1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 /* 22 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 23 * 24 * The 3945ABG network adapter doesn't use traditional hardware as 25 * many other adaptors do. Instead at run time the eeprom is set into a known 26 * state and told to load boot firmware. The boot firmware loads an init and a 27 * main binary firmware image into SRAM on the card via DMA. 28 * Once the firmware is loaded, the driver/hw then 29 * communicate by way of circular dma rings via the SRAM to the firmware. 30 * 31 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 32 * The 4 tx data rings allow for prioritization QoS. 33 * 34 * The rx data ring consists of 32 dma buffers. Two registers are used to 35 * indicate where in the ring the driver and the firmware are up to. The 36 * driver sets the initial read index (reg1) and the initial write index (reg2), 37 * the firmware updates the read index (reg1) on rx of a packet and fires an 38 * interrupt. The driver then processes the buffers starting at reg1 indicating 39 * to the firmware which buffers have been accessed by updating reg2. At the 40 * same time allocating new memory for the processed buffer. 41 * 42 * A similar thing happens with the tx rings. The difference is the firmware 43 * stop processing buffers once the queue is full and until confirmation 44 * of a successful transmition (tx_done) has occurred. 45 * 46 * The command ring operates in the same manner as the tx queues. 47 * 48 * All communication direct to the card (ie eeprom) is classed as Stage1 49 * communication 50 * 51 * All communication via the firmware to the card is classed as State2. 52 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 53 * firmware. The bootstrap firmware and runtime firmware are loaded 54 * from host memory via dma to the card then told to execute. From this point 55 * on the majority of communications between the driver and the card goes 56 * via the firmware. 57 */ 58 59 #include "opt_wlan.h" 60 #include "opt_wpi.h" 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #include <machine/bus.h> 79 #include <machine/resource.h> 80 #include <sys/rman.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 85 #include <net/bpf.h> 86 #include <net/if.h> 87 #include <net/if_var.h> 88 #include <net/if_arp.h> 89 #include <net/ethernet.h> 90 #include <net/if_dl.h> 91 #include <net/if_media.h> 92 #include <net/if_types.h> 93 94 #include <netinet/in.h> 95 #include <netinet/in_systm.h> 96 #include <netinet/in_var.h> 97 #include <netinet/if_ether.h> 98 #include <netinet/ip.h> 99 100 #include <net80211/ieee80211_var.h> 101 #include <net80211/ieee80211_radiotap.h> 102 #include <net80211/ieee80211_regdomain.h> 103 #include <net80211/ieee80211_ratectl.h> 104 105 #include <dev/wpi/if_wpireg.h> 106 #include <dev/wpi/if_wpivar.h> 107 #include <dev/wpi/if_wpi_debug.h> 108 109 struct wpi_ident { 110 uint16_t vendor; 111 uint16_t device; 112 uint16_t subdevice; 113 const char *name; 114 }; 115 116 static const struct wpi_ident wpi_ident_table[] = { 117 /* The below entries support ABG regardless of the subid */ 118 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 119 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 120 /* The below entries only support BG */ 121 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 122 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 123 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 124 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 125 { 0, 0, 0, NULL } 126 }; 127 128 static int wpi_probe(device_t); 129 static int wpi_attach(device_t); 130 static void wpi_radiotap_attach(struct wpi_softc *); 131 static void wpi_sysctlattach(struct wpi_softc *); 132 static void wpi_init_beacon(struct wpi_vap *); 133 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 134 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 135 const uint8_t [IEEE80211_ADDR_LEN], 136 const uint8_t [IEEE80211_ADDR_LEN]); 137 static void wpi_vap_delete(struct ieee80211vap *); 138 static int wpi_detach(device_t); 139 static int wpi_shutdown(device_t); 140 static int wpi_suspend(device_t); 141 static int wpi_resume(device_t); 142 static int wpi_nic_lock(struct wpi_softc *); 143 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 144 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 145 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 146 void **, bus_size_t, bus_size_t); 147 static void wpi_dma_contig_free(struct wpi_dma_info *); 148 static int wpi_alloc_shared(struct wpi_softc *); 149 static void wpi_free_shared(struct wpi_softc *); 150 static int wpi_alloc_fwmem(struct wpi_softc *); 151 static void wpi_free_fwmem(struct wpi_softc *); 152 static int wpi_alloc_rx_ring(struct wpi_softc *); 153 static void wpi_update_rx_ring(struct wpi_softc *); 154 static void wpi_update_rx_ring_ps(struct wpi_softc *); 155 static void wpi_reset_rx_ring(struct wpi_softc *); 156 static void wpi_free_rx_ring(struct wpi_softc *); 157 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 158 uint8_t); 159 static void wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 160 static void wpi_update_tx_ring_ps(struct wpi_softc *, 161 struct wpi_tx_ring *); 162 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 163 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 164 static int wpi_read_eeprom(struct wpi_softc *, 165 uint8_t macaddr[IEEE80211_ADDR_LEN]); 166 static uint32_t wpi_eeprom_channel_flags(struct wpi_eeprom_chan *); 167 static void wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *, 168 struct ieee80211_channel[]); 169 static int wpi_read_eeprom_channels(struct wpi_softc *, uint8_t); 170 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *, 171 struct ieee80211_channel *); 172 static void wpi_getradiocaps(struct ieee80211com *, int, int *, 173 struct ieee80211_channel[]); 174 static int wpi_setregdomain(struct ieee80211com *, 175 struct ieee80211_regdomain *, int, 176 struct ieee80211_channel[]); 177 static int wpi_read_eeprom_group(struct wpi_softc *, uint8_t); 178 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 179 const uint8_t mac[IEEE80211_ADDR_LEN]); 180 static void wpi_node_free(struct ieee80211_node *); 181 static void wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int, 182 const struct ieee80211_rx_stats *, 183 int, int); 184 static void wpi_restore_node(void *, struct ieee80211_node *); 185 static void wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *); 186 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 187 static void wpi_calib_timeout(void *); 188 static void wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *, 189 struct wpi_rx_data *); 190 static void wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *, 191 struct wpi_rx_data *); 192 static void wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *); 193 static void wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *); 194 static void wpi_notif_intr(struct wpi_softc *); 195 static void wpi_wakeup_intr(struct wpi_softc *); 196 #ifdef WPI_DEBUG 197 static void wpi_debug_registers(struct wpi_softc *); 198 #endif 199 static void wpi_fatal_intr(struct wpi_softc *); 200 static void wpi_intr(void *); 201 static void wpi_free_txfrags(struct wpi_softc *, uint16_t); 202 static int wpi_cmd2(struct wpi_softc *, struct wpi_buf *); 203 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 204 struct ieee80211_node *); 205 static int wpi_tx_data_raw(struct wpi_softc *, struct mbuf *, 206 struct ieee80211_node *, 207 const struct ieee80211_bpf_params *); 208 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 209 const struct ieee80211_bpf_params *); 210 static int wpi_transmit(struct ieee80211com *, struct mbuf *); 211 static void wpi_watchdog_rfkill(void *); 212 static void wpi_scan_timeout(void *); 213 static void wpi_tx_timeout(void *); 214 static void wpi_parent(struct ieee80211com *); 215 static int wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t, 216 int); 217 static int wpi_mrr_setup(struct wpi_softc *); 218 static int wpi_add_node(struct wpi_softc *, struct ieee80211_node *); 219 static int wpi_add_broadcast_node(struct wpi_softc *, int); 220 static int wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *); 221 static void wpi_del_node(struct wpi_softc *, struct ieee80211_node *); 222 static int wpi_updateedca(struct ieee80211com *); 223 static void wpi_set_promisc(struct wpi_softc *); 224 static void wpi_update_promisc(struct ieee80211com *); 225 static void wpi_update_mcast(struct ieee80211com *); 226 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 227 static int wpi_set_timing(struct wpi_softc *, struct ieee80211_node *); 228 static void wpi_power_calibration(struct wpi_softc *); 229 static int wpi_set_txpower(struct wpi_softc *, int); 230 static int wpi_get_power_index(struct wpi_softc *, 231 struct wpi_power_group *, uint8_t, int, int); 232 static int wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int); 233 static int wpi_send_btcoex(struct wpi_softc *); 234 static int wpi_send_rxon(struct wpi_softc *, int, int); 235 static int wpi_config(struct wpi_softc *); 236 static uint16_t wpi_get_active_dwell_time(struct wpi_softc *, 237 struct ieee80211_channel *, uint8_t); 238 static uint16_t wpi_limit_dwell(struct wpi_softc *, uint16_t); 239 static uint16_t wpi_get_passive_dwell_time(struct wpi_softc *, 240 struct ieee80211_channel *); 241 static uint32_t wpi_get_scan_pause_time(uint32_t, uint16_t); 242 static int wpi_scan(struct wpi_softc *, struct ieee80211_channel *); 243 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 244 static int wpi_config_beacon(struct wpi_vap *); 245 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 246 static void wpi_update_beacon(struct ieee80211vap *, int); 247 static void wpi_newassoc(struct ieee80211_node *, int); 248 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 249 static int wpi_load_key(struct ieee80211_node *, 250 const struct ieee80211_key *); 251 static void wpi_load_key_cb(void *, struct ieee80211_node *); 252 static int wpi_set_global_keys(struct ieee80211_node *); 253 static int wpi_del_key(struct ieee80211_node *, 254 const struct ieee80211_key *); 255 static void wpi_del_key_cb(void *, struct ieee80211_node *); 256 static int wpi_process_key(struct ieee80211vap *, 257 const struct ieee80211_key *, int); 258 static int wpi_key_set(struct ieee80211vap *, 259 const struct ieee80211_key *); 260 static int wpi_key_delete(struct ieee80211vap *, 261 const struct ieee80211_key *); 262 static int wpi_post_alive(struct wpi_softc *); 263 static int wpi_load_bootcode(struct wpi_softc *, const uint8_t *, 264 uint32_t); 265 static int wpi_load_firmware(struct wpi_softc *); 266 static int wpi_read_firmware(struct wpi_softc *); 267 static void wpi_unload_firmware(struct wpi_softc *); 268 static int wpi_clock_wait(struct wpi_softc *); 269 static int wpi_apm_init(struct wpi_softc *); 270 static void wpi_apm_stop_master(struct wpi_softc *); 271 static void wpi_apm_stop(struct wpi_softc *); 272 static void wpi_nic_config(struct wpi_softc *); 273 static int wpi_hw_init(struct wpi_softc *); 274 static void wpi_hw_stop(struct wpi_softc *); 275 static void wpi_radio_on(void *, int); 276 static void wpi_radio_off(void *, int); 277 static int wpi_init(struct wpi_softc *); 278 static void wpi_stop_locked(struct wpi_softc *); 279 static void wpi_stop(struct wpi_softc *); 280 static void wpi_scan_start(struct ieee80211com *); 281 static void wpi_scan_end(struct ieee80211com *); 282 static void wpi_set_channel(struct ieee80211com *); 283 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 284 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 285 286 static device_method_t wpi_methods[] = { 287 /* Device interface */ 288 DEVMETHOD(device_probe, wpi_probe), 289 DEVMETHOD(device_attach, wpi_attach), 290 DEVMETHOD(device_detach, wpi_detach), 291 DEVMETHOD(device_shutdown, wpi_shutdown), 292 DEVMETHOD(device_suspend, wpi_suspend), 293 DEVMETHOD(device_resume, wpi_resume), 294 295 DEVMETHOD_END 296 }; 297 298 static driver_t wpi_driver = { 299 "wpi", 300 wpi_methods, 301 sizeof (struct wpi_softc) 302 }; 303 304 DRIVER_MODULE(wpi, pci, wpi_driver, NULL, NULL); 305 306 MODULE_VERSION(wpi, 1); 307 308 MODULE_DEPEND(wpi, pci, 1, 1, 1); 309 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 310 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 311 312 static int 313 wpi_probe(device_t dev) 314 { 315 const struct wpi_ident *ident; 316 317 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 318 if (pci_get_vendor(dev) == ident->vendor && 319 pci_get_device(dev) == ident->device) { 320 device_set_desc(dev, ident->name); 321 return (BUS_PROBE_DEFAULT); 322 } 323 } 324 return ENXIO; 325 } 326 327 static int 328 wpi_attach(device_t dev) 329 { 330 struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev); 331 struct ieee80211com *ic; 332 uint8_t i; 333 int error, rid; 334 #ifdef WPI_DEBUG 335 int supportsa = 1; 336 const struct wpi_ident *ident; 337 #endif 338 339 sc->sc_dev = dev; 340 341 #ifdef WPI_DEBUG 342 error = resource_int_value(device_get_name(sc->sc_dev), 343 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); 344 if (error != 0) 345 sc->sc_debug = 0; 346 #else 347 sc->sc_debug = 0; 348 #endif 349 350 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 351 352 /* 353 * Get the offset of the PCI Express Capability Structure in PCI 354 * Configuration Space. 355 */ 356 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 357 if (error != 0) { 358 device_printf(dev, "PCIe capability structure not found!\n"); 359 return error; 360 } 361 362 /* 363 * Some card's only support 802.11b/g not a, check to see if 364 * this is one such card. A 0x0 in the subdevice table indicates 365 * the entire subdevice range is to be ignored. 366 */ 367 #ifdef WPI_DEBUG 368 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 369 if (ident->subdevice && 370 pci_get_subdevice(dev) == ident->subdevice) { 371 supportsa = 0; 372 break; 373 } 374 } 375 #endif 376 377 /* Clear device-specific "PCI retry timeout" register (41h). */ 378 pci_write_config(dev, 0x41, 0, 1); 379 380 /* Enable bus-mastering. */ 381 pci_enable_busmaster(dev); 382 383 rid = PCIR_BAR(0); 384 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 385 RF_ACTIVE); 386 if (sc->mem == NULL) { 387 device_printf(dev, "can't map mem space\n"); 388 return ENOMEM; 389 } 390 sc->sc_st = rman_get_bustag(sc->mem); 391 sc->sc_sh = rman_get_bushandle(sc->mem); 392 393 rid = 1; 394 if (pci_alloc_msi(dev, &rid) == 0) 395 rid = 1; 396 else 397 rid = 0; 398 /* Install interrupt handler. */ 399 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 400 (rid != 0 ? 0 : RF_SHAREABLE)); 401 if (sc->irq == NULL) { 402 device_printf(dev, "can't map interrupt\n"); 403 error = ENOMEM; 404 goto fail; 405 } 406 407 WPI_LOCK_INIT(sc); 408 WPI_TX_LOCK_INIT(sc); 409 WPI_RXON_LOCK_INIT(sc); 410 WPI_NT_LOCK_INIT(sc); 411 WPI_TXQ_LOCK_INIT(sc); 412 WPI_TXQ_STATE_LOCK_INIT(sc); 413 414 /* Allocate DMA memory for firmware transfers. */ 415 if ((error = wpi_alloc_fwmem(sc)) != 0) { 416 device_printf(dev, 417 "could not allocate memory for firmware, error %d\n", 418 error); 419 goto fail; 420 } 421 422 /* Allocate shared page. */ 423 if ((error = wpi_alloc_shared(sc)) != 0) { 424 device_printf(dev, "could not allocate shared page\n"); 425 goto fail; 426 } 427 428 /* Allocate TX rings - 4 for QoS purposes, 1 for commands. */ 429 for (i = 0; i < WPI_DRV_NTXQUEUES; i++) { 430 if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 431 device_printf(dev, 432 "could not allocate TX ring %d, error %d\n", i, 433 error); 434 goto fail; 435 } 436 } 437 438 /* Allocate RX ring. */ 439 if ((error = wpi_alloc_rx_ring(sc)) != 0) { 440 device_printf(dev, "could not allocate RX ring, error %d\n", 441 error); 442 goto fail; 443 } 444 445 /* Clear pending interrupts. */ 446 WPI_WRITE(sc, WPI_INT, 0xffffffff); 447 448 ic = &sc->sc_ic; 449 ic->ic_softc = sc; 450 ic->ic_name = device_get_nameunit(dev); 451 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 452 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 453 454 /* Set device capabilities. */ 455 ic->ic_caps = 456 IEEE80211_C_STA /* station mode supported */ 457 | IEEE80211_C_IBSS /* IBSS mode supported */ 458 | IEEE80211_C_HOSTAP /* Host access point mode */ 459 | IEEE80211_C_MONITOR /* monitor mode supported */ 460 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 461 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 462 | IEEE80211_C_TXFRAG /* handle tx frags */ 463 | IEEE80211_C_TXPMGT /* tx power management */ 464 | IEEE80211_C_SHSLOT /* short slot time supported */ 465 | IEEE80211_C_WPA /* 802.11i */ 466 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 467 | IEEE80211_C_WME /* 802.11e */ 468 | IEEE80211_C_PMGT /* Station-side power mgmt */ 469 ; 470 471 ic->ic_cryptocaps = 472 IEEE80211_CRYPTO_AES_CCM; 473 474 /* 475 * Read in the eeprom and also setup the channels for 476 * net80211. We don't set the rates as net80211 does this for us 477 */ 478 if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) { 479 device_printf(dev, "could not read EEPROM, error %d\n", 480 error); 481 goto fail; 482 } 483 484 #ifdef WPI_DEBUG 485 if (bootverbose) { 486 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", 487 sc->domain); 488 device_printf(sc->sc_dev, "Hardware Type: %c\n", 489 sc->type > 1 ? 'B': '?'); 490 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 491 ((sc->rev & 0xf0) == 0xd0) ? 