xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 2227a3e9e1a0bcba8481a8067ee8c4b9a96fdda3)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/if_ether.h>
102 
103 #include <dev/wpi/if_wpireg.h>
104 #include <dev/wpi/if_wpivar.h>
105 
106 #define WPI_DEBUG
107 
108 #ifdef WPI_DEBUG
109 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111 
112 enum {
113 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
114 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
115 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
116 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
117 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
118 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
119 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
120 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
121 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
122 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
123 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
124 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
125 	WPI_DEBUG_ANY		= 0xffffffff
126 };
127 
128 int wpi_debug = 0;
129 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
130 
131 #else
132 #define DPRINTF(x)
133 #define DPRINTFN(n, x)
134 #endif
135 
136 struct wpi_ident {
137 	uint16_t	vendor;
138 	uint16_t	device;
139 	uint16_t	subdevice;
140 	const char	*name;
141 };
142 
143 static const struct wpi_ident wpi_ident_table[] = {
144 	/* The below entries support ABG regardless of the subid */
145 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
146 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
147 	/* The below entries only support BG */
148 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
149 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
150 	{ 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
151 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
152 	{ 0, 0, 0, NULL }
153 };
154 
155 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
156 		    const char name[IFNAMSIZ], int unit, int opmode,
157 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
158 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
159 static void	wpi_vap_delete(struct ieee80211vap *);
160 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
161 		    void **, bus_size_t, bus_size_t, int);
162 static void	wpi_dma_contig_free(struct wpi_dma_info *);
163 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
164 static int	wpi_alloc_shared(struct wpi_softc *);
165 static void	wpi_free_shared(struct wpi_softc *);
166 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
167 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
168 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
169 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
170 		    int, int);
171 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
172 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
173 static struct	ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *);
174 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
175 static void	wpi_mem_lock(struct wpi_softc *);
176 static void	wpi_mem_unlock(struct wpi_softc *);
177 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
178 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
179 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
180 		    const uint32_t *, int);
181 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
182 static int	wpi_alloc_fwmem(struct wpi_softc *);
183 static void	wpi_free_fwmem(struct wpi_softc *);
184 static int	wpi_load_firmware(struct wpi_softc *);
185 static void	wpi_unload_firmware(struct wpi_softc *);
186 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
187 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
188 		    struct wpi_rx_data *);
189 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
190 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
191 static void	wpi_bmiss(void *, int);
192 static void	wpi_notif_intr(struct wpi_softc *);
193 static void	wpi_intr(void *);
194 static void	wpi_ops(void *, int);
195 static uint8_t	wpi_plcp_signal(int);
196 static int	wpi_queue_cmd(struct wpi_softc *, int, int, int);
197 static void	wpi_watchdog(void *);
198 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
199 		    struct ieee80211_node *, int);
200 static void	wpi_start(struct ifnet *);
201 static void	wpi_start_locked(struct ifnet *);
202 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
203 		    const struct ieee80211_bpf_params *);
204 static void	wpi_scan_start(struct ieee80211com *);
205 static void	wpi_scan_end(struct ieee80211com *);
206 static void	wpi_set_channel(struct ieee80211com *);
207 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
208 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
209 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
210 static void	wpi_read_eeprom(struct wpi_softc *);
211 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
212 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
213 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
214 static int	wpi_wme_update(struct ieee80211com *);
215 static int	wpi_mrr_setup(struct wpi_softc *);
216 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
217 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
218 #if 0
219 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
220 #endif
221 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
222 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
223 static int	wpi_scan(struct wpi_softc *);
224 static int	wpi_config(struct wpi_softc *);
225 static void	wpi_stop_master(struct wpi_softc *);
226 static int	wpi_power_up(struct wpi_softc *);
227 static int	wpi_reset(struct wpi_softc *);
228 static void	wpi_hw_config(struct wpi_softc *);
229 static void	wpi_init(void *);
230 static void	wpi_init_locked(struct wpi_softc *, int);
231 static void	wpi_stop(struct wpi_softc *);
232 static void	wpi_stop_locked(struct wpi_softc *);
233 
234 static void	wpi_newassoc(struct ieee80211_node *, int);
235 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
236 		    int);
237 static void	wpi_calib_timeout(void *);
238 static void	wpi_power_calibration(struct wpi_softc *, int);
239 static int	wpi_get_power_index(struct wpi_softc *,
240 		    struct wpi_power_group *, struct ieee80211_channel *, int);
241 static const char *wpi_cmd_str(int);
242 static int wpi_probe(device_t);
243 static int wpi_attach(device_t);
244 static int wpi_detach(device_t);
245 static int wpi_shutdown(device_t);
246 static int wpi_suspend(device_t);
247 static int wpi_resume(device_t);
248 
249 
250 static device_method_t wpi_methods[] = {
251 	/* Device interface */
252 	DEVMETHOD(device_probe,		wpi_probe),
253 	DEVMETHOD(device_attach,	wpi_attach),
254 	DEVMETHOD(device_detach,	wpi_detach),
255 	DEVMETHOD(device_shutdown,	wpi_shutdown),
256 	DEVMETHOD(device_suspend,	wpi_suspend),
257 	DEVMETHOD(device_resume,	wpi_resume),
258 
259 	{ 0, 0 }
260 };
261 
262 static driver_t wpi_driver = {
263 	"wpi",
264 	wpi_methods,
265 	sizeof (struct wpi_softc)
266 };
267 
268 static devclass_t wpi_devclass;
269 
270 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
271 
272 static const uint8_t wpi_ridx_to_plcp[] = {
273 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
274 	/* R1-R4 (ral/ural is R4-R1) */
275 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
276 	/* CCK: device-dependent */
277 	10, 20, 55, 110
278 };
279 static const uint8_t wpi_ridx_to_rate[] = {
280 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
281 	2, 4, 11, 22 /*CCK */
282 };
283 
284 
285 static int
286 wpi_probe(device_t dev)
287 {
288 	const struct wpi_ident *ident;
289 
290 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
291 		if (pci_get_vendor(dev) == ident->vendor &&
292 		    pci_get_device(dev) == ident->device) {
293 			device_set_desc(dev, ident->name);
294 			return 0;
295 		}
296 	}
297 	return ENXIO;
298 }
299 
300 /**
301  * Load the firmare image from disk to the allocated dma buffer.
302  * we also maintain the reference to the firmware pointer as there
303  * is times where we may need to reload the firmware but we are not
304  * in a context that can access the filesystem (ie taskq cause by restart)
305  *
306  * @return 0 on success, an errno on failure
307  */
308 static int
309 wpi_load_firmware(struct wpi_softc *sc)
310 {
311 	const struct firmware *fp;
312 	struct wpi_dma_info *dma = &sc->fw_dma;
313 	const struct wpi_firmware_hdr *hdr;
314 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
315 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
316 	int error;
317 
318 	DPRINTFN(WPI_DEBUG_FIRMWARE,
319 	    ("Attempting Loading Firmware from wpi_fw module\n"));
320 
321 	WPI_UNLOCK(sc);
322 
323 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
324 		device_printf(sc->sc_dev,
325 		    "could not load firmware image 'wpifw'\n");
326 		error = ENOENT;
327 		WPI_LOCK(sc);
328 		goto fail;
329 	}
330 
331 	fp = sc->fw_fp;
332 
333 	WPI_LOCK(sc);
334 
335 	/* Validate the firmware is minimum a particular version */
336 	if (fp->version < WPI_FW_MINVERSION) {
337 	    device_printf(sc->sc_dev,
338 			   "firmware version is too old. Need %d, got %d\n",
339 			   WPI_FW_MINVERSION,
340 			   fp->version);
341 	    error = ENXIO;
342 	    goto fail;
343 	}
344 
345 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
346 		device_printf(sc->sc_dev,
347 		    "firmware file too short: %zu bytes\n", fp->datasize);
348 		error = ENXIO;
349 		goto fail;
350 	}
351 
352 	hdr = (const struct wpi_firmware_hdr *)fp->data;
353 
354 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
355 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
356 
357 	rtextsz = le32toh(hdr->rtextsz);
358 	rdatasz = le32toh(hdr->rdatasz);
359 	itextsz = le32toh(hdr->itextsz);
360 	idatasz = le32toh(hdr->idatasz);
361 	btextsz = le32toh(hdr->btextsz);
362 
363 	/* check that all firmware segments are present */
364 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
365 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
366 		device_printf(sc->sc_dev,
367 		    "firmware file too short: %zu bytes\n", fp->datasize);
368 		error = ENXIO; /* XXX appropriate error code? */
369 		goto fail;
370 	}
371 
372 	/* get pointers to firmware segments */
373 	rtext = (const uint8_t *)(hdr + 1);
374 	rdata = rtext + rtextsz;
375 	itext = rdata + rdatasz;
376 	idata = itext + itextsz;
377 	btext = idata + idatasz;
378 
379 	DPRINTFN(WPI_DEBUG_FIRMWARE,
380 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
381 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
382 	     (le32toh(hdr->version) & 0xff000000) >> 24,
383 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
384 	     (le32toh(hdr->version) & 0x0000ffff),
385 	     rtextsz, rdatasz,
386 	     itextsz, idatasz, btextsz));
387 
388 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
389 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
390 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
391 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
392 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
393 
394 	/* sanity checks */
395 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
396 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
397 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
398 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
399 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
400 	    (btextsz & 3) != 0) {
401 		device_printf(sc->sc_dev, "firmware invalid\n");
402 		error = EINVAL;
403 		goto fail;
404 	}
405 
406 	/* copy initialization images into pre-allocated DMA-safe memory */
407 	memcpy(dma->vaddr, idata, idatasz);
408 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
409 
410 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
411 
412 	/* tell adapter where to find initialization images */
413 	wpi_mem_lock(sc);
414 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
415 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
416 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
417 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
418 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
419 	wpi_mem_unlock(sc);
420 
421 	/* load firmware boot code */
422 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
423 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
424 	    goto fail;
425 	}
426 
427 	/* now press "execute" */
428 	WPI_WRITE(sc, WPI_RESET, 0);
429 
430 	/* wait at most one second for the first alive notification */
431 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
432 		device_printf(sc->sc_dev,
433 		    "timeout waiting for adapter to initialize\n");
434 		goto fail;
435 	}
436 
437 	/* copy runtime images into pre-allocated DMA-sage memory */
438 	memcpy(dma->vaddr, rdata, rdatasz);
439 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
440 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
441 
442 	/* tell adapter where to find runtime images */
443 	wpi_mem_lock(sc);
444 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
445 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
446 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
447 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
448 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
449 	wpi_mem_unlock(sc);
450 
451 	/* wait at most one second for the first alive notification */
452 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
453 		device_printf(sc->sc_dev,
454 		    "timeout waiting for adapter to initialize2\n");
455 		goto fail;
456 	}
457 
458 	DPRINTFN(WPI_DEBUG_FIRMWARE,
459 	    ("Firmware loaded to driver successfully\n"));
460 	return error;
461 fail:
462 	wpi_unload_firmware(sc);
463 	return error;
464 }
465 
466 /**
467  * Free the referenced firmware image
468  */
469 static void
470 wpi_unload_firmware(struct wpi_softc *sc)
471 {
472 
473 	if (sc->fw_fp) {
474 		WPI_UNLOCK(sc);
475 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
476 		WPI_LOCK(sc);
477 		sc->fw_fp = NULL;
478 	}
479 }
480 
481 static int
482 wpi_attach(device_t dev)
483 {
484 	struct wpi_softc *sc = device_get_softc(dev);
485 	struct ifnet *ifp;
486 	struct ieee80211com *ic;
487 	int ac, error, supportsa = 1;
488 	uint32_t tmp;
489 	const struct wpi_ident *ident;
490 
491 	sc->sc_dev = dev;
492 
493 	if (bootverbose || wpi_debug)
494 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
495 
496 	/*
497 	 * Some card's only support 802.11b/g not a, check to see if
498 	 * this is one such card. A 0x0 in the subdevice table indicates
499 	 * the entire subdevice range is to be ignored.
500 	 */
501 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
502 		if (ident->subdevice &&
503 		    pci_get_subdevice(dev) == ident->subdevice) {
504 		    supportsa = 0;
505 		    break;
506 		}
507 	}
508 
509 	/*
510 	 * Create the taskqueues used by the driver. Primarily
511 	 * sc_tq handles most the task
512 	 */
513 	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
514 	    taskqueue_thread_enqueue, &sc->sc_tq);
515 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
516 	    device_get_nameunit(dev));
517 
518 	/* Create the tasks that can be queued */
519 	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
520 	TASK_INIT(&sc->sc_bmiss_task, 0, wpi_bmiss, sc);
521 
522 	WPI_LOCK_INIT(sc);
523 	WPI_CMD_LOCK_INIT(sc);
524 
525 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
526 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
527 
528 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
529 		device_printf(dev, "chip is in D%d power mode "
530 		    "-- setting to D0\n", pci_get_powerstate(dev));
531 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
532 	}
533 
534 	/* disable the retry timeout register */
535 	pci_write_config(dev, 0x41, 0, 1);
536 
537 	/* enable bus-mastering */
538 	pci_enable_busmaster(dev);
539 
540 	sc->mem_rid = PCIR_BAR(0);
541 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
542 	    RF_ACTIVE);
543 	if (sc->mem == NULL) {
544 		device_printf(dev, "could not allocate memory resource\n");
545 		error = ENOMEM;
546 		goto fail;
547 	}
548 
549 	sc->sc_st = rman_get_bustag(sc->mem);
550 	sc->sc_sh = rman_get_bushandle(sc->mem);
551 
552 	sc->irq_rid = 0;
553 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
554 	    RF_ACTIVE | RF_SHAREABLE);
555 	if (sc->irq == NULL) {
556 		device_printf(dev, "could not allocate interrupt resource\n");
557 		error = ENOMEM;
558 		goto fail;
559 	}
560 
561 	/*
562 	 * Allocate DMA memory for firmware transfers.
