xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 298f5fdc242b760e70cd3494e3a4f1f50b20664d)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include "opt_wlan.h"
63 
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79 
80 #include <machine/bus.h>
81 #include <machine/resource.h>
82 #include <sys/rman.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 
87 #include <net/bpf.h>
88 #include <net/if.h>
89 #include <net/if_var.h>
90 #include <net/if_arp.h>
91 #include <net/ethernet.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_types.h>
95 
96 #include <net80211/ieee80211_var.h>
97 #include <net80211/ieee80211_radiotap.h>
98 #include <net80211/ieee80211_regdomain.h>
99 #include <net80211/ieee80211_ratectl.h>
100 
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip.h>
105 #include <netinet/if_ether.h>
106 
107 #include <dev/wpi/if_wpireg.h>
108 #include <dev/wpi/if_wpivar.h>
109 
110 #define WPI_DEBUG
111 
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
114 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
115 #define	WPI_DEBUG_SET	(wpi_debug != 0)
116 
117 enum {
118 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130 	WPI_DEBUG_ANY		= 0xffffffff
131 };
132 
133 static int wpi_debug;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RWTUN, &wpi_debug, 0, "wpi debug level");
135 
136 #else
137 #define DPRINTF(x)
138 #define DPRINTFN(n, x)
139 #define WPI_DEBUG_SET	0
140 #endif
141 
142 struct wpi_ident {
143 	uint16_t	vendor;
144 	uint16_t	device;
145 	uint16_t	subdevice;
146 	const char	*name;
147 };
148 
149 static const struct wpi_ident wpi_ident_table[] = {
150 	/* The below entries support ABG regardless of the subid */
151 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
152 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	/* The below entries only support BG */
154 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
155 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0, 0, 0, NULL }
159 };
160 
161 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
162 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
163 		    const uint8_t [IEEE80211_ADDR_LEN],
164 		    const uint8_t [IEEE80211_ADDR_LEN]);
165 static void	wpi_vap_delete(struct ieee80211vap *);
166 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
167 		    void **, bus_size_t, bus_size_t, int);
168 static void	wpi_dma_contig_free(struct wpi_dma_info *);
169 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
170 static int	wpi_alloc_shared(struct wpi_softc *);
171 static void	wpi_free_shared(struct wpi_softc *);
172 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
176 		    int, int);
177 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
178 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
180 static void	wpi_mem_lock(struct wpi_softc *);
181 static void	wpi_mem_unlock(struct wpi_softc *);
182 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
183 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
184 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
185 		    const uint32_t *, int);
186 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
187 static int	wpi_alloc_fwmem(struct wpi_softc *);
188 static void	wpi_free_fwmem(struct wpi_softc *);
189 static int	wpi_load_firmware(struct wpi_softc *);
190 static void	wpi_unload_firmware(struct wpi_softc *);
191 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
192 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
193 		    struct wpi_rx_data *);
194 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
196 static void	wpi_notif_intr(struct wpi_softc *);
197 static void	wpi_intr(void *);
198 static uint8_t	wpi_plcp_signal(int);
199 static void	wpi_watchdog(void *);
200 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
201 		    struct ieee80211_node *, int);
202 static void	wpi_start(struct ifnet *);
203 static void	wpi_start_locked(struct ifnet *);
204 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
205 		    const struct ieee80211_bpf_params *);
206 static void	wpi_scan_start(struct ieee80211com *);
207 static void	wpi_scan_end(struct ieee80211com *);
208 static void	wpi_set_channel(struct ieee80211com *);
209 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
210 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
211 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
212 static void	wpi_read_eeprom(struct wpi_softc *,
213 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
214 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
215 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
216 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
217 static int	wpi_wme_update(struct ieee80211com *);
218 static int	wpi_mrr_setup(struct wpi_softc *);
219 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
220 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
221 #if 0
222 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
223 #endif
224 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
225 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
226 static int	wpi_scan(struct wpi_softc *);
227 static int	wpi_config(struct wpi_softc *);
228 static void	wpi_stop_master(struct wpi_softc *);
229 static int	wpi_power_up(struct wpi_softc *);
230 static int	wpi_reset(struct wpi_softc *);
231 static void	wpi_hwreset(void *, int);
232 static void	wpi_rfreset(void *, int);
233 static void	wpi_hw_config(struct wpi_softc *);
234 static void	wpi_init(void *);
235 static void	wpi_init_locked(struct wpi_softc *, int);
236 static void	wpi_stop(struct wpi_softc *);
237 static void	wpi_stop_locked(struct wpi_softc *);
238 
239 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
240 		    int);
241 static void	wpi_calib_timeout(void *);
242 static void	wpi_power_calibration(struct wpi_softc *, int);
243 static int	wpi_get_power_index(struct wpi_softc *,
244 		    struct wpi_power_group *, struct ieee80211_channel *, int);
245 #ifdef WPI_DEBUG
246 static const char *wpi_cmd_str(int);
247 #endif
248 static int wpi_probe(device_t);
249 static int wpi_attach(device_t);
250 static int wpi_detach(device_t);
251 static int wpi_shutdown(device_t);
252 static int wpi_suspend(device_t);
253 static int wpi_resume(device_t);
254 
255 static device_method_t wpi_methods[] = {
256 	/* Device interface */
257 	DEVMETHOD(device_probe,		wpi_probe),
258 	DEVMETHOD(device_attach,	wpi_attach),
259 	DEVMETHOD(device_detach,	wpi_detach),
260 	DEVMETHOD(device_shutdown,	wpi_shutdown),
261 	DEVMETHOD(device_suspend,	wpi_suspend),
262 	DEVMETHOD(device_resume,	wpi_resume),
263 
264 	DEVMETHOD_END
265 };
266 
267 static driver_t wpi_driver = {
268 	"wpi",
269 	wpi_methods,
270 	sizeof (struct wpi_softc)
271 };
272 
273 static devclass_t wpi_devclass;
274 
275 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
276 
277 MODULE_VERSION(wpi, 1);
278 
279 static const uint8_t wpi_ridx_to_plcp[] = {
280 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
281 	/* R1-R4 (ral/ural is R4-R1) */
282 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
283 	/* CCK: device-dependent */
284 	10, 20, 55, 110
285 };
286 
287 static const uint8_t wpi_ridx_to_rate[] = {
288 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
289 	2, 4, 11, 22 /*CCK */
290 };
291 
292 static int
293 wpi_probe(device_t dev)
294 {
295 	const struct wpi_ident *ident;
296 
297 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
298 		if (pci_get_vendor(dev) == ident->vendor &&
299 		    pci_get_device(dev) == ident->device) {
300 			device_set_desc(dev, ident->name);
301 			return (BUS_PROBE_DEFAULT);
302 		}
303 	}
304 	return ENXIO;
305 }
306 
307 /**
308  * Load the firmare image from disk to the allocated dma buffer.
309  * we also maintain the reference to the firmware pointer as there
310  * is times where we may need to reload the firmware but we are not
311  * in a context that can access the filesystem (ie taskq cause by restart)
312  *
313  * @return 0 on success, an errno on failure
314  */
315 static int
316 wpi_load_firmware(struct wpi_softc *sc)
317 {
318 	const struct firmware *fp;
319 	struct wpi_dma_info *dma = &sc->fw_dma;
320 	const struct wpi_firmware_hdr *hdr;
321 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
322 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
323 	int error;
324 
325 	DPRINTFN(WPI_DEBUG_FIRMWARE,
326 	    ("Attempting Loading Firmware from wpi_fw module\n"));
327 
328 	WPI_UNLOCK(sc);
329 
330 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
331 		device_printf(sc->sc_dev,
332 		    "could not load firmware image 'wpifw'\n");
333 		error = ENOENT;
334 		WPI_LOCK(sc);
335 		goto fail;
336 	}
337 
338 	fp = sc->fw_fp;
339 
340 	WPI_LOCK(sc);
341 
342 	/* Validate the firmware is minimum a particular version */
343 	if (fp->version < WPI_FW_MINVERSION) {
344 	    device_printf(sc->sc_dev,
345 			   "firmware version is too old. Need %d, got %d\n",
346 			   WPI_FW_MINVERSION,
347 			   fp->version);
348 	    error = ENXIO;
349 	    goto fail;
350 	}
351 
352 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
353 		device_printf(sc->sc_dev,
354 		    "firmware file too short: %zu bytes\n", fp->datasize);
355 		error = ENXIO;
356 		goto fail;
357 	}
358 
359 	hdr = (const struct wpi_firmware_hdr *)fp->data;
360 
361 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
362 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
363 
364 	rtextsz = le32toh(hdr->rtextsz);
365 	rdatasz = le32toh(hdr->rdatasz);
366 	itextsz = le32toh(hdr->itextsz);
367 	idatasz = le32toh(hdr->idatasz);
368 	btextsz = le32toh(hdr->btextsz);
369 
370 	/* check that all firmware segments are present */
371 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
372 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
373 		device_printf(sc->sc_dev,
374 		    "firmware file too short: %zu bytes\n", fp->datasize);
375 		error = ENXIO; /* XXX appropriate error code? */
376 		goto fail;
377 	}
378 
379 	/* get pointers to firmware segments */
380 	rtext = (const uint8_t *)(hdr + 1);
381 	rdata = rtext + rtextsz;
382 	itext = rdata + rdatasz;
383 	idata = itext + itextsz;
384 	btext = idata + idatasz;
385 
386 	DPRINTFN(WPI_DEBUG_FIRMWARE,
387 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
388 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
389 	     (le32toh(hdr->version) & 0xff000000) >> 24,
390 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
391 	     (le32toh(hdr->version) & 0x0000ffff),
392 	     rtextsz, rdatasz,
393 	     itextsz, idatasz, btextsz));
394 
395 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
396 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
397 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
398 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
399 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
400 
401 	/* sanity checks */
402 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
403 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
404 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
405 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
406 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
407 	    (btextsz & 3) != 0) {
408 		device_printf(sc->sc_dev, "firmware invalid\n");
409 		error = EINVAL;
410 		goto fail;
411 	}
412 
413 	/* copy initialization images into pre-allocated DMA-safe memory */
414 	memcpy(dma->vaddr, idata, idatasz);
415 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
416 
417 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
418 
419 	/* tell adapter where to find initialization images */
420 	wpi_mem_lock(sc);
421 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
422 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
423 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
424 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
425 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
426 	wpi_mem_unlock(sc);
427 
428 	/* load firmware boot code */
429 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
430 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
431 	    goto fail;
432 	}
433 
434 	/* now press "execute" */
435 	WPI_WRITE(sc, WPI_RESET, 0);
436 
437 	/* wait at most one second for the first alive notification */
438 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
439 		device_printf(sc->sc_dev,
440 		    "timeout waiting for adapter to initialize\n");
441 		goto fail;
442 	}
443 
444 	/* copy runtime images into pre-allocated DMA-sage memory */
445 	memcpy(dma->vaddr, rdata, rdatasz);
446 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
447 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
448 
449 	/* tell adapter where to find runtime images */
450 	wpi_mem_lock(sc);
451 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
452 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
453 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
454 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
455 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
456 	wpi_mem_unlock(sc);
457 
458 	/* wait at most one second for the first alive notification */
459 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
460 		device_printf(sc->sc_dev,
461 		    "timeout waiting for adapter to initialize2\n");
462 		goto fail;
463 	}
464 
465 	DPRINTFN(WPI_DEBUG_FIRMWARE,
466 	    ("Firmware loaded to driver successfully\n"));
467 	return error;
468 fail:
469 	wpi_unload_firmware(sc);
470 	return error;
471 }
472 
473 /**
474  * Free the referenced firmware image
475  */
476 static void
477 wpi_unload_firmware(struct wpi_softc *sc)
478 {
479 
480 	if (sc->fw_fp) {
481 		WPI_UNLOCK(sc);
482 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
483 		WPI_LOCK(sc);
484 		sc->fw_fp = NULL;
485 	}
486 }
487 
488 static int
489 wpi_attach(device_t dev)
490 {
491 	struct wpi_softc *sc = device_get_softc(dev);
492 	struct ifnet *ifp;
493 	struct ieee80211com *ic;
494 	int ac, error, rid, supportsa = 1;
495 	uint32_t tmp;
496 	const struct wpi_ident *ident;
497 	uint8_t macaddr[IEEE80211_ADDR_LEN];
498 
499 	sc->sc_dev = dev;
500 
501 	if (bootverbose || WPI_DEBUG_SET)
502 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
503 
504 	/*
505 	 * Some card's only support 802.11b/g not a, check to see if
506 	 * this is one such card. A 0x0 in the subdevice table indicates
507 	 * the entire subdevice range is to be ignored.
508 	 */
509 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
510 		if (ident->subdevice &&
511 		    pci_get_subdevice(dev) == ident->subdevice) {
512 		    supportsa = 0;
513 		    break;
514 		}
515 	}
516 
517 	/* Create the tasks that can be queued */
518 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
519 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
520 
521 	WPI_LOCK_INIT(sc);
522 
523 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
524 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
525 
526 	/* disable the retry timeout register */
527 	pci_write_config(dev, 0x41, 0, 1);
528 
529 	/* enable bus-mastering */
530 	pci_enable_busmaster(dev);
531 
532 	rid = PCIR_BAR(0);
533 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
534 	    RF_ACTIVE);
535 	if (sc->mem == NULL) {
536 		device_printf(dev, "could not allocate memory resource\n");
537 		error = ENOMEM;
538 		goto fail;
539 	}
540 
541 	sc->sc_st = rman_get_bustag(sc->mem);
542 	sc->sc_sh = rman_get_bushandle(sc->mem);
543 
544 	rid = 0;
545 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
546 	    RF_ACTIVE | RF_SHAREABLE);
547 	if (sc->irq == NULL) {
548 		device_printf(dev, "could not allocate interrupt resource\n");
549 		error = ENOMEM;
550 		goto fail;
551 	}
552 
553 	/*
554 	 * Allocate DMA memory for firmware transfers.