'D': '?'); 492 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 493 supportsa ? "does" : "does not"); 494 495 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must 496 check what sc->rev really represents - benjsc 20070615 */ 497 } 498 #endif 499 500 ieee80211_ifattach(ic); 501 ic->ic_vap_create = wpi_vap_create; 502 ic->ic_vap_delete = wpi_vap_delete; 503 ic->ic_parent = wpi_parent; 504 ic->ic_raw_xmit = wpi_raw_xmit; 505 ic->ic_transmit = wpi_transmit; 506 ic->ic_node_alloc = wpi_node_alloc; 507 sc->sc_node_free = ic->ic_node_free; 508 ic->ic_node_free = wpi_node_free; 509 ic->ic_wme.wme_update = wpi_updateedca; 510 ic->ic_update_promisc = wpi_update_promisc; 511 ic->ic_update_mcast = wpi_update_mcast; 512 ic->ic_newassoc = wpi_newassoc; 513 ic->ic_scan_start = wpi_scan_start; 514 ic->ic_scan_end = wpi_scan_end; 515 ic->ic_set_channel = wpi_set_channel; 516 ic->ic_scan_curchan = wpi_scan_curchan; 517 ic->ic_scan_mindwell = wpi_scan_mindwell; 518 ic->ic_getradiocaps = wpi_getradiocaps; 519 ic->ic_setregdomain = wpi_setregdomain; 520 521 sc->sc_update_rx_ring = wpi_update_rx_ring; 522 sc->sc_update_tx_ring = wpi_update_tx_ring; 523 524 wpi_radiotap_attach(sc); 525 526 /* Setup Tx status flags (constant). */ 527 sc->sc_txs.flags = IEEE80211_RATECTL_STATUS_PKTLEN | 528 IEEE80211_RATECTL_STATUS_SHORT_RETRY | 529 IEEE80211_RATECTL_STATUS_LONG_RETRY; 530 531 callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0); 532 callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0); 533 callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0); 534 callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0); 535 TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc); 536 TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc); 537 538 wpi_sysctlattach(sc); 539 540 /* 541 * Hook our interrupt after all initialization is complete. 542 */ 543 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 544 NULL, wpi_intr, sc, &sc->sc_ih); 545 if (error != 0) { 546 device_printf(dev, "can't establish interrupt, error %d\n", 547 error); 548 goto fail; 549 } 550 551 if (bootverbose) 552 ieee80211_announce(ic); 553 554 #ifdef WPI_DEBUG 555 if (sc->sc_debug & WPI_DEBUG_HW) 556 ieee80211_announce_channels(ic); 557 #endif 558 559 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 560 return 0; 561 562 fail: wpi_detach(dev); 563 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 564 return error; 565 } 566 567 /* 568 * Attach the interface to 802.11 radiotap. 569 */ 570 static void 571 wpi_radiotap_attach(struct wpi_softc *sc) 572 { 573 struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap; 574 struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap; 575 576 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 577 ieee80211_radiotap_attach(&sc->sc_ic, 578 &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT, 579 &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT); 580 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 581 } 582 583 static void 584 wpi_sysctlattach(struct wpi_softc *sc) 585 { 586 #ifdef WPI_DEBUG 587 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 588 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 589 590 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 591 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, 592 "control debugging printfs"); 593 #endif 594 } 595 596 static void 597 wpi_init_beacon(struct wpi_vap *wvp) 598 { 599 struct wpi_buf *bcn = &wvp->wv_bcbuf; 600 struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data; 601 602 cmd->id = WPI_ID_BROADCAST; 603 cmd->ofdm_mask = 0xff; 604 cmd->cck_mask = 0x0f; 605 cmd->lifetime = htole32(WPI_LIFETIME_INFINITE); 606 607 /* 608 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue 609 * XXX by using WPI_TX_NEED_ACK instead (with some side effects). 610 */ 611 cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP); 612 613 bcn->code = WPI_CMD_SET_BEACON; 614 bcn->ac = WPI_CMD_QUEUE_NUM; 615 bcn->size = sizeof(struct wpi_cmd_beacon); 616 } 617 618 static struct ieee80211vap * 619 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 620 enum ieee80211_opmode opmode, int flags, 621 const uint8_t bssid[IEEE80211_ADDR_LEN], 622 const uint8_t mac[IEEE80211_ADDR_LEN]) 623 { 624 struct wpi_vap *wvp; 625 struct ieee80211vap *vap; 626 627 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 628 return NULL; 629 630 wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 631 vap = &wvp->wv_vap; 632 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 633 634 if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) { 635 WPI_VAP_LOCK_INIT(wvp); 636 wpi_init_beacon(wvp); 637 } 638 639 /* Override with driver methods. */ 640 vap->iv_key_set = wpi_key_set; 641 vap->iv_key_delete = wpi_key_delete; 642 if (opmode == IEEE80211_M_IBSS) { 643 wvp->wv_recv_mgmt = vap->iv_recv_mgmt; 644 vap->iv_recv_mgmt = wpi_ibss_recv_mgmt; 645 } 646 wvp->wv_newstate = vap->iv_newstate; 647 vap->iv_newstate = wpi_newstate; 648 vap->iv_update_beacon = wpi_update_beacon; 649 vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1; 650 651 ieee80211_ratectl_init(vap); 652 /* Complete setup. */ 653 ieee80211_vap_attach(vap, ieee80211_media_change, 654 ieee80211_media_status, mac); 655 ic->ic_opmode = opmode; 656 return vap; 657 } 658 659 static void 660 wpi_vap_delete(struct ieee80211vap *vap) 661 { 662 struct wpi_vap *wvp = WPI_VAP(vap); 663 struct wpi_buf *bcn = &wvp->wv_bcbuf; 664 enum ieee80211_opmode opmode = vap->iv_opmode; 665 666 ieee80211_ratectl_deinit(vap); 667 ieee80211_vap_detach(vap); 668 669 if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) { 670 if (bcn->m != NULL) 671 m_freem(bcn->m); 672 673 WPI_VAP_LOCK_DESTROY(wvp); 674 } 675 676 free(wvp, M_80211_VAP); 677 } 678 679 static int 680 wpi_detach(device_t dev) 681 { 682 struct wpi_softc *sc = device_get_softc(dev); 683 struct ieee80211com *ic = &sc->sc_ic; 684 uint8_t qid; 685 686 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 687 688 if (ic->ic_vap_create == wpi_vap_create) { 689 ieee80211_draintask(ic, &sc->sc_radioon_task); 690 ieee80211_draintask(ic, &sc->sc_radiooff_task); 691 692 wpi_stop(sc); 693 694 callout_drain(&sc->watchdog_rfkill); 695 callout_drain(&sc->tx_timeout); 696 callout_drain(&sc->scan_timeout); 697 callout_drain(&sc->calib_to); 698 ieee80211_ifdetach(ic); 699 } 700 701 /* Uninstall interrupt handler. */ 702 if (sc->irq != NULL) { 703 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 704 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), 705 sc->irq); 706 pci_release_msi(dev); 707 } 708 709 if (sc->txq[0].data_dmat) { 710 /* Free DMA resources. */ 711 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) 712 wpi_free_tx_ring(sc, &sc->txq[qid]); 713 714 wpi_free_rx_ring(sc); 715 wpi_free_shared(sc); 716 } 717 718 if (sc->fw_dma.tag) 719 wpi_free_fwmem(sc); 720 721 if (sc->mem != NULL) 722 bus_release_resource(dev, SYS_RES_MEMORY, 723 rman_get_rid(sc->mem), sc->mem); 724 725 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 726 WPI_TXQ_STATE_LOCK_DESTROY(sc); 727 WPI_TXQ_LOCK_DESTROY(sc); 728 WPI_NT_LOCK_DESTROY(sc); 729 WPI_RXON_LOCK_DESTROY(sc); 730 WPI_TX_LOCK_DESTROY(sc); 731 WPI_LOCK_DESTROY(sc); 732 return 0; 733 } 734 735 static int 736 wpi_shutdown(device_t dev) 737 { 738 struct wpi_softc *sc = device_get_softc(dev); 739 740 wpi_stop(sc); 741 return 0; 742 } 743 744 static int 745 wpi_suspend(device_t dev) 746 { 747 struct wpi_softc *sc = device_get_softc(dev); 748 struct ieee80211com *ic = &sc->sc_ic; 749 750 ieee80211_suspend_all(ic); 751 return 0; 752 } 753 754 static int 755 wpi_resume(device_t dev) 756 { 757 struct wpi_softc *sc = device_get_softc(dev); 758 struct ieee80211com *ic = &sc->sc_ic; 759 760 /* Clear device-specific "PCI retry timeout" register (41h). */ 761 pci_write_config(dev, 0x41, 0, 1); 762 763 ieee80211_resume_all(ic); 764 return 0; 765 } 766 767 /* 768 * Grab exclusive access to NIC memory. 769 */ 770 static int 771 wpi_nic_lock(struct wpi_softc *sc) 772 { 773 int ntries; 774 775 /* Request exclusive access to NIC. */ 776 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 777 778 /* Spin until we actually get the lock. */ 779 for (ntries = 0; ntries < 1000; ntries++) { 780 if ((WPI_READ(sc, WPI_GP_CNTRL) & 781 (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) == 782 WPI_GP_CNTRL_MAC_ACCESS_ENA) 783 return 0; 784 DELAY(10); 785 } 786 787 device_printf(sc->sc_dev, "could not lock memory\n"); 788 789 return ETIMEDOUT; 790 } 791 792 /* 793 * Release lock on NIC memory. 794 */ 795 static __inline void 796 wpi_nic_unlock(struct wpi_softc *sc) 797 { 798 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 799 } 800 801 static __inline uint32_t 802 wpi_prph_read(struct wpi_softc *sc, uint32_t addr) 803 { 804 WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr); 805 WPI_BARRIER_READ_WRITE(sc); 806 return WPI_READ(sc, WPI_PRPH_RDATA); 807 } 808 809 static __inline void 810 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data) 811 { 812 WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr); 813 WPI_BARRIER_WRITE(sc); 814 WPI_WRITE(sc, WPI_PRPH_WDATA, data); 815 } 816 817 static __inline void 818 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) 819 { 820 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask); 821 } 822 823 static __inline void 824 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) 825 { 826 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask); 827 } 828 829 static __inline void 830 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr, 831 const uint32_t *data, uint32_t count) 832 { 833 for (; count != 0; count--, data++, addr += 4) 834 wpi_prph_write(sc, addr, *data); 835 } 836 837 static __inline uint32_t 838 wpi_mem_read(struct wpi_softc *sc, uint32_t addr) 839 { 840 WPI_WRITE(sc, WPI_MEM_RADDR, addr); 841 WPI_BARRIER_READ_WRITE(sc); 842 return WPI_READ(sc, WPI_MEM_RDATA); 843 } 844 845 static __inline void 846 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data, 847 int count) 848 { 849 for (; count > 0; count--, addr += 4) 850 *data++ = wpi_mem_read(sc, addr); 851 } 852 853 static int 854 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count) 855 { 856 uint8_t *out = data; 857 uint32_t val; 858 int error, ntries; 859 860 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 861 862 if ((error = wpi_nic_lock(sc)) != 0) 863 return error; 864 865 for (; count > 0; count -= 2, addr++) { 866 WPI_WRITE(sc, WPI_EEPROM, addr << 2); 867 for (ntries = 0; ntries < 10; ntries++) { 868 val = WPI_READ(sc, WPI_EEPROM); 869 if (val & WPI_EEPROM_READ_VALID) 870 break; 871 DELAY(5); 872 } 873 if (ntries == 10) { 874 device_printf(sc->sc_dev, 875 "timeout reading ROM at 0x%x\n", addr); 876 return ETIMEDOUT; 877 } 878 *out++= val >> 16; 879 if (count > 1) 880 *out ++= val >> 24; 881 } 882 883 wpi_nic_unlock(sc); 884 885 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 886 887 return 0; 888 } 889 890 static void 891 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 892 { 893 if (error != 0) 894 return; 895 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 896 *(bus_addr_t *)arg = segs[0].ds_addr; 897 } 898 899 /* 900 * Allocates a contiguous block of dma memory of the requested size and 901 * alignment. 902 */ 903 static int 904 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 905 void **kvap, bus_size_t size, bus_size_t alignment) 906 { 907 int error; 908 909 dma->tag = NULL; 910 dma->size = size; 911 912 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 913 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 914 1, size, 0, NULL, NULL, &dma->tag); 915 if (error != 0) 916 goto fail; 917 918 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 919 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 920 if (error != 0) 921 goto fail; 922 923 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 924 wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 925 if (error != 0) 926 goto fail; 927 928 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 929 930 if (kvap != NULL) 931 *kvap = dma->vaddr; 932 933 return 0; 934 935 fail: wpi_dma_contig_free(dma); 936 return error; 937 } 938 939 static void 940 wpi_dma_contig_free(struct wpi_dma_info *dma) 941 { 942 if (dma->vaddr != NULL) { 943 bus_dmamap_sync(dma->tag, dma->map, 944 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 945 bus_dmamap_unload(dma->tag, dma->map); 946 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 947 dma->vaddr = NULL; 948 } 949 if (dma->tag != NULL) { 950 bus_dma_tag_destroy(dma->tag); 951 dma->tag = NULL; 952 } 953 } 954 955 /* 956 * Allocate a shared page between host and NIC. 957 */ 958 static int 959 wpi_alloc_shared(struct wpi_softc *sc) 960 { 961 /* Shared buffer must be aligned on a 4KB boundary. */ 962 return wpi_dma_contig_alloc(sc, &sc->shared_dma, 963 (void **)&sc->shared, sizeof (struct wpi_shared), 4096); 964 } 965 966 static void 967 wpi_free_shared(struct wpi_softc *sc) 968 { 969 wpi_dma_contig_free(&sc->shared_dma); 970 } 971 972 /* 973 * Allocate DMA-safe memory for firmware transfer. 974 */ 975 static int 976 wpi_alloc_fwmem(struct wpi_softc *sc) 977 { 978 /* Must be aligned on a 16-byte boundary. */ 979 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 980 WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16); 981 } 982 983 static void 984 wpi_free_fwmem(struct wpi_softc *sc) 985 { 986 wpi_dma_contig_free(&sc->fw_dma); 987 } 988 989 static int 990 wpi_alloc_rx_ring(struct wpi_softc *sc) 991 { 992 struct wpi_rx_ring *ring = &sc->rxq; 993 bus_size_t size; 994 int i, error; 995 996 ring->cur = 0; 997 ring->update = 0; 998 999 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1000 1001 /* Allocate RX descriptors (16KB aligned.) */ 1002 size = WPI_RX_RING_COUNT * sizeof (uint32_t); 1003 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1004 (void **)&ring->desc, size, WPI_RING_DMA_ALIGN); 1005 if (error != 0) { 1006 device_printf(sc->sc_dev, 1007 "%s: could not allocate RX ring DMA memory, error %d\n", 1008 __func__, error); 1009 goto fail; 1010 } 1011 1012 /* Create RX buffer DMA tag. */ 1013 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1014 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1015 MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat); 1016 if (error != 0) { 1017 device_printf(sc->sc_dev, 1018 "%s: could not create RX buf DMA tag, error %d\n", 1019 __func__, error); 1020 goto fail; 1021 } 1022 1023 /* 1024 * Allocate and map RX buffers. 1025 */ 1026 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1027 struct wpi_rx_data *data = &ring->data[i]; 1028 bus_addr_t paddr; 1029 1030 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1031 if (error != 0) { 1032 device_printf(sc->sc_dev, 1033 "%s: could not create RX buf DMA map, error %d\n", 1034 __func__, error); 1035 goto fail; 1036 } 1037 1038 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1039 if (data->m == NULL) { 1040 device_printf(sc->sc_dev, 1041 "%s: could not allocate RX mbuf\n", __func__); 1042 error = ENOBUFS; 1043 goto fail; 1044 } 1045 1046 error = bus_dmamap_load(ring->data_dmat, data->map, 1047 mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr, 1048 &paddr, BUS_DMA_NOWAIT); 1049 if (error != 0 && error != EFBIG) { 1050 device_printf(sc->sc_dev, 1051 "%s: can't map mbuf (error %d)\n", __func__, 1052 error); 1053 goto fail; 1054 } 1055 1056 /* Set physical address of RX buffer. */ 1057 ring->desc[i] = htole32(paddr); 1058 } 1059 1060 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1061 BUS_DMASYNC_PREWRITE); 1062 1063 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1064 1065 return 0; 1066 1067 fail: wpi_free_rx_ring(sc); 1068 1069 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1070 1071 return error; 1072 } 1073 1074 static void 1075 wpi_update_rx_ring(struct wpi_softc *sc) 1076 { 1077 WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7); 1078 } 1079 1080 static void 1081 wpi_update_rx_ring_ps(struct wpi_softc *sc) 1082 { 1083 struct wpi_rx_ring *ring = &sc->rxq; 1084 1085 if (ring->update != 0) { 1086 /* Wait for INT_WAKEUP event. */ 1087 return; 1088 } 1089 1090 WPI_TXQ_LOCK(sc); 1091 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1092 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) { 1093 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n", 1094 __func__); 1095 ring->update = 1; 1096 } else { 1097 wpi_update_rx_ring(sc); 1098 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1099 } 1100 WPI_TXQ_UNLOCK(sc); 1101 } 1102 1103 static void 1104 wpi_reset_rx_ring(struct wpi_softc *sc) 1105 { 1106 struct wpi_rx_ring *ring = &sc->rxq; 1107 int ntries; 1108 1109 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1110 1111 if (wpi_nic_lock(sc) == 0) { 1112 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0); 1113 for (ntries = 0; ntries < 1000; ntries++) { 1114 if (WPI_READ(sc, WPI_FH_RX_STATUS) & 1115 WPI_FH_RX_STATUS_IDLE) 1116 break; 1117 DELAY(10); 1118 } 1119 wpi_nic_unlock(sc); 1120 } 1121 1122 ring->cur = 0; 1123 ring->update = 0; 1124 } 1125 1126 static void 1127 wpi_free_rx_ring(struct wpi_softc *sc) 1128 { 1129 struct wpi_rx_ring *ring = &sc->rxq; 1130 int i; 1131 1132 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1133 1134 wpi_dma_contig_free(&ring->desc_dma); 1135 1136 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1137 struct wpi_rx_data *data = &ring->data[i]; 1138 1139 if (data->m != NULL) { 1140 bus_dmamap_sync(ring->data_dmat, data->map, 1141 BUS_DMASYNC_POSTREAD); 1142 bus_dmamap_unload(ring->data_dmat, data->map); 1143 m_freem(data->m); 1144 data->m = NULL; 1145 } 1146 if (data->map != NULL) 1147 bus_dmamap_destroy(ring->data_dmat, data->map); 1148 } 1149 if (ring->data_dmat != NULL) { 1150 bus_dma_tag_destroy(ring->data_dmat); 1151 ring->data_dmat = NULL; 1152 } 1153 } 1154 1155 static int 1156 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid) 1157 { 1158 bus_addr_t paddr; 1159 bus_size_t size; 1160 int i, error; 1161 1162 ring->qid = qid; 1163 ring->queued = 0; 1164 ring->cur = 0; 1165 ring->pending = 0; 1166 ring->update = 0; 1167 1168 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1169 1170 /* Allocate TX descriptors (16KB aligned.) */ 1171 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc); 1172 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1173 size, WPI_RING_DMA_ALIGN); 1174 if (error != 0) { 1175 device_printf(sc->sc_dev, 1176 "%s: could not allocate TX ring DMA memory, error %d\n", 1177 __func__, error); 1178 goto fail; 1179 } 1180 1181 /* Update shared area with ring physical address. */ 1182 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1183 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 1184 BUS_DMASYNC_PREWRITE); 1185 1186 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd); 1187 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1188 size, 4); 1189 if (error != 0) { 1190 device_printf(sc->sc_dev, 1191 "%s: could not allocate TX cmd DMA memory, error %d\n", 1192 __func__, error); 1193 goto fail; 1194 } 1195 1196 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1197 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1198 WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 1199 if (error != 0) { 1200 device_printf(sc->sc_dev, 1201 "%s: could not create TX buf DMA tag, error %d\n", 1202 __func__, error); 1203 goto fail; 1204 } 1205 1206 paddr = ring->cmd_dma.paddr; 1207 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 1208 struct wpi_tx_data *data = &ring->data[i]; 1209 1210 data->cmd_paddr = paddr; 1211 paddr += sizeof (struct wpi_tx_cmd); 1212 1213 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1214 if (error != 0) { 1215 device_printf(sc->sc_dev, 1216 "%s: could not create TX buf DMA map, error %d\n", 1217 __func__, error); 1218 goto fail; 1219 } 1220 } 1221 1222 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1223 1224 return 0; 1225 1226 fail: wpi_free_tx_ring(sc, ring); 1227 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1228 return error; 1229 } 1230 1231 static void 1232 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1233 { 1234 WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 1235 } 1236 1237 static void 1238 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1239 { 1240 1241 if (ring->update != 0) { 1242 /* Wait for INT_WAKEUP event. */ 1243 return; 1244 } 1245 1246 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1247 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) { 1248 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n", 1249 __func__, ring->qid); 1250 ring->update = 1; 1251 } else { 1252 wpi_update_tx_ring(sc, ring); 1253 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1254 } 1255 } 1256 1257 static void 1258 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1259 { 1260 int i; 1261 1262 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1263 1264 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 1265 struct wpi_tx_data *data = &ring->data[i]; 1266 1267 if (data->m != NULL) { 1268 bus_dmamap_sync(ring->data_dmat, data->map, 1269 BUS_DMASYNC_POSTWRITE); 1270 bus_dmamap_unload(ring->data_dmat, data->map); 1271 m_freem(data->m); 1272 data->m = NULL; 1273 } 1274 if (data->ni != NULL) { 1275 ieee80211_free_node(data->ni); 1276 data->ni = NULL; 1277 } 1278 } 1279 /* Clear TX descriptors. */ 1280 memset(ring->desc, 0, ring->desc_dma.size); 1281 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1282 BUS_DMASYNC_PREWRITE); 1283 ring->queued = 0; 1284 ring->cur = 0; 1285 ring->pending = 0; 1286 ring->update = 0; 1287 } 1288 1289 static void 1290 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1291 { 1292 int i; 1293 1294 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1295 1296 wpi_dma_contig_free(&ring->desc_dma); 1297 wpi_dma_contig_free(&ring->cmd_dma); 1298 1299 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 1300 struct wpi_tx_data *data = &ring->data[i]; 1301 1302 if (data->m != NULL) { 1303 bus_dmamap_sync(ring->data_dmat, data->map, 1304 BUS_DMASYNC_POSTWRITE); 1305 bus_dmamap_unload(ring->data_dmat, data->map); 1306 m_freem(data->m); 1307 } 1308 if (data->map != NULL) 1309 bus_dmamap_destroy(ring->data_dmat, data->map); 1310 } 1311 if (ring->data_dmat != NULL) { 1312 bus_dma_tag_destroy(ring->data_dmat); 1313 ring->data_dmat = NULL; 1314 } 1315 } 1316 1317 /* 1318 * Extract various information from EEPROM. 1319 */ 1320 static int 1321 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 1322 { 1323 #define WPI_CHK(res) do { \ 1324 if ((error = res) != 0) \ 1325 goto fail; \ 1326 } while (0) 1327 uint8_t i; 1328 int error; 1329 1330 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1331 1332 /* Adapter has to be powered on for EEPROM access to work. */ 1333 if ((error = wpi_apm_init(sc)) != 0) { 1334 device_printf(sc->sc_dev, 1335 "%s: could not power ON adapter, error %d\n", __func__, 1336 error); 1337 return error; 1338 } 1339 1340 if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) { 1341 device_printf(sc->sc_dev, "bad EEPROM signature\n"); 1342 error = EIO; 1343 goto fail; 1344 } 1345 /* Clear HW ownership of EEPROM. */ 1346 WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER); 1347 1348 /* Read the hardware capabilities, revision and SKU type. */ 1349 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap, 1350 sizeof(sc->cap))); 1351 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 1352 sizeof(sc->rev))); 1353 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1354 sizeof(sc->type))); 1355 1356 sc->rev = le16toh(sc->rev); 1357 DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, 1358 sc->rev, sc->type); 1359 1360 /* Read the regulatory domain (4 ASCII characters.) */ 1361 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 1362 sizeof(sc->domain))); 1363 1364 /* Read MAC address. */ 1365 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 1366 IEEE80211_ADDR_LEN)); 1367 1368 /* Read the list of authorized channels. */ 1369 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 1370 WPI_CHK(wpi_read_eeprom_channels(sc, i)); 1371 1372 /* Read the list of TX power groups. */ 1373 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 1374 WPI_CHK(wpi_read_eeprom_group(sc, i)); 1375 1376 fail: wpi_apm_stop(sc); /* Power OFF adapter. */ 1377 1378 DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END, 1379 __func__); 1380 1381 return error; 1382 #undef WPI_CHK 1383 } 1384 1385 /* 1386 * Translate EEPROM flags to net80211. 1387 */ 1388 static uint32_t 1389 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel) 1390 { 1391 uint32_t nflags; 1392 1393 nflags = 0; 1394 if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0) 1395 nflags |= IEEE80211_CHAN_PASSIVE; 1396 if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0) 1397 nflags |= IEEE80211_CHAN_NOADHOC; 1398 if (channel->flags & WPI_EEPROM_CHAN_RADAR) { 1399 nflags |= IEEE80211_CHAN_DFS; 1400 /* XXX apparently IBSS may still be marked */ 1401 nflags |= IEEE80211_CHAN_NOADHOC; 1402 } 1403 1404 /* XXX HOSTAP uses WPI_MODE_IBSS */ 1405 if (nflags & IEEE80211_CHAN_NOADHOC) 1406 nflags |= IEEE80211_CHAN_NOHOSTAP; 1407 1408 return nflags; 1409 } 1410 1411 static void 1412 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans, 1413 int *nchans, struct ieee80211_channel chans[]) 1414 { 1415 struct wpi_eeprom_chan *channels = sc->eeprom_channels[n]; 1416 const struct wpi_chan_band *band = &wpi_bands[n]; 1417 uint32_t nflags; 1418 uint8_t bands[IEEE80211_MODE_BYTES]; 1419 uint8_t chan, i; 1420 int error; 1421 1422 memset(bands, 0, sizeof(bands)); 1423 1424 if (n == 0) { 1425 setbit(bands, IEEE80211_MODE_11B); 1426 setbit(bands, IEEE80211_MODE_11G); 1427 } else 1428 setbit(bands, IEEE80211_MODE_11A); 1429 1430 for (i = 0; i < band->nchan; i++) { 1431 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 1432 DPRINTF(sc, WPI_DEBUG_EEPROM, 1433 "Channel Not Valid: %d, band %d\n", 1434 band->chan[i],n); 1435 continue; 1436 } 1437 1438 chan = band->chan[i]; 1439 nflags = wpi_eeprom_channel_flags(&channels[i]); 1440 error = ieee80211_add_channel(chans, maxchans, nchans, 1441 chan, 0, channels[i].maxpwr, nflags, bands); 1442 if (error != 0) 1443 break; 1444 1445 /* Save maximum allowed TX power for this channel. */ 1446 sc->maxpwr[chan] = channels[i].maxpwr; 1447 1448 DPRINTF(sc, WPI_DEBUG_EEPROM, 1449 "adding chan %d flags=0x%x maxpwr=%d, offset %d\n", 1450 chan, channels[i].flags, sc->maxpwr[chan], *nchans); 1451 } 1452 } 1453 1454 /** 1455 * Read the eeprom to find out what channels are valid for the given 1456 * band and update net80211 with what we find. 1457 */ 1458 static int 1459 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n) 1460 { 1461 struct ieee80211com *ic = &sc->sc_ic; 1462 const struct wpi_chan_band *band = &wpi_bands[n]; 1463 int error; 1464 1465 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1466 1467 error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n], 1468 band->nchan * sizeof (struct wpi_eeprom_chan)); 1469 if (error != 0) { 1470 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1471 return error; 1472 } 1473 1474 wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 1475 ic->ic_channels); 1476 1477 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 1478 1479 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1480 1481 return 0; 1482 } 1483 1484 static struct wpi_eeprom_chan * 1485 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c) 1486 { 1487 int i, j; 1488 1489 for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++) 1490 for (i = 0; i < wpi_bands[j].nchan; i++) 1491 if (wpi_bands[j].chan[i] == c->ic_ieee && 1492 ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1) 1493 return &sc->eeprom_channels[j][i]; 1494 1495 return NULL; 1496 } 1497 1498 static void 1499 wpi_getradiocaps(struct ieee80211com *ic, 1500 int maxchans, int *nchans, struct ieee80211_channel chans[]) 1501 { 1502 struct wpi_softc *sc = ic->ic_softc; 1503 int i; 1504 1505 /* Parse the list of authorized channels. */ 1506 for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++) 1507 wpi_read_eeprom_band(sc, i, maxchans, nchans, chans); 1508 } 1509 1510 /* 1511 * Enforce flags read from EEPROM. 1512 */ 1513 static int 1514 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 1515 int nchan, struct ieee80211_channel chans[]) 1516 { 1517 struct wpi_softc *sc = ic->ic_softc; 1518 int i; 1519 1520 for (i = 0; i < nchan; i++) { 1521 struct ieee80211_channel *c = &chans[i]; 1522 struct wpi_eeprom_chan *channel; 1523 1524 channel = wpi_find_eeprom_channel(sc, c); 1525 if (channel == NULL) { 1526 ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n", 1527 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 1528 return EINVAL; 1529 } 1530 c->ic_flags |= wpi_eeprom_channel_flags(channel); 1531 } 1532 1533 return 0; 1534 } 1535 1536 static int 1537 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n) 1538 { 1539 struct wpi_power_group *group = &sc->groups[n]; 1540 struct wpi_eeprom_group rgroup; 1541 int i, error; 1542 1543 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1544 1545 if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, 1546 &rgroup, sizeof rgroup)) != 0) { 1547 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1548 return error; 1549 } 1550 1551 /* Save TX power group information. */ 1552 group->chan = rgroup.chan; 1553 group->maxpwr = rgroup.maxpwr; 1554 /* Retrieve temperature at which the samples were taken. */ 1555 group->temp = (int16_t)le16toh(rgroup.temp); 1556 1557 DPRINTF(sc, WPI_DEBUG_EEPROM, 1558 "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan, 1559 group->maxpwr, group->temp); 1560 1561 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 1562 group->samples[i].index = rgroup.samples[i].index; 1563 group->samples[i].power = rgroup.samples[i].power; 1564 1565 DPRINTF(sc, WPI_DEBUG_EEPROM, 1566 "\tsample %d: index=%d power=%d\n", i, 1567 group->samples[i].index, group->samples[i].power); 1568 } 1569 1570 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1571 1572 return 0; 1573 } 1574 1575 static __inline uint8_t 1576 wpi_add_node_entry_adhoc(struct wpi_softc *sc) 1577 { 1578 uint8_t newid = WPI_ID_IBSS_MIN; 1579 1580 for (; newid <= WPI_ID_IBSS_MAX; newid++) { 1581 if ((sc->nodesmsk & (1 << newid)) == 0) { 1582 sc->nodesmsk |= 1 << newid; 1583 return newid; 1584 } 1585 } 1586 1587 return WPI_ID_UNDEFINED; 1588 } 1589 1590 static __inline uint8_t 1591 wpi_add_node_entry_sta(struct wpi_softc *sc) 1592 { 1593 sc->nodesmsk |= 1 << WPI_ID_BSS; 1594 1595 return WPI_ID_BSS; 1596 } 1597 1598 static __inline int 1599 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id) 1600 { 1601 if (id == WPI_ID_UNDEFINED) 1602 return 0; 1603 1604 return (sc->nodesmsk >> id) & 1; 1605 } 1606 1607 static __inline void 1608 wpi_clear_node_table(struct wpi_softc *sc) 1609 { 1610 sc->nodesmsk = 0; 1611 } 1612 1613 static __inline void 1614 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id) 1615 { 1616 sc->nodesmsk &= ~(1 << id); 1617 } 1618 1619 static struct ieee80211_node * 1620 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 1621 { 1622 struct wpi_node *wn; 1623 1624 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, 1625 M_NOWAIT | M_ZERO); 1626 1627 if (wn == NULL) 1628 return NULL; 1629 1630 wn->id = WPI_ID_UNDEFINED; 1631 1632 return &wn->ni; 1633 } 1634 1635 static void 1636 wpi_node_free(struct ieee80211_node *ni) 1637 { 1638 struct wpi_softc *sc = ni->ni_ic->ic_softc; 1639 struct wpi_node *wn = WPI_NODE(ni); 1640 1641 if (wn->id != WPI_ID_UNDEFINED) { 1642 WPI_NT_LOCK(sc); 1643 if (wpi_check_node_entry(sc, wn->id)) { 1644 wpi_del_node_entry(sc, wn->id); 1645 wpi_del_node(sc, ni); 1646 } 1647 WPI_NT_UNLOCK(sc); 1648 } 1649 1650 sc->sc_node_free(ni); 1651 } 1652 1653 static __inline int 1654 wpi_check_bss_filter(struct wpi_softc *sc) 1655 { 1656 return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0; 1657 } 1658 1659 static void 1660 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, 1661 const struct ieee80211_rx_stats *rxs, 1662 int rssi, int nf) 1663 { 1664 struct ieee80211vap *vap = ni->ni_vap; 1665 struct wpi_softc *sc = vap->iv_ic->ic_softc; 1666 struct wpi_vap *wvp = WPI_VAP(vap); 1667 uint64_t ni_tstamp, rx_tstamp; 1668 1669 wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf); 1670 1671 if (vap->iv_state == IEEE80211_S_RUN && 1672 (subtype == IEEE80211_FC0_SUBTYPE_BEACON || 1673 subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) { 1674 ni_tstamp = le64toh(ni->ni_tstamp.tsf); 1675 rx_tstamp = le64toh(sc->rx_tstamp); 1676 1677 if (ni_tstamp >= rx_tstamp) { 1678 DPRINTF(sc, WPI_DEBUG_STATE, 1679 "ibss merge, tsf %ju tstamp %ju\n", 1680 (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp); 1681 (void) ieee80211_ibss_merge(ni); 1682 } 1683 } 1684 } 1685 1686 static void 1687 wpi_restore_node(void *arg, struct ieee80211_node *ni) 1688 { 1689 struct wpi_softc *sc = arg; 1690 struct wpi_node *wn = WPI_NODE(ni); 1691 int error; 1692 1693 WPI_NT_LOCK(sc); 1694 if (wn->id != WPI_ID_UNDEFINED) { 1695 wn->id = WPI_ID_UNDEFINED; 1696 if ((error = wpi_add_ibss_node(sc, ni)) != 0) { 1697 device_printf(sc->sc_dev, 1698 "%s: could not add IBSS node, error %d\n", 1699 __func__, error); 1700 } 1701 } 1702 WPI_NT_UNLOCK(sc); 1703 } 1704 1705 static void 1706 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp) 1707 { 1708 struct ieee80211com *ic = &sc->sc_ic; 1709 1710 /* Set group keys once. */ 1711 WPI_NT_LOCK(sc); 1712 wvp->wv_gtk = 0; 1713 WPI_NT_UNLOCK(sc); 1714 1715 ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc); 1716 ieee80211_crypto_reload_keys(ic); 1717 } 1718 1719 /** 1720 * Called by net80211 when ever there is a change to 80211 state machine 1721 */ 1722 static int 1723 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1724 { 1725 struct wpi_vap *wvp = WPI_VAP(vap); 1726 struct ieee80211com *ic = vap->iv_ic; 1727 struct wpi_softc *sc = ic->ic_softc; 1728 int error = 0; 1729 1730 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1731 1732 WPI_TXQ_LOCK(sc); 1733 if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) { 1734 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1735 WPI_TXQ_UNLOCK(sc); 1736 1737 return ENXIO; 1738 } 1739 WPI_TXQ_UNLOCK(sc); 1740 1741 DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__, 1742 ieee80211_state_name[vap->iv_state], 1743 ieee80211_state_name[nstate]); 1744 1745 if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) { 1746 if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) { 1747 device_printf(sc->sc_dev, 1748 "%s: could not set power saving level\n", 1749 __func__); 1750 return error; 1751 } 1752 1753 wpi_set_led(sc, WPI_LED_LINK, 1, 0); 1754 } 1755 1756 switch (nstate) { 1757 case IEEE80211_S_SCAN: 1758 WPI_RXON_LOCK(sc); 1759 if (wpi_check_bss_filter(sc) != 0) { 1760 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 1761 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 1762 device_printf(sc->sc_dev, 1763 "%s: could not send RXON\n", __func__); 1764 } 1765 } 1766 WPI_RXON_UNLOCK(sc); 1767 break; 1768 1769 case IEEE80211_S_ASSOC: 1770 if (vap->iv_state != IEEE80211_S_RUN) 1771 break; 1772 /* FALLTHROUGH */ 1773 case IEEE80211_S_AUTH: 1774 /* 1775 * NB: do not optimize AUTH -> AUTH state transmission - 1776 * this will break powersave with non-QoS AP! 1777 */ 1778 1779 /* 1780 * The node must be registered in the firmware before auth. 1781 * Also the associd must be cleared on RUN -> ASSOC 1782 * transitions. 