xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 2abb9b42a53c39a8b781e25a05de1de9e98b8b9a)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_done) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include "opt_wlan.h"
62 #include "opt_wpi.h"
63 
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79 
80 #include <machine/bus.h>
81 #include <machine/resource.h>
82 #include <sys/rman.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 
87 #include <net/bpf.h>
88 #include <net/if.h>
89 #include <net/if_var.h>
90 #include <net/if_arp.h>
91 #include <net/ethernet.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_types.h>
95 
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/if_ether.h>
100 #include <netinet/ip.h>
101 
102 #include <net80211/ieee80211_var.h>
103 #include <net80211/ieee80211_radiotap.h>
104 #include <net80211/ieee80211_regdomain.h>
105 #include <net80211/ieee80211_ratectl.h>
106 
107 #include <dev/wpi/if_wpireg.h>
108 #include <dev/wpi/if_wpivar.h>
109 #include <dev/wpi/if_wpi_debug.h>
110 
111 struct wpi_ident {
112 	uint16_t	vendor;
113 	uint16_t	device;
114 	uint16_t	subdevice;
115 	const char	*name;
116 };
117 
118 static const struct wpi_ident wpi_ident_table[] = {
119 	/* The below entries support ABG regardless of the subid */
120 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
122 	/* The below entries only support BG */
123 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
127 	{ 0, 0, 0, NULL }
128 };
129 
130 static int	wpi_probe(device_t);
131 static int	wpi_attach(device_t);
132 static void	wpi_radiotap_attach(struct wpi_softc *);
133 static void	wpi_sysctlattach(struct wpi_softc *);
134 static void	wpi_init_beacon(struct wpi_vap *);
135 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
136 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
137 		    const uint8_t [IEEE80211_ADDR_LEN],
138 		    const uint8_t [IEEE80211_ADDR_LEN]);
139 static void	wpi_vap_delete(struct ieee80211vap *);
140 static int	wpi_detach(device_t);
141 static int	wpi_shutdown(device_t);
142 static int	wpi_suspend(device_t);
143 static int	wpi_resume(device_t);
144 static int	wpi_nic_lock(struct wpi_softc *);
145 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
146 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
147 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
148 		    void **, bus_size_t, bus_size_t);
149 static void	wpi_dma_contig_free(struct wpi_dma_info *);
150 static int	wpi_alloc_shared(struct wpi_softc *);
151 static void	wpi_free_shared(struct wpi_softc *);
152 static int	wpi_alloc_fwmem(struct wpi_softc *);
153 static void	wpi_free_fwmem(struct wpi_softc *);
154 static int	wpi_alloc_rx_ring(struct wpi_softc *);
155 static void	wpi_update_rx_ring(struct wpi_softc *);
156 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
157 static void	wpi_reset_rx_ring(struct wpi_softc *);
158 static void	wpi_free_rx_ring(struct wpi_softc *);
159 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
160 		    uint8_t);
161 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
162 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
163 		    struct wpi_tx_ring *);
164 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
166 static int	wpi_read_eeprom(struct wpi_softc *,
167 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
168 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
169 static void	wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *,
170 		    struct ieee80211_channel[]);
171 static int	wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
172 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
173 		    struct ieee80211_channel *);
174 static void	wpi_getradiocaps(struct ieee80211com *, int, int *,
175 		    struct ieee80211_channel[]);
176 static int	wpi_setregdomain(struct ieee80211com *,
177 		    struct ieee80211_regdomain *, int,
178 		    struct ieee80211_channel[]);
179 static int	wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static void	wpi_node_free(struct ieee80211_node *);
183 static void	wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
184 		    const struct ieee80211_rx_stats *,
185 		    int, int);
186 static void	wpi_restore_node(void *, struct ieee80211_node *);
187 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
188 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189 static void	wpi_calib_timeout(void *);
190 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
191 		    struct wpi_rx_data *);
192 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
193 		    struct wpi_rx_data *);
194 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
196 static void	wpi_notif_intr(struct wpi_softc *);
197 static void	wpi_wakeup_intr(struct wpi_softc *);
198 #ifdef WPI_DEBUG
199 static void	wpi_debug_registers(struct wpi_softc *);
200 #endif
201 static void	wpi_fatal_intr(struct wpi_softc *);
202 static void	wpi_intr(void *);
203 static void	wpi_free_txfrags(struct wpi_softc *, uint16_t);
204 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
205 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
206 		    struct ieee80211_node *);
207 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
208 		    struct ieee80211_node *,
209 		    const struct ieee80211_bpf_params *);
210 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
211 		    const struct ieee80211_bpf_params *);
212 static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
213 static void	wpi_watchdog_rfkill(void *);
214 static void	wpi_scan_timeout(void *);
215 static void	wpi_tx_timeout(void *);
216 static void	wpi_parent(struct ieee80211com *);
217 static int	wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
218 		    int);
219 static int	wpi_mrr_setup(struct wpi_softc *);
220 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
221 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
222 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
223 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
224 static int	wpi_updateedca(struct ieee80211com *);
225 static void	wpi_set_promisc(struct wpi_softc *);
226 static void	wpi_update_promisc(struct ieee80211com *);
227 static void	wpi_update_mcast(struct ieee80211com *);
228 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
229 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
230 static void	wpi_power_calibration(struct wpi_softc *);
231 static int	wpi_set_txpower(struct wpi_softc *, int);
232 static int	wpi_get_power_index(struct wpi_softc *,
233 		    struct wpi_power_group *, uint8_t, int, int);
234 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
235 static int	wpi_send_btcoex(struct wpi_softc *);
236 static int	wpi_send_rxon(struct wpi_softc *, int, int);
237 static int	wpi_config(struct wpi_softc *);
238 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
239 		    struct ieee80211_channel *, uint8_t);
240 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
241 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
242 		    struct ieee80211_channel *);
243 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
244 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
245 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
246 static int	wpi_config_beacon(struct wpi_vap *);
247 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
248 static void	wpi_update_beacon(struct ieee80211vap *, int);
249 static void	wpi_newassoc(struct ieee80211_node *, int);
250 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
251 static int	wpi_load_key(struct ieee80211_node *,
252 		    const struct ieee80211_key *);
253 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
254 static int	wpi_set_global_keys(struct ieee80211_node *);
255 static int	wpi_del_key(struct ieee80211_node *,
256 		    const struct ieee80211_key *);
257 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
258 static int	wpi_process_key(struct ieee80211vap *,
259 		    const struct ieee80211_key *, int);
260 static int	wpi_key_set(struct ieee80211vap *,
261 		    const struct ieee80211_key *);
262 static int	wpi_key_delete(struct ieee80211vap *,
263 		    const struct ieee80211_key *);
264 static int	wpi_post_alive(struct wpi_softc *);
265 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
266 		    uint32_t);
267 static int	wpi_load_firmware(struct wpi_softc *);
268 static int	wpi_read_firmware(struct wpi_softc *);
269 static void	wpi_unload_firmware(struct wpi_softc *);
270 static int	wpi_clock_wait(struct wpi_softc *);
271 static int	wpi_apm_init(struct wpi_softc *);
272 static void	wpi_apm_stop_master(struct wpi_softc *);
273 static void	wpi_apm_stop(struct wpi_softc *);
274 static void	wpi_nic_config(struct wpi_softc *);
275 static int	wpi_hw_init(struct wpi_softc *);
276 static void	wpi_hw_stop(struct wpi_softc *);
277 static void	wpi_radio_on(void *, int);
278 static void	wpi_radio_off(void *, int);
279 static int	wpi_init(struct wpi_softc *);
280 static void	wpi_stop_locked(struct wpi_softc *);
281 static void	wpi_stop(struct wpi_softc *);
282 static void	wpi_scan_start(struct ieee80211com *);
283 static void	wpi_scan_end(struct ieee80211com *);
284 static void	wpi_set_channel(struct ieee80211com *);
285 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
286 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
287 
288 static device_method_t wpi_methods[] = {
289 	/* Device interface */
290 	DEVMETHOD(device_probe,		wpi_probe),
291 	DEVMETHOD(device_attach,	wpi_attach),
292 	DEVMETHOD(device_detach,	wpi_detach),
293 	DEVMETHOD(device_shutdown,	wpi_shutdown),
294 	DEVMETHOD(device_suspend,	wpi_suspend),
295 	DEVMETHOD(device_resume,	wpi_resume),
296 
297 	DEVMETHOD_END
298 };
299 
300 static driver_t wpi_driver = {
301 	"wpi",
302 	wpi_methods,
303 	sizeof (struct wpi_softc)
304 };
305 static devclass_t wpi_devclass;
306 
307 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
308 
309 MODULE_VERSION(wpi, 1);
310 
311 MODULE_DEPEND(wpi, pci,  1, 1, 1);
312 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
313 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
314 
315 static int
316 wpi_probe(device_t dev)
317 {
318 	const struct wpi_ident *ident;
319 
320 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
321 		if (pci_get_vendor(dev) == ident->vendor &&
322 		    pci_get_device(dev) == ident->device) {
323 			device_set_desc(dev, ident->name);
324 			return (BUS_PROBE_DEFAULT);
325 		}
326 	}
327 	return ENXIO;
328 }
329 
330 static int
331 wpi_attach(device_t dev)
332 {
333 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
334 	struct ieee80211com *ic;
335 	uint8_t i;
336 	int error, rid;
337 #ifdef WPI_DEBUG
338 	int supportsa = 1;
339 	const struct wpi_ident *ident;
340 #endif
341 
342 	sc->sc_dev = dev;
343 
344 #ifdef WPI_DEBUG
345 	error = resource_int_value(device_get_name(sc->sc_dev),
346 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
347 	if (error != 0)
348 		sc->sc_debug = 0;
349 #else
350 	sc->sc_debug = 0;
351 #endif
352 
353 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
354 
355 	/*
356 	 * Get the offset of the PCI Express Capability Structure in PCI
357 	 * Configuration Space.
358 	 */
359 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
360 	if (error != 0) {
361 		device_printf(dev, "PCIe capability structure not found!\n");
362 		return error;
363 	}
364 
365 	/*
366 	 * Some card's only support 802.11b/g not a, check to see if
367 	 * this is one such card. A 0x0 in the subdevice table indicates
368 	 * the entire subdevice range is to be ignored.
369 	 */
370 #ifdef WPI_DEBUG
371 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
372 		if (ident->subdevice &&
373 		    pci_get_subdevice(dev) == ident->subdevice) {
374 		    supportsa = 0;
375 		    break;
376 		}
377 	}
378 #endif
379 
380 	/* Clear device-specific "PCI retry timeout" register (41h). */
381 	pci_write_config(dev, 0x41, 0, 1);
382 
383 	/* Enable bus-mastering. */
384 	pci_enable_busmaster(dev);
385 
386 	rid = PCIR_BAR(0);
387 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
388 	    RF_ACTIVE);
389 	if (sc->mem == NULL) {
390 		device_printf(dev, "can't map mem space\n");
391 		return ENOMEM;
392 	}
393 	sc->sc_st = rman_get_bustag(sc->mem);
394 	sc->sc_sh = rman_get_bushandle(sc->mem);
395 
396 	rid = 1;
397 	if (pci_alloc_msi(dev, &rid) == 0)
398 		rid = 1;
399 	else
400 		rid = 0;
401 	/* Install interrupt handler. */
402 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
403 	    (rid != 0 ? 0 : RF_SHAREABLE));
404 	if (sc->irq == NULL) {
405 		device_printf(dev, "can't map interrupt\n");
406 		error = ENOMEM;
407 		goto fail;
408 	}
409 
410 	WPI_LOCK_INIT(sc);
411 	WPI_TX_LOCK_INIT(sc);
412 	WPI_RXON_LOCK_INIT(sc);
413 	WPI_NT_LOCK_INIT(sc);
414 	WPI_TXQ_LOCK_INIT(sc);
415 	WPI_TXQ_STATE_LOCK_INIT(sc);
416 
417 	/* Allocate DMA memory for firmware transfers. */
418 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
419 		device_printf(dev,
420 		    "could not allocate memory for firmware, error %d\n",
421 		    error);
422 		goto fail;
423 	}
424 
425 	/* Allocate shared page. */
426 	if ((error = wpi_alloc_shared(sc)) != 0) {
427 		device_printf(dev, "could not allocate shared page\n");
428 		goto fail;
429 	}
430 
431 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
432 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
433 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
434 			device_printf(dev,
435 			    "could not allocate TX ring %d, error %d\n", i,
436 			    error);
437 			goto fail;
438 		}
439 	}
440 
441 	/* Allocate RX ring. */
442 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
443 		device_printf(dev, "could not allocate RX ring, error %d\n",
444 		    error);
445 		goto fail;
446 	}
447 
448 	/* Clear pending interrupts. */
449 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
450 
451 	ic = &sc->sc_ic;
452 	ic->ic_softc = sc;
453 	ic->ic_name = device_get_nameunit(dev);
454 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
455 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
456 
457 	/* Set device capabilities. */
458 	ic->ic_caps =
459 		  IEEE80211_C_STA		/* station mode supported */
460 		| IEEE80211_C_IBSS		/* IBSS mode supported */
461 		| IEEE80211_C_HOSTAP		/* Host access point mode */
462 		| IEEE80211_C_MONITOR		/* monitor mode supported */
463 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
464 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
465 		| IEEE80211_C_TXFRAG		/* handle tx frags */
466 		| IEEE80211_C_TXPMGT		/* tx power management */
467 		| IEEE80211_C_SHSLOT		/* short slot time supported */
468 		| IEEE80211_C_WPA		/* 802.11i */
469 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
470 		| IEEE80211_C_WME		/* 802.11e */
471 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
472 		;
473 
474 	ic->ic_cryptocaps =
475 		  IEEE80211_CRYPTO_AES_CCM;
476 
477 	/*
478 	 * Read in the eeprom and also setup the channels for
479 	 * net80211. We don't set the rates as net80211 does this for us
480 	 */
481 	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
482 		device_printf(dev, "could not read EEPROM, error %d\n",
483 		    error);
484 		goto fail;
485 	}
486 
487 #ifdef WPI_DEBUG
488 	if (bootverbose) {
489 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
490 		    sc->domain);
491 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
492 		    sc->type > 1 ? 'B': '?');
493 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
494 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
495 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
496 		    supportsa ? "does" : "does not");
497 
498 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
499 		   check what sc->rev really represents - benjsc 20070615 */
500 	}
501 #endif
502 
503 	ieee80211_ifattach(ic);
504 	ic->ic_vap_create = wpi_vap_create;
505 	ic->ic_vap_delete = wpi_vap_delete;
506 	ic->ic_parent = wpi_parent;
507 	ic->ic_raw_xmit = wpi_raw_xmit;
508 	ic->ic_transmit = wpi_transmit;
509 	ic->ic_node_alloc = wpi_node_alloc;
510 	sc->sc_node_free = ic->ic_node_free;
511 	ic->ic_node_free = wpi_node_free;
512 	ic->ic_wme.wme_update = wpi_updateedca;
513 	ic->ic_update_promisc = wpi_update_promisc;
514 	ic->ic_update_mcast = wpi_update_mcast;
515 	ic->ic_newassoc = wpi_newassoc;
516 	ic->ic_scan_start = wpi_scan_start;
517 	ic->ic_scan_end = wpi_scan_end;
518 	ic->ic_set_channel = wpi_set_channel;
519 	ic->ic_scan_curchan = wpi_scan_curchan;
520 	ic->ic_scan_mindwell = wpi_scan_mindwell;
521 	ic->ic_getradiocaps = wpi_getradiocaps;
522 	ic->ic_setregdomain = wpi_setregdomain;
523 
524 	sc->sc_update_rx_ring = wpi_update_rx_ring;
525 	sc->sc_update_tx_ring = wpi_update_tx_ring;
526 
527 	wpi_radiotap_attach(sc);
528 
529 	/* Setup Tx status flags (constant). */
530 	sc->sc_txs.flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
531 	    IEEE80211_RATECTL_STATUS_LONG_RETRY;
532 
533 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
534 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
535 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
536 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
537 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
538 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
539 
540 	wpi_sysctlattach(sc);
541 
542 	/*
543 	 * Hook our interrupt after all initialization is complete.
544 	 */
545 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
546 	    NULL, wpi_intr, sc, &sc->sc_ih);
547 	if (error != 0) {
548 		device_printf(dev, "can't establish interrupt, error %d\n",
549 		    error);
550 		goto fail;
551 	}
552 
553 	if (bootverbose)
554 		ieee80211_announce(ic);
555 
556 #ifdef WPI_DEBUG
557 	if (sc->sc_debug & WPI_DEBUG_HW)
558 		ieee80211_announce_channels(ic);
559 #endif
560 
561 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
562 	return 0;
563 
564 fail:	wpi_detach(dev);
565 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
566 	return error;
567 }
568 
569 /*
570  * Attach the interface to 802.11 radiotap.
571  */
572 static void
573 wpi_radiotap_attach(struct wpi_softc *sc)
574 {
575 	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
576 	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
577 
578 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
579 	ieee80211_radiotap_attach(&sc->sc_ic,
580 	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
581 	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
582 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
583 }
584 
585 static void
586 wpi_sysctlattach(struct wpi_softc *sc)
587 {
588 #ifdef WPI_DEBUG
589 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
590 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
591 
592 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
593 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
594 		"control debugging printfs");
595 #endif
596 }
597 
598 static void
599 wpi_init_beacon(struct wpi_vap *wvp)
600 {
601 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
602 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
603 
604 	cmd->id = WPI_ID_BROADCAST;
605 	cmd->ofdm_mask = 0xff;
606 	cmd->cck_mask = 0x0f;
607 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
608 
609 	/*
610 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
611 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
612 	 */
613 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
614 
615 	bcn->code = WPI_CMD_SET_BEACON;
616 	bcn->ac = WPI_CMD_QUEUE_NUM;
617 	bcn->size = sizeof(struct wpi_cmd_beacon);
618 }
619 
620 static struct ieee80211vap *
621 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
622     enum ieee80211_opmode opmode, int flags,
623     const uint8_t bssid[IEEE80211_ADDR_LEN],
624     const uint8_t mac[IEEE80211_ADDR_LEN])
625 {
626 	struct wpi_vap *wvp;
627 	struct ieee80211vap *vap;
628 
629 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
630 		return NULL;
631 
632 	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
633 	vap = &wvp->wv_vap;
634 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
635 
636 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
637 		WPI_VAP_LOCK_INIT(wvp);
638 		wpi_init_beacon(wvp);
639 	}
640 
641 	/* Override with driver methods. */
642 	vap->iv_key_set = wpi_key_set;
643 	vap->iv_key_delete = wpi_key_delete;
644 	if (opmode == IEEE80211_M_IBSS) {
645 		wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
646 		vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
647 	}
648 	wvp->wv_newstate = vap->iv_newstate;
649 	vap->iv_newstate = wpi_newstate;
650 	vap->iv_update_beacon = wpi_update_beacon;
651 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
652 
653 	ieee80211_ratectl_init(vap);
654 	/* Complete setup. */
655 	ieee80211_vap_attach(vap, ieee80211_media_change,
656 	    ieee80211_media_status, mac);
657 	ic->ic_opmode = opmode;
658 	return vap;
659 }
660 
661 static void
662 wpi_vap_delete(struct ieee80211vap *vap)
663 {
664 	struct wpi_vap *wvp = WPI_VAP(vap);
665 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
666 	enum ieee80211_opmode opmode = vap->iv_opmode;
667 
668 	ieee80211_ratectl_deinit(vap);
669 	ieee80211_vap_detach(vap);
670 
671 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
672 		if (bcn->m != NULL)
673 			m_freem(bcn->m);
674 
675 		WPI_VAP_LOCK_DESTROY(wvp);
676 	}
677 
678 	free(wvp, M_80211_VAP);
679 }
680 
681 static int
682 wpi_detach(device_t dev)
683 {
684 	struct wpi_softc *sc = device_get_softc(dev);
685 	struct ieee80211com *ic = &sc->sc_ic;
686 	uint8_t qid;
687 
688 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
689 
690 	if (ic->ic_vap_create == wpi_vap_create) {
691 		ieee80211_draintask(ic, &sc->sc_radioon_task);
692 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
693 
694 		wpi_stop(sc);
695 
696 		callout_drain(&sc->watchdog_rfkill);
697 		callout_drain(&sc->tx_timeout);
698 		callout_drain(&sc->scan_timeout);
699 		callout_drain(&sc->calib_to);
700 		ieee80211_ifdetach(ic);
701 	}
702 
703 	/* Uninstall interrupt handler. */
704 	if (sc->irq != NULL) {
705 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
706 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
707 		    sc->irq);
708 		pci_release_msi(dev);
709 	}
710 
711 	if (sc->txq[0].data_dmat) {
712 		/* Free DMA resources. */
713 		for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
714 			wpi_free_tx_ring(sc, &sc->txq[qid]);
715 
716 		wpi_free_rx_ring(sc);
717 		wpi_free_shared(sc);
718 	}
719 
720 	if (sc->fw_dma.tag)
721 		wpi_free_fwmem(sc);
722 
723 	if (sc->mem != NULL)
724 		bus_release_resource(dev, SYS_RES_MEMORY,
725 		    rman_get_rid(sc->mem), sc->mem);
726 
727 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
728 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
729 	WPI_TXQ_LOCK_DESTROY(sc);
730 	WPI_NT_LOCK_DESTROY(sc);
731 	WPI_RXON_LOCK_DESTROY(sc);
732 	WPI_TX_LOCK_DESTROY(sc);
733 	WPI_LOCK_DESTROY(sc);
734 	return 0;
735 }
736 
737 static int
738 wpi_shutdown(device_t dev)
739 {
740 	struct wpi_softc *sc = device_get_softc(dev);
741 
742 	wpi_stop(sc);
743 	return 0;
744 }
745 
746 static int
747 wpi_suspend(device_t dev)
748 {
749 	struct wpi_softc *sc = device_get_softc(dev);
750 	struct ieee80211com *ic = &sc->sc_ic;
751 
752 	ieee80211_suspend_all(ic);
753 	return 0;
754 }
755 
756 static int
757 wpi_resume(device_t dev)
758 {
759 	struct wpi_softc *sc = device_get_softc(dev);
760 	struct ieee80211com *ic = &sc->sc_ic;
761 
762 	/* Clear device-specific "PCI retry timeout" register (41h). */
763 	pci_write_config(dev, 0x41, 0, 1);
764 
765 	ieee80211_resume_all(ic);
766 	return 0;
767 }
768 
769 /*
770  * Grab exclusive access to NIC memory.