555 	 */
556 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
557 		printf(": could not allocate firmware memory\n");
558 		error = ENOMEM;
559 		goto fail;
560 	}
561 
562 	/*
563 	 * Put adapter into a known state.
564 	 */
565 	if ((error = wpi_reset(sc)) != 0) {
566 		device_printf(dev, "could not reset adapter\n");
567 		goto fail;
568 	}
569 
570 	wpi_mem_lock(sc);
571 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
572 	if (bootverbose || WPI_DEBUG_SET)
573 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
574 
575 	wpi_mem_unlock(sc);
576 
577 	/* Allocate shared page */
578 	if ((error = wpi_alloc_shared(sc)) != 0) {
579 		device_printf(dev, "could not allocate shared page\n");
580 		goto fail;
581 	}
582 
583 	/* tx data queues  - 4 for QoS purposes */
584 	for (ac = 0; ac < WME_NUM_AC; ac++) {
585 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
586 		if (error != 0) {
587 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
588 		    goto fail;
589 		}
590 	}
591 
592 	/* command queue to talk to the card's firmware */
593 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
594 	if (error != 0) {
595 		device_printf(dev, "could not allocate command ring\n");
596 		goto fail;
597 	}
598 
599 	/* receive data queue */
600 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
601 	if (error != 0) {
602 		device_printf(dev, "could not allocate Rx ring\n");
603 		goto fail;
604 	}
605 
606 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
607 	if (ifp == NULL) {
608 		device_printf(dev, "can not if_alloc()\n");
609 		error = ENOMEM;
610 		goto fail;
611 	}
612 	ic = ifp->if_l2com;
613 
614 	ic->ic_ifp = ifp;
615 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
616 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
617 
618 	/* set device capabilities */
619 	ic->ic_caps =
620 		  IEEE80211_C_STA		/* station mode supported */
621 		| IEEE80211_C_MONITOR		/* monitor mode supported */
622 		| IEEE80211_C_TXPMGT		/* tx power management */
623 		| IEEE80211_C_SHSLOT		/* short slot time supported */
624 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
625 		| IEEE80211_C_WPA		/* 802.11i */
626 /* XXX looks like WME is partly supported? */
627 #if 0
628 		| IEEE80211_C_IBSS		/* IBSS mode support */
629 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
630 		| IEEE80211_C_WME		/* 802.11e */
631 		| IEEE80211_C_HOSTAP		/* Host access point mode */
632 #endif
633 		;
634 
635 	/*
636 	 * Read in the eeprom and also setup the channels for
637 	 * net80211. We don't set the rates as net80211 does this for us
638 	 */
639 	wpi_read_eeprom(sc, macaddr);
640 
641 	if (bootverbose || WPI_DEBUG_SET) {
642 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
643 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
644 			  sc->type > 1 ? 'B': '?');
645 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
646 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
647 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
648 			  supportsa ? "does" : "does not");
649 
650 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
651 	       what sc->rev really represents - benjsc 20070615 */
652 	}
653 
654 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
655 	ifp->if_softc = sc;
656 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
657 	ifp->if_init = wpi_init;
658 	ifp->if_ioctl = wpi_ioctl;
659 	ifp->if_start = wpi_start;
660 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
661 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
662 	IFQ_SET_READY(&ifp->if_snd);
663 
664 	ieee80211_ifattach(ic, macaddr);
665 	/* override default methods */
666 	ic->ic_raw_xmit = wpi_raw_xmit;
667 	ic->ic_wme.wme_update = wpi_wme_update;
668 	ic->ic_scan_start = wpi_scan_start;
669 	ic->ic_scan_end = wpi_scan_end;
670 	ic->ic_set_channel = wpi_set_channel;
671 	ic->ic_scan_curchan = wpi_scan_curchan;
672 	ic->ic_scan_mindwell = wpi_scan_mindwell;
673 
674 	ic->ic_vap_create = wpi_vap_create;
675 	ic->ic_vap_delete = wpi_vap_delete;
676 
677 	ieee80211_radiotap_attach(ic,
678 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
679 		WPI_TX_RADIOTAP_PRESENT,
680 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
681 		WPI_RX_RADIOTAP_PRESENT);
682 
683 	/*
684 	 * Hook our interrupt after all initialization is complete.
685 	 */
686 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
687 	    NULL, wpi_intr, sc, &sc->sc_ih);
688 	if (error != 0) {
689 		device_printf(dev, "could not set up interrupt\n");
690 		goto fail;
691 	}
692 
693 	if (bootverbose)
694 		ieee80211_announce(ic);
695 #ifdef XXX_DEBUG
696 	ieee80211_announce_channels(ic);
697 #endif
698 	return 0;
699 
700 fail:	wpi_detach(dev);
701 	return ENXIO;
702 }
703 
704 static int
705 wpi_detach(device_t dev)
706 {
707 	struct wpi_softc *sc = device_get_softc(dev);
708 	struct ifnet *ifp = sc->sc_ifp;
709 	struct ieee80211com *ic;
710 	int ac;
711 
712 	if (sc->irq != NULL)
713 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
714 
715 	if (ifp != NULL) {
716 		ic = ifp->if_l2com;
717 
718 		ieee80211_draintask(ic, &sc->sc_restarttask);
719 		ieee80211_draintask(ic, &sc->sc_radiotask);
720 		wpi_stop(sc);
721 		callout_drain(&sc->watchdog_to);
722 		callout_drain(&sc->calib_to);
723 		ieee80211_ifdetach(ic);
724 	}
725 
726 	WPI_LOCK(sc);
727 	if (sc->txq[0].data_dmat) {
728 		for (ac = 0; ac < WME_NUM_AC; ac++)
729 			wpi_free_tx_ring(sc, &sc->txq[ac]);
730 
731 		wpi_free_tx_ring(sc, &sc->cmdq);
732 		wpi_free_rx_ring(sc, &sc->rxq);
733 		wpi_free_shared(sc);
734 	}
735 
736 	if (sc->fw_fp != NULL) {
737 		wpi_unload_firmware(sc);
738 	}
739 
740 	if (sc->fw_dma.tag)
741 		wpi_free_fwmem(sc);
742 	WPI_UNLOCK(sc);
743 
744 	if (sc->irq != NULL)
745 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
746 		    sc->irq);
747 	if (sc->mem != NULL)
748 		bus_release_resource(dev, SYS_RES_MEMORY,
749 		    rman_get_rid(sc->mem), sc->mem);
750 
751 	if (ifp != NULL)
752 		if_free(ifp);
753 
754 	WPI_LOCK_DESTROY(sc);
755 
756 	return 0;
757 }
758 
759 static struct ieee80211vap *
760 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
761     enum ieee80211_opmode opmode, int flags,
762     const uint8_t bssid[IEEE80211_ADDR_LEN],
763     const uint8_t mac[IEEE80211_ADDR_LEN])
764 {
765 	struct wpi_vap *wvp;
766 	struct ieee80211vap *vap;
767 
768 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
769 		return NULL;
770 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
771 	    M_80211_VAP, M_NOWAIT | M_ZERO);
772 	if (wvp == NULL)
773 		return NULL;
774 	vap = &wvp->vap;
775 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
776 	/* override with driver methods */
777 	wvp->newstate = vap->iv_newstate;
778 	vap->iv_newstate = wpi_newstate;
779 
780 	ieee80211_ratectl_init(vap);
781 	/* complete setup */
782 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
783 	ic->ic_opmode = opmode;
784 	return vap;
785 }
786 
787 static void
788 wpi_vap_delete(struct ieee80211vap *vap)
789 {
790 	struct wpi_vap *wvp = WPI_VAP(vap);
791 
792 	ieee80211_ratectl_deinit(vap);
793 	ieee80211_vap_detach(vap);
794 	free(wvp, M_80211_VAP);
795 }
796 
797 static void
798 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
799 {
800 	if (error != 0)
801 		return;
802 
803 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
804 
805 	*(bus_addr_t *)arg = segs[0].ds_addr;
806 }
807 
808 /*
809  * Allocates a contiguous block of dma memory of the requested size and
810  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
811  * allocations greater than 4096 may fail. Hence if the requested alignment is
812  * greater we allocate 'alignment' size extra memory and shift the vaddr and
813  * paddr after the dma load. This bypasses the problem at the cost of a little
814  * more memory.
815  */
816 static int
817 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
818     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
819 {
820 	int error;
821 	bus_size_t align;
822 	bus_size_t reqsize;
823 
824 	DPRINTFN(WPI_DEBUG_DMA,
825 	    ("Size: %zd - alignment %zd\n", size, alignment));
826 
827 	dma->size = size;
828 	dma->tag = NULL;
829 
830 	if (alignment > 4096) {
831 		align = PAGE_SIZE;
832 		reqsize = size + alignment;
833 	} else {
834 		align = alignment;
835 		reqsize = size;
836 	}
837 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
838 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
839 	    NULL, NULL, reqsize,
840 	    1, reqsize, flags,
841 	    NULL, NULL, &dma->tag);
842 	if (error != 0) {
843 		device_printf(sc->sc_dev,
844 		    "could not create shared page DMA tag\n");
845 		goto fail;
846 	}
847 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
848 	    flags | BUS_DMA_ZERO, &dma->map);
849 	if (error != 0) {
850 		device_printf(sc->sc_dev,
851 		    "could not allocate shared page DMA memory\n");
852 		goto fail;
853 	}
854 
855 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
856 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
857 
858 	/* Save the original pointers so we can free all the memory */
859 	dma->paddr = dma->paddr_start;
860 	dma->vaddr = dma->vaddr_start;
861 
862 	/*
863 	 * Check the alignment and increment by 4096 until we get the
864 	 * requested alignment. Fail if can't obtain the alignment
865 	 * we requested.
866 	 */
867 	if ((dma->paddr & (alignment -1 )) != 0) {
868 		int i;
869 
870 		for (i = 0; i < alignment / 4096; i++) {
871 			if ((dma->paddr & (alignment - 1 )) == 0)
872 				break;
873 			dma->paddr += 4096;
874 			dma->vaddr += 4096;
875 		}
876 		if (i == alignment / 4096) {
877 			device_printf(sc->sc_dev,
878 			    "alignment requirement was not satisfied\n");
879 			goto fail;
880 		}
881 	}
882 
883 	if (error != 0) {
884 		device_printf(sc->sc_dev,
885 		    "could not load shared page DMA map\n");
886 		goto fail;
887 	}
888 
889 	if (kvap != NULL)
890 		*kvap = dma->vaddr;
891 
892 	return 0;
893 
894 fail:
895 	wpi_dma_contig_free(dma);
896 	return error;
897 }
898 
899 static void
900 wpi_dma_contig_free(struct wpi_dma_info *dma)
901 {
902 	if (dma->tag) {
903 		if (dma->vaddr_start != NULL) {
904 			if (dma->paddr_start != 0) {
905 				bus_dmamap_sync(dma->tag, dma->map,
906 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
907 				bus_dmamap_unload(dma->tag, dma->map);
908 			}
909 			bus_dmamem_free(dma->tag, dma->vaddr_start, dma->map);
910 		}
911 		bus_dma_tag_destroy(dma->tag);
912 	}
913 }
914 
915 /*
916  * Allocate a shared page between host and NIC.
917  */
918 static int
919 wpi_alloc_shared(struct wpi_softc *sc)
920 {
921 	int error;
922 
923 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
924 	    (void **)&sc->shared, sizeof (struct wpi_shared),
925 	    PAGE_SIZE,
926 	    BUS_DMA_NOWAIT);
927 
928 	if (error != 0) {
929 		device_printf(sc->sc_dev,
930 		    "could not allocate shared area DMA memory\n");
931 	}
932 
933 	return error;
934 }
935 
936 static void
937 wpi_free_shared(struct wpi_softc *sc)
938 {
939 	wpi_dma_contig_free(&sc->shared_dma);
940 }
941 
942 static int
943 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
944 {
945 
946 	int i, error;
947 
948 	ring->cur = 0;
949 
950 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
951 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
952 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
953 
954 	if (error != 0) {
955 		device_printf(sc->sc_dev,
956 		    "%s: could not allocate rx ring DMA memory, error %d\n",
957 		    __func__, error);
958 		goto fail;
959 	}
960 
961         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
962 	    BUS_SPACE_MAXADDR_32BIT,
963             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
964             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
965         if (error != 0) {
966                 device_printf(sc->sc_dev,
967 		    "%s: bus_dma_tag_create_failed, error %d\n",
968 		    __func__, error);
969                 goto fail;
970         }
971 
972 	/*
973 	 * Setup Rx buffers.