1783 */ 1784 if ((error = wpi_auth(sc, vap)) != 0) { 1785 device_printf(sc->sc_dev, 1786 "%s: could not move to AUTH state, error %d\n", 1787 __func__, error); 1788 } 1789 break; 1790 1791 case IEEE80211_S_RUN: 1792 /* 1793 * RUN -> RUN transition: 1794 * STA mode: Just restart the timers. 1795 * IBSS mode: Process IBSS merge. 1796 */ 1797 if (vap->iv_state == IEEE80211_S_RUN) { 1798 if (vap->iv_opmode != IEEE80211_M_IBSS) { 1799 WPI_RXON_LOCK(sc); 1800 wpi_calib_timeout(sc); 1801 WPI_RXON_UNLOCK(sc); 1802 break; 1803 } else { 1804 /* 1805 * Drop the BSS_FILTER bit 1806 * (there is no another way to change bssid). 1807 */ 1808 WPI_RXON_LOCK(sc); 1809 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 1810 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 1811 device_printf(sc->sc_dev, 1812 "%s: could not send RXON\n", 1813 __func__); 1814 } 1815 WPI_RXON_UNLOCK(sc); 1816 1817 /* Restore all what was lost. */ 1818 wpi_restore_node_table(sc, wvp); 1819 1820 /* XXX set conditionally? */ 1821 wpi_updateedca(ic); 1822 } 1823 } 1824 1825 /* 1826 * !RUN -> RUN requires setting the association id 1827 * which is done with a firmware cmd. We also defer 1828 * starting the timers until that work is done. 1829 */ 1830 if ((error = wpi_run(sc, vap)) != 0) { 1831 device_printf(sc->sc_dev, 1832 "%s: could not move to RUN state\n", __func__); 1833 } 1834 break; 1835 1836 default: 1837 break; 1838 } 1839 if (error != 0) { 1840 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1841 return error; 1842 } 1843 1844 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1845 1846 return wvp->wv_newstate(vap, nstate, arg); 1847 } 1848 1849 static void 1850 wpi_calib_timeout(void *arg) 1851 { 1852 struct wpi_softc *sc = arg; 1853 1854 if (wpi_check_bss_filter(sc) == 0) 1855 return; 1856 1857 wpi_power_calibration(sc); 1858 1859 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 1860 } 1861 1862 static __inline uint8_t 1863 rate2plcp(const uint8_t rate) 1864 { 1865 switch (rate) { 1866 case 12: return 0xd; 1867 case 18: return 0xf; 1868 case 24: return 0x5; 1869 case 36: return 0x7; 1870 case 48: return 0x9; 1871 case 72: return 0xb; 1872 case 96: return 0x1; 1873 case 108: return 0x3; 1874 case 2: return 10; 1875 case 4: return 20; 1876 case 11: return 55; 1877 case 22: return 110; 1878 default: return 0; 1879 } 1880 } 1881 1882 static __inline uint8_t 1883 plcp2rate(const uint8_t plcp) 1884 { 1885 switch (plcp) { 1886 case 0xd: return 12; 1887 case 0xf: return 18; 1888 case 0x5: return 24; 1889 case 0x7: return 36; 1890 case 0x9: return 48; 1891 case 0xb: return 72; 1892 case 0x1: return 96; 1893 case 0x3: return 108; 1894 case 10: return 2; 1895 case 20: return 4; 1896 case 55: return 11; 1897 case 110: return 22; 1898 default: return 0; 1899 } 1900 } 1901 1902 /* Quickly determine if a given rate is CCK or OFDM. */ 1903 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1904 1905 static void 1906 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1907 struct wpi_rx_data *data) 1908 { 1909 struct epoch_tracker et; 1910 struct ieee80211com *ic = &sc->sc_ic; 1911 struct wpi_rx_ring *ring = &sc->rxq; 1912 struct wpi_rx_stat *stat; 1913 struct wpi_rx_head *head; 1914 struct wpi_rx_tail *tail; 1915 struct ieee80211_frame *wh; 1916 struct ieee80211_node *ni; 1917 struct mbuf *m, *m1; 1918 bus_addr_t paddr; 1919 uint32_t flags; 1920 uint16_t len; 1921 int error; 1922 1923 stat = (struct wpi_rx_stat *)(desc + 1); 1924 1925 if (__predict_false(stat->len > WPI_STAT_MAXLEN)) { 1926 device_printf(sc->sc_dev, "invalid RX statistic header\n"); 1927 goto fail1; 1928 } 1929 1930 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 1931 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1932 len = le16toh(head->len); 1933 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len); 1934 flags = le32toh(tail->flags); 1935 1936 DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d" 1937 " rate %x chan %d tstamp %ju\n", __func__, ring->cur, 1938 le32toh(desc->len), len, (int8_t)stat->rssi, 1939 head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp)); 1940 1941 /* Discard frames with a bad FCS early. */ 1942 if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1943 DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n", 1944 __func__, flags); 1945 goto fail1; 1946 } 1947 /* Discard frames that are too short. */ 1948 if (len < sizeof (struct ieee80211_frame_ack)) { 1949 DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n", 1950 __func__, len); 1951 goto fail1; 1952 } 1953 1954 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1955 if (__predict_false(m1 == NULL)) { 1956 DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n", 1957 __func__); 1958 goto fail1; 1959 } 1960 bus_dmamap_unload(ring->data_dmat, data->map); 1961 1962 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), 1963 MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1964 if (__predict_false(error != 0 && error != EFBIG)) { 1965 device_printf(sc->sc_dev, 1966 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1967 m_freem(m1); 1968 1969 /* Try to reload the old mbuf. */ 1970 error = bus_dmamap_load(ring->data_dmat, data->map, 1971 mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr, 1972 &paddr, BUS_DMA_NOWAIT); 1973 if (error != 0 && error != EFBIG) { 1974 panic("%s: could not load old RX mbuf", __func__); 1975 } 1976 /* Physical address may have changed. */ 1977 ring->desc[ring->cur] = htole32(paddr); 1978 bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map, 1979 BUS_DMASYNC_PREWRITE); 1980 goto fail1; 1981 } 1982 1983 m = data->m; 1984 data->m = m1; 1985 /* Update RX descriptor. */ 1986 ring->desc[ring->cur] = htole32(paddr); 1987 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1988 BUS_DMASYNC_PREWRITE); 1989 1990 /* Finalize mbuf. */ 1991 m->m_data = (caddr_t)(head + 1); 1992 m->m_pkthdr.len = m->m_len = len; 1993 1994 /* Grab a reference to the source node. */ 1995 wh = mtod(m, struct ieee80211_frame *); 1996 1997 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 1998 (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) { 1999 /* Check whether decryption was successful or not. */ 2000 if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) { 2001 DPRINTF(sc, WPI_DEBUG_RECV, 2002 "CCMP decryption failed 0x%x\n", flags); 2003 goto fail2; 2004 } 2005 m->m_flags |= M_WEP; 2006 } 2007 2008 if (len >= sizeof(struct ieee80211_frame_min)) 2009 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2010 else 2011 ni = NULL; 2012 2013 sc->rx_tstamp = tail->tstamp; 2014 2015 if (ieee80211_radiotap_active(ic)) { 2016 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 2017 2018 tap->wr_flags = 0; 2019 if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE)) 2020 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2021 tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET); 2022 tap->wr_dbm_antnoise = WPI_RSSI_OFFSET; 2023 tap->wr_tsft = tail->tstamp; 2024 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 2025 tap->wr_rate = plcp2rate(head->plcp); 2026 } 2027 2028 WPI_UNLOCK(sc); 2029 NET_EPOCH_ENTER(et); 2030 2031 /* Send the frame to the 802.11 layer. */ 2032 if (ni != NULL) { 2033 (void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET); 2034 /* Node is no longer needed. */ 2035 ieee80211_free_node(ni); 2036 } else 2037 (void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET); 2038 2039 NET_EPOCH_EXIT(et); 2040 WPI_LOCK(sc); 2041 2042 return; 2043 2044 fail2: m_freem(m); 2045 2046 fail1: counter_u64_add(ic->ic_ierrors, 1); 2047 } 2048 2049 static void 2050 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc, 2051 struct wpi_rx_data *data) 2052 { 2053 /* Ignore */ 2054 } 2055 2056 static void 2057 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) 2058 { 2059 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; 2060 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 2061 struct wpi_tx_data *data = &ring->data[desc->idx]; 2062 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 2063 struct mbuf *m; 2064 struct ieee80211_node *ni; 2065 uint32_t status = le32toh(stat->status); 2066 2067 KASSERT(data->ni != NULL, ("no node")); 2068 KASSERT(data->m != NULL, ("no mbuf")); 2069 2070 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 2071 2072 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: " 2073 "qid %d idx %d retries %d btkillcnt %d rate %x duration %d " 2074 "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt, 2075 stat->btkillcnt, stat->rate, le32toh(stat->duration), status); 2076 2077 /* Unmap and free mbuf. */ 2078 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 2079 bus_dmamap_unload(ring->data_dmat, data->map); 2080 m = data->m, data->m = NULL; 2081 ni = data->ni, data->ni = NULL; 2082 2083 /* Restore frame header. */ 2084 KASSERT(M_LEADINGSPACE(m) >= data->hdrlen, ("no frame header!")); 2085 M_PREPEND(m, data->hdrlen, M_NOWAIT); 2086 KASSERT(m != NULL, ("%s: m is NULL\n", __func__)); 2087 2088 /* 2089 * Update rate control statistics for the node. 2090 */ 2091 txs->pktlen = m->m_pkthdr.len; 2092 txs->short_retries = stat->rtsfailcnt; 2093 txs->long_retries = stat->ackfailcnt / WPI_NTRIES_DEFAULT; 2094 if (!(status & WPI_TX_STATUS_FAIL)) 2095 txs->status = IEEE80211_RATECTL_TX_SUCCESS; 2096 else { 2097 switch (status & 0xff) { 2098 case WPI_TX_STATUS_FAIL_SHORT_LIMIT: 2099 txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT; 2100 break; 2101 case WPI_TX_STATUS_FAIL_LONG_LIMIT: 2102 txs->status = IEEE80211_RATECTL_TX_FAIL_LONG; 2103 break; 2104 case WPI_TX_STATUS_FAIL_LIFE_EXPIRE: 2105 txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED; 2106 break; 2107 default: 2108 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 2109 break; 2110 } 2111 } 2112 2113 ieee80211_ratectl_tx_complete(ni, txs); 2114 ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0); 2115 2116 WPI_TXQ_STATE_LOCK(sc); 2117 if (--ring->queued > 0) 2118 callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc); 2119 else 2120 callout_stop(&sc->tx_timeout); 2121 WPI_TXQ_STATE_UNLOCK(sc); 2122 2123 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 2124 } 2125 2126 /* 2127 * Process a "command done" firmware notification. This is where we wakeup 2128 * processes waiting for a synchronous command completion. 2129 */ 2130 static void 2131 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) 2132 { 2133 struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM]; 2134 struct wpi_tx_data *data; 2135 struct wpi_tx_cmd *cmd; 2136 2137 DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x " 2138 "type %s len %d\n", desc->qid, desc->idx, 2139 desc->flags, wpi_cmd_str(desc->type), 2140 le32toh(desc->len)); 2141 2142 if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM) 2143 return; /* Not a command ack. */ 2144 2145 KASSERT(ring->queued == 0, ("ring->queued must be 0")); 2146 2147 data = &ring->data[desc->idx]; 2148 cmd = &ring->cmd[desc->idx]; 2149 2150 /* If the command was mapped in an mbuf, free it. */ 2151 if (data->m != NULL) { 2152 bus_dmamap_sync(ring->data_dmat, data->map, 2153 BUS_DMASYNC_POSTWRITE); 2154 bus_dmamap_unload(ring->data_dmat, data->map); 2155 m_freem(data->m); 2156 data->m = NULL; 2157 } 2158 2159 wakeup(cmd); 2160 2161 if (desc->type == WPI_CMD_SET_POWER_MODE) { 2162 struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data; 2163 2164 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 2165 BUS_DMASYNC_POSTREAD); 2166 2167 WPI_TXQ_LOCK(sc); 2168 if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) { 2169 sc->sc_update_rx_ring = wpi_update_rx_ring_ps; 2170 sc->sc_update_tx_ring = wpi_update_tx_ring_ps; 2171 } else { 2172 sc->sc_update_rx_ring = wpi_update_rx_ring; 2173 sc->sc_update_tx_ring = wpi_update_tx_ring; 2174 } 2175 WPI_TXQ_UNLOCK(sc); 2176 } 2177 } 2178 2179 static void 2180 wpi_notif_intr(struct wpi_softc *sc) 2181 { 2182 struct ieee80211com *ic = &sc->sc_ic; 2183 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2184 uint32_t hw; 2185 2186 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 2187 BUS_DMASYNC_POSTREAD); 2188 2189 hw = le32toh(sc->shared->next) & 0xfff; 2190 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 2191 2192 while (sc->rxq.cur != hw) { 2193 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 2194 2195 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2196 struct wpi_rx_desc *desc; 2197 2198 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2199 BUS_DMASYNC_POSTREAD); 2200 desc = mtod(data->m, struct wpi_rx_desc *); 2201 2202 DPRINTF(sc, WPI_DEBUG_NOTIFY, 2203 "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n", 2204 __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags, 2205 desc->type, wpi_cmd_str(desc->type), le32toh(desc->len)); 2206 2207 if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) { 2208 /* Reply to a command. */ 2209 wpi_cmd_done(sc, desc); 2210 } 2211 2212 switch (desc->type) { 2213 case WPI_RX_DONE: 2214 /* An 802.11 frame has been received. */ 2215 wpi_rx_done(sc, desc, data); 2216 2217 if (__predict_false(sc->sc_running == 0)) { 2218 /* wpi_stop() was called. */ 2219 return; 2220 } 2221 2222 break; 2223 2224 case WPI_TX_DONE: 2225 /* An 802.11 frame has been transmitted. */ 2226 wpi_tx_done(sc, desc); 2227 break; 2228 2229 case WPI_RX_STATISTICS: 2230 case WPI_BEACON_STATISTICS: 2231 wpi_rx_statistics(sc, desc, data); 2232 break; 2233 2234 case WPI_BEACON_MISSED: 2235 { 2236 struct wpi_beacon_missed *miss = 2237 (struct wpi_beacon_missed *)(desc + 1); 2238 uint32_t expected, misses, received, threshold; 2239 2240 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2241 BUS_DMASYNC_POSTREAD); 2242 2243 misses = le32toh(miss->consecutive); 2244 expected = le32toh(miss->expected); 2245 received = le32toh(miss->received); 2246 threshold = MAX(2, vap->iv_bmissthreshold); 2247 2248 DPRINTF(sc, WPI_DEBUG_BMISS, 2249 "%s: beacons missed %u(%u) (received %u/%u)\n", 2250 __func__, misses, le32toh(miss->total), received, 2251 expected); 2252 2253 if (misses >= threshold || 2254 (received == 0 && expected >= threshold)) { 2255 WPI_RXON_LOCK(sc); 2256 if (callout_pending(&sc->scan_timeout)) { 2257 wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL, 2258 0, 1); 2259 } 2260 WPI_RXON_UNLOCK(sc); 2261 if (vap->iv_state == IEEE80211_S_RUN && 2262 (ic->ic_flags & IEEE80211_F_SCAN) == 0) 2263 ieee80211_beacon_miss(ic); 2264 } 2265 2266 break; 2267 } 2268 #ifdef WPI_DEBUG 2269 case WPI_BEACON_SENT: 2270 { 2271 struct wpi_tx_stat *stat = 2272 (struct wpi_tx_stat *)(desc + 1); 2273 uint64_t *tsf = (uint64_t *)(stat + 1); 2274 uint32_t *mode = (uint32_t *)(tsf + 1); 2275 2276 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2277 BUS_DMASYNC_POSTREAD); 2278 2279 DPRINTF(sc, WPI_DEBUG_BEACON, 2280 "beacon sent: rts %u, ack %u, btkill %u, rate %u, " 2281 "duration %u, status %x, tsf %ju, mode %x\n", 2282 stat->rtsfailcnt, stat->ackfailcnt, 2283 stat->btkillcnt, stat->rate, le32toh(stat->duration), 2284 le32toh(stat->status), le64toh(*tsf), 2285 le32toh(*mode)); 2286 2287 break; 2288 } 2289 #endif 2290 case WPI_UC_READY: 2291 { 2292 struct wpi_ucode_info *uc = 2293 (struct wpi_ucode_info *)(desc + 1); 2294 2295 /* The microcontroller is ready. */ 2296 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2297 BUS_DMASYNC_POSTREAD); 2298 DPRINTF(sc, WPI_DEBUG_RESET, 2299 "microcode alive notification version=%d.