771  */
772 static int
773 wpi_nic_lock(struct wpi_softc *sc)
774 {
775 	int ntries;
776 
777 	/* Request exclusive access to NIC. */
778 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
779 
780 	/* Spin until we actually get the lock. */
781 	for (ntries = 0; ntries < 1000; ntries++) {
782 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
783 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
784 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
785 			return 0;
786 		DELAY(10);
787 	}
788 
789 	device_printf(sc->sc_dev, "could not lock memory\n");
790 
791 	return ETIMEDOUT;
792 }
793 
794 /*
795  * Release lock on NIC memory.
796  */
797 static __inline void
798 wpi_nic_unlock(struct wpi_softc *sc)
799 {
800 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
801 }
802 
803 static __inline uint32_t
804 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
805 {
806 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
807 	WPI_BARRIER_READ_WRITE(sc);
808 	return WPI_READ(sc, WPI_PRPH_RDATA);
809 }
810 
811 static __inline void
812 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
813 {
814 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
815 	WPI_BARRIER_WRITE(sc);
816 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
817 }
818 
819 static __inline void
820 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
821 {
822 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
823 }
824 
825 static __inline void
826 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
827 {
828 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
829 }
830 
831 static __inline void
832 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
833     const uint32_t *data, uint32_t count)
834 {
835 	for (; count != 0; count--, data++, addr += 4)
836 		wpi_prph_write(sc, addr, *data);
837 }
838 
839 static __inline uint32_t
840 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
841 {
842 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
843 	WPI_BARRIER_READ_WRITE(sc);
844 	return WPI_READ(sc, WPI_MEM_RDATA);
845 }
846 
847 static __inline void
848 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
849     int count)
850 {
851 	for (; count > 0; count--, addr += 4)
852 		*data++ = wpi_mem_read(sc, addr);
853 }
854 
855 static int
856 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
857 {
858 	uint8_t *out = data;
859 	uint32_t val;
860 	int error, ntries;
861 
862 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
863 
864 	if ((error = wpi_nic_lock(sc)) != 0)
865 		return error;
866 
867 	for (; count > 0; count -= 2, addr++) {
868 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
869 		for (ntries = 0; ntries < 10; ntries++) {
870 			val = WPI_READ(sc, WPI_EEPROM);
871 			if (val & WPI_EEPROM_READ_VALID)
872 				break;
873 			DELAY(5);
874 		}
875 		if (ntries == 10) {
876 			device_printf(sc->sc_dev,
877 			    "timeout reading ROM at 0x%x\n", addr);
878 			return ETIMEDOUT;
879 		}
880 		*out++= val >> 16;
881 		if (count > 1)
882 			*out ++= val >> 24;
883 	}
884 
885 	wpi_nic_unlock(sc);
886 
887 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
888 
889 	return 0;
890 }
891 
892 static void
893 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
894 {
895 	if (error != 0)
896 		return;
897 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
898 	*(bus_addr_t *)arg = segs[0].ds_addr;
899 }
900 
901 /*
902  * Allocates a contiguous block of dma memory of the requested size and
903  * alignment.
904  */
905 static int
906 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
907     void **kvap, bus_size_t size, bus_size_t alignment)
908 {
909 	int error;
910 
911 	dma->tag = NULL;
912 	dma->size = size;
913 
914 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
915 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
916 	    1, size, 0, NULL, NULL, &dma->tag);
917 	if (error != 0)
918 		goto fail;
919 
920 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
921 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
922 	if (error != 0)
923 		goto fail;
924 
925 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
926 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
927 	if (error != 0)
928 		goto fail;
929 
930 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
931 
932 	if (kvap != NULL)
933 		*kvap = dma->vaddr;
934 
935 	return 0;
936 
937 fail:	wpi_dma_contig_free(dma);
938 	return error;
939 }
940 
941 static void
942 wpi_dma_contig_free(struct wpi_dma_info *dma)
943 {
944 	if (dma->vaddr != NULL) {
945 		bus_dmamap_sync(dma->tag, dma->map,
946 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
947 		bus_dmamap_unload(dma->tag, dma->map);
948 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
949 		dma->vaddr = NULL;
950 	}
951 	if (dma->tag != NULL) {
952 		bus_dma_tag_destroy(dma->tag);
953 		dma->tag = NULL;
954 	}
955 }
956 
957 /*
958  * Allocate a shared page between host and NIC.
959  */
960 static int
961 wpi_alloc_shared(struct wpi_softc *sc)
962 {
963 	/* Shared buffer must be aligned on a 4KB boundary. */
964 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
965 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
966 }
967 
968 static void
969 wpi_free_shared(struct wpi_softc *sc)
970 {
971 	wpi_dma_contig_free(&sc->shared_dma);
972 }
973 
974 /*
975  * Allocate DMA-safe memory for firmware transfer.
976  */
977 static int
978 wpi_alloc_fwmem(struct wpi_softc *sc)
979 {
980 	/* Must be aligned on a 16-byte boundary. */
981 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
982 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
983 }
984 
985 static void
986 wpi_free_fwmem(struct wpi_softc *sc)
987 {
988 	wpi_dma_contig_free(&sc->fw_dma);
989 }
990 
991 static int
992 wpi_alloc_rx_ring(struct wpi_softc *sc)
993 {
994 	struct wpi_rx_ring *ring = &sc->rxq;
995 	bus_size_t size;
996 	int i, error;
997 
998 	ring->cur = 0;
999 	ring->update = 0;
1000 
1001 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1002 
1003 	/* Allocate RX descriptors (16KB aligned.) */
1004 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1005 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1006 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1007 	if (error != 0) {
1008 		device_printf(sc->sc_dev,
1009 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1010 		    __func__, error);
1011 		goto fail;
1012 	}
1013 
1014 	/* Create RX buffer DMA tag. */
1015 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1016 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1017 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
1018 	if (error != 0) {
1019 		device_printf(sc->sc_dev,
1020 		    "%s: could not create RX buf DMA tag, error %d\n",
1021 		    __func__, error);
1022 		goto fail;
1023 	}
1024 
1025 	/*
1026 	 * Allocate and map RX buffers.
1027 	 */
1028 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1029 		struct wpi_rx_data *data = &ring->data[i];
1030 		bus_addr_t paddr;
1031 
1032 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1033 		if (error != 0) {
1034 			device_printf(sc->sc_dev,
1035 			    "%s: could not create RX buf DMA map, error %d\n",
1036 			    __func__, error);
1037 			goto fail;
1038 		}
1039 
1040 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1041 		if (data->m == NULL) {
1042 			device_printf(sc->sc_dev,
1043 			    "%s: could not allocate RX mbuf\n", __func__);
1044 			error = ENOBUFS;
1045 			goto fail;
1046 		}
1047 
1048 		error = bus_dmamap_load(ring->data_dmat, data->map,
1049 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1050 		    &paddr, BUS_DMA_NOWAIT);
1051 		if (error != 0 && error != EFBIG) {
1052 			device_printf(sc->sc_dev,
1053 			    "%s: can't map mbuf (error %d)\n", __func__,
1054 			    error);
1055 			goto fail;
1056 		}
1057 
1058 		/* Set physical address of RX buffer. */
1059 		ring->desc[i] = htole32(paddr);
1060 	}
1061 
1062 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1063 	    BUS_DMASYNC_PREWRITE);
1064 
1065 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1066 
1067 	return 0;
1068 
1069 fail:	wpi_free_rx_ring(sc);
1070 
1071 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1072 
1073 	return error;
1074 }
1075 
1076 static void
1077 wpi_update_rx_ring(struct wpi_softc *sc)
1078 {
1079 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1080 }
1081 
1082 static void
1083 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1084 {
1085 	struct wpi_rx_ring *ring = &sc->rxq;
1086 
1087 	if (ring->update != 0) {
1088 		/* Wait for INT_WAKEUP event. */
1089 		return;
1090 	}
1091 
1092 	WPI_TXQ_LOCK(sc);
1093 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1094 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1095 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1096 		    __func__);
1097 		ring->update = 1;
1098 	} else {
1099 		wpi_update_rx_ring(sc);
1100 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1101 	}
1102 	WPI_TXQ_UNLOCK(sc);
1103 }
1104 
1105 static void
1106 wpi_reset_rx_ring(struct wpi_softc *sc)
1107 {
1108 	struct wpi_rx_ring *ring = &sc->rxq;
1109 	int ntries;
1110 
1111 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1112 
1113 	if (wpi_nic_lock(sc) == 0) {
1114 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1115 		for (ntries = 0; ntries < 1000; ntries++) {
1116 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1117 			    WPI_FH_RX_STATUS_IDLE)
1118 				break;
1119 			DELAY(10);
1120 		}
1121 		wpi_nic_unlock(sc);
1122 	}
1123 
1124 	ring->cur = 0;
1125 	ring->update = 0;
1126 }
1127 
1128 static void
1129 wpi_free_rx_ring(struct wpi_softc *sc)
1130 {
1131 	struct wpi_rx_ring *ring = &sc->rxq;
1132 	int i;
1133 
1134 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1135 
1136 	wpi_dma_contig_free(&ring->desc_dma);
1137 
1138 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1139 		struct wpi_rx_data *data = &ring->data[i];
1140 
1141 		if (data->m != NULL) {
1142 			bus_dmamap_sync(ring->data_dmat, data->map,
1143 			    BUS_DMASYNC_POSTREAD);
1144 			bus_dmamap_unload(ring->data_dmat, data->map);
1145 			m_freem(data->m);
1146 			data->m = NULL;
1147 		}
1148 		if (data->map != NULL)
1149 			bus_dmamap_destroy(ring->data_dmat, data->map);
1150 	}
1151 	if (ring->data_dmat != NULL) {
1152 		bus_dma_tag_destroy(ring->data_dmat);
1153 		ring->data_dmat = NULL;
1154 	}
1155 }
1156 
1157 static int
1158 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
1159 {
1160 	bus_addr_t paddr;
1161 	bus_size_t size;
1162 	int i, error;
1163 
1164 	ring->qid = qid;
1165 	ring->queued = 0;
1166 	ring->cur = 0;
1167 	ring->pending = 0;
1168 	ring->update = 0;
1169 
1170 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1171 
1172 	/* Allocate TX descriptors (16KB aligned.) */
1173 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1174 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1175 	    size, WPI_RING_DMA_ALIGN);
1176 	if (error != 0) {
1177 		device_printf(sc->sc_dev,
1178 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1179 		    __func__, error);
1180 		goto fail;
1181 	}
1182 
1183 	/* Update shared area with ring physical address. */
1184 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1185 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1186 	    BUS_DMASYNC_PREWRITE);
1187 
1188 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1189 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1190 	    size, 4);
1191 	if (error != 0) {
1192 		device_printf(sc->sc_dev,
1193 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1194 		    __func__, error);
1195 		goto fail;
1196 	}
1197 
1198 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1199 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1200 	    WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
1201 	if (error != 0) {
1202 		device_printf(sc->sc_dev,
1203 		    "%s: could not create TX buf DMA tag, error %d\n",
1204 		    __func__, error);
1205 		goto fail;
1206 	}
1207 
1208 	paddr = ring->cmd_dma.paddr;
1209 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1210 		struct wpi_tx_data *data = &ring->data[i];
1211 
1212 		data->cmd_paddr = paddr;
1213 		paddr += sizeof (struct wpi_tx_cmd);
1214 
1215 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1216 		if (error != 0) {
1217 			device_printf(sc->sc_dev,
1218 			    "%s: could not create TX buf DMA map, error %d\n",
1219 			    __func__, error);
1220 			goto fail;
1221 		}
1222 	}
1223 
1224 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1225 
1226 	return 0;
1227 
1228 fail:	wpi_free_tx_ring(sc, ring);
1229 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1230 	return error;
1231 }
1232 
1233 static void
1234 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1235 {
1236 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1237 }
1238 
1239 static void
1240 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1241 {
1242 
1243 	if (ring->update != 0) {
1244 		/* Wait for INT_WAKEUP event. */
1245 		return;
1246 	}
1247 
1248 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1249 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1250 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1251 		    __func__, ring->qid);
1252 		ring->update = 1;
1253 	} else {
1254 		wpi_update_tx_ring(sc, ring);
1255 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1256 	}
1257 }
1258 
1259 static void
1260 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1261 {
1262 	int i;
1263 
1264 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1265 
1266 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1267 		struct wpi_tx_data *data = &ring->data[i];
1268 
1269 		if (data->m != NULL) {
1270 			bus_dmamap_sync(ring->data_dmat, data->map,
1271 			    BUS_DMASYNC_POSTWRITE);
1272 			bus_dmamap_unload(ring->data_dmat, data->map);
1273 			m_freem(data->m);
1274 			data->m = NULL;
1275 		}
1276 		if (data->ni != NULL) {
1277 			ieee80211_free_node(data->ni);
1278 			data->ni = NULL;
1279 		}
1280 	}
1281 	/* Clear TX descriptors. */
1282 	memset(ring->desc, 0, ring->desc_dma.size);
1283 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1284 	    BUS_DMASYNC_PREWRITE);
1285 	ring->queued = 0;
1286 	ring->cur = 0;
1287 	ring->pending = 0;
1288 	ring->update = 0;
1289 }
1290 
1291 static void
1292 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1293 {
1294 	int i;
1295 
1296 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1297 
1298 	wpi_dma_contig_free(&ring->desc_dma);
1299 	wpi_dma_contig_free(&ring->cmd_dma);
1300 
1301 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1302 		struct wpi_tx_data *data = &ring->data[i];
1303 
1304 		if (data->m != NULL) {
1305 			bus_dmamap_sync(ring->data_dmat, data->map,
1306 			    BUS_DMASYNC_POSTWRITE);
1307 			bus_dmamap_unload(ring->data_dmat, data->map);
1308 			m_freem(data->m);
1309 		}
1310 		if (data->map != NULL)
1311 			bus_dmamap_destroy(ring->data_dmat, data->map);
1312 	}
1313 	if (ring->data_dmat != NULL) {
1314 		bus_dma_tag_destroy(ring->data_dmat);
1315 		ring->data_dmat = NULL;
1316 	}
1317 }
1318 
1319 /*
1320  * Extract various information from EEPROM.
1321  */
1322 static int
1323 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1324 {
1325 #define WPI_CHK(res) do {		\
1326 	if ((error = res) != 0)		\
1327 		goto fail;		\
1328 } while (0)
1329 	uint8_t i;
1330 	int error;
1331 
1332 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1333 
1334 	/* Adapter has to be powered on for EEPROM access to work. */
1335 	if ((error = wpi_apm_init(sc)) != 0) {
1336 		device_printf(sc->sc_dev,
1337 		    "%s: could not power ON adapter, error %d\n", __func__,
1338 		    error);
1339 		return error;
1340 	}
1341 
1342 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1343 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1344 		error = EIO;
1345 		goto fail;
1346 	}
1347 	/* Clear HW ownership of EEPROM. */
1348 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1349 
1350 	/* Read the hardware capabilities, revision and SKU type. */
1351 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1352 	    sizeof(sc->cap)));
1353 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1354 	    sizeof(sc->rev)));
1355 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1356 	    sizeof(sc->type)));
1357 
1358 	sc->rev = le16toh(sc->rev);
1359 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1360 	    sc->rev, sc->type);
1361 
1362 	/* Read the regulatory domain (4 ASCII characters.) */
1363 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1364 	    sizeof(sc->domain)));
1365 
1366 	/* Read MAC address. */
1367 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1368 	    IEEE80211_ADDR_LEN));
1369 
1370 	/* Read the list of authorized channels. */
1371 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1372 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1373 
1374 	/* Read the list of TX power groups. */
1375 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1376 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1377 
1378 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1379 
1380 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1381 	    __func__);
1382 
1383 	return error;
1384 #undef WPI_CHK
1385 }
1386 
1387 /*
1388  * Translate EEPROM flags to net80211.
1389  */
1390 static uint32_t
1391 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1392 {
1393 	uint32_t nflags;
1394 
1395 	nflags = 0;
1396 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1397 		nflags |= IEEE80211_CHAN_PASSIVE;
1398 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1399 		nflags |= IEEE80211_CHAN_NOADHOC;
1400 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1401 		nflags |= IEEE80211_CHAN_DFS;
1402 		/* XXX apparently IBSS may still be marked */
1403 		nflags |= IEEE80211_CHAN_NOADHOC;
1404 	}
1405 
1406 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1407 	if (nflags & IEEE80211_CHAN_NOADHOC)
1408 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1409 
1410 	return nflags;
1411 }
1412 
1413 static void
1414 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans,
1415     int *nchans, struct ieee80211_channel chans[])
1416 {
1417 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1418 	const struct wpi_chan_band *band = &wpi_bands[n];
1419 	uint32_t nflags;
1420 	uint8_t bands[IEEE80211_MODE_BYTES];
1421 	uint8_t chan, i;
1422 	int error;
1423 
1424 	memset(bands, 0, sizeof(bands));
1425 
1426 	if (n == 0) {
1427 		setbit(bands, IEEE80211_MODE_11B);
1428 		setbit(bands, IEEE80211_MODE_11G);
1429 	} else
1430 		setbit(bands, IEEE80211_MODE_11A);
1431 
1432 	for (i = 0; i < band->nchan; i++) {
1433 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1434 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1435 			    "Channel Not Valid: %d, band %d\n",
1436 			     band->chan[i],n);
1437 			continue;
1438 		}
1439 
1440 		chan = band->chan[i];
1441 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1442 		error = ieee80211_add_channel(chans, maxchans, nchans,
1443 		    chan, 0, channels[i].maxpwr, nflags, bands);
1444 		if (error != 0)
1445 			break;
1446 
1447 		/* Save maximum allowed TX power for this channel. */
1448 		sc->maxpwr[chan] = channels[i].maxpwr;
1449 
1450 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1451 		    "adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
1452 		    chan, channels[i].flags, sc->maxpwr[chan], *nchans);
1453 	}
1454 }
1455 
1456 /**
1457  * Read the eeprom to find out what channels are valid for the given
1458  * band and update net80211 with what we find.