974 	 */
975 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
976 		struct wpi_rx_data *data = &ring->data[i];
977 		struct mbuf *m;
978 		bus_addr_t paddr;
979 
980 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
981 		if (error != 0) {
982 			device_printf(sc->sc_dev,
983 			    "%s: bus_dmamap_create failed, error %d\n",
984 			    __func__, error);
985 			goto fail;
986 		}
987 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
988 		if (m == NULL) {
989 			device_printf(sc->sc_dev,
990 			   "%s: could not allocate rx mbuf\n", __func__);
991 			error = ENOMEM;
992 			goto fail;
993 		}
994 		/* map page */
995 		error = bus_dmamap_load(ring->data_dmat, data->map,
996 		    mtod(m, caddr_t), MJUMPAGESIZE,
997 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
998 		if (error != 0 && error != EFBIG) {
999 			device_printf(sc->sc_dev,
1000 			    "%s: bus_dmamap_load failed, error %d\n",
1001 			    __func__, error);
1002 			m_freem(m);
1003 			error = ENOMEM;	/* XXX unique code */
1004 			goto fail;
1005 		}
1006 		bus_dmamap_sync(ring->data_dmat, data->map,
1007 		    BUS_DMASYNC_PREWRITE);
1008 
1009 		data->m = m;
1010 		ring->desc[i] = htole32(paddr);
1011 	}
1012 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1013 	    BUS_DMASYNC_PREWRITE);
1014 	return 0;
1015 fail:
1016 	wpi_free_rx_ring(sc, ring);
1017 	return error;
1018 }
1019 
1020 static void
1021 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1022 {
1023 	int ntries;
1024 
1025 	wpi_mem_lock(sc);
1026 
1027 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1028 
1029 	for (ntries = 0; ntries < 100; ntries++) {
1030 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1031 			break;
1032 		DELAY(10);
1033 	}
1034 
1035 	wpi_mem_unlock(sc);
1036 
1037 #ifdef WPI_DEBUG
1038 	if (ntries == 100 && wpi_debug > 0)
1039 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1040 #endif
1041 
1042 	ring->cur = 0;
1043 }
1044 
1045 static void
1046 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1047 {
1048 	int i;
1049 
1050 	wpi_dma_contig_free(&ring->desc_dma);
1051 
1052 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1053 		struct wpi_rx_data *data = &ring->data[i];
1054 
1055 		if (data->m != NULL) {
1056 			bus_dmamap_sync(ring->data_dmat, data->map,
1057 			    BUS_DMASYNC_POSTREAD);
1058 			bus_dmamap_unload(ring->data_dmat, data->map);
1059 			m_freem(data->m);
1060 		}
1061 		if (data->map != NULL)
1062 			bus_dmamap_destroy(ring->data_dmat, data->map);
1063 	}
1064 }
1065 
1066 static int
1067 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1068 	int qid)
1069 {
1070 	struct wpi_tx_data *data;
1071 	int i, error;
1072 
1073 	ring->qid = qid;
1074 	ring->count = count;
1075 	ring->queued = 0;
1076 	ring->cur = 0;
1077 	ring->data = NULL;
1078 
1079 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1080 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1081 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1082 
1083 	if (error != 0) {
1084 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1085 	    goto fail;
1086 	}
1087 
1088 	/* update shared page with ring's base address */
1089 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1090 
1091 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1092 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1093 		BUS_DMA_NOWAIT);
1094 
1095 	if (error != 0) {
1096 		device_printf(sc->sc_dev,
1097 		    "could not allocate tx command DMA memory\n");
1098 		goto fail;
1099 	}
1100 
1101 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1102 	    M_NOWAIT | M_ZERO);
1103 	if (ring->data == NULL) {
1104 		device_printf(sc->sc_dev,
1105 		    "could not allocate tx data slots\n");
1106 		goto fail;
1107 	}
1108 
1109 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1110 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1111 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1112 	    &ring->data_dmat);
1113 	if (error != 0) {
1114 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1115 		goto fail;
1116 	}
1117 
1118 	for (i = 0; i < count; i++) {
1119 		data = &ring->data[i];
1120 
1121 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1122 		if (error != 0) {
1123 			device_printf(sc->sc_dev,
1124 			    "could not create tx buf DMA map\n");
1125 			goto fail;
1126 		}
1127 		bus_dmamap_sync(ring->data_dmat, data->map,
1128 		    BUS_DMASYNC_PREWRITE);
1129 	}
1130 
1131 	return 0;
1132 
1133 fail:
1134 	wpi_free_tx_ring(sc, ring);
1135 	return error;
1136 }
1137 
1138 static void
1139 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1140 {
1141 	struct wpi_tx_data *data;
1142 	int i, ntries;
1143 
1144 	wpi_mem_lock(sc);
1145 
1146 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1147 	for (ntries = 0; ntries < 100; ntries++) {
1148 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1149 			break;
1150 		DELAY(10);
1151 	}
1152 #ifdef WPI_DEBUG
1153 	if (ntries == 100 && wpi_debug > 0)
1154 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1155 		    ring->qid);
1156 #endif
1157 	wpi_mem_unlock(sc);
1158 
1159 	for (i = 0; i < ring->count; i++) {
1160 		data = &ring->data[i];
1161 
1162 		if (data->m != NULL) {
1163 			bus_dmamap_unload(ring->data_dmat, data->map);
1164 			m_freem(data->m);
1165 			data->m = NULL;
1166 		}
1167 	}
1168 
1169 	ring->queued = 0;
1170 	ring->cur = 0;
1171 }
1172 
1173 static void
1174 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1175 {
1176 	struct wpi_tx_data *data;
1177 	int i;
1178 
1179 	wpi_dma_contig_free(&ring->desc_dma);
1180 	wpi_dma_contig_free(&ring->cmd_dma);
1181 
1182 	if (ring->data != NULL) {
1183 		for (i = 0; i < ring->count; i++) {
1184 			data = &ring->data[i];
1185 
1186 			if (data->m != NULL) {
1187 				bus_dmamap_sync(ring->data_dmat, data->map,
1188 				    BUS_DMASYNC_POSTWRITE);
1189 				bus_dmamap_unload(ring->data_dmat, data->map);
1190 				m_freem(data->m);
1191 				data->m = NULL;
1192 			}
1193 		}
1194 		free(ring->data, M_DEVBUF);
1195 	}
1196 
1197 	if (ring->data_dmat != NULL)
1198 		bus_dma_tag_destroy(ring->data_dmat);
1199 }
1200 
1201 static int
1202 wpi_shutdown(device_t dev)
1203 {
1204 	struct wpi_softc *sc = device_get_softc(dev);
1205 
1206 	WPI_LOCK(sc);
1207 	wpi_stop_locked(sc);
1208 	wpi_unload_firmware(sc);
1209 	WPI_UNLOCK(sc);
1210 
1211 	return 0;
1212 }
1213 
1214 static int
1215 wpi_suspend(device_t dev)
1216 {
1217 	struct wpi_softc *sc = device_get_softc(dev);
1218 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1219 
1220 	ieee80211_suspend_all(ic);
1221 	return 0;
1222 }
1223 
1224 static int
1225 wpi_resume(device_t dev)
1226 {
1227 	struct wpi_softc *sc = device_get_softc(dev);
1228 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1229 
1230 	pci_write_config(dev, 0x41, 0, 1);
1231 
1232 	ieee80211_resume_all(ic);
1233 	return 0;
1234 }
1235 
1236 /**
1237  * Called by net80211 when ever there is a change to 80211 state machine
1238  */
1239 static int
1240 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1241 {
1242 	struct wpi_vap *wvp = WPI_VAP(vap);
1243 	struct ieee80211com *ic = vap->iv_ic;
1244 	struct ifnet *ifp = ic->ic_ifp;
1245 	struct wpi_softc *sc = ifp->if_softc;
1246 	int error;
1247 
1248 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1249 		ieee80211_state_name[vap->iv_state],
1250 		ieee80211_state_name[nstate], sc->flags));
1251 
1252 	IEEE80211_UNLOCK(ic);
1253 	WPI_LOCK(sc);
1254 	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1255 		/*
1256 		 * On !INIT -> SCAN transitions, we need to clear any possible
1257 		 * knowledge about associations.
1258 		 */
1259 		error = wpi_config(sc);
1260 		if (error != 0) {
1261 			device_printf(sc->sc_dev,
1262 			    "%s: device config failed, error %d\n",
1263 			    __func__, error);
1264 		}
1265 	}
1266 	if (nstate == IEEE80211_S_AUTH ||
1267 	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1268 		/*
1269 		 * The node must be registered in the firmware before auth.
1270 		 * Also the associd must be cleared on RUN -> ASSOC
1271 		 * transitions.
1272 		 */
1273 		error = wpi_auth(sc, vap);
1274 		if (error != 0) {
1275 			device_printf(sc->sc_dev,
1276 			    "%s: could not move to auth state, error %d\n",
1277 			    __func__, error);
1278 		}
1279 	}
1280 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1281 		error = wpi_run(sc, vap);
1282 		if (error != 0) {
1283 			device_printf(sc->sc_dev,
1284 			    "%s: could not move to run state, error %d\n",
1285 			    __func__, error);
1286 		}
1287 	}
1288 	if (nstate == IEEE80211_S_RUN) {
1289 		/* RUN -> RUN transition; just restart the timers */
1290 		wpi_calib_timeout(sc);
1291 		/* XXX split out rate control timer */
1292 	}
1293 	WPI_UNLOCK(sc);
1294 	IEEE80211_LOCK(ic);
1295 	return wvp->newstate(vap, nstate, arg);
1296 }
1297 
1298 /*
1299  * Grab exclusive access to NIC memory.
1300  */
1301 static void
1302 wpi_mem_lock(struct wpi_softc *sc)
1303 {
1304 	int ntries;
1305 	uint32_t tmp;
1306 
1307 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1308 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1309 
1310 	/* spin until we actually get the lock */
1311 	for (ntries = 0; ntries < 100; ntries++) {
1312 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1313 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1314 			break;
1315 		DELAY(10);
1316 	}
1317 	if (ntries == 100)
1318 		device_printf(sc->sc_dev, "could not lock memory\n");
1319 }
1320 
1321 /*
1322  * Release lock on NIC memory.
1323  */
1324 static void
1325 wpi_mem_unlock(struct wpi_softc *sc)
1326 {
1327 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1328 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1329 }
1330 
1331 static uint32_t
1332 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1333 {
1334 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1335 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1336 }
1337 
1338 static void
1339 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1340 {
1341 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1342 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1343 }
1344 
1345 static void
1346 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1347     const uint32_t *data, int wlen)
1348 {
1349 	for (; wlen > 0; wlen--, data++, addr+=4)
1350 		wpi_mem_write(sc, addr, *data);
1351 }
1352 
1353 /*
1354  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1355  * using the traditional bit-bang method. Data is read up until len bytes have
1356  * been obtained.
1357  */
1358 static uint16_t
1359 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1360 {
1361 	int ntries;
1362 	uint32_t val;
1363 	uint8_t *out = data;
1364 
1365 	wpi_mem_lock(sc);
1366 
1367 	for (; len > 0; len -= 2, addr++) {
1368 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1369 
1370 		for (ntries = 0; ntries < 10; ntries++) {
1371 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1372 				break;
1373 			DELAY(5);
1374 		}
1375 
1376 		if (ntries == 10) {
1377 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1378 			return ETIMEDOUT;
1379 		}
1380 
1381 		*out++= val >> 16;
1382 		if (len > 1)
1383 			*out ++= val >> 24;
1384 	}
1385 
1386 	wpi_mem_unlock(sc);
1387 
1388 	return 0;
1389 }
1390 
1391 /*
1392  * The firmware text and data segments are transferred to the NIC using DMA.
1393  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1394  * where to find it.  Once the NIC has copied the firmware into its internal
1395  * memory, we can free our local copy in the driver.
