xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 2be1a816b9ff69588e55be0a84cbe2a31efc0f2f)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/if_ether.h>
102 
103 #include <dev/wpi/if_wpireg.h>
104 #include <dev/wpi/if_wpivar.h>
105 
106 #define WPI_DEBUG
107 
108 #ifdef WPI_DEBUG
109 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111 
112 enum {
113 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
114 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
115 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
116 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
117 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
118 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
119 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
120 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
121 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
122 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
123 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
124 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
125 	WPI_DEBUG_ANY		= 0xffffffff
126 };
127 
128 int wpi_debug = 0;
129 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
130 
131 #else
132 #define DPRINTF(x)
133 #define DPRINTFN(n, x)
134 #endif
135 
136 struct wpi_ident {
137 	uint16_t	vendor;
138 	uint16_t	device;
139 	uint16_t	subdevice;
140 	const char	*name;
141 };
142 
143 static const struct wpi_ident wpi_ident_table[] = {
144 	/* The below entries support ABG regardless of the subid */
145 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
146 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
147 	/* The below entries only support BG */
148 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
149 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
150 	{ 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
151 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
152 	{ 0, 0, 0, NULL }
153 };
154 
155 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
156 		    const char name[IFNAMSIZ], int unit, int opmode,
157 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
158 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
159 static void	wpi_vap_delete(struct ieee80211vap *);
160 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
161 		    void **, bus_size_t, bus_size_t, int);
162 static void	wpi_dma_contig_free(struct wpi_dma_info *);
163 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
164 static int	wpi_alloc_shared(struct wpi_softc *);
165 static void	wpi_free_shared(struct wpi_softc *);
166 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
167 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
168 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
169 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
170 		    int, int);
171 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
172 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
173 static struct	ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *);
174 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
175 static void	wpi_mem_lock(struct wpi_softc *);
176 static void	wpi_mem_unlock(struct wpi_softc *);
177 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
178 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
179 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
180 		    const uint32_t *, int);
181 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
182 static int	wpi_alloc_fwmem(struct wpi_softc *);
183 static void	wpi_free_fwmem(struct wpi_softc *);
184 static int	wpi_load_firmware(struct wpi_softc *);
185 static void	wpi_unload_firmware(struct wpi_softc *);
186 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
187 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
188 		    struct wpi_rx_data *);
189 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
190 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
191 static void	wpi_notif_intr(struct wpi_softc *);
192 static void	wpi_intr(void *);
193 static void	wpi_ops(void *, int);
194 static uint8_t	wpi_plcp_signal(int);
195 static int	wpi_queue_cmd(struct wpi_softc *, int, int, int);
196 static void	wpi_watchdog(void *);
197 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
198 		    struct ieee80211_node *, int);
199 static void	wpi_start(struct ifnet *);
200 static void	wpi_start_locked(struct ifnet *);
201 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
202 		    const struct ieee80211_bpf_params *);
203 static void	wpi_scan_start(struct ieee80211com *);
204 static void	wpi_scan_end(struct ieee80211com *);
205 static void	wpi_set_channel(struct ieee80211com *);
206 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
207 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
208 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
209 static void	wpi_read_eeprom(struct wpi_softc *);
210 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
211 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
212 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
213 static int	wpi_wme_update(struct ieee80211com *);
214 static int	wpi_mrr_setup(struct wpi_softc *);
215 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
216 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
217 #if 0
218 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
219 #endif
220 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
221 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
222 static int	wpi_scan(struct wpi_softc *);
223 static int	wpi_config(struct wpi_softc *);
224 static void	wpi_stop_master(struct wpi_softc *);
225 static int	wpi_power_up(struct wpi_softc *);
226 static int	wpi_reset(struct wpi_softc *);
227 static void	wpi_hw_config(struct wpi_softc *);
228 static void	wpi_init(void *);
229 static void	wpi_init_locked(struct wpi_softc *, int);
230 static void	wpi_stop(struct wpi_softc *);
231 static void	wpi_stop_locked(struct wpi_softc *);
232 
233 static void	wpi_newassoc(struct ieee80211_node *, int);
234 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
235 		    int);
236 static void	wpi_calib_timeout(void *);
237 static void	wpi_power_calibration(struct wpi_softc *, int);
238 static int	wpi_get_power_index(struct wpi_softc *,
239 		    struct wpi_power_group *, struct ieee80211_channel *, int);
240 static const char *wpi_cmd_str(int);
241 static int wpi_probe(device_t);
242 static int wpi_attach(device_t);
243 static int wpi_detach(device_t);
244 static int wpi_shutdown(device_t);
245 static int wpi_suspend(device_t);
246 static int wpi_resume(device_t);
247 
248 
249 static device_method_t wpi_methods[] = {
250 	/* Device interface */
251 	DEVMETHOD(device_probe,		wpi_probe),
252 	DEVMETHOD(device_attach,	wpi_attach),
253 	DEVMETHOD(device_detach,	wpi_detach),
254 	DEVMETHOD(device_shutdown,	wpi_shutdown),
255 	DEVMETHOD(device_suspend,	wpi_suspend),
256 	DEVMETHOD(device_resume,	wpi_resume),
257 
258 	{ 0, 0 }
259 };
260 
261 static driver_t wpi_driver = {
262 	"wpi",
263 	wpi_methods,
264 	sizeof (struct wpi_softc)
265 };
266 
267 static devclass_t wpi_devclass;
268 
269 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
270 
271 static const uint8_t wpi_ridx_to_plcp[] = {
272 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
273 	/* R1-R4 (ral/ural is R4-R1) */
274 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
275 	/* CCK: device-dependent */
276 	10, 20, 55, 110
277 };
278 static const uint8_t wpi_ridx_to_rate[] = {
279 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
280 	2, 4, 11, 22 /*CCK */
281 };
282 
283 
284 static int
285 wpi_probe(device_t dev)
286 {
287 	const struct wpi_ident *ident;
288 
289 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
290 		if (pci_get_vendor(dev) == ident->vendor &&
291 		    pci_get_device(dev) == ident->device) {
292 			device_set_desc(dev, ident->name);
293 			return 0;
294 		}
295 	}
296 	return ENXIO;
297 }
298 
299 /**
300  * Load the firmare image from disk to the allocated dma buffer.
301  * we also maintain the reference to the firmware pointer as there
302  * is times where we may need to reload the firmware but we are not
303  * in a context that can access the filesystem (ie taskq cause by restart)
304  *
305  * @return 0 on success, an errno on failure
306  */
307 static int
308 wpi_load_firmware(struct wpi_softc *sc)
309 {
310 	const struct firmware *fp;
311 	struct wpi_dma_info *dma = &sc->fw_dma;
312 	const struct wpi_firmware_hdr *hdr;
313 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
314 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
315 	int error;
316 
317 	DPRINTFN(WPI_DEBUG_FIRMWARE,
318 	    ("Attempting Loading Firmware from wpi_fw module\n"));
319 
320 	WPI_UNLOCK(sc);
321 
322 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
323 		device_printf(sc->sc_dev,
324 		    "could not load firmware image 'wpifw'\n");
325 		error = ENOENT;
326 		WPI_LOCK(sc);
327 		goto fail;
328 	}
329 
330 	fp = sc->fw_fp;
331 
332 	WPI_LOCK(sc);
333 
334 	/* Validate the firmware is minimum a particular version */
335 	if (fp->version < WPI_FW_MINVERSION) {
336 	    device_printf(sc->sc_dev,
337 			   "firmware version is too old. Need %d, got %d\n",
338 			   WPI_FW_MINVERSION,
339 			   fp->version);
340 	    error = ENXIO;
341 	    goto fail;
342 	}
343 
344 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
345 		device_printf(sc->sc_dev,
346 		    "firmware file too short: %zu bytes\n", fp->datasize);
347 		error = ENXIO;
348 		goto fail;
349 	}
350 
351 	hdr = (const struct wpi_firmware_hdr *)fp->data;
352 
353 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
354 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
355 
356 	rtextsz = le32toh(hdr->rtextsz);
357 	rdatasz = le32toh(hdr->rdatasz);
358 	itextsz = le32toh(hdr->itextsz);
359 	idatasz = le32toh(hdr->idatasz);
360 	btextsz = le32toh(hdr->btextsz);
361 
362 	/* check that all firmware segments are present */
363 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
364 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
365 		device_printf(sc->sc_dev,
366 		    "firmware file too short: %zu bytes\n", fp->datasize);
367 		error = ENXIO; /* XXX appropriate error code? */
368 		goto fail;
369 	}
370 
371 	/* get pointers to firmware segments */
372 	rtext = (const uint8_t *)(hdr + 1);
373 	rdata = rtext + rtextsz;
374 	itext = rdata + rdatasz;
375 	idata = itext + itextsz;
376 	btext = idata + idatasz;
377 
378 	DPRINTFN(WPI_DEBUG_FIRMWARE,
379 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
380 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
381 	     (le32toh(hdr->version) & 0xff000000) >> 24,
382 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
383 	     (le32toh(hdr->version) & 0x0000ffff),
384 	     rtextsz, rdatasz,
385 	     itextsz, idatasz, btextsz));
386 
387 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
388 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
389 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
390 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
391 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
392 
393 	/* sanity checks */
394 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
395 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
396 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
397 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
398 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
399 	    (btextsz & 3) != 0) {
400 		device_printf(sc->sc_dev, "firmware invalid\n");
401 		error = EINVAL;
402 		goto fail;
403 	}
404 
405 	/* copy initialization images into pre-allocated DMA-safe memory */
406 	memcpy(dma->vaddr, idata, idatasz);
407 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
408 
409 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
410 
411 	/* tell adapter where to find initialization images */
412 	wpi_mem_lock(sc);
413 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
414 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
415 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
416 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
417 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
418 	wpi_mem_unlock(sc);
419 
420 	/* load firmware boot code */
421 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
422 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
423 	    goto fail;
424 	}
425 
426 	/* now press "execute" */
427 	WPI_WRITE(sc, WPI_RESET, 0);
428 
429 	/* wait at most one second for the first alive notification */
430 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
431 		device_printf(sc->sc_dev,
432 		    "timeout waiting for adapter to initialize\n");
433 		goto fail;
434 	}
435 
436 	/* copy runtime images into pre-allocated DMA-sage memory */
437 	memcpy(dma->vaddr, rdata, rdatasz);
438 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
439 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
440 
441 	/* tell adapter where to find runtime images */
442 	wpi_mem_lock(sc);
443 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
444 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
445 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
446 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
447 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
448 	wpi_mem_unlock(sc);
449 
450 	/* wait at most one second for the first alive notification */
451 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
452 		device_printf(sc->sc_dev,
453 		    "timeout waiting for adapter to initialize2\n");
454 		goto fail;
455 	}
456 
457 	DPRINTFN(WPI_DEBUG_FIRMWARE,
458 	    ("Firmware loaded to driver successfully\n"));
459 	return error;
460 fail:
461 	wpi_unload_firmware(sc);
462 	return error;
463 }
464 
465 /**
466  * Free the referenced firmware image
467  */
468 static void
469 wpi_unload_firmware(struct wpi_softc *sc)
470 {
471 
472 	if (sc->fw_fp) {
473 		WPI_UNLOCK(sc);
474 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
475 		WPI_LOCK(sc);
476 		sc->fw_fp = NULL;
477 	}
478 }
479 
480 static int
481 wpi_attach(device_t dev)
482 {
483 	struct wpi_softc *sc = device_get_softc(dev);
484 	struct ifnet *ifp;
485 	struct ieee80211com *ic;
486 	int ac, error, supportsa = 1;
487 	uint32_t tmp;
488 	const struct wpi_ident *ident;
489 
490 	sc->sc_dev = dev;
491 
492 	if (bootverbose || wpi_debug)
493 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
494 
495 	/*
496 	 * Some card's only support 802.11b/g not a, check to see if
497 	 * this is one such card. A 0x0 in the subdevice table indicates
498 	 * the entire subdevice range is to be ignored.
499 	 */
500 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
501 		if (ident->subdevice &&
502 		    pci_get_subdevice(dev) == ident->subdevice) {
503 		    supportsa = 0;
504 		    break;
505 		}
506 	}
507 
508 	/*
509 	 * Create the taskqueues used by the driver. Primarily
510 	 * sc_tq handles most the task
511 	 */
512 	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
513 	    taskqueue_thread_enqueue, &sc->sc_tq);
514 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
515 	    device_get_nameunit(dev));
516 
517 	/* Create the tasks that can be queued */
518 	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
519 
520 	WPI_LOCK_INIT(sc);
521 	WPI_CMD_LOCK_INIT(sc);
522 
523 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
524 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
525 
526 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
527 		device_printf(dev, "chip is in D%d power mode "
528 		    "-- setting to D0\n", pci_get_powerstate(dev));
529 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
530 	}
531 
532 	/* disable the retry timeout register */
533 	pci_write_config(dev, 0x41, 0, 1);
534 
535 	/* enable bus-mastering */
536 	pci_enable_busmaster(dev);
537 
538 	sc->mem_rid = PCIR_BAR(0);
539 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
540 	    RF_ACTIVE);
541 	if (sc->mem == NULL) {
542 		device_printf(dev, "could not allocate memory resource\n");
543 		error = ENOMEM;
544 		goto fail;
545 	}
546 
547 	sc->sc_st = rman_get_bustag(sc->mem);
548 	sc->sc_sh = rman_get_bushandle(sc->mem);
549 
550 	sc->irq_rid = 0;
551 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
552 	    RF_ACTIVE | RF_SHAREABLE);
553 	if (sc->irq == NULL) {
554 		device_printf(dev, "could not allocate interrupt resource\n");
555 		error = ENOMEM;
556 		goto fail;
557 	}
558 
559 	/*
560 	 * Allocate DMA memory for firmware transfers.