1459  */
1460 static int
1461 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
1462 {
1463 	struct ieee80211com *ic = &sc->sc_ic;
1464 	const struct wpi_chan_band *band = &wpi_bands[n];
1465 	int error;
1466 
1467 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1468 
1469 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1470 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1471 	if (error != 0) {
1472 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1473 		return error;
1474 	}
1475 
1476 	wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
1477 	    ic->ic_channels);
1478 
1479 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1480 
1481 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1482 
1483 	return 0;
1484 }
1485 
1486 static struct wpi_eeprom_chan *
1487 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1488 {
1489 	int i, j;
1490 
1491 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1492 		for (i = 0; i < wpi_bands[j].nchan; i++)
1493 			if (wpi_bands[j].chan[i] == c->ic_ieee &&
1494 			    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
1495 				return &sc->eeprom_channels[j][i];
1496 
1497 	return NULL;
1498 }
1499 
1500 static void
1501 wpi_getradiocaps(struct ieee80211com *ic,
1502     int maxchans, int *nchans, struct ieee80211_channel chans[])
1503 {
1504 	struct wpi_softc *sc = ic->ic_softc;
1505 	int i;
1506 
1507 	/* Parse the list of authorized channels. */
1508 	for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++)
1509 		wpi_read_eeprom_band(sc, i, maxchans, nchans, chans);
1510 }
1511 
1512 /*
1513  * Enforce flags read from EEPROM.
1514  */
1515 static int
1516 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1517     int nchan, struct ieee80211_channel chans[])
1518 {
1519 	struct wpi_softc *sc = ic->ic_softc;
1520 	int i;
1521 
1522 	for (i = 0; i < nchan; i++) {
1523 		struct ieee80211_channel *c = &chans[i];
1524 		struct wpi_eeprom_chan *channel;
1525 
1526 		channel = wpi_find_eeprom_channel(sc, c);
1527 		if (channel == NULL) {
1528 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1529 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1530 			return EINVAL;
1531 		}
1532 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 static int
1539 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
1540 {
1541 	struct wpi_power_group *group = &sc->groups[n];
1542 	struct wpi_eeprom_group rgroup;
1543 	int i, error;
1544 
1545 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1546 
1547 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1548 	    &rgroup, sizeof rgroup)) != 0) {
1549 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1550 		return error;
1551 	}
1552 
1553 	/* Save TX power group information. */
1554 	group->chan   = rgroup.chan;
1555 	group->maxpwr = rgroup.maxpwr;
1556 	/* Retrieve temperature at which the samples were taken. */
1557 	group->temp   = (int16_t)le16toh(rgroup.temp);
1558 
1559 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1560 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1561 	    group->maxpwr, group->temp);
1562 
1563 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1564 		group->samples[i].index = rgroup.samples[i].index;
1565 		group->samples[i].power = rgroup.samples[i].power;
1566 
1567 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1568 		    "\tsample %d: index=%d power=%d\n", i,
1569 		    group->samples[i].index, group->samples[i].power);
1570 	}
1571 
1572 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1573 
1574 	return 0;
1575 }
1576 
1577 static __inline uint8_t
1578 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1579 {
1580 	uint8_t newid = WPI_ID_IBSS_MIN;
1581 
1582 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1583 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1584 			sc->nodesmsk |= 1 << newid;
1585 			return newid;
1586 		}
1587 	}
1588 
1589 	return WPI_ID_UNDEFINED;
1590 }
1591 
1592 static __inline uint8_t
1593 wpi_add_node_entry_sta(struct wpi_softc *sc)
1594 {
1595 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1596 
1597 	return WPI_ID_BSS;
1598 }
1599 
1600 static __inline int
1601 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1602 {
1603 	if (id == WPI_ID_UNDEFINED)
1604 		return 0;
1605 
1606 	return (sc->nodesmsk >> id) & 1;
1607 }
1608 
1609 static __inline void
1610 wpi_clear_node_table(struct wpi_softc *sc)
1611 {
1612 	sc->nodesmsk = 0;
1613 }
1614 
1615 static __inline void
1616 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1617 {
1618 	sc->nodesmsk &= ~(1 << id);
1619 }
1620 
1621 static struct ieee80211_node *
1622 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1623 {
1624 	struct wpi_node *wn;
1625 
1626 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1627 	    M_NOWAIT | M_ZERO);
1628 
1629 	if (wn == NULL)
1630 		return NULL;
1631 
1632 	wn->id = WPI_ID_UNDEFINED;
1633 
1634 	return &wn->ni;
1635 }
1636 
1637 static void
1638 wpi_node_free(struct ieee80211_node *ni)
1639 {
1640 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1641 	struct wpi_node *wn = WPI_NODE(ni);
1642 
1643 	if (wn->id != WPI_ID_UNDEFINED) {
1644 		WPI_NT_LOCK(sc);
1645 		if (wpi_check_node_entry(sc, wn->id)) {
1646 			wpi_del_node_entry(sc, wn->id);
1647 			wpi_del_node(sc, ni);
1648 		}
1649 		WPI_NT_UNLOCK(sc);
1650 	}
1651 
1652 	sc->sc_node_free(ni);
1653 }
1654 
1655 static __inline int
1656 wpi_check_bss_filter(struct wpi_softc *sc)
1657 {
1658 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1659 }
1660 
1661 static void
1662 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1663     const struct ieee80211_rx_stats *rxs,
1664     int rssi, int nf)
1665 {
1666 	struct ieee80211vap *vap = ni->ni_vap;
1667 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1668 	struct wpi_vap *wvp = WPI_VAP(vap);
1669 	uint64_t ni_tstamp, rx_tstamp;
1670 
1671 	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1672 
1673 	if (vap->iv_state == IEEE80211_S_RUN &&
1674 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1675 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1676 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1677 		rx_tstamp = le64toh(sc->rx_tstamp);
1678 
1679 		if (ni_tstamp >= rx_tstamp) {
1680 			DPRINTF(sc, WPI_DEBUG_STATE,
1681 			    "ibss merge, tsf %ju tstamp %ju\n",
1682 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1683 			(void) ieee80211_ibss_merge(ni);
1684 		}
1685 	}
1686 }
1687 
1688 static void
1689 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1690 {
1691 	struct wpi_softc *sc = arg;
1692 	struct wpi_node *wn = WPI_NODE(ni);
1693 	int error;
1694 
1695 	WPI_NT_LOCK(sc);
1696 	if (wn->id != WPI_ID_UNDEFINED) {
1697 		wn->id = WPI_ID_UNDEFINED;
1698 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1699 			device_printf(sc->sc_dev,
1700 			    "%s: could not add IBSS node, error %d\n",
1701 			    __func__, error);
1702 		}
1703 	}
1704 	WPI_NT_UNLOCK(sc);
1705 }
1706 
1707 static void
1708 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1709 {
1710 	struct ieee80211com *ic = &sc->sc_ic;
1711 
1712 	/* Set group keys once. */
1713 	WPI_NT_LOCK(sc);
1714 	wvp->wv_gtk = 0;
1715 	WPI_NT_UNLOCK(sc);
1716 
1717 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1718 	ieee80211_crypto_reload_keys(ic);
1719 }
1720 
1721 /**
1722  * Called by net80211 when ever there is a change to 80211 state machine
1723  */
1724 static int
1725 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1726 {
1727 	struct wpi_vap *wvp = WPI_VAP(vap);
1728 	struct ieee80211com *ic = vap->iv_ic;
1729 	struct wpi_softc *sc = ic->ic_softc;
1730 	int error = 0;
1731 
1732 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1733 
1734 	WPI_TXQ_LOCK(sc);
1735 	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1736 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1737 		WPI_TXQ_UNLOCK(sc);
1738 
1739 		return ENXIO;
1740 	}
1741 	WPI_TXQ_UNLOCK(sc);
1742 
1743 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1744 		ieee80211_state_name[vap->iv_state],
1745 		ieee80211_state_name[nstate]);
1746 
1747 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1748 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1749 			device_printf(sc->sc_dev,
1750 			    "%s: could not set power saving level\n",
1751 			    __func__);
1752 			return error;
1753 		}
1754 
1755 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1756 	}
1757 
1758 	switch (nstate) {
1759 	case IEEE80211_S_SCAN:
1760 		WPI_RXON_LOCK(sc);
1761 		if (wpi_check_bss_filter(sc) != 0) {
1762 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1763 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1764 				device_printf(sc->sc_dev,
1765 				    "%s: could not send RXON\n", __func__);
1766 			}
1767 		}
1768 		WPI_RXON_UNLOCK(sc);
1769 		break;
1770 
1771 	case IEEE80211_S_ASSOC:
1772 		if (vap->iv_state != IEEE80211_S_RUN)
1773 			break;
1774 		/* FALLTHROUGH */
1775 	case IEEE80211_S_AUTH:
1776 		/*
1777 		 * NB: do not optimize AUTH -> AUTH state transmission -
1778 		 * this will break powersave with non-QoS AP!
1779 		 */
1780 
1781 		/*
1782 		 * The node must be registered in the firmware before auth.
1783 		 * Also the associd must be cleared on RUN -> ASSOC
1784 		 * transitions.
1785 		 */
1786 		if ((error = wpi_auth(sc, vap)) != 0) {
1787 			device_printf(sc->sc_dev,
1788 			    "%s: could not move to AUTH state, error %d\n",
1789 			    __func__, error);
1790 		}
1791 		break;
1792 
1793 	case IEEE80211_S_RUN:
1794 		/*
1795 		 * RUN -> RUN transition:
1796 		 * STA mode: Just restart the timers.
1797 		 * IBSS mode: Process IBSS merge.
1798 		 */
1799 		if (vap->iv_state == IEEE80211_S_RUN) {
1800 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1801 				WPI_RXON_LOCK(sc);
1802 				wpi_calib_timeout(sc);
1803 				WPI_RXON_UNLOCK(sc);
1804 				break;
1805 			} else {
1806 				/*
1807 				 * Drop the BSS_FILTER bit
1808 				 * (there is no another way to change bssid).
1809 				 */
1810 				WPI_RXON_LOCK(sc);
1811 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1812 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1813 					device_printf(sc->sc_dev,
1814 					    "%s: could not send RXON\n",
1815 					    __func__);
1816 				}
1817 				WPI_RXON_UNLOCK(sc);
1818 
1819 				/* Restore all what was lost. */
1820 				wpi_restore_node_table(sc, wvp);
1821 
1822 				/* XXX set conditionally? */
1823 				wpi_updateedca(ic);
1824 			}
1825 		}
1826 
1827 		/*
1828 		 * !RUN -> RUN requires setting the association id
1829 		 * which is done with a firmware cmd.  We also defer
1830 		 * starting the timers until that work is done.
1831 		 */
1832 		if ((error = wpi_run(sc, vap)) != 0) {
1833 			device_printf(sc->sc_dev,
1834 			    "%s: could not move to RUN state\n", __func__);
1835 		}
1836 		break;
1837 
1838 	default:
1839 		break;
1840 	}
1841 	if (error != 0) {
1842 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1843 		return error;
1844 	}
1845 
1846 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1847 
1848 	return wvp->wv_newstate(vap, nstate, arg);
1849 }
1850 
1851 static void
1852 wpi_calib_timeout(void *arg)
1853 {
1854 	struct wpi_softc *sc = arg;
1855 
1856 	if (wpi_check_bss_filter(sc) == 0)
1857 		return;
1858 
1859 	wpi_power_calibration(sc);
1860 
1861 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1862 }
1863 
1864 static __inline uint8_t
1865 rate2plcp(const uint8_t rate)
1866 {
1867 	switch (rate) {
1868 	case 12:	return 0xd;
1869 	case 18:	return 0xf;
1870 	case 24:	return 0x5;
1871 	case 36:	return 0x7;
1872 	case 48:	return 0x9;
1873 	case 72:	return 0xb;
1874 	case 96:	return 0x1;
1875 	case 108:	return 0x3;
1876 	case 2:		return 10;
1877 	case 4:		return 20;
1878 	case 11:	return 55;
1879 	case 22:	return 110;
1880 	default:	return 0;
1881 	}
1882 }
1883 
1884 static __inline uint8_t
1885 plcp2rate(const uint8_t plcp)
1886 {
1887 	switch (plcp) {
1888 	case 0xd:	return 12;
1889 	case 0xf:	return 18;
1890 	case 0x5:	return 24;
1891 	case 0x7:	return 36;
1892 	case 0x9:	return 48;
1893 	case 0xb:	return 72;
1894 	case 0x1:	return 96;
1895 	case 0x3:	return 108;
1896 	case 10:	return 2;
1897 	case 20:	return 4;
1898 	case 55:	return 11;
1899 	case 110:	return 22;
1900 	default:	return 0;
1901 	}
1902 }
1903 
1904 /* Quickly determine if a given rate is CCK or OFDM. */
1905 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1906 
1907 static void
1908 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1909     struct wpi_rx_data *data)
1910 {
1911 	struct ieee80211com *ic = &sc->sc_ic;
1912 	struct wpi_rx_ring *ring = &sc->rxq;
1913 	struct wpi_rx_stat *stat;
1914 	struct wpi_rx_head *head;
1915 	struct wpi_rx_tail *tail;
1916 	struct ieee80211_frame *wh;
1917 	struct ieee80211_node *ni;
1918 	struct mbuf *m, *m1;
1919 	bus_addr_t paddr;
1920 	uint32_t flags;
1921 	uint16_t len;
1922 	int error;
1923 
1924 	stat = (struct wpi_rx_stat *)(desc + 1);
1925 
1926 	if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
1927 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1928 		goto fail1;
1929 	}
1930 
1931 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1932 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1933 	len = le16toh(head->len);
1934 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1935 	flags = le32toh(tail->flags);
1936 
1937 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1938 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1939 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1940 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1941 
1942 	/* Discard frames with a bad FCS early. */
1943 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1944 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1945 		    __func__, flags);
1946 		goto fail1;
1947 	}
1948 	/* Discard frames that are too short. */
1949 	if (len < sizeof (struct ieee80211_frame_ack)) {
1950 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1951 		    __func__, len);
1952 		goto fail1;
1953 	}
1954 
1955 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1956 	if (__predict_false(m1 == NULL)) {
1957 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1958 		    __func__);
1959 		goto fail1;
1960 	}
1961 	bus_dmamap_unload(ring->data_dmat, data->map);
1962 
1963 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1964 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1965 	if (__predict_false(error != 0 && error != EFBIG)) {
1966 		device_printf(sc->sc_dev,
1967 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1968 		m_freem(m1);
1969 
1970 		/* Try to reload the old mbuf. */
1971 		error = bus_dmamap_load(ring->data_dmat, data->map,
1972 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1973 		    &paddr, BUS_DMA_NOWAIT);
1974 		if (error != 0 && error != EFBIG) {
1975 			panic("%s: could not load old RX mbuf", __func__);
1976 		}
1977 		/* Physical address may have changed. */
1978 		ring->desc[ring->cur] = htole32(paddr);
1979 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1980 		    BUS_DMASYNC_PREWRITE);
1981 		goto fail1;
1982 	}
1983 
1984 	m = data->m;
1985 	data->m = m1;
1986 	/* Update RX descriptor. */
1987 	ring->desc[ring->cur] = htole32(paddr);
1988 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1989 	    BUS_DMASYNC_PREWRITE);
1990 
1991 	/* Finalize mbuf. */
1992 	m->m_data = (caddr_t)(head + 1);
1993 	m->m_pkthdr.len = m->m_len = len;
1994 
1995 	/* Grab a reference to the source node. */
1996 	wh = mtod(m, struct ieee80211_frame *);
1997 
1998 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1999 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2000 		/* Check whether decryption was successful or not. */
2001 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2002 			DPRINTF(sc, WPI_DEBUG_RECV,
2003 			    "CCMP decryption failed 0x%x\n", flags);
2004 			goto fail2;
2005 		}
2006 		m->m_flags |= M_WEP;
2007 	}
2008 
2009 	if (len >= sizeof(struct ieee80211_frame_min))
2010 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2011 	else
2012 		ni = NULL;
2013 
2014 	sc->rx_tstamp = tail->tstamp;
2015 
2016 	if (ieee80211_radiotap_active(ic)) {
2017 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2018 
2019 		tap->wr_flags = 0;
2020 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2021 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2022 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2023 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2024 		tap->wr_tsft = tail->tstamp;
2025 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2026 		tap->wr_rate = plcp2rate(head->plcp);
2027 	}
2028 
2029 	WPI_UNLOCK(sc);
2030 
2031 	/* Send the frame to the 802.11 layer. */
2032 	if (ni != NULL) {
2033 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2034 		/* Node is no longer needed. */
2035 		ieee80211_free_node(ni);
2036 	} else
2037 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2038 
2039 	WPI_LOCK(sc);
2040 
2041 	return;
2042 
2043 fail2:	m_freem(m);
2044 
2045 fail1:	counter_u64_add(ic->ic_ierrors, 1);
2046 }
2047 
2048 static void
2049 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2050     struct wpi_rx_data *data)
2051 {
2052 	/* Ignore */
2053 }
2054 
2055 static void
2056 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2057 {
2058 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
2059 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2060 	struct wpi_tx_data *data = &ring->data[desc->idx];
2061 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2062 	struct mbuf *m;
2063 	struct ieee80211_node *ni;
2064 	uint32_t status = le32toh(stat->status);
2065 
2066 	KASSERT(data->ni != NULL, ("no node"));
2067 	KASSERT(data->m != NULL, ("no mbuf"));
2068 
2069 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2070 
2071 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2072 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2073 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2074 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2075 
2076 	/* Unmap and free mbuf. */
2077 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2078 	bus_dmamap_unload(ring->data_dmat, data->map);
2079 	m = data->m, data->m = NULL;
2080 	ni = data->ni, data->ni = NULL;
2081 
2082 	/*
2083 	 * Update rate control statistics for the node.
2084 	 */
2085 	txs->short_retries = stat->rtsfailcnt;
2086 	txs->long_retries = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2087 	if (!(status & WPI_TX_STATUS_FAIL))
2088 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
2089 	else {
2090 		switch (status & 0xff) {
2091 		case WPI_TX_STATUS_FAIL_SHORT_LIMIT:
2092 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
2093 			break;
2094 		case WPI_TX_STATUS_FAIL_LONG_LIMIT:
2095 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
2096 			break;
2097 		case WPI_TX_STATUS_FAIL_LIFE_EXPIRE:
2098 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
2099 			break;
2100 		default:
2101 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
2102 			break;
2103 		}
2104 	}
2105 
2106 	ieee80211_ratectl_tx_complete(ni, txs);
2107 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2108 
2109 	WPI_TXQ_STATE_LOCK(sc);
2110 	if (--ring->queued > 0)
2111 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2112 	else
2113 		callout_stop(&sc->tx_timeout);
2114 	WPI_TXQ_STATE_UNLOCK(sc);
2115 
2116 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2117 }
2118 
2119 /*
2120  * Process a "command done" firmware notification.  This is where we wakeup
2121  * processes waiting for a synchronous command completion.
