->sc_running = 0;
5526 	WPI_TXQ_UNLOCK(sc);
5527 	WPI_TX_UNLOCK(sc);
5528 
5529 	WPI_TXQ_STATE_LOCK(sc);
5530 	callout_stop(&sc->tx_timeout);
5531 	WPI_TXQ_STATE_UNLOCK(sc);
5532 
5533 	WPI_RXON_LOCK(sc);
5534 	callout_stop(&sc->scan_timeout);
5535 	callout_stop(&sc->calib_to);
5536 	WPI_RXON_UNLOCK(sc);
5537 
5538 	/* Power OFF hardware. */
5539 	wpi_hw_stop(sc);
5540 }
5541 
5542 static void
5543 wpi_stop(struct wpi_softc *sc)
5544 {
5545 	WPI_LOCK(sc);
5546 	wpi_stop_locked(sc);
5547 	WPI_UNLOCK(sc);
5548 }
5549 
5550 /*
5551  * Callback from net80211 to start a scan.
5552  */
5553 static void
5554 wpi_scan_start(struct ieee80211com *ic)
5555 {
5556 	struct wpi_softc *sc = ic->ic_softc;
5557 
5558 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5559 }
5560 
5561 /*
5562  * Callback from net80211 to terminate a scan.
5563  */
5564 static void
5565 wpi_scan_end(struct ieee80211com *ic)
5566 {
5567 	struct wpi_softc *sc = ic->ic_softc;
5568 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5569 
5570 	if (vap->iv_state == IEEE80211_S_RUN)
5571 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5572 }
5573 
5574 /**
5575  * Called by the net80211 framework to indicate to the driver
5576  * that the channel should be changed
5577  */
5578 static void
5579 wpi_set_channel(struct ieee80211com *ic)
5580 {
5581 	const struct ieee80211_channel *c = ic->ic_curchan;
5582 	struct wpi_softc *sc = ic->ic_softc;
5583 	int error;
5584 
5585 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5586 
5587 	WPI_LOCK(sc);
5588 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5589 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5590 	WPI_UNLOCK(sc);
5591 	WPI_TX_LOCK(sc);
5592 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5593 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5594 	WPI_TX_UNLOCK(sc);
5595 
5596 	/*
5597 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5598 	 * are already taken care of by their respective firmware commands.
5599 	 */
5600 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5601 		WPI_RXON_LOCK(sc);
5602 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5603 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5604 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5605 			    WPI_RXON_24GHZ);
5606 		} else {
5607 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5608 			    WPI_RXON_24GHZ);
5609 		}
5610 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5611 			device_printf(sc->sc_dev,
5612 			    "%s: error %d setting channel\n", __func__,
5613 			    error);
5614 		WPI_RXON_UNLOCK(sc);
5615 	}
5616 }
5617 
5618 /**
5619  * Called by net80211 to indicate that we need to scan the current
5620  * channel. The channel is previously be set via the wpi_set_channel
5621  * callback.
5622  */
5623 static void
5624 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5625 {
5626 	struct ieee80211vap *vap = ss->ss_vap;
5627 	struct ieee80211com *ic = vap->iv_ic;
5628 	struct wpi_softc *sc = ic->ic_softc;
5629 	int error;
5630 
5631 	WPI_RXON_LOCK(sc);
5632 	error = wpi_scan(sc, ic->ic_curchan);
5633 	WPI_RXON_UNLOCK(sc);
5634 	if (error != 0)
5635 		ieee80211_cancel_scan(vap);
5636 }
5637 
5638 /**
5639  * Called by the net80211 framework to indicate
5640  * the minimum dwell time has been met, terminate the scan.
5641  * We don't actually terminate the scan as the firmware will notify
5642  * us when it's finished and we have no way to interrupt it.
5643  */
5644 static void
5645 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5646 {
5647 	/* NB: don't try to abort scan; wait for firmware to finish */
5648 }
5649