%d " 2300 "subtype=%x alive=%x\n", uc->major, uc->minor, 2301 uc->subtype, le32toh(uc->valid)); 2302 2303 if (le32toh(uc->valid) != 1) { 2304 device_printf(sc->sc_dev, 2305 "microcontroller initialization failed\n"); 2306 wpi_stop_locked(sc); 2307 return; 2308 } 2309 /* Save the address of the error log in SRAM. */ 2310 sc->errptr = le32toh(uc->errptr); 2311 break; 2312 } 2313 case WPI_STATE_CHANGED: 2314 { 2315 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2316 BUS_DMASYNC_POSTREAD); 2317 2318 uint32_t *status = (uint32_t *)(desc + 1); 2319 2320 DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n", 2321 le32toh(*status)); 2322 2323 if (le32toh(*status) & 1) { 2324 WPI_NT_LOCK(sc); 2325 wpi_clear_node_table(sc); 2326 WPI_NT_UNLOCK(sc); 2327 ieee80211_runtask(ic, 2328 &sc->sc_radiooff_task); 2329 return; 2330 } 2331 break; 2332 } 2333 #ifdef WPI_DEBUG 2334 case WPI_START_SCAN: 2335 { 2336 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2337 BUS_DMASYNC_POSTREAD); 2338 2339 struct wpi_start_scan *scan = 2340 (struct wpi_start_scan *)(desc + 1); 2341 DPRINTF(sc, WPI_DEBUG_SCAN, 2342 "%s: scanning channel %d status %x\n", 2343 __func__, scan->chan, le32toh(scan->status)); 2344 2345 break; 2346 } 2347 #endif 2348 case WPI_STOP_SCAN: 2349 { 2350 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2351 BUS_DMASYNC_POSTREAD); 2352 2353 struct wpi_stop_scan *scan = 2354 (struct wpi_stop_scan *)(desc + 1); 2355 2356 DPRINTF(sc, WPI_DEBUG_SCAN, 2357 "scan finished nchan=%d status=%d chan=%d\n", 2358 scan->nchan, scan->status, scan->chan); 2359 2360 WPI_RXON_LOCK(sc); 2361 callout_stop(&sc->scan_timeout); 2362 WPI_RXON_UNLOCK(sc); 2363 if (scan->status == WPI_SCAN_ABORTED) 2364 ieee80211_cancel_scan(vap); 2365 else 2366 ieee80211_scan_next(vap); 2367 break; 2368 } 2369 } 2370 2371 if (sc->rxq.cur % 8 == 0) { 2372 /* Tell the firmware what we have processed. */ 2373 sc->sc_update_rx_ring(sc); 2374 } 2375 } 2376 } 2377 2378 /* 2379 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2380 * from power-down sleep mode. 2381 */ 2382 static void 2383 wpi_wakeup_intr(struct wpi_softc *sc) 2384 { 2385 int qid; 2386 2387 DPRINTF(sc, WPI_DEBUG_PWRSAVE, 2388 "%s: ucode wakeup from power-down sleep\n", __func__); 2389 2390 /* Wakeup RX and TX rings. */ 2391 if (sc->rxq.update) { 2392 sc->rxq.update = 0; 2393 wpi_update_rx_ring(sc); 2394 } 2395 WPI_TXQ_LOCK(sc); 2396 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) { 2397 struct wpi_tx_ring *ring = &sc->txq[qid]; 2398 2399 if (ring->update) { 2400 ring->update = 0; 2401 wpi_update_tx_ring(sc, ring); 2402 } 2403 } 2404 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 2405 WPI_TXQ_UNLOCK(sc); 2406 } 2407 2408 /* 2409 * This function prints firmware registers 2410 */ 2411 #ifdef WPI_DEBUG 2412 static void 2413 wpi_debug_registers(struct wpi_softc *sc) 2414 { 2415 size_t i; 2416 static const uint32_t csr_tbl[] = { 2417 WPI_HW_IF_CONFIG, 2418 WPI_INT, 2419 WPI_INT_MASK, 2420 WPI_FH_INT, 2421 WPI_GPIO_IN, 2422 WPI_RESET, 2423 WPI_GP_CNTRL, 2424 WPI_EEPROM, 2425 WPI_EEPROM_GP, 2426 WPI_GIO, 2427 WPI_UCODE_GP1, 2428 WPI_UCODE_GP2, 2429 WPI_GIO_CHICKEN, 2430 WPI_ANA_PLL, 2431 WPI_DBG_HPET_MEM, 2432 }; 2433 static const uint32_t prph_tbl[] = { 2434 WPI_APMG_CLK_CTRL, 2435 WPI_APMG_PS, 2436 WPI_APMG_PCI_STT, 2437 WPI_APMG_RFKILL, 2438 }; 2439 2440 DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n"); 2441 2442 for (i = 0; i < nitems(csr_tbl); i++) { 2443 DPRINTF(sc, WPI_DEBUG_REGISTER, " %-18s: 0x%08x ", 2444 wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i])); 2445 2446 if ((i + 1) % 2 == 0) 2447 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); 2448 } 2449 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n"); 2450 2451 if (wpi_nic_lock(sc) == 0) { 2452 for (i = 0; i < nitems(prph_tbl); i++) { 2453 DPRINTF(sc, WPI_DEBUG_REGISTER, " %-18s: 0x%08x ", 2454 wpi_get_prph_string(prph_tbl[i]), 2455 wpi_prph_read(sc, prph_tbl[i])); 2456 2457 if ((i + 1) % 2 == 0) 2458 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); 2459 } 2460 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); 2461 wpi_nic_unlock(sc); 2462 } else { 2463 DPRINTF(sc, WPI_DEBUG_REGISTER, 2464 "Cannot access internal registers.\n"); 2465 } 2466 } 2467 #endif 2468 2469 /* 2470 * Dump the error log of the firmware when a firmware panic occurs. Although 2471 * we can't debug the firmware because it is neither open source nor free, it 2472 * can help us to identify certain classes of problems. 2473 */ 2474 static void 2475 wpi_fatal_intr(struct wpi_softc *sc) 2476 { 2477 struct wpi_fw_dump dump; 2478 uint32_t i, offset, count; 2479 2480 /* Check that the error log address is valid. */ 2481 if (sc->errptr < WPI_FW_DATA_BASE || 2482 sc->errptr + sizeof (dump) > 2483 WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) { 2484 printf("%s: bad firmware error log address 0x%08x\n", __func__, 2485 sc->errptr); 2486 return; 2487 } 2488 if (wpi_nic_lock(sc) != 0) { 2489 printf("%s: could not read firmware error log\n", __func__); 2490 return; 2491 } 2492 /* Read number of entries in the log. */ 2493 count = wpi_mem_read(sc, sc->errptr); 2494 if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) { 2495 printf("%s: invalid count field (count = %u)\n", __func__, 2496 count); 2497 wpi_nic_unlock(sc); 2498 return; 2499 } 2500 /* Skip "count" field. */ 2501 offset = sc->errptr + sizeof (uint32_t); 2502 printf("firmware error log (count = %u):\n", count); 2503 for (i = 0; i < count; i++) { 2504 wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump, 2505 sizeof (dump) / sizeof (uint32_t)); 2506 2507 printf(" error type = \"%s\" (0x%08X)\n", 2508 (dump.desc < nitems(wpi_fw_errmsg)) ? 2509 wpi_fw_errmsg[dump.desc] : "UNKNOWN", 2510 dump.desc); 2511 printf(" error data = 0x%08X\n", 2512 dump.data); 2513 printf(" branch link = 0x%08X%08X\n", 2514 dump.blink[0], dump.blink[1]); 2515 printf(" interrupt link = 0x%08X%08X\n", 2516 dump.ilink[0], dump.ilink[1]); 2517 printf(" time = %u\n", dump.time); 2518 2519 offset += sizeof (dump); 2520 } 2521 wpi_nic_unlock(sc); 2522 /* Dump driver status (TX and RX rings) while we're here. */ 2523 printf("driver status:\n"); 2524 WPI_TXQ_LOCK(sc); 2525 for (i = 0; i < WPI_DRV_NTXQUEUES; i++) { 2526 struct wpi_tx_ring *ring = &sc->txq[i]; 2527 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2528 i, ring->qid, ring->cur, ring->queued); 2529 } 2530 WPI_TXQ_UNLOCK(sc); 2531 printf(" rx ring: cur=%d\n", sc->rxq.cur); 2532 } 2533 2534 static void 2535 wpi_intr(void *arg) 2536 { 2537 struct wpi_softc *sc = arg; 2538 uint32_t r1, r2; 2539 2540 WPI_LOCK(sc); 2541 2542 /* Disable interrupts. */ 2543 WPI_WRITE(sc, WPI_INT_MASK, 0); 2544 2545 r1 = WPI_READ(sc, WPI_INT); 2546 2547 if (__predict_false(r1 == 0xffffffff || 2548 (r1 & 0xfffffff0) == 0xa5a5a5a0)) 2549 goto end; /* Hardware gone! */ 2550 2551 r2 = WPI_READ(sc, WPI_FH_INT); 2552 2553 DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__, 2554 r1, r2); 2555 2556 if (r1 == 0 && r2 == 0) 2557 goto done; /* Interrupt not for us. */ 2558 2559 /* Acknowledge interrupts. */ 2560 WPI_WRITE(sc, WPI_INT, r1); 2561 WPI_WRITE(sc, WPI_FH_INT, r2); 2562 2563 if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) { 2564 struct ieee80211com *ic = &sc->sc_ic; 2565 2566 device_printf(sc->sc_dev, "fatal firmware error\n"); 2567 #ifdef WPI_DEBUG 2568 wpi_debug_registers(sc); 2569 #endif 2570 wpi_fatal_intr(sc); 2571 DPRINTF(sc, WPI_DEBUG_HW, 2572 "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" : 2573 "(Hardware Error)"); 2574 ieee80211_restart_all(ic); 2575 goto end; 2576 } 2577 2578 if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) || 2579 (r2 & WPI_FH_INT_RX)) 2580 wpi_notif_intr(sc); 2581 2582 if (r1 & WPI_INT_ALIVE) 2583 wakeup(sc); /* Firmware is alive. */ 2584 2585 if (r1 & WPI_INT_WAKEUP) 2586 wpi_wakeup_intr(sc); 2587 2588 done: 2589 /* Re-enable interrupts. */ 2590 if (__predict_true(sc->sc_running)) 2591 WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF); 2592 2593 end: WPI_UNLOCK(sc); 2594 } 2595 2596 static void 2597 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac) 2598 { 2599 struct wpi_tx_ring *ring; 2600 struct wpi_tx_data *data; 2601 uint8_t cur; 2602 2603 WPI_TXQ_LOCK(sc); 2604 ring = &sc->txq[ac]; 2605 2606 while (ring->pending != 0) { 2607 ring->pending--; 2608 cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; 2609 data = &ring->data[cur]; 2610 2611 bus_dmamap_sync(ring->data_dmat, data->map, 2612 BUS_DMASYNC_POSTWRITE); 2613 bus_dmamap_unload(ring->data_dmat, data->map); 2614 m_freem(data->m); 2615 data->m = NULL; 2616 2617 ieee80211_node_decref(data->ni); 2618 data->ni = NULL; 2619 } 2620 2621 WPI_TXQ_UNLOCK(sc); 2622 } 2623 2624 static int 2625 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf) 2626 { 2627 struct ieee80211_frame *wh; 2628 struct wpi_tx_cmd *cmd; 2629 struct wpi_tx_data *data; 2630 struct wpi_tx_desc *desc; 2631 struct wpi_tx_ring *ring; 2632 struct mbuf *m1; 2633 bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER]; 2634 uint8_t cur, pad; 2635 uint16_t hdrlen; 2636 int error, i, nsegs, totlen, frag; 2637 2638 WPI_TXQ_LOCK(sc); 2639 2640 KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow")); 2641 2642 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 2643 2644 if (__predict_false(sc->sc_running == 0)) { 2645 /* wpi_stop() was called */ 2646 error = ENETDOWN; 2647 goto end; 2648 } 2649 2650 wh = mtod(buf->m, struct ieee80211_frame *); 2651 hdrlen = ieee80211_anyhdrsize(wh); 2652 totlen = buf->m->m_pkthdr.len; 2653 frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG); 2654 2655 if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) { 2656 error = EINVAL; 2657 goto end; 2658 } 2659 2660 if (hdrlen & 3) { 2661 /* First segment length must be a multiple of 4. */ 2662 pad = 4 - (hdrlen & 3); 2663 } else 2664 pad = 0; 2665 2666 ring = &sc->txq[buf->ac]; 2667 cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; 2668 desc = &ring->desc[cur]; 2669 data = &ring->data[cur]; 2670 2671 /* Prepare TX firmware command. */ 2672 cmd = &ring->cmd[cur]; 2673 cmd->code = buf->code; 2674 cmd->flags = 0; 2675 cmd->qid = ring->qid; 2676 cmd->idx = cur; 2677 2678 memcpy(cmd->data, buf->data, buf->size); 2679 2680 /* Save and trim IEEE802.11 header. */ 2681 memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen); 2682 m_adj(buf->m, hdrlen); 2683 2684 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m, 2685 segs, &nsegs, BUS_DMA_NOWAIT); 2686 if (error != 0 && error != EFBIG) { 2687 device_printf(sc->sc_dev, 2688 "%s: can't map mbuf (error %d)\n", __func__, error); 2689 goto end; 2690 } 2691 if (error != 0) { 2692 /* Too many DMA segments, linearize mbuf. */ 2693 m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1); 2694 if (m1 == NULL) { 2695 device_printf(sc->sc_dev, 2696 "%s: could not defrag mbuf\n", __func__); 2697 error = ENOBUFS; 2698 goto end; 2699 } 2700 buf->m = m1; 2701 2702 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 2703 buf->m, segs, &nsegs, BUS_DMA_NOWAIT); 2704 if (__predict_false(error != 0)) { 2705 /* XXX fix this (applicable to the iwn(4) too) */ 2706 /* 2707 * NB: Do not return error; 2708 * original mbuf does not exist anymore. 2709 */ 2710 device_printf(sc->sc_dev, 2711 "%s: can't map mbuf (error %d)\n", __func__, 2712 error); 2713 if (ring->qid < WPI_CMD_QUEUE_NUM) { 2714 if_inc_counter(buf->ni->ni_vap->iv_ifp, 2715 IFCOUNTER_OERRORS, 1); 2716 if (!frag) 2717 ieee80211_free_node(buf->ni); 2718 } 2719 m_freem(buf->m); 2720 error = 0; 2721 goto end; 2722 } 2723 } 2724 2725 KASSERT(nsegs < WPI_MAX_SCATTER, 2726 ("too many DMA segments, nsegs (%d) should be less than %d", 2727 nsegs, WPI_MAX_SCATTER)); 2728 2729 data->m = buf->m; 2730 data->ni = buf->ni; 2731 data->hdrlen = hdrlen; 2732 2733 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 2734 __func__, ring->qid, cur, totlen, nsegs); 2735 2736 /* Fill TX descriptor. */ 2737 desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs); 2738 /* First DMA segment is used by the TX command. */ 2739 desc->segs[0].addr = htole32(data->cmd_paddr); 2740 desc->segs[0].len = htole32(4 + buf->size + hdrlen + pad); 2741 /* Other DMA segments are for data payload. */ 2742 seg = &segs[0]; 2743 for (i = 1; i <= nsegs; i++) { 2744 desc->segs[i].addr = htole32(seg->ds_addr); 2745 desc->segs[i].len = htole32(seg->ds_len); 2746 seg++; 2747 } 2748 2749 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2750 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 2751 BUS_DMASYNC_PREWRITE); 2752 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2753 BUS_DMASYNC_PREWRITE); 2754 2755 ring->pending += 1; 2756 2757 if (!frag) { 2758 if (ring->qid < WPI_CMD_QUEUE_NUM) { 2759 WPI_TXQ_STATE_LOCK(sc); 2760 ring->queued += ring->pending; 2761 callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, 2762 sc); 2763 WPI_TXQ_STATE_UNLOCK(sc); 2764 } 2765 2766 /* Kick TX ring. */ 2767 ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; 2768 ring->pending = 0; 2769 sc->sc_update_tx_ring(sc, ring); 2770 } else 2771 ieee80211_node_incref(data->ni); 2772 2773 end: DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END, 2774 __func__); 2775 2776 WPI_TXQ_UNLOCK(sc); 2777 2778 return (error); 2779 } 2780 2781 /* 2782 * Construct the data packet for a transmit buffer. 2783 */ 2784 static int 2785 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 2786 { 2787 const struct ieee80211_txparam *tp = ni->ni_txparms; 2788 struct ieee80211vap *vap = ni->ni_vap; 2789 struct ieee80211com *ic = ni->ni_ic; 2790 struct wpi_node *wn = WPI_NODE(ni); 2791 struct ieee80211_frame *wh; 2792 struct ieee80211_key *k = NULL; 2793 struct wpi_buf tx_data; 2794 struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data; 2795 uint32_t flags; 2796 uint16_t ac, qos; 2797 uint8_t tid, type, rate; 2798 int swcrypt, ismcast, totlen; 2799 2800 wh = mtod(m, struct ieee80211_frame *); 2801 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2802 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2803 swcrypt = 1; 2804 2805 /* Select EDCA Access Category and TX ring for this frame. */ 2806 if (IEEE80211_QOS_HAS_SEQ(wh)) { 2807 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 2808 tid = qos & IEEE80211_QOS_TID; 2809 } else { 2810 qos = 0; 2811 tid = 0; 2812 } 2813 ac = M_WME_GETAC(m); 2814 2815 /* Choose a TX rate index. */ 2816 if (type == IEEE80211_FC0_TYPE_MGT || 2817 type == IEEE80211_FC0_TYPE_CTL || 2818 (m->m_flags & M_EAPOL) != 0) 2819 rate = tp->mgmtrate; 2820 else if (ismcast) 2821 rate = tp->mcastrate; 2822 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2823 rate = tp->ucastrate; 2824 else { 2825 /* XXX pass pktlen */ 2826 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2827 rate = ni->ni_txrate; 2828 } 2829 2830 /* Encrypt the frame if need be. */ 2831 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2832 /* Retrieve key for TX. */ 2833 k = ieee80211_crypto_encap(ni, m); 2834 if (k == NULL) 2835 return (ENOBUFS); 2836 2837 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT; 2838 2839 /* 802.11 header may have moved. */ 2840 wh = mtod(m, struct ieee80211_frame *); 2841 } 2842 totlen = m->m_pkthdr.len; 2843 2844 if (ieee80211_radiotap_active_vap(vap)) { 2845 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 2846 2847 tap->wt_flags = 0; 2848 tap->wt_rate = rate; 2849 if (k != NULL) 2850 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2851 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2852 tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 2853 2854 ieee80211_radiotap_tx(vap, m); 2855 } 2856 2857 flags = 0; 2858 if (!ismcast) { 2859 /* Unicast frame, check if an ACK is expected. */ 2860 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 2861 IEEE80211_QOS_ACKPOLICY_NOACK) 2862 flags |= WPI_TX_NEED_ACK; 2863 } 2864 2865 if (!IEEE80211_QOS_HAS_SEQ(wh)) 2866 flags |= WPI_TX_AUTO_SEQ; 2867 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2868 flags |= WPI_TX_MORE_FRAG; 2869 2870 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 2871 if (!ismcast) { 2872 /* NB: Group frames are sent using CCK in 802.11b/g. */ 2873 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 2874 flags |= WPI_TX_NEED_RTS; 2875 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 2876 WPI_RATE_IS_OFDM(rate)) { 2877 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2878 flags |= WPI_TX_NEED_CTS; 2879 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2880 flags |= WPI_TX_NEED_RTS; 2881 } 2882 2883 if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS)) 2884 flags |= WPI_TX_FULL_TXOP; 2885 } 2886 2887 memset(tx, 0, sizeof (struct wpi_cmd_data)); 2888 if (type == IEEE80211_FC0_TYPE_MGT) { 2889 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2890 2891 /* Tell HW to set timestamp in probe responses. */ 2892 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2893 flags |= WPI_TX_INSERT_TSTAMP; 2894 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2895 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2896 tx->timeout = htole16(3); 2897 else 2898 tx->timeout = htole16(2); 2899 } 2900 2901 if (ismcast || type != IEEE80211_FC0_TYPE_DATA) 2902 tx->id = WPI_ID_BROADCAST; 2903 else { 2904 if (wn->id == WPI_ID_UNDEFINED) { 2905 device_printf(sc->sc_dev, 2906 "%s: undefined node id\n", __func__); 2907 return (EINVAL); 2908 } 2909 2910 tx->id = wn->id; 2911 } 2912 2913 if (!swcrypt) { 2914 switch (k->wk_cipher->ic_cipher) { 2915 case IEEE80211_CIPHER_AES_CCM: 2916 tx->security = WPI_CIPHER_CCMP; 2917 break; 2918 2919 default: 2920 break; 2921 } 2922 2923 memcpy(tx->key, k->wk_key, k->wk_keylen); 2924 } 2925 2926 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 2927 struct mbuf *next = m->m_nextpkt; 2928 2929 tx->lnext = htole16(next->m_pkthdr.len); 2930 tx->fnext = htole32(tx->security | 2931 (flags & WPI_TX_NEED_ACK) | 2932 WPI_NEXT_STA_ID(tx->id)); 2933 } 2934 2935 tx->len = htole16(totlen); 2936 tx->flags = htole32(flags); 2937 tx->plcp = rate2plcp(rate); 2938 tx->tid = tid; 2939 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 2940 tx->ofdm_mask = 0xff; 2941 tx->cck_mask = 0x0f; 2942 tx->rts_ntries = 7; 2943 tx->data_ntries = tp->maxretry; 2944 2945 tx_data.ni = ni; 2946 tx_data.m = m; 2947 tx_data.size = sizeof(struct wpi_cmd_data); 2948 tx_data.code = WPI_CMD_TX_DATA; 2949 tx_data.ac = ac; 2950 2951 return wpi_cmd2(sc, &tx_data); 2952 } 2953 2954 static int 2955 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, 2956 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 2957 { 2958 struct ieee80211vap *vap = ni->ni_vap; 2959 struct ieee80211_key *k = NULL; 2960 struct ieee80211_frame *wh; 2961 struct wpi_buf tx_data; 2962 struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data; 2963 uint32_t flags; 2964 uint8_t ac, type, rate; 2965 int swcrypt, totlen; 2966 2967 wh = mtod(m, struct ieee80211_frame *); 2968 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2969 swcrypt = 1; 2970 2971 ac = params->ibp_pri & 3; 2972 2973 /* Choose a TX rate index. */ 2974 rate = params->ibp_rate0; 2975 2976 flags = 0; 2977 if (!IEEE80211_QOS_HAS_SEQ(wh)) 2978 flags |= WPI_TX_AUTO_SEQ; 2979 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 2980 flags |= WPI_TX_NEED_ACK; 2981 if (params->ibp_flags & IEEE80211_BPF_RTS) 2982 flags |= WPI_TX_NEED_RTS; 2983 if (params->ibp_flags & IEEE80211_BPF_CTS) 2984 flags |= WPI_TX_NEED_CTS; 2985 if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS)) 2986 flags |= WPI_TX_FULL_TXOP; 2987 2988 /* Encrypt the frame if need be. */ 2989 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 2990 /* Retrieve key for TX. */ 2991 k = ieee80211_crypto_encap(ni, m); 2992 if (k == NULL) 2993 return (ENOBUFS); 2994 2995 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT; 2996 2997 /* 802.11 header may have moved. */ 2998 wh = mtod(m, struct ieee80211_frame *); 2999 } 3000 totlen = m->m_pkthdr.len; 3001 3002 if (ieee80211_radiotap_active_vap(vap)) { 3003 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 3004 3005 tap->wt_flags = 0; 3006 tap->wt_rate = rate; 3007 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) 3008 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3009 3010 ieee80211_radiotap_tx(vap, m); 3011 } 3012 3013 memset(tx, 0, sizeof (struct wpi_cmd_data)); 3014 if (type == IEEE80211_FC0_TYPE_MGT) { 3015 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3016 3017 /* Tell HW to set timestamp in probe responses. */ 3018 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3019 flags |= WPI_TX_INSERT_TSTAMP; 3020 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3021 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3022 tx->timeout = htole16(3); 3023 else 3024 tx->timeout = htole16(2); 3025 } 3026 3027 if (!swcrypt) { 3028 switch (k->wk_cipher->ic_cipher) { 3029 case IEEE80211_CIPHER_AES_CCM: 3030 tx->security = WPI_CIPHER_CCMP; 3031 break; 3032 3033 default: 3034 break; 3035 } 3036 3037 memcpy(tx->key, k->wk_key, k->wk_keylen); 3038 } 3039 3040 tx->len = htole16(totlen); 3041 tx->flags = htole32(flags); 3042 tx->plcp = rate2plcp(rate); 3043 tx->id = WPI_ID_BROADCAST; 3044 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 3045 tx->rts_ntries = params->ibp_try1; 3046 tx->data_ntries = params->ibp_try0; 3047 3048 tx_data.ni = ni; 3049 tx_data.m = m; 3050 tx_data.size = sizeof(struct wpi_cmd_data); 3051 tx_data.code = WPI_CMD_TX_DATA; 3052 tx_data.ac = ac; 3053 3054 return wpi_cmd2(sc, &tx_data); 3055 } 3056 3057 static __inline int 3058 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac) 3059 { 3060 struct wpi_tx_ring *ring = &sc->txq[ac]; 3061 int retval; 3062 3063 WPI_TXQ_STATE_LOCK(sc); 3064 retval = WPI_TX_RING_HIMARK - ring->queued; 3065 WPI_TXQ_STATE_UNLOCK(sc); 3066 3067 return retval; 3068 } 3069 3070 static int 3071 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3072 const struct ieee80211_bpf_params *params) 3073 { 3074 struct ieee80211com *ic = ni->ni_ic; 3075 struct wpi_softc *sc = ic->ic_softc; 3076 uint16_t ac; 3077 int error = 0; 3078 3079 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3080 3081 ac = M_WME_GETAC(m); 3082 3083 WPI_TX_LOCK(sc); 3084 3085 /* NB: no fragments here */ 3086 if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) { 3087 error = sc->sc_running ? ENOBUFS : ENETDOWN; 3088 goto unlock; 3089 } 3090 3091 if (params == NULL) { 3092 /* 3093 * Legacy path; interpret frame contents to decide 3094 * precisely how to send the frame. 3095 */ 3096 error = wpi_tx_data(sc, m, ni); 3097 } else { 3098 /* 3099 * Caller supplied explicit parameters to use in 3100 * sending the frame. 3101 */ 3102 error = wpi_tx_data_raw(sc, m, ni, params); 3103 } 3104 3105 unlock: WPI_TX_UNLOCK(sc); 3106 3107 if (error != 0) { 3108 m_freem(m); 3109 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 3110 3111 return error; 3112 } 3113 3114 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 3115 3116 return 0; 3117 } 3118 3119 static int 3120 wpi_transmit(struct ieee80211com *ic, struct mbuf *m) 3121 { 3122 struct wpi_softc *sc = ic->ic_softc; 3123 struct ieee80211_node *ni; 3124 struct mbuf *mnext; 3125 uint16_t ac; 3126 int error, nmbufs; 3127 3128 WPI_TX_LOCK(sc); 3129 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__); 3130 3131 /* Check if interface is up & running. */ 3132 if (__predict_false(sc->sc_running == 0)) { 3133 error = ENXIO; 3134 goto unlock; 3135 } 3136 3137 nmbufs = 1; 3138 for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt) 3139 nmbufs++; 3140 3141 /* Check for available space. */ 3142 ac = M_WME_GETAC(m); 3143 if (wpi_tx_ring_free_space(sc, ac) < nmbufs) { 3144 error = ENOBUFS; 3145 goto unlock; 3146 } 3147 3148 error = 0; 3149 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 3150 do { 3151 mnext = m->m_nextpkt; 3152 if (wpi_tx_data(sc, m, ni) != 0) { 3153 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 3154 nmbufs); 3155 wpi_free_txfrags(sc, ac); 3156 ieee80211_free_mbuf(m); 3157 ieee80211_free_node(ni); 3158 break; 3159 } 3160 } while((m = mnext) != NULL); 3161 3162 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__); 3163 3164 unlock: WPI_TX_UNLOCK(sc); 3165 3166 return (error); 3167 } 3168 3169 static void 3170 wpi_watchdog_rfkill(void *arg) 3171 { 3172 struct wpi_softc *sc = arg; 3173 struct ieee80211com *ic = &sc->sc_ic; 3174 3175 DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n"); 3176 3177 /* No need to lock firmware memory. */ 3178 if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) { 3179 /* Radio kill switch is still off. */ 3180 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, 3181 sc); 3182 } else 3183 ieee80211_runtask(ic, &sc->sc_radioon_task); 3184 } 3185 3186 static void 3187 wpi_scan_timeout(void *arg) 3188 { 3189 struct wpi_softc *sc = arg; 3190 struct ieee80211com *ic = &sc->sc_ic; 3191 3192 ic_printf(ic, "scan timeout\n"); 3193 ieee80211_restart_all(ic); 3194 } 3195 3196 static void 3197 wpi_tx_timeout(void *arg) 3198 { 3199 struct wpi_softc *sc = arg; 3200 struct ieee80211com *ic = &sc->sc_ic; 3201 3202 ic_printf(ic, "device timeout\n"); 3203 ieee80211_restart_all(ic); 3204 } 3205 3206 static void 3207 wpi_parent(struct ieee80211com *ic) 3208 { 3209 struct wpi_softc *sc = ic->ic_softc; 3210 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3211 3212 if (ic->ic_nrunning > 0) { 3213 if (wpi_init(sc) == 0) { 3214 ieee80211_notify_radio(ic, 1); 3215 ieee80211_start_all(ic); 3216 } else { 3217 ieee80211_notify_radio(ic, 0); 3218 ieee80211_stop(vap); 3219 } 3220 } else { 3221 ieee80211_notify_radio(ic, 0); 3222 wpi_stop(sc); 3223 } 3224 } 3225 3226 /* 3227 * Send a command to the firmware. 3228 */ 3229 static int 3230 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size, 3231 int async) 3232 { 3233 struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM]; 3234 struct wpi_tx_desc *desc; 3235 struct wpi_tx_data *data; 3236 struct wpi_tx_cmd *cmd; 3237 struct mbuf *m; 3238 bus_addr_t paddr; 3239 uint16_t totlen; 3240 int error; 3241 3242 WPI_TXQ_LOCK(sc); 3243 3244 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3245 3246 if (__predict_false(sc->sc_running == 0)) { 3247 /* wpi_stop() was called */ 3248 if (code == WPI_CMD_SCAN) 3249 error = ENETDOWN; 3250 else 3251 error = 0; 3252 3253 goto fail; 3254 } 3255 3256 if (async == 0) 3257 WPI_LOCK_ASSERT(sc); 3258 3259 DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n", 3260 __func__, wpi_cmd_str(code), size, async); 3261 3262 desc = &ring->desc[ring->cur]; 3263 data = &ring->data[ring->cur]; 3264 totlen = 4 + size; 3265 3266 if (size > sizeof cmd->data) { 3267 /* Command is too large to fit in a descriptor. */ 3268 if (totlen > MCLBYTES) { 3269 error = EINVAL; 3270 goto fail; 3271 } 3272 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 3273 if (m == NULL) { 3274 error = ENOMEM; 3275 goto fail; 3276 } 3277 cmd = mtod(m, struct wpi_tx_cmd *); 3278 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 3279 totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 3280 if (error != 0) { 3281 m_freem(m); 3282 goto fail; 3283 } 3284 data->m = m; 3285 } else { 3286 cmd = &ring->cmd[ring->cur]; 3287 paddr = data->cmd_paddr; 3288 } 3289 3290 cmd->code = code; 3291 cmd->flags = 0; 3292 cmd->qid = ring->qid; 3293 cmd->idx = ring->cur; 3294 memcpy(cmd->data, buf, size); 3295 3296 desc->nsegs = 1 + (WPI_PAD32(size) << 4); 3297 desc->segs[0].addr = htole32(paddr); 3298 desc->segs[0].len = htole32(totlen); 3299 3300 if (size > sizeof cmd->data) { 3301 bus_dmamap_sync(ring->data_dmat, data->map, 3302 BUS_DMASYNC_PREWRITE); 3303 } else { 3304 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 3305 BUS_DMASYNC_PREWRITE); 3306 } 3307 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3308 BUS_DMASYNC_PREWRITE); 3309 3310 /* Kick command ring. */ 3311 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 3312 sc->sc_update_tx_ring(sc, ring); 3313 3314 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 3315 3316 WPI_TXQ_UNLOCK(sc); 3317 3318 return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 3319 3320 fail: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 3321 3322 WPI_TXQ_UNLOCK(sc); 3323 3324 return error; 3325 } 3326 3327 /* 3328 * Configure HW multi-rate retries. 3329 */ 3330 static int 3331 wpi_mrr_setup(struct wpi_softc *sc) 3332 { 3333 struct ieee80211com *ic = &sc->sc_ic; 3334 struct wpi_mrr_setup mrr; 3335 uint8_t i; 3336 int error; 3337 3338 /* CCK rates (not used with 802.11a). */ 3339 for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) { 3340 mrr.rates[i].flags = 0; 3341 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 3342 /* Fallback to the immediate lower CCK rate (if any.) */ 3343 mrr.rates[i].next = 3344 (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1; 3345 /* Try twice at this rate before falling back to "next". */ 3346 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT; 3347 } 3348 /* OFDM rates (not used with 802.11b). */ 3349 for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) { 3350 mrr.rates[i].flags = 0; 3351 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 3352 /* Fallback to the immediate lower rate (if any.) */ 3353 /* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */ 3354 mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ? 3355 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 3356 WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) : 3357 i - 1; 3358 /* Try twice at this rate before falling back to "next". */ 3359 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT; 3360 } 3361 /* Setup MRR for control frames. */ 3362 mrr.which = htole32(WPI_MRR_CTL); 3363 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 3364 if (error != 0) { 3365 device_printf(sc->sc_dev, 3366 "could not setup MRR for control frames\n"); 3367 return error; 3368 } 3369 /* Setup MRR for data frames. */ 3370 mrr.which = htole32(WPI_MRR_DATA); 3371 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 3372 if (error != 0) { 3373 device_printf(sc->sc_dev, 3374 "could not setup MRR for data frames\n"); 3375 return error; 3376 } 3377 return 0; 3378 } 3379 3380 static int 3381 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3382 { 3383 struct ieee80211com *ic = ni->ni_ic; 3384 struct wpi_vap *wvp = WPI_VAP(ni->ni_vap); 3385 struct wpi_node *wn = WPI_NODE(ni); 3386 struct wpi_node_info node; 3387 int error; 3388 3389 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3390 3391 if (wn->id == WPI_ID_UNDEFINED) 3392 return EINVAL; 3393 3394 memset(&node, 0, sizeof node); 3395 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 3396 node.id = wn->id; 3397 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3398 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 3399 node.action = htole32(WPI_ACTION_SET_RATE); 3400 node.antenna = WPI_ANTENNA_BOTH; 3401 3402 DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__, 3403 wn->id, ether_sprintf(ni->ni_macaddr)); 3404 3405 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 3406 if (error != 0) { 3407 device_printf(sc->sc_dev, 3408 "%s: wpi_cmd() call failed with error code %d\n", __func__, 3409 error); 3410 return error; 3411 } 3412 3413 if (wvp->wv_gtk != 0) { 3414 error = wpi_set_global_keys(ni); 3415 if (error != 0) { 3416 device_printf(sc->sc_dev, 3417 "%s: error while setting global keys\n", __func__); 3418 return ENXIO; 3419 } 3420 } 3421 3422 return 0; 3423 } 3424 3425 /* 3426 * Broadcast node is used to send group-addressed and management frames. 3427 */ 3428 static int 3429 wpi_add_broadcast_node(struct wpi_softc *sc, int async) 3430 { 3431 struct ieee80211com *ic = &sc->sc_ic; 3432 struct wpi_node_info node; 3433 3434 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3435 3436 memset(&node, 0, sizeof node); 3437 IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr); 3438 node.id = WPI_ID_BROADCAST; 3439 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3440 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 3441 node.action = htole32(WPI_ACTION_SET_RATE); 3442 node.antenna = WPI_ANTENNA_BOTH; 3443 3444 DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__); 3445 3446 return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async); 3447 } 3448 3449 static int 3450 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3451 { 3452 struct wpi_node *wn = WPI_NODE(ni); 3453 int error; 3454 3455 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3456 3457 wn->id = wpi_add_node_entry_sta(sc); 3458 3459 if ((error = wpi_add_node(sc, ni)) != 0) { 3460 wpi_del_node_entry(sc, wn->id); 3461 wn->id = WPI_ID_UNDEFINED; 3462 return error; 3463 } 3464 3465 return 0; 3466 } 3467 3468 static int 3469 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3470 { 3471 struct wpi_node *wn = WPI_NODE(ni); 3472 int error; 3473 3474 KASSERT(wn->id == WPI_ID_UNDEFINED, 3475 ("the node %d was added before", wn->id)); 3476 3477 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3478 3479 if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) { 3480 device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__); 3481 return ENOMEM; 3482 } 3483 3484 if ((error = wpi_add_node(sc, ni)) != 0) { 3485 wpi_del_node_entry(sc, wn->id); 3486 wn->id = WPI_ID_UNDEFINED; 3487 return error; 3488 } 3489 3490 return 0; 3491 } 3492 3493 static void 3494 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3495 { 3496 struct wpi_node *wn = WPI_NODE(ni); 3497 struct wpi_cmd_del_node node; 3498 int error; 3499 3500 KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed")); 3501 3502 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3503 3504 memset(&node, 0, sizeof node); 3505 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 3506 node.count = 1; 3507 3508 DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__, 3509 wn->id, ether_sprintf(ni->ni_macaddr)); 3510 3511 error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1); 3512 if (error != 0) { 3513 device_printf(sc->sc_dev, 3514 "%s: could not delete node %u, error %d\n", __func__, 3515 wn->id, error); 3516 } 3517 } 3518 3519 static int 3520 wpi_updateedca(struct ieee80211com *ic) 3521 { 3522 #define WPI_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 3523 struct wpi_softc *sc = ic->ic_softc; 3524 struct chanAccParams chp; 3525 struct wpi_edca_params cmd; 3526 int aci, error; 3527 3528 ieee80211_wme_ic_getparams(ic, &chp); 3529 3530 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3531 3532 memset(&cmd, 0, sizeof cmd); 3533 cmd.flags = htole32(WPI_EDCA_UPDATE); 3534 for (aci = 0; aci < WME_NUM_AC; aci++) { 3535 const struct wmeParams *ac = &chp.cap_wmeParams[aci]; 3536 cmd.ac[aci].aifsn = ac->wmep_aifsn; 3537 cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin)); 3538 cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax)); 3539 cmd.ac[aci].txoplimit = 3540 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); 3541 3542 DPRINTF(sc, WPI_DEBUG_EDCA, 3543 "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 3544 "txoplimit=%d\n", aci, cmd.ac[aci].aifsn, 3545 cmd.ac[aci].cwmin, cmd.ac[aci].cwmax, 3546 cmd.ac[aci].txoplimit); 3547 } 3548 error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 3549 3550 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 3551 3552 return error; 3553 #undef WPI_EXP2 3554 } 3555 3556 static void 3557 wpi_set_promisc(struct wpi_softc *sc) 3558 { 3559 struct ieee80211com *ic = &sc->sc_ic; 3560 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3561 uint32_t promisc_filter; 3562 3563 promisc_filter = WPI_FILTER_CTL; 3564 if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP) 3565 promisc_filter |= WPI_FILTER_PROMISC; 3566 3567 if (ic->ic_promisc > 0) 3568 sc->rxon.filter |= htole32(promisc_filter); 3569 else 3570 sc->rxon.filter &= ~htole32(promisc_filter); 3571 } 3572 3573 static void 3574 wpi_update_promisc(struct ieee80211com *ic) 3575 { 3576 struct wpi_softc *sc = ic->ic_softc; 3577 3578 WPI_LOCK(sc); 3579 if (sc->sc_running == 0) { 3580 WPI_UNLOCK(sc); 3581 return; 3582 } 3583 WPI_UNLOCK(sc); 3584 3585 WPI_RXON_LOCK(sc); 3586 wpi_set_promisc(sc); 3587 3588 if (wpi_send_rxon(sc, 1, 1) != 0) { 3589 device_printf(sc->sc_dev, "%s: could not send RXON\n", 3590 __func__); 3591 } 3592 WPI_RXON_UNLOCK(sc); 3593 } 3594 3595 static void 3596 wpi_update_mcast(struct ieee80211com *ic) 3597 { 3598 /* Ignore */ 3599 } 3600 3601 static void 3602 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3603 { 3604 struct wpi_cmd_led led; 3605 3606 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3607 3608 led.which = which; 3609 led.unit = htole32(100000); /* on/off in unit of 100ms */ 3610 led.off = off; 3611 led.on = on; 3612 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 3613 } 3614 3615 static int 3616 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni) 3617 { 3618 struct wpi_cmd_timing cmd; 3619 uint64_t val, mod; 3620 3621 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3622 3623 memset(&cmd, 0, sizeof cmd); 3624 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3625 cmd.bintval = htole16(ni->ni_intval); 3626 cmd.lintval = htole16(10); 3627 3628 /* Compute remaining time until next beacon. */ 3629 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 3630 mod = le64toh(cmd.tstamp) % val; 3631 cmd.binitval = htole32((uint32_t)(val - mod)); 3632 3633 DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 3634 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 3635 3636 return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1); 3637 } 3638 3639 /* 3640 * This function is called periodically (every 60 seconds) to adjust output 3641 * power to temperature changes. 