2122  */
2123 static void
2124 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2125 {
2126 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2127 	struct wpi_tx_data *data;
2128 	struct wpi_tx_cmd *cmd;
2129 
2130 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2131 				   "type %s len %d\n", desc->qid, desc->idx,
2132 				   desc->flags, wpi_cmd_str(desc->type),
2133 				   le32toh(desc->len));
2134 
2135 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2136 		return;	/* Not a command ack. */
2137 
2138 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2139 
2140 	data = &ring->data[desc->idx];
2141 	cmd = &ring->cmd[desc->idx];
2142 
2143 	/* If the command was mapped in an mbuf, free it. */
2144 	if (data->m != NULL) {
2145 		bus_dmamap_sync(ring->data_dmat, data->map,
2146 		    BUS_DMASYNC_POSTWRITE);
2147 		bus_dmamap_unload(ring->data_dmat, data->map);
2148 		m_freem(data->m);
2149 		data->m = NULL;
2150 	}
2151 
2152 	wakeup(cmd);
2153 
2154 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2155 		struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
2156 
2157 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2158 		    BUS_DMASYNC_POSTREAD);
2159 
2160 		WPI_TXQ_LOCK(sc);
2161 		if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
2162 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2163 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2164 		} else {
2165 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2166 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2167 		}
2168 		WPI_TXQ_UNLOCK(sc);
2169 	}
2170 }
2171 
2172 static void
2173 wpi_notif_intr(struct wpi_softc *sc)
2174 {
2175 	struct ieee80211com *ic = &sc->sc_ic;
2176 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2177 	uint32_t hw;
2178 
2179 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2180 	    BUS_DMASYNC_POSTREAD);
2181 
2182 	hw = le32toh(sc->shared->next) & 0xfff;
2183 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2184 
2185 	while (sc->rxq.cur != hw) {
2186 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2187 
2188 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2189 		struct wpi_rx_desc *desc;
2190 
2191 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2192 		    BUS_DMASYNC_POSTREAD);
2193 		desc = mtod(data->m, struct wpi_rx_desc *);
2194 
2195 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2196 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2197 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2198 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2199 
2200 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2201 			/* Reply to a command. */
2202 			wpi_cmd_done(sc, desc);
2203 		}
2204 
2205 		switch (desc->type) {
2206 		case WPI_RX_DONE:
2207 			/* An 802.11 frame has been received. */
2208 			wpi_rx_done(sc, desc, data);
2209 
2210 			if (__predict_false(sc->sc_running == 0)) {
2211 				/* wpi_stop() was called. */
2212 				return;
2213 			}
2214 
2215 			break;
2216 
2217 		case WPI_TX_DONE:
2218 			/* An 802.11 frame has been transmitted. */
2219 			wpi_tx_done(sc, desc);
2220 			break;
2221 
2222 		case WPI_RX_STATISTICS:
2223 		case WPI_BEACON_STATISTICS:
2224 			wpi_rx_statistics(sc, desc, data);
2225 			break;
2226 
2227 		case WPI_BEACON_MISSED:
2228 		{
2229 			struct wpi_beacon_missed *miss =
2230 			    (struct wpi_beacon_missed *)(desc + 1);
2231 			uint32_t expected, misses, received, threshold;
2232 
2233 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2234 			    BUS_DMASYNC_POSTREAD);
2235 
2236 			misses = le32toh(miss->consecutive);
2237 			expected = le32toh(miss->expected);
2238 			received = le32toh(miss->received);
2239 			threshold = MAX(2, vap->iv_bmissthreshold);
2240 
2241 			DPRINTF(sc, WPI_DEBUG_BMISS,
2242 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2243 			    __func__, misses, le32toh(miss->total), received,
2244 			    expected);
2245 
2246 			if (misses >= threshold ||
2247 			    (received == 0 && expected >= threshold)) {
2248 				WPI_RXON_LOCK(sc);
2249 				if (callout_pending(&sc->scan_timeout)) {
2250 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2251 					    0, 1);
2252 				}
2253 				WPI_RXON_UNLOCK(sc);
2254 				if (vap->iv_state == IEEE80211_S_RUN &&
2255 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2256 					ieee80211_beacon_miss(ic);
2257 			}
2258 
2259 			break;
2260 		}
2261 #ifdef WPI_DEBUG
2262 		case WPI_BEACON_SENT:
2263 		{
2264 			struct wpi_tx_stat *stat =
2265 			    (struct wpi_tx_stat *)(desc + 1);
2266 			uint64_t *tsf = (uint64_t *)(stat + 1);
2267 			uint32_t *mode = (uint32_t *)(tsf + 1);
2268 
2269 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2270 			    BUS_DMASYNC_POSTREAD);
2271 
2272 			DPRINTF(sc, WPI_DEBUG_BEACON,
2273 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2274 			    "duration %u, status %x, tsf %ju, mode %x\n",
2275 			    stat->rtsfailcnt, stat->ackfailcnt,
2276 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2277 			    le32toh(stat->status), le64toh(*tsf),
2278 			    le32toh(*mode));
2279 
2280 			break;
2281 		}
2282 #endif
2283 		case WPI_UC_READY:
2284 		{
2285 			struct wpi_ucode_info *uc =
2286 			    (struct wpi_ucode_info *)(desc + 1);
2287 
2288 			/* The microcontroller is ready. */
2289 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2290 			    BUS_DMASYNC_POSTREAD);
2291 			DPRINTF(sc, WPI_DEBUG_RESET,
2292 			    "microcode alive notification version=%d.%d "
2293 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2294 			    uc->subtype, le32toh(uc->valid));
2295 
2296 			if (le32toh(uc->valid) != 1) {
2297 				device_printf(sc->sc_dev,
2298 				    "microcontroller initialization failed\n");
2299 				wpi_stop_locked(sc);
2300 				return;
2301 			}
2302 			/* Save the address of the error log in SRAM. */
2303 			sc->errptr = le32toh(uc->errptr);
2304 			break;
2305 		}
2306 		case WPI_STATE_CHANGED:
2307 		{
2308 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2309 			    BUS_DMASYNC_POSTREAD);
2310 
2311 			uint32_t *status = (uint32_t *)(desc + 1);
2312 
2313 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2314 			    le32toh(*status));
2315 
2316 			if (le32toh(*status) & 1) {
2317 				WPI_NT_LOCK(sc);
2318 				wpi_clear_node_table(sc);
2319 				WPI_NT_UNLOCK(sc);
2320 				ieee80211_runtask(ic,
2321 				    &sc->sc_radiooff_task);
2322 				return;
2323 			}
2324 			break;
2325 		}
2326 #ifdef WPI_DEBUG
2327 		case WPI_START_SCAN:
2328 		{
2329 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2330 			    BUS_DMASYNC_POSTREAD);
2331 
2332 			struct wpi_start_scan *scan =
2333 			    (struct wpi_start_scan *)(desc + 1);
2334 			DPRINTF(sc, WPI_DEBUG_SCAN,
2335 			    "%s: scanning channel %d status %x\n",
2336 			    __func__, scan->chan, le32toh(scan->status));
2337 
2338 			break;
2339 		}
2340 #endif
2341 		case WPI_STOP_SCAN:
2342 		{
2343 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2344 			    BUS_DMASYNC_POSTREAD);
2345 
2346 			struct wpi_stop_scan *scan =
2347 			    (struct wpi_stop_scan *)(desc + 1);
2348 
2349 			DPRINTF(sc, WPI_DEBUG_SCAN,
2350 			    "scan finished nchan=%d status=%d chan=%d\n",
2351 			    scan->nchan, scan->status, scan->chan);
2352 
2353 			WPI_RXON_LOCK(sc);
2354 			callout_stop(&sc->scan_timeout);
2355 			WPI_RXON_UNLOCK(sc);
2356 			if (scan->status == WPI_SCAN_ABORTED)
2357 				ieee80211_cancel_scan(vap);
2358 			else
2359 				ieee80211_scan_next(vap);
2360 			break;
2361 		}
2362 		}
2363 
2364 		if (sc->rxq.cur % 8 == 0) {
2365 			/* Tell the firmware what we have processed. */
2366 			sc->sc_update_rx_ring(sc);
2367 		}
2368 	}
2369 }
2370 
2371 /*
2372  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2373  * from power-down sleep mode.
2374  */
2375 static void
2376 wpi_wakeup_intr(struct wpi_softc *sc)
2377 {
2378 	int qid;
2379 
2380 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2381 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2382 
2383 	/* Wakeup RX and TX rings. */
2384 	if (sc->rxq.update) {
2385 		sc->rxq.update = 0;
2386 		wpi_update_rx_ring(sc);
2387 	}
2388 	WPI_TXQ_LOCK(sc);
2389 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2390 		struct wpi_tx_ring *ring = &sc->txq[qid];
2391 
2392 		if (ring->update) {
2393 			ring->update = 0;
2394 			wpi_update_tx_ring(sc, ring);
2395 		}
2396 	}
2397 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2398 	WPI_TXQ_UNLOCK(sc);
2399 }
2400 
2401 /*
2402  * This function prints firmware registers
2403  */
2404 #ifdef WPI_DEBUG
2405 static void
2406 wpi_debug_registers(struct wpi_softc *sc)
2407 {
2408 	size_t i;
2409 	static const uint32_t csr_tbl[] = {
2410 		WPI_HW_IF_CONFIG,
2411 		WPI_INT,
2412 		WPI_INT_MASK,
2413 		WPI_FH_INT,
2414 		WPI_GPIO_IN,
2415 		WPI_RESET,
2416 		WPI_GP_CNTRL,
2417 		WPI_EEPROM,
2418 		WPI_EEPROM_GP,
2419 		WPI_GIO,
2420 		WPI_UCODE_GP1,
2421 		WPI_UCODE_GP2,
2422 		WPI_GIO_CHICKEN,
2423 		WPI_ANA_PLL,
2424 		WPI_DBG_HPET_MEM,
2425 	};
2426 	static const uint32_t prph_tbl[] = {
2427 		WPI_APMG_CLK_CTRL,
2428 		WPI_APMG_PS,
2429 		WPI_APMG_PCI_STT,
2430 		WPI_APMG_RFKILL,
2431 	};
2432 
2433 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2434 
2435 	for (i = 0; i < nitems(csr_tbl); i++) {
2436 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2437 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2438 
2439 		if ((i + 1) % 2 == 0)
2440 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2441 	}
2442 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2443 
2444 	if (wpi_nic_lock(sc) == 0) {
2445 		for (i = 0; i < nitems(prph_tbl); i++) {
2446 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2447 			    wpi_get_prph_string(prph_tbl[i]),
2448 			    wpi_prph_read(sc, prph_tbl[i]));
2449 
2450 			if ((i + 1) % 2 == 0)
2451 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2452 		}
2453 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2454 		wpi_nic_unlock(sc);
2455 	} else {
2456 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2457 		    "Cannot access internal registers.\n");
2458 	}
2459 }
2460 #endif
2461 
2462 /*
2463  * Dump the error log of the firmware when a firmware panic occurs.  Although
2464  * we can't debug the firmware because it is neither open source nor free, it
2465  * can help us to identify certain classes of problems.
2466  */
2467 static void
2468 wpi_fatal_intr(struct wpi_softc *sc)
2469 {
2470 	struct wpi_fw_dump dump;
2471 	uint32_t i, offset, count;
2472 
2473 	/* Check that the error log address is valid. */
2474 	if (sc->errptr < WPI_FW_DATA_BASE ||
2475 	    sc->errptr + sizeof (dump) >
2476 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2477 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2478 		    sc->errptr);
2479 		return;
2480 	}
2481 	if (wpi_nic_lock(sc) != 0) {
2482 		printf("%s: could not read firmware error log\n", __func__);
2483 		return;
2484 	}
2485 	/* Read number of entries in the log. */
2486 	count = wpi_mem_read(sc, sc->errptr);
2487 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2488 		printf("%s: invalid count field (count = %u)\n", __func__,
2489 		    count);
2490 		wpi_nic_unlock(sc);
2491 		return;
2492 	}
2493 	/* Skip "count" field. */
2494 	offset = sc->errptr + sizeof (uint32_t);
2495 	printf("firmware error log (count = %u):\n", count);
2496 	for (i = 0; i < count; i++) {
2497 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2498 		    sizeof (dump) / sizeof (uint32_t));
2499 
2500 		printf("  error type = \"%s\" (0x%08X)\n",
2501 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2502 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2503 		    dump.desc);
2504 		printf("  error data      = 0x%08X\n",
2505 		    dump.data);
2506 		printf("  branch link     = 0x%08X%08X\n",
2507 		    dump.blink[0], dump.blink[1]);
2508 		printf("  interrupt link  = 0x%08X%08X\n",
2509 		    dump.ilink[0], dump.ilink[1]);
2510 		printf("  time            = %u\n", dump.time);
2511 
2512 		offset += sizeof (dump);
2513 	}
2514 	wpi_nic_unlock(sc);
2515 	/* Dump driver status (TX and RX rings) while we're here. */
2516 	printf("driver status:\n");
2517 	WPI_TXQ_LOCK(sc);
2518 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2519 		struct wpi_tx_ring *ring = &sc->txq[i];
2520 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2521 		    i, ring->qid, ring->cur, ring->queued);
2522 	}
2523 	WPI_TXQ_UNLOCK(sc);
2524 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2525 }
2526 
2527 static void
2528 wpi_intr(void *arg)
2529 {
2530 	struct wpi_softc *sc = arg;
2531 	uint32_t r1, r2;
2532 
2533 	WPI_LOCK(sc);
2534 
2535 	/* Disable interrupts. */
2536 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2537 
2538 	r1 = WPI_READ(sc, WPI_INT);
2539 
2540 	if (__predict_false(r1 == 0xffffffff ||
2541 			   (r1 & 0xfffffff0) == 0xa5a5a5a0))
2542 		goto end;	/* Hardware gone! */
2543 
2544 	r2 = WPI_READ(sc, WPI_FH_INT);
2545 
2546 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2547 	    r1, r2);
2548 
2549 	if (r1 == 0 && r2 == 0)
2550 		goto done;	/* Interrupt not for us. */
2551 
2552 	/* Acknowledge interrupts. */
2553 	WPI_WRITE(sc, WPI_INT, r1);
2554 	WPI_WRITE(sc, WPI_FH_INT, r2);
2555 
2556 	if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
2557 		struct ieee80211com *ic = &sc->sc_ic;
2558 
2559 		device_printf(sc->sc_dev, "fatal firmware error\n");
2560 #ifdef WPI_DEBUG
2561 		wpi_debug_registers(sc);
2562 #endif
2563 		wpi_fatal_intr(sc);
2564 		DPRINTF(sc, WPI_DEBUG_HW,
2565 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2566 		    "(Hardware Error)");
2567 		ieee80211_restart_all(ic);
2568 		goto end;
2569 	}
2570 
2571 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2572 	    (r2 & WPI_FH_INT_RX))
2573 		wpi_notif_intr(sc);
2574 
2575 	if (r1 & WPI_INT_ALIVE)
2576 		wakeup(sc);	/* Firmware is alive. */
2577 
2578 	if (r1 & WPI_INT_WAKEUP)
2579 		wpi_wakeup_intr(sc);
2580 
2581 done:
2582 	/* Re-enable interrupts. */
2583 	if (__predict_true(sc->sc_running))
2584 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2585 
2586 end:	WPI_UNLOCK(sc);
2587 }
2588 
2589 static void
2590 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
2591 {
2592 	struct wpi_tx_ring *ring;
2593 	struct wpi_tx_data *data;
2594 	uint8_t cur;
2595 
2596 	WPI_TXQ_LOCK(sc);
2597 	ring = &sc->txq[ac];
2598 
2599 	while (ring->pending != 0) {
2600 		ring->pending--;
2601 		cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2602 		data = &ring->data[cur];
2603 
2604 		bus_dmamap_sync(ring->data_dmat, data->map,
2605 		    BUS_DMASYNC_POSTWRITE);
2606 		bus_dmamap_unload(ring->data_dmat, data->map);
2607 		m_freem(data->m);
2608 		data->m = NULL;
2609 
2610 		ieee80211_node_decref(data->ni);
2611 		data->ni = NULL;
2612 	}
2613 
2614 	WPI_TXQ_UNLOCK(sc);
2615 }
2616 
2617 static int
2618 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2619 {
2620 	struct ieee80211_frame *wh;
2621 	struct wpi_tx_cmd *cmd;
2622 	struct wpi_tx_data *data;
2623 	struct wpi_tx_desc *desc;
2624 	struct wpi_tx_ring *ring;
2625 	struct mbuf *m1;
2626 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2627 	uint8_t cur, pad;
2628 	uint16_t hdrlen;
2629 	int error, i, nsegs, totlen, frag;
2630 
2631 	WPI_TXQ_LOCK(sc);
2632 
2633 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2634 
2635 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2636 
2637 	if (__predict_false(sc->sc_running == 0)) {
2638 		/* wpi_stop() was called */
2639 		error = ENETDOWN;
2640 		goto end;
2641 	}
2642 
2643 	wh = mtod(buf->m, struct ieee80211_frame *);
2644 	hdrlen = ieee80211_anyhdrsize(wh);
2645 	totlen = buf->m->m_pkthdr.len;
2646 	frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
2647 
2648 	if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
2649 		error = EINVAL;
2650 		goto end;
2651 	}
2652 
2653 	if (hdrlen & 3) {
2654 		/* First segment length must be a multiple of 4. */
2655 		pad = 4 - (hdrlen & 3);
2656 	} else
2657 		pad = 0;
2658 
2659 	ring = &sc->txq[buf->ac];
2660 	cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2661 	desc = &ring->desc[cur];
2662 	data = &ring->data[cur];
2663 
2664 	/* Prepare TX firmware command. */
2665 	cmd = &ring->cmd[cur];
2666 	cmd->code = buf->code;
2667 	cmd->flags = 0;
2668 	cmd->qid = ring->qid;
2669 	cmd->idx = cur;
2670 
2671 	memcpy(cmd->data, buf->data, buf->size);
2672 
2673 	/* Save and trim IEEE802.11 header. */
2674 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2675 	m_adj(buf->m, hdrlen);
2676 
2677 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2678 	    segs, &nsegs, BUS_DMA_NOWAIT);
2679 	if (error != 0 && error != EFBIG) {
2680 		device_printf(sc->sc_dev,
2681 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2682 		goto end;
2683 	}
2684 	if (error != 0) {
2685 		/* Too many DMA segments, linearize mbuf. */
2686 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2687 		if (m1 == NULL) {
2688 			device_printf(sc->sc_dev,
2689 			    "%s: could not defrag mbuf\n", __func__);
2690 			error = ENOBUFS;
2691 			goto end;
2692 		}
2693 		buf->m = m1;
2694 
2695 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2696 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2697 		if (__predict_false(error != 0)) {
2698 			/* XXX fix this (applicable to the iwn(4) too) */
2699 			/*
2700 			 * NB: Do not return error;
2701 			 * original mbuf does not exist anymore.
2702 			 */
2703 			device_printf(sc->sc_dev,
2704 			    "%s: can't map mbuf (error %d)\n", __func__,
2705 			    error);
2706 			if (ring->qid < WPI_CMD_QUEUE_NUM) {
2707 				if_inc_counter(buf->ni->ni_vap->iv_ifp,
2708 				    IFCOUNTER_OERRORS, 1);
2709 				if (!frag)
2710 					ieee80211_free_node(buf->ni);
2711 			}
2712 			m_freem(buf->m);
2713 			error = 0;
2714 			goto end;
2715 		}
2716 	}
2717 
2718 	KASSERT(nsegs < WPI_MAX_SCATTER,
2719 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2720 	     nsegs, WPI_MAX_SCATTER));
2721 
2722 	data->m = buf->m;
2723 	data->ni = buf->ni;
2724 
2725 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2726 	    __func__, ring->qid, cur, totlen, nsegs);
2727 
2728 	/* Fill TX descriptor. */
2729 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2730 	/* First DMA segment is used by the TX command. */
2731 	desc->segs[0].addr = htole32(data->cmd_paddr);
2732 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2733 	/* Other DMA segments are for data payload. */
2734 	seg = &segs[0];
2735 	for (i = 1; i <= nsegs; i++) {
2736 		desc->segs[i].addr = htole32(seg->ds_addr);
2737 		desc->segs[i].len  = htole32(seg->ds_len);
2738 		seg++;
2739 	}
2740 
2741 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2742 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2743 	    BUS_DMASYNC_PREWRITE);
2744 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2745 	    BUS_DMASYNC_PREWRITE);
2746 
2747 	ring->pending += 1;
2748 
2749 	if (!frag) {
2750 		if (ring->qid < WPI_CMD_QUEUE_NUM) {
2751 			WPI_TXQ_STATE_LOCK(sc);
2752 			ring->queued += ring->pending;
2753 			callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
2754 			    sc);
2755 			WPI_TXQ_STATE_UNLOCK(sc);
2756 		}
2757 
2758 		/* Kick TX ring. */
2759 		ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2760 		ring->pending = 0;
2761 		sc->sc_update_tx_ring(sc, ring);
2762 	} else
2763 		ieee80211_node_incref(data->ni);
2764 
2765 end:	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
2766 	    __func__);
2767 
2768 	WPI_TXQ_UNLOCK(sc);
2769 
2770 	return (error);
2771 }
2772 
2773 /*
2774  * Construct the data packet for a transmit buffer.