561 	 */
562 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
563 		printf(": could not allocate firmware memory\n");
564 		error = ENOMEM;
565 		goto fail;
566 	}
567 
568 	/*
569 	 * Put adapter into a known state.
570 	 */
571 	if ((error = wpi_reset(sc)) != 0) {
572 		device_printf(dev, "could not reset adapter\n");
573 		goto fail;
574 	}
575 
576 	wpi_mem_lock(sc);
577 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
578 	if (bootverbose || wpi_debug)
579 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
580 
581 	wpi_mem_unlock(sc);
582 
583 	/* Allocate shared page */
584 	if ((error = wpi_alloc_shared(sc)) != 0) {
585 		device_printf(dev, "could not allocate shared page\n");
586 		goto fail;
587 	}
588 
589 	/* tx data queues  - 4 for QoS purposes */
590 	for (ac = 0; ac < WME_NUM_AC; ac++) {
591 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
592 		if (error != 0) {
593 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
594 		    goto fail;
595 		}
596 	}
597 
598 	/* command queue to talk to the card's firmware */
599 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
600 	if (error != 0) {
601 		device_printf(dev, "could not allocate command ring\n");
602 		goto fail;
603 	}
604 
605 	/* receive data queue */
606 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
607 	if (error != 0) {
608 		device_printf(dev, "could not allocate Rx ring\n");
609 		goto fail;
610 	}
611 
612 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
613 	if (ifp == NULL) {
614 		device_printf(dev, "can not if_alloc()\n");
615 		error = ENOMEM;
616 		goto fail;
617 	}
618 	ic = ifp->if_l2com;
619 
620 	ic->ic_ifp = ifp;
621 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
622 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
623 
624 	/* set device capabilities */
625 	ic->ic_caps =
626 		  IEEE80211_C_MONITOR		/* monitor mode supported */
627 		| IEEE80211_C_TXPMGT		/* tx power management */
628 		| IEEE80211_C_SHSLOT		/* short slot time supported */
629 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
630 		| IEEE80211_C_WPA		/* 802.11i */
631 /* XXX looks like WME is partly supported? */
632 #if 0
633 		| IEEE80211_C_IBSS		/* IBSS mode support */
634 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
635 		| IEEE80211_C_WME		/* 802.11e */
636 		| IEEE80211_C_HOSTAP		/* Host access point mode */
637 #endif
638 		;
639 
640 	/*
641 	 * Read in the eeprom and also setup the channels for
642 	 * net80211. We don't set the rates as net80211 does this for us
643 	 */
644 	wpi_read_eeprom(sc);
645 
646 	if (bootverbose || wpi_debug) {
647 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
648 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
649 			  sc->type > 1 ? 'B': '?');
650 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
651 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
652 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
653 			  supportsa ? "does" : "does not");
654 
655 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
656 	       what sc->rev really represents - benjsc 20070615 */
657 	}
658 
659 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660 	ifp->if_softc = sc;
661 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662 	ifp->if_init = wpi_init;
663 	ifp->if_ioctl = wpi_ioctl;
664 	ifp->if_start = wpi_start;
665 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
666 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
667 	IFQ_SET_READY(&ifp->if_snd);
668 
669 	ieee80211_ifattach(ic);
670 	/* override default methods */
671 	ic->ic_node_alloc = wpi_node_alloc;
672 	ic->ic_newassoc = wpi_newassoc;
673 	ic->ic_raw_xmit = wpi_raw_xmit;
674 	ic->ic_wme.wme_update = wpi_wme_update;
675 	ic->ic_scan_start = wpi_scan_start;
676 	ic->ic_scan_end = wpi_scan_end;
677 	ic->ic_set_channel = wpi_set_channel;
678 	ic->ic_scan_curchan = wpi_scan_curchan;
679 	ic->ic_scan_mindwell = wpi_scan_mindwell;
680 
681 	ic->ic_vap_create = wpi_vap_create;
682 	ic->ic_vap_delete = wpi_vap_delete;
683 
684 	bpfattach(ifp, DLT_IEEE802_11_RADIO,
685 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
686 
687 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
688 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
689 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
690 
691 	sc->sc_txtap_len = sizeof sc->sc_txtap;
692 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
693 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
694 
695 	/*
696 	 * Hook our interrupt after all initialization is complete.
697 	 */
698 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
699 	    NULL, wpi_intr, sc, &sc->sc_ih);
700 	if (error != 0) {
701 		device_printf(dev, "could not set up interrupt\n");
702 		goto fail;
703 	}
704 
705 	if (bootverbose)
706 		ieee80211_announce(ic);
707 #ifdef XXX_DEBUG
708 	ieee80211_announce_channels(ic);
709 #endif
710 	return 0;
711 
712 fail:	wpi_detach(dev);
713 	return ENXIO;
714 }
715 
716 static int
717 wpi_detach(device_t dev)
718 {
719 	struct wpi_softc *sc = device_get_softc(dev);
720 	struct ifnet *ifp = sc->sc_ifp;
721 	struct ieee80211com *ic = ifp->if_l2com;
722 	int ac;
723 
724 	if (ifp != NULL) {
725 		wpi_stop(sc);
726 		callout_drain(&sc->watchdog_to);
727 		callout_drain(&sc->calib_to);
728 		bpfdetach(ifp);
729 		ieee80211_ifdetach(ic);
730 	}
731 
732 	WPI_LOCK(sc);
733 	if (sc->txq[0].data_dmat) {
734 		for (ac = 0; ac < WME_NUM_AC; ac++)
735 			wpi_free_tx_ring(sc, &sc->txq[ac]);
736 
737 		wpi_free_tx_ring(sc, &sc->cmdq);
738 		wpi_free_rx_ring(sc, &sc->rxq);
739 		wpi_free_shared(sc);
740 	}
741 
742 	if (sc->fw_fp != NULL) {
743 		wpi_unload_firmware(sc);
744 	}
745 
746 	if (sc->fw_dma.tag)
747 		wpi_free_fwmem(sc);
748 	WPI_UNLOCK(sc);
749 
750 	if (sc->irq != NULL) {
751 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
752 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
753 	}
754 
755 	if (sc->mem != NULL)
756 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
757 
758 	if (ifp != NULL)
759 		if_free(ifp);
760 
761 	taskqueue_free(sc->sc_tq);
762 
763 	WPI_LOCK_DESTROY(sc);
764 	WPI_CMD_LOCK_DESTROY(sc);
765 
766 	return 0;
767 }
768 
769 static struct ieee80211vap *
770 wpi_vap_create(struct ieee80211com *ic,
771 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
772 	const uint8_t bssid[IEEE80211_ADDR_LEN],
773 	const uint8_t mac[IEEE80211_ADDR_LEN])
774 {
775 	struct wpi_vap *wvp;
776 	struct ieee80211vap *vap;
777 
778 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
779 		return NULL;
780 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
781 	    M_80211_VAP, M_NOWAIT | M_ZERO);
782 	if (wvp == NULL)
783 		return NULL;
784 	vap = &wvp->vap;
785 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
786 	/* override with driver methods */
787 	wvp->newstate = vap->iv_newstate;
788 	vap->iv_newstate = wpi_newstate;
789 
790 	ieee80211_amrr_init(&wvp->amrr, vap,
791 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
792 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
793 	    500 /*ms*/);
794 
795 	/* complete setup */
796 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
797 	ic->ic_opmode = opmode;
798 	return vap;
799 }
800 
801 static void
802 wpi_vap_delete(struct ieee80211vap *vap)
803 {
804 	struct wpi_vap *wvp = WPI_VAP(vap);
805 
806 	ieee80211_amrr_cleanup(&wvp->amrr);
807 	ieee80211_vap_detach(vap);
808 	free(wvp, M_80211_VAP);
809 }
810 
811 static void
812 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
813 {
814 	if (error != 0)
815 		return;
816 
817 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
818 
819 	*(bus_addr_t *)arg = segs[0].ds_addr;
820 }
821 
822 /*
823  * Allocates a contiguous block of dma memory of the requested size and
824  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
825  * allocations greater than 4096 may fail. Hence if the requested alignment is
826  * greater we allocate 'alignment' size extra memory and shift the vaddr and
827  * paddr after the dma load. This bypasses the problem at the cost of a little
828  * more memory.
829  */
830 static int
831 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
832     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
833 {
834 	int error;
835 	bus_size_t align;
836 	bus_size_t reqsize;
837 
838 	DPRINTFN(WPI_DEBUG_DMA,
839 	    ("Size: %zd - alignment %zd\n", size, alignment));
840 
841 	dma->size = size;
842 	dma->tag = NULL;
843 
844 	if (alignment > 4096) {
845 		align = PAGE_SIZE;
846 		reqsize = size + alignment;
847 	} else {
848 		align = alignment;
849 		reqsize = size;
850 	}
851 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
852 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
853 	    NULL, NULL, reqsize,
854 	    1, reqsize, flags,
855 	    NULL, NULL, &dma->tag);
856 	if (error != 0) {
857 		device_printf(sc->sc_dev,
858 		    "could not create shared page DMA tag\n");
859 		goto fail;
860 	}
861 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
862 	    flags | BUS_DMA_ZERO, &dma->map);
863 	if (error != 0) {
864 		device_printf(sc->sc_dev,
865 		    "could not allocate shared page DMA memory\n");
866 		goto fail;
867 	}
868 
869 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
870 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
871 
872 	/* Save the original pointers so we can free all the memory */
873 	dma->paddr = dma->paddr_start;
874 	dma->vaddr = dma->vaddr_start;
875 
876 	/*
877 	 * Check the alignment and increment by 4096 until we get the
878 	 * requested alignment. Fail if can't obtain the alignment
879 	 * we requested.
880 	 */
881 	if ((dma->paddr & (alignment -1 )) != 0) {
882 		int i;
883 
884 		for (i = 0; i < alignment / 4096; i++) {
885 			if ((dma->paddr & (alignment - 1 )) == 0)
886 				break;
887 			dma->paddr += 4096;
888 			dma->vaddr += 4096;
889 		}
890 		if (i == alignment / 4096) {
891 			device_printf(sc->sc_dev,
892 			    "alignment requirement was not satisfied\n");
893 			goto fail;
894 		}
895 	}
896 
897 	if (error != 0) {
898 		device_printf(sc->sc_dev,
899 		    "could not load shared page DMA map\n");
900 		goto fail;
901 	}
902 
903 	if (kvap != NULL)
904 		*kvap = dma->vaddr;
905 
906 	return 0;
907 
908 fail:
909 	wpi_dma_contig_free(dma);
910 	return error;
911 }
912 
913 static void
914 wpi_dma_contig_free(struct wpi_dma_info *dma)
915 {
916 	if (dma->tag) {
917 		if (dma->map != NULL) {
918 			if (dma->paddr_start != 0) {
919 				bus_dmamap_sync(dma->tag, dma->map,
920 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
921 				bus_dmamap_unload(dma->tag, dma->map);
922 			}
923 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
924 		}
925 		bus_dma_tag_destroy(dma->tag);
926 	}
927 }
928 
929 /*
930  * Allocate a shared page between host and NIC.
931  */
932 static int
933 wpi_alloc_shared(struct wpi_softc *sc)
934 {
935 	int error;
936 
937 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
938 	    (void **)&sc->shared, sizeof (struct wpi_shared),
939 	    PAGE_SIZE,
940 	    BUS_DMA_NOWAIT);
941 
942 	if (error != 0) {
943 		device_printf(sc->sc_dev,
944 		    "could not allocate shared area DMA memory\n");
945 	}
946 
947 	return error;
948 }
949 
950 static void
951 wpi_free_shared(struct wpi_softc *sc)
952 {
953 	wpi_dma_contig_free(&sc->shared_dma);
954 }
955 
956 static int
957 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
958 {
959 
960 	int i, error;
961 
962 	ring->cur = 0;
963 
964 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
965 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
966 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
967 
968 	if (error != 0) {
969 		device_printf(sc->sc_dev,
970 		    "%s: could not allocate rx ring DMA memory, error %d\n",
971 		    __func__, error);
972 		goto fail;
973 	}
974 
975         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
976 	    BUS_SPACE_MAXADDR_32BIT,
977             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
978             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
979         if (error != 0) {
980                 device_printf(sc->sc_dev,
981 		    "%s: bus_dma_tag_create_failed, error %d\n",
982 		    __func__, error);
983                 goto fail;
984         }
985 
986 	/*
987 	 * Setup Rx buffers.