563 	 */
564 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
565 		printf(": could not allocate firmware memory\n");
566 		error = ENOMEM;
567 		goto fail;
568 	}
569 
570 	/*
571 	 * Put adapter into a known state.
572 	 */
573 	if ((error = wpi_reset(sc)) != 0) {
574 		device_printf(dev, "could not reset adapter\n");
575 		goto fail;
576 	}
577 
578 	wpi_mem_lock(sc);
579 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
580 	if (bootverbose || wpi_debug)
581 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
582 
583 	wpi_mem_unlock(sc);
584 
585 	/* Allocate shared page */
586 	if ((error = wpi_alloc_shared(sc)) != 0) {
587 		device_printf(dev, "could not allocate shared page\n");
588 		goto fail;
589 	}
590 
591 	/* tx data queues  - 4 for QoS purposes */
592 	for (ac = 0; ac < WME_NUM_AC; ac++) {
593 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
594 		if (error != 0) {
595 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
596 		    goto fail;
597 		}
598 	}
599 
600 	/* command queue to talk to the card's firmware */
601 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
602 	if (error != 0) {
603 		device_printf(dev, "could not allocate command ring\n");
604 		goto fail;
605 	}
606 
607 	/* receive data queue */
608 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
609 	if (error != 0) {
610 		device_printf(dev, "could not allocate Rx ring\n");
611 		goto fail;
612 	}
613 
614 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
615 	if (ifp == NULL) {
616 		device_printf(dev, "can not if_alloc()\n");
617 		error = ENOMEM;
618 		goto fail;
619 	}
620 	ic = ifp->if_l2com;
621 
622 	ic->ic_ifp = ifp;
623 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
624 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
625 
626 	/* set device capabilities */
627 	ic->ic_caps =
628 		  IEEE80211_C_STA		/* station mode supported */
629 		| IEEE80211_C_MONITOR		/* monitor mode supported */
630 		| IEEE80211_C_TXPMGT		/* tx power management */
631 		| IEEE80211_C_SHSLOT		/* short slot time supported */
632 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
633 		| IEEE80211_C_WPA		/* 802.11i */
634 /* XXX looks like WME is partly supported? */
635 #if 0
636 		| IEEE80211_C_IBSS		/* IBSS mode support */
637 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
638 		| IEEE80211_C_WME		/* 802.11e */
639 		| IEEE80211_C_HOSTAP		/* Host access point mode */
640 #endif
641 		;
642 
643 	/*
644 	 * Read in the eeprom and also setup the channels for
645 	 * net80211. We don't set the rates as net80211 does this for us
646 	 */
647 	wpi_read_eeprom(sc);
648 
649 	if (bootverbose || wpi_debug) {
650 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
651 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
652 			  sc->type > 1 ? 'B': '?');
653 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
654 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
655 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
656 			  supportsa ? "does" : "does not");
657 
658 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
659 	       what sc->rev really represents - benjsc 20070615 */
660 	}
661 
662 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
663 	ifp->if_softc = sc;
664 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
665 	ifp->if_init = wpi_init;
666 	ifp->if_ioctl = wpi_ioctl;
667 	ifp->if_start = wpi_start;
668 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
669 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
670 	IFQ_SET_READY(&ifp->if_snd);
671 
672 	ieee80211_ifattach(ic);
673 	/* override default methods */
674 	ic->ic_node_alloc = wpi_node_alloc;
675 	ic->ic_newassoc = wpi_newassoc;
676 	ic->ic_raw_xmit = wpi_raw_xmit;
677 	ic->ic_wme.wme_update = wpi_wme_update;
678 	ic->ic_scan_start = wpi_scan_start;
679 	ic->ic_scan_end = wpi_scan_end;
680 	ic->ic_set_channel = wpi_set_channel;
681 	ic->ic_scan_curchan = wpi_scan_curchan;
682 	ic->ic_scan_mindwell = wpi_scan_mindwell;
683 
684 	ic->ic_vap_create = wpi_vap_create;
685 	ic->ic_vap_delete = wpi_vap_delete;
686 
687 	bpfattach(ifp, DLT_IEEE802_11_RADIO,
688 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
689 
690 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
691 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
692 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
693 
694 	sc->sc_txtap_len = sizeof sc->sc_txtap;
695 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
696 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
697 
698 	/*
699 	 * Hook our interrupt after all initialization is complete.
700 	 */
701 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
702 	    NULL, wpi_intr, sc, &sc->sc_ih);
703 	if (error != 0) {
704 		device_printf(dev, "could not set up interrupt\n");
705 		goto fail;
706 	}
707 
708 	if (bootverbose)
709 		ieee80211_announce(ic);
710 #ifdef XXX_DEBUG
711 	ieee80211_announce_channels(ic);
712 #endif
713 	return 0;
714 
715 fail:	wpi_detach(dev);
716 	return ENXIO;
717 }
718 
719 static int
720 wpi_detach(device_t dev)
721 {
722 	struct wpi_softc *sc = device_get_softc(dev);
723 	struct ifnet *ifp = sc->sc_ifp;
724 	struct ieee80211com *ic = ifp->if_l2com;
725 	int ac;
726 
727 	if (ifp != NULL) {
728 		wpi_stop(sc);
729 		callout_drain(&sc->watchdog_to);
730 		callout_drain(&sc->calib_to);
731 		bpfdetach(ifp);
732 		ieee80211_ifdetach(ic);
733 	}
734 
735 	WPI_LOCK(sc);
736 	if (sc->txq[0].data_dmat) {
737 		for (ac = 0; ac < WME_NUM_AC; ac++)
738 			wpi_free_tx_ring(sc, &sc->txq[ac]);
739 
740 		wpi_free_tx_ring(sc, &sc->cmdq);
741 		wpi_free_rx_ring(sc, &sc->rxq);
742 		wpi_free_shared(sc);
743 	}
744 
745 	if (sc->fw_fp != NULL) {
746 		wpi_unload_firmware(sc);
747 	}
748 
749 	if (sc->fw_dma.tag)
750 		wpi_free_fwmem(sc);
751 	WPI_UNLOCK(sc);
752 
753 	if (sc->irq != NULL) {
754 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
755 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
756 	}
757 
758 	if (sc->mem != NULL)
759 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
760 
761 	if (ifp != NULL)
762 		if_free(ifp);
763 
764 	taskqueue_free(sc->sc_tq);
765 
766 	WPI_LOCK_DESTROY(sc);
767 	WPI_CMD_LOCK_DESTROY(sc);
768 
769 	return 0;
770 }
771 
772 static struct ieee80211vap *
773 wpi_vap_create(struct ieee80211com *ic,
774 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
775 	const uint8_t bssid[IEEE80211_ADDR_LEN],
776 	const uint8_t mac[IEEE80211_ADDR_LEN])
777 {
778 	struct wpi_vap *wvp;
779 	struct ieee80211vap *vap;
780 
781 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
782 		return NULL;
783 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
784 	    M_80211_VAP, M_NOWAIT | M_ZERO);
785 	if (wvp == NULL)
786 		return NULL;
787 	vap = &wvp->vap;
788 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
789 	/* override with driver methods */
790 	wvp->newstate = vap->iv_newstate;
791 	vap->iv_newstate = wpi_newstate;
792 
793 	ieee80211_amrr_init(&wvp->amrr, vap,
794 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
795 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
796 	    500 /*ms*/);
797 
798 	/* complete setup */
799 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
800 	ic->ic_opmode = opmode;
801 	return vap;
802 }
803 
804 static void
805 wpi_vap_delete(struct ieee80211vap *vap)
806 {
807 	struct wpi_vap *wvp = WPI_VAP(vap);
808 
809 	ieee80211_amrr_cleanup(&wvp->amrr);
810 	ieee80211_vap_detach(vap);
811 	free(wvp, M_80211_VAP);
812 }
813 
814 static void
815 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
816 {
817 	if (error != 0)
818 		return;
819 
820 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
821 
822 	*(bus_addr_t *)arg = segs[0].ds_addr;
823 }
824 
825 /*
826  * Allocates a contiguous block of dma memory of the requested size and
827  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
828  * allocations greater than 4096 may fail. Hence if the requested alignment is
829  * greater we allocate 'alignment' size extra memory and shift the vaddr and
830  * paddr after the dma load. This bypasses the problem at the cost of a little
831  * more memory.
832  */
833 static int
834 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
835     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
836 {
837 	int error;
838 	bus_size_t align;
839 	bus_size_t reqsize;
840 
841 	DPRINTFN(WPI_DEBUG_DMA,
842 	    ("Size: %zd - alignment %zd\n", size, alignment));
843 
844 	dma->size = size;
845 	dma->tag = NULL;
846 
847 	if (alignment > 4096) {
848 		align = PAGE_SIZE;
849 		reqsize = size + alignment;
850 	} else {
851 		align = alignment;
852 		reqsize = size;
853 	}
854 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
855 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
856 	    NULL, NULL, reqsize,
857 	    1, reqsize, flags,
858 	    NULL, NULL, &dma->tag);
859 	if (error != 0) {
860 		device_printf(sc->sc_dev,
861 		    "could not create shared page DMA tag\n");
862 		goto fail;
863 	}
864 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
865 	    flags | BUS_DMA_ZERO, &dma->map);
866 	if (error != 0) {
867 		device_printf(sc->sc_dev,
868 		    "could not allocate shared page DMA memory\n");
869 		goto fail;
870 	}
871 
872 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
873 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
874 
875 	/* Save the original pointers so we can free all the memory */
876 	dma->paddr = dma->paddr_start;
877 	dma->vaddr = dma->vaddr_start;
878 
879 	/*
880 	 * Check the alignment and increment by 4096 until we get the
881 	 * requested alignment. Fail if can't obtain the alignment
882 	 * we requested.
883 	 */
884 	if ((dma->paddr & (alignment -1 )) != 0) {
885 		int i;
886 
887 		for (i = 0; i < alignment / 4096; i++) {
888 			if ((dma->paddr & (alignment - 1 )) == 0)
889 				break;
890 			dma->paddr += 4096;
891 			dma->vaddr += 4096;
892 		}
893 		if (i == alignment / 4096) {
894 			device_printf(sc->sc_dev,
895 			    "alignment requirement was not satisfied\n");
896 			goto fail;
897 		}
898 	}
899 
900 	if (error != 0) {
901 		device_printf(sc->sc_dev,
902 		    "could not load shared page DMA map\n");
903 		goto fail;
904 	}
905 
906 	if (kvap != NULL)
907 		*kvap = dma->vaddr;
908 
909 	return 0;
910 
911 fail:
912 	wpi_dma_contig_free(dma);
913 	return error;
914 }
915 
916 static void
917 wpi_dma_contig_free(struct wpi_dma_info *dma)
918 {
919 	if (dma->tag) {
920 		if (dma->map != NULL) {
921 			if (dma->paddr_start != 0) {
922 				bus_dmamap_sync(dma->tag, dma->map,
923 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
924 				bus_dmamap_unload(dma->tag, dma->map);
925 			}
926 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
927 		}
928 		bus_dma_tag_destroy(dma->tag);
929 	}
930 }
931 
932 /*
933  * Allocate a shared page between host and NIC.
934  */
935 static int
936 wpi_alloc_shared(struct wpi_softc *sc)
937 {
938 	int error;
939 
940 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
941 	    (void **)&sc->shared, sizeof (struct wpi_shared),
942 	    PAGE_SIZE,
943 	    BUS_DMA_NOWAIT);
944 
945 	if (error != 0) {
946 		device_printf(sc->sc_dev,
947 		    "could not allocate shared area DMA memory\n");
948 	}
949 
950 	return error;
951 }
952 
953 static void
954 wpi_free_shared(struct wpi_softc *sc)
955 {
956 	wpi_dma_contig_free(&sc->shared_dma);
957 }
958 
959 static int
960 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
961 {
962 
963 	int i, error;
964 
965 	ring->cur = 0;
966 
967 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
968 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
969 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
970 
971 	if (error != 0) {
972 		device_printf(sc->sc_dev,
973 		    "%s: could not allocate rx ring DMA memory, error %d\n",
974 		    __func__, error);
975 		goto fail;
976 	}
977 
978         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
979 	    BUS_SPACE_MAXADDR_32BIT,
980             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
981             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
982         if (error != 0) {
983                 device_printf(sc->sc_dev,
984 		    "%s: bus_dma_tag_create_failed, error %d\n",
985 		    __func__, error);
986                 goto fail;
987         }
988 
989 	/*
990 	 * Setup Rx buffers.