2775  */
2776 static int
2777 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2778 {
2779 	const struct ieee80211_txparam *tp;
2780 	struct ieee80211vap *vap = ni->ni_vap;
2781 	struct ieee80211com *ic = ni->ni_ic;
2782 	struct wpi_node *wn = WPI_NODE(ni);
2783 	struct ieee80211_channel *chan;
2784 	struct ieee80211_frame *wh;
2785 	struct ieee80211_key *k = NULL;
2786 	struct wpi_buf tx_data;
2787 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2788 	uint32_t flags;
2789 	uint16_t ac, qos;
2790 	uint8_t tid, type, rate;
2791 	int swcrypt, ismcast, totlen;
2792 
2793 	wh = mtod(m, struct ieee80211_frame *);
2794 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2795 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2796 	swcrypt = 1;
2797 
2798 	/* Select EDCA Access Category and TX ring for this frame. */
2799 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2800 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2801 		tid = qos & IEEE80211_QOS_TID;
2802 	} else {
2803 		qos = 0;
2804 		tid = 0;
2805 	}
2806 	ac = M_WME_GETAC(m);
2807 
2808 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2809 		ni->ni_chan : ic->ic_curchan;
2810 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2811 
2812 	/* Choose a TX rate index. */
2813 	if (type == IEEE80211_FC0_TYPE_MGT)
2814 		rate = tp->mgmtrate;
2815 	else if (ismcast)
2816 		rate = tp->mcastrate;
2817 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2818 		rate = tp->ucastrate;
2819 	else if (m->m_flags & M_EAPOL)
2820 		rate = tp->mgmtrate;
2821 	else {
2822 		/* XXX pass pktlen */
2823 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2824 		rate = ni->ni_txrate;
2825 	}
2826 
2827 	/* Encrypt the frame if need be. */
2828 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2829 		/* Retrieve key for TX. */
2830 		k = ieee80211_crypto_encap(ni, m);
2831 		if (k == NULL)
2832 			return (ENOBUFS);
2833 
2834 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2835 
2836 		/* 802.11 header may have moved. */
2837 		wh = mtod(m, struct ieee80211_frame *);
2838 	}
2839 	totlen = m->m_pkthdr.len;
2840 
2841 	if (ieee80211_radiotap_active_vap(vap)) {
2842 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2843 
2844 		tap->wt_flags = 0;
2845 		tap->wt_rate = rate;
2846 		if (k != NULL)
2847 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2848 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2849 			tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2850 
2851 		ieee80211_radiotap_tx(vap, m);
2852 	}
2853 
2854 	flags = 0;
2855 	if (!ismcast) {
2856 		/* Unicast frame, check if an ACK is expected. */
2857 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2858 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2859 			flags |= WPI_TX_NEED_ACK;
2860 	}
2861 
2862 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2863 		flags |= WPI_TX_AUTO_SEQ;
2864 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2865 		flags |= WPI_TX_MORE_FRAG;
2866 
2867 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2868 	if (!ismcast) {
2869 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2870 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2871 			flags |= WPI_TX_NEED_RTS;
2872 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2873 		    WPI_RATE_IS_OFDM(rate)) {
2874 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2875 				flags |= WPI_TX_NEED_CTS;
2876 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2877 				flags |= WPI_TX_NEED_RTS;
2878 		}
2879 
2880 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2881 			flags |= WPI_TX_FULL_TXOP;
2882 	}
2883 
2884 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2885 	if (type == IEEE80211_FC0_TYPE_MGT) {
2886 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2887 
2888 		/* Tell HW to set timestamp in probe responses. */
2889 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2890 			flags |= WPI_TX_INSERT_TSTAMP;
2891 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2892 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2893 			tx->timeout = htole16(3);
2894 		else
2895 			tx->timeout = htole16(2);
2896 	}
2897 
2898 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2899 		tx->id = WPI_ID_BROADCAST;
2900 	else {
2901 		if (wn->id == WPI_ID_UNDEFINED) {
2902 			device_printf(sc->sc_dev,
2903 			    "%s: undefined node id\n", __func__);
2904 			return (EINVAL);
2905 		}
2906 
2907 		tx->id = wn->id;
2908 	}
2909 
2910 	if (!swcrypt) {
2911 		switch (k->wk_cipher->ic_cipher) {
2912 		case IEEE80211_CIPHER_AES_CCM:
2913 			tx->security = WPI_CIPHER_CCMP;
2914 			break;
2915 
2916 		default:
2917 			break;
2918 		}
2919 
2920 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2921 	}
2922 
2923 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
2924 		struct mbuf *next = m->m_nextpkt;
2925 
2926 		tx->lnext = htole16(next->m_pkthdr.len);
2927 		tx->fnext = htole32(tx->security |
2928 				    (flags & WPI_TX_NEED_ACK) |
2929 				    WPI_NEXT_STA_ID(tx->id));
2930 	}
2931 
2932 	tx->len = htole16(totlen);
2933 	tx->flags = htole32(flags);
2934 	tx->plcp = rate2plcp(rate);
2935 	tx->tid = tid;
2936 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2937 	tx->ofdm_mask = 0xff;
2938 	tx->cck_mask = 0x0f;
2939 	tx->rts_ntries = 7;
2940 	tx->data_ntries = tp->maxretry;
2941 
2942 	tx_data.ni = ni;
2943 	tx_data.m = m;
2944 	tx_data.size = sizeof(struct wpi_cmd_data);
2945 	tx_data.code = WPI_CMD_TX_DATA;
2946 	tx_data.ac = ac;
2947 
2948 	return wpi_cmd2(sc, &tx_data);
2949 }
2950 
2951 static int
2952 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2953     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2954 {
2955 	struct ieee80211vap *vap = ni->ni_vap;
2956 	struct ieee80211_key *k = NULL;
2957 	struct ieee80211_frame *wh;
2958 	struct wpi_buf tx_data;
2959 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2960 	uint32_t flags;
2961 	uint8_t ac, type, rate;
2962 	int swcrypt, totlen;
2963 
2964 	wh = mtod(m, struct ieee80211_frame *);
2965 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2966 	swcrypt = 1;
2967 
2968 	ac = params->ibp_pri & 3;
2969 
2970 	/* Choose a TX rate index. */
2971 	rate = params->ibp_rate0;
2972 
2973 	flags = 0;
2974 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2975 		flags |= WPI_TX_AUTO_SEQ;
2976 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2977 		flags |= WPI_TX_NEED_ACK;
2978 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2979 		flags |= WPI_TX_NEED_RTS;
2980 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2981 		flags |= WPI_TX_NEED_CTS;
2982 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2983 		flags |= WPI_TX_FULL_TXOP;
2984 
2985 	/* Encrypt the frame if need be. */
2986 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2987 		/* Retrieve key for TX. */
2988 		k = ieee80211_crypto_encap(ni, m);
2989 		if (k == NULL)
2990 			return (ENOBUFS);
2991 
2992 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2993 
2994 		/* 802.11 header may have moved. */
2995 		wh = mtod(m, struct ieee80211_frame *);
2996 	}
2997 	totlen = m->m_pkthdr.len;
2998 
2999 	if (ieee80211_radiotap_active_vap(vap)) {
3000 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
3001 
3002 		tap->wt_flags = 0;
3003 		tap->wt_rate = rate;
3004 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
3005 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3006 
3007 		ieee80211_radiotap_tx(vap, m);
3008 	}
3009 
3010 	memset(tx, 0, sizeof (struct wpi_cmd_data));
3011 	if (type == IEEE80211_FC0_TYPE_MGT) {
3012 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3013 
3014 		/* Tell HW to set timestamp in probe responses. */
3015 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3016 			flags |= WPI_TX_INSERT_TSTAMP;
3017 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3018 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3019 			tx->timeout = htole16(3);
3020 		else
3021 			tx->timeout = htole16(2);
3022 	}
3023 
3024 	if (!swcrypt) {
3025 		switch (k->wk_cipher->ic_cipher) {
3026 		case IEEE80211_CIPHER_AES_CCM:
3027 			tx->security = WPI_CIPHER_CCMP;
3028 			break;
3029 
3030 		default:
3031 			break;
3032 		}
3033 
3034 		memcpy(tx->key, k->wk_key, k->wk_keylen);
3035 	}
3036 
3037 	tx->len = htole16(totlen);
3038 	tx->flags = htole32(flags);
3039 	tx->plcp = rate2plcp(rate);
3040 	tx->id = WPI_ID_BROADCAST;
3041 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3042 	tx->rts_ntries = params->ibp_try1;
3043 	tx->data_ntries = params->ibp_try0;
3044 
3045 	tx_data.ni = ni;
3046 	tx_data.m = m;
3047 	tx_data.size = sizeof(struct wpi_cmd_data);
3048 	tx_data.code = WPI_CMD_TX_DATA;
3049 	tx_data.ac = ac;
3050 
3051 	return wpi_cmd2(sc, &tx_data);
3052 }
3053 
3054 static __inline int
3055 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
3056 {
3057 	struct wpi_tx_ring *ring = &sc->txq[ac];
3058 	int retval;
3059 
3060 	WPI_TXQ_STATE_LOCK(sc);
3061 	retval = WPI_TX_RING_HIMARK - ring->queued;
3062 	WPI_TXQ_STATE_UNLOCK(sc);
3063 
3064 	return retval;
3065 }
3066 
3067 static int
3068 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3069     const struct ieee80211_bpf_params *params)
3070 {
3071 	struct ieee80211com *ic = ni->ni_ic;
3072 	struct wpi_softc *sc = ic->ic_softc;
3073 	uint16_t ac;
3074 	int error = 0;
3075 
3076 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3077 
3078 	ac = M_WME_GETAC(m);
3079 
3080 	WPI_TX_LOCK(sc);
3081 
3082 	/* NB: no fragments here */
3083 	if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
3084 		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3085 		goto unlock;
3086 	}
3087 
3088 	if (params == NULL) {
3089 		/*
3090 		 * Legacy path; interpret frame contents to decide
3091 		 * precisely how to send the frame.
3092 		 */
3093 		error = wpi_tx_data(sc, m, ni);
3094 	} else {
3095 		/*
3096 		 * Caller supplied explicit parameters to use in
3097 		 * sending the frame.
3098 		 */
3099 		error = wpi_tx_data_raw(sc, m, ni, params);
3100 	}
3101 
3102 unlock:	WPI_TX_UNLOCK(sc);
3103 
3104 	if (error != 0) {
3105 		m_freem(m);
3106 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3107 
3108 		return error;
3109 	}
3110 
3111 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3112 
3113 	return 0;
3114 }
3115 
3116 static int
3117 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3118 {
3119 	struct wpi_softc *sc = ic->ic_softc;
3120 	struct ieee80211_node *ni;
3121 	struct mbuf *mnext;
3122 	uint16_t ac;
3123 	int error, nmbufs;
3124 
3125 	WPI_TX_LOCK(sc);
3126 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3127 
3128 	/* Check if interface is up & running. */
3129 	if (__predict_false(sc->sc_running == 0)) {
3130 		error = ENXIO;
3131 		goto unlock;
3132 	}
3133 
3134 	nmbufs = 1;
3135 	for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
3136 		nmbufs++;
3137 
3138 	/* Check for available space. */
3139 	ac = M_WME_GETAC(m);
3140 	if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
3141 		error = ENOBUFS;
3142 		goto unlock;
3143 	}
3144 
3145 	error = 0;
3146 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3147 	do {
3148 		mnext = m->m_nextpkt;
3149 		if (wpi_tx_data(sc, m, ni) != 0) {
3150 			if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
3151 			    nmbufs);
3152 			wpi_free_txfrags(sc, ac);
3153 			ieee80211_free_mbuf(m);
3154 			ieee80211_free_node(ni);
3155 			break;
3156 		}
3157 	} while((m = mnext) != NULL);
3158 
3159 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3160 
3161 unlock:	WPI_TX_UNLOCK(sc);
3162 
3163 	return (error);
3164 }
3165 
3166 static void
3167 wpi_watchdog_rfkill(void *arg)
3168 {
3169 	struct wpi_softc *sc = arg;
3170 	struct ieee80211com *ic = &sc->sc_ic;
3171 
3172 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3173 
3174 	/* No need to lock firmware memory. */
3175 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3176 		/* Radio kill switch is still off. */
3177 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3178 		    sc);
3179 	} else
3180 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3181 }
3182 
3183 static void
3184 wpi_scan_timeout(void *arg)
3185 {
3186 	struct wpi_softc *sc = arg;
3187 	struct ieee80211com *ic = &sc->sc_ic;
3188 
3189 	ic_printf(ic, "scan timeout\n");
3190 	ieee80211_restart_all(ic);
3191 }
3192 
3193 static void
3194 wpi_tx_timeout(void *arg)
3195 {
3196 	struct wpi_softc *sc = arg;
3197 	struct ieee80211com *ic = &sc->sc_ic;
3198 
3199 	ic_printf(ic, "device timeout\n");
3200 	ieee80211_restart_all(ic);
3201 }
3202 
3203 static void
3204 wpi_parent(struct ieee80211com *ic)
3205 {
3206 	struct wpi_softc *sc = ic->ic_softc;
3207 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3208 
3209 	if (ic->ic_nrunning > 0) {
3210 		if (wpi_init(sc) == 0) {
3211 			ieee80211_notify_radio(ic, 1);
3212 			ieee80211_start_all(ic);
3213 		} else {
3214 			ieee80211_notify_radio(ic, 0);
3215 			ieee80211_stop(vap);
3216 		}
3217 	} else {
3218 		ieee80211_notify_radio(ic, 0);
3219 		wpi_stop(sc);
3220 	}
3221 }
3222 
3223 /*
3224  * Send a command to the firmware.
3225  */
3226 static int
3227 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
3228     int async)
3229 {
3230 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3231 	struct wpi_tx_desc *desc;
3232 	struct wpi_tx_data *data;
3233 	struct wpi_tx_cmd *cmd;
3234 	struct mbuf *m;
3235 	bus_addr_t paddr;
3236 	uint16_t totlen;
3237 	int error;
3238 
3239 	WPI_TXQ_LOCK(sc);
3240 
3241 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3242 
3243 	if (__predict_false(sc->sc_running == 0)) {
3244 		/* wpi_stop() was called */
3245 		if (code == WPI_CMD_SCAN)
3246 			error = ENETDOWN;
3247 		else
3248 			error = 0;
3249 
3250 		goto fail;
3251 	}
3252 
3253 	if (async == 0)
3254 		WPI_LOCK_ASSERT(sc);
3255 
3256 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
3257 	    __func__, wpi_cmd_str(code), size, async);
3258 
3259 	desc = &ring->desc[ring->cur];
3260 	data = &ring->data[ring->cur];
3261 	totlen = 4 + size;
3262 
3263 	if (size > sizeof cmd->data) {
3264 		/* Command is too large to fit in a descriptor. */
3265 		if (totlen > MCLBYTES) {
3266 			error = EINVAL;
3267 			goto fail;
3268 		}
3269 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3270 		if (m == NULL) {
3271 			error = ENOMEM;
3272 			goto fail;
3273 		}
3274 		cmd = mtod(m, struct wpi_tx_cmd *);
3275 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3276 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3277 		if (error != 0) {
3278 			m_freem(m);
3279 			goto fail;
3280 		}
3281 		data->m = m;
3282 	} else {
3283 		cmd = &ring->cmd[ring->cur];
3284 		paddr = data->cmd_paddr;
3285 	}
3286 
3287 	cmd->code = code;
3288 	cmd->flags = 0;
3289 	cmd->qid = ring->qid;
3290 	cmd->idx = ring->cur;
3291 	memcpy(cmd->data, buf, size);
3292 
3293 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3294 	desc->segs[0].addr = htole32(paddr);
3295 	desc->segs[0].len  = htole32(totlen);
3296 
3297 	if (size > sizeof cmd->data) {
3298 		bus_dmamap_sync(ring->data_dmat, data->map,
3299 		    BUS_DMASYNC_PREWRITE);
3300 	} else {
3301 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3302 		    BUS_DMASYNC_PREWRITE);
3303 	}
3304 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3305 	    BUS_DMASYNC_PREWRITE);
3306 
3307 	/* Kick command ring. */
3308 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3309 	sc->sc_update_tx_ring(sc, ring);
3310 
3311 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3312 
3313 	WPI_TXQ_UNLOCK(sc);
3314 
3315 	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3316 
3317 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3318 
3319 	WPI_TXQ_UNLOCK(sc);
3320 
3321 	return error;
3322 }
3323 
3324 /*
3325  * Configure HW multi-rate retries.
3326  */
3327 static int
3328 wpi_mrr_setup(struct wpi_softc *sc)
3329 {
3330 	struct ieee80211com *ic = &sc->sc_ic;
3331 	struct wpi_mrr_setup mrr;
3332 	uint8_t i;
3333 	int error;
3334 
3335 	/* CCK rates (not used with 802.11a). */
3336 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3337 		mrr.rates[i].flags = 0;
3338 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3339 		/* Fallback to the immediate lower CCK rate (if any.) */
3340 		mrr.rates[i].next =
3341 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3342 		/* Try twice at this rate before falling back to "next". */
3343 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3344 	}
3345 	/* OFDM rates (not used with 802.11b). */
3346 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3347 		mrr.rates[i].flags = 0;
3348 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3349 		/* Fallback to the immediate lower rate (if any.) */
3350 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3351 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3352 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3353 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3354 		    i - 1;
3355 		/* Try twice at this rate before falling back to "next". */
3356 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3357 	}
3358 	/* Setup MRR for control frames. */
3359 	mrr.which = htole32(WPI_MRR_CTL);
3360 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3361 	if (error != 0) {
3362 		device_printf(sc->sc_dev,
3363 		    "could not setup MRR for control frames\n");
3364 		return error;
3365 	}
3366 	/* Setup MRR for data frames. */
3367 	mrr.which = htole32(WPI_MRR_DATA);
3368 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3369 	if (error != 0) {
3370 		device_printf(sc->sc_dev,
3371 		    "could not setup MRR for data frames\n");
3372 		return error;
3373 	}
3374 	return 0;
3375 }
3376 
3377 static int
3378 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3379 {
3380 	struct ieee80211com *ic = ni->ni_ic;
3381 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3382 	struct wpi_node *wn = WPI_NODE(ni);
3383 	struct wpi_node_info node;
3384 	int error;
3385 
3386 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3387 
3388 	if (wn->id == WPI_ID_UNDEFINED)
3389 		return EINVAL;
3390 
3391 	memset(&node, 0, sizeof node);
3392 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3393 	node.id = wn->id;
3394 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3395 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3396 	node.action = htole32(WPI_ACTION_SET_RATE);
3397 	node.antenna = WPI_ANTENNA_BOTH;
3398 
3399 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3400 	    wn->id, ether_sprintf(ni->ni_macaddr));
3401 
3402 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3403 	if (error != 0) {
3404 		device_printf(sc->sc_dev,
3405 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3406 		    error);
3407 		return error;
3408 	}
3409 
3410 	if (wvp->wv_gtk != 0) {
3411 		error = wpi_set_global_keys(ni);
3412 		if (error != 0) {
3413 			device_printf(sc->sc_dev,
3414 			    "%s: error while setting global keys\n", __func__);
3415 			return ENXIO;
3416 		}
3417 	}
3418 
3419 	return 0;
3420 }
3421 
3422 /*
3423  * Broadcast node is used to send group-addressed and management frames.