988 	 */
989 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
990 		struct wpi_rx_data *data = &ring->data[i];
991 		struct mbuf *m;
992 		bus_addr_t paddr;
993 
994 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
995 		if (error != 0) {
996 			device_printf(sc->sc_dev,
997 			    "%s: bus_dmamap_create failed, error %d\n",
998 			    __func__, error);
999 			goto fail;
1000 		}
1001 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1002 		if (m == NULL) {
1003 			device_printf(sc->sc_dev,
1004 			   "%s: could not allocate rx mbuf\n", __func__);
1005 			error = ENOMEM;
1006 			goto fail;
1007 		}
1008 		/* map page */
1009 		error = bus_dmamap_load(ring->data_dmat, data->map,
1010 		    mtod(m, caddr_t), MJUMPAGESIZE,
1011 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1012 		if (error != 0 && error != EFBIG) {
1013 			device_printf(sc->sc_dev,
1014 			    "%s: bus_dmamap_load failed, error %d\n",
1015 			    __func__, error);
1016 			m_freem(m);
1017 			error = ENOMEM;	/* XXX unique code */
1018 			goto fail;
1019 		}
1020 		bus_dmamap_sync(ring->data_dmat, data->map,
1021 		    BUS_DMASYNC_PREWRITE);
1022 
1023 		data->m = m;
1024 		ring->desc[i] = htole32(paddr);
1025 	}
1026 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1027 	    BUS_DMASYNC_PREWRITE);
1028 	return 0;
1029 fail:
1030 	wpi_free_rx_ring(sc, ring);
1031 	return error;
1032 }
1033 
1034 static void
1035 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1036 {
1037 	int ntries;
1038 
1039 	wpi_mem_lock(sc);
1040 
1041 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1042 
1043 	for (ntries = 0; ntries < 100; ntries++) {
1044 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1045 			break;
1046 		DELAY(10);
1047 	}
1048 
1049 	wpi_mem_unlock(sc);
1050 
1051 #ifdef WPI_DEBUG
1052 	if (ntries == 100)
1053 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1054 #endif
1055 
1056 	ring->cur = 0;
1057 }
1058 
1059 static void
1060 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1061 {
1062 	int i;
1063 
1064 	wpi_dma_contig_free(&ring->desc_dma);
1065 
1066 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1067 		if (ring->data[i].m != NULL)
1068 			m_freem(ring->data[i].m);
1069 }
1070 
1071 static int
1072 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1073 	int qid)
1074 {
1075 	struct wpi_tx_data *data;
1076 	int i, error;
1077 
1078 	ring->qid = qid;
1079 	ring->count = count;
1080 	ring->queued = 0;
1081 	ring->cur = 0;
1082 	ring->data = NULL;
1083 
1084 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1085 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1086 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1087 
1088 	if (error != 0) {
1089 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1090 	    goto fail;
1091 	}
1092 
1093 	/* update shared page with ring's base address */
1094 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1095 
1096 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1097 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1098 		BUS_DMA_NOWAIT);
1099 
1100 	if (error != 0) {
1101 		device_printf(sc->sc_dev,
1102 		    "could not allocate tx command DMA memory\n");
1103 		goto fail;
1104 	}
1105 
1106 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1107 	    M_NOWAIT | M_ZERO);
1108 	if (ring->data == NULL) {
1109 		device_printf(sc->sc_dev,
1110 		    "could not allocate tx data slots\n");
1111 		goto fail;
1112 	}
1113 
1114 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1115 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1116 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1117 	    &ring->data_dmat);
1118 	if (error != 0) {
1119 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1120 		goto fail;
1121 	}
1122 
1123 	for (i = 0; i < count; i++) {
1124 		data = &ring->data[i];
1125 
1126 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1127 		if (error != 0) {
1128 			device_printf(sc->sc_dev,
1129 			    "could not create tx buf DMA map\n");
1130 			goto fail;
1131 		}
1132 		bus_dmamap_sync(ring->data_dmat, data->map,
1133 		    BUS_DMASYNC_PREWRITE);
1134 	}
1135 
1136 	return 0;
1137 
1138 fail:
1139 	wpi_free_tx_ring(sc, ring);
1140 	return error;
1141 }
1142 
1143 static void
1144 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1145 {
1146 	struct wpi_tx_data *data;
1147 	int i, ntries;
1148 
1149 	wpi_mem_lock(sc);
1150 
1151 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1152 	for (ntries = 0; ntries < 100; ntries++) {
1153 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1154 			break;
1155 		DELAY(10);
1156 	}
1157 #ifdef WPI_DEBUG
1158 	if (ntries == 100)
1159 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1160 		    ring->qid);
1161 #endif
1162 	wpi_mem_unlock(sc);
1163 
1164 	for (i = 0; i < ring->count; i++) {
1165 		data = &ring->data[i];
1166 
1167 		if (data->m != NULL) {
1168 			bus_dmamap_unload(ring->data_dmat, data->map);
1169 			m_freem(data->m);
1170 			data->m = NULL;
1171 		}
1172 	}
1173 
1174 	ring->queued = 0;
1175 	ring->cur = 0;
1176 }
1177 
1178 static void
1179 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180 {
1181 	struct wpi_tx_data *data;
1182 	int i;
1183 
1184 	wpi_dma_contig_free(&ring->desc_dma);
1185 	wpi_dma_contig_free(&ring->cmd_dma);
1186 
1187 	if (ring->data != NULL) {
1188 		for (i = 0; i < ring->count; i++) {
1189 			data = &ring->data[i];
1190 
1191 			if (data->m != NULL) {
1192 				bus_dmamap_sync(ring->data_dmat, data->map,
1193 				    BUS_DMASYNC_POSTWRITE);
1194 				bus_dmamap_unload(ring->data_dmat, data->map);
1195 				m_freem(data->m);
1196 				data->m = NULL;
1197 			}
1198 		}
1199 		free(ring->data, M_DEVBUF);
1200 	}
1201 
1202 	if (ring->data_dmat != NULL)
1203 		bus_dma_tag_destroy(ring->data_dmat);
1204 }
1205 
1206 static int
1207 wpi_shutdown(device_t dev)
1208 {
1209 	struct wpi_softc *sc = device_get_softc(dev);
1210 
1211 	WPI_LOCK(sc);
1212 	wpi_stop_locked(sc);
1213 	wpi_unload_firmware(sc);
1214 	WPI_UNLOCK(sc);
1215 
1216 	return 0;
1217 }
1218 
1219 static int
1220 wpi_suspend(device_t dev)
1221 {
1222 	struct wpi_softc *sc = device_get_softc(dev);
1223 
1224 	wpi_stop(sc);
1225 	return 0;
1226 }
1227 
1228 static int
1229 wpi_resume(device_t dev)
1230 {
1231 	struct wpi_softc *sc = device_get_softc(dev);
1232 	struct ifnet *ifp = sc->sc_ifp;
1233 
1234 	pci_write_config(dev, 0x41, 0, 1);
1235 
1236 	if (ifp->if_flags & IFF_UP) {
1237 		wpi_init(ifp->if_softc);
1238 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1239 			wpi_start(ifp);
1240 	}
1241 	return 0;
1242 }
1243 
1244 /* ARGSUSED */
1245 static struct ieee80211_node *
1246 wpi_node_alloc(struct ieee80211_node_table *ic)
1247 {
1248 	struct wpi_node *wn;
1249 
1250 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1251 
1252 	return &wn->ni;
1253 }
1254 
1255 /**
1256  * Called by net80211 when ever there is a change to 80211 state machine
1257  */
1258 static int
1259 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1260 {
1261 	struct wpi_vap *wvp = WPI_VAP(vap);
1262 	struct ieee80211com *ic = vap->iv_ic;
1263 	struct ifnet *ifp = ic->ic_ifp;
1264 	struct wpi_softc *sc = ifp->if_softc;
1265 	int error;
1266 
1267 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1268 		ieee80211_state_name[vap->iv_state],
1269 		ieee80211_state_name[nstate], sc->flags));
1270 
1271 	if (nstate == IEEE80211_S_AUTH) {
1272 		/* Delay the auth transition until we can update the firmware */
1273 		error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1274 		return (error != 0 ? error : EINPROGRESS);
1275 	}
1276 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1277 		/* set the association id first */
1278 		error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL);
1279 		return (error != 0 ? error : EINPROGRESS);
1280 	}
1281 	if (nstate == IEEE80211_S_RUN) {
1282 		/* RUN -> RUN transition; just restart the timers */
1283 		wpi_calib_timeout(sc);
1284 		/* XXX split out rate control timer */
1285 	}
1286 	return wvp->newstate(vap, nstate, arg);
1287 }
1288 
1289 /*
1290  * Grab exclusive access to NIC memory.
1291  */
1292 static void
1293 wpi_mem_lock(struct wpi_softc *sc)
1294 {
1295 	int ntries;
1296 	uint32_t tmp;
1297 
1298 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1299 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1300 
1301 	/* spin until we actually get the lock */
1302 	for (ntries = 0; ntries < 100; ntries++) {
1303 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1304 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1305 			break;
1306 		DELAY(10);
1307 	}
1308 	if (ntries == 100)
1309 		device_printf(sc->sc_dev, "could not lock memory\n");
1310 }
1311 
1312 /*
1313  * Release lock on NIC memory.
1314  */
1315 static void
1316 wpi_mem_unlock(struct wpi_softc *sc)
1317 {
1318 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1319 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1320 }
1321 
1322 static uint32_t
1323 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1324 {
1325 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1326 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1327 }
1328 
1329 static void
1330 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1331 {
1332 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1333 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1334 }
1335 
1336 static void
1337 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1338     const uint32_t *data, int wlen)
1339 {
1340 	for (; wlen > 0; wlen--, data++, addr+=4)
1341 		wpi_mem_write(sc, addr, *data);
1342 }
1343 
1344 /*
1345  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1346  * using the traditional bit-bang method. Data is read up until len bytes have
1347  * been obtained.
1348  */
1349 static uint16_t
1350 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1351 {
1352 	int ntries;
1353 	uint32_t val;
1354 	uint8_t *out = data;
1355 
1356 	wpi_mem_lock(sc);
1357 
1358 	for (; len > 0; len -= 2, addr++) {
1359 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1360 
1361 		for (ntries = 0; ntries < 10; ntries++) {
1362 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1363 				break;
1364 			DELAY(5);
1365 		}
1366 
1367 		if (ntries == 10) {
1368 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1369 			return ETIMEDOUT;
1370 		}
1371 
1372 		*out++= val >> 16;
1373 		if (len > 1)
1374 			*out ++= val >> 24;
1375 	}
1376 
1377 	wpi_mem_unlock(sc);
1378 
1379 	return 0;
1380 }
1381 
1382 /*
1383  * The firmware text and data segments are transferred to the NIC using DMA.
1384  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1385  * where to find it.  Once the NIC has copied the firmware into its internal
1386  * memory, we can free our local copy in the driver.
1387  */
1388 static int
1389 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1390 {
1391 	int error, ntries;
1392 
1393 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1394 
1395 	size /= sizeof(uint32_t);
1396 
1397 	wpi_mem_lock(sc);
1398 
1399 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1400 	    (const uint32_t *)fw, size);
1401 
1402 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1403 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1404 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1405 
1406 	/* run microcode */
1407 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1408 
1409 	/* wait while the adapter is busy copying the firmware */
1410 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1411 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1412 		DPRINTFN(WPI_DEBUG_HW,
1413 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1414 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1415 		if (status & WPI_TX_IDLE(6)) {
1416 			DPRINTFN(WPI_DEBUG_HW,
1417 			    ("Status Match! - ntries = %d\n", ntries));
1418 			break;
1419 		}
1420 		DELAY(10);
1421 	}
1422 	if (ntries == 1000) {
1423 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1424 		error = ETIMEDOUT;
1425 	}
1426 
1427 	/* start the microcode executing */
1428 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1429 
1430 	wpi_mem_unlock(sc);
1431 
1432 	return (error);
1433 }
1434 
1435 static void
1436 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1437 	struct wpi_rx_data *data)
1438 {
1439 	struct ifnet *ifp = sc->sc_ifp;
1440 	struct ieee80211com *ic = ifp->if_l2com;
1441 	struct wpi_rx_ring *ring = &sc->rxq;
1442 	struct wpi_rx_stat *stat;
1443 	struct wpi_rx_head *head;
1444 	struct wpi_rx_tail *tail;
1445 	struct ieee80211_node *ni;
1446 	struct mbuf *m, *mnew;
1447 	bus_addr_t paddr;
1448 	int error;
1449 
1450 	stat = (struct wpi_rx_stat *)(desc + 1);
1451 
1452 	if (stat->len > WPI_STAT_MAXLEN) {
1453 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1454 		ifp->if_ierrors++;
1455 		return;
1456 	}
1457 
1458 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1459 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1460 
1461 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1462 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1463 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1464 	    (uintmax_t)le64toh(tail->tstamp)));
1465 
1466 	/* XXX don't need mbuf, just dma buffer */
1467 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1468 	if (mnew == NULL) {
1469 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1470 		    __func__));
1471 		ic->ic_stats.is_rx_nobuf++;
1472 		ifp->if_ierrors++;
1473 		return;
1474 	}
1475 	error = bus_dmamap_load(ring->data_dmat, data->map,
1476 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1477 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1478 	if (error != 0 && error != EFBIG) {
1479 		device_printf(sc->sc_dev,
1480 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1481 		m_freem(mnew);
1482 		ic->ic_stats.is_rx_nobuf++;	/* XXX need stat */
1483 		ifp->if_ierrors++;
1484 		return;
1485 	}
1486 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1487 
1488 	/* finalize mbuf and swap in new one */
1489 	m = data->m;
1490 	m->m_pkthdr.rcvif = ifp;
1491 	m->m_data = (caddr_t)(head + 1);
1492 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1493 
1494 	data->m = mnew;
1495 	/* update Rx descriptor */
1496 	ring->desc[ring->cur] = htole32(paddr);
1497 
1498 	if (bpf_peers_present(ifp->if_bpf)) {
1499 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1500 
1501 		tap->wr_flags = 0;
1502 		tap->wr_chan_freq =
1503 			htole16(ic->ic_channels[head->chan].ic_freq);
1504 		tap->wr_chan_flags =
1505 			htole16(ic->ic_channels[head->chan].ic_flags);
1506 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1507 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1508 		tap->wr_tsft = tail->tstamp;
1509 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1510 		switch (head->rate) {
1511 		/* CCK rates */
1512 		case  10: tap->wr_rate =   2; break;
1513 		case  20: tap->wr_rate =   4; break;
1514 		case  55: tap->wr_rate =  11; break;
1515 		case 110: tap->wr_rate =  22; break;
1516 		/* OFDM rates */
1517 		case 0xd: tap->wr_rate =  12; break;
1518 		case 0xf: tap->wr_rate =  18; break;
1519 		case 0x5: tap->wr_rate =  24; break;
1520 		case 0x7: tap->wr_rate =  36; break;
1521 		case 0x9: tap->wr_rate =  48; break;
1522 		case 0xb: tap->wr_rate =  72; break;
1523 		case 0x1: tap->wr_rate =  96; break;
1524 		case 0x3: tap->wr_rate = 108; break;
1525 		/* unknown rate: should not happen */
1526 		default:  tap->wr_rate =   0;
1527 		}
1528 		if (le16toh(head->flags) & 0x4)
1529 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1530 
1531 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1532 	}
1533 
1534 	WPI_UNLOCK(sc);
1535 
1536 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1537 	if (ni != NULL) {
1538 		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1539 		ieee80211_free_node(ni);
1540 	} else
1541 		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1542 
1543 	WPI_LOCK(sc);
1544 }
1545 
1546 static void
1547 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1548 {
1549 	struct ifnet *ifp = sc->sc_ifp;
1550 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1551 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1552 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1553 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1554 
1555 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1556 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1557 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1558 	    le32toh(stat->status)));
1559 
1560 	/*
1561 	 * Update rate control statistics for the node.