991 	 */
992 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
993 		struct wpi_rx_data *data = &ring->data[i];
994 		struct mbuf *m;
995 		bus_addr_t paddr;
996 
997 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
998 		if (error != 0) {
999 			device_printf(sc->sc_dev,
1000 			    "%s: bus_dmamap_create failed, error %d\n",
1001 			    __func__, error);
1002 			goto fail;
1003 		}
1004 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1005 		if (m == NULL) {
1006 			device_printf(sc->sc_dev,
1007 			   "%s: could not allocate rx mbuf\n", __func__);
1008 			error = ENOMEM;
1009 			goto fail;
1010 		}
1011 		/* map page */
1012 		error = bus_dmamap_load(ring->data_dmat, data->map,
1013 		    mtod(m, caddr_t), MJUMPAGESIZE,
1014 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1015 		if (error != 0 && error != EFBIG) {
1016 			device_printf(sc->sc_dev,
1017 			    "%s: bus_dmamap_load failed, error %d\n",
1018 			    __func__, error);
1019 			m_freem(m);
1020 			error = ENOMEM;	/* XXX unique code */
1021 			goto fail;
1022 		}
1023 		bus_dmamap_sync(ring->data_dmat, data->map,
1024 		    BUS_DMASYNC_PREWRITE);
1025 
1026 		data->m = m;
1027 		ring->desc[i] = htole32(paddr);
1028 	}
1029 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1030 	    BUS_DMASYNC_PREWRITE);
1031 	return 0;
1032 fail:
1033 	wpi_free_rx_ring(sc, ring);
1034 	return error;
1035 }
1036 
1037 static void
1038 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1039 {
1040 	int ntries;
1041 
1042 	wpi_mem_lock(sc);
1043 
1044 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1045 
1046 	for (ntries = 0; ntries < 100; ntries++) {
1047 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1048 			break;
1049 		DELAY(10);
1050 	}
1051 
1052 	wpi_mem_unlock(sc);
1053 
1054 #ifdef WPI_DEBUG
1055 	if (ntries == 100)
1056 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1057 #endif
1058 
1059 	ring->cur = 0;
1060 }
1061 
1062 static void
1063 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1064 {
1065 	int i;
1066 
1067 	wpi_dma_contig_free(&ring->desc_dma);
1068 
1069 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1070 		if (ring->data[i].m != NULL)
1071 			m_freem(ring->data[i].m);
1072 }
1073 
1074 static int
1075 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1076 	int qid)
1077 {
1078 	struct wpi_tx_data *data;
1079 	int i, error;
1080 
1081 	ring->qid = qid;
1082 	ring->count = count;
1083 	ring->queued = 0;
1084 	ring->cur = 0;
1085 	ring->data = NULL;
1086 
1087 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1088 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1089 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1090 
1091 	if (error != 0) {
1092 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1093 	    goto fail;
1094 	}
1095 
1096 	/* update shared page with ring's base address */
1097 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1098 
1099 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1100 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1101 		BUS_DMA_NOWAIT);
1102 
1103 	if (error != 0) {
1104 		device_printf(sc->sc_dev,
1105 		    "could not allocate tx command DMA memory\n");
1106 		goto fail;
1107 	}
1108 
1109 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1110 	    M_NOWAIT | M_ZERO);
1111 	if (ring->data == NULL) {
1112 		device_printf(sc->sc_dev,
1113 		    "could not allocate tx data slots\n");
1114 		goto fail;
1115 	}
1116 
1117 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1118 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1119 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1120 	    &ring->data_dmat);
1121 	if (error != 0) {
1122 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1123 		goto fail;
1124 	}
1125 
1126 	for (i = 0; i < count; i++) {
1127 		data = &ring->data[i];
1128 
1129 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1130 		if (error != 0) {
1131 			device_printf(sc->sc_dev,
1132 			    "could not create tx buf DMA map\n");
1133 			goto fail;
1134 		}
1135 		bus_dmamap_sync(ring->data_dmat, data->map,
1136 		    BUS_DMASYNC_PREWRITE);
1137 	}
1138 
1139 	return 0;
1140 
1141 fail:
1142 	wpi_free_tx_ring(sc, ring);
1143 	return error;
1144 }
1145 
1146 static void
1147 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1148 {
1149 	struct wpi_tx_data *data;
1150 	int i, ntries;
1151 
1152 	wpi_mem_lock(sc);
1153 
1154 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1155 	for (ntries = 0; ntries < 100; ntries++) {
1156 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1157 			break;
1158 		DELAY(10);
1159 	}
1160 #ifdef WPI_DEBUG
1161 	if (ntries == 100)
1162 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1163 		    ring->qid);
1164 #endif
1165 	wpi_mem_unlock(sc);
1166 
1167 	for (i = 0; i < ring->count; i++) {
1168 		data = &ring->data[i];
1169 
1170 		if (data->m != NULL) {
1171 			bus_dmamap_unload(ring->data_dmat, data->map);
1172 			m_freem(data->m);
1173 			data->m = NULL;
1174 		}
1175 	}
1176 
1177 	ring->queued = 0;
1178 	ring->cur = 0;
1179 }
1180 
1181 static void
1182 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1183 {
1184 	struct wpi_tx_data *data;
1185 	int i;
1186 
1187 	wpi_dma_contig_free(&ring->desc_dma);
1188 	wpi_dma_contig_free(&ring->cmd_dma);
1189 
1190 	if (ring->data != NULL) {
1191 		for (i = 0; i < ring->count; i++) {
1192 			data = &ring->data[i];
1193 
1194 			if (data->m != NULL) {
1195 				bus_dmamap_sync(ring->data_dmat, data->map,
1196 				    BUS_DMASYNC_POSTWRITE);
1197 				bus_dmamap_unload(ring->data_dmat, data->map);
1198 				m_freem(data->m);
1199 				data->m = NULL;
1200 			}
1201 		}
1202 		free(ring->data, M_DEVBUF);
1203 	}
1204 
1205 	if (ring->data_dmat != NULL)
1206 		bus_dma_tag_destroy(ring->data_dmat);
1207 }
1208 
1209 static int
1210 wpi_shutdown(device_t dev)
1211 {
1212 	struct wpi_softc *sc = device_get_softc(dev);
1213 
1214 	WPI_LOCK(sc);
1215 	wpi_stop_locked(sc);
1216 	wpi_unload_firmware(sc);
1217 	WPI_UNLOCK(sc);
1218 
1219 	return 0;
1220 }
1221 
1222 static int
1223 wpi_suspend(device_t dev)
1224 {
1225 	struct wpi_softc *sc = device_get_softc(dev);
1226 
1227 	wpi_stop(sc);
1228 	return 0;
1229 }
1230 
1231 static int
1232 wpi_resume(device_t dev)
1233 {
1234 	struct wpi_softc *sc = device_get_softc(dev);
1235 	struct ifnet *ifp = sc->sc_ifp;
1236 
1237 	pci_write_config(dev, 0x41, 0, 1);
1238 
1239 	if (ifp->if_flags & IFF_UP) {
1240 		wpi_init(ifp->if_softc);
1241 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1242 			wpi_start(ifp);
1243 	}
1244 	return 0;
1245 }
1246 
1247 /* ARGSUSED */
1248 static struct ieee80211_node *
1249 wpi_node_alloc(struct ieee80211_node_table *ic)
1250 {
1251 	struct wpi_node *wn;
1252 
1253 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1254 
1255 	return &wn->ni;
1256 }
1257 
1258 /**
1259  * Called by net80211 when ever there is a change to 80211 state machine
1260  */
1261 static int
1262 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1263 {
1264 	struct wpi_vap *wvp = WPI_VAP(vap);
1265 	struct ieee80211com *ic = vap->iv_ic;
1266 	struct ifnet *ifp = ic->ic_ifp;
1267 	struct wpi_softc *sc = ifp->if_softc;
1268 	int error;
1269 
1270 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1271 		ieee80211_state_name[vap->iv_state],
1272 		ieee80211_state_name[nstate], sc->flags));
1273 
1274 	if (nstate == IEEE80211_S_AUTH) {
1275 		/* Delay the auth transition until we can update the firmware */
1276 		error = wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1277 		return (error != 0 ? error : EINPROGRESS);
1278 	}
1279 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1280 		/* set the association id first */
1281 		error = wpi_queue_cmd(sc, WPI_RUN, arg, WPI_QUEUE_NORMAL);
1282 		return (error != 0 ? error : EINPROGRESS);
1283 	}
1284 	if (nstate == IEEE80211_S_RUN) {
1285 		/* RUN -> RUN transition; just restart the timers */
1286 		wpi_calib_timeout(sc);
1287 		/* XXX split out rate control timer */
1288 	}
1289 	return wvp->newstate(vap, nstate, arg);
1290 }
1291 
1292 /*
1293  * Grab exclusive access to NIC memory.
1294  */
1295 static void
1296 wpi_mem_lock(struct wpi_softc *sc)
1297 {
1298 	int ntries;
1299 	uint32_t tmp;
1300 
1301 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1302 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1303 
1304 	/* spin until we actually get the lock */
1305 	for (ntries = 0; ntries < 100; ntries++) {
1306 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1307 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1308 			break;
1309 		DELAY(10);
1310 	}
1311 	if (ntries == 100)
1312 		device_printf(sc->sc_dev, "could not lock memory\n");
1313 }
1314 
1315 /*
1316  * Release lock on NIC memory.
1317  */
1318 static void
1319 wpi_mem_unlock(struct wpi_softc *sc)
1320 {
1321 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1322 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1323 }
1324 
1325 static uint32_t
1326 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1327 {
1328 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1329 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1330 }
1331 
1332 static void
1333 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1334 {
1335 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1336 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1337 }
1338 
1339 static void
1340 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1341     const uint32_t *data, int wlen)
1342 {
1343 	for (; wlen > 0; wlen--, data++, addr+=4)
1344 		wpi_mem_write(sc, addr, *data);
1345 }
1346 
1347 /*
1348  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1349  * using the traditional bit-bang method. Data is read up until len bytes have
1350  * been obtained.
1351  */
1352 static uint16_t
1353 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1354 {
1355 	int ntries;
1356 	uint32_t val;
1357 	uint8_t *out = data;
1358 
1359 	wpi_mem_lock(sc);
1360 
1361 	for (; len > 0; len -= 2, addr++) {
1362 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1363 
1364 		for (ntries = 0; ntries < 10; ntries++) {
1365 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1366 				break;
1367 			DELAY(5);
1368 		}
1369 
1370 		if (ntries == 10) {
1371 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1372 			return ETIMEDOUT;
1373 		}
1374 
1375 		*out++= val >> 16;
1376 		if (len > 1)
1377 			*out ++= val >> 24;
1378 	}
1379 
1380 	wpi_mem_unlock(sc);
1381 
1382 	return 0;
1383 }
1384 
1385 /*
1386  * The firmware text and data segments are transferred to the NIC using DMA.
1387  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1388  * where to find it.  Once the NIC has copied the firmware into its internal
1389  * memory, we can free our local copy in the driver.
1390  */
1391 static int
1392 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1393 {
1394 	int error, ntries;
1395 
1396 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1397 
1398 	size /= sizeof(uint32_t);
1399 
1400 	wpi_mem_lock(sc);
1401 
1402 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1403 	    (const uint32_t *)fw, size);
1404 
1405 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1406 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1407 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1408 
1409 	/* run microcode */
1410 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1411 
1412 	/* wait while the adapter is busy copying the firmware */
1413 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1414 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1415 		DPRINTFN(WPI_DEBUG_HW,
1416 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1417 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1418 		if (status & WPI_TX_IDLE(6)) {
1419 			DPRINTFN(WPI_DEBUG_HW,
1420 			    ("Status Match! - ntries = %d\n", ntries));
1421 			break;
1422 		}
1423 		DELAY(10);
1424 	}
1425 	if (ntries == 1000) {
1426 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1427 		error = ETIMEDOUT;
1428 	}
1429 
1430 	/* start the microcode executing */
1431 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1432 
1433 	wpi_mem_unlock(sc);
1434 
1435 	return (error);
1436 }
1437 
1438 static void
1439 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1440 	struct wpi_rx_data *data)
1441 {
1442 	struct ifnet *ifp = sc->sc_ifp;
1443 	struct ieee80211com *ic = ifp->if_l2com;
1444 	struct wpi_rx_ring *ring = &sc->rxq;
1445 	struct wpi_rx_stat *stat;
1446 	struct wpi_rx_head *head;
1447 	struct wpi_rx_tail *tail;
1448 	struct ieee80211_node *ni;
1449 	struct mbuf *m, *mnew;
1450 	bus_addr_t paddr;
1451 	int error;
1452 
1453 	stat = (struct wpi_rx_stat *)(desc + 1);
1454 
1455 	if (stat->len > WPI_STAT_MAXLEN) {
1456 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1457 		ifp->if_ierrors++;
1458 		return;
1459 	}
1460 
1461 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1462 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1463 
1464 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1465 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1466 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1467 	    (uintmax_t)le64toh(tail->tstamp)));
1468 
1469 	/* XXX don't need mbuf, just dma buffer */
1470 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1471 	if (mnew == NULL) {
1472 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1473 		    __func__));
1474 		ic->ic_stats.is_rx_nobuf++;
1475 		ifp->if_ierrors++;
1476 		return;
1477 	}
1478 	error = bus_dmamap_load(ring->data_dmat, data->map,
1479 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1480 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1481 	if (error != 0 && error != EFBIG) {
1482 		device_printf(sc->sc_dev,
1483 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1484 		m_freem(mnew);
1485 		ic->ic_stats.is_rx_nobuf++;	/* XXX need stat */
1486 		ifp->if_ierrors++;
1487 		return;
1488 	}
1489 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1490 
1491 	/* finalize mbuf and swap in new one */
1492 	m = data->m;
1493 	m->m_pkthdr.rcvif = ifp;
1494 	m->m_data = (caddr_t)(head + 1);
1495 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1496 
1497 	data->m = mnew;
1498 	/* update Rx descriptor */
1499 	ring->desc[ring->cur] = htole32(paddr);
1500 
1501 	if (bpf_peers_present(ifp->if_bpf)) {
1502 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1503 
1504 		tap->wr_flags = 0;
1505 		tap->wr_chan_freq =
1506 			htole16(ic->ic_channels[head->chan].ic_freq);
1507 		tap->wr_chan_flags =
1508 			htole16(ic->ic_channels[head->chan].ic_flags);
1509 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1510 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1511 		tap->wr_tsft = tail->tstamp;
1512 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1513 		switch (head->rate) {
1514 		/* CCK rates */
1515 		case  10: tap->wr_rate =   2; break;
1516 		case  20: tap->wr_rate =   4; break;
1517 		case  55: tap->wr_rate =  11; break;
1518 		case 110: tap->wr_rate =  22; break;
1519 		/* OFDM rates */
1520 		case 0xd: tap->wr_rate =  12; break;
1521 		case 0xf: tap->wr_rate =  18; break;
1522 		case 0x5: tap->wr_rate =  24; break;
1523 		case 0x7: tap->wr_rate =  36; break;
1524 		case 0x9: tap->wr_rate =  48; break;
1525 		case 0xb: tap->wr_rate =  72; break;
1526 		case 0x1: tap->wr_rate =  96; break;
1527 		case 0x3: tap->wr_rate = 108; break;
1528 		/* unknown rate: should not happen */
1529 		default:  tap->wr_rate =   0;
1530 		}
1531 		if (le16toh(head->flags) & 0x4)
1532 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1533 
1534 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1535 	}
1536 
1537 	WPI_UNLOCK(sc);
1538 
1539 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1540 	if (ni != NULL) {
1541 		(void) ieee80211_input(ni, m, stat->rssi, 0, 0);
1542 		ieee80211_free_node(ni);
1543 	} else
1544 		(void) ieee80211_input_all(ic, m, stat->rssi, 0, 0);
1545 
1546 	WPI_LOCK(sc);
1547 }
1548 
1549 static void
1550 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1551 {
1552 	struct ifnet *ifp = sc->sc_ifp;
1553 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1554 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1555 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1556 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1557 
1558 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1559 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1560 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1561 	    le32toh(stat->status)));
1562 
1563 	/*
1564 	 * Update rate control statistics for the node.