3424  */
3425 static int
3426 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3427 {
3428 	struct ieee80211com *ic = &sc->sc_ic;
3429 	struct wpi_node_info node;
3430 
3431 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3432 
3433 	memset(&node, 0, sizeof node);
3434 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3435 	node.id = WPI_ID_BROADCAST;
3436 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3437 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3438 	node.action = htole32(WPI_ACTION_SET_RATE);
3439 	node.antenna = WPI_ANTENNA_BOTH;
3440 
3441 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3442 
3443 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3444 }
3445 
3446 static int
3447 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3448 {
3449 	struct wpi_node *wn = WPI_NODE(ni);
3450 	int error;
3451 
3452 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3453 
3454 	wn->id = wpi_add_node_entry_sta(sc);
3455 
3456 	if ((error = wpi_add_node(sc, ni)) != 0) {
3457 		wpi_del_node_entry(sc, wn->id);
3458 		wn->id = WPI_ID_UNDEFINED;
3459 		return error;
3460 	}
3461 
3462 	return 0;
3463 }
3464 
3465 static int
3466 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3467 {
3468 	struct wpi_node *wn = WPI_NODE(ni);
3469 	int error;
3470 
3471 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3472 	    ("the node %d was added before", wn->id));
3473 
3474 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3475 
3476 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3477 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3478 		return ENOMEM;
3479 	}
3480 
3481 	if ((error = wpi_add_node(sc, ni)) != 0) {
3482 		wpi_del_node_entry(sc, wn->id);
3483 		wn->id = WPI_ID_UNDEFINED;
3484 		return error;
3485 	}
3486 
3487 	return 0;
3488 }
3489 
3490 static void
3491 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3492 {
3493 	struct wpi_node *wn = WPI_NODE(ni);
3494 	struct wpi_cmd_del_node node;
3495 	int error;
3496 
3497 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3498 
3499 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3500 
3501 	memset(&node, 0, sizeof node);
3502 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3503 	node.count = 1;
3504 
3505 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3506 	    wn->id, ether_sprintf(ni->ni_macaddr));
3507 
3508 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3509 	if (error != 0) {
3510 		device_printf(sc->sc_dev,
3511 		    "%s: could not delete node %u, error %d\n", __func__,
3512 		    wn->id, error);
3513 	}
3514 }
3515 
3516 static int
3517 wpi_updateedca(struct ieee80211com *ic)
3518 {
3519 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3520 	struct wpi_softc *sc = ic->ic_softc;
3521 	struct wpi_edca_params cmd;
3522 	int aci, error;
3523 
3524 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3525 
3526 	memset(&cmd, 0, sizeof cmd);
3527 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3528 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3529 		const struct wmeParams *ac =
3530 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3531 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3532 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3533 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3534 		cmd.ac[aci].txoplimit =
3535 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3536 
3537 		DPRINTF(sc, WPI_DEBUG_EDCA,
3538 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3539 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3540 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3541 		    cmd.ac[aci].txoplimit);
3542 	}
3543 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3544 
3545 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3546 
3547 	return error;
3548 #undef WPI_EXP2
3549 }
3550 
3551 static void
3552 wpi_set_promisc(struct wpi_softc *sc)
3553 {
3554 	struct ieee80211com *ic = &sc->sc_ic;
3555 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3556 	uint32_t promisc_filter;
3557 
3558 	promisc_filter = WPI_FILTER_CTL;
3559 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3560 		promisc_filter |= WPI_FILTER_PROMISC;
3561 
3562 	if (ic->ic_promisc > 0)
3563 		sc->rxon.filter |= htole32(promisc_filter);
3564 	else
3565 		sc->rxon.filter &= ~htole32(promisc_filter);
3566 }
3567 
3568 static void
3569 wpi_update_promisc(struct ieee80211com *ic)
3570 {
3571 	struct wpi_softc *sc = ic->ic_softc;
3572 
3573 	WPI_LOCK(sc);
3574 	if (sc->sc_running == 0) {
3575 		WPI_UNLOCK(sc);
3576 		return;
3577 	}
3578 	WPI_UNLOCK(sc);
3579 
3580 	WPI_RXON_LOCK(sc);
3581 	wpi_set_promisc(sc);
3582 
3583 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3584 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3585 		    __func__);
3586 	}
3587 	WPI_RXON_UNLOCK(sc);
3588 }
3589 
3590 static void
3591 wpi_update_mcast(struct ieee80211com *ic)
3592 {
3593 	/* Ignore */
3594 }
3595 
3596 static void
3597 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3598 {
3599 	struct wpi_cmd_led led;
3600 
3601 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3602 
3603 	led.which = which;
3604 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3605 	led.off = off;
3606 	led.on = on;
3607 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3608 }
3609 
3610 static int
3611 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3612 {
3613 	struct wpi_cmd_timing cmd;
3614 	uint64_t val, mod;
3615 
3616 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3617 
3618 	memset(&cmd, 0, sizeof cmd);
3619 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3620 	cmd.bintval = htole16(ni->ni_intval);
3621 	cmd.lintval = htole16(10);
3622 
3623 	/* Compute remaining time until next beacon. */
3624 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3625 	mod = le64toh(cmd.tstamp) % val;
3626 	cmd.binitval = htole32((uint32_t)(val - mod));
3627 
3628 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3629 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3630 
3631 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3632 }
3633 
3634 /*
3635  * This function is called periodically (every 60 seconds) to adjust output
3636  * power to temperature changes.
3637  */
3638 static void
3639 wpi_power_calibration(struct wpi_softc *sc)
3640 {
3641 	int temp;
3642 
3643 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3644 
3645 	/* Update sensor data. */
3646 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3647 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3648 
3649 	/* Sanity-check read value. */
3650 	if (temp < -260 || temp > 25) {
3651 		/* This can't be correct, ignore. */
3652 		DPRINTF(sc, WPI_DEBUG_TEMP,
3653 		    "out-of-range temperature reported: %d\n", temp);
3654 		return;
3655 	}
3656 
3657 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3658 
3659 	/* Adjust Tx power if need be. */
3660 	if (abs(temp - sc->temp) <= 6)
3661 		return;
3662 
3663 	sc->temp = temp;
3664 
3665 	if (wpi_set_txpower(sc, 1) != 0) {
3666 		/* just warn, too bad for the automatic calibration... */
3667 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3668 	}
3669 }
3670 
3671 /*
3672  * Set TX power for current channel.
3673  */
3674 static int
3675 wpi_set_txpower(struct wpi_softc *sc, int async)
3676 {
3677 	struct wpi_power_group *group;
3678 	struct wpi_cmd_txpower cmd;
3679 	uint8_t chan;
3680 	int idx, is_chan_5ghz, i;
3681 
3682 	/* Retrieve current channel from last RXON. */
3683 	chan = sc->rxon.chan;
3684 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3685 
3686 	/* Find the TX power group to which this channel belongs. */
3687 	if (is_chan_5ghz) {
3688 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3689 			if (chan <= group->chan)
3690 				break;
3691 	} else
3692 		group = &sc->groups[0];
3693 
3694 	memset(&cmd, 0, sizeof cmd);
3695 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3696 	cmd.chan = htole16(chan);
3697 
3698 	/* Set TX power for all OFDM and CCK rates. */
3699 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3700 		/* Retrieve TX power for this channel/rate. */
3701 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3702 
3703 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3704 
3705 		if (is_chan_5ghz) {
3706 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3707 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3708 		} else {
3709 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3710 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3711 		}
3712 		DPRINTF(sc, WPI_DEBUG_TEMP,
3713 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3714 	}
3715 
3716 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3717 }
3718 
3719 /*
3720  * Determine Tx power index for a given channel/rate combination.
3721  * This takes into account the regulatory information from EEPROM and the
3722  * current temperature.
3723  */
3724 static int
3725 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3726     uint8_t chan, int is_chan_5ghz, int ridx)
3727 {
3728 /* Fixed-point arithmetic division using a n-bit fractional part. */
3729 #define fdivround(a, b, n)	\
3730 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3731 
3732 /* Linear interpolation. */
3733 #define interpolate(x, x1, y1, x2, y2, n)	\
3734 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3735 
3736 	struct wpi_power_sample *sample;
3737 	int pwr, idx;
3738 
3739 	/* Default TX power is group maximum TX power minus 3dB. */
3740 	pwr = group->maxpwr / 2;
3741 
3742 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3743 	switch (ridx) {
3744 	case WPI_RIDX_OFDM36:
3745 		pwr -= is_chan_5ghz ?  5 : 0;
3746 		break;
3747 	case WPI_RIDX_OFDM48:
3748 		pwr -= is_chan_5ghz ? 10 : 7;
3749 		break;
3750 	case WPI_RIDX_OFDM54:
3751 		pwr -= is_chan_5ghz ? 12 : 9;
3752 		break;
3753 	}
3754 
3755 	/* Never exceed the channel maximum allowed TX power. */
3756 	pwr = min(pwr, sc->maxpwr[chan]);
3757 
3758 	/* Retrieve TX power index into gain tables from samples. */
3759 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3760 		if (pwr > sample[1].power)
3761 			break;
3762 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3763 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3764 	    sample[1].power, sample[1].index, 19);
3765 
3766 	/*-
3767 	 * Adjust power index based on current temperature:
3768 	 * - if cooler than factory-calibrated: decrease output power
3769 	 * - if warmer than factory-calibrated: increase output power
3770 	 */
3771 	idx -= (sc->temp - group->temp) * 11 / 100;
3772 
3773 	/* Decrease TX power for CCK rates (-5dB). */
3774 	if (ridx >= WPI_RIDX_CCK1)
3775 		idx += 10;
3776 
3777 	/* Make sure idx stays in a valid range. */
3778 	if (idx < 0)
3779 		return 0;
3780 	if (idx > WPI_MAX_PWR_INDEX)
3781 		return WPI_MAX_PWR_INDEX;
3782 	return idx;
3783 
3784 #undef interpolate
3785 #undef fdivround
3786 }
3787 
3788 /*
3789  * Set STA mode power saving level (between 0 and 5).
3790  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3791  */
3792 static int
3793 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3794 {
3795 	struct wpi_pmgt_cmd cmd;
3796 	const struct wpi_pmgt *pmgt;
3797 	uint32_t max, reg;
3798 	uint8_t skip_dtim;
3799 	int i;
3800 
3801 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3802 	    "%s: dtim=%d, level=%d, async=%d\n",
3803 	    __func__, dtim, level, async);
3804 
3805 	/* Select which PS parameters to use. */
3806 	if (dtim <= 10)
3807 		pmgt = &wpi_pmgt[0][level];
3808 	else
3809 		pmgt = &wpi_pmgt[1][level];
3810 
3811 	memset(&cmd, 0, sizeof cmd);
3812 	if (level != 0)	/* not CAM */
3813 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3814 	/* Retrieve PCIe Active State Power Management (ASPM). */
3815 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
3816 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
3817 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3818 
3819 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3820 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3821 
3822 	if (dtim == 0) {
3823 		dtim = 1;
3824 		skip_dtim = 0;
3825 	} else
3826 		skip_dtim = pmgt->skip_dtim;
3827 
3828 	if (skip_dtim != 0) {
3829 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3830 		max = pmgt->intval[4];
3831 		if (max == (uint32_t)-1)
3832 			max = dtim * (skip_dtim + 1);
3833 		else if (max > dtim)
3834 			max = rounddown(max, dtim);
3835 	} else
3836 		max = dtim;
3837 
3838 	for (i = 0; i < 5; i++)
3839 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3840 
3841 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3842 }
3843 
3844 static int
3845 wpi_send_btcoex(struct wpi_softc *sc)
3846 {
3847 	struct wpi_bluetooth cmd;
3848 
3849 	memset(&cmd, 0, sizeof cmd);
3850 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3851 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3852 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3853 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3854 	    __func__);
3855 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3856 }
3857 
3858 static int
3859 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3860 {
3861 	int error;
3862 
3863 	if (async)
3864 		WPI_RXON_LOCK_ASSERT(sc);
3865 
3866 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3867 		struct wpi_assoc rxon_assoc;
3868 
3869 		rxon_assoc.flags = sc->rxon.flags;
3870 		rxon_assoc.filter = sc->rxon.filter;
3871 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3872 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3873 		rxon_assoc.reserved = 0;
3874 
3875 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3876 		    sizeof (struct wpi_assoc), async);
3877 		if (error != 0) {
3878 			device_printf(sc->sc_dev,
3879 			    "RXON_ASSOC command failed, error %d\n", error);
3880 			return error;
3881 		}
3882 	} else {
3883 		if (async) {
3884 			WPI_NT_LOCK(sc);
3885 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3886 			    sizeof (struct wpi_rxon), async);
3887 			if (error == 0)
3888 				wpi_clear_node_table(sc);
3889 			WPI_NT_UNLOCK(sc);
3890 		} else {
3891 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3892 			    sizeof (struct wpi_rxon), async);
3893 			if (error == 0)
3894 				wpi_clear_node_table(sc);
3895 		}
3896 
3897 		if (error != 0) {
3898 			device_printf(sc->sc_dev,
3899 			    "RXON command failed, error %d\n", error);
3900 			return error;
3901 		}
3902 
3903 		/* Add broadcast node. */
3904 		error = wpi_add_broadcast_node(sc, async);
3905 		if (error != 0) {
3906 			device_printf(sc->sc_dev,
3907 			    "could not add broadcast node, error %d\n", error);
3908 			return error;
3909 		}
3910 	}
3911 
3912 	/* Configuration has changed, set Tx power accordingly. */
3913 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3914 		device_printf(sc->sc_dev,
3915 		    "%s: could not set TX power, error %d\n", __func__, error);
3916 		return error;
3917 	}
3918 
3919 	return 0;
3920 }
3921 
3922 /**
3923  * Configure the card to listen to a particular channel, this transisions the
3924  * card in to being able to receive frames from remote devices.
3925  */
3926 static int
3927 wpi_config(struct wpi_softc *sc)
3928 {
3929 	struct ieee80211com *ic = &sc->sc_ic;
3930 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3931 	struct ieee80211_channel *c = ic->ic_curchan;
3932 	int error;
3933 
3934 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3935 
3936 	/* Set power saving level to CAM during initialization. */
3937 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3938 		device_printf(sc->sc_dev,
3939 		    "%s: could not set power saving level\n", __func__);
3940 		return error;
3941 	}
3942 
3943 	/* Configure bluetooth coexistence. */
3944 	if ((error = wpi_send_btcoex(sc)) != 0) {
3945 		device_printf(sc->sc_dev,
3946 		    "could not configure bluetooth coexistence\n");
3947 		return error;
3948 	}
3949 
3950 	/* Configure adapter. */
3951 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3952 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3953 
3954 	/* Set default channel. */
3955 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3956 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3957 	if (IEEE80211_IS_CHAN_2GHZ(c))
3958 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3959 
3960 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3961 	switch (ic->ic_opmode) {
3962 	case IEEE80211_M_STA:
3963 		sc->rxon.mode = WPI_MODE_STA;
3964 		break;
3965 	case IEEE80211_M_IBSS:
3966 		sc->rxon.mode = WPI_MODE_IBSS;
3967 		sc->rxon.filter |= WPI_FILTER_BEACON;
3968 		break;
3969 	case IEEE80211_M_HOSTAP:
3970 		/* XXX workaround for beaconing */
3971 		sc->rxon.mode = WPI_MODE_IBSS;
3972 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3973 		break;
3974 	case IEEE80211_M_AHDEMO:
3975 		sc->rxon.mode = WPI_MODE_HOSTAP;
3976 		break;
3977 	case IEEE80211_M_MONITOR:
3978 		sc->rxon.mode = WPI_MODE_MONITOR;
3979 		break;
3980 	default:
3981 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3982 		    ic->ic_opmode);
3983 		return EINVAL;
3984 	}
3985 	sc->rxon.filter = htole32(sc->rxon.filter);
3986 	wpi_set_promisc(sc);
3987 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3988 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3989 
3990 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3991 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3992 		    __func__);
3993 		return error;
3994 	}
3995 
3996 	/* Setup rate scalling. */
3997 	if ((error = wpi_mrr_setup(sc)) != 0) {
3998 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3999 		    error);
4000 		return error;
4001 	}
4002 
4003 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4004 
4005 	return 0;
4006 }
4007 
4008 static uint16_t
4009 wpi_get_active_dwell_time(struct wpi_softc *sc,
4010     struct ieee80211_channel *c, uint8_t n_probes)
4011 {
4012 	/* No channel? Default to 2GHz settings. */
4013 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
4014 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
4015 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
4016 	}
4017 
4018 	/* 5GHz dwell time. */
4019 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4020 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4021 }
4022 
4023 /*
4024  * Limit the total dwell time.
4025  *
4026  * Returns the dwell time in milliseconds.
4027  */
4028 static uint16_t
4029 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4030 {
4031 	struct ieee80211com *ic = &sc->sc_ic;
4032 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4033 	uint16_t bintval = 0;
4034 
4035 	/* bintval is in TU (1.024mS) */
4036 	if (vap != NULL)
4037 		bintval = vap->iv_bss->ni_intval;
4038 
4039 	/*
4040 	 * If it's non-zero, we should calculate the minimum of
4041 	 * it and the DWELL_BASE.
4042 	 *
4043 	 * XXX Yes, the math should take into account that bintval
4044 	 * is 1.024mS, not 1mS..
4045 	 */
4046 	if (bintval > 0) {
4047 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4048 		    bintval);
4049 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4050 	}
4051 
4052 	/* No association context? Default. */
4053 	return dwell_time;
4054 }
4055 
4056 static uint16_t
4057 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4058 {
4059 	uint16_t passive;
4060 
4061 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4062 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4063 	else
4064 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4065 
4066 	/* Clamp to the beacon interval if we're associated. */
4067 	return (wpi_limit_dwell(sc, passive));
4068 }
4069 
4070 static uint32_t
4071 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4072 {
4073 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4074 	uint32_t nbeacons = time / bintval;
4075 
4076 	if (mod > WPI_PAUSE_MAX_TIME)
4077 		mod = WPI_PAUSE_MAX_TIME;
4078 
4079 	return WPI_PAUSE_SCAN(nbeacons, mod);
4080 }
4081 
4082 /*
4083  * Send a scan request to the firmware.
4084  */
4085 static int
4086 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4087 {
4088 	struct ieee80211com *ic = &sc->sc_ic;
4089 	struct ieee80211_scan_state *ss = ic->ic_scan;
4090 	struct ieee80211vap *vap = ss->ss_vap;
4091 	struct wpi_scan_hdr *hdr;
4092 	struct wpi_cmd_data *tx;
4093 	struct wpi_scan_essid *essids;
4094 	struct wpi_scan_chan *chan;
4095 	struct ieee80211_frame *wh;
4096 	struct ieee80211_rateset *rs;
4097 	uint16_t bintval, buflen, dwell_active, dwell_passive;
4098 	uint8_t *buf, *frm, i, nssid;
4099 	int bgscan, error;
4100 
4101 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4102 
4103 	/*
4104 	 * We are absolutely not allowed to send a scan command when another
4105 	 * scan command is pending.
4106 	 */
4107 	if (callout_pending(&sc->scan_timeout)) {
4108 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4109 		    __func__);
4110 		error = EAGAIN;
4111 		goto fail;
4112 	}
4113 
4114 	bgscan = wpi_check_bss_filter(sc);
4115 	bintval = vap->iv_bss->ni_intval;
4116 	if (bgscan != 0 &&
4117 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4118 		error = EOPNOTSUPP;
4119 		goto fail;
4120 	}
4121 
4122 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4123 	if (buf == NULL) {
4124 		device_printf(sc->sc_dev,
4125 		    "%s: could not allocate buffer for scan command\n",
4126 		    __func__);
4127 		error = ENOMEM;
4128 		goto fail;
4129 	}
4130 	hdr = (struct wpi_scan_hdr *)buf;
4131 
4132 	/*
4133 	 * Move to the next channel if no packets are received within 10 msecs
4134 	 * after sending the probe request.
4135 	 */
4136 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4137 	hdr->quiet_threshold = htole16(1);
4138 
4139 	if (bgscan != 0) {
4140 		/*
4141 		 * Max needs to be greater than active and passive and quiet!
4142 		 * It's also in microseconds!