1562 	 * XXX we should not count mgmt frames since they're always sent at
1563 	 * the lowest available bit-rate.
1564 	 * XXX frames w/o ACK shouldn't be used either
1565 	 */
1566 	wn->amn.amn_txcnt++;
1567 	if (stat->ntries > 0) {
1568 		DPRINTFN(3, ("%d retries\n", stat->ntries));
1569 		wn->amn.amn_retrycnt++;
1570 	}
1571 
1572 	/* XXX oerrors should only count errors !maxtries */
1573 	if ((le32toh(stat->status) & 0xff) != 1)
1574 		ifp->if_oerrors++;
1575 	else
1576 		ifp->if_opackets++;
1577 
1578 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1579 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1580 	/* XXX handle M_TXCB? */
1581 	m_freem(txdata->m);
1582 	txdata->m = NULL;
1583 	ieee80211_free_node(txdata->ni);
1584 	txdata->ni = NULL;
1585 
1586 	ring->queued--;
1587 
1588 	sc->sc_tx_timer = 0;
1589 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1590 	wpi_start_locked(ifp);
1591 }
1592 
1593 static void
1594 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1595 {
1596 	struct wpi_tx_ring *ring = &sc->cmdq;
1597 	struct wpi_tx_data *data;
1598 
1599 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1600 				 "type=%s len=%d\n", desc->qid, desc->idx,
1601 				 desc->flags, wpi_cmd_str(desc->type),
1602 				 le32toh(desc->len)));
1603 
1604 	if ((desc->qid & 7) != 4)
1605 		return;	/* not a command ack */
1606 
1607 	data = &ring->data[desc->idx];
1608 
1609 	/* if the command was mapped in a mbuf, free it */
1610 	if (data->m != NULL) {
1611 		bus_dmamap_unload(ring->data_dmat, data->map);
1612 		m_freem(data->m);
1613 		data->m = NULL;
1614 	}
1615 
1616 	sc->flags &= ~WPI_FLAG_BUSY;
1617 	wakeup(&ring->cmd[desc->idx]);
1618 }
1619 
1620 static void
1621 wpi_notif_intr(struct wpi_softc *sc)
1622 {
1623 	struct ifnet *ifp = sc->sc_ifp;
1624 	struct ieee80211com *ic = ifp->if_l2com;
1625 	struct wpi_rx_desc *desc;
1626 	struct wpi_rx_data *data;
1627 	uint32_t hw;
1628 
1629 	hw = le32toh(sc->shared->next);
1630 	while (sc->rxq.cur != hw) {
1631 		data = &sc->rxq.data[sc->rxq.cur];
1632 		desc = (void *)data->m->m_ext.ext_buf;
1633 
1634 		DPRINTFN(WPI_DEBUG_NOTIFY,
1635 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1636 			  desc->qid,
1637 			  desc->idx,
1638 			  desc->flags,
1639 			  desc->type,
1640 			  le32toh(desc->len)));
1641 
1642 		if (!(desc->qid & 0x80))	/* reply to a command */
1643 			wpi_cmd_intr(sc, desc);
1644 
1645 		switch (desc->type) {
1646 		case WPI_RX_DONE:
1647 			/* a 802.11 frame was received */
1648 			wpi_rx_intr(sc, desc, data);
1649 			break;
1650 
1651 		case WPI_TX_DONE:
1652 			/* a 802.11 frame has been transmitted */
1653 			wpi_tx_intr(sc, desc);
1654 			break;
1655 
1656 		case WPI_UC_READY:
1657 		{
1658 			struct wpi_ucode_info *uc =
1659 				(struct wpi_ucode_info *)(desc + 1);
1660 
1661 			/* the microcontroller is ready */
1662 			DPRINTF(("microcode alive notification version %x "
1663 				"alive %x\n", le32toh(uc->version),
1664 				le32toh(uc->valid)));
1665 
1666 			if (le32toh(uc->valid) != 1) {
1667 				device_printf(sc->sc_dev,
1668 				    "microcontroller initialization failed\n");
1669 				wpi_stop_locked(sc);
1670 			}
1671 			break;
1672 		}
1673 		case WPI_STATE_CHANGED:
1674 		{
1675 			uint32_t *status = (uint32_t *)(desc + 1);
1676 
1677 			/* enabled/disabled notification */
1678 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1679 
1680 			if (le32toh(*status) & 1) {
1681 				device_printf(sc->sc_dev,
1682 				    "Radio transmitter is switched off\n");
1683 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1684 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1685 				/* Disable firmware commands */
1686 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1687 			}
1688 			break;
1689 		}
1690 		case WPI_START_SCAN:
1691 		{
1692 			struct wpi_start_scan *scan =
1693 				(struct wpi_start_scan *)(desc + 1);
1694 
1695 			DPRINTFN(WPI_DEBUG_SCANNING,
1696 				 ("scanning channel %d status %x\n",
1697 			    scan->chan, le32toh(scan->status)));
1698 			break;
1699 		}
1700 		case WPI_STOP_SCAN:
1701 		{
1702 			struct wpi_stop_scan *scan =
1703 				(struct wpi_stop_scan *)(desc + 1);
1704 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1705 
1706 			DPRINTFN(WPI_DEBUG_SCANNING,
1707 			    ("scan finished nchan=%d status=%d chan=%d\n",
1708 			     scan->nchan, scan->status, scan->chan));
1709 
1710 			sc->sc_scan_timer = 0;
1711 			ieee80211_scan_next(vap);
1712 			break;
1713 		}
1714 		case WPI_MISSED_BEACON:
1715 		{
1716 			struct wpi_missed_beacon *beacon =
1717 				(struct wpi_missed_beacon *)(desc + 1);
1718 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1719 
1720 			if (le32toh(beacon->consecutive) >=
1721 			    vap->iv_bmissthreshold) {
1722 				DPRINTF(("Beacon miss: %u >= %u\n",
1723 					 le32toh(beacon->consecutive),
1724 					 vap->iv_bmissthreshold));
1725 				ieee80211_beacon_miss(ic);
1726 			}
1727 			break;
1728 		}
1729 		}
1730 
1731 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1732 	}
1733 
1734 	/* tell the firmware what we have processed */
1735 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1736 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1737 }
1738 
1739 static void
1740 wpi_intr(void *arg)
1741 {
1742 	struct wpi_softc *sc = arg;
1743 	uint32_t r;
1744 
1745 	WPI_LOCK(sc);
1746 
1747 	r = WPI_READ(sc, WPI_INTR);
1748 	if (r == 0 || r == 0xffffffff) {
1749 		WPI_UNLOCK(sc);
1750 		return;
1751 	}
1752 
1753 	/* disable interrupts */
1754 	WPI_WRITE(sc, WPI_MASK, 0);
1755 	/* ack interrupts */
1756 	WPI_WRITE(sc, WPI_INTR, r);
1757 
1758 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1759 		device_printf(sc->sc_dev, "fatal firmware error\n");
1760 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1761 				"(Hardware Error)"));
1762 		wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1763 		sc->flags &= ~WPI_FLAG_BUSY;
1764 		WPI_UNLOCK(sc);
1765 		return;
1766 	}
1767 
1768 	if (r & WPI_RX_INTR)
1769 		wpi_notif_intr(sc);
1770 
1771 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1772 		wakeup(sc);
1773 
1774 	/* re-enable interrupts */
1775 	if (sc->sc_ifp->if_flags & IFF_UP)
1776 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1777 
1778 	WPI_UNLOCK(sc);
1779 }
1780 
1781 static uint8_t
1782 wpi_plcp_signal(int rate)
1783 {
1784 	switch (rate) {
1785 	/* CCK rates (returned values are device-dependent) */
1786 	case 2:		return 10;
1787 	case 4:		return 20;
1788 	case 11:	return 55;
1789 	case 22:	return 110;
1790 
1791 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1792 	/* R1-R4 (ral/ural is R4-R1) */
1793 	case 12:	return 0xd;
1794 	case 18:	return 0xf;
1795 	case 24:	return 0x5;
1796 	case 36:	return 0x7;
1797 	case 48:	return 0x9;
1798 	case 72:	return 0xb;
1799 	case 96:	return 0x1;
1800 	case 108:	return 0x3;
1801 
1802 	/* unsupported rates (should not get there) */
1803 	default:	return 0;
1804 	}
1805 }
1806 
1807 /* quickly determine if a given rate is CCK or OFDM */
1808 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1809 
1810 /*
1811  * Construct the data packet for a transmit buffer and acutally put
1812  * the buffer onto the transmit ring, kicking the card to process the
1813  * the buffer.