1396  */
1397 static int
1398 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1399 {
1400 	int error, ntries;
1401 
1402 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1403 
1404 	size /= sizeof(uint32_t);
1405 
1406 	wpi_mem_lock(sc);
1407 
1408 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1409 	    (const uint32_t *)fw, size);
1410 
1411 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1412 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1413 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1414 
1415 	/* run microcode */
1416 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1417 
1418 	/* wait while the adapter is busy copying the firmware */
1419 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1420 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1421 		DPRINTFN(WPI_DEBUG_HW,
1422 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1423 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1424 		if (status & WPI_TX_IDLE(6)) {
1425 			DPRINTFN(WPI_DEBUG_HW,
1426 			    ("Status Match! - ntries = %d\n", ntries));
1427 			break;
1428 		}
1429 		DELAY(10);
1430 	}
1431 	if (ntries == 1000) {
1432 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1433 		error = ETIMEDOUT;
1434 	}
1435 
1436 	/* start the microcode executing */
1437 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1438 
1439 	wpi_mem_unlock(sc);
1440 
1441 	return (error);
1442 }
1443 
1444 static void
1445 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1446 	struct wpi_rx_data *data)
1447 {
1448 	struct ifnet *ifp = sc->sc_ifp;
1449 	struct ieee80211com *ic = ifp->if_l2com;
1450 	struct wpi_rx_ring *ring = &sc->rxq;
1451 	struct wpi_rx_stat *stat;
1452 	struct wpi_rx_head *head;
1453 	struct wpi_rx_tail *tail;
1454 	struct ieee80211_node *ni;
1455 	struct mbuf *m, *mnew;
1456 	bus_addr_t paddr;
1457 	int error;
1458 
1459 	stat = (struct wpi_rx_stat *)(desc + 1);
1460 
1461 	if (stat->len > WPI_STAT_MAXLEN) {
1462 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1463 		ifp->if_ierrors++;
1464 		return;
1465 	}
1466 
1467 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1468 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1469 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1470 
1471 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1472 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1473 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1474 	    (uintmax_t)le64toh(tail->tstamp)));
1475 
1476 	/* discard Rx frames with bad CRC early */
1477 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1478 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1479 		    le32toh(tail->flags)));
1480 		ifp->if_ierrors++;
1481 		return;
1482 	}
1483 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1484 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1485 		    le16toh(head->len)));
1486 		ifp->if_ierrors++;
1487 		return;
1488 	}
1489 
1490 	/* XXX don't need mbuf, just dma buffer */
1491 	mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1492 	if (mnew == NULL) {
1493 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1494 		    __func__));
1495 		ifp->if_ierrors++;
1496 		return;
1497 	}
1498 	bus_dmamap_unload(ring->data_dmat, data->map);
1499 
1500 	error = bus_dmamap_load(ring->data_dmat, data->map,
1501 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1502 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1503 	if (error != 0 && error != EFBIG) {
1504 		device_printf(sc->sc_dev,
1505 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1506 		m_freem(mnew);
1507 		ifp->if_ierrors++;
1508 		return;
1509 	}
1510 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1511 
1512 	/* finalize mbuf and swap in new one */
1513 	m = data->m;
1514 	m->m_pkthdr.rcvif = ifp;
1515 	m->m_data = (caddr_t)(head + 1);
1516 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1517 
1518 	data->m = mnew;
1519 	/* update Rx descriptor */
1520 	ring->desc[ring->cur] = htole32(paddr);
1521 
1522 	if (ieee80211_radiotap_active(ic)) {
1523 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1524 
1525 		tap->wr_flags = 0;
1526 		tap->wr_chan_freq =
1527 			htole16(ic->ic_channels[head->chan].ic_freq);
1528 		tap->wr_chan_flags =
1529 			htole16(ic->ic_channels[head->chan].ic_flags);
1530 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1531 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1532 		tap->wr_tsft = tail->tstamp;
1533 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1534 		switch (head->rate) {
1535 		/* CCK rates */
1536 		case  10: tap->wr_rate =   2; break;
1537 		case  20: tap->wr_rate =   4; break;
1538 		case  55: tap->wr_rate =  11; break;
1539 		case 110: tap->wr_rate =  22; break;
1540 		/* OFDM rates */
1541 		case 0xd: tap->wr_rate =  12; break;
1542 		case 0xf: tap->wr_rate =  18; break;
1543 		case 0x5: tap->wr_rate =  24; break;
1544 		case 0x7: tap->wr_rate =  36; break;
1545 		case 0x9: tap->wr_rate =  48; break;
1546 		case 0xb: tap->wr_rate =  72; break;
1547 		case 0x1: tap->wr_rate =  96; break;
1548 		case 0x3: tap->wr_rate = 108; break;
1549 		/* unknown rate: should not happen */
1550 		default:  tap->wr_rate =   0;
1551 		}
1552 		if (le16toh(head->flags) & 0x4)
1553 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1554 	}
1555 
1556 	WPI_UNLOCK(sc);
1557 
1558 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1559 	if (ni != NULL) {
1560 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1561 		ieee80211_free_node(ni);
1562 	} else
1563 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1564 
1565 	WPI_LOCK(sc);
1566 }
1567 
1568 static void
1569 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1570 {
1571 	struct ifnet *ifp = sc->sc_ifp;
1572 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1573 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1574 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1575 	struct ieee80211_node *ni = txdata->ni;
1576 	struct ieee80211vap *vap = ni->ni_vap;
1577 	int retrycnt = 0;
1578 
1579 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1580 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1581 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1582 	    le32toh(stat->status)));
1583 
1584 	/*
1585 	 * Update rate control statistics for the node.
1586 	 * XXX we should not count mgmt frames since they're always sent at
1587 	 * the lowest available bit-rate.
1588 	 * XXX frames w/o ACK shouldn't be used either
1589 	 */
1590 	if (stat->ntries > 0) {
1591 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1592 		retrycnt = 1;
1593 	}
1594 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1595 	    &retrycnt, NULL);
1596 
1597 	/* XXX oerrors should only count errors !maxtries */
1598 	if ((le32toh(stat->status) & 0xff) != 1)
1599 		ifp->if_oerrors++;
1600 	else
1601 		ifp->if_opackets++;
1602 
1603 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1604 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1605 	/* XXX handle M_TXCB? */
1606 	m_freem(txdata->m);
1607 	txdata->m = NULL;
1608 	ieee80211_free_node(txdata->ni);
1609 	txdata->ni = NULL;
1610 
1611 	ring->queued--;
1612 
1613 	sc->sc_tx_timer = 0;
1614 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1615 	wpi_start_locked(ifp);
1616 }
1617 
1618 static void
1619 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1620 {
1621 	struct wpi_tx_ring *ring = &sc->cmdq;
1622 	struct wpi_tx_data *data;
1623 
1624 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1625 				 "type=%s len=%d\n", desc->qid, desc->idx,
1626 				 desc->flags, wpi_cmd_str(desc->type),
1627 				 le32toh(desc->len)));
1628 
1629 	if ((desc->qid & 7) != 4)
1630 		return;	/* not a command ack */
1631 
1632 	data = &ring->data[desc->idx];
1633 
1634 	/* if the command was mapped in a mbuf, free it */
1635 	if (data->m != NULL) {
1636 		bus_dmamap_unload(ring->data_dmat, data->map);
1637 		m_freem(data->m);
1638 		data->m = NULL;
1639 	}
1640 
1641 	sc->flags &= ~WPI_FLAG_BUSY;
1642 	wakeup(&ring->cmd[desc->idx]);
1643 }
1644 
1645 static void
1646 wpi_notif_intr(struct wpi_softc *sc)
1647 {
1648 	struct ifnet *ifp = sc->sc_ifp;
1649 	struct ieee80211com *ic = ifp->if_l2com;
1650 	struct wpi_rx_desc *desc;
1651 	struct wpi_rx_data *data;
1652 	uint32_t hw;
1653 
1654 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1655 	    BUS_DMASYNC_POSTREAD);
1656 
1657 	hw = le32toh(sc->shared->next);
1658 	while (sc->rxq.cur != hw) {
1659 		data = &sc->rxq.data[sc->rxq.cur];
1660 
1661 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1662 		    BUS_DMASYNC_POSTREAD);
1663 		desc = (void *)data->m->m_ext.ext_buf;
1664 
1665 		DPRINTFN(WPI_DEBUG_NOTIFY,
1666 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1667 			  desc->qid,
1668 			  desc->idx,
1669 			  desc->flags,
1670 			  desc->type,
1671 			  le32toh(desc->len)));
1672 
1673 		if (!(desc->qid & 0x80))	/* reply to a command */
1674 			wpi_cmd_intr(sc, desc);
1675 
1676 		switch (desc->type) {
1677 		case WPI_RX_DONE:
1678 			/* a 802.11 frame was received */
1679 			wpi_rx_intr(sc, desc, data);
1680 			break;
1681 
1682 		case WPI_TX_DONE:
1683 			/* a 802.11 frame has been transmitted */
1684 			wpi_tx_intr(sc, desc);
1685 			break;
1686 
1687 		case WPI_UC_READY:
1688 		{
1689 			struct wpi_ucode_info *uc =
1690 				(struct wpi_ucode_info *)(desc + 1);
1691 
1692 			/* the microcontroller is ready */
1693 			DPRINTF(("microcode alive notification version %x "
1694 				"alive %x\n", le32toh(uc->version),
1695 				le32toh(uc->valid)));
1696 
1697 			if (le32toh(uc->valid) != 1) {
1698 				device_printf(sc->sc_dev,
1699 				    "microcontroller initialization failed\n");
1700 				wpi_stop_locked(sc);
1701 			}
1702 			break;
1703 		}
1704 		case WPI_STATE_CHANGED:
1705 		{
1706 			uint32_t *status = (uint32_t *)(desc + 1);
1707 
1708 			/* enabled/disabled notification */
1709 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1710 
1711 			if (le32toh(*status) & 1) {
1712 				device_printf(sc->sc_dev,
1713 				    "Radio transmitter is switched off\n");
1714 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1715 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1716 				/* Disable firmware commands */
1717 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1718 			}
1719 			break;
1720 		}
1721 		case WPI_START_SCAN:
1722 		{
1723 #ifdef WPI_DEBUG
1724 			struct wpi_start_scan *scan =
1725 				(struct wpi_start_scan *)(desc + 1);
1726 #endif
1727 
1728 			DPRINTFN(WPI_DEBUG_SCANNING,
1729 				 ("scanning channel %d status %x\n",
1730 			    scan->chan, le32toh(scan->status)));
1731 			break;
1732 		}
1733 		case WPI_STOP_SCAN:
1734 		{
1735 #ifdef WPI_DEBUG
1736 			struct wpi_stop_scan *scan =
1737 				(struct wpi_stop_scan *)(desc + 1);
1738 #endif
1739 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1740 
1741 			DPRINTFN(WPI_DEBUG_SCANNING,
1742 			    ("scan finished nchan=%d status=%d chan=%d\n",
1743 			     scan->nchan, scan->status, scan->chan));
1744 
1745 			sc->sc_scan_timer = 0;
1746 			ieee80211_scan_next(vap);
1747 			break;
1748 		}
1749 		case WPI_MISSED_BEACON:
1750 		{
1751 			struct wpi_missed_beacon *beacon =
1752 				(struct wpi_missed_beacon *)(desc + 1);
1753 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1754 
1755 			if (le32toh(beacon->consecutive) >=
1756 			    vap->iv_bmissthreshold) {
1757 				DPRINTF(("Beacon miss: %u >= %u\n",
1758 					 le32toh(beacon->consecutive),
1759 					 vap->iv_bmissthreshold));
1760 				ieee80211_beacon_miss(ic);
1761 			}
1762 			break;
1763 		}
1764 		}
1765 
1766 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1767 	}
1768 
1769 	/* tell the firmware what we have processed */
1770 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1771 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1772 }
1773 
1774 static void
1775 wpi_intr(void *arg)
1776 {
1777 	struct wpi_softc *sc = arg;
1778 	uint32_t r;
1779 
1780 	WPI_LOCK(sc);
1781 
1782 	r = WPI_READ(sc, WPI_INTR);
1783 	if (r == 0 || r == 0xffffffff) {
1784 		WPI_UNLOCK(sc);
1785 		return;
1786 	}
1787 
1788 	/* disable interrupts */
1789 	WPI_WRITE(sc, WPI_MASK, 0);
1790 	/* ack interrupts */
1791 	WPI_WRITE(sc, WPI_INTR, r);
1792 
1793 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1794 		struct ifnet *ifp = sc->sc_ifp;
1795 		struct ieee80211com *ic = ifp->if_l2com;
1796 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1797 
1798 		device_printf(sc->sc_dev, "fatal firmware error\n");
1799 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1800 				"(Hardware Error)"));
1801 		if (vap != NULL)
1802 			ieee80211_cancel_scan(vap);
1803 		ieee80211_runtask(ic, &sc->sc_restarttask);
1804 		sc->flags &= ~WPI_FLAG_BUSY;
1805 		WPI_UNLOCK(sc);
1806 		return;
1807 	}
1808 
1809 	if (r & WPI_RX_INTR)
1810 		wpi_notif_intr(sc);
1811 
1812 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1813 		wakeup(sc);
1814 
1815 	/* re-enable interrupts */
1816 	if (sc->sc_ifp->if_flags & IFF_UP)
1817 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1818 
1819 	WPI_UNLOCK(sc);
1820 }
1821 
1822 static uint8_t
1823 wpi_plcp_signal(int rate)
1824 {
1825 	switch (rate) {
1826 	/* CCK rates (returned values are device-dependent) */
1827 	case 2:		return 10;
1828 	case 4:		return 20;
1829 	case 11:	return 55;
1830 	case 22:	return 110;
1831 
1832 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1833 	/* R1-R4 (ral/ural is R4-R1) */
1834 	case 12:	return 0xd;
1835 	case 18:	return 0xf;
1836 	case 24:	return 0x5;
1837 	case 36:	return 0x7;
1838 	case 48:	return 0x9;
1839 	case 72:	return 0xb;
1840 	case 96:	return 0x1;
1841 	case 108:	return 0x3;
1842 
1843 	/* unsupported rates (should not get there) */
1844 	default:	return 0;
1845 	}
1846 }
1847 
1848 /* quickly determine if a given rate is CCK or OFDM */
1849 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1850 
1851 /*
1852  * Construct the data packet for a transmit buffer and acutally put
1853  * the buffer onto the transmit ring, kicking the card to process the
1854  * the buffer.