3642 */ 3643 static void 3644 wpi_power_calibration(struct wpi_softc *sc) 3645 { 3646 int temp; 3647 3648 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3649 3650 /* Update sensor data. */ 3651 temp = (int)WPI_READ(sc, WPI_UCODE_GP2); 3652 DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp); 3653 3654 /* Sanity-check read value. */ 3655 if (temp < -260 || temp > 25) { 3656 /* This can't be correct, ignore. */ 3657 DPRINTF(sc, WPI_DEBUG_TEMP, 3658 "out-of-range temperature reported: %d\n", temp); 3659 return; 3660 } 3661 3662 DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp); 3663 3664 /* Adjust Tx power if need be. */ 3665 if (abs(temp - sc->temp) <= 6) 3666 return; 3667 3668 sc->temp = temp; 3669 3670 if (wpi_set_txpower(sc, 1) != 0) { 3671 /* just warn, too bad for the automatic calibration... */ 3672 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3673 } 3674 } 3675 3676 /* 3677 * Set TX power for current channel. 3678 */ 3679 static int 3680 wpi_set_txpower(struct wpi_softc *sc, int async) 3681 { 3682 struct wpi_power_group *group; 3683 struct wpi_cmd_txpower cmd; 3684 uint8_t chan; 3685 int idx, is_chan_5ghz, i; 3686 3687 /* Retrieve current channel from last RXON. */ 3688 chan = sc->rxon.chan; 3689 is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0; 3690 3691 /* Find the TX power group to which this channel belongs. */ 3692 if (is_chan_5ghz) { 3693 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3694 if (chan <= group->chan) 3695 break; 3696 } else 3697 group = &sc->groups[0]; 3698 3699 memset(&cmd, 0, sizeof cmd); 3700 cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ; 3701 cmd.chan = htole16(chan); 3702 3703 /* Set TX power for all OFDM and CCK rates. */ 3704 for (i = 0; i <= WPI_RIDX_MAX ; i++) { 3705 /* Retrieve TX power for this channel/rate. */ 3706 idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i); 3707 3708 cmd.rates[i].plcp = wpi_ridx_to_plcp[i]; 3709 3710 if (is_chan_5ghz) { 3711 cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; 3712 cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; 3713 } else { 3714 cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; 3715 cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; 3716 } 3717 DPRINTF(sc, WPI_DEBUG_TEMP, 3718 "chan %d/ridx %d: power index %d\n", chan, i, idx); 3719 } 3720 3721 return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async); 3722 } 3723 3724 /* 3725 * Determine Tx power index for a given channel/rate combination. 3726 * This takes into account the regulatory information from EEPROM and the 3727 * current temperature. 3728 */ 3729 static int 3730 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3731 uint8_t chan, int is_chan_5ghz, int ridx) 3732 { 3733 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3734 #define fdivround(a, b, n) \ 3735 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3736 3737 /* Linear interpolation. */ 3738 #define interpolate(x, x1, y1, x2, y2, n) \ 3739 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3740 3741 struct wpi_power_sample *sample; 3742 int pwr, idx; 3743 3744 /* Default TX power is group maximum TX power minus 3dB. */ 3745 pwr = group->maxpwr / 2; 3746 3747 /* Decrease TX power for highest OFDM rates to reduce distortion. */ 3748 switch (ridx) { 3749 case WPI_RIDX_OFDM36: 3750 pwr -= is_chan_5ghz ? 5 : 0; 3751 break; 3752 case WPI_RIDX_OFDM48: 3753 pwr -= is_chan_5ghz ? 10 : 7; 3754 break; 3755 case WPI_RIDX_OFDM54: 3756 pwr -= is_chan_5ghz ? 12 : 9; 3757 break; 3758 } 3759 3760 /* Never exceed the channel maximum allowed TX power. */ 3761 pwr = min(pwr, sc->maxpwr[chan]); 3762 3763 /* Retrieve TX power index into gain tables from samples. */ 3764 for (sample = group->samples; sample < &group->samples[3]; sample++) 3765 if (pwr > sample[1].power) 3766 break; 3767 /* Fixed-point linear interpolation using a 19-bit fractional part. */ 3768 idx = interpolate(pwr, sample[0].power, sample[0].index, 3769 sample[1].power, sample[1].index, 19); 3770 3771 /*- 3772 * Adjust power index based on current temperature: 3773 * - if cooler than factory-calibrated: decrease output power 3774 * - if warmer than factory-calibrated: increase output power 3775 */ 3776 idx -= (sc->temp - group->temp) * 11 / 100; 3777 3778 /* Decrease TX power for CCK rates (-5dB). */ 3779 if (ridx >= WPI_RIDX_CCK1) 3780 idx += 10; 3781 3782 /* Make sure idx stays in a valid range. */ 3783 if (idx < 0) 3784 return 0; 3785 if (idx > WPI_MAX_PWR_INDEX) 3786 return WPI_MAX_PWR_INDEX; 3787 return idx; 3788 3789 #undef interpolate 3790 #undef fdivround 3791 } 3792 3793 /* 3794 * Set STA mode power saving level (between 0 and 5). 3795 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 3796 */ 3797 static int 3798 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async) 3799 { 3800 struct wpi_pmgt_cmd cmd; 3801 const struct wpi_pmgt *pmgt; 3802 uint32_t max, reg; 3803 uint8_t skip_dtim; 3804 int i; 3805 3806 DPRINTF(sc, WPI_DEBUG_PWRSAVE, 3807 "%s: dtim=%d, level=%d, async=%d\n", 3808 __func__, dtim, level, async); 3809 3810 /* Select which PS parameters to use. */ 3811 if (dtim <= 10) 3812 pmgt = &wpi_pmgt[0][level]; 3813 else 3814 pmgt = &wpi_pmgt[1][level]; 3815 3816 memset(&cmd, 0, sizeof cmd); 3817 if (level != 0) /* not CAM */ 3818 cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP); 3819 /* Retrieve PCIe Active State Power Management (ASPM). */ 3820 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1); 3821 if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */ 3822 cmd.flags |= htole16(WPI_PS_PCI_PMGT); 3823 3824 cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU); 3825 cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU); 3826 3827 if (dtim == 0) { 3828 dtim = 1; 3829 skip_dtim = 0; 3830 } else 3831 skip_dtim = pmgt->skip_dtim; 3832 3833 if (skip_dtim != 0) { 3834 cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM); 3835 max = pmgt->intval[4]; 3836 if (max == (uint32_t)-1) 3837 max = dtim * (skip_dtim + 1); 3838 else if (max > dtim) 3839 max = rounddown(max, dtim); 3840 } else 3841 max = dtim; 3842 3843 for (i = 0; i < 5; i++) 3844 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 3845 3846 return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 3847 } 3848 3849 static int 3850 wpi_send_btcoex(struct wpi_softc *sc) 3851 { 3852 struct wpi_bluetooth cmd; 3853 3854 memset(&cmd, 0, sizeof cmd); 3855 cmd.flags = WPI_BT_COEX_MODE_4WIRE; 3856 cmd.lead_time = WPI_BT_LEAD_TIME_DEF; 3857 cmd.max_kill = WPI_BT_MAX_KILL_DEF; 3858 DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", 3859 __func__); 3860 return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 3861 } 3862 3863 static int 3864 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async) 3865 { 3866 int error; 3867 3868 if (async) 3869 WPI_RXON_LOCK_ASSERT(sc); 3870 3871 if (assoc && wpi_check_bss_filter(sc) != 0) { 3872 struct wpi_assoc rxon_assoc; 3873 3874 rxon_assoc.flags = sc->rxon.flags; 3875 rxon_assoc.filter = sc->rxon.filter; 3876 rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask; 3877 rxon_assoc.cck_mask = sc->rxon.cck_mask; 3878 rxon_assoc.reserved = 0; 3879 3880 error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc, 3881 sizeof (struct wpi_assoc), async); 3882 if (error != 0) { 3883 device_printf(sc->sc_dev, 3884 "RXON_ASSOC command failed, error %d\n", error); 3885 return error; 3886 } 3887 } else { 3888 if (async) { 3889 WPI_NT_LOCK(sc); 3890 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, 3891 sizeof (struct wpi_rxon), async); 3892 if (error == 0) 3893 wpi_clear_node_table(sc); 3894 WPI_NT_UNLOCK(sc); 3895 } else { 3896 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, 3897 sizeof (struct wpi_rxon), async); 3898 if (error == 0) 3899 wpi_clear_node_table(sc); 3900 } 3901 3902 if (error != 0) { 3903 device_printf(sc->sc_dev, 3904 "RXON command failed, error %d\n", error); 3905 return error; 3906 } 3907 3908 /* Add broadcast node. */ 3909 error = wpi_add_broadcast_node(sc, async); 3910 if (error != 0) { 3911 device_printf(sc->sc_dev, 3912 "could not add broadcast node, error %d\n", error); 3913 return error; 3914 } 3915 } 3916 3917 /* Configuration has changed, set Tx power accordingly. */ 3918 if ((error = wpi_set_txpower(sc, async)) != 0) { 3919 device_printf(sc->sc_dev, 3920 "%s: could not set TX power, error %d\n", __func__, error); 3921 return error; 3922 } 3923 3924 return 0; 3925 } 3926 3927 /** 3928 * Configure the card to listen to a particular channel, this transisions the 3929 * card in to being able to receive frames from remote devices. 3930 */ 3931 static int 3932 wpi_config(struct wpi_softc *sc) 3933 { 3934 struct ieee80211com *ic = &sc->sc_ic; 3935 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3936 struct ieee80211_channel *c = ic->ic_curchan; 3937 int error; 3938 3939 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3940 3941 /* Set power saving level to CAM during initialization. */ 3942 if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) { 3943 device_printf(sc->sc_dev, 3944 "%s: could not set power saving level\n", __func__); 3945 return error; 3946 } 3947 3948 /* Configure bluetooth coexistence. */ 3949 if ((error = wpi_send_btcoex(sc)) != 0) { 3950 device_printf(sc->sc_dev, 3951 "could not configure bluetooth coexistence\n"); 3952 return error; 3953 } 3954 3955 /* Configure adapter. */ 3956 memset(&sc->rxon, 0, sizeof (struct wpi_rxon)); 3957 IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr); 3958 3959 /* Set default channel. */ 3960 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 3961 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); 3962 if (IEEE80211_IS_CHAN_2GHZ(c)) 3963 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 3964 3965 sc->rxon.filter = WPI_FILTER_MULTICAST; 3966 switch (ic->ic_opmode) { 3967 case IEEE80211_M_STA: 3968 sc->rxon.mode = WPI_MODE_STA; 3969 break; 3970 case IEEE80211_M_IBSS: 3971 sc->rxon.mode = WPI_MODE_IBSS; 3972 sc->rxon.filter |= WPI_FILTER_BEACON; 3973 break; 3974 case IEEE80211_M_HOSTAP: 3975 /* XXX workaround for beaconing */ 3976 sc->rxon.mode = WPI_MODE_IBSS; 3977 sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC; 3978 break; 3979 case IEEE80211_M_AHDEMO: 3980 sc->rxon.mode = WPI_MODE_HOSTAP; 3981 break; 3982 case IEEE80211_M_MONITOR: 3983 sc->rxon.mode = WPI_MODE_MONITOR; 3984 break; 3985 default: 3986 device_printf(sc->sc_dev, "unknown opmode %d\n", 3987 ic->ic_opmode); 3988 return EINVAL; 3989 } 3990 sc->rxon.filter = htole32(sc->rxon.filter); 3991 wpi_set_promisc(sc); 3992 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 3993 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 3994 3995 if ((error = wpi_send_rxon(sc, 0, 0)) != 0) { 3996 device_printf(sc->sc_dev, "%s: could not send RXON\n", 3997 __func__); 3998 return error; 3999 } 4000 4001 /* Setup rate scalling. */ 4002 if ((error = wpi_mrr_setup(sc)) != 0) { 4003 device_printf(sc->sc_dev, "could not setup MRR, error %d\n", 4004 error); 4005 return error; 4006 } 4007 4008 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4009 4010 return 0; 4011 } 4012 4013 static uint16_t 4014 wpi_get_active_dwell_time(struct wpi_softc *sc, 4015 struct ieee80211_channel *c, uint8_t n_probes) 4016 { 4017 /* No channel? Default to 2GHz settings. */ 4018 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 4019 return (WPI_ACTIVE_DWELL_TIME_2GHZ + 4020 WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); 4021 } 4022 4023 /* 5GHz dwell time. */ 4024 return (WPI_ACTIVE_DWELL_TIME_5GHZ + 4025 WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); 4026 } 4027 4028 /* 4029 * Limit the total dwell time. 4030 * 4031 * Returns the dwell time in milliseconds. 4032 */ 4033 static uint16_t 4034 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time) 4035 { 4036 struct ieee80211com *ic = &sc->sc_ic; 4037 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 4038 uint16_t bintval = 0; 4039 4040 /* bintval is in TU (1.024mS) */ 4041 if (vap != NULL) 4042 bintval = vap->iv_bss->ni_intval; 4043 4044 /* 4045 * If it's non-zero, we should calculate the minimum of 4046 * it and the DWELL_BASE. 4047 * 4048 * XXX Yes, the math should take into account that bintval 4049 * is 1.024mS, not 1mS.. 4050 */ 4051 if (bintval > 0) { 4052 DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__, 4053 bintval); 4054 return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2)); 4055 } 4056 4057 /* No association context? Default. */ 4058 return dwell_time; 4059 } 4060 4061 static uint16_t 4062 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c) 4063 { 4064 uint16_t passive; 4065 4066 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) 4067 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ; 4068 else 4069 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ; 4070 4071 /* Clamp to the beacon interval if we're associated. */ 4072 return (wpi_limit_dwell(sc, passive)); 4073 } 4074 4075 static uint32_t 4076 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval) 4077 { 4078 uint32_t mod = (time % bintval) * IEEE80211_DUR_TU; 4079 uint32_t nbeacons = time / bintval; 4080 4081 if (mod > WPI_PAUSE_MAX_TIME) 4082 mod = WPI_PAUSE_MAX_TIME; 4083 4084 return WPI_PAUSE_SCAN(nbeacons, mod); 4085 } 4086 4087 /* 4088 * Send a scan request to the firmware. 4089 */ 4090 static int 4091 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c) 4092 { 4093 struct ieee80211com *ic = &sc->sc_ic; 4094 struct ieee80211_scan_state *ss = ic->ic_scan; 4095 struct ieee80211vap *vap = ss->ss_vap; 4096 struct wpi_scan_hdr *hdr; 4097 struct wpi_cmd_data *tx; 4098 struct wpi_scan_essid *essids; 4099 struct wpi_scan_chan *chan; 4100 struct ieee80211_frame *wh; 4101 struct ieee80211_rateset *rs; 4102 uint16_t bintval, buflen, dwell_active, dwell_passive; 4103 uint8_t *buf, *frm, i, nssid; 4104 int bgscan, error; 4105 4106 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4107 4108 /* 4109 * We are absolutely not allowed to send a scan command when another 4110 * scan command is pending. 4111 */ 4112 if (callout_pending(&sc->scan_timeout)) { 4113 device_printf(sc->sc_dev, "%s: called whilst scanning!\n", 4114 __func__); 4115 error = EAGAIN; 4116 goto fail; 4117 } 4118 4119 bgscan = wpi_check_bss_filter(sc); 4120 bintval = vap->iv_bss->ni_intval; 4121 if (bgscan != 0 && 4122 bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) { 4123 error = EOPNOTSUPP; 4124 goto fail; 4125 } 4126 4127 buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4128 if (buf == NULL) { 4129 device_printf(sc->sc_dev, 4130 "%s: could not allocate buffer for scan command\n", 4131 __func__); 4132 error = ENOMEM; 4133 goto fail; 4134 } 4135 hdr = (struct wpi_scan_hdr *)buf; 4136 4137 /* 4138 * Move to the next channel if no packets are received within 10 msecs 4139 * after sending the probe request. 4140 */ 4141 hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT); 4142 hdr->quiet_threshold = htole16(1); 4143 4144 if (bgscan != 0) { 4145 /* 4146 * Max needs to be greater than active and passive and quiet! 4147 * It's also in microseconds! 4148 */ 4149 hdr->max_svc = htole32(250 * IEEE80211_DUR_TU); 4150 hdr->pause_svc = htole32(wpi_get_scan_pause_time(100, 4151 bintval)); 4152 } 4153 4154 hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON); 4155 4156 tx = (struct wpi_cmd_data *)(hdr + 1); 4157 tx->flags = htole32(WPI_TX_AUTO_SEQ); 4158 tx->id = WPI_ID_BROADCAST; 4159 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 4160 4161 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4162 /* Send probe requests at 6Mbps. */ 4163 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6]; 4164 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4165 } else { 4166 hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO); 4167 /* Send probe requests at 1Mbps. */ 4168 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 4169 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4170 } 4171 4172 essids = (struct wpi_scan_essid *)(tx + 1); 4173 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 4174 for (i = 0; i < nssid; i++) { 4175 essids[i].id = IEEE80211_ELEMID_SSID; 4176 essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN); 4177 memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len); 4178 #ifdef WPI_DEBUG 4179 if (sc->sc_debug & WPI_DEBUG_SCAN) { 4180 printf("Scanning Essid: "); 4181 ieee80211_print_essid(essids[i].data, essids[i].len); 4182 printf("\n"); 4183 } 4184 #endif 4185 } 4186 4187 /* 4188 * Build a probe request frame. Most of the following code is a 4189 * copy & paste of what is done in net80211. 