1565 	 * XXX we should not count mgmt frames since they're always sent at
1566 	 * the lowest available bit-rate.
1567 	 * XXX frames w/o ACK shouldn't be used either
1568 	 */
1569 	wn->amn.amn_txcnt++;
1570 	if (stat->ntries > 0) {
1571 		DPRINTFN(3, ("%d retries\n", stat->ntries));
1572 		wn->amn.amn_retrycnt++;
1573 	}
1574 
1575 	/* XXX oerrors should only count errors !maxtries */
1576 	if ((le32toh(stat->status) & 0xff) != 1)
1577 		ifp->if_oerrors++;
1578 	else
1579 		ifp->if_opackets++;
1580 
1581 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1582 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1583 	/* XXX handle M_TXCB? */
1584 	m_freem(txdata->m);
1585 	txdata->m = NULL;
1586 	ieee80211_free_node(txdata->ni);
1587 	txdata->ni = NULL;
1588 
1589 	ring->queued--;
1590 
1591 	sc->sc_tx_timer = 0;
1592 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1593 	wpi_start_locked(ifp);
1594 }
1595 
1596 static void
1597 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1598 {
1599 	struct wpi_tx_ring *ring = &sc->cmdq;
1600 	struct wpi_tx_data *data;
1601 
1602 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1603 				 "type=%s len=%d\n", desc->qid, desc->idx,
1604 				 desc->flags, wpi_cmd_str(desc->type),
1605 				 le32toh(desc->len)));
1606 
1607 	if ((desc->qid & 7) != 4)
1608 		return;	/* not a command ack */
1609 
1610 	data = &ring->data[desc->idx];
1611 
1612 	/* if the command was mapped in a mbuf, free it */
1613 	if (data->m != NULL) {
1614 		bus_dmamap_unload(ring->data_dmat, data->map);
1615 		m_freem(data->m);
1616 		data->m = NULL;
1617 	}
1618 
1619 	sc->flags &= ~WPI_FLAG_BUSY;
1620 	wakeup(&ring->cmd[desc->idx]);
1621 }
1622 
1623 static void
1624 wpi_bmiss(void *arg, int npending)
1625 {
1626 	struct wpi_softc *sc = arg;
1627 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1628 
1629 	ieee80211_beacon_miss(ic);
1630 }
1631 
1632 static void
1633 wpi_notif_intr(struct wpi_softc *sc)
1634 {
1635 	struct ifnet *ifp = sc->sc_ifp;
1636 	struct ieee80211com *ic = ifp->if_l2com;
1637 	struct wpi_rx_desc *desc;
1638 	struct wpi_rx_data *data;
1639 	uint32_t hw;
1640 
1641 	hw = le32toh(sc->shared->next);
1642 	while (sc->rxq.cur != hw) {
1643 		data = &sc->rxq.data[sc->rxq.cur];
1644 		desc = (void *)data->m->m_ext.ext_buf;
1645 
1646 		DPRINTFN(WPI_DEBUG_NOTIFY,
1647 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1648 			  desc->qid,
1649 			  desc->idx,
1650 			  desc->flags,
1651 			  desc->type,
1652 			  le32toh(desc->len)));
1653 
1654 		if (!(desc->qid & 0x80))	/* reply to a command */
1655 			wpi_cmd_intr(sc, desc);
1656 
1657 		switch (desc->type) {
1658 		case WPI_RX_DONE:
1659 			/* a 802.11 frame was received */
1660 			wpi_rx_intr(sc, desc, data);
1661 			break;
1662 
1663 		case WPI_TX_DONE:
1664 			/* a 802.11 frame has been transmitted */
1665 			wpi_tx_intr(sc, desc);
1666 			break;
1667 
1668 		case WPI_UC_READY:
1669 		{
1670 			struct wpi_ucode_info *uc =
1671 				(struct wpi_ucode_info *)(desc + 1);
1672 
1673 			/* the microcontroller is ready */
1674 			DPRINTF(("microcode alive notification version %x "
1675 				"alive %x\n", le32toh(uc->version),
1676 				le32toh(uc->valid)));
1677 
1678 			if (le32toh(uc->valid) != 1) {
1679 				device_printf(sc->sc_dev,
1680 				    "microcontroller initialization failed\n");
1681 				wpi_stop_locked(sc);
1682 			}
1683 			break;
1684 		}
1685 		case WPI_STATE_CHANGED:
1686 		{
1687 			uint32_t *status = (uint32_t *)(desc + 1);
1688 
1689 			/* enabled/disabled notification */
1690 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1691 
1692 			if (le32toh(*status) & 1) {
1693 				device_printf(sc->sc_dev,
1694 				    "Radio transmitter is switched off\n");
1695 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1696 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1697 				/* Disable firmware commands */
1698 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1699 			}
1700 			break;
1701 		}
1702 		case WPI_START_SCAN:
1703 		{
1704 			struct wpi_start_scan *scan =
1705 				(struct wpi_start_scan *)(desc + 1);
1706 
1707 			DPRINTFN(WPI_DEBUG_SCANNING,
1708 				 ("scanning channel %d status %x\n",
1709 			    scan->chan, le32toh(scan->status)));
1710 			break;
1711 		}
1712 		case WPI_STOP_SCAN:
1713 		{
1714 			struct wpi_stop_scan *scan =
1715 				(struct wpi_stop_scan *)(desc + 1);
1716 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1717 
1718 			DPRINTFN(WPI_DEBUG_SCANNING,
1719 			    ("scan finished nchan=%d status=%d chan=%d\n",
1720 			     scan->nchan, scan->status, scan->chan));
1721 
1722 			sc->sc_scan_timer = 0;
1723 			ieee80211_scan_next(vap);
1724 			break;
1725 		}
1726 		case WPI_MISSED_BEACON:
1727 		{
1728 			struct wpi_missed_beacon *beacon =
1729 				(struct wpi_missed_beacon *)(desc + 1);
1730 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1731 
1732 			if (le32toh(beacon->consecutive) >=
1733 			    vap->iv_bmissthreshold) {
1734 				DPRINTF(("Beacon miss: %u >= %u\n",
1735 					 le32toh(beacon->consecutive),
1736 					 vap->iv_bmissthreshold));
1737 				taskqueue_enqueue(taskqueue_swi,
1738 				    &sc->sc_bmiss_task);
1739 			}
1740 			break;
1741 		}
1742 		}
1743 
1744 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1745 	}
1746 
1747 	/* tell the firmware what we have processed */
1748 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1749 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1750 }
1751 
1752 static void
1753 wpi_intr(void *arg)
1754 {
1755 	struct wpi_softc *sc = arg;
1756 	uint32_t r;
1757 
1758 	WPI_LOCK(sc);
1759 
1760 	r = WPI_READ(sc, WPI_INTR);
1761 	if (r == 0 || r == 0xffffffff) {
1762 		WPI_UNLOCK(sc);
1763 		return;
1764 	}
1765 
1766 	/* disable interrupts */
1767 	WPI_WRITE(sc, WPI_MASK, 0);
1768 	/* ack interrupts */
1769 	WPI_WRITE(sc, WPI_INTR, r);
1770 
1771 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1772 		device_printf(sc->sc_dev, "fatal firmware error\n");
1773 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1774 				"(Hardware Error)"));
1775 		wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1776 		sc->flags &= ~WPI_FLAG_BUSY;
1777 		WPI_UNLOCK(sc);
1778 		return;
1779 	}
1780 
1781 	if (r & WPI_RX_INTR)
1782 		wpi_notif_intr(sc);
1783 
1784 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1785 		wakeup(sc);
1786 
1787 	/* re-enable interrupts */
1788 	if (sc->sc_ifp->if_flags & IFF_UP)
1789 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1790 
1791 	WPI_UNLOCK(sc);
1792 }
1793 
1794 static uint8_t
1795 wpi_plcp_signal(int rate)
1796 {
1797 	switch (rate) {
1798 	/* CCK rates (returned values are device-dependent) */
1799 	case 2:		return 10;
1800 	case 4:		return 20;
1801 	case 11:	return 55;
1802 	case 22:	return 110;
1803 
1804 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1805 	/* R1-R4 (ral/ural is R4-R1) */
1806 	case 12:	return 0xd;
1807 	case 18:	return 0xf;
1808 	case 24:	return 0x5;
1809 	case 36:	return 0x7;
1810 	case 48:	return 0x9;
1811 	case 72:	return 0xb;
1812 	case 96:	return 0x1;
1813 	case 108:	return 0x3;
1814 
1815 	/* unsupported rates (should not get there) */
1816 	default:	return 0;
1817 	}
1818 }
1819 
1820 /* quickly determine if a given rate is CCK or OFDM */
1821 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1822 
1823 /*
1824  * Construct the data packet for a transmit buffer and acutally put
1825  * the buffer onto the transmit ring, kicking the card to process the
1826  * the buffer.