1855  */
1856 static int
1857 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1858 	int ac)
1859 {
1860 	struct ieee80211vap *vap = ni->ni_vap;
1861 	struct ifnet *ifp = sc->sc_ifp;
1862 	struct ieee80211com *ic = ifp->if_l2com;
1863 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1864 	struct wpi_tx_ring *ring = &sc->txq[ac];
1865 	struct wpi_tx_desc *desc;
1866 	struct wpi_tx_data *data;
1867 	struct wpi_tx_cmd *cmd;
1868 	struct wpi_cmd_data *tx;
1869 	struct ieee80211_frame *wh;
1870 	const struct ieee80211_txparam *tp;
1871 	struct ieee80211_key *k;
1872 	struct mbuf *mnew;
1873 	int i, error, nsegs, rate, hdrlen, ismcast;
1874 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1875 
1876 	desc = &ring->desc[ring->cur];
1877 	data = &ring->data[ring->cur];
1878 
1879 	wh = mtod(m0, struct ieee80211_frame *);
1880 
1881 	hdrlen = ieee80211_hdrsize(wh);
1882 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1883 
1884 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1885 		k = ieee80211_crypto_encap(ni, m0);
1886 		if (k == NULL) {
1887 			m_freem(m0);
1888 			return ENOBUFS;
1889 		}
1890 		/* packet header may have moved, reset our local pointer */
1891 		wh = mtod(m0, struct ieee80211_frame *);
1892 	}
1893 
1894 	cmd = &ring->cmd[ring->cur];
1895 	cmd->code = WPI_CMD_TX_DATA;
1896 	cmd->flags = 0;
1897 	cmd->qid = ring->qid;
1898 	cmd->idx = ring->cur;
1899 
1900 	tx = (struct wpi_cmd_data *)cmd->data;
1901 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1902 	tx->timeout = htole16(0);
1903 	tx->ofdm_mask = 0xff;
1904 	tx->cck_mask = 0x0f;
1905 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1906 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1907 	tx->len = htole16(m0->m_pkthdr.len);
1908 
1909 	if (!ismcast) {
1910 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1911 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1912 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1913 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1914 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1915 			tx->rts_ntries = 7;
1916 		}
1917 	}
1918 	/* pick a rate */
1919 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1920 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1921 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1922 		/* tell h/w to set timestamp in probe responses */
1923 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1924 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1925 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1926 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1927 			tx->timeout = htole16(3);
1928 		else
1929 			tx->timeout = htole16(2);
1930 		rate = tp->mgmtrate;
1931 	} else if (ismcast) {
1932 		rate = tp->mcastrate;
1933 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1934 		rate = tp->ucastrate;
1935 	} else {
1936 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1937 		rate = ni->ni_txrate;
1938 	}
1939 	tx->rate = wpi_plcp_signal(rate);
1940 
1941 	/* be very persistant at sending frames out */
1942 #if 0
1943 	tx->data_ntries = tp->maxretry;
1944 #else
1945 	tx->data_ntries = 15;		/* XXX way too high */
1946 #endif
1947 
1948 	if (ieee80211_radiotap_active_vap(vap)) {
1949 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1950 		tap->wt_flags = 0;
1951 		tap->wt_rate = rate;
1952 		tap->wt_hwqueue = ac;
1953 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
1954 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1955 
1956 		ieee80211_radiotap_tx(vap, m0);
1957 	}
1958 
1959 	/* save and trim IEEE802.11 header */
1960 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1961 	m_adj(m0, hdrlen);
1962 
1963 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1964 	    &nsegs, BUS_DMA_NOWAIT);
1965 	if (error != 0 && error != EFBIG) {
1966 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1967 		    error);
1968 		m_freem(m0);
1969 		return error;
1970 	}
1971 	if (error != 0) {
1972 		/* XXX use m_collapse */
1973 		mnew = m_defrag(m0, M_NOWAIT);
1974 		if (mnew == NULL) {
1975 			device_printf(sc->sc_dev,
1976 			    "could not defragment mbuf\n");
1977 			m_freem(m0);
1978 			return ENOBUFS;
1979 		}
1980 		m0 = mnew;
1981 
1982 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1983 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1984 		if (error != 0) {
1985 			device_printf(sc->sc_dev,
1986 			    "could not map mbuf (error %d)\n", error);
1987 			m_freem(m0);
1988 			return error;
1989 		}
1990 	}
1991 
1992 	data->m = m0;
1993 	data->ni = ni;
1994 
1995 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1996 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1997 
1998 	/* first scatter/gather segment is used by the tx data command */
1999 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2000 	    (1 + nsegs) << 24);
2001 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2002 	    ring->cur * sizeof (struct wpi_tx_cmd));
2003 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2004 	for (i = 1; i <= nsegs; i++) {
2005 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2006 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2007 	}
2008 
2009 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2010 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2011 	    BUS_DMASYNC_PREWRITE);
2012 
2013 	ring->queued++;
2014 
2015 	/* kick ring */
2016 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2017 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2018 
2019 	return 0;
2020 }
2021 
2022 /**
2023  * Process data waiting to be sent on the IFNET output queue
2024  */
2025 static void
2026 wpi_start(struct ifnet *ifp)
2027 {
2028 	struct wpi_softc *sc = ifp->if_softc;
2029 
2030 	WPI_LOCK(sc);
2031 	wpi_start_locked(ifp);
2032 	WPI_UNLOCK(sc);
2033 }
2034 
2035 static void
2036 wpi_start_locked(struct ifnet *ifp)
2037 {
2038 	struct wpi_softc *sc = ifp->if_softc;
2039 	struct ieee80211_node *ni;
2040 	struct mbuf *m;
2041 	int ac;
2042 
2043 	WPI_LOCK_ASSERT(sc);
2044 
2045 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2046 		return;
2047 
2048 	for (;;) {
2049 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2050 		if (m == NULL)
2051 			break;
2052 		ac = M_WME_GETAC(m);
2053 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2054 			/* there is no place left in this ring */
2055 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2056 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2057 			break;
2058 		}
2059 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2060 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2061 			ieee80211_free_node(ni);
2062 			ifp->if_oerrors++;
2063 			break;
2064 		}
2065 		sc->sc_tx_timer = 5;
2066 	}
2067 }
2068 
2069 static int
2070 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2071 	const struct ieee80211_bpf_params *params)
2072 {
2073 	struct ieee80211com *ic = ni->ni_ic;
2074 	struct ifnet *ifp = ic->ic_ifp;
2075 	struct wpi_softc *sc = ifp->if_softc;
2076 
2077 	/* prevent management frames from being sent if we're not ready */
2078 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2079 		m_freem(m);
2080 		ieee80211_free_node(ni);
2081 		return ENETDOWN;
2082 	}
2083 	WPI_LOCK(sc);
2084 
2085 	/* management frames go into ring 0 */
2086 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2087 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2088 		m_freem(m);
2089 		WPI_UNLOCK(sc);
2090 		ieee80211_free_node(ni);
2091 		return ENOBUFS;		/* XXX */
2092 	}
2093 
2094 	ifp->if_opackets++;
2095 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2096 		goto bad;
2097 	sc->sc_tx_timer = 5;
2098 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2099 
2100 	WPI_UNLOCK(sc);
2101 	return 0;
2102 bad:
2103 	ifp->if_oerrors++;
2104 	WPI_UNLOCK(sc);
2105 	ieee80211_free_node(ni);
2106 	return EIO;		/* XXX */
2107 }
2108 
2109 static int
2110 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2111 {
2112 	struct wpi_softc *sc = ifp->if_softc;
2113 	struct ieee80211com *ic = ifp->if_l2com;
2114 	struct ifreq *ifr = (struct ifreq *) data;
2115 	int error = 0, startall = 0;
2116 
2117 	switch (cmd) {
2118 	case SIOCSIFFLAGS:
2119 		WPI_LOCK(sc);
2120 		if ((ifp->if_flags & IFF_UP)) {
2121 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2122 				wpi_init_locked(sc, 0);
2123 				startall = 1;
2124 			}
2125 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2126 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2127 			wpi_stop_locked(sc);
2128 		WPI_UNLOCK(sc);
2129 		if (startall)
2130 			ieee80211_start_all(ic);
2131 		break;
2132 	case SIOCGIFMEDIA:
2133 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2134 		break;
2135 	case SIOCGIFADDR:
2136 		error = ether_ioctl(ifp, cmd, data);
2137 		break;
2138 	default:
2139 		error = EINVAL;
2140 		break;
2141 	}
2142 	return error;
2143 }
2144 
2145 /*
2146  * Extract various information from EEPROM.
2147  */
2148 static void
2149 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2150 {
2151 	int i;
2152 
2153 	/* read the hardware capabilities, revision and SKU type */
2154 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2155 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2156 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2157 
2158 	/* read the regulatory domain */
2159 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2160 
2161 	/* read in the hw MAC address */
2162 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2163 
2164 	/* read the list of authorized channels */
2165 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2166 		wpi_read_eeprom_channels(sc,i);
2167 
2168 	/* read the power level calibration info for each group */
2169 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2170 		wpi_read_eeprom_group(sc,i);
2171 }
2172 
2173 /*
2174  * Send a command to the firmware.
2175  */
2176 static int
2177 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2178 {
2179 	struct wpi_tx_ring *ring = &sc->cmdq;
2180 	struct wpi_tx_desc *desc;
2181 	struct wpi_tx_cmd *cmd;
2182 
2183 #ifdef WPI_DEBUG
2184 	if (!async) {
2185 		WPI_LOCK_ASSERT(sc);
2186 	}
2187 #endif
2188 
2189 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2190 		    async));
2191 
2192 	if (sc->flags & WPI_FLAG_BUSY) {
2193 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2194 		    __func__, code);
2195 		return EAGAIN;
2196 	}
2197 	sc->flags|= WPI_FLAG_BUSY;
2198 
2199 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2200 	    code, size));
2201 
2202 	desc = &ring->desc[ring->cur];
2203 	cmd = &ring->cmd[ring->cur];
2204 
2205 	cmd->code = code;
2206 	cmd->flags = 0;
2207 	cmd->qid = ring->qid;
2208 	cmd->idx = ring->cur;
2209 	memcpy(cmd->data, buf, size);
2210 
2211 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2212 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2213 		ring->cur * sizeof (struct wpi_tx_cmd));
2214 	desc->segs[0].len  = htole32(4 + size);
2215 
2216 	/* kick cmd ring */
2217 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2218 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2219 
2220 	if (async) {
2221 		sc->flags &= ~ WPI_FLAG_BUSY;
2222 		return 0;
2223 	}
2224 
2225 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2226 }
2227 
2228 static int
2229 wpi_wme_update(struct ieee80211com *ic)
2230 {
2231 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2232 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2233 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2234 	const struct wmeParams *wmep;
2235 	struct wpi_wme_setup wme;
2236 	int ac;
2237 
2238 	/* don't override default WME values if WME is not actually enabled */
2239 	if (!(ic->ic_flags & IEEE80211_F_WME))
2240 		return 0;
2241 
2242 	wme.flags = 0;
2243 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2244 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2245 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2246 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2247 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2248 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2249 
2250 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2251 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2252 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2253 	}
2254 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2255 #undef WPI_USEC
2256 #undef WPI_EXP2
2257 }
2258 
2259 /*
2260  * Configure h/w multi-rate retries.
2261  */
2262 static int
2263 wpi_mrr_setup(struct wpi_softc *sc)
2264 {
2265 	struct ifnet *ifp = sc->sc_ifp;
2266 	struct ieee80211com *ic = ifp->if_l2com;
2267 	struct wpi_mrr_setup mrr;
2268 	int i, error;
2269 
2270 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2271 
2272 	/* CCK rates (not used with 802.11a) */
2273 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2274 		mrr.rates[i].flags = 0;
2275 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2276 		/* fallback to the immediate lower CCK rate (if any) */
2277 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2278 		/* try one time at this rate before falling back to "next" */
2279 		mrr.rates[i].ntries = 1;
2280 	}
2281 
2282 	/* OFDM rates (not used with 802.11b) */
2283 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2284 		mrr.rates[i].flags = 0;
2285 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2286 		/* fallback to the immediate lower OFDM rate (if any) */
2287 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2288 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2289 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2290 			WPI_OFDM6 : WPI_CCK2) :
2291 		    i - 1;
2292 		/* try one time at this rate before falling back to "next" */
2293 		mrr.rates[i].ntries = 1;
2294 	}
2295 
2296 	/* setup MRR for control frames */
2297 	mrr.which = WPI_MRR_CTL;
2298 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2299 	if (error != 0) {
2300 		device_printf(sc->sc_dev,
2301 		    "could not setup MRR for control frames\n");
2302 		return error;
2303 	}
2304 
2305 	/* setup MRR for data frames */
2306 	mrr.which = WPI_MRR_DATA;
2307 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2308 	if (error != 0) {
2309 		device_printf(sc->sc_dev,
2310 		    "could not setup MRR for data frames\n");
2311 		return error;
2312 	}
2313 
2314 	return 0;
2315 }
2316 
2317 static void
2318 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2319 {
2320 	struct wpi_cmd_led led;
2321 
2322 	led.which = which;
2323 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2324 	led.off = off;
2325 	led.on = on;
2326 
2327 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2328 }
2329 
2330 static void
2331 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2332 {
2333 	struct wpi_cmd_tsf tsf;
2334 	uint64_t val, mod;
2335 
2336 	memset(&tsf, 0, sizeof tsf);
2337 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2338 	tsf.bintval = htole16(ni->ni_intval);
2339 	tsf.lintval = htole16(10);
2340 
2341 	/* compute remaining time until next beacon */
2342 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2343 	mod = le64toh(tsf.tstamp) % val;
2344 	tsf.binitval = htole32((uint32_t)(val - mod));
2345 
2346 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2347 		device_printf(sc->sc_dev, "could not enable TSF\n");
2348 }
2349 
2350 #if 0
2351 /*
2352  * Build a beacon frame that the firmware will broadcast periodically in
2353  * IBSS or HostAP modes.