1814  */
1815 static int
1816 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1817 	int ac)
1818 {
1819 	struct ieee80211vap *vap = ni->ni_vap;
1820 	struct ifnet *ifp = sc->sc_ifp;
1821 	struct ieee80211com *ic = ifp->if_l2com;
1822 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1823 	struct wpi_tx_ring *ring = &sc->txq[ac];
1824 	struct wpi_tx_desc *desc;
1825 	struct wpi_tx_data *data;
1826 	struct wpi_tx_cmd *cmd;
1827 	struct wpi_cmd_data *tx;
1828 	struct ieee80211_frame *wh;
1829 	const struct ieee80211_txparam *tp;
1830 	struct ieee80211_key *k;
1831 	struct mbuf *mnew;
1832 	int i, error, nsegs, rate, hdrlen, ismcast;
1833 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1834 
1835 	desc = &ring->desc[ring->cur];
1836 	data = &ring->data[ring->cur];
1837 
1838 	wh = mtod(m0, struct ieee80211_frame *);
1839 
1840 	hdrlen = ieee80211_hdrsize(wh);
1841 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1842 
1843 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1844 		k = ieee80211_crypto_encap(ni, m0);
1845 		if (k == NULL) {
1846 			m_freem(m0);
1847 			return ENOBUFS;
1848 		}
1849 		/* packet header may have moved, reset our local pointer */
1850 		wh = mtod(m0, struct ieee80211_frame *);
1851 	}
1852 
1853 	cmd = &ring->cmd[ring->cur];
1854 	cmd->code = WPI_CMD_TX_DATA;
1855 	cmd->flags = 0;
1856 	cmd->qid = ring->qid;
1857 	cmd->idx = ring->cur;
1858 
1859 	tx = (struct wpi_cmd_data *)cmd->data;
1860 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1861 	tx->timeout = htole16(0);
1862 	tx->ofdm_mask = 0xff;
1863 	tx->cck_mask = 0x0f;
1864 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1865 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1866 	tx->len = htole16(m0->m_pkthdr.len);
1867 
1868 	if (!ismcast) {
1869 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1870 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1871 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1872 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1873 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1874 			tx->rts_ntries = 7;
1875 		}
1876 	}
1877 	/* pick a rate */
1878 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1879 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1880 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1881 		/* tell h/w to set timestamp in probe responses */
1882 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1883 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1884 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1885 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1886 			tx->timeout = htole16(3);
1887 		else
1888 			tx->timeout = htole16(2);
1889 		rate = tp->mgmtrate;
1890 	} else if (ismcast) {
1891 		rate = tp->mcastrate;
1892 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1893 		rate = tp->ucastrate;
1894 	} else {
1895 		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1896 		rate = ni->ni_txrate;
1897 	}
1898 	tx->rate = wpi_plcp_signal(rate);
1899 
1900 	/* be very persistant at sending frames out */
1901 #if 0
1902 	tx->data_ntries = tp->maxretry;
1903 #else
1904 	tx->data_ntries = 15;		/* XXX way too high */
1905 #endif
1906 
1907 	if (bpf_peers_present(ifp->if_bpf)) {
1908 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1909 		tap->wt_flags = 0;
1910 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1911 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1912 		tap->wt_rate = rate;
1913 		tap->wt_hwqueue = ac;
1914 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1915 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1916 
1917 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1918 	}
1919 
1920 	/* save and trim IEEE802.11 header */
1921 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1922 	m_adj(m0, hdrlen);
1923 
1924 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1925 	    &nsegs, BUS_DMA_NOWAIT);
1926 	if (error != 0 && error != EFBIG) {
1927 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1928 		    error);
1929 		m_freem(m0);
1930 		return error;
1931 	}
1932 	if (error != 0) {
1933 		/* XXX use m_collapse */
1934 		mnew = m_defrag(m0, M_DONTWAIT);
1935 		if (mnew == NULL) {
1936 			device_printf(sc->sc_dev,
1937 			    "could not defragment mbuf\n");
1938 			m_freem(m0);
1939 			return ENOBUFS;
1940 		}
1941 		m0 = mnew;
1942 
1943 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1944 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1945 		if (error != 0) {
1946 			device_printf(sc->sc_dev,
1947 			    "could not map mbuf (error %d)\n", error);
1948 			m_freem(m0);
1949 			return error;
1950 		}
1951 	}
1952 
1953 	data->m = m0;
1954 	data->ni = ni;
1955 
1956 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1957 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1958 
1959 	/* first scatter/gather segment is used by the tx data command */
1960 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1961 	    (1 + nsegs) << 24);
1962 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1963 	    ring->cur * sizeof (struct wpi_tx_cmd));
1964 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1965 	for (i = 1; i <= nsegs; i++) {
1966 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1967 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1968 	}
1969 
1970 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1971 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1972 	    BUS_DMASYNC_PREWRITE);
1973 
1974 	ring->queued++;
1975 
1976 	/* kick ring */
1977 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1978 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1979 
1980 	return 0;
1981 }
1982 
1983 /**
1984  * Process data waiting to be sent on the IFNET output queue
1985  */
1986 static void
1987 wpi_start(struct ifnet *ifp)
1988 {
1989 	struct wpi_softc *sc = ifp->if_softc;
1990 
1991 	WPI_LOCK(sc);
1992 	wpi_start_locked(ifp);
1993 	WPI_UNLOCK(sc);
1994 }
1995 
1996 static void
1997 wpi_start_locked(struct ifnet *ifp)
1998 {
1999 	struct wpi_softc *sc = ifp->if_softc;
2000 	struct ieee80211_node *ni;
2001 	struct mbuf *m;
2002 	int ac;
2003 
2004 	WPI_LOCK_ASSERT(sc);
2005 
2006 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2007 		return;
2008 
2009 	for (;;) {
2010 		IFQ_POLL(&ifp->if_snd, m);
2011 		if (m == NULL)
2012 			break;
2013 		/* no QoS encapsulation for EAPOL frames */
2014 		ac = M_WME_GETAC(m);
2015 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2016 			/* there is no place left in this ring */
2017 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2018 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2019 			break;
2020 		}
2021 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2022 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2023 		m = ieee80211_encap(ni, m);
2024 		if (m == NULL) {
2025 			ieee80211_free_node(ni);
2026 			ifp->if_oerrors++;
2027 			continue;
2028 		}
2029 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2030 			ieee80211_free_node(ni);
2031 			ifp->if_oerrors++;
2032 			break;
2033 		}
2034 		sc->sc_tx_timer = 5;
2035 	}
2036 }
2037 
2038 static int
2039 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2040 	const struct ieee80211_bpf_params *params)
2041 {
2042 	struct ieee80211com *ic = ni->ni_ic;
2043 	struct ifnet *ifp = ic->ic_ifp;
2044 	struct wpi_softc *sc = ifp->if_softc;
2045 
2046 	/* prevent management frames from being sent if we're not ready */
2047 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2048 		m_freem(m);
2049 		ieee80211_free_node(ni);
2050 		return ENETDOWN;
2051 	}
2052 	WPI_LOCK(sc);
2053 
2054 	/* management frames go into ring 0 */
2055 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2056 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2057 		m_freem(m);
2058 		WPI_UNLOCK(sc);
2059 		ieee80211_free_node(ni);
2060 		return ENOBUFS;		/* XXX */
2061 	}
2062 
2063 	ifp->if_opackets++;
2064 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2065 		goto bad;
2066 	sc->sc_tx_timer = 5;
2067 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2068 
2069 	WPI_UNLOCK(sc);
2070 	return 0;
2071 bad:
2072 	ifp->if_oerrors++;
2073 	WPI_UNLOCK(sc);
2074 	ieee80211_free_node(ni);
2075 	return EIO;		/* XXX */
2076 }
2077 
2078 static int
2079 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2080 {
2081 	struct wpi_softc *sc = ifp->if_softc;
2082 	struct ieee80211com *ic = ifp->if_l2com;
2083 	struct ifreq *ifr = (struct ifreq *) data;
2084 	int error = 0, startall = 0;
2085 
2086 	WPI_LOCK(sc);
2087 	switch (cmd) {
2088 	case SIOCSIFFLAGS:
2089 		if ((ifp->if_flags & IFF_UP)) {
2090 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2091 				wpi_init_locked(sc, 0);
2092 				startall = 1;
2093 			}
2094 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2095 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2096 			wpi_stop_locked(sc);
2097 		break;
2098 	case SIOCGIFMEDIA:
2099 	case SIOCSIFMEDIA:
2100 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2101 		break;
2102 	default:
2103 		error = ether_ioctl(ifp, cmd, data);
2104 		break;
2105 	}
2106 	WPI_UNLOCK(sc);
2107 
2108 	if (startall)
2109 		ieee80211_start_all(ic);
2110 	return error;
2111 }
2112 
2113 /*
2114  * Extract various information from EEPROM.
2115  */
2116 static void
2117 wpi_read_eeprom(struct wpi_softc *sc)
2118 {
2119 	struct ifnet *ifp = sc->sc_ifp;
2120 	struct ieee80211com *ic = ifp->if_l2com;
2121 	int i;
2122 
2123 	/* read the hardware capabilities, revision and SKU type */
2124 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2125 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2126 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2127 
2128 	/* read the regulatory domain */
2129 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2130 
2131 	/* read in the hw MAC address */
2132 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2133 
2134 	/* read the list of authorized channels */
2135 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2136 		wpi_read_eeprom_channels(sc,i);
2137 
2138 	/* read the power level calibration info for each group */
2139 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2140 		wpi_read_eeprom_group(sc,i);
2141 }
2142 
2143 /*
2144  * Send a command to the firmware.
2145  */
2146 static int
2147 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2148 {
2149 	struct wpi_tx_ring *ring = &sc->cmdq;
2150 	struct wpi_tx_desc *desc;
2151 	struct wpi_tx_cmd *cmd;
2152 
2153 #ifdef WPI_DEBUG
2154 	if (!async) {
2155 		WPI_LOCK_ASSERT(sc);
2156 	}
2157 #endif
2158 
2159 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2160 		    async));
2161 
2162 	if (sc->flags & WPI_FLAG_BUSY) {
2163 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2164 		    __func__, code);
2165 		return EAGAIN;
2166 	}
2167 	sc->flags|= WPI_FLAG_BUSY;
2168 
2169 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2170 	    code, size));
2171 
2172 	desc = &ring->desc[ring->cur];
2173 	cmd = &ring->cmd[ring->cur];
2174 
2175 	cmd->code = code;
2176 	cmd->flags = 0;
2177 	cmd->qid = ring->qid;
2178 	cmd->idx = ring->cur;
2179 	memcpy(cmd->data, buf, size);
2180 
2181 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2182 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2183 		ring->cur * sizeof (struct wpi_tx_cmd));
2184 	desc->segs[0].len  = htole32(4 + size);
2185 
2186 	/* kick cmd ring */
2187 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2188 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2189 
2190 	if (async) {
2191 		sc->flags &= ~ WPI_FLAG_BUSY;
2192 		return 0;
2193 	}
2194 
2195 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2196 }
2197 
2198 static int
2199 wpi_wme_update(struct ieee80211com *ic)
2200 {
2201 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2202 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2203 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2204 	const struct wmeParams *wmep;
2205 	struct wpi_wme_setup wme;
2206 	int ac;
2207 
2208 	/* don't override default WME values if WME is not actually enabled */
2209 	if (!(ic->ic_flags & IEEE80211_F_WME))
2210 		return 0;
2211 
2212 	wme.flags = 0;
2213 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2214 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2215 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2216 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2217 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2218 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2219 
2220 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2221 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2222 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2223 	}
2224 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2225 #undef WPI_USEC
2226 #undef WPI_EXP2
2227 }
2228 
2229 /*
2230  * Configure h/w multi-rate retries.
2231  */
2232 static int
2233 wpi_mrr_setup(struct wpi_softc *sc)
2234 {
2235 	struct ifnet *ifp = sc->sc_ifp;
2236 	struct ieee80211com *ic = ifp->if_l2com;
2237 	struct wpi_mrr_setup mrr;
2238 	int i, error;
2239 
2240 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2241 
2242 	/* CCK rates (not used with 802.11a) */
2243 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2244 		mrr.rates[i].flags = 0;
2245 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2246 		/* fallback to the immediate lower CCK rate (if any) */
2247 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2248 		/* try one time at this rate before falling back to "next" */
2249 		mrr.rates[i].ntries = 1;
2250 	}
2251 
2252 	/* OFDM rates (not used with 802.11b) */
2253 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2254 		mrr.rates[i].flags = 0;
2255 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2256 		/* fallback to the immediate lower OFDM rate (if any) */
2257 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2258 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2259 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2260 			WPI_OFDM6 : WPI_CCK2) :
2261 		    i - 1;
2262 		/* try one time at this rate before falling back to "next" */
2263 		mrr.rates[i].ntries = 1;
2264 	}
2265 
2266 	/* setup MRR for control frames */
2267 	mrr.which = htole32(WPI_MRR_CTL);
2268 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2269 	if (error != 0) {
2270 		device_printf(sc->sc_dev,
2271 		    "could not setup MRR for control frames\n");
2272 		return error;
2273 	}
2274 
2275 	/* setup MRR for data frames */
2276 	mrr.which = htole32(WPI_MRR_DATA);
2277 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2278 	if (error != 0) {
2279 		device_printf(sc->sc_dev,
2280 		    "could not setup MRR for data frames\n");
2281 		return error;
2282 	}
2283 
2284 	return 0;
2285 }
2286 
2287 static void
2288 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2289 {
2290 	struct wpi_cmd_led led;
2291 
2292 	led.which = which;
2293 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2294 	led.off = off;
2295 	led.on = on;
2296 
2297 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2298 }
2299 
2300 static void
2301 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2302 {
2303 	struct wpi_cmd_tsf tsf;
2304 	uint64_t val, mod;
2305 
2306 	memset(&tsf, 0, sizeof tsf);
2307 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2308 	tsf.bintval = htole16(ni->ni_intval);
2309 	tsf.lintval = htole16(10);
2310 
2311 	/* compute remaining time until next beacon */
2312 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2313 	mod = le64toh(tsf.tstamp) % val;
2314 	tsf.binitval = htole32((uint32_t)(val - mod));
2315 
2316 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2317 		device_printf(sc->sc_dev, "could not enable TSF\n");
2318 }
2319 
2320 #if 0
2321 /*
2322  * Build a beacon frame that the firmware will broadcast periodically in
2323  * IBSS or HostAP modes.
2324  */
2325 static int
2326 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2327 {
2328 	struct ifnet *ifp = sc->sc_ifp;
2329 	struct ieee80211com *ic = ifp->if_l2com;
2330 	struct wpi_tx_ring *ring = &sc->cmdq;
2331 	struct wpi_tx_desc *desc;
2332 	struct wpi_tx_data *data;
2333 	struct wpi_tx_cmd *cmd;
2334 	struct wpi_cmd_beacon *bcn;
2335 	struct ieee80211_beacon_offsets bo;
2336 	struct mbuf *m0;
2337 	bus_addr_t physaddr;
2338 	int error;
2339 
2340 	desc = &ring->desc[ring->cur];
2341 	data = &ring->data[ring->cur];
2342 
2343 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2344 	if (m0 == NULL) {
2345 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2346 		return ENOMEM;
2347 	}
2348 
2349 	cmd = &ring->cmd[ring->cur];
2350 	cmd->code = WPI_CMD_SET_BEACON;
2351 	cmd->flags = 0;
2352 	cmd->qid = ring->qid;
2353 	cmd->idx = ring->cur;
2354 
2355 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2356 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2357 	bcn->id = WPI_ID_BROADCAST;
2358 	bcn->ofdm_mask = 0xff;
2359 	bcn->cck_mask = 0x0f;
2360 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2361 	bcn->len = htole16(m0->m_pkthdr.len);
2362 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2363 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2364 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2365 
2366 	/* save and trim IEEE802.11 header */
2367 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2368 	m_adj(m0, sizeof (struct ieee80211_frame));
2369 
2370 	/* assume beacon frame is contiguous */
2371 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2372 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2373 	if (error != 0) {
2374 		device_printf(sc->sc_dev, "could not map beacon\n");
2375 		m_freem(m0);
2376 		return error;
2377 	}
2378 
2379 	data->m = m0;
2380 
2381 	/* first scatter/gather segment is used by the beacon command */
2382 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2383 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2384 		ring->cur * sizeof (struct wpi_tx_cmd));
2385 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2386 	desc->segs[1].addr = htole32(physaddr);
2387 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2388 
2389 	/* kick cmd ring */
2390 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2391 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2392 
2393 	return 0;
2394 }
2395 #endif
2396 
2397 static int
2398 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2399 {
2400 	struct ieee80211com *ic = vap->iv_ic;
2401 	struct ieee80211_node *ni = vap->iv_bss;
2402 	struct wpi_node_info node;
2403 	int error;
2404 
2405 
2406 	/* update adapter's configuration */
2407 	sc->config.associd = 0;
2408 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2409 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2410 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2411 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2412 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2413 		    WPI_CONFIG_24GHZ);
2414 	}
2415 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2416 		sc->config.cck_mask  = 0;
2417 		sc->config.ofdm_mask = 0x15;
2418 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2419 		sc->config.cck_mask  = 0x03;
2420 		sc->config.ofdm_mask = 0;
2421 	} else {
2422 		/* XXX assume 802.11b/g */
2423 		sc->config.cck_mask  = 0x0f;
2424 		sc->config.ofdm_mask = 0x15;
2425 	}
2426 
2427 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2428 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2429 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2430 		sizeof (struct wpi_config), 1);
2431 	if (error != 0) {
2432 		device_printf(sc->sc_dev, "could not configure\n");
2433 		return error;
2434 	}
2435 
2436 	/* configuration has changed, set Tx power accordingly */
2437 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2438 		device_printf(sc->sc_dev, "could not set Tx power\n");
2439 		return error;
2440 	}
2441 
2442 	/* add default node */
2443 	memset(&node, 0, sizeof node);
2444 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2445 	node.id = WPI_ID_BSS;
2446 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2447 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2448 	node.action = htole32(WPI_ACTION_SET_RATE);
2449 	node.antenna = WPI_ANTENNA_BOTH;
2450 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2451 	if (error != 0)
2452 		device_printf(sc->sc_dev, "could not add BSS node\n");
2453 
2454 	return (error);
2455 }
2456 
2457 static int
2458 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2459 {
2460 	struct ieee80211com *ic = vap->iv_ic;
2461 	struct ieee80211_node *ni = vap->iv_bss;
2462 	int error;
2463 
2464 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2465 		/* link LED blinks while monitoring */
2466 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2467 		return 0;
2468 	}
2469 
2470 	wpi_enable_tsf(sc, ni);
2471 
2472 	/* update adapter's configuration */
2473 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2474 	/* short preamble/slot time are negotiated when associating */
2475 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2476 	    WPI_CONFIG_SHSLOT);
2477 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2478 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2479 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2480 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2481 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2482 
2483 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2484 
2485 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2486 		    sc->config.flags));
2487 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2488 		    wpi_config), 1);
2489 	if (error != 0) {
2490 		device_printf(sc->sc_dev, "could not update configuration\n");
2491 		return error;
2492 	}
2493 
2494 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2495 	if (error != 0) {
2496 		device_printf(sc->sc_dev, "could set txpower\n");
2497 		return error;
2498 	}
2499 
2500 	if (vap->iv_opmode == IEEE80211_M_STA) {
2501 		/* fake a join to init the tx rate */
2502 		wpi_newassoc(ni, 1);
2503 	}
2504 
2505 	/* link LED always on while associated */
2506 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2507 
2508 	/* start automatic rate control timer */
2509 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2510 
2511 	return (error);
2512 }
2513 
2514 /*
2515  * Send a scan request to the firmware.  Since this command is huge, we map it
2516  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2517  * much of this code is similar to that in wpi_cmd but because we must manually
2518  * construct the probe & channels, we duplicate what's needed here. XXX In the
2519  * future, this function should be modified to use wpi_cmd to help cleanup the
2520  * code base.