1827  */
1828 static int
1829 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1830 	int ac)
1831 {
1832 	struct ieee80211vap *vap = ni->ni_vap;
1833 	struct ifnet *ifp = sc->sc_ifp;
1834 	struct ieee80211com *ic = ifp->if_l2com;
1835 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1836 	struct wpi_tx_ring *ring = &sc->txq[ac];
1837 	struct wpi_tx_desc *desc;
1838 	struct wpi_tx_data *data;
1839 	struct wpi_tx_cmd *cmd;
1840 	struct wpi_cmd_data *tx;
1841 	struct ieee80211_frame *wh;
1842 	const struct ieee80211_txparam *tp;
1843 	struct ieee80211_key *k;
1844 	struct mbuf *mnew;
1845 	int i, error, nsegs, rate, hdrlen, ismcast;
1846 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1847 
1848 	desc = &ring->desc[ring->cur];
1849 	data = &ring->data[ring->cur];
1850 
1851 	wh = mtod(m0, struct ieee80211_frame *);
1852 
1853 	hdrlen = ieee80211_hdrsize(wh);
1854 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1855 
1856 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1857 		k = ieee80211_crypto_encap(ni, m0);
1858 		if (k == NULL) {
1859 			m_freem(m0);
1860 			return ENOBUFS;
1861 		}
1862 		/* packet header may have moved, reset our local pointer */
1863 		wh = mtod(m0, struct ieee80211_frame *);
1864 	}
1865 
1866 	cmd = &ring->cmd[ring->cur];
1867 	cmd->code = WPI_CMD_TX_DATA;
1868 	cmd->flags = 0;
1869 	cmd->qid = ring->qid;
1870 	cmd->idx = ring->cur;
1871 
1872 	tx = (struct wpi_cmd_data *)cmd->data;
1873 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1874 	tx->timeout = htole16(0);
1875 	tx->ofdm_mask = 0xff;
1876 	tx->cck_mask = 0x0f;
1877 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1878 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1879 	tx->len = htole16(m0->m_pkthdr.len);
1880 
1881 	if (!ismcast) {
1882 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1883 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1884 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1885 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1886 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1887 			tx->rts_ntries = 7;
1888 		}
1889 	}
1890 	/* pick a rate */
1891 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1892 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1893 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1894 		/* tell h/w to set timestamp in probe responses */
1895 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1896 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1897 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1898 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1899 			tx->timeout = htole16(3);
1900 		else
1901 			tx->timeout = htole16(2);
1902 		rate = tp->mgmtrate;
1903 	} else if (ismcast) {
1904 		rate = tp->mcastrate;
1905 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1906 		rate = tp->ucastrate;
1907 	} else {
1908 		(void) ieee80211_amrr_choose(ni, &WPI_NODE(ni)->amn);
1909 		rate = ni->ni_txrate;
1910 	}
1911 	tx->rate = wpi_plcp_signal(rate);
1912 
1913 	/* be very persistant at sending frames out */
1914 #if 0
1915 	tx->data_ntries = tp->maxretry;
1916 #else
1917 	tx->data_ntries = 15;		/* XXX way too high */
1918 #endif
1919 
1920 	if (bpf_peers_present(ifp->if_bpf)) {
1921 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1922 		tap->wt_flags = 0;
1923 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1924 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1925 		tap->wt_rate = rate;
1926 		tap->wt_hwqueue = ac;
1927 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1928 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1929 
1930 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1931 	}
1932 
1933 	/* save and trim IEEE802.11 header */
1934 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1935 	m_adj(m0, hdrlen);
1936 
1937 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1938 	    &nsegs, BUS_DMA_NOWAIT);
1939 	if (error != 0 && error != EFBIG) {
1940 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1941 		    error);
1942 		m_freem(m0);
1943 		return error;
1944 	}
1945 	if (error != 0) {
1946 		/* XXX use m_collapse */
1947 		mnew = m_defrag(m0, M_DONTWAIT);
1948 		if (mnew == NULL) {
1949 			device_printf(sc->sc_dev,
1950 			    "could not defragment mbuf\n");
1951 			m_freem(m0);
1952 			return ENOBUFS;
1953 		}
1954 		m0 = mnew;
1955 
1956 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1957 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1958 		if (error != 0) {
1959 			device_printf(sc->sc_dev,
1960 			    "could not map mbuf (error %d)\n", error);
1961 			m_freem(m0);
1962 			return error;
1963 		}
1964 	}
1965 
1966 	data->m = m0;
1967 	data->ni = ni;
1968 
1969 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1970 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1971 
1972 	/* first scatter/gather segment is used by the tx data command */
1973 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1974 	    (1 + nsegs) << 24);
1975 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1976 	    ring->cur * sizeof (struct wpi_tx_cmd));
1977 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1978 	for (i = 1; i <= nsegs; i++) {
1979 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1980 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1981 	}
1982 
1983 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1984 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1985 	    BUS_DMASYNC_PREWRITE);
1986 
1987 	ring->queued++;
1988 
1989 	/* kick ring */
1990 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1991 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1992 
1993 	return 0;
1994 }
1995 
1996 /**
1997  * Process data waiting to be sent on the IFNET output queue
1998  */
1999 static void
2000 wpi_start(struct ifnet *ifp)
2001 {
2002 	struct wpi_softc *sc = ifp->if_softc;
2003 
2004 	WPI_LOCK(sc);
2005 	wpi_start_locked(ifp);
2006 	WPI_UNLOCK(sc);
2007 }
2008 
2009 static void
2010 wpi_start_locked(struct ifnet *ifp)
2011 {
2012 	struct wpi_softc *sc = ifp->if_softc;
2013 	struct ieee80211_node *ni;
2014 	struct mbuf *m;
2015 	int ac;
2016 
2017 	WPI_LOCK_ASSERT(sc);
2018 
2019 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2020 		return;
2021 
2022 	for (;;) {
2023 		IFQ_POLL(&ifp->if_snd, m);
2024 		if (m == NULL)
2025 			break;
2026 		/* no QoS encapsulation for EAPOL frames */
2027 		ac = M_WME_GETAC(m);
2028 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2029 			/* there is no place left in this ring */
2030 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2031 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2032 			break;
2033 		}
2034 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2035 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2036 		m = ieee80211_encap(ni, m);
2037 		if (m == NULL) {
2038 			ieee80211_free_node(ni);
2039 			ifp->if_oerrors++;
2040 			continue;
2041 		}
2042 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2043 			ieee80211_free_node(ni);
2044 			ifp->if_oerrors++;
2045 			break;
2046 		}
2047 		sc->sc_tx_timer = 5;
2048 	}
2049 }
2050 
2051 static int
2052 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2053 	const struct ieee80211_bpf_params *params)
2054 {
2055 	struct ieee80211com *ic = ni->ni_ic;
2056 	struct ifnet *ifp = ic->ic_ifp;
2057 	struct wpi_softc *sc = ifp->if_softc;
2058 
2059 	/* prevent management frames from being sent if we're not ready */
2060 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2061 		m_freem(m);
2062 		ieee80211_free_node(ni);
2063 		return ENETDOWN;
2064 	}
2065 	WPI_LOCK(sc);
2066 
2067 	/* management frames go into ring 0 */
2068 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2069 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2070 		m_freem(m);
2071 		WPI_UNLOCK(sc);
2072 		ieee80211_free_node(ni);
2073 		return ENOBUFS;		/* XXX */
2074 	}
2075 
2076 	ifp->if_opackets++;
2077 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2078 		goto bad;
2079 	sc->sc_tx_timer = 5;
2080 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2081 
2082 	WPI_UNLOCK(sc);
2083 	return 0;
2084 bad:
2085 	ifp->if_oerrors++;
2086 	WPI_UNLOCK(sc);
2087 	ieee80211_free_node(ni);
2088 	return EIO;		/* XXX */
2089 }
2090 
2091 static int
2092 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2093 {
2094 	struct wpi_softc *sc = ifp->if_softc;
2095 	struct ieee80211com *ic = ifp->if_l2com;
2096 	struct ifreq *ifr = (struct ifreq *) data;
2097 	int error = 0, startall = 0;
2098 
2099 	switch (cmd) {
2100 	case SIOCSIFFLAGS:
2101 		WPI_LOCK(sc);
2102 		if ((ifp->if_flags & IFF_UP)) {
2103 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2104 				wpi_init_locked(sc, 0);
2105 				startall = 1;
2106 			}
2107 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2108 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2109 			wpi_stop_locked(sc);
2110 		WPI_UNLOCK(sc);
2111 		if (startall)
2112 			ieee80211_start_all(ic);
2113 		break;
2114 	case SIOCGIFMEDIA:
2115 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2116 		break;
2117 	case SIOCGIFADDR:
2118 		error = ether_ioctl(ifp, cmd, data);
2119 		break;
2120 	default:
2121 		error = EINVAL;
2122 		break;
2123 	}
2124 	return error;
2125 }
2126 
2127 /*
2128  * Extract various information from EEPROM.
2129  */
2130 static void
2131 wpi_read_eeprom(struct wpi_softc *sc)
2132 {
2133 	struct ifnet *ifp = sc->sc_ifp;
2134 	struct ieee80211com *ic = ifp->if_l2com;
2135 	int i;
2136 
2137 	/* read the hardware capabilities, revision and SKU type */
2138 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2139 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2140 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2141 
2142 	/* read the regulatory domain */
2143 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2144 
2145 	/* read in the hw MAC address */
2146 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2147 
2148 	/* read the list of authorized channels */
2149 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2150 		wpi_read_eeprom_channels(sc,i);
2151 
2152 	/* read the power level calibration info for each group */
2153 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2154 		wpi_read_eeprom_group(sc,i);
2155 }
2156 
2157 /*
2158  * Send a command to the firmware.
2159  */
2160 static int
2161 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2162 {
2163 	struct wpi_tx_ring *ring = &sc->cmdq;
2164 	struct wpi_tx_desc *desc;
2165 	struct wpi_tx_cmd *cmd;
2166 
2167 #ifdef WPI_DEBUG
2168 	if (!async) {
2169 		WPI_LOCK_ASSERT(sc);
2170 	}
2171 #endif
2172 
2173 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2174 		    async));
2175 
2176 	if (sc->flags & WPI_FLAG_BUSY) {
2177 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2178 		    __func__, code);
2179 		return EAGAIN;
2180 	}
2181 	sc->flags|= WPI_FLAG_BUSY;
2182 
2183 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2184 	    code, size));
2185 
2186 	desc = &ring->desc[ring->cur];
2187 	cmd = &ring->cmd[ring->cur];
2188 
2189 	cmd->code = code;
2190 	cmd->flags = 0;
2191 	cmd->qid = ring->qid;
2192 	cmd->idx = ring->cur;
2193 	memcpy(cmd->data, buf, size);
2194 
2195 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2196 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2197 		ring->cur * sizeof (struct wpi_tx_cmd));
2198 	desc->segs[0].len  = htole32(4 + size);
2199 
2200 	/* kick cmd ring */
2201 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2202 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2203 
2204 	if (async) {
2205 		sc->flags &= ~ WPI_FLAG_BUSY;
2206 		return 0;
2207 	}
2208 
2209 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2210 }
2211 
2212 static int
2213 wpi_wme_update(struct ieee80211com *ic)
2214 {
2215 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2216 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2217 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2218 	const struct wmeParams *wmep;
2219 	struct wpi_wme_setup wme;
2220 	int ac;
2221 
2222 	/* don't override default WME values if WME is not actually enabled */
2223 	if (!(ic->ic_flags & IEEE80211_F_WME))
2224 		return 0;
2225 
2226 	wme.flags = 0;
2227 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2228 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2229 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2230 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2231 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2232 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2233 
2234 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2235 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2236 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2237 	}
2238 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2239 #undef WPI_USEC
2240 #undef WPI_EXP2
2241 }
2242 
2243 /*
2244  * Configure h/w multi-rate retries.
2245  */
2246 static int
2247 wpi_mrr_setup(struct wpi_softc *sc)
2248 {
2249 	struct ifnet *ifp = sc->sc_ifp;
2250 	struct ieee80211com *ic = ifp->if_l2com;
2251 	struct wpi_mrr_setup mrr;
2252 	int i, error;
2253 
2254 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2255 
2256 	/* CCK rates (not used with 802.11a) */
2257 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2258 		mrr.rates[i].flags = 0;
2259 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2260 		/* fallback to the immediate lower CCK rate (if any) */
2261 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2262 		/* try one time at this rate before falling back to "next" */
2263 		mrr.rates[i].ntries = 1;
2264 	}
2265 
2266 	/* OFDM rates (not used with 802.11b) */
2267 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2268 		mrr.rates[i].flags = 0;
2269 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2270 		/* fallback to the immediate lower OFDM rate (if any) */
2271 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2272 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2273 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2274 			WPI_OFDM6 : WPI_CCK2) :
2275 		    i - 1;
2276 		/* try one time at this rate before falling back to "next" */
2277 		mrr.rates[i].ntries = 1;
2278 	}
2279 
2280 	/* setup MRR for control frames */
2281 	mrr.which = htole32(WPI_MRR_CTL);
2282 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2283 	if (error != 0) {
2284 		device_printf(sc->sc_dev,
2285 		    "could not setup MRR for control frames\n");
2286 		return error;
2287 	}
2288 
2289 	/* setup MRR for data frames */
2290 	mrr.which = htole32(WPI_MRR_DATA);
2291 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2292 	if (error != 0) {
2293 		device_printf(sc->sc_dev,
2294 		    "could not setup MRR for data frames\n");
2295 		return error;
2296 	}
2297 
2298 	return 0;
2299 }
2300 
2301 static void
2302 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2303 {
2304 	struct wpi_cmd_led led;
2305 
2306 	led.which = which;
2307 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2308 	led.off = off;
2309 	led.on = on;
2310 
2311 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2312 }
2313 
2314 static void
2315 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2316 {
2317 	struct wpi_cmd_tsf tsf;
2318 	uint64_t val, mod;
2319 
2320 	memset(&tsf, 0, sizeof tsf);
2321 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2322 	tsf.bintval = htole16(ni->ni_intval);
2323 	tsf.lintval = htole16(10);
2324 
2325 	/* compute remaining time until next beacon */
2326 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2327 	mod = le64toh(tsf.tstamp) % val;
2328 	tsf.binitval = htole32((uint32_t)(val - mod));
2329 
2330 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2331 		device_printf(sc->sc_dev, "could not enable TSF\n");
2332 }
2333 
2334 #if 0
2335 /*
2336  * Build a beacon frame that the firmware will broadcast periodically in
2337  * IBSS or HostAP modes.
2338  */
2339 static int
2340 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2341 {
2342 	struct ifnet *ifp = sc->sc_ifp;
2343 	struct ieee80211com *ic = ifp->if_l2com;
2344 	struct wpi_tx_ring *ring = &sc->cmdq;
2345 	struct wpi_tx_desc *desc;
2346 	struct wpi_tx_data *data;
2347 	struct wpi_tx_cmd *cmd;
2348 	struct wpi_cmd_beacon *bcn;
2349 	struct ieee80211_beacon_offsets bo;
2350 	struct mbuf *m0;
2351 	bus_addr_t physaddr;
2352 	int error;
2353 
2354 	desc = &ring->desc[ring->cur];
2355 	data = &ring->data[ring->cur];
2356 
2357 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2358 	if (m0 == NULL) {
2359 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2360 		return ENOMEM;
2361 	}
2362 
2363 	cmd = &ring->cmd[ring->cur];
2364 	cmd->code = WPI_CMD_SET_BEACON;
2365 	cmd->flags = 0;
2366 	cmd->qid = ring->qid;
2367 	cmd->idx = ring->cur;
2368 
2369 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2370 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2371 	bcn->id = WPI_ID_BROADCAST;
2372 	bcn->ofdm_mask = 0xff;
2373 	bcn->cck_mask = 0x0f;
2374 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2375 	bcn->len = htole16(m0->m_pkthdr.len);
2376 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2377 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2378 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2379 
2380 	/* save and trim IEEE802.11 header */
2381 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2382 	m_adj(m0, sizeof (struct ieee80211_frame));
2383 
2384 	/* assume beacon frame is contiguous */
2385 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2386 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2387 	if (error != 0) {
2388 		device_printf(sc->sc_dev, "could not map beacon\n");
2389 		m_freem(m0);
2390 		return error;
2391 	}
2392 
2393 	data->m = m0;
2394 
2395 	/* first scatter/gather segment is used by the beacon command */
2396 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2397 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2398 		ring->cur * sizeof (struct wpi_tx_cmd));
2399 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2400 	desc->segs[1].addr = htole32(physaddr);
2401 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2402 
2403 	/* kick cmd ring */
2404 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2405 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2406 
2407 	return 0;
2408 }
2409 #endif
2410 
2411 static int
2412 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2413 {
2414 	struct ieee80211com *ic = vap->iv_ic;
2415 	struct ieee80211_node *ni = vap->iv_bss;
2416 	struct wpi_node_info node;
2417 	int error;
2418 
2419 
2420 	/* update adapter's configuration */
2421 	sc->config.associd = 0;
2422 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2423 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2424 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2425 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2426 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2427 		    WPI_CONFIG_24GHZ);
2428 	}
2429 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2430 		sc->config.cck_mask  = 0;
2431 		sc->config.ofdm_mask = 0x15;
2432 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2433 		sc->config.cck_mask  = 0x03;
2434 		sc->config.ofdm_mask = 0;
2435 	} else {
2436 		/* XXX assume 802.11b/g */
2437 		sc->config.cck_mask  = 0x0f;
2438 		sc->config.ofdm_mask = 0x15;
2439 	}
2440 
2441 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2442 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2443 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2444 		sizeof (struct wpi_config), 1);
2445 	if (error != 0) {
2446 		device_printf(sc->sc_dev, "could not configure\n");
2447 		return error;
2448 	}
2449 
2450 	/* configuration has changed, set Tx power accordingly */
2451 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2452 		device_printf(sc->sc_dev, "could not set Tx power\n");
2453 		return error;
2454 	}
2455 
2456 	/* add default node */
2457 	memset(&node, 0, sizeof node);
2458 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2459 	node.id = WPI_ID_BSS;
2460 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2461 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2462 	node.action = htole32(WPI_ACTION_SET_RATE);
2463 	node.antenna = WPI_ANTENNA_BOTH;
2464 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2465 	if (error != 0)
2466 		device_printf(sc->sc_dev, "could not add BSS node\n");
2467 
2468 	return (error);
2469 }
2470 
2471 static int
2472 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2473 {
2474 	struct ieee80211com *ic = vap->iv_ic;
2475 	struct ieee80211_node *ni = vap->iv_bss;
2476 	int error;
2477 
2478 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2479 		/* link LED blinks while monitoring */
2480 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2481 		return 0;
2482 	}
2483 
2484 	wpi_enable_tsf(sc, ni);
2485 
2486 	/* update adapter's configuration */
2487 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2488 	/* short preamble/slot time are negotiated when associating */
2489 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2490 	    WPI_CONFIG_SHSLOT);
2491 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2492 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2493 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2494 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2495 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2496 
2497 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2498 
2499 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2500 		    sc->config.flags));
2501 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2502 		    wpi_config), 1);
2503 	if (error != 0) {
2504 		device_printf(sc->sc_dev, "could not update configuration\n");
2505 		return error;
2506 	}
2507 
2508 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2509 	if (error != 0) {
2510 		device_printf(sc->sc_dev, "could set txpower\n");
2511 		return error;
2512 	}
2513 
2514 	if (vap->iv_opmode == IEEE80211_M_STA) {
2515 		/* fake a join to init the tx rate */
2516 		wpi_newassoc(ni, 1);
2517 	}
2518 
2519 	/* link LED always on while associated */
2520 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2521 
2522 	/* start automatic rate control timer */
2523 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2524 
2525 	return (error);
2526 }
2527 
2528 /*
2529  * Send a scan request to the firmware.  Since this command is huge, we map it
2530  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2531  * much of this code is similar to that in wpi_cmd but because we must manually
2532  * construct the probe & channels, we duplicate what's needed here. XXX In the
2533  * future, this function should be modified to use wpi_cmd to help cleanup the
2534  * code base.