2354  */
2355 static int
2356 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2357 {
2358 	struct ifnet *ifp = sc->sc_ifp;
2359 	struct ieee80211com *ic = ifp->if_l2com;
2360 	struct wpi_tx_ring *ring = &sc->cmdq;
2361 	struct wpi_tx_desc *desc;
2362 	struct wpi_tx_data *data;
2363 	struct wpi_tx_cmd *cmd;
2364 	struct wpi_cmd_beacon *bcn;
2365 	struct ieee80211_beacon_offsets bo;
2366 	struct mbuf *m0;
2367 	bus_addr_t physaddr;
2368 	int error;
2369 
2370 	desc = &ring->desc[ring->cur];
2371 	data = &ring->data[ring->cur];
2372 
2373 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2374 	if (m0 == NULL) {
2375 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2376 		return ENOMEM;
2377 	}
2378 
2379 	cmd = &ring->cmd[ring->cur];
2380 	cmd->code = WPI_CMD_SET_BEACON;
2381 	cmd->flags = 0;
2382 	cmd->qid = ring->qid;
2383 	cmd->idx = ring->cur;
2384 
2385 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2386 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2387 	bcn->id = WPI_ID_BROADCAST;
2388 	bcn->ofdm_mask = 0xff;
2389 	bcn->cck_mask = 0x0f;
2390 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2391 	bcn->len = htole16(m0->m_pkthdr.len);
2392 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2393 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2394 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2395 
2396 	/* save and trim IEEE802.11 header */
2397 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2398 	m_adj(m0, sizeof (struct ieee80211_frame));
2399 
2400 	/* assume beacon frame is contiguous */
2401 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2402 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2403 	if (error != 0) {
2404 		device_printf(sc->sc_dev, "could not map beacon\n");
2405 		m_freem(m0);
2406 		return error;
2407 	}
2408 
2409 	data->m = m0;
2410 
2411 	/* first scatter/gather segment is used by the beacon command */
2412 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2413 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2414 		ring->cur * sizeof (struct wpi_tx_cmd));
2415 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2416 	desc->segs[1].addr = htole32(physaddr);
2417 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2418 
2419 	/* kick cmd ring */
2420 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2421 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2422 
2423 	return 0;
2424 }
2425 #endif
2426 
2427 static int
2428 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2429 {
2430 	struct ieee80211com *ic = vap->iv_ic;
2431 	struct ieee80211_node *ni = vap->iv_bss;
2432 	struct wpi_node_info node;
2433 	int error;
2434 
2435 
2436 	/* update adapter's configuration */
2437 	sc->config.associd = 0;
2438 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2439 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2440 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2441 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2442 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2443 		    WPI_CONFIG_24GHZ);
2444 	} else {
2445 		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2446 		    WPI_CONFIG_24GHZ);
2447 	}
2448 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2449 		sc->config.cck_mask  = 0;
2450 		sc->config.ofdm_mask = 0x15;
2451 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2452 		sc->config.cck_mask  = 0x03;
2453 		sc->config.ofdm_mask = 0;
2454 	} else {
2455 		/* XXX assume 802.11b/g */
2456 		sc->config.cck_mask  = 0x0f;
2457 		sc->config.ofdm_mask = 0x15;
2458 	}
2459 
2460 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2461 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2462 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2463 		sizeof (struct wpi_config), 1);
2464 	if (error != 0) {
2465 		device_printf(sc->sc_dev, "could not configure\n");
2466 		return error;
2467 	}
2468 
2469 	/* configuration has changed, set Tx power accordingly */
2470 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2471 		device_printf(sc->sc_dev, "could not set Tx power\n");
2472 		return error;
2473 	}
2474 
2475 	/* add default node */
2476 	memset(&node, 0, sizeof node);
2477 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2478 	node.id = WPI_ID_BSS;
2479 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2480 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2481 	node.action = htole32(WPI_ACTION_SET_RATE);
2482 	node.antenna = WPI_ANTENNA_BOTH;
2483 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2484 	if (error != 0)
2485 		device_printf(sc->sc_dev, "could not add BSS node\n");
2486 
2487 	return (error);
2488 }
2489 
2490 static int
2491 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2492 {
2493 	struct ieee80211com *ic = vap->iv_ic;
2494 	struct ieee80211_node *ni = vap->iv_bss;
2495 	int error;
2496 
2497 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2498 		/* link LED blinks while monitoring */
2499 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2500 		return 0;
2501 	}
2502 
2503 	wpi_enable_tsf(sc, ni);
2504 
2505 	/* update adapter's configuration */
2506 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2507 	/* short preamble/slot time are negotiated when associating */
2508 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2509 	    WPI_CONFIG_SHSLOT);
2510 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2511 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2512 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2513 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2514 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2515 
2516 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2517 
2518 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2519 		    sc->config.flags));
2520 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2521 		    wpi_config), 1);
2522 	if (error != 0) {
2523 		device_printf(sc->sc_dev, "could not update configuration\n");
2524 		return error;
2525 	}
2526 
2527 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2528 	if (error != 0) {
2529 		device_printf(sc->sc_dev, "could set txpower\n");
2530 		return error;
2531 	}
2532 
2533 	/* link LED always on while associated */
2534 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2535 
2536 	/* start automatic rate control timer */
2537 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2538 
2539 	return (error);
2540 }
2541 
2542 /*
2543  * Send a scan request to the firmware.  Since this command is huge, we map it
2544  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2545  * much of this code is similar to that in wpi_cmd but because we must manually
2546  * construct the probe & channels, we duplicate what's needed here. XXX In the
2547  * future, this function should be modified to use wpi_cmd to help cleanup the
2548  * code base.
2549  */
2550 static int
2551 wpi_scan(struct wpi_softc *sc)
2552 {
2553 	struct ifnet *ifp = sc->sc_ifp;
2554 	struct ieee80211com *ic = ifp->if_l2com;
2555 	struct ieee80211_scan_state *ss = ic->ic_scan;
2556 	struct wpi_tx_ring *ring = &sc->cmdq;
2557 	struct wpi_tx_desc *desc;
2558 	struct wpi_tx_data *data;
2559 	struct wpi_tx_cmd *cmd;
2560 	struct wpi_scan_hdr *hdr;
2561 	struct wpi_scan_chan *chan;
2562 	struct ieee80211_frame *wh;
2563 	struct ieee80211_rateset *rs;
2564 	struct ieee80211_channel *c;
2565 	enum ieee80211_phymode mode;
2566 	uint8_t *frm;
2567 	int nrates, pktlen, error, i, nssid;
2568 	bus_addr_t physaddr;
2569 
2570 	desc = &ring->desc[ring->cur];
2571 	data = &ring->data[ring->cur];
2572 
2573 	data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2574 	if (data->m == NULL) {
2575 		device_printf(sc->sc_dev,
2576 		    "could not allocate mbuf for scan command\n");
2577 		return ENOMEM;
2578 	}
2579 
2580 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2581 	cmd->code = WPI_CMD_SCAN;
2582 	cmd->flags = 0;
2583 	cmd->qid = ring->qid;
2584 	cmd->idx = ring->cur;
2585 
2586 	hdr = (struct wpi_scan_hdr *)cmd->data;
2587 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2588 
2589 	/*
2590 	 * Move to the next channel if no packets are received within 5 msecs
2591 	 * after sending the probe request (this helps to reduce the duration
2592 	 * of active scans).
2593 	 */
2594 	hdr->quiet = htole16(5);
2595 	hdr->threshold = htole16(1);
2596 
2597 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2598 		/* send probe requests at 6Mbps */
2599 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2600 
2601 		/* Enable crc checking */
2602 		hdr->promotion = htole16(1);
2603 	} else {
2604 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2605 		/* send probe requests at 1Mbps */
2606 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2607 	}
2608 	hdr->tx.id = WPI_ID_BROADCAST;
2609 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2610 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2611 
2612 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2613 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2614 	for (i = 0; i < nssid; i++) {
2615 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2616 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2617 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2618 		    hdr->scan_essids[i].esslen);
2619 #ifdef WPI_DEBUG
2620 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2621 			printf("Scanning Essid: ");
2622 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2623 			    hdr->scan_essids[i].esslen);
2624 			printf("\n");
2625 		}
2626 #endif
2627 	}
2628 
2629 	/*
2630 	 * Build a probe request frame.  Most of the following code is a
2631 	 * copy & paste of what is done in net80211.
2632 	 */
2633 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2634 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2635 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2636 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2637 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2638 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2639 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2640 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2641 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2642 
2643 	frm = (uint8_t *)(wh + 1);
2644 
2645 	/* add essid IE, the hardware will fill this in for us */
2646 	*frm++ = IEEE80211_ELEMID_SSID;
2647 	*frm++ = 0;
2648 
2649 	mode = ieee80211_chan2mode(ic->ic_curchan);
2650 	rs = &ic->ic_sup_rates[mode];
2651 
2652 	/* add supported rates IE */
2653 	*frm++ = IEEE80211_ELEMID_RATES;
2654 	nrates = rs->rs_nrates;
2655 	if (nrates > IEEE80211_RATE_SIZE)
2656 		nrates = IEEE80211_RATE_SIZE;
2657 	*frm++ = nrates;
2658 	memcpy(frm, rs->rs_rates, nrates);
2659 	frm += nrates;
2660 
2661 	/* add supported xrates IE */
2662 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2663 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2664 		*frm++ = IEEE80211_ELEMID_XRATES;
2665 		*frm++ = nrates;
2666 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2667 		frm += nrates;
2668 	}
2669 
2670 	/* setup length of probe request */
2671 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2672 
2673 	/*
2674 	 * Construct information about the channel that we
2675 	 * want to scan. The firmware expects this to be directly
2676 	 * after the scan probe request
2677 	 */
2678 	c = ic->ic_curchan;
2679 	chan = (struct wpi_scan_chan *)frm;
2680 	chan->chan = ieee80211_chan2ieee(ic, c);
2681 	chan->flags = 0;
2682 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2683 		chan->flags |= WPI_CHAN_ACTIVE;
2684 		if (nssid != 0)
2685 			chan->flags |= WPI_CHAN_DIRECT;
2686 	}
2687 	chan->gain_dsp = 0x6e; /* Default level */
2688 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2689 		chan->active = htole16(10);
2690 		chan->passive = htole16(ss->ss_maxdwell);
2691 		chan->gain_radio = 0x3b;
2692 	} else {
2693 		chan->active = htole16(20);
2694 		chan->passive = htole16(ss->ss_maxdwell);
2695 		chan->gain_radio = 0x28;
2696 	}
2697 
2698 	DPRINTFN(WPI_DEBUG_SCANNING,
2699 	    ("Scanning %u Passive: %d\n",
2700 	     chan->chan,
2701 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2702 
2703 	hdr->nchan++;
2704 	chan++;
2705 
2706 	frm += sizeof (struct wpi_scan_chan);
2707 #if 0
2708 	// XXX All Channels....
2709 	for (c  = &ic->ic_channels[1];
2710 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2711 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2712 			continue;
2713 
2714 		chan->chan = ieee80211_chan2ieee(ic, c);
2715 		chan->flags = 0;
2716 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2717 		    chan->flags |= WPI_CHAN_ACTIVE;
2718 		    if (ic->ic_des_ssid[0].len != 0)
2719 			chan->flags |= WPI_CHAN_DIRECT;
2720 		}
2721 		chan->gain_dsp = 0x6e; /* Default level */
2722 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2723 			chan->active = htole16(10);
2724 			chan->passive = htole16(110);
2725 			chan->gain_radio = 0x3b;
2726 		} else {
2727 			chan->active = htole16(20);
2728 			chan->passive = htole16(120);
2729 			chan->gain_radio = 0x28;
2730 		}
2731 
2732 		DPRINTFN(WPI_DEBUG_SCANNING,
2733 			 ("Scanning %u Passive: %d\n",
2734 			  chan->chan,
2735 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2736 
2737 		hdr->nchan++;
2738 		chan++;
2739 
2740 		frm += sizeof (struct wpi_scan_chan);
2741 	}
2742 #endif
2743 
2744 	hdr->len = htole16(frm - (uint8_t *)hdr);
2745 	pktlen = frm - (uint8_t *)cmd;
2746 
2747 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2748 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2749 	if (error != 0) {
2750 		device_printf(sc->sc_dev, "could not map scan command\n");
2751 		m_freem(data->m);
2752 		data->m = NULL;
2753 		return error;
2754 	}
2755 
2756 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2757 	desc->segs[0].addr = htole32(physaddr);
2758 	desc->segs[0].len  = htole32(pktlen);
2759 
2760 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2761 	    BUS_DMASYNC_PREWRITE);
2762 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2763 
2764 	/* kick cmd ring */
2765 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2766 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2767 
2768 	sc->sc_scan_timer = 5;
2769 	return 0;	/* will be notified async. of failure/success */
2770 }
2771 
2772 /**
2773  * Configure the card to listen to a particular channel, this transisions the
2774  * card in to being able to receive frames from remote devices.