2521  */
2522 static int
2523 wpi_scan(struct wpi_softc *sc)
2524 {
2525 	struct ifnet *ifp = sc->sc_ifp;
2526 	struct ieee80211com *ic = ifp->if_l2com;
2527 	struct ieee80211_scan_state *ss = ic->ic_scan;
2528 	struct wpi_tx_ring *ring = &sc->cmdq;
2529 	struct wpi_tx_desc *desc;
2530 	struct wpi_tx_data *data;
2531 	struct wpi_tx_cmd *cmd;
2532 	struct wpi_scan_hdr *hdr;
2533 	struct wpi_scan_chan *chan;
2534 	struct ieee80211_frame *wh;
2535 	struct ieee80211_rateset *rs;
2536 	struct ieee80211_channel *c;
2537 	enum ieee80211_phymode mode;
2538 	uint8_t *frm;
2539 	int nrates, pktlen, error, i, nssid;
2540 	bus_addr_t physaddr;
2541 
2542 	desc = &ring->desc[ring->cur];
2543 	data = &ring->data[ring->cur];
2544 
2545 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2546 	if (data->m == NULL) {
2547 		device_printf(sc->sc_dev,
2548 		    "could not allocate mbuf for scan command\n");
2549 		return ENOMEM;
2550 	}
2551 
2552 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2553 	cmd->code = WPI_CMD_SCAN;
2554 	cmd->flags = 0;
2555 	cmd->qid = ring->qid;
2556 	cmd->idx = ring->cur;
2557 
2558 	hdr = (struct wpi_scan_hdr *)cmd->data;
2559 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2560 
2561 	/*
2562 	 * Move to the next channel if no packets are received within 5 msecs
2563 	 * after sending the probe request (this helps to reduce the duration
2564 	 * of active scans).
2565 	 */
2566 	hdr->quiet = htole16(5);
2567 	hdr->threshold = htole16(1);
2568 
2569 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2570 		/* send probe requests at 6Mbps */
2571 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2572 
2573 		/* Enable crc checking */
2574 		hdr->promotion = htole16(1);
2575 	} else {
2576 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2577 		/* send probe requests at 1Mbps */
2578 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2579 	}
2580 	hdr->tx.id = WPI_ID_BROADCAST;
2581 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2582 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2583 
2584 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2585 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2586 	for (i = 0; i < nssid; i++) {
2587 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2588 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2589 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2590 		    hdr->scan_essids[i].esslen);
2591 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2592 			printf("Scanning Essid: ");
2593 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2594 			    hdr->scan_essids[i].esslen);
2595 			printf("\n");
2596 		}
2597 	}
2598 
2599 	/*
2600 	 * Build a probe request frame.  Most of the following code is a
2601 	 * copy & paste of what is done in net80211.
2602 	 */
2603 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2604 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2605 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2606 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2607 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2608 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2609 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2610 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2611 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2612 
2613 	frm = (uint8_t *)(wh + 1);
2614 
2615 	/* add essid IE, the hardware will fill this in for us */
2616 	*frm++ = IEEE80211_ELEMID_SSID;
2617 	*frm++ = 0;
2618 
2619 	mode = ieee80211_chan2mode(ic->ic_curchan);
2620 	rs = &ic->ic_sup_rates[mode];
2621 
2622 	/* add supported rates IE */
2623 	*frm++ = IEEE80211_ELEMID_RATES;
2624 	nrates = rs->rs_nrates;
2625 	if (nrates > IEEE80211_RATE_SIZE)
2626 		nrates = IEEE80211_RATE_SIZE;
2627 	*frm++ = nrates;
2628 	memcpy(frm, rs->rs_rates, nrates);
2629 	frm += nrates;
2630 
2631 	/* add supported xrates IE */
2632 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2633 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2634 		*frm++ = IEEE80211_ELEMID_XRATES;
2635 		*frm++ = nrates;
2636 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2637 		frm += nrates;
2638 	}
2639 
2640 	/* setup length of probe request */
2641 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2642 
2643 	/*
2644 	 * Construct information about the channel that we
2645 	 * want to scan. The firmware expects this to be directly
2646 	 * after the scan probe request
2647 	 */
2648 	c = ic->ic_curchan;
2649 	chan = (struct wpi_scan_chan *)frm;
2650 	chan->chan = ieee80211_chan2ieee(ic, c);
2651 	chan->flags = 0;
2652 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2653 		chan->flags |= WPI_CHAN_ACTIVE;
2654 		if (nssid != 0)
2655 			chan->flags |= WPI_CHAN_DIRECT;
2656 	}
2657 	chan->gain_dsp = 0x6e; /* Default level */
2658 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2659 		chan->active = htole16(10);
2660 		chan->passive = htole16(ss->ss_maxdwell);
2661 		chan->gain_radio = 0x3b;
2662 	} else {
2663 		chan->active = htole16(20);
2664 		chan->passive = htole16(ss->ss_maxdwell);
2665 		chan->gain_radio = 0x28;
2666 	}
2667 
2668 	DPRINTFN(WPI_DEBUG_SCANNING,
2669 	    ("Scanning %u Passive: %d\n",
2670 	     chan->chan,
2671 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2672 
2673 	hdr->nchan++;
2674 	chan++;
2675 
2676 	frm += sizeof (struct wpi_scan_chan);
2677 #if 0
2678 	// XXX All Channels....
2679 	for (c  = &ic->ic_channels[1];
2680 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2681 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2682 			continue;
2683 
2684 		chan->chan = ieee80211_chan2ieee(ic, c);
2685 		chan->flags = 0;
2686 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2687 		    chan->flags |= WPI_CHAN_ACTIVE;
2688 		    if (ic->ic_des_ssid[0].len != 0)
2689 			chan->flags |= WPI_CHAN_DIRECT;
2690 		}
2691 		chan->gain_dsp = 0x6e; /* Default level */
2692 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2693 			chan->active = htole16(10);
2694 			chan->passive = htole16(110);
2695 			chan->gain_radio = 0x3b;
2696 		} else {
2697 			chan->active = htole16(20);
2698 			chan->passive = htole16(120);
2699 			chan->gain_radio = 0x28;
2700 		}
2701 
2702 		DPRINTFN(WPI_DEBUG_SCANNING,
2703 			 ("Scanning %u Passive: %d\n",
2704 			  chan->chan,
2705 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2706 
2707 		hdr->nchan++;
2708 		chan++;
2709 
2710 		frm += sizeof (struct wpi_scan_chan);
2711 	}
2712 #endif
2713 
2714 	hdr->len = htole16(frm - (uint8_t *)hdr);
2715 	pktlen = frm - (uint8_t *)cmd;
2716 
2717 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2718 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2719 	if (error != 0) {
2720 		device_printf(sc->sc_dev, "could not map scan command\n");
2721 		m_freem(data->m);
2722 		data->m = NULL;
2723 		return error;
2724 	}
2725 
2726 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2727 	desc->segs[0].addr = htole32(physaddr);
2728 	desc->segs[0].len  = htole32(pktlen);
2729 
2730 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2731 	    BUS_DMASYNC_PREWRITE);
2732 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2733 
2734 	/* kick cmd ring */
2735 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2736 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2737 
2738 	sc->sc_scan_timer = 5;
2739 	return 0;	/* will be notified async. of failure/success */
2740 }
2741 
2742 /**
2743  * Configure the card to listen to a particular channel, this transisions the
2744  * card in to being able to receive frames from remote devices.