4143 		 */
4144 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4145 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4146 		    bintval));
4147 	}
4148 
4149 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4150 
4151 	tx = (struct wpi_cmd_data *)(hdr + 1);
4152 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4153 	tx->id = WPI_ID_BROADCAST;
4154 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4155 
4156 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4157 		/* Send probe requests at 6Mbps. */
4158 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4159 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4160 	} else {
4161 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4162 		/* Send probe requests at 1Mbps. */
4163 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4164 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4165 	}
4166 
4167 	essids = (struct wpi_scan_essid *)(tx + 1);
4168 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4169 	for (i = 0; i < nssid; i++) {
4170 		essids[i].id = IEEE80211_ELEMID_SSID;
4171 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4172 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4173 #ifdef WPI_DEBUG
4174 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4175 			printf("Scanning Essid: ");
4176 			ieee80211_print_essid(essids[i].data, essids[i].len);
4177 			printf("\n");
4178 		}
4179 #endif
4180 	}
4181 
4182 	/*
4183 	 * Build a probe request frame.  Most of the following code is a
4184 	 * copy & paste of what is done in net80211.
4185 	 */
4186 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4187 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4188 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4189 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4190 	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4191 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4192 	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4193 
4194 	frm = (uint8_t *)(wh + 1);
4195 	frm = ieee80211_add_ssid(frm, NULL, 0);
4196 	frm = ieee80211_add_rates(frm, rs);
4197 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4198 		frm = ieee80211_add_xrates(frm, rs);
4199 
4200 	/* Set length of probe request. */
4201 	tx->len = htole16(frm - (uint8_t *)wh);
4202 
4203 	/*
4204 	 * Construct information about the channel that we
4205 	 * want to scan. The firmware expects this to be directly
4206 	 * after the scan probe request
4207 	 */
4208 	chan = (struct wpi_scan_chan *)frm;
4209 	chan->chan = ieee80211_chan2ieee(ic, c);
4210 	chan->flags = 0;
4211 	if (nssid) {
4212 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4213 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4214 	} else
4215 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4216 
4217 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4218 		chan->flags |= WPI_CHAN_ACTIVE;
4219 
4220 	/*
4221 	 * Calculate the active/passive dwell times.
4222 	 */
4223 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4224 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4225 
4226 	/* Make sure they're valid. */
4227 	if (dwell_active > dwell_passive)
4228 		dwell_active = dwell_passive;
4229 
4230 	chan->active = htole16(dwell_active);
4231 	chan->passive = htole16(dwell_passive);
4232 
4233 	chan->dsp_gain = 0x6e;  /* Default level */
4234 
4235 	if (IEEE80211_IS_CHAN_5GHZ(c))
4236 		chan->rf_gain = 0x3b;
4237 	else
4238 		chan->rf_gain = 0x28;
4239 
4240 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4241 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4242 
4243 	hdr->nchan++;
4244 
4245 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4246 		/* XXX Force probe request transmission. */
4247 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4248 
4249 		chan++;
4250 
4251 		/* Reduce unnecessary delay. */
4252 		chan->flags = 0;
4253 		chan->passive = chan->active = hdr->quiet_time;
4254 
4255 		hdr->nchan++;
4256 	}
4257 
4258 	chan++;
4259 
4260 	buflen = (uint8_t *)chan - buf;
4261 	hdr->len = htole16(buflen);
4262 
4263 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4264 	    hdr->nchan);
4265 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4266 	free(buf, M_DEVBUF);
4267 
4268 	if (error != 0)
4269 		goto fail;
4270 
4271 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4272 
4273 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4274 
4275 	return 0;
4276 
4277 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4278 
4279 	return error;
4280 }
4281 
4282 static int
4283 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4284 {
4285 	struct ieee80211com *ic = vap->iv_ic;
4286 	struct ieee80211_node *ni = vap->iv_bss;
4287 	struct ieee80211_channel *c = ni->ni_chan;
4288 	int error;
4289 
4290 	WPI_RXON_LOCK(sc);
4291 
4292 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4293 
4294 	/* Update adapter configuration. */
4295 	sc->rxon.associd = 0;
4296 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4297 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4298 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4299 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4300 	if (IEEE80211_IS_CHAN_2GHZ(c))
4301 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4302 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4303 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4304 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4305 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4306 	if (IEEE80211_IS_CHAN_A(c)) {
4307 		sc->rxon.cck_mask  = 0;
4308 		sc->rxon.ofdm_mask = 0x15;
4309 	} else if (IEEE80211_IS_CHAN_B(c)) {
4310 		sc->rxon.cck_mask  = 0x03;
4311 		sc->rxon.ofdm_mask = 0;
4312 	} else {
4313 		/* Assume 802.11b/g. */
4314 		sc->rxon.cck_mask  = 0x0f;
4315 		sc->rxon.ofdm_mask = 0x15;
4316 	}
4317 
4318 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4319 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4320 	    sc->rxon.ofdm_mask);
4321 
4322 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4323 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4324 		    __func__);
4325 	}
4326 
4327 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4328 
4329 	WPI_RXON_UNLOCK(sc);
4330 
4331 	return error;
4332 }
4333 
4334 static int
4335 wpi_config_beacon(struct wpi_vap *wvp)
4336 {
4337 	struct ieee80211vap *vap = &wvp->wv_vap;
4338 	struct ieee80211com *ic = vap->iv_ic;
4339 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4340 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4341 	struct wpi_softc *sc = ic->ic_softc;
4342 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4343 	struct ieee80211_tim_ie *tie;
4344 	struct mbuf *m;
4345 	uint8_t *ptr;
4346 	int error;
4347 
4348 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4349 
4350 	WPI_VAP_LOCK_ASSERT(wvp);
4351 
4352 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4353 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4354 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4355 
4356 	/* XXX seems to be unused */
4357 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4358 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4359 		ptr = mtod(bcn->m, uint8_t *);
4360 
4361 		cmd->tim = htole16(bo->bo_tim - ptr);
4362 		cmd->timsz = tie->tim_len;
4363 	}
4364 
4365 	/* Necessary for recursion in ieee80211_beacon_update(). */
4366 	m = bcn->m;
4367 	bcn->m = m_dup(m, M_NOWAIT);
4368 	if (bcn->m == NULL) {
4369 		device_printf(sc->sc_dev,
4370 		    "%s: could not copy beacon frame\n", __func__);
4371 		error = ENOMEM;
4372 		goto end;
4373 	}
4374 
4375 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4376 		device_printf(sc->sc_dev,
4377 		    "%s: could not update beacon frame, error %d", __func__,
4378 		    error);
4379 		m_freem(bcn->m);
4380 	}
4381 
4382 	/* Restore mbuf. */
4383 end:	bcn->m = m;
4384 
4385 	return error;
4386 }
4387 
4388 static int
4389 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4390 {
4391 	struct ieee80211vap *vap = ni->ni_vap;
4392 	struct wpi_vap *wvp = WPI_VAP(vap);
4393 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4394 	struct mbuf *m;
4395 	int error;
4396 
4397 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4398 
4399 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4400 		return EINVAL;
4401 
4402 	m = ieee80211_beacon_alloc(ni);
4403 	if (m == NULL) {
4404 		device_printf(sc->sc_dev,
4405 		    "%s: could not allocate beacon frame\n", __func__);
4406 		return ENOMEM;
4407 	}
4408 
4409 	WPI_VAP_LOCK(wvp);
4410 	if (bcn->m != NULL)
4411 		m_freem(bcn->m);
4412 
4413 	bcn->m = m;
4414 
4415 	error = wpi_config_beacon(wvp);
4416 	WPI_VAP_UNLOCK(wvp);
4417 
4418 	return error;
4419 }
4420 
4421 static void
4422 wpi_update_beacon(struct ieee80211vap *vap, int item)
4423 {
4424 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4425 	struct wpi_vap *wvp = WPI_VAP(vap);
4426 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4427 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4428 	struct ieee80211_node *ni = vap->iv_bss;
4429 	int mcast = 0;
4430 
4431 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4432 
4433 	WPI_VAP_LOCK(wvp);
4434 	if (bcn->m == NULL) {
4435 		bcn->m = ieee80211_beacon_alloc(ni);
4436 		if (bcn->m == NULL) {
4437 			device_printf(sc->sc_dev,
4438 			    "%s: could not allocate beacon frame\n", __func__);
4439 
4440 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4441 			    __func__);
4442 
4443 			WPI_VAP_UNLOCK(wvp);
4444 			return;
4445 		}
4446 	}
4447 	WPI_VAP_UNLOCK(wvp);
4448 
4449 	if (item == IEEE80211_BEACON_TIM)
4450 		mcast = 1;	/* TODO */
4451 
4452 	setbit(bo->bo_flags, item);
4453 	ieee80211_beacon_update(ni, bcn->m, mcast);
4454 
4455 	WPI_VAP_LOCK(wvp);
4456 	wpi_config_beacon(wvp);
4457 	WPI_VAP_UNLOCK(wvp);
4458 
4459 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4460 }
4461 
4462 static void
4463 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4464 {
4465 	struct ieee80211vap *vap = ni->ni_vap;
4466 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4467 	struct wpi_node *wn = WPI_NODE(ni);
4468 	int error;
4469 
4470 	WPI_NT_LOCK(sc);
4471 
4472 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4473 
4474 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4475 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4476 			device_printf(sc->sc_dev,
4477 			    "%s: could not add IBSS node, error %d\n",
4478 			    __func__, error);
4479 		}
4480 	}
4481 	WPI_NT_UNLOCK(sc);
4482 }
4483 
4484 static int
4485 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4486 {
4487 	struct ieee80211com *ic = vap->iv_ic;
4488 	struct ieee80211_node *ni = vap->iv_bss;
4489 	struct ieee80211_channel *c = ni->ni_chan;
4490 	int error;
4491 
4492 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4493 
4494 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4495 		/* Link LED blinks while monitoring. */
4496 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4497 		return 0;
4498 	}
4499 
4500 	/* XXX kernel panic workaround */
4501 	if (c == IEEE80211_CHAN_ANYC) {
4502 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4503 		    __func__);
4504 		return EINVAL;
4505 	}
4506 
4507 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4508 		device_printf(sc->sc_dev,
4509 		    "%s: could not set timing, error %d\n", __func__, error);
4510 		return error;
4511 	}
4512 
4513 	/* Update adapter configuration. */
4514 	WPI_RXON_LOCK(sc);
4515 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4516 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4517 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4518 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4519 	if (IEEE80211_IS_CHAN_2GHZ(c))
4520 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4521 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4522 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4523 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4524 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4525 	if (IEEE80211_IS_CHAN_A(c)) {
4526 		sc->rxon.cck_mask  = 0;
4527 		sc->rxon.ofdm_mask = 0x15;
4528 	} else if (IEEE80211_IS_CHAN_B(c)) {
4529 		sc->rxon.cck_mask  = 0x03;
4530 		sc->rxon.ofdm_mask = 0;
4531 	} else {
4532 		/* Assume 802.11b/g. */
4533 		sc->rxon.cck_mask  = 0x0f;
4534 		sc->rxon.ofdm_mask = 0x15;
4535 	}
4536 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4537 
4538 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4539 	    sc->rxon.chan, sc->rxon.flags);
4540 
4541 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4542 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4543 		    __func__);
4544 		return error;
4545 	}
4546 
4547 	/* Start periodic calibration timer. */
4548 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4549 
4550 	WPI_RXON_UNLOCK(sc);
4551 
4552 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4553 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4554 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4555 			device_printf(sc->sc_dev,
4556 			    "%s: could not setup beacon, error %d\n", __func__,
4557 			    error);
4558 			return error;
4559 		}
4560 	}
4561 
4562 	if (vap->iv_opmode == IEEE80211_M_STA) {
4563 		/* Add BSS node. */
4564 		WPI_NT_LOCK(sc);
4565 		error = wpi_add_sta_node(sc, ni);
4566 		WPI_NT_UNLOCK(sc);
4567 		if (error != 0) {
4568 			device_printf(sc->sc_dev,
4569 			    "%s: could not add BSS node, error %d\n", __func__,
4570 			    error);
4571 			return error;
4572 		}
4573 	}
4574 
4575 	/* Link LED always on while associated. */
4576 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4577 
4578 	/* Enable power-saving mode if requested by user. */
4579 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4580 	    vap->iv_opmode != IEEE80211_M_IBSS)
4581 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4582 
4583 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4584 
4585 	return 0;
4586 }
4587 
4588 static int
4589 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4590 {
4591 	const struct ieee80211_cipher *cip = k->wk_cipher;
4592 	struct ieee80211vap *vap = ni->ni_vap;
4593 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4594 	struct wpi_node *wn = WPI_NODE(ni);
4595 	struct wpi_node_info node;
4596 	uint16_t kflags;
4597 	int error;
4598 
4599 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4600 
4601 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4602 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4603 		    __func__);
4604 		return 0;
4605 	}
4606 
4607 	switch (cip->ic_cipher) {
4608 	case IEEE80211_CIPHER_AES_CCM:
4609 		kflags = WPI_KFLAG_CCMP;
4610 		break;
4611 
4612 	default:
4613 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4614 		    cip->ic_cipher);
4615 		return 0;
4616 	}
4617 
4618 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4619 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4620 		kflags |= WPI_KFLAG_MULTICAST;
4621 
4622 	memset(&node, 0, sizeof node);
4623 	node.id = wn->id;
4624 	node.control = WPI_NODE_UPDATE;
4625 	node.flags = WPI_FLAG_KEY_SET;
4626 	node.kflags = htole16(kflags);
4627 	memcpy(node.key, k->wk_key, k->wk_keylen);
4628 again:
4629 	DPRINTF(sc, WPI_DEBUG_KEY,
4630 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4631 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4632 	    node.id, ether_sprintf(ni->ni_macaddr));
4633 
4634 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4635 	if (error != 0) {
4636 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4637 		    error);
4638 		return !error;
4639 	}
4640 
4641 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4642 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4643 		kflags |= WPI_KFLAG_MULTICAST;
4644 		node.kflags = htole16(kflags);
4645 
4646 		goto again;
4647 	}
4648 
4649 	return 1;
4650 }
4651 
4652 static void
4653 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4654 {
4655 	const struct ieee80211_key *k = arg;
4656 	struct ieee80211vap *vap = ni->ni_vap;
4657 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4658 	struct wpi_node *wn = WPI_NODE(ni);
4659 	int error;
4660 
4661 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4662 		return;
4663 
4664 	WPI_NT_LOCK(sc);
4665 	error = wpi_load_key(ni, k);
4666 	WPI_NT_UNLOCK(sc);
4667 
4668 	if (error == 0) {
4669 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4670 		    __func__);
4671 	}
4672 }
4673 
4674 static int
4675 wpi_set_global_keys(struct ieee80211_node *ni)
4676 {
4677 	struct ieee80211vap *vap = ni->ni_vap;
4678 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4679 	int error = 1;
4680 
4681 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4682 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4683 			error = wpi_load_key(ni, wk);
4684 
4685 	return !error;
4686 }
4687 
4688 static int
4689 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4690 {
4691 	struct ieee80211vap *vap = ni->ni_vap;
4692 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4693 	struct wpi_node *wn = WPI_NODE(ni);
4694 	struct wpi_node_info node;
4695 	uint16_t kflags;
4696 	int error;
4697 
4698 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4699 
4700 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4701 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4702 		return 1;	/* Nothing to do. */
4703 	}
4704 
4705 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4706 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4707 		kflags |= WPI_KFLAG_MULTICAST;
4708 
4709 	memset(&node, 0, sizeof node);
4710 	node.id = wn->id;
4711 	node.control = WPI_NODE_UPDATE;
4712 	node.flags = WPI_FLAG_KEY_SET;
4713 	node.kflags = htole16(kflags);
4714 again:
4715 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4716 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4717 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4718 
4719 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4720 	if (error != 0) {
4721 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4722 		    error);
4723 		return !error;
4724 	}
4725 
4726 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4727 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4728 		kflags |= WPI_KFLAG_MULTICAST;
4729 		node.kflags = htole16(kflags);
4730 
4731 		goto again;
4732 	}
4733 
4734 	return 1;
4735 }
4736 
4737 static void
4738 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4739 {
4740 	const struct ieee80211_key *k = arg;
4741 	struct ieee80211vap *vap = ni->ni_vap;
4742 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4743 	struct wpi_node *wn = WPI_NODE(ni);
4744 	int error;
4745 
4746 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4747 		return;
4748 
4749 	WPI_NT_LOCK(sc);
4750 	error = wpi_del_key(ni, k);
4751 	WPI_NT_UNLOCK(sc);
4752 
4753 	if (error == 0) {
4754 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4755 		    __func__);
4756 	}
4757 }
4758 
4759 static int
4760 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4761     int set)
4762 {
4763 	struct ieee80211com *ic = vap->iv_ic;
4764 	struct wpi_softc *sc = ic->ic_softc;
4765 	struct wpi_vap *wvp = WPI_VAP(vap);
4766 	struct ieee80211_node *ni;
4767 	int error, ni_ref = 0;
4768 
4769 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4770 
4771 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4772 		/* Not for us. */
4773 		return 1;
4774 	}
4775 
4776 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4777 		/* XMIT keys are handled in wpi_tx_data(). */
4778 		return 1;
4779 	}
4780 
4781 	/* Handle group keys. */
4782 	if (&vap->iv_nw_keys[0] <= k &&
4783 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4784 		WPI_NT_LOCK(sc);
4785 		if (set)
4786 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4787 		else
4788 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4789 		WPI_NT_UNLOCK(sc);
4790 
4791 		if (vap->iv_state == IEEE80211_S_RUN) {
4792 			ieee80211_iterate_nodes(&ic->ic_sta,
4793 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4794 			    __DECONST(void *, k));
4795 		}
4796 
4797 		return 1;
4798 	}
4799 
4800 	switch (vap->iv_opmode) {
4801 	case IEEE80211_M_STA:
4802 		ni = vap->iv_bss;
4803 		break;
4804 
4805 	case IEEE80211_M_IBSS:
4806 	case IEEE80211_M_AHDEMO:
4807 	case IEEE80211_M_HOSTAP:
4808 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4809 		if (ni == NULL)
4810 			return 0;	/* should not happen */
4811 
4812 		ni_ref = 1;
4813 		break;
4814 
4815 	default:
4816 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4817 		    vap->iv_opmode);
4818 		return 0;
4819 	}
4820 
4821 	WPI_NT_LOCK(sc);
4822 	if (set)
4823 		error = wpi_load_key(ni, k);
4824 	else
4825 		error = wpi_del_key(ni, k);
4826 	WPI_NT_UNLOCK(sc);
4827 
4828 	if (ni_ref)
4829 		ieee80211_node_decref(ni);
4830 
4831 	return error;
4832 }
4833 
4834 static int
4835 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4836 {
4837 	return wpi_process_key(vap, k, 1);
4838 }
4839 
4840 static int
4841 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4842 {
4843 	return wpi_process_key(vap, k, 0);
4844 }
4845 
4846 /*
4847  * This function is called after the runtime firmware notifies us of its
4848  * readiness (called in a process context).
4849  */
4850 static int
4851 wpi_post_alive(struct wpi_softc *sc)
4852 {
4853 	int ntries, error;
4854 
4855 	/* Check (again) that the radio is not disabled. */
4856 	if ((error = wpi_nic_lock(sc)) != 0)
4857 		return error;
4858 
4859 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4860 
4861 	/* NB: Runtime firmware must be up and running. */
4862 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4863 		device_printf(sc->sc_dev,
4864 		    "RF switch: radio disabled (%s)\n", __func__);
4865 		wpi_nic_unlock(sc);
4866 		return EPERM;   /* :-) */
4867 	}
4868 	wpi_nic_unlock(sc);
4869 
4870 	/* Wait for thermal sensor to calibrate. */
4871 	for (ntries = 0; ntries < 1000; ntries++) {
4872 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4873 			break;
4874 		DELAY(10);
4875 	}
4876 
4877 	if (ntries == 1000) {
4878 		device_printf(sc->sc_dev,
4879 		    "timeout waiting for thermal sensor calibration\n");
4880 		return ETIMEDOUT;
4881 	}
4882 
4883 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4884 	return 0;
4885 }
4886 
4887 /*
4888  * The firmware boot code is small and is intended to be copied directly into
4889  * the NIC internal memory (no DMA transfer).