2535  */
2536 static int
2537 wpi_scan(struct wpi_softc *sc)
2538 {
2539 	struct ifnet *ifp = sc->sc_ifp;
2540 	struct ieee80211com *ic = ifp->if_l2com;
2541 	struct ieee80211_scan_state *ss = ic->ic_scan;
2542 	struct wpi_tx_ring *ring = &sc->cmdq;
2543 	struct wpi_tx_desc *desc;
2544 	struct wpi_tx_data *data;
2545 	struct wpi_tx_cmd *cmd;
2546 	struct wpi_scan_hdr *hdr;
2547 	struct wpi_scan_chan *chan;
2548 	struct ieee80211_frame *wh;
2549 	struct ieee80211_rateset *rs;
2550 	struct ieee80211_channel *c;
2551 	enum ieee80211_phymode mode;
2552 	uint8_t *frm;
2553 	int nrates, pktlen, error, i, nssid;
2554 	bus_addr_t physaddr;
2555 
2556 	desc = &ring->desc[ring->cur];
2557 	data = &ring->data[ring->cur];
2558 
2559 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2560 	if (data->m == NULL) {
2561 		device_printf(sc->sc_dev,
2562 		    "could not allocate mbuf for scan command\n");
2563 		return ENOMEM;
2564 	}
2565 
2566 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2567 	cmd->code = WPI_CMD_SCAN;
2568 	cmd->flags = 0;
2569 	cmd->qid = ring->qid;
2570 	cmd->idx = ring->cur;
2571 
2572 	hdr = (struct wpi_scan_hdr *)cmd->data;
2573 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2574 
2575 	/*
2576 	 * Move to the next channel if no packets are received within 5 msecs
2577 	 * after sending the probe request (this helps to reduce the duration
2578 	 * of active scans).
2579 	 */
2580 	hdr->quiet = htole16(5);
2581 	hdr->threshold = htole16(1);
2582 
2583 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2584 		/* send probe requests at 6Mbps */
2585 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2586 
2587 		/* Enable crc checking */
2588 		hdr->promotion = htole16(1);
2589 	} else {
2590 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2591 		/* send probe requests at 1Mbps */
2592 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2593 	}
2594 	hdr->tx.id = WPI_ID_BROADCAST;
2595 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2596 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2597 
2598 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2599 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2600 	for (i = 0; i < nssid; i++) {
2601 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2602 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2603 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2604 		    hdr->scan_essids[i].esslen);
2605 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2606 			printf("Scanning Essid: ");
2607 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2608 			    hdr->scan_essids[i].esslen);
2609 			printf("\n");
2610 		}
2611 	}
2612 
2613 	/*
2614 	 * Build a probe request frame.  Most of the following code is a
2615 	 * copy & paste of what is done in net80211.
2616 	 */
2617 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2618 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2619 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2620 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2621 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2622 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2623 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2624 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2625 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2626 
2627 	frm = (uint8_t *)(wh + 1);
2628 
2629 	/* add essid IE, the hardware will fill this in for us */
2630 	*frm++ = IEEE80211_ELEMID_SSID;
2631 	*frm++ = 0;
2632 
2633 	mode = ieee80211_chan2mode(ic->ic_curchan);
2634 	rs = &ic->ic_sup_rates[mode];
2635 
2636 	/* add supported rates IE */
2637 	*frm++ = IEEE80211_ELEMID_RATES;
2638 	nrates = rs->rs_nrates;
2639 	if (nrates > IEEE80211_RATE_SIZE)
2640 		nrates = IEEE80211_RATE_SIZE;
2641 	*frm++ = nrates;
2642 	memcpy(frm, rs->rs_rates, nrates);
2643 	frm += nrates;
2644 
2645 	/* add supported xrates IE */
2646 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2647 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2648 		*frm++ = IEEE80211_ELEMID_XRATES;
2649 		*frm++ = nrates;
2650 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2651 		frm += nrates;
2652 	}
2653 
2654 	/* setup length of probe request */
2655 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2656 
2657 	/*
2658 	 * Construct information about the channel that we
2659 	 * want to scan. The firmware expects this to be directly
2660 	 * after the scan probe request
2661 	 */
2662 	c = ic->ic_curchan;
2663 	chan = (struct wpi_scan_chan *)frm;
2664 	chan->chan = ieee80211_chan2ieee(ic, c);
2665 	chan->flags = 0;
2666 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2667 		chan->flags |= WPI_CHAN_ACTIVE;
2668 		if (nssid != 0)
2669 			chan->flags |= WPI_CHAN_DIRECT;
2670 	}
2671 	chan->gain_dsp = 0x6e; /* Default level */
2672 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2673 		chan->active = htole16(10);
2674 		chan->passive = htole16(ss->ss_maxdwell);
2675 		chan->gain_radio = 0x3b;
2676 	} else {
2677 		chan->active = htole16(20);
2678 		chan->passive = htole16(ss->ss_maxdwell);
2679 		chan->gain_radio = 0x28;
2680 	}
2681 
2682 	DPRINTFN(WPI_DEBUG_SCANNING,
2683 	    ("Scanning %u Passive: %d\n",
2684 	     chan->chan,
2685 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2686 
2687 	hdr->nchan++;
2688 	chan++;
2689 
2690 	frm += sizeof (struct wpi_scan_chan);
2691 #if 0
2692 	// XXX All Channels....
2693 	for (c  = &ic->ic_channels[1];
2694 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2695 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2696 			continue;
2697 
2698 		chan->chan = ieee80211_chan2ieee(ic, c);
2699 		chan->flags = 0;
2700 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2701 		    chan->flags |= WPI_CHAN_ACTIVE;
2702 		    if (ic->ic_des_ssid[0].len != 0)
2703 			chan->flags |= WPI_CHAN_DIRECT;
2704 		}
2705 		chan->gain_dsp = 0x6e; /* Default level */
2706 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2707 			chan->active = htole16(10);
2708 			chan->passive = htole16(110);
2709 			chan->gain_radio = 0x3b;
2710 		} else {
2711 			chan->active = htole16(20);
2712 			chan->passive = htole16(120);
2713 			chan->gain_radio = 0x28;
2714 		}
2715 
2716 		DPRINTFN(WPI_DEBUG_SCANNING,
2717 			 ("Scanning %u Passive: %d\n",
2718 			  chan->chan,
2719 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2720 
2721 		hdr->nchan++;
2722 		chan++;
2723 
2724 		frm += sizeof (struct wpi_scan_chan);
2725 	}
2726 #endif
2727 
2728 	hdr->len = htole16(frm - (uint8_t *)hdr);
2729 	pktlen = frm - (uint8_t *)cmd;
2730 
2731 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2732 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2733 	if (error != 0) {
2734 		device_printf(sc->sc_dev, "could not map scan command\n");
2735 		m_freem(data->m);
2736 		data->m = NULL;
2737 		return error;
2738 	}
2739 
2740 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2741 	desc->segs[0].addr = htole32(physaddr);
2742 	desc->segs[0].len  = htole32(pktlen);
2743 
2744 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2745 	    BUS_DMASYNC_PREWRITE);
2746 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2747 
2748 	/* kick cmd ring */
2749 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2750 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2751 
2752 	sc->sc_scan_timer = 5;
2753 	return 0;	/* will be notified async. of failure/success */
2754 }
2755 
2756 /**
2757  * Configure the card to listen to a particular channel, this transisions the
2758  * card in to being able to receive frames from remote devices.