2745  */
2746 static int
2747 wpi_config(struct wpi_softc *sc)
2748 {
2749 	struct ifnet *ifp = sc->sc_ifp;
2750 	struct ieee80211com *ic = ifp->if_l2com;
2751 	struct wpi_power power;
2752 	struct wpi_bluetooth bluetooth;
2753 	struct wpi_node_info node;
2754 	int error;
2755 
2756 	/* set power mode */
2757 	memset(&power, 0, sizeof power);
2758 	power.flags = htole32(WPI_POWER_CAM|0x8);
2759 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2760 	if (error != 0) {
2761 		device_printf(sc->sc_dev, "could not set power mode\n");
2762 		return error;
2763 	}
2764 
2765 	/* configure bluetooth coexistence */
2766 	memset(&bluetooth, 0, sizeof bluetooth);
2767 	bluetooth.flags = 3;
2768 	bluetooth.lead = 0xaa;
2769 	bluetooth.kill = 1;
2770 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2771 	    0);
2772 	if (error != 0) {
2773 		device_printf(sc->sc_dev,
2774 		    "could not configure bluetooth coexistence\n");
2775 		return error;
2776 	}
2777 
2778 	/* configure adapter */
2779 	memset(&sc->config, 0, sizeof (struct wpi_config));
2780 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2781 	/*set default channel*/
2782 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2783 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2784 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2785 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2786 		    WPI_CONFIG_24GHZ);
2787 	}
2788 	sc->config.filter = 0;
2789 	switch (ic->ic_opmode) {
2790 	case IEEE80211_M_STA:
2791 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2792 		sc->config.mode = WPI_MODE_STA;
2793 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2794 		break;
2795 	case IEEE80211_M_IBSS:
2796 	case IEEE80211_M_AHDEMO:
2797 		sc->config.mode = WPI_MODE_IBSS;
2798 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2799 					     WPI_FILTER_MULTICAST);
2800 		break;
2801 	case IEEE80211_M_HOSTAP:
2802 		sc->config.mode = WPI_MODE_HOSTAP;
2803 		break;
2804 	case IEEE80211_M_MONITOR:
2805 		sc->config.mode = WPI_MODE_MONITOR;
2806 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2807 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2808 		break;
2809 	}
2810 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2811 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2812 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2813 		sizeof (struct wpi_config), 0);
2814 	if (error != 0) {
2815 		device_printf(sc->sc_dev, "configure command failed\n");
2816 		return error;
2817 	}
2818 
2819 	/* configuration has changed, set Tx power accordingly */
2820 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2821 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2822 	    return error;
2823 	}
2824 
2825 	/* add broadcast node */
2826 	memset(&node, 0, sizeof node);
2827 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2828 	node.id = WPI_ID_BROADCAST;
2829 	node.rate = wpi_plcp_signal(2);
2830 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2831 	if (error != 0) {
2832 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2833 		return error;
2834 	}
2835 
2836 	/* Setup rate scalling */
2837 	error = wpi_mrr_setup(sc);
2838 	if (error != 0) {
2839 		device_printf(sc->sc_dev, "could not setup MRR\n");
2840 		return error;
2841 	}
2842 
2843 	return 0;
2844 }
2845 
2846 static void
2847 wpi_stop_master(struct wpi_softc *sc)
2848 {
2849 	uint32_t tmp;
2850 	int ntries;
2851 
2852 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2853 
2854 	tmp = WPI_READ(sc, WPI_RESET);
2855 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2856 
2857 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2858 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2859 		return;	/* already asleep */
2860 
2861 	for (ntries = 0; ntries < 100; ntries++) {
2862 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2863 			break;
2864 		DELAY(10);
2865 	}
2866 	if (ntries == 100) {
2867 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2868 	}
2869 }
2870 
2871 static int
2872 wpi_power_up(struct wpi_softc *sc)
2873 {
2874 	uint32_t tmp;
2875 	int ntries;
2876 
2877 	wpi_mem_lock(sc);
2878 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2879 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2880 	wpi_mem_unlock(sc);
2881 
2882 	for (ntries = 0; ntries < 5000; ntries++) {
2883 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2884 			break;
2885 		DELAY(10);
2886 	}
2887 	if (ntries == 5000) {
2888 		device_printf(sc->sc_dev,
2889 		    "timeout waiting for NIC to power up\n");
2890 		return ETIMEDOUT;
2891 	}
2892 	return 0;
2893 }
2894 
2895 static int
2896 wpi_reset(struct wpi_softc *sc)
2897 {
2898 	uint32_t tmp;
2899 	int ntries;
2900 
2901 	DPRINTFN(WPI_DEBUG_HW,
2902 	    ("Resetting the card - clearing any uploaded firmware\n"));
2903 
2904 	/* clear any pending interrupts */
2905 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2906 
2907 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2908 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2909 
2910 	tmp = WPI_READ(sc, WPI_CHICKEN);
2911 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2912 
2913 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2914 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2915 
2916 	/* wait for clock stabilization */
2917 	for (ntries = 0; ntries < 25000; ntries++) {
2918 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2919 			break;
2920 		DELAY(10);
2921 	}
2922 	if (ntries == 25000) {
2923 		device_printf(sc->sc_dev,
2924 		    "timeout waiting for clock stabilization\n");
2925 		return ETIMEDOUT;
2926 	}
2927 
2928 	/* initialize EEPROM */
2929 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2930 
2931 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2932 		device_printf(sc->sc_dev, "EEPROM not found\n");
2933 		return EIO;
2934 	}
2935 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2936 
2937 	return 0;
2938 }
2939 
2940 static void
2941 wpi_hw_config(struct wpi_softc *sc)
2942 {
2943 	uint32_t rev, hw;
2944 
2945 	/* voodoo from the Linux "driver".. */
2946 	hw = WPI_READ(sc, WPI_HWCONFIG);
2947 
2948 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2949 	if ((rev & 0xc0) == 0x40)
2950 		hw |= WPI_HW_ALM_MB;
2951 	else if (!(rev & 0x80))
2952 		hw |= WPI_HW_ALM_MM;
2953 
2954 	if (sc->cap == 0x80)
2955 		hw |= WPI_HW_SKU_MRC;
2956 
2957 	hw &= ~WPI_HW_REV_D;
2958 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2959 		hw |= WPI_HW_REV_D;
2960 
2961 	if (sc->type > 1)
2962 		hw |= WPI_HW_TYPE_B;
2963 
2964 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2965 }
2966 
2967 static void
2968 wpi_rfkill_resume(struct wpi_softc *sc)
2969 {
2970 	struct ifnet *ifp = sc->sc_ifp;
2971 	struct ieee80211com *ic = ifp->if_l2com;
2972 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2973 	int ntries;
2974 
2975 	/* enable firmware again */
2976 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2977 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2978 
2979 	/* wait for thermal sensors to calibrate */
2980 	for (ntries = 0; ntries < 1000; ntries++) {
2981 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2982 			break;
2983 		DELAY(10);
2984 	}
2985 
2986 	if (ntries == 1000) {
2987 		device_printf(sc->sc_dev,
2988 		    "timeout waiting for thermal calibration\n");
2989 		WPI_UNLOCK(sc);
2990 		return;
2991 	}
2992 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
2993 
2994 	if (wpi_config(sc) != 0) {
2995 		device_printf(sc->sc_dev, "device config failed\n");
2996 		WPI_UNLOCK(sc);
2997 		return;
2998 	}
2999 
3000 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3001 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3002 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3003 
3004 	if (vap != NULL) {
3005 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3006 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3007 				ieee80211_beacon_miss(ic);
3008 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3009 			} else
3010 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3011 		} else {
3012 			ieee80211_scan_next(vap);
3013 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3014 		}
3015 	}
3016 
3017 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3018 }
3019 
3020 static void
3021 wpi_init_locked(struct wpi_softc *sc, int force)
3022 {
3023 	struct ifnet *ifp = sc->sc_ifp;
3024 	uint32_t tmp;
3025 	int ntries, qid;
3026 
3027 	wpi_stop_locked(sc);
3028 	(void)wpi_reset(sc);
3029 
3030 	wpi_mem_lock(sc);
3031 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3032 	DELAY(20);
3033 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3034 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3035 	wpi_mem_unlock(sc);
3036 
3037 	(void)wpi_power_up(sc);
3038 	wpi_hw_config(sc);
3039 
3040 	/* init Rx ring */
3041 	wpi_mem_lock(sc);
3042 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3043 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3044 	    offsetof(struct wpi_shared, next));
3045 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3046 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3047 	wpi_mem_unlock(sc);
3048 
3049 	/* init Tx rings */
3050 	wpi_mem_lock(sc);
3051 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3052 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3053 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3054 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3055 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3056 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3057 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3058 
3059 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3060 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3061 
3062 	for (qid = 0; qid < 6; qid++) {
3063 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3064 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3065 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3066 	}
3067 	wpi_mem_unlock(sc);
3068 
3069 	/* clear "radio off" and "disable command" bits (reversed logic) */
3070 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3071 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3072 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3073 
3074 	/* clear any pending interrupts */
3075 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3076 
3077 	/* enable interrupts */
3078 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3079 
3080 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3081 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3082 
3083 	if ((wpi_load_firmware(sc)) != 0) {
3084 	    device_printf(sc->sc_dev,
3085 		"A problem occurred loading the firmware to the driver\n");
3086 	    return;
3087 	}
3088 
3089 	/* At this point the firmware is up and running. If the hardware
3090 	 * RF switch is turned off thermal calibration will fail, though
3091 	 * the card is still happy to continue to accept commands, catch
3092 	 * this case and schedule a task to watch for it to be turned on.
3093 	 */
3094 	wpi_mem_lock(sc);
3095 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3096 	wpi_mem_unlock(sc);
3097 
3098 	if (!(tmp & 0x1)) {
3099 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3100 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3101 		goto out;
3102 	}
3103 
3104 	/* wait for thermal sensors to calibrate */
3105 	for (ntries = 0; ntries < 1000; ntries++) {
3106 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3107 			break;
3108 		DELAY(10);
3109 	}
3110 
3111 	if (ntries == 1000) {
3112 		device_printf(sc->sc_dev,
3113 		    "timeout waiting for thermal sensors calibration\n");
3114 		return;
3115 	}
3116 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3117 
3118 	if (wpi_config(sc) != 0) {
3119 		device_printf(sc->sc_dev, "device config failed\n");
3120 		return;
3121 	}
3122 
3123 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3124 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3125 out:
3126 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3127 }
3128 
3129 static void
3130 wpi_init(void *arg)
3131 {
3132 	struct wpi_softc *sc = arg;
3133 	struct ifnet *ifp = sc->sc_ifp;
3134 	struct ieee80211com *ic = ifp->if_l2com;
3135 
3136 	WPI_LOCK(sc);
3137 	wpi_init_locked(sc, 0);
3138 	WPI_UNLOCK(sc);
3139 
3140 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3141 		ieee80211_start_all(ic);		/* start all vaps */
3142 }
3143 
3144 static void
3145 wpi_stop_locked(struct wpi_softc *sc)
3146 {
3147 	struct ifnet *ifp = sc->sc_ifp;
3148 	uint32_t tmp;
3149 	int ac;
3150 
3151 	sc->sc_tx_timer = 0;
3152 	sc->sc_scan_timer = 0;
3153 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3154 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3155 	callout_stop(&sc->watchdog_to);
3156 	callout_stop(&sc->calib_to);
3157 
3158 
3159 	/* disable interrupts */
3160 	WPI_WRITE(sc, WPI_MASK, 0);
3161 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3162 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3163 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3164 
3165 	/* Clear any commands left in the command buffer */
3166 	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3167 	memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3168 	sc->sc_cmd_cur = 0;
3169 	sc->sc_cmd_next = 0;
3170 
3171 	wpi_mem_lock(sc);
3172 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3173 	wpi_mem_unlock(sc);
3174 
3175 	/* reset all Tx rings */
3176 	for (ac = 0; ac < 4; ac++)
3177 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3178 	wpi_reset_tx_ring(sc, &sc->cmdq);
3179 
3180 	/* reset Rx ring */
3181 	wpi_reset_rx_ring(sc, &sc->rxq);
3182 
3183 	wpi_mem_lock(sc);
3184 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3185 	wpi_mem_unlock(sc);
3186 
3187 	DELAY(5);
3188 
3189 	wpi_stop_master(sc);
3190 
3191 	tmp = WPI_READ(sc, WPI_RESET);
3192 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3193 	sc->flags &= ~WPI_FLAG_BUSY;
3194 }
3195 
3196 static void
3197 wpi_stop(struct wpi_softc *sc)
3198 {
3199 	WPI_LOCK(sc);
3200 	wpi_stop_locked(sc);
3201 	WPI_UNLOCK(sc);
3202 }
3203 
3204 static void
3205 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3206 {
3207 	struct ieee80211vap *vap = ni->ni_vap;
3208 	struct wpi_vap *wvp = WPI_VAP(vap);
3209 
3210 	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3211 }
3212 
3213 static void
3214 wpi_calib_timeout(void *arg)
3215 {
3216 	struct wpi_softc *sc = arg;
3217 	struct ifnet *ifp = sc->sc_ifp;
3218 	struct ieee80211com *ic = ifp->if_l2com;
3219 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3220 	int temp;
3221 
3222 	if (vap->iv_state != IEEE80211_S_RUN)
3223 		return;
3224 
3225 	/* update sensor data */
3226 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3227 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3228 
3229 	wpi_power_calibration(sc, temp);
3230 
3231 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3232 }
3233 
3234 /*
3235  * This function is called periodically (every 60 seconds) to adjust output
3236  * power to temperature changes.
3237  */
3238 static void
3239 wpi_power_calibration(struct wpi_softc *sc, int temp)
3240 {
3241 	struct ifnet *ifp = sc->sc_ifp;
3242 	struct ieee80211com *ic = ifp->if_l2com;
3243 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3244 
3245 	/* sanity-check read value */
3246 	if (temp < -260 || temp > 25) {
3247 		/* this can't be correct, ignore */
3248 		DPRINTFN(WPI_DEBUG_TEMP,
3249 		    ("out-of-range temperature reported: %d\n", temp));
3250 		return;
3251 	}
3252 
3253 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3254 
3255 	/* adjust Tx power if need be */
3256 	if (abs(temp - sc->temp) <= 6)
3257 		return;
3258 
3259 	sc->temp = temp;
3260 
3261 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3262 		/* just warn, too bad for the automatic calibration... */
3263 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3264 	}
3265 }
3266 
3267 /**
3268  * Read the eeprom to find out what channels are valid for the given
3269  * band and update net80211 with what we find.
3270  */
3271 static void
3272 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3273 {
3274 	struct ifnet *ifp = sc->sc_ifp;
3275 	struct ieee80211com *ic = ifp->if_l2com;
3276 	const struct wpi_chan_band *band = &wpi_bands[n];
3277 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3278 	int chan, i, offset, passive;
3279 
3280 	wpi_read_prom_data(sc, band->addr, channels,
3281 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3282 
3283 	for (i = 0; i < band->nchan; i++) {
3284 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3285 			DPRINTFN(WPI_DEBUG_HW,
3286 			    ("Channel Not Valid: %d, band %d\n",
3287 			     band->chan[i],n));
3288 			continue;
3289 		}
3290 
3291 		passive = 0;
3292 		chan = band->chan[i];
3293 		offset = ic->ic_nchans;
3294 
3295 		/* is active scan allowed on this channel? */
3296 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3297 			passive = IEEE80211_CHAN_PASSIVE;
3298 		}
3299 
3300 		if (n == 0) {	/* 2GHz band */
3301 			ic->ic_channels[offset].ic_ieee = chan;
3302 			ic->ic_channels[offset].ic_freq =
3303 			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3304 			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
3305 			offset++;
3306 			ic->ic_channels[offset].ic_ieee = chan;
3307 			ic->ic_channels[offset].ic_freq =
3308 			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3309 			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
3310 			offset++;
3311 
3312 		} else {	/* 5GHz band */
3313 			/*
3314 			 * Some 3945ABG adapters support channels 7, 8, 11
3315 			 * and 12 in the 2GHz *and* 5GHz bands.
3316 			 * Because of limitations in our net80211(9) stack,
3317 			 * we can't support these channels in 5GHz band.
3318 			 * XXX not true; just need to map to proper frequency
3319 			 */
3320 			if (chan <= 14)
3321 				continue;
3322 
3323 			ic->ic_channels[offset].ic_ieee = chan;
3324 			ic->ic_channels[offset].ic_freq =
3325 			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
3326 			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
3327 			offset++;
3328 		}
3329 
3330 		/* save maximum allowed power for this channel */
3331 		sc->maxpwr[chan] = channels[i].maxpwr;
3332 
3333 		ic->ic_nchans = offset;
3334 
3335 #if 0
3336 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3337 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3338 		//ic->ic_channels[chan].ic_minpower...
3339 		//ic->ic_channels[chan].ic_maxregtxpower...