2775  */
2776 static int
2777 wpi_config(struct wpi_softc *sc)
2778 {
2779 	struct ifnet *ifp = sc->sc_ifp;
2780 	struct ieee80211com *ic = ifp->if_l2com;
2781 	struct wpi_power power;
2782 	struct wpi_bluetooth bluetooth;
2783 	struct wpi_node_info node;
2784 	int error;
2785 
2786 	/* set power mode */
2787 	memset(&power, 0, sizeof power);
2788 	power.flags = htole32(WPI_POWER_CAM|0x8);
2789 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2790 	if (error != 0) {
2791 		device_printf(sc->sc_dev, "could not set power mode\n");
2792 		return error;
2793 	}
2794 
2795 	/* configure bluetooth coexistence */
2796 	memset(&bluetooth, 0, sizeof bluetooth);
2797 	bluetooth.flags = 3;
2798 	bluetooth.lead = 0xaa;
2799 	bluetooth.kill = 1;
2800 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2801 	    0);
2802 	if (error != 0) {
2803 		device_printf(sc->sc_dev,
2804 		    "could not configure bluetooth coexistence\n");
2805 		return error;
2806 	}
2807 
2808 	/* configure adapter */
2809 	memset(&sc->config, 0, sizeof (struct wpi_config));
2810 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2811 	/*set default channel*/
2812 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2813 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2814 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2815 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2816 		    WPI_CONFIG_24GHZ);
2817 	}
2818 	sc->config.filter = 0;
2819 	switch (ic->ic_opmode) {
2820 	case IEEE80211_M_STA:
2821 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2822 		sc->config.mode = WPI_MODE_STA;
2823 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2824 		break;
2825 	case IEEE80211_M_IBSS:
2826 	case IEEE80211_M_AHDEMO:
2827 		sc->config.mode = WPI_MODE_IBSS;
2828 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2829 					     WPI_FILTER_MULTICAST);
2830 		break;
2831 	case IEEE80211_M_HOSTAP:
2832 		sc->config.mode = WPI_MODE_HOSTAP;
2833 		break;
2834 	case IEEE80211_M_MONITOR:
2835 		sc->config.mode = WPI_MODE_MONITOR;
2836 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2837 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2838 		break;
2839 	default:
2840 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2841 		return EINVAL;
2842 	}
2843 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2844 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2845 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2846 		sizeof (struct wpi_config), 0);
2847 	if (error != 0) {
2848 		device_printf(sc->sc_dev, "configure command failed\n");
2849 		return error;
2850 	}
2851 
2852 	/* configuration has changed, set Tx power accordingly */
2853 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2854 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2855 	    return error;
2856 	}
2857 
2858 	/* add broadcast node */
2859 	memset(&node, 0, sizeof node);
2860 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2861 	node.id = WPI_ID_BROADCAST;
2862 	node.rate = wpi_plcp_signal(2);
2863 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2864 	if (error != 0) {
2865 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2866 		return error;
2867 	}
2868 
2869 	/* Setup rate scalling */
2870 	error = wpi_mrr_setup(sc);
2871 	if (error != 0) {
2872 		device_printf(sc->sc_dev, "could not setup MRR\n");
2873 		return error;
2874 	}
2875 
2876 	return 0;
2877 }
2878 
2879 static void
2880 wpi_stop_master(struct wpi_softc *sc)
2881 {
2882 	uint32_t tmp;
2883 	int ntries;
2884 
2885 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2886 
2887 	tmp = WPI_READ(sc, WPI_RESET);
2888 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2889 
2890 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2891 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2892 		return;	/* already asleep */
2893 
2894 	for (ntries = 0; ntries < 100; ntries++) {
2895 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2896 			break;
2897 		DELAY(10);
2898 	}
2899 	if (ntries == 100) {
2900 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2901 	}
2902 }
2903 
2904 static int
2905 wpi_power_up(struct wpi_softc *sc)
2906 {
2907 	uint32_t tmp;
2908 	int ntries;
2909 
2910 	wpi_mem_lock(sc);
2911 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2912 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2913 	wpi_mem_unlock(sc);
2914 
2915 	for (ntries = 0; ntries < 5000; ntries++) {
2916 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2917 			break;
2918 		DELAY(10);
2919 	}
2920 	if (ntries == 5000) {
2921 		device_printf(sc->sc_dev,
2922 		    "timeout waiting for NIC to power up\n");
2923 		return ETIMEDOUT;
2924 	}
2925 	return 0;
2926 }
2927 
2928 static int
2929 wpi_reset(struct wpi_softc *sc)
2930 {
2931 	uint32_t tmp;
2932 	int ntries;
2933 
2934 	DPRINTFN(WPI_DEBUG_HW,
2935 	    ("Resetting the card - clearing any uploaded firmware\n"));
2936 
2937 	/* clear any pending interrupts */
2938 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2939 
2940 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2941 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2942 
2943 	tmp = WPI_READ(sc, WPI_CHICKEN);
2944 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2945 
2946 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2947 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2948 
2949 	/* wait for clock stabilization */
2950 	for (ntries = 0; ntries < 25000; ntries++) {
2951 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2952 			break;
2953 		DELAY(10);
2954 	}
2955 	if (ntries == 25000) {
2956 		device_printf(sc->sc_dev,
2957 		    "timeout waiting for clock stabilization\n");
2958 		return ETIMEDOUT;
2959 	}
2960 
2961 	/* initialize EEPROM */
2962 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2963 
2964 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2965 		device_printf(sc->sc_dev, "EEPROM not found\n");
2966 		return EIO;
2967 	}
2968 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2969 
2970 	return 0;
2971 }
2972 
2973 static void
2974 wpi_hw_config(struct wpi_softc *sc)
2975 {
2976 	uint32_t rev, hw;
2977 
2978 	/* voodoo from the Linux "driver".. */
2979 	hw = WPI_READ(sc, WPI_HWCONFIG);
2980 
2981 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2982 	if ((rev & 0xc0) == 0x40)
2983 		hw |= WPI_HW_ALM_MB;
2984 	else if (!(rev & 0x80))
2985 		hw |= WPI_HW_ALM_MM;
2986 
2987 	if (sc->cap == 0x80)
2988 		hw |= WPI_HW_SKU_MRC;
2989 
2990 	hw &= ~WPI_HW_REV_D;
2991 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2992 		hw |= WPI_HW_REV_D;
2993 
2994 	if (sc->type > 1)
2995 		hw |= WPI_HW_TYPE_B;
2996 
2997 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2998 }
2999 
3000 static void
3001 wpi_rfkill_resume(struct wpi_softc *sc)
3002 {
3003 	struct ifnet *ifp = sc->sc_ifp;
3004 	struct ieee80211com *ic = ifp->if_l2com;
3005 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3006 	int ntries;
3007 
3008 	/* enable firmware again */
3009 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3010 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3011 
3012 	/* wait for thermal sensors to calibrate */
3013 	for (ntries = 0; ntries < 1000; ntries++) {
3014 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3015 			break;
3016 		DELAY(10);
3017 	}
3018 
3019 	if (ntries == 1000) {
3020 		device_printf(sc->sc_dev,
3021 		    "timeout waiting for thermal calibration\n");
3022 		return;
3023 	}
3024 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3025 
3026 	if (wpi_config(sc) != 0) {
3027 		device_printf(sc->sc_dev, "device config failed\n");
3028 		return;
3029 	}
3030 
3031 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3032 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3033 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3034 
3035 	if (vap != NULL) {
3036 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3037 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3038 				ieee80211_beacon_miss(ic);
3039 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3040 			} else
3041 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3042 		} else {
3043 			ieee80211_scan_next(vap);
3044 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3045 		}
3046 	}
3047 
3048 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3049 }
3050 
3051 static void
3052 wpi_init_locked(struct wpi_softc *sc, int force)
3053 {
3054 	struct ifnet *ifp = sc->sc_ifp;
3055 	uint32_t tmp;
3056 	int ntries, qid;
3057 
3058 	wpi_stop_locked(sc);
3059 	(void)wpi_reset(sc);
3060 
3061 	wpi_mem_lock(sc);
3062 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3063 	DELAY(20);
3064 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3065 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3066 	wpi_mem_unlock(sc);
3067 
3068 	(void)wpi_power_up(sc);
3069 	wpi_hw_config(sc);
3070 
3071 	/* init Rx ring */
3072 	wpi_mem_lock(sc);
3073 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3074 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3075 	    offsetof(struct wpi_shared, next));
3076 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3077 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3078 	wpi_mem_unlock(sc);
3079 
3080 	/* init Tx rings */
3081 	wpi_mem_lock(sc);
3082 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3083 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3084 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3085 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3086 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3087 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3088 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3089 
3090 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3091 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3092 
3093 	for (qid = 0; qid < 6; qid++) {
3094 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3095 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3096 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3097 	}
3098 	wpi_mem_unlock(sc);
3099 
3100 	/* clear "radio off" and "disable command" bits (reversed logic) */
3101 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3102 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3103 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3104 
3105 	/* clear any pending interrupts */
3106 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3107 
3108 	/* enable interrupts */
3109 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3110 
3111 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3112 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3113 
3114 	if ((wpi_load_firmware(sc)) != 0) {
3115 	    device_printf(sc->sc_dev,
3116 		"A problem occurred loading the firmware to the driver\n");
3117 	    return;
3118 	}
3119 
3120 	/* At this point the firmware is up and running. If the hardware
3121 	 * RF switch is turned off thermal calibration will fail, though
3122 	 * the card is still happy to continue to accept commands, catch
3123 	 * this case and schedule a task to watch for it to be turned on.
3124 	 */
3125 	wpi_mem_lock(sc);
3126 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3127 	wpi_mem_unlock(sc);
3128 
3129 	if (!(tmp & 0x1)) {
3130 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3131 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3132 		goto out;
3133 	}
3134 
3135 	/* wait for thermal sensors to calibrate */
3136 	for (ntries = 0; ntries < 1000; ntries++) {
3137 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3138 			break;
3139 		DELAY(10);
3140 	}
3141 
3142 	if (ntries == 1000) {
3143 		device_printf(sc->sc_dev,
3144 		    "timeout waiting for thermal sensors calibration\n");
3145 		return;
3146 	}
3147 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3148 
3149 	if (wpi_config(sc) != 0) {
3150 		device_printf(sc->sc_dev, "device config failed\n");
3151 		return;
3152 	}
3153 
3154 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3155 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3156 out:
3157 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3158 }
3159 
3160 static void
3161 wpi_init(void *arg)
3162 {
3163 	struct wpi_softc *sc = arg;
3164 	struct ifnet *ifp = sc->sc_ifp;
3165 	struct ieee80211com *ic = ifp->if_l2com;
3166 
3167 	WPI_LOCK(sc);
3168 	wpi_init_locked(sc, 0);
3169 	WPI_UNLOCK(sc);
3170 
3171 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3172 		ieee80211_start_all(ic);		/* start all vaps */
3173 }
3174 
3175 static void
3176 wpi_stop_locked(struct wpi_softc *sc)
3177 {
3178 	struct ifnet *ifp = sc->sc_ifp;
3179 	uint32_t tmp;
3180 	int ac;
3181 
3182 	sc->sc_tx_timer = 0;
3183 	sc->sc_scan_timer = 0;
3184 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3185 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3186 	callout_stop(&sc->watchdog_to);
3187 	callout_stop(&sc->calib_to);
3188 
3189 	/* disable interrupts */
3190 	WPI_WRITE(sc, WPI_MASK, 0);
3191 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3192 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3193 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3194 
3195 	wpi_mem_lock(sc);
3196 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3197 	wpi_mem_unlock(sc);
3198 
3199 	/* reset all Tx rings */
3200 	for (ac = 0; ac < 4; ac++)
3201 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3202 	wpi_reset_tx_ring(sc, &sc->cmdq);
3203 
3204 	/* reset Rx ring */
3205 	wpi_reset_rx_ring(sc, &sc->rxq);
3206 
3207 	wpi_mem_lock(sc);
3208 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3209 	wpi_mem_unlock(sc);
3210 
3211 	DELAY(5);
3212 
3213 	wpi_stop_master(sc);
3214 
3215 	tmp = WPI_READ(sc, WPI_RESET);
3216 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3217 	sc->flags &= ~WPI_FLAG_BUSY;
3218 }
3219 
3220 static void
3221 wpi_stop(struct wpi_softc *sc)
3222 {
3223 	WPI_LOCK(sc);
3224 	wpi_stop_locked(sc);
3225 	WPI_UNLOCK(sc);
3226 }
3227 
3228 static void
3229 wpi_calib_timeout(void *arg)
3230 {
3231 	struct wpi_softc *sc = arg;
3232 	struct ifnet *ifp = sc->sc_ifp;
3233 	struct ieee80211com *ic = ifp->if_l2com;
3234 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3235 	int temp;
3236 
3237 	if (vap->iv_state != IEEE80211_S_RUN)
3238 		return;
3239 
3240 	/* update sensor data */
3241 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3242 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3243 
3244 	wpi_power_calibration(sc, temp);
3245 
3246 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3247 }
3248 
3249 /*
3250  * This function is called periodically (every 60 seconds) to adjust output
3251  * power to temperature changes.
3252  */
3253 static void
3254 wpi_power_calibration(struct wpi_softc *sc, int temp)
3255 {
3256 	struct ifnet *ifp = sc->sc_ifp;
3257 	struct ieee80211com *ic = ifp->if_l2com;
3258 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3259 
3260 	/* sanity-check read value */
3261 	if (temp < -260 || temp > 25) {
3262 		/* this can't be correct, ignore */
3263 		DPRINTFN(WPI_DEBUG_TEMP,
3264 		    ("out-of-range temperature reported: %d\n", temp));
3265 		return;
3266 	}
3267 
3268 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3269 
3270 	/* adjust Tx power if need be */
3271 	if (abs(temp - sc->temp) <= 6)
3272 		return;
3273 
3274 	sc->temp = temp;
3275 
3276 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3277 		/* just warn, too bad for the automatic calibration... */
3278 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3279 	}
3280 }
3281 
3282 /**
3283  * Read the eeprom to find out what channels are valid for the given
3284  * band and update net80211 with what we find.