2759  */
2760 static int
2761 wpi_config(struct wpi_softc *sc)
2762 {
2763 	struct ifnet *ifp = sc->sc_ifp;
2764 	struct ieee80211com *ic = ifp->if_l2com;
2765 	struct wpi_power power;
2766 	struct wpi_bluetooth bluetooth;
2767 	struct wpi_node_info node;
2768 	int error;
2769 
2770 	/* set power mode */
2771 	memset(&power, 0, sizeof power);
2772 	power.flags = htole32(WPI_POWER_CAM|0x8);
2773 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2774 	if (error != 0) {
2775 		device_printf(sc->sc_dev, "could not set power mode\n");
2776 		return error;
2777 	}
2778 
2779 	/* configure bluetooth coexistence */
2780 	memset(&bluetooth, 0, sizeof bluetooth);
2781 	bluetooth.flags = 3;
2782 	bluetooth.lead = 0xaa;
2783 	bluetooth.kill = 1;
2784 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2785 	    0);
2786 	if (error != 0) {
2787 		device_printf(sc->sc_dev,
2788 		    "could not configure bluetooth coexistence\n");
2789 		return error;
2790 	}
2791 
2792 	/* configure adapter */
2793 	memset(&sc->config, 0, sizeof (struct wpi_config));
2794 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2795 	/*set default channel*/
2796 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2797 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2798 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2799 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2800 		    WPI_CONFIG_24GHZ);
2801 	}
2802 	sc->config.filter = 0;
2803 	switch (ic->ic_opmode) {
2804 	case IEEE80211_M_STA:
2805 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2806 		sc->config.mode = WPI_MODE_STA;
2807 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2808 		break;
2809 	case IEEE80211_M_IBSS:
2810 	case IEEE80211_M_AHDEMO:
2811 		sc->config.mode = WPI_MODE_IBSS;
2812 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2813 					     WPI_FILTER_MULTICAST);
2814 		break;
2815 	case IEEE80211_M_HOSTAP:
2816 		sc->config.mode = WPI_MODE_HOSTAP;
2817 		break;
2818 	case IEEE80211_M_MONITOR:
2819 		sc->config.mode = WPI_MODE_MONITOR;
2820 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2821 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2822 		break;
2823 	}
2824 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2825 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2826 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2827 		sizeof (struct wpi_config), 0);
2828 	if (error != 0) {
2829 		device_printf(sc->sc_dev, "configure command failed\n");
2830 		return error;
2831 	}
2832 
2833 	/* configuration has changed, set Tx power accordingly */
2834 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2835 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2836 	    return error;
2837 	}
2838 
2839 	/* add broadcast node */
2840 	memset(&node, 0, sizeof node);
2841 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2842 	node.id = WPI_ID_BROADCAST;
2843 	node.rate = wpi_plcp_signal(2);
2844 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2845 	if (error != 0) {
2846 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2847 		return error;
2848 	}
2849 
2850 	/* Setup rate scalling */
2851 	error = wpi_mrr_setup(sc);
2852 	if (error != 0) {
2853 		device_printf(sc->sc_dev, "could not setup MRR\n");
2854 		return error;
2855 	}
2856 
2857 	return 0;
2858 }
2859 
2860 static void
2861 wpi_stop_master(struct wpi_softc *sc)
2862 {
2863 	uint32_t tmp;
2864 	int ntries;
2865 
2866 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2867 
2868 	tmp = WPI_READ(sc, WPI_RESET);
2869 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2870 
2871 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2872 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2873 		return;	/* already asleep */
2874 
2875 	for (ntries = 0; ntries < 100; ntries++) {
2876 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2877 			break;
2878 		DELAY(10);
2879 	}
2880 	if (ntries == 100) {
2881 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2882 	}
2883 }
2884 
2885 static int
2886 wpi_power_up(struct wpi_softc *sc)
2887 {
2888 	uint32_t tmp;
2889 	int ntries;
2890 
2891 	wpi_mem_lock(sc);
2892 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2893 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2894 	wpi_mem_unlock(sc);
2895 
2896 	for (ntries = 0; ntries < 5000; ntries++) {
2897 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2898 			break;
2899 		DELAY(10);
2900 	}
2901 	if (ntries == 5000) {
2902 		device_printf(sc->sc_dev,
2903 		    "timeout waiting for NIC to power up\n");
2904 		return ETIMEDOUT;
2905 	}
2906 	return 0;
2907 }
2908 
2909 static int
2910 wpi_reset(struct wpi_softc *sc)
2911 {
2912 	uint32_t tmp;
2913 	int ntries;
2914 
2915 	DPRINTFN(WPI_DEBUG_HW,
2916 	    ("Resetting the card - clearing any uploaded firmware\n"));
2917 
2918 	/* clear any pending interrupts */
2919 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2920 
2921 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2922 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2923 
2924 	tmp = WPI_READ(sc, WPI_CHICKEN);
2925 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2926 
2927 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2928 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2929 
2930 	/* wait for clock stabilization */
2931 	for (ntries = 0; ntries < 25000; ntries++) {
2932 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2933 			break;
2934 		DELAY(10);
2935 	}
2936 	if (ntries == 25000) {
2937 		device_printf(sc->sc_dev,
2938 		    "timeout waiting for clock stabilization\n");
2939 		return ETIMEDOUT;
2940 	}
2941 
2942 	/* initialize EEPROM */
2943 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2944 
2945 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2946 		device_printf(sc->sc_dev, "EEPROM not found\n");
2947 		return EIO;
2948 	}
2949 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2950 
2951 	return 0;
2952 }
2953 
2954 static void
2955 wpi_hw_config(struct wpi_softc *sc)
2956 {
2957 	uint32_t rev, hw;
2958 
2959 	/* voodoo from the Linux "driver".. */
2960 	hw = WPI_READ(sc, WPI_HWCONFIG);
2961 
2962 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2963 	if ((rev & 0xc0) == 0x40)
2964 		hw |= WPI_HW_ALM_MB;
2965 	else if (!(rev & 0x80))
2966 		hw |= WPI_HW_ALM_MM;
2967 
2968 	if (sc->cap == 0x80)
2969 		hw |= WPI_HW_SKU_MRC;
2970 
2971 	hw &= ~WPI_HW_REV_D;
2972 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2973 		hw |= WPI_HW_REV_D;
2974 
2975 	if (sc->type > 1)
2976 		hw |= WPI_HW_TYPE_B;
2977 
2978 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2979 }
2980 
2981 static void
2982 wpi_rfkill_resume(struct wpi_softc *sc)
2983 {
2984 	struct ifnet *ifp = sc->sc_ifp;
2985 	struct ieee80211com *ic = ifp->if_l2com;
2986 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2987 	int ntries;
2988 
2989 	/* enable firmware again */
2990 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2991 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2992 
2993 	/* wait for thermal sensors to calibrate */
2994 	for (ntries = 0; ntries < 1000; ntries++) {
2995 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2996 			break;
2997 		DELAY(10);
2998 	}
2999 
3000 	if (ntries == 1000) {
3001 		device_printf(sc->sc_dev,
3002 		    "timeout waiting for thermal calibration\n");
3003 		WPI_UNLOCK(sc);
3004 		return;
3005 	}
3006 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3007 
3008 	if (wpi_config(sc) != 0) {
3009 		device_printf(sc->sc_dev, "device config failed\n");
3010 		WPI_UNLOCK(sc);
3011 		return;
3012 	}
3013 
3014 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3015 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3016 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3017 
3018 	if (vap != NULL) {
3019 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3020 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3021 				taskqueue_enqueue(taskqueue_swi,
3022 				    &sc->sc_bmiss_task);
3023 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3024 			} else
3025 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3026 		} else {
3027 			ieee80211_scan_next(vap);
3028 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3029 		}
3030 	}
3031 
3032 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3033 }
3034 
3035 static void
3036 wpi_init_locked(struct wpi_softc *sc, int force)
3037 {
3038 	struct ifnet *ifp = sc->sc_ifp;
3039 	uint32_t tmp;
3040 	int ntries, qid;
3041 
3042 	wpi_stop_locked(sc);
3043 	(void)wpi_reset(sc);
3044 
3045 	wpi_mem_lock(sc);
3046 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3047 	DELAY(20);
3048 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3049 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3050 	wpi_mem_unlock(sc);
3051 
3052 	(void)wpi_power_up(sc);
3053 	wpi_hw_config(sc);
3054 
3055 	/* init Rx ring */
3056 	wpi_mem_lock(sc);
3057 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3058 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3059 	    offsetof(struct wpi_shared, next));
3060 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3061 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3062 	wpi_mem_unlock(sc);
3063 
3064 	/* init Tx rings */
3065 	wpi_mem_lock(sc);
3066 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3067 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3068 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3069 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3070 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3071 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3072 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3073 
3074 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3075 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3076 
3077 	for (qid = 0; qid < 6; qid++) {
3078 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3079 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3080 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3081 	}
3082 	wpi_mem_unlock(sc);
3083 
3084 	/* clear "radio off" and "disable command" bits (reversed logic) */
3085 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3086 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3087 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3088 
3089 	/* clear any pending interrupts */
3090 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3091 
3092 	/* enable interrupts */
3093 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3094 
3095 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3096 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3097 
3098 	if ((wpi_load_firmware(sc)) != 0) {
3099 	    device_printf(sc->sc_dev,
3100 		"A problem occurred loading the firmware to the driver\n");
3101 	    return;
3102 	}
3103 
3104 	/* At this point the firmware is up and running. If the hardware
3105 	 * RF switch is turned off thermal calibration will fail, though
3106 	 * the card is still happy to continue to accept commands, catch
3107 	 * this case and schedule a task to watch for it to be turned on.
3108 	 */
3109 	wpi_mem_lock(sc);
3110 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3111 	wpi_mem_unlock(sc);
3112 
3113 	if (!(tmp & 0x1)) {
3114 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3115 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3116 		goto out;
3117 	}
3118 
3119 	/* wait for thermal sensors to calibrate */
3120 	for (ntries = 0; ntries < 1000; ntries++) {
3121 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3122 			break;
3123 		DELAY(10);
3124 	}
3125 
3126 	if (ntries == 1000) {
3127 		device_printf(sc->sc_dev,
3128 		    "timeout waiting for thermal sensors calibration\n");
3129 		return;
3130 	}
3131 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3132 
3133 	if (wpi_config(sc) != 0) {
3134 		device_printf(sc->sc_dev, "device config failed\n");
3135 		return;
3136 	}
3137 
3138 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3139 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3140 out:
3141 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3142 }
3143 
3144 static void
3145 wpi_init(void *arg)
3146 {
3147 	struct wpi_softc *sc = arg;
3148 	struct ifnet *ifp = sc->sc_ifp;
3149 	struct ieee80211com *ic = ifp->if_l2com;
3150 
3151 	WPI_LOCK(sc);
3152 	wpi_init_locked(sc, 0);
3153 	WPI_UNLOCK(sc);
3154 
3155 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3156 		ieee80211_start_all(ic);		/* start all vaps */
3157 }
3158 
3159 static void
3160 wpi_stop_locked(struct wpi_softc *sc)
3161 {
3162 	struct ifnet *ifp = sc->sc_ifp;
3163 	uint32_t tmp;
3164 	int ac;
3165 
3166 	sc->sc_tx_timer = 0;
3167 	sc->sc_scan_timer = 0;
3168 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3169 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3170 	callout_stop(&sc->watchdog_to);
3171 	callout_stop(&sc->calib_to);
3172 
3173 
3174 	/* disable interrupts */
3175 	WPI_WRITE(sc, WPI_MASK, 0);
3176 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3177 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3178 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3179 
3180 	/* Clear any commands left in the command buffer */
3181 	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3182 	memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3183 	sc->sc_cmd_cur = 0;
3184 	sc->sc_cmd_next = 0;
3185 
3186 	wpi_mem_lock(sc);
3187 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3188 	wpi_mem_unlock(sc);
3189 
3190 	/* reset all Tx rings */
3191 	for (ac = 0; ac < 4; ac++)
3192 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3193 	wpi_reset_tx_ring(sc, &sc->cmdq);
3194 
3195 	/* reset Rx ring */
3196 	wpi_reset_rx_ring(sc, &sc->rxq);
3197 
3198 	wpi_mem_lock(sc);
3199 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3200 	wpi_mem_unlock(sc);
3201 
3202 	DELAY(5);
3203 
3204 	wpi_stop_master(sc);
3205 
3206 	tmp = WPI_READ(sc, WPI_RESET);
3207 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3208 	sc->flags &= ~WPI_FLAG_BUSY;
3209 }
3210 
3211 static void
3212 wpi_stop(struct wpi_softc *sc)
3213 {
3214 	WPI_LOCK(sc);
3215 	wpi_stop_locked(sc);
3216 	WPI_UNLOCK(sc);
3217 }
3218 
3219 static void
3220 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3221 {
3222 	struct ieee80211vap *vap = ni->ni_vap;
3223 	struct wpi_vap *wvp = WPI_VAP(vap);
3224 
3225 	ieee80211_amrr_node_init(&wvp->amrr, &WPI_NODE(ni)->amn, ni);
3226 }
3227 
3228 static void
3229 wpi_calib_timeout(void *arg)
3230 {
3231 	struct wpi_softc *sc = arg;
3232 	struct ifnet *ifp = sc->sc_ifp;
3233 	struct ieee80211com *ic = ifp->if_l2com;
3234 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3235 	int temp;
3236 
3237 	if (vap->iv_state != IEEE80211_S_RUN)
3238 		return;
3239 
3240 	/* update sensor data */
3241 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3242 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3243 
3244 	wpi_power_calibration(sc, temp);
3245 
3246 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3247 }
3248 
3249 /*
3250  * This function is called periodically (every 60 seconds) to adjust output
3251  * power to temperature changes.
3252  */
3253 static void
3254 wpi_power_calibration(struct wpi_softc *sc, int temp)
3255 {
3256 	struct ifnet *ifp = sc->sc_ifp;
3257 	struct ieee80211com *ic = ifp->if_l2com;
3258 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3259 
3260 	/* sanity-check read value */
3261 	if (temp < -260 || temp > 25) {
3262 		/* this can't be correct, ignore */
3263 		DPRINTFN(WPI_DEBUG_TEMP,
3264 		    ("out-of-range temperature reported: %d\n", temp));
3265 		return;
3266 	}
3267 
3268 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3269 
3270 	/* adjust Tx power if need be */
3271 	if (abs(temp - sc->temp) <= 6)
3272 		return;
3273 
3274 	sc->temp = temp;
3275 
3276 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3277 		/* just warn, too bad for the automatic calibration... */
3278 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3279 	}
3280 }
3281 
3282 /**
3283  * Read the eeprom to find out what channels are valid for the given
3284  * band and update net80211 with what we find.
3285  */
3286 static void
3287 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3288 {
3289 	struct ifnet *ifp = sc->sc_ifp;
3290 	struct ieee80211com *ic = ifp->if_l2com;
3291 	const struct wpi_chan_band *band = &wpi_bands[n];
3292 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3293 	int chan, i, offset, passive;
3294 
3295 	wpi_read_prom_data(sc, band->addr, channels,
3296 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3297 
3298 	for (i = 0; i < band->nchan; i++) {
3299 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3300 			DPRINTFN(WPI_DEBUG_HW,
3301 			    ("Channel Not Valid: %d, band %d\n",
3302 			     band->chan[i],n));
3303 			continue;
3304 		}
3305 
3306 		passive = 0;
3307 		chan = band->chan[i];
3308 		offset = ic->ic_nchans;
3309 
3310 		/* is active scan allowed on this channel? */
3311 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3312 			passive = IEEE80211_CHAN_PASSIVE;
3313 		}
3314 
3315 		if (n == 0) {	/* 2GHz band */
3316 			ic->ic_channels[offset].ic_ieee = chan;
3317 			ic->ic_channels[offset].ic_freq =
3318 			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3319 			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
3320 			offset++;
3321 			ic->ic_channels[offset].ic_ieee = chan;
3322 			ic->ic_channels[offset].ic_freq =
3323 			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3324 			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
3325 			offset++;
3326 
3327 		} else {	/* 5GHz band */
3328 			/*
3329 			 * Some 3945ABG adapters support channels 7, 8, 11
3330 			 * and 12 in the 2GHz *and* 5GHz bands.
3331 			 * Because of limitations in our net80211(9) stack,
3332 			 * we can't support these channels in 5GHz band.
3333 			 * XXX not true; just need to map to proper frequency
3334 			 */
3335 			if (chan <= 14)
3336 				continue;
3337 
3338 			ic->ic_channels[offset].ic_ieee = chan;
3339 			ic->ic_channels[offset].ic_freq =
3340 			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
3341 			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
3342 			offset++;
3343 		}
3344 
3345 		/* save maximum allowed power for this channel */
3346 		sc->maxpwr[chan] = channels[i].maxpwr;
3347 
3348 		ic->ic_nchans = offset;
3349 
3350 #if 0
3351 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3352 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3353 		//ic->ic_channels[chan].ic_minpower...
3354 		//ic->ic_channels[chan].ic_maxregtxpower...