3340 #endif
3341 
3342 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
3343 			    chan, channels[i].flags, sc->maxpwr[chan], offset));
3344 	}
3345 }
3346 
3347 static void
3348 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3349 {
3350 	struct wpi_power_group *group = &sc->groups[n];
3351 	struct wpi_eeprom_group rgroup;
3352 	int i;
3353 
3354 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3355 	    sizeof rgroup);
3356 
3357 	/* save power group information */
3358 	group->chan   = rgroup.chan;
3359 	group->maxpwr = rgroup.maxpwr;
3360 	/* temperature at which the samples were taken */
3361 	group->temp   = (int16_t)le16toh(rgroup.temp);
3362 
3363 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3364 		    group->chan, group->maxpwr, group->temp));
3365 
3366 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3367 		group->samples[i].index = rgroup.samples[i].index;
3368 		group->samples[i].power = rgroup.samples[i].power;
3369 
3370 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3371 			    group->samples[i].index, group->samples[i].power));
3372 	}
3373 }
3374 
3375 /*
3376  * Update Tx power to match what is defined for channel `c'.
3377  */
3378 static int
3379 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3380 {
3381 	struct ifnet *ifp = sc->sc_ifp;
3382 	struct ieee80211com *ic = ifp->if_l2com;
3383 	struct wpi_power_group *group;
3384 	struct wpi_cmd_txpower txpower;
3385 	u_int chan;
3386 	int i;
3387 
3388 	/* get channel number */
3389 	chan = ieee80211_chan2ieee(ic, c);
3390 
3391 	/* find the power group to which this channel belongs */
3392 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3393 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3394 			if (chan <= group->chan)
3395 				break;
3396 	} else
3397 		group = &sc->groups[0];
3398 
3399 	memset(&txpower, 0, sizeof txpower);
3400 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3401 	txpower.channel = htole16(chan);
3402 
3403 	/* set Tx power for all OFDM and CCK rates */
3404 	for (i = 0; i <= 11 ; i++) {
3405 		/* retrieve Tx power for this channel/rate combination */
3406 		int idx = wpi_get_power_index(sc, group, c,
3407 		    wpi_ridx_to_rate[i]);
3408 
3409 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3410 
3411 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3412 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3413 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3414 		} else {
3415 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3416 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3417 		}
3418 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3419 			    chan, wpi_ridx_to_rate[i], idx));
3420 	}
3421 
3422 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3423 }
3424 
3425 /*
3426  * Determine Tx power index for a given channel/rate combination.
3427  * This takes into account the regulatory information from EEPROM and the
3428  * current temperature.
3429  */
3430 static int
3431 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3432     struct ieee80211_channel *c, int rate)
3433 {
3434 /* fixed-point arithmetic division using a n-bit fractional part */
3435 #define fdivround(a, b, n)      \
3436 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3437 
3438 /* linear interpolation */
3439 #define interpolate(x, x1, y1, x2, y2, n)       \
3440 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3441 
3442 	struct ifnet *ifp = sc->sc_ifp;
3443 	struct ieee80211com *ic = ifp->if_l2com;
3444 	struct wpi_power_sample *sample;
3445 	int pwr, idx;
3446 	u_int chan;
3447 
3448 	/* get channel number */
3449 	chan = ieee80211_chan2ieee(ic, c);
3450 
3451 	/* default power is group's maximum power - 3dB */
3452 	pwr = group->maxpwr / 2;
3453 
3454 	/* decrease power for highest OFDM rates to reduce distortion */
3455 	switch (rate) {
3456 		case 72:	/* 36Mb/s */
3457 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3458 			break;
3459 		case 96:	/* 48Mb/s */
3460 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3461 			break;
3462 		case 108:	/* 54Mb/s */
3463 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3464 			break;
3465 	}
3466 
3467 	/* never exceed channel's maximum allowed Tx power */
3468 	pwr = min(pwr, sc->maxpwr[chan]);
3469 
3470 	/* retrieve power index into gain tables from samples */
3471 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3472 		if (pwr > sample[1].power)
3473 			break;
3474 	/* fixed-point linear interpolation using a 19-bit fractional part */
3475 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3476 	    sample[1].power, sample[1].index, 19);
3477 
3478 	/*
3479 	 *  Adjust power index based on current temperature
3480 	 *	- if colder than factory-calibrated: decreate output power
3481 	 *	- if warmer than factory-calibrated: increase output power
3482 	 */
3483 	idx -= (sc->temp - group->temp) * 11 / 100;
3484 
3485 	/* decrease power for CCK rates (-5dB) */
3486 	if (!WPI_RATE_IS_OFDM(rate))
3487 		idx += 10;
3488 
3489 	/* keep power index in a valid range */
3490 	if (idx < 0)
3491 		return 0;
3492 	if (idx > WPI_MAX_PWR_INDEX)
3493 		return WPI_MAX_PWR_INDEX;
3494 	return idx;
3495 
3496 #undef interpolate
3497 #undef fdivround
3498 }
3499 
3500 /**
3501  * Called by net80211 framework to indicate that a scan
3502  * is starting. This function doesn't actually do the scan,
3503  * wpi_scan_curchan starts things off. This function is more
3504  * of an early warning from the framework we should get ready
3505  * for the scan.
3506  */
3507 static void
3508 wpi_scan_start(struct ieee80211com *ic)
3509 {
3510 	struct ifnet *ifp = ic->ic_ifp;
3511 	struct wpi_softc *sc = ifp->if_softc;
3512 
3513 	wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3514 }
3515 
3516 /**
3517  * Called by the net80211 framework, indicates that the
3518  * scan has ended. If there is a scan in progress on the card
3519  * then it should be aborted.
3520  */
3521 static void
3522 wpi_scan_end(struct ieee80211com *ic)
3523 {
3524 	struct ifnet *ifp = ic->ic_ifp;
3525 	struct wpi_softc *sc = ifp->if_softc;
3526 
3527 	wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3528 }
3529 
3530 /**
3531  * Called by the net80211 framework to indicate to the driver
3532  * that the channel should be changed
3533  */
3534 static void
3535 wpi_set_channel(struct ieee80211com *ic)
3536 {
3537 	struct ifnet *ifp = ic->ic_ifp;
3538 	struct wpi_softc *sc = ifp->if_softc;
3539 
3540 	/*
3541 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3542 	 * are already taken care of by their respective firmware commands.
3543 	 */
3544 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3545 		wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3546 }
3547 
3548 /**
3549  * Called by net80211 to indicate that we need to scan the current
3550  * channel. The channel is previously be set via the wpi_set_channel
3551  * callback.
3552  */
3553 static void
3554 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3555 {
3556 	struct ieee80211vap *vap = ss->ss_vap;
3557 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3558 	struct wpi_softc *sc = ifp->if_softc;
3559 
3560 	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3561 }
3562 
3563 /**
3564  * Called by the net80211 framework to indicate
3565  * the minimum dwell time has been met, terminate the scan.
3566  * We don't actually terminate the scan as the firmware will notify
3567  * us when it's finished and we have no way to interrupt it.
3568  */
3569 static void
3570 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3571 {
3572 	/* NB: don't try to abort scan; wait for firmware to finish */
3573 }
3574 
3575 /**
3576  * The ops function is called to perform some actual work.
3577  * because we can't sleep from any of the ic callbacks, we queue an
3578  * op task with wpi_queue_cmd and have the taskqueue process that task.
3579  * The task that gets cued is a op task, which ends up calling this function.
3580  */
3581 static void
3582 wpi_ops(void *arg0, int pending)
3583 {
3584 	struct wpi_softc *sc = arg0;
3585 	struct ifnet *ifp = sc->sc_ifp;
3586 	struct ieee80211com *ic = ifp->if_l2com;
3587 	int cmd, arg, error;
3588 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3589 
3590 again:
3591 	WPI_CMD_LOCK(sc);
3592 	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3593 	arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3594 
3595 	if (cmd == 0) {
3596 		/* No more commands to process */
3597 		WPI_CMD_UNLOCK(sc);
3598 		return;
3599 	}
3600 	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3601 	sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3602 	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3603 	WPI_CMD_UNLOCK(sc);
3604 	WPI_LOCK(sc);
3605 
3606 	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3607 
3608 	switch (cmd) {
3609 	case WPI_RESTART:
3610 		wpi_init_locked(sc, 0);
3611 		WPI_UNLOCK(sc);
3612 		return;
3613 
3614 	case WPI_RF_RESTART:
3615 		wpi_rfkill_resume(sc);
3616 		WPI_UNLOCK(sc);
3617 		return;
3618 	}
3619 
3620 	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3621 		WPI_UNLOCK(sc);
3622 		return;
3623 	}
3624 
3625 	switch (cmd) {
3626 	case WPI_SCAN_START:
3627 		/* make the link LED blink while we're scanning */
3628 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3629 		sc->flags |= WPI_FLAG_SCANNING;
3630 		break;
3631 
3632 	case WPI_SCAN_STOP:
3633 		sc->flags &= ~WPI_FLAG_SCANNING;
3634 		break;
3635 
3636 	case WPI_SCAN_CURCHAN:
3637 		if (wpi_scan(sc))
3638 			ieee80211_cancel_scan(vap);
3639 		break;
3640 
3641 	case WPI_SET_CHAN:
3642 		error = wpi_config(sc);
3643 		if (error != 0)
3644 			device_printf(sc->sc_dev,
3645 			    "error %d settting channel\n", error);
3646 		break;
3647 
3648 	case WPI_AUTH:
3649 		/* The node must be registered in the firmware before auth */
3650 		error = wpi_auth(sc, vap);
3651 		WPI_UNLOCK(sc);
3652 		if (error != 0) {
3653 			device_printf(sc->sc_dev,
3654 			    "%s: could not move to auth state, error %d\n",
3655 			    __func__, error);
3656 			return;
3657 		}
3658 		IEEE80211_LOCK(ic);
3659 		WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg);
3660 		if (vap->iv_newstate_cb != NULL)
3661 			vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg);
3662 		IEEE80211_UNLOCK(ic);
3663 		goto again;
3664 
3665 	case WPI_RUN:
3666 		error = wpi_run(sc, vap);
3667 		WPI_UNLOCK(sc);
3668 		if (error != 0) {
3669 			device_printf(sc->sc_dev,
3670 			    "%s: could not move to run state, error %d\n",
3671 			    __func__, error);
3672 			return;
3673 		}
3674 		IEEE80211_LOCK(ic);
3675 		WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg);
3676 		if (vap->iv_newstate_cb != NULL)
3677 			vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg);
3678 		IEEE80211_UNLOCK(ic);
3679 		goto again;
3680 	}
3681 	WPI_UNLOCK(sc);
3682 
3683 	/* Take another pass */
3684 	goto again;
3685 }
3686 
3687 /**
3688  * queue a command for later execution in a different thread.
3689  * This is needed as the net80211 callbacks do not allow
3690  * sleeping, since we need to sleep to confirm commands have
3691  * been processed by the firmware, we must defer execution to
3692  * a sleep enabled thread.
3693  */
3694 static int
3695 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3696 {
3697 	WPI_CMD_LOCK(sc);
3698 
3699 	if (flush) {
3700 		memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3701 		memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3702 		sc->sc_cmd_cur = 0;
3703 		sc->sc_cmd_next = 0;
3704 	}
3705 
3706 	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3707 		WPI_CMD_UNLOCK(sc);
3708 		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3709 		return (EBUSY);
3710 	}
3711 
3712 	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3713 	sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3714 	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3715 
3716 	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3717 
3718 	WPI_CMD_UNLOCK(sc);
3719 
3720 	return 0;
3721 }
3722 
3723 /*
3724  * Allocate DMA-safe memory for firmware transfer.
3725  */
3726 static int
3727 wpi_alloc_fwmem(struct wpi_softc *sc)
3728 {
3729 	/* allocate enough contiguous space to store text and data */
3730 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3731 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3732 	    BUS_DMA_NOWAIT);
3733 }
3734 
3735 static void
3736 wpi_free_fwmem(struct wpi_softc *sc)
3737 {
3738 	wpi_dma_contig_free(&sc->fw_dma);
3739 }
3740 
3741 /**
3742  * Called every second, wpi_watchdog used by the watch dog timer
3743  * to check that the card is still alive
3744  */
3745 static void
3746 wpi_watchdog(void *arg)
3747 {
3748 	struct wpi_softc *sc = arg;
3749 	struct ifnet *ifp = sc->sc_ifp;
3750 	uint32_t tmp;
3751 
3752 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3753 
3754 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3755 		/* No need to lock firmware memory */
3756 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3757 
3758 		if ((tmp & 0x1) == 0) {
3759 			/* Radio kill switch is still off */
3760 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3761 			return;
3762 		}
3763 
3764 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3765 		wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3766 		return;
3767 	}
3768 
3769 	if (sc->sc_tx_timer > 0) {
3770 		if (--sc->sc_tx_timer == 0) {
3771 			device_printf(sc->sc_dev,"device timeout\n");
3772 			ifp->if_oerrors++;
3773 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3774 		}
3775 	}
3776 	if (sc->sc_scan_timer > 0) {
3777 		struct ifnet *ifp = sc->sc_ifp;
3778 		struct ieee80211com *ic = ifp->if_l2com;
3779 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3780 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3781 			device_printf(sc->sc_dev,"scan timeout\n");
3782 			ieee80211_cancel_scan(vap);
3783 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3784 		}
3785 	}
3786 
3787 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3788 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3789 }
3790 
3791 #ifdef WPI_DEBUG
3792 static const char *wpi_cmd_str(int cmd)
3793 {
3794 	switch (cmd) {
3795 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3796 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3797 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3798 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3799 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3800 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3801 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3802 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3803 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3804 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3805 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3806 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3807 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3808 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3809 
3810 	default:
3811 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3812 		return "UNKNOWN CMD";	/* Make the compiler happy */
3813 	}
3814 }
3815 #endif
3816 
3817 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3818 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3819 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3820 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3821