3285  */
3286 static void
3287 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3288 {
3289 	struct ifnet *ifp = sc->sc_ifp;
3290 	struct ieee80211com *ic = ifp->if_l2com;
3291 	const struct wpi_chan_band *band = &wpi_bands[n];
3292 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3293 	struct ieee80211_channel *c;
3294 	int chan, i, passive;
3295 
3296 	wpi_read_prom_data(sc, band->addr, channels,
3297 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3298 
3299 	for (i = 0; i < band->nchan; i++) {
3300 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3301 			DPRINTFN(WPI_DEBUG_HW,
3302 			    ("Channel Not Valid: %d, band %d\n",
3303 			     band->chan[i],n));
3304 			continue;
3305 		}
3306 
3307 		passive = 0;
3308 		chan = band->chan[i];
3309 		c = &ic->ic_channels[ic->ic_nchans++];
3310 
3311 		/* is active scan allowed on this channel? */
3312 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3313 			passive = IEEE80211_CHAN_PASSIVE;
3314 		}
3315 
3316 		if (n == 0) {	/* 2GHz band */
3317 			c->ic_ieee = chan;
3318 			c->ic_freq = ieee80211_ieee2mhz(chan,
3319 			    IEEE80211_CHAN_2GHZ);
3320 			c->ic_flags = IEEE80211_CHAN_B | passive;
3321 
3322 			c = &ic->ic_channels[ic->ic_nchans++];
3323 			c->ic_ieee = chan;
3324 			c->ic_freq = ieee80211_ieee2mhz(chan,
3325 			    IEEE80211_CHAN_2GHZ);
3326 			c->ic_flags = IEEE80211_CHAN_G | passive;
3327 
3328 		} else {	/* 5GHz band */
3329 			/*
3330 			 * Some 3945ABG adapters support channels 7, 8, 11
3331 			 * and 12 in the 2GHz *and* 5GHz bands.
3332 			 * Because of limitations in our net80211(9) stack,
3333 			 * we can't support these channels in 5GHz band.
3334 			 * XXX not true; just need to map to proper frequency
3335 			 */
3336 			if (chan <= 14)
3337 				continue;
3338 
3339 			c->ic_ieee = chan;
3340 			c->ic_freq = ieee80211_ieee2mhz(chan,
3341 			    IEEE80211_CHAN_5GHZ);
3342 			c->ic_flags = IEEE80211_CHAN_A | passive;
3343 		}
3344 
3345 		/* save maximum allowed power for this channel */
3346 		sc->maxpwr[chan] = channels[i].maxpwr;
3347 
3348 #if 0
3349 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3350 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3351 		//ic->ic_channels[chan].ic_minpower...
3352 		//ic->ic_channels[chan].ic_maxregtxpower...
3353 #endif
3354 
3355 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3356 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3357 		    channels[i].flags, sc->maxpwr[chan],
3358 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3359 		    ic->ic_nchans));
3360 	}
3361 }
3362 
3363 static void
3364 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3365 {
3366 	struct wpi_power_group *group = &sc->groups[n];
3367 	struct wpi_eeprom_group rgroup;
3368 	int i;
3369 
3370 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3371 	    sizeof rgroup);
3372 
3373 	/* save power group information */
3374 	group->chan   = rgroup.chan;
3375 	group->maxpwr = rgroup.maxpwr;
3376 	/* temperature at which the samples were taken */
3377 	group->temp   = (int16_t)le16toh(rgroup.temp);
3378 
3379 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3380 		    group->chan, group->maxpwr, group->temp));
3381 
3382 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3383 		group->samples[i].index = rgroup.samples[i].index;
3384 		group->samples[i].power = rgroup.samples[i].power;
3385 
3386 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3387 			    group->samples[i].index, group->samples[i].power));
3388 	}
3389 }
3390 
3391 /*
3392  * Update Tx power to match what is defined for channel `c'.
3393  */
3394 static int
3395 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3396 {
3397 	struct ifnet *ifp = sc->sc_ifp;
3398 	struct ieee80211com *ic = ifp->if_l2com;
3399 	struct wpi_power_group *group;
3400 	struct wpi_cmd_txpower txpower;
3401 	u_int chan;
3402 	int i;
3403 
3404 	/* get channel number */
3405 	chan = ieee80211_chan2ieee(ic, c);
3406 
3407 	/* find the power group to which this channel belongs */
3408 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3409 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3410 			if (chan <= group->chan)
3411 				break;
3412 	} else
3413 		group = &sc->groups[0];
3414 
3415 	memset(&txpower, 0, sizeof txpower);
3416 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3417 	txpower.channel = htole16(chan);
3418 
3419 	/* set Tx power for all OFDM and CCK rates */
3420 	for (i = 0; i <= 11 ; i++) {
3421 		/* retrieve Tx power for this channel/rate combination */
3422 		int idx = wpi_get_power_index(sc, group, c,
3423 		    wpi_ridx_to_rate[i]);
3424 
3425 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3426 
3427 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3428 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3429 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3430 		} else {
3431 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3432 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3433 		}
3434 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3435 			    chan, wpi_ridx_to_rate[i], idx));
3436 	}
3437 
3438 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3439 }
3440 
3441 /*
3442  * Determine Tx power index for a given channel/rate combination.
3443  * This takes into account the regulatory information from EEPROM and the
3444  * current temperature.
3445  */
3446 static int
3447 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3448     struct ieee80211_channel *c, int rate)
3449 {
3450 /* fixed-point arithmetic division using a n-bit fractional part */
3451 #define fdivround(a, b, n)      \
3452 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3453 
3454 /* linear interpolation */
3455 #define interpolate(x, x1, y1, x2, y2, n)       \
3456 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3457 
3458 	struct ifnet *ifp = sc->sc_ifp;
3459 	struct ieee80211com *ic = ifp->if_l2com;
3460 	struct wpi_power_sample *sample;
3461 	int pwr, idx;
3462 	u_int chan;
3463 
3464 	/* get channel number */
3465 	chan = ieee80211_chan2ieee(ic, c);
3466 
3467 	/* default power is group's maximum power - 3dB */
3468 	pwr = group->maxpwr / 2;
3469 
3470 	/* decrease power for highest OFDM rates to reduce distortion */
3471 	switch (rate) {
3472 		case 72:	/* 36Mb/s */
3473 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3474 			break;
3475 		case 96:	/* 48Mb/s */
3476 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3477 			break;
3478 		case 108:	/* 54Mb/s */
3479 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3480 			break;
3481 	}
3482 
3483 	/* never exceed channel's maximum allowed Tx power */
3484 	pwr = min(pwr, sc->maxpwr[chan]);
3485 
3486 	/* retrieve power index into gain tables from samples */
3487 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3488 		if (pwr > sample[1].power)
3489 			break;
3490 	/* fixed-point linear interpolation using a 19-bit fractional part */
3491 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3492 	    sample[1].power, sample[1].index, 19);
3493 
3494 	/*
3495 	 *  Adjust power index based on current temperature
3496 	 *	- if colder than factory-calibrated: decreate output power
3497 	 *	- if warmer than factory-calibrated: increase output power
3498 	 */
3499 	idx -= (sc->temp - group->temp) * 11 / 100;
3500 
3501 	/* decrease power for CCK rates (-5dB) */
3502 	if (!WPI_RATE_IS_OFDM(rate))
3503 		idx += 10;
3504 
3505 	/* keep power index in a valid range */
3506 	if (idx < 0)
3507 		return 0;
3508 	if (idx > WPI_MAX_PWR_INDEX)
3509 		return WPI_MAX_PWR_INDEX;
3510 	return idx;
3511 
3512 #undef interpolate
3513 #undef fdivround
3514 }
3515 
3516 /**
3517  * Called by net80211 framework to indicate that a scan
3518  * is starting. This function doesn't actually do the scan,
3519  * wpi_scan_curchan starts things off. This function is more
3520  * of an early warning from the framework we should get ready
3521  * for the scan.
3522  */
3523 static void
3524 wpi_scan_start(struct ieee80211com *ic)
3525 {
3526 	struct ifnet *ifp = ic->ic_ifp;
3527 	struct wpi_softc *sc = ifp->if_softc;
3528 
3529 	WPI_LOCK(sc);
3530 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3531 	WPI_UNLOCK(sc);
3532 }
3533 
3534 /**
3535  * Called by the net80211 framework, indicates that the
3536  * scan has ended. If there is a scan in progress on the card
3537  * then it should be aborted.
3538  */
3539 static void
3540 wpi_scan_end(struct ieee80211com *ic)
3541 {
3542 	/* XXX ignore */
3543 }
3544 
3545 /**
3546  * Called by the net80211 framework to indicate to the driver
3547  * that the channel should be changed
3548  */
3549 static void
3550 wpi_set_channel(struct ieee80211com *ic)
3551 {
3552 	struct ifnet *ifp = ic->ic_ifp;
3553 	struct wpi_softc *sc = ifp->if_softc;
3554 	int error;
3555 
3556 	/*
3557 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3558 	 * are already taken care of by their respective firmware commands.
3559 	 */
3560 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3561 		WPI_LOCK(sc);
3562 		error = wpi_config(sc);
3563 		WPI_UNLOCK(sc);
3564 		if (error != 0)
3565 			device_printf(sc->sc_dev,
3566 			    "error %d settting channel\n", error);
3567 	}
3568 }
3569 
3570 /**
3571  * Called by net80211 to indicate that we need to scan the current
3572  * channel. The channel is previously be set via the wpi_set_channel
3573  * callback.
3574  */
3575 static void
3576 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3577 {
3578 	struct ieee80211vap *vap = ss->ss_vap;
3579 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3580 	struct wpi_softc *sc = ifp->if_softc;
3581 
3582 	WPI_LOCK(sc);
3583 	if (wpi_scan(sc))
3584 		ieee80211_cancel_scan(vap);
3585 	WPI_UNLOCK(sc);
3586 }
3587 
3588 /**
3589  * Called by the net80211 framework to indicate
3590  * the minimum dwell time has been met, terminate the scan.
3591  * We don't actually terminate the scan as the firmware will notify
3592  * us when it's finished and we have no way to interrupt it.
3593  */
3594 static void
3595 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3596 {
3597 	/* NB: don't try to abort scan; wait for firmware to finish */
3598 }
3599 
3600 static void
3601 wpi_hwreset(void *arg, int pending)
3602 {
3603 	struct wpi_softc *sc = arg;
3604 
3605 	WPI_LOCK(sc);
3606 	wpi_init_locked(sc, 0);
3607 	WPI_UNLOCK(sc);
3608 }
3609 
3610 static void
3611 wpi_rfreset(void *arg, int pending)
3612 {
3613 	struct wpi_softc *sc = arg;
3614 
3615 	WPI_LOCK(sc);
3616 	wpi_rfkill_resume(sc);
3617 	WPI_UNLOCK(sc);
3618 }
3619 
3620 /*
3621  * Allocate DMA-safe memory for firmware transfer.
3622  */
3623 static int
3624 wpi_alloc_fwmem(struct wpi_softc *sc)
3625 {
3626 	/* allocate enough contiguous space to store text and data */
3627 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3628 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3629 	    BUS_DMA_NOWAIT);
3630 }
3631 
3632 static void
3633 wpi_free_fwmem(struct wpi_softc *sc)
3634 {
3635 	wpi_dma_contig_free(&sc->fw_dma);
3636 }
3637 
3638 /**
3639  * Called every second, wpi_watchdog used by the watch dog timer
3640  * to check that the card is still alive
3641  */
3642 static void
3643 wpi_watchdog(void *arg)
3644 {
3645 	struct wpi_softc *sc = arg;
3646 	struct ifnet *ifp = sc->sc_ifp;
3647 	struct ieee80211com *ic = ifp->if_l2com;
3648 	uint32_t tmp;
3649 
3650 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3651 
3652 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3653 		/* No need to lock firmware memory */
3654 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3655 
3656 		if ((tmp & 0x1) == 0) {
3657 			/* Radio kill switch is still off */
3658 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3659 			return;
3660 		}
3661 
3662 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3663 		ieee80211_runtask(ic, &sc->sc_radiotask);
3664 		return;
3665 	}
3666 
3667 	if (sc->sc_tx_timer > 0) {
3668 		if (--sc->sc_tx_timer == 0) {
3669 			device_printf(sc->sc_dev,"device timeout\n");
3670 			ifp->if_oerrors++;
3671 			ieee80211_runtask(ic, &sc->sc_restarttask);
3672 		}
3673 	}
3674 	if (sc->sc_scan_timer > 0) {
3675 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3676 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3677 			device_printf(sc->sc_dev,"scan timeout\n");
3678 			ieee80211_cancel_scan(vap);
3679 			ieee80211_runtask(ic, &sc->sc_restarttask);
3680 		}
3681 	}
3682 
3683 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3684 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3685 }
3686 
3687 #ifdef WPI_DEBUG
3688 static const char *wpi_cmd_str(int cmd)
3689 {
3690 	switch (cmd) {
3691 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3692 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3693 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3694 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3695 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3696 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3697 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3698 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3699 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3700 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3701 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3702 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3703 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3704 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3705 
3706 	default:
3707 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3708 		return "UNKNOWN CMD";	/* Make the compiler happy */
3709 	}
3710 }
3711 #endif
3712 
3713 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3714 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3715 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3716