3355 #endif
3356 
3357 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
3358 			    chan, channels[i].flags, sc->maxpwr[chan], offset));
3359 	}
3360 }
3361 
3362 static void
3363 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3364 {
3365 	struct wpi_power_group *group = &sc->groups[n];
3366 	struct wpi_eeprom_group rgroup;
3367 	int i;
3368 
3369 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3370 	    sizeof rgroup);
3371 
3372 	/* save power group information */
3373 	group->chan   = rgroup.chan;
3374 	group->maxpwr = rgroup.maxpwr;
3375 	/* temperature at which the samples were taken */
3376 	group->temp   = (int16_t)le16toh(rgroup.temp);
3377 
3378 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3379 		    group->chan, group->maxpwr, group->temp));
3380 
3381 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3382 		group->samples[i].index = rgroup.samples[i].index;
3383 		group->samples[i].power = rgroup.samples[i].power;
3384 
3385 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3386 			    group->samples[i].index, group->samples[i].power));
3387 	}
3388 }
3389 
3390 /*
3391  * Update Tx power to match what is defined for channel `c'.
3392  */
3393 static int
3394 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3395 {
3396 	struct ifnet *ifp = sc->sc_ifp;
3397 	struct ieee80211com *ic = ifp->if_l2com;
3398 	struct wpi_power_group *group;
3399 	struct wpi_cmd_txpower txpower;
3400 	u_int chan;
3401 	int i;
3402 
3403 	/* get channel number */
3404 	chan = ieee80211_chan2ieee(ic, c);
3405 
3406 	/* find the power group to which this channel belongs */
3407 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3408 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3409 			if (chan <= group->chan)
3410 				break;
3411 	} else
3412 		group = &sc->groups[0];
3413 
3414 	memset(&txpower, 0, sizeof txpower);
3415 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3416 	txpower.channel = htole16(chan);
3417 
3418 	/* set Tx power for all OFDM and CCK rates */
3419 	for (i = 0; i <= 11 ; i++) {
3420 		/* retrieve Tx power for this channel/rate combination */
3421 		int idx = wpi_get_power_index(sc, group, c,
3422 		    wpi_ridx_to_rate[i]);
3423 
3424 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3425 
3426 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3427 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3428 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3429 		} else {
3430 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3431 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3432 		}
3433 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3434 			    chan, wpi_ridx_to_rate[i], idx));
3435 	}
3436 
3437 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3438 }
3439 
3440 /*
3441  * Determine Tx power index for a given channel/rate combination.
3442  * This takes into account the regulatory information from EEPROM and the
3443  * current temperature.
3444  */
3445 static int
3446 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3447     struct ieee80211_channel *c, int rate)
3448 {
3449 /* fixed-point arithmetic division using a n-bit fractional part */
3450 #define fdivround(a, b, n)      \
3451 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3452 
3453 /* linear interpolation */
3454 #define interpolate(x, x1, y1, x2, y2, n)       \
3455 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3456 
3457 	struct ifnet *ifp = sc->sc_ifp;
3458 	struct ieee80211com *ic = ifp->if_l2com;
3459 	struct wpi_power_sample *sample;
3460 	int pwr, idx;
3461 	u_int chan;
3462 
3463 	/* get channel number */
3464 	chan = ieee80211_chan2ieee(ic, c);
3465 
3466 	/* default power is group's maximum power - 3dB */
3467 	pwr = group->maxpwr / 2;
3468 
3469 	/* decrease power for highest OFDM rates to reduce distortion */
3470 	switch (rate) {
3471 		case 72:	/* 36Mb/s */
3472 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3473 			break;
3474 		case 96:	/* 48Mb/s */
3475 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3476 			break;
3477 		case 108:	/* 54Mb/s */
3478 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3479 			break;
3480 	}
3481 
3482 	/* never exceed channel's maximum allowed Tx power */
3483 	pwr = min(pwr, sc->maxpwr[chan]);
3484 
3485 	/* retrieve power index into gain tables from samples */
3486 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3487 		if (pwr > sample[1].power)
3488 			break;
3489 	/* fixed-point linear interpolation using a 19-bit fractional part */
3490 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3491 	    sample[1].power, sample[1].index, 19);
3492 
3493 	/*
3494 	 *  Adjust power index based on current temperature
3495 	 *	- if colder than factory-calibrated: decreate output power
3496 	 *	- if warmer than factory-calibrated: increase output power
3497 	 */
3498 	idx -= (sc->temp - group->temp) * 11 / 100;
3499 
3500 	/* decrease power for CCK rates (-5dB) */
3501 	if (!WPI_RATE_IS_OFDM(rate))
3502 		idx += 10;
3503 
3504 	/* keep power index in a valid range */
3505 	if (idx < 0)
3506 		return 0;
3507 	if (idx > WPI_MAX_PWR_INDEX)
3508 		return WPI_MAX_PWR_INDEX;
3509 	return idx;
3510 
3511 #undef interpolate
3512 #undef fdivround
3513 }
3514 
3515 /**
3516  * Called by net80211 framework to indicate that a scan
3517  * is starting. This function doesn't actually do the scan,
3518  * wpi_scan_curchan starts things off. This function is more
3519  * of an early warning from the framework we should get ready
3520  * for the scan.
3521  */
3522 static void
3523 wpi_scan_start(struct ieee80211com *ic)
3524 {
3525 	struct ifnet *ifp = ic->ic_ifp;
3526 	struct wpi_softc *sc = ifp->if_softc;
3527 
3528 	wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3529 }
3530 
3531 /**
3532  * Called by the net80211 framework, indicates that the
3533  * scan has ended. If there is a scan in progress on the card
3534  * then it should be aborted.
3535  */
3536 static void
3537 wpi_scan_end(struct ieee80211com *ic)
3538 {
3539 	struct ifnet *ifp = ic->ic_ifp;
3540 	struct wpi_softc *sc = ifp->if_softc;
3541 
3542 	wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3543 }
3544 
3545 /**
3546  * Called by the net80211 framework to indicate to the driver
3547  * that the channel should be changed
3548  */
3549 static void
3550 wpi_set_channel(struct ieee80211com *ic)
3551 {
3552 	struct ifnet *ifp = ic->ic_ifp;
3553 	struct wpi_softc *sc = ifp->if_softc;
3554 
3555 	/*
3556 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3557 	 * are already taken care of by their respective firmware commands.
3558 	 */
3559 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3560 		wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3561 }
3562 
3563 /**
3564  * Called by net80211 to indicate that we need to scan the current
3565  * channel. The channel is previously be set via the wpi_set_channel
3566  * callback.
3567  */
3568 static void
3569 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3570 {
3571 	struct ieee80211vap *vap = ss->ss_vap;
3572 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3573 	struct wpi_softc *sc = ifp->if_softc;
3574 
3575 	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3576 }
3577 
3578 /**
3579  * Called by the net80211 framework to indicate
3580  * the minimum dwell time has been met, terminate the scan.
3581  * We don't actually terminate the scan as the firmware will notify
3582  * us when it's finished and we have no way to interrupt it.
3583  */
3584 static void
3585 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3586 {
3587 	/* NB: don't try to abort scan; wait for firmware to finish */
3588 }
3589 
3590 /**
3591  * The ops function is called to perform some actual work.
3592  * because we can't sleep from any of the ic callbacks, we queue an
3593  * op task with wpi_queue_cmd and have the taskqueue process that task.
3594  * The task that gets cued is a op task, which ends up calling this function.
3595  */
3596 static void
3597 wpi_ops(void *arg0, int pending)
3598 {
3599 	struct wpi_softc *sc = arg0;
3600 	struct ifnet *ifp = sc->sc_ifp;
3601 	struct ieee80211com *ic = ifp->if_l2com;
3602 	int cmd, arg, error;
3603 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3604 
3605 again:
3606 	WPI_CMD_LOCK(sc);
3607 	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3608 	arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3609 
3610 	if (cmd == 0) {
3611 		/* No more commands to process */
3612 		WPI_CMD_UNLOCK(sc);
3613 		return;
3614 	}
3615 	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3616 	sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3617 	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3618 	WPI_CMD_UNLOCK(sc);
3619 	WPI_LOCK(sc);
3620 
3621 	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3622 
3623 	switch (cmd) {
3624 	case WPI_RESTART:
3625 		wpi_init_locked(sc, 0);
3626 		WPI_UNLOCK(sc);
3627 		return;
3628 
3629 	case WPI_RF_RESTART:
3630 		wpi_rfkill_resume(sc);
3631 		WPI_UNLOCK(sc);
3632 		return;
3633 	}
3634 
3635 	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3636 		WPI_UNLOCK(sc);
3637 		return;
3638 	}
3639 
3640 	switch (cmd) {
3641 	case WPI_SCAN_START:
3642 		/* make the link LED blink while we're scanning */
3643 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3644 		sc->flags |= WPI_FLAG_SCANNING;
3645 		break;
3646 
3647 	case WPI_SCAN_STOP:
3648 		sc->flags &= ~WPI_FLAG_SCANNING;
3649 		break;
3650 
3651 	case WPI_SCAN_CURCHAN:
3652 		if (wpi_scan(sc))
3653 			ieee80211_cancel_scan(vap);
3654 		break;
3655 
3656 	case WPI_SET_CHAN:
3657 		error = wpi_config(sc);
3658 		if (error != 0)
3659 			device_printf(sc->sc_dev,
3660 			    "error %d settting channel\n", error);
3661 		break;
3662 
3663 	case WPI_AUTH:
3664 		/* The node must be registered in the firmware before auth */
3665 		error = wpi_auth(sc, vap);
3666 		WPI_UNLOCK(sc);
3667 		if (error != 0) {
3668 			device_printf(sc->sc_dev,
3669 			    "%s: could not move to auth state, error %d\n",
3670 			    __func__, error);
3671 			return;
3672 		}
3673 		IEEE80211_LOCK(ic);
3674 		WPI_VAP(vap)->newstate(vap, IEEE80211_S_AUTH, arg);
3675 		if (vap->iv_newstate_cb != NULL)
3676 			vap->iv_newstate_cb(vap, IEEE80211_S_AUTH, arg);
3677 		IEEE80211_UNLOCK(ic);
3678 		goto again;
3679 
3680 	case WPI_RUN:
3681 		error = wpi_run(sc, vap);
3682 		WPI_UNLOCK(sc);
3683 		if (error != 0) {
3684 			device_printf(sc->sc_dev,
3685 			    "%s: could not move to run state, error %d\n",
3686 			    __func__, error);
3687 			return;
3688 		}
3689 		IEEE80211_LOCK(ic);
3690 		WPI_VAP(vap)->newstate(vap, IEEE80211_S_RUN, arg);
3691 		if (vap->iv_newstate_cb != NULL)
3692 			vap->iv_newstate_cb(vap, IEEE80211_S_RUN, arg);
3693 		IEEE80211_UNLOCK(ic);
3694 		goto again;
3695 	}
3696 	WPI_UNLOCK(sc);
3697 
3698 	/* Take another pass */
3699 	goto again;
3700 }
3701 
3702 /**
3703  * queue a command for later execution in a different thread.
3704  * This is needed as the net80211 callbacks do not allow
3705  * sleeping, since we need to sleep to confirm commands have
3706  * been processed by the firmware, we must defer execution to
3707  * a sleep enabled thread.
3708  */
3709 static int
3710 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3711 {
3712 	WPI_CMD_LOCK(sc);
3713 
3714 	if (flush) {
3715 		memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3716 		memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3717 		sc->sc_cmd_cur = 0;
3718 		sc->sc_cmd_next = 0;
3719 	}
3720 
3721 	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3722 		WPI_CMD_UNLOCK(sc);
3723 		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3724 		return (EBUSY);
3725 	}
3726 
3727 	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3728 	sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3729 	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3730 
3731 	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3732 
3733 	WPI_CMD_UNLOCK(sc);
3734 
3735 	return 0;
3736 }
3737 
3738 /*
3739  * Allocate DMA-safe memory for firmware transfer.
3740  */
3741 static int
3742 wpi_alloc_fwmem(struct wpi_softc *sc)
3743 {
3744 	/* allocate enough contiguous space to store text and data */
3745 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3746 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3747 	    BUS_DMA_NOWAIT);
3748 }
3749 
3750 static void
3751 wpi_free_fwmem(struct wpi_softc *sc)
3752 {
3753 	wpi_dma_contig_free(&sc->fw_dma);
3754 }
3755 
3756 /**
3757  * Called every second, wpi_watchdog used by the watch dog timer
3758  * to check that the card is still alive
3759  */
3760 static void
3761 wpi_watchdog(void *arg)
3762 {
3763 	struct wpi_softc *sc = arg;
3764 	struct ifnet *ifp = sc->sc_ifp;
3765 	uint32_t tmp;
3766 
3767 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3768 
3769 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3770 		/* No need to lock firmware memory */
3771 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3772 
3773 		if ((tmp & 0x1) == 0) {
3774 			/* Radio kill switch is still off */
3775 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3776 			return;
3777 		}
3778 
3779 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3780 		wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3781 		return;
3782 	}
3783 
3784 	if (sc->sc_tx_timer > 0) {
3785 		if (--sc->sc_tx_timer == 0) {
3786 			device_printf(sc->sc_dev,"device timeout\n");
3787 			ifp->if_oerrors++;
3788 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3789 		}
3790 	}
3791 	if (sc->sc_scan_timer > 0) {
3792 		struct ifnet *ifp = sc->sc_ifp;
3793 		struct ieee80211com *ic = ifp->if_l2com;
3794 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3795 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3796 			device_printf(sc->sc_dev,"scan timeout\n");
3797 			ieee80211_cancel_scan(vap);
3798 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3799 		}
3800 	}
3801 
3802 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3803 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3804 }
3805 
3806 #ifdef WPI_DEBUG
3807 static const char *wpi_cmd_str(int cmd)
3808 {
3809 	switch (cmd) {
3810 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3811 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3812 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3813 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3814 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3815 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3816 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3817 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3818 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3819 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3820 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3821 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3822 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3823 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3824 
3825 	default:
3826 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3827 		return "UNKNOWN CMD";	/* Make the compiler happy */
3828 	}
3829 }
3830 #endif
3831 
3832 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3833 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3834 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3835 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3836