4890  */
4891 static int
4892 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
4893 {
4894 	int error, ntries;
4895 
4896 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4897 
4898 	size /= sizeof (uint32_t);
4899 
4900 	if ((error = wpi_nic_lock(sc)) != 0)
4901 		return error;
4902 
4903 	/* Copy microcode image into NIC memory. */
4904 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4905 	    (const uint32_t *)ucode, size);
4906 
4907 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4908 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4909 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4910 
4911 	/* Start boot load now. */
4912 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4913 
4914 	/* Wait for transfer to complete. */
4915 	for (ntries = 0; ntries < 1000; ntries++) {
4916 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4917 		DPRINTF(sc, WPI_DEBUG_HW,
4918 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4919 		    WPI_FH_TX_STATUS_IDLE(6),
4920 		    status & WPI_FH_TX_STATUS_IDLE(6));
4921 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4922 			DPRINTF(sc, WPI_DEBUG_HW,
4923 			    "Status Match! - ntries = %d\n", ntries);
4924 			break;
4925 		}
4926 		DELAY(10);
4927 	}
4928 	if (ntries == 1000) {
4929 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4930 		    __func__);
4931 		wpi_nic_unlock(sc);
4932 		return ETIMEDOUT;
4933 	}
4934 
4935 	/* Enable boot after power up. */
4936 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4937 
4938 	wpi_nic_unlock(sc);
4939 	return 0;
4940 }
4941 
4942 static int
4943 wpi_load_firmware(struct wpi_softc *sc)
4944 {
4945 	struct wpi_fw_info *fw = &sc->fw;
4946 	struct wpi_dma_info *dma = &sc->fw_dma;
4947 	int error;
4948 
4949 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4950 
4951 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4952 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4953 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4954 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4955 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4956 
4957 	/* Tell adapter where to find initialization sections. */
4958 	if ((error = wpi_nic_lock(sc)) != 0)
4959 		return error;
4960 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4961 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4962 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4963 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4964 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4965 	wpi_nic_unlock(sc);
4966 
4967 	/* Load firmware boot code. */
4968 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4969 	if (error != 0) {
4970 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4971 		    __func__);
4972 		return error;
4973 	}
4974 
4975 	/* Now press "execute". */
4976 	WPI_WRITE(sc, WPI_RESET, 0);
4977 
4978 	/* Wait at most one second for first alive notification. */
4979 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4980 		device_printf(sc->sc_dev,
4981 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4982 		    __func__, error);
4983 		return error;
4984 	}
4985 
4986 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4987 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4988 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4989 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4990 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4991 
4992 	/* Tell adapter where to find runtime sections. */
4993 	if ((error = wpi_nic_lock(sc)) != 0)
4994 		return error;
4995 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4996 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4997 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4998 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4999 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
5000 	    WPI_FW_UPDATED | fw->main.textsz);
5001 	wpi_nic_unlock(sc);
5002 
5003 	return 0;
5004 }
5005 
5006 static int
5007 wpi_read_firmware(struct wpi_softc *sc)
5008 {
5009 	const struct firmware *fp;
5010 	struct wpi_fw_info *fw = &sc->fw;
5011 	const struct wpi_firmware_hdr *hdr;
5012 	int error;
5013 
5014 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5015 
5016 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5017 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5018 
5019 	WPI_UNLOCK(sc);
5020 	fp = firmware_get(WPI_FW_NAME);
5021 	WPI_LOCK(sc);
5022 
5023 	if (fp == NULL) {
5024 		device_printf(sc->sc_dev,
5025 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5026 		return EINVAL;
5027 	}
5028 
5029 	sc->fw_fp = fp;
5030 
5031 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5032 		device_printf(sc->sc_dev,
5033 		    "firmware file too short: %zu bytes\n", fp->datasize);
5034 		error = EINVAL;
5035 		goto fail;
5036 	}
5037 
5038 	fw->size = fp->datasize;
5039 	fw->data = (const uint8_t *)fp->data;
5040 
5041 	/* Extract firmware header information. */
5042 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5043 
5044 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5045 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5046 
5047 	fw->main.textsz = le32toh(hdr->rtextsz);
5048 	fw->main.datasz = le32toh(hdr->rdatasz);
5049 	fw->init.textsz = le32toh(hdr->itextsz);
5050 	fw->init.datasz = le32toh(hdr->idatasz);
5051 	fw->boot.textsz = le32toh(hdr->btextsz);
5052 	fw->boot.datasz = 0;
5053 
5054 	/* Sanity-check firmware header. */
5055 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5056 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5057 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5058 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5059 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5060 	    (fw->boot.textsz & 3) != 0) {
5061 		device_printf(sc->sc_dev, "invalid firmware header\n");
5062 		error = EINVAL;
5063 		goto fail;
5064 	}
5065 
5066 	/* Check that all firmware sections fit. */
5067 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5068 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5069 		device_printf(sc->sc_dev,
5070 		    "firmware file too short: %zu bytes\n", fw->size);
5071 		error = EINVAL;
5072 		goto fail;
5073 	}
5074 
5075 	/* Get pointers to firmware sections. */
5076 	fw->main.text = (const uint8_t *)(hdr + 1);
5077 	fw->main.data = fw->main.text + fw->main.textsz;
5078 	fw->init.text = fw->main.data + fw->main.datasz;
5079 	fw->init.data = fw->init.text + fw->init.textsz;
5080 	fw->boot.text = fw->init.data + fw->init.datasz;
5081 
5082 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5083 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5084 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5085 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5086 	    fw->main.textsz, fw->main.datasz,
5087 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5088 
5089 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5090 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5091 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5092 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5093 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5094 
5095 	return 0;
5096 
5097 fail:	wpi_unload_firmware(sc);
5098 	return error;
5099 }
5100 
5101 /**
5102  * Free the referenced firmware image
5103  */
5104 static void
5105 wpi_unload_firmware(struct wpi_softc *sc)
5106 {
5107 	if (sc->fw_fp != NULL) {
5108 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5109 		sc->fw_fp = NULL;
5110 	}
5111 }
5112 
5113 static int
5114 wpi_clock_wait(struct wpi_softc *sc)
5115 {
5116 	int ntries;
5117 
5118 	/* Set "initialization complete" bit. */
5119 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5120 
5121 	/* Wait for clock stabilization. */
5122 	for (ntries = 0; ntries < 2500; ntries++) {
5123 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5124 			return 0;
5125 		DELAY(100);
5126 	}
5127 	device_printf(sc->sc_dev,
5128 	    "%s: timeout waiting for clock stabilization\n", __func__);
5129 
5130 	return ETIMEDOUT;
5131 }
5132 
5133 static int
5134 wpi_apm_init(struct wpi_softc *sc)
5135 {
5136 	uint32_t reg;
5137 	int error;
5138 
5139 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5140 
5141 	/* Disable L0s exit timer (NMI bug workaround). */
5142 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5143 	/* Don't wait for ICH L0s (ICH bug workaround). */
5144 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5145 
5146 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5147 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5148 
5149 	/* Retrieve PCIe Active State Power Management (ASPM). */
5150 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
5151 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5152 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
5153 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5154 	else
5155 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5156 
5157 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5158 
5159 	/* Wait for clock stabilization before accessing prph. */
5160 	if ((error = wpi_clock_wait(sc)) != 0)
5161 		return error;
5162 
5163 	if ((error = wpi_nic_lock(sc)) != 0)
5164 		return error;
5165 	/* Cleanup. */
5166 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5167 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5168 
5169 	/* Enable DMA and BSM (Bootstrap State Machine). */
5170 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5171 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5172 	DELAY(20);
5173 	/* Disable L1-Active. */
5174 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5175 	wpi_nic_unlock(sc);
5176 
5177 	return 0;
5178 }
5179 
5180 static void
5181 wpi_apm_stop_master(struct wpi_softc *sc)
5182 {
5183 	int ntries;
5184 
5185 	/* Stop busmaster DMA activity. */
5186 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5187 
5188 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5189 	    WPI_GP_CNTRL_MAC_PS)
5190 		return; /* Already asleep. */
5191 
5192 	for (ntries = 0; ntries < 100; ntries++) {
5193 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5194 			return;
5195 		DELAY(10);
5196 	}
5197 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5198 	    __func__);
5199 }
5200 
5201 static void
5202 wpi_apm_stop(struct wpi_softc *sc)
5203 {
5204 	wpi_apm_stop_master(sc);
5205 
5206 	/* Reset the entire device. */
5207 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5208 	DELAY(10);
5209 	/* Clear "initialization complete" bit. */
5210 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5211 }
5212 
5213 static void
5214 wpi_nic_config(struct wpi_softc *sc)
5215 {
5216 	uint32_t rev;
5217 
5218 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5219 
5220 	/* voodoo from the Linux "driver".. */
5221 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5222 	if ((rev & 0xc0) == 0x40)
5223 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5224 	else if (!(rev & 0x80))
5225 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5226 
5227 	if (sc->cap == 0x80)
5228 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5229 
5230 	if ((sc->rev & 0xf0) == 0xd0)
5231 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5232 	else
5233 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5234 
5235 	if (sc->type > 1)
5236 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5237 }
5238 
5239 static int
5240 wpi_hw_init(struct wpi_softc *sc)
5241 {
5242 	uint8_t chnl;
5243 	int ntries, error;
5244 
5245 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5246 
5247 	/* Clear pending interrupts. */
5248 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5249 
5250 	if ((error = wpi_apm_init(sc)) != 0) {
5251 		device_printf(sc->sc_dev,
5252 		    "%s: could not power ON adapter, error %d\n", __func__,
5253 		    error);
5254 		return error;
5255 	}
5256 
5257 	/* Select VMAIN power source. */
5258 	if ((error = wpi_nic_lock(sc)) != 0)
5259 		return error;
5260 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5261 	wpi_nic_unlock(sc);
5262 	/* Spin until VMAIN gets selected. */
5263 	for (ntries = 0; ntries < 5000; ntries++) {
5264 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5265 			break;
5266 		DELAY(10);
5267 	}
5268 	if (ntries == 5000) {
5269 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5270 		return ETIMEDOUT;
5271 	}
5272 
5273 	/* Perform adapter initialization. */
5274 	wpi_nic_config(sc);
5275 
5276 	/* Initialize RX ring. */
5277 	if ((error = wpi_nic_lock(sc)) != 0)
5278 		return error;
5279 	/* Set physical address of RX ring. */
5280 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5281 	/* Set physical address of RX read pointer. */
5282 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5283 	    offsetof(struct wpi_shared, next));
5284 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5285 	/* Enable RX. */
5286 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5287 	    WPI_FH_RX_CONFIG_DMA_ENA |
5288 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5289 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5290 	    WPI_FH_RX_CONFIG_MAXFRAG |
5291 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5292 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5293 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5294 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5295 	wpi_nic_unlock(sc);
5296 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5297 
5298 	/* Initialize TX rings. */
5299 	if ((error = wpi_nic_lock(sc)) != 0)
5300 		return error;
5301 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5302 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5303 	/* Enable all 6 TX rings. */
5304 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5305 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5306 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5307 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5308 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5309 	/* Set physical address of TX rings. */
5310 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5311 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5312 
5313 	/* Enable all DMA channels. */
5314 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5315 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5316 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5317 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5318 	}
5319 	wpi_nic_unlock(sc);
5320 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5321 
5322 	/* Clear "radio off" and "commands blocked" bits. */
5323 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5324 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5325 
5326 	/* Clear pending interrupts. */
5327 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5328 	/* Enable interrupts. */
5329 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5330 
5331 	/* _Really_ make sure "radio off" bit is cleared! */
5332 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5333 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5334 
5335 	if ((error = wpi_load_firmware(sc)) != 0) {
5336 		device_printf(sc->sc_dev,
5337 		    "%s: could not load firmware, error %d\n", __func__,
5338 		    error);
5339 		return error;
5340 	}
5341 	/* Wait at most one second for firmware alive notification. */
5342 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5343 		device_printf(sc->sc_dev,
5344 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5345 		    __func__, error);
5346 		return error;
5347 	}
5348 
5349 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5350 
5351 	/* Do post-firmware initialization. */
5352 	return wpi_post_alive(sc);
5353 }
5354 
5355 static void
5356 wpi_hw_stop(struct wpi_softc *sc)
5357 {
5358 	uint8_t chnl, qid;
5359 	int ntries;
5360 
5361 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5362 
5363 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5364 		wpi_nic_lock(sc);
5365 
5366 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5367 
5368 	/* Disable interrupts. */
5369 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5370 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5371 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5372 
5373 	/* Make sure we no longer hold the NIC lock. */
5374 	wpi_nic_unlock(sc);
5375 
5376 	if (wpi_nic_lock(sc) == 0) {
5377 		/* Stop TX scheduler. */
5378 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5379 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5380 
5381 		/* Stop all DMA channels. */
5382 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5383 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5384 			for (ntries = 0; ntries < 200; ntries++) {
5385 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5386 				    WPI_FH_TX_STATUS_IDLE(chnl))
5387 					break;
5388 				DELAY(10);
5389 			}
5390 		}
5391 		wpi_nic_unlock(sc);
5392 	}
5393 
5394 	/* Stop RX ring. */
5395 	wpi_reset_rx_ring(sc);
5396 
5397 	/* Reset all TX rings. */
5398 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
5399 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5400 
5401 	if (wpi_nic_lock(sc) == 0) {
5402 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5403 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5404 		wpi_nic_unlock(sc);
5405 	}
5406 	DELAY(5);
5407 	/* Power OFF adapter. */
5408 	wpi_apm_stop(sc);
5409 }
5410 
5411 static void
5412 wpi_radio_on(void *arg0, int pending)
5413 {
5414 	struct wpi_softc *sc = arg0;
5415 	struct ieee80211com *ic = &sc->sc_ic;
5416 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5417 
5418 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5419 
5420 	WPI_LOCK(sc);
5421 	callout_stop(&sc->watchdog_rfkill);
5422 	WPI_UNLOCK(sc);
5423 
5424 	if (vap != NULL)
5425 		ieee80211_init(vap);
5426 }
5427 
5428 static void
5429 wpi_radio_off(void *arg0, int pending)
5430 {
5431 	struct wpi_softc *sc = arg0;
5432 	struct ieee80211com *ic = &sc->sc_ic;
5433 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5434 
5435 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5436 
5437 	ieee80211_notify_radio(ic, 0);
5438 	wpi_stop(sc);
5439 	if (vap != NULL)
5440 		ieee80211_stop(vap);
5441 
5442 	WPI_LOCK(sc);
5443 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5444 	WPI_UNLOCK(sc);
5445 }
5446 
5447 static int
5448 wpi_init(struct wpi_softc *sc)
5449 {
5450 	int error = 0;
5451 
5452 	WPI_LOCK(sc);
5453 
5454 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5455 
5456 	if (sc->sc_running != 0)
5457 		goto end;
5458 
5459 	/* Check that the radio is not disabled by hardware switch. */
5460 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5461 		device_printf(sc->sc_dev,
5462 		    "RF switch: radio disabled (%s)\n", __func__);
5463 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5464 		    sc);
5465 		error = EINPROGRESS;
5466 		goto end;
5467 	}
5468 
5469 	/* Read firmware images from the filesystem. */
5470 	if ((error = wpi_read_firmware(sc)) != 0) {
5471 		device_printf(sc->sc_dev,
5472 		    "%s: could not read firmware, error %d\n", __func__,
5473 		    error);
5474 		goto end;
5475 	}
5476 
5477 	sc->sc_running = 1;
5478 
5479 	/* Initialize hardware and upload firmware. */
5480 	error = wpi_hw_init(sc);
5481 	wpi_unload_firmware(sc);
5482 	if (error != 0) {
5483 		device_printf(sc->sc_dev,
5484 		    "%s: could not initialize hardware, error %d\n", __func__,
5485 		    error);
5486 		goto fail;
5487 	}
5488 
5489 	/* Configure adapter now that it is ready. */
5490 	if ((error = wpi_config(sc)) != 0) {
5491 		device_printf(sc->sc_dev,
5492 		    "%s: could not configure device, error %d\n", __func__,
5493 		    error);
5494 		goto fail;
5495 	}
5496 
5497 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5498 
5499 	WPI_UNLOCK(sc);
5500 
5501 	return 0;
5502 
5503 fail:	wpi_stop_locked(sc);
5504 
5505 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5506 	WPI_UNLOCK(sc);
5507 
5508 	return error;
5509 }
5510 
5511 static void
5512 wpi_stop_locked(struct wpi_softc *sc)
5513 {
5514 
5515 	WPI_LOCK_ASSERT(sc);
5516 
5517 	if (sc->sc_running == 0)
5518 		return;
5519 
5520 	WPI_TX_LOCK(sc);
5521 	WPI_TXQ_LOCK(sc);
5522 	sc->sc_running = 0;
5523 	WPI_TXQ_UNLOCK(sc);
5524 	WPI_TX_UNLOCK(sc);
5525 
5526 	WPI_TXQ_STATE_LOCK(sc);
5527 	callout_stop(&sc->tx_timeout);
5528 	WPI_TXQ_STATE_UNLOCK(sc);
5529 
5530 	WPI_RXON_LOCK(sc);
5531 	callout_stop(&sc->scan_timeout);
5532 	callout_stop(&sc->calib_to);
5533 	WPI_RXON_UNLOCK(sc);
5534 
5535 	/* Power OFF hardware. */
5536 	wpi_hw_stop(sc);
5537 }
5538 
5539 static void
5540 wpi_stop(struct wpi_softc *sc)
5541 {
5542 	WPI_LOCK(sc);
5543 	wpi_stop_locked(sc);
5544 	WPI_UNLOCK(sc);
5545 }
5546 
5547 /*
5548  * Callback from net80211 to start a scan.
5549  */
5550 static void
5551 wpi_scan_start(struct ieee80211com *ic)
5552 {
5553 	struct wpi_softc *sc = ic->ic_softc;
5554 
5555 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5556 }
5557 
5558 /*
5559  * Callback from net80211 to terminate a scan.
5560  */
5561 static void
5562 wpi_scan_end(struct ieee80211com *ic)
5563 {
5564 	struct wpi_softc *sc = ic->ic_softc;
5565 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5566 
5567 	if (vap->iv_state == IEEE80211_S_RUN)
5568 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5569 }
5570 
5571 /**
5572  * Called by the net80211 framework to indicate to the driver
5573  * that the channel should be changed
5574  */
5575 static void
5576 wpi_set_channel(struct ieee80211com *ic)
5577 {
5578 	const struct ieee80211_channel *c = ic->ic_curchan;
5579 	struct wpi_softc *sc = ic->ic_softc;
5580 	int error;
5581 
5582 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5583 
5584 	WPI_LOCK(sc);
5585 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5586 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5587 	WPI_UNLOCK(sc);
5588 	WPI_TX_LOCK(sc);
5589 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5590 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5591 	WPI_TX_UNLOCK(sc);
5592 
5593 	/*
5594 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5595 	 * are already taken care of by their respective firmware commands.
5596 	 */
5597 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5598 		WPI_RXON_LOCK(sc);
5599 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5600 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5601 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5602 			    WPI_RXON_24GHZ);
5603 		} else {
5604 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5605 			    WPI_RXON_24GHZ);
5606 		}
5607 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5608 			device_printf(sc->sc_dev,
5609 			    "%s: error %d setting channel\n", __func__,
5610 			    error);
5611 		WPI_RXON_UNLOCK(sc);
5612 	}
5613 }
5614 
5615 /**
5616  * Called by net80211 to indicate that we need to scan the current
5617  * channel. The channel is previously be set via the wpi_set_channel
5618  * callback.
5619  */
5620 static void
5621 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5622 {
5623 	struct ieee80211vap *vap = ss->ss_vap;
5624 	struct ieee80211com *ic = vap->iv_ic;
5625 	struct wpi_softc *sc = ic->ic_softc;
5626 	int error;
5627 
5628 	WPI_RXON_LOCK(sc);
5629 	error = wpi_scan(sc, ic->ic_curchan);
5630 	WPI_RXON_UNLOCK(sc);
5631 	if (error != 0)
5632 		ieee80211_cancel_scan(vap);
5633 }
5634 
5635 /**
5636  * Called by the net80211 framework to indicate
5637  * the minimum dwell time has been met, terminate the scan.
5638  * We don't actually terminate the scan as the firmware will notify
5639  * us when it's finished and we have no way to interrupt it.
5640  */
5641 static void
5642 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5643 {
5644 	/* NB: don't try to abort scan; wait for firmware to finish */
5645 }
5646