4190 */ 4191 wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS); 4192 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4193 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4194 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4195 IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr); 4196 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 4197 IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr); 4198 4199 frm = (uint8_t *)(wh + 1); 4200 frm = ieee80211_add_ssid(frm, NULL, 0); 4201 frm = ieee80211_add_rates(frm, rs); 4202 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4203 frm = ieee80211_add_xrates(frm, rs); 4204 4205 /* Set length of probe request. */ 4206 tx->len = htole16(frm - (uint8_t *)wh); 4207 4208 /* 4209 * Construct information about the channel that we 4210 * want to scan. The firmware expects this to be directly 4211 * after the scan probe request 4212 */ 4213 chan = (struct wpi_scan_chan *)frm; 4214 chan->chan = ieee80211_chan2ieee(ic, c); 4215 chan->flags = 0; 4216 if (nssid) { 4217 hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT; 4218 chan->flags |= WPI_CHAN_NPBREQS(nssid); 4219 } else 4220 hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER; 4221 4222 if (!IEEE80211_IS_CHAN_PASSIVE(c)) 4223 chan->flags |= WPI_CHAN_ACTIVE; 4224 4225 /* 4226 * Calculate the active/passive dwell times. 4227 */ 4228 dwell_active = wpi_get_active_dwell_time(sc, c, nssid); 4229 dwell_passive = wpi_get_passive_dwell_time(sc, c); 4230 4231 /* Make sure they're valid. */ 4232 if (dwell_active > dwell_passive) 4233 dwell_active = dwell_passive; 4234 4235 chan->active = htole16(dwell_active); 4236 chan->passive = htole16(dwell_passive); 4237 4238 chan->dsp_gain = 0x6e; /* Default level */ 4239 4240 if (IEEE80211_IS_CHAN_5GHZ(c)) 4241 chan->rf_gain = 0x3b; 4242 else 4243 chan->rf_gain = 0x28; 4244 4245 DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n", 4246 chan->chan, IEEE80211_IS_CHAN_PASSIVE(c)); 4247 4248 hdr->nchan++; 4249 4250 if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) { 4251 /* XXX Force probe request transmission. */ 4252 memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan)); 4253 4254 chan++; 4255 4256 /* Reduce unnecessary delay. */ 4257 chan->flags = 0; 4258 chan->passive = chan->active = hdr->quiet_time; 4259 4260 hdr->nchan++; 4261 } 4262 4263 chan++; 4264 4265 buflen = (uint8_t *)chan - buf; 4266 hdr->len = htole16(buflen); 4267 4268 DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n", 4269 hdr->nchan); 4270 error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1); 4271 free(buf, M_DEVBUF); 4272 4273 if (error != 0) 4274 goto fail; 4275 4276 callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc); 4277 4278 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4279 4280 return 0; 4281 4282 fail: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 4283 4284 return error; 4285 } 4286 4287 static int 4288 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 4289 { 4290 struct ieee80211com *ic = vap->iv_ic; 4291 struct ieee80211_node *ni = vap->iv_bss; 4292 struct ieee80211_channel *c = ni->ni_chan; 4293 int error; 4294 4295 WPI_RXON_LOCK(sc); 4296 4297 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4298 4299 /* Update adapter configuration. */ 4300 sc->rxon.associd = 0; 4301 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 4302 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4303 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 4304 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); 4305 if (IEEE80211_IS_CHAN_2GHZ(c)) 4306 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 4307 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4308 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); 4309 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4310 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); 4311 if (IEEE80211_IS_CHAN_A(c)) { 4312 sc->rxon.cck_mask = 0; 4313 sc->rxon.ofdm_mask = 0x15; 4314 } else if (IEEE80211_IS_CHAN_B(c)) { 4315 sc->rxon.cck_mask = 0x03; 4316 sc->rxon.ofdm_mask = 0; 4317 } else { 4318 /* Assume 802.11b/g. */ 4319 sc->rxon.cck_mask = 0x0f; 4320 sc->rxon.ofdm_mask = 0x15; 4321 } 4322 4323 DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", 4324 sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask, 4325 sc->rxon.ofdm_mask); 4326 4327 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 4328 device_printf(sc->sc_dev, "%s: could not send RXON\n", 4329 __func__); 4330 } 4331 4332 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4333 4334 WPI_RXON_UNLOCK(sc); 4335 4336 return error; 4337 } 4338 4339 static int 4340 wpi_config_beacon(struct wpi_vap *wvp) 4341 { 4342 struct ieee80211vap *vap = &wvp->wv_vap; 4343 struct ieee80211com *ic = vap->iv_ic; 4344 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 4345 struct wpi_buf *bcn = &wvp->wv_bcbuf; 4346 struct wpi_softc *sc = ic->ic_softc; 4347 struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data; 4348 struct ieee80211_tim_ie *tie; 4349 struct mbuf *m; 4350 uint8_t *ptr; 4351 int error; 4352 4353 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4354 4355 WPI_VAP_LOCK_ASSERT(wvp); 4356 4357 cmd->len = htole16(bcn->m->m_pkthdr.len); 4358 cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 4359 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 4360 4361 /* XXX seems to be unused */ 4362 if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) { 4363 tie = (struct ieee80211_tim_ie *) bo->bo_tim; 4364 ptr = mtod(bcn->m, uint8_t *); 4365 4366 cmd->tim = htole16(bo->bo_tim - ptr); 4367 cmd->timsz = tie->tim_len; 4368 } 4369 4370 /* Necessary for recursion in ieee80211_beacon_update(). */ 4371 m = bcn->m; 4372 bcn->m = m_dup(m, M_NOWAIT); 4373 if (bcn->m == NULL) { 4374 device_printf(sc->sc_dev, 4375 "%s: could not copy beacon frame\n", __func__); 4376 error = ENOMEM; 4377 goto end; 4378 } 4379 4380 if ((error = wpi_cmd2(sc, bcn)) != 0) { 4381 device_printf(sc->sc_dev, 4382 "%s: could not update beacon frame, error %d", __func__, 4383 error); 4384 m_freem(bcn->m); 4385 } 4386 4387 /* Restore mbuf. */ 4388 end: bcn->m = m; 4389 4390 return error; 4391 } 4392 4393 static int 4394 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 4395 { 4396 struct ieee80211vap *vap = ni->ni_vap; 4397 struct wpi_vap *wvp = WPI_VAP(vap); 4398 struct wpi_buf *bcn = &wvp->wv_bcbuf; 4399 struct mbuf *m; 4400 int error; 4401 4402 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4403 4404 if (ni->ni_chan == IEEE80211_CHAN_ANYC) 4405 return EINVAL; 4406 4407 m = ieee80211_beacon_alloc(ni); 4408 if (m == NULL) { 4409 device_printf(sc->sc_dev, 4410 "%s: could not allocate beacon frame\n", __func__); 4411 return ENOMEM; 4412 } 4413 4414 WPI_VAP_LOCK(wvp); 4415 if (bcn->m != NULL) 4416 m_freem(bcn->m); 4417 4418 bcn->m = m; 4419 4420 error = wpi_config_beacon(wvp); 4421 WPI_VAP_UNLOCK(wvp); 4422 4423 return error; 4424 } 4425 4426 static void 4427 wpi_update_beacon(struct ieee80211vap *vap, int item) 4428 { 4429 struct wpi_softc *sc = vap->iv_ic->ic_softc; 4430 struct wpi_vap *wvp = WPI_VAP(vap); 4431 struct wpi_buf *bcn = &wvp->wv_bcbuf; 4432 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 4433 struct ieee80211_node *ni = vap->iv_bss; 4434 int mcast = 0; 4435 4436 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4437 4438 WPI_VAP_LOCK(wvp); 4439 if (bcn->m == NULL) { 4440 bcn->m = ieee80211_beacon_alloc(ni); 4441 if (bcn->m == NULL) { 4442 device_printf(sc->sc_dev, 4443 "%s: could not allocate beacon frame\n", __func__); 4444 4445 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, 4446 __func__); 4447 4448 WPI_VAP_UNLOCK(wvp); 4449 return; 4450 } 4451 } 4452 WPI_VAP_UNLOCK(wvp); 4453 4454 if (item == IEEE80211_BEACON_TIM) 4455 mcast = 1; /* TODO */ 4456 4457 setbit(bo->bo_flags, item); 4458 ieee80211_beacon_update(ni, bcn->m, mcast); 4459 4460 WPI_VAP_LOCK(wvp); 4461 wpi_config_beacon(wvp); 4462 WPI_VAP_UNLOCK(wvp); 4463 4464 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4465 } 4466 4467 static void 4468 wpi_newassoc(struct ieee80211_node *ni, int isnew) 4469 { 4470 struct ieee80211vap *vap = ni->ni_vap; 4471 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4472 struct wpi_node *wn = WPI_NODE(ni); 4473 int error; 4474 4475 WPI_NT_LOCK(sc); 4476 4477 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4478 4479 if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) { 4480 if ((error = wpi_add_ibss_node(sc, ni)) != 0) { 4481 device_printf(sc->sc_dev, 4482 "%s: could not add IBSS node, error %d\n", 4483 __func__, error); 4484 } 4485 } 4486 WPI_NT_UNLOCK(sc); 4487 } 4488 4489 static int 4490 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 4491 { 4492 struct ieee80211com *ic = vap->iv_ic; 4493 struct ieee80211_node *ni = vap->iv_bss; 4494 struct ieee80211_channel *c = ni->ni_chan; 4495 int error; 4496 4497 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4498 4499 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 4500 /* Link LED blinks while monitoring. */ 4501 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 4502 return 0; 4503 } 4504 4505 /* XXX kernel panic workaround */ 4506 if (c == IEEE80211_CHAN_ANYC) { 4507 device_printf(sc->sc_dev, "%s: incomplete configuration\n", 4508 __func__); 4509 return EINVAL; 4510 } 4511 4512 if ((error = wpi_set_timing(sc, ni)) != 0) { 4513 device_printf(sc->sc_dev, 4514 "%s: could not set timing, error %d\n", __func__, error); 4515 return error; 4516 } 4517 4518 /* Update adapter configuration. */ 4519 WPI_RXON_LOCK(sc); 4520 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4521 sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni)); 4522 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 4523 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); 4524 if (IEEE80211_IS_CHAN_2GHZ(c)) 4525 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 4526 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4527 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); 4528 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4529 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); 4530 if (IEEE80211_IS_CHAN_A(c)) { 4531 sc->rxon.cck_mask = 0; 4532 sc->rxon.ofdm_mask = 0x15; 4533 } else if (IEEE80211_IS_CHAN_B(c)) { 4534 sc->rxon.cck_mask = 0x03; 4535 sc->rxon.ofdm_mask = 0; 4536 } else { 4537 /* Assume 802.11b/g. */ 4538 sc->rxon.cck_mask = 0x0f; 4539 sc->rxon.ofdm_mask = 0x15; 4540 } 4541 sc->rxon.filter |= htole32(WPI_FILTER_BSS); 4542 4543 DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n", 4544 sc->rxon.chan, sc->rxon.flags); 4545 4546 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 4547 WPI_RXON_UNLOCK(sc); 4548 device_printf(sc->sc_dev, "%s: could not send RXON\n", 4549 __func__); 4550 return error; 4551 } 4552 4553 /* Start periodic calibration timer. */ 4554 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 4555 4556 WPI_RXON_UNLOCK(sc); 4557 4558 if (vap->iv_opmode == IEEE80211_M_IBSS || 4559 vap->iv_opmode == IEEE80211_M_HOSTAP) { 4560 if ((error = wpi_setup_beacon(sc, ni)) != 0) { 4561 device_printf(sc->sc_dev, 4562 "%s: could not setup beacon, error %d\n", __func__, 4563 error); 4564 return error; 4565 } 4566 } 4567 4568 if (vap->iv_opmode == IEEE80211_M_STA) { 4569 /* Add BSS node. */ 4570 WPI_NT_LOCK(sc); 4571 error = wpi_add_sta_node(sc, ni); 4572 WPI_NT_UNLOCK(sc); 4573 if (error != 0) { 4574 device_printf(sc->sc_dev, 4575 "%s: could not add BSS node, error %d\n", __func__, 4576 error); 4577 return error; 4578 } 4579 } 4580 4581 /* Link LED always on while associated. */ 4582 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 4583 4584 /* Enable power-saving mode if requested by user. */ 4585 if ((vap->iv_flags & IEEE80211_F_PMGTON) && 4586 vap->iv_opmode != IEEE80211_M_IBSS) 4587 (void)wpi_set_pslevel(sc, 0, 3, 1); 4588 4589 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4590 4591 return 0; 4592 } 4593 4594 static int 4595 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k) 4596 { 4597 const struct ieee80211_cipher *cip = k->wk_cipher; 4598 struct ieee80211vap *vap = ni->ni_vap; 4599 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4600 struct wpi_node *wn = WPI_NODE(ni); 4601 struct wpi_node_info node; 4602 uint16_t kflags; 4603 int error; 4604 4605 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4606 4607 if (wpi_check_node_entry(sc, wn->id) == 0) { 4608 device_printf(sc->sc_dev, "%s: node does not exist\n", 4609 __func__); 4610 return 0; 4611 } 4612 4613 switch (cip->ic_cipher) { 4614 case IEEE80211_CIPHER_AES_CCM: 4615 kflags = WPI_KFLAG_CCMP; 4616 break; 4617 4618 default: 4619 device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__, 4620 cip->ic_cipher); 4621 return 0; 4622 } 4623 4624 kflags |= WPI_KFLAG_KID(k->wk_keyix); 4625 if (k->wk_flags & IEEE80211_KEY_GROUP) 4626 kflags |= WPI_KFLAG_MULTICAST; 4627 4628 memset(&node, 0, sizeof node); 4629 node.id = wn->id; 4630 node.control = WPI_NODE_UPDATE; 4631 node.flags = WPI_FLAG_KEY_SET; 4632 node.kflags = htole16(kflags); 4633 memcpy(node.key, k->wk_key, k->wk_keylen); 4634 again: 4635 DPRINTF(sc, WPI_DEBUG_KEY, 4636 "%s: setting %s key id %d for node %d (%s)\n", __func__, 4637 (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix, 4638 node.id, ether_sprintf(ni->ni_macaddr)); 4639 4640 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 4641 if (error != 0) { 4642 device_printf(sc->sc_dev, "can't update node info, error %d\n", 4643 error); 4644 return !error; 4645 } 4646 4647 if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k && 4648 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { 4649 kflags |= WPI_KFLAG_MULTICAST; 4650 node.kflags = htole16(kflags); 4651 4652 goto again; 4653 } 4654 4655 return 1; 4656 } 4657 4658 static void 4659 wpi_load_key_cb(void *arg, struct ieee80211_node *ni) 4660 { 4661 const struct ieee80211_key *k = arg; 4662 struct ieee80211vap *vap = ni->ni_vap; 4663 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4664 struct wpi_node *wn = WPI_NODE(ni); 4665 int error; 4666 4667 if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED) 4668 return; 4669 4670 WPI_NT_LOCK(sc); 4671 error = wpi_load_key(ni, k); 4672 WPI_NT_UNLOCK(sc); 4673 4674 if (error == 0) { 4675 device_printf(sc->sc_dev, "%s: error while setting key\n", 4676 __func__); 4677 } 4678 } 4679 4680 static int 4681 wpi_set_global_keys(struct ieee80211_node *ni) 4682 { 4683 struct ieee80211vap *vap = ni->ni_vap; 4684 struct ieee80211_key *wk = &vap->iv_nw_keys[0]; 4685 int error = 1; 4686 4687 for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++) 4688 if (wk->wk_keyix != IEEE80211_KEYIX_NONE) 4689 error = wpi_load_key(ni, wk); 4690 4691 return !error; 4692 } 4693 4694 static int 4695 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k) 4696 { 4697 struct ieee80211vap *vap = ni->ni_vap; 4698 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4699 struct wpi_node *wn = WPI_NODE(ni); 4700 struct wpi_node_info node; 4701 uint16_t kflags; 4702 int error; 4703 4704 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4705 4706 if (wpi_check_node_entry(sc, wn->id) == 0) { 4707 DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__); 4708 return 1; /* Nothing to do. */ 4709 } 4710 4711 kflags = WPI_KFLAG_KID(k->wk_keyix); 4712 if (k->wk_flags & IEEE80211_KEY_GROUP) 4713 kflags |= WPI_KFLAG_MULTICAST; 4714 4715 memset(&node, 0, sizeof node); 4716 node.id = wn->id; 4717 node.control = WPI_NODE_UPDATE; 4718 node.flags = WPI_FLAG_KEY_SET; 4719 node.kflags = htole16(kflags); 4720 again: 4721 DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n", 4722 __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", 4723 k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr)); 4724 4725 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 4726 if (error != 0) { 4727 device_printf(sc->sc_dev, "can't update node info, error %d\n", 4728 error); 4729 return !error; 4730 } 4731 4732 if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k && 4733 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { 4734 kflags |= WPI_KFLAG_MULTICAST; 4735 node.kflags = htole16(kflags); 4736 4737 goto again; 4738 } 4739 4740 return 1; 4741 } 4742 4743 static void 4744 wpi_del_key_cb(void *arg, struct ieee80211_node *ni) 4745 { 4746 const struct ieee80211_key *k = arg; 4747 struct ieee80211vap *vap = ni->ni_vap; 4748 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4749 struct wpi_node *wn = WPI_NODE(ni); 4750 int error; 4751 4752 if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED) 4753 return; 4754 4755 WPI_NT_LOCK(sc); 4756 error = wpi_del_key(ni, k); 4757 WPI_NT_UNLOCK(sc); 4758 4759 if (error == 0) { 4760 device_printf(sc->sc_dev, "%s: error while deleting key\n", 4761 __func__); 4762 } 4763 } 4764 4765 static int 4766 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k, 4767 int set) 4768 { 4769 struct ieee80211com *ic = vap->iv_ic; 4770 struct wpi_softc *sc = ic->ic_softc; 4771 struct wpi_vap *wvp = WPI_VAP(vap); 4772 struct ieee80211_node *ni; 4773 int error, ni_ref = 0; 4774 4775 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4776 4777 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 4778 /* Not for us. */ 4779 return 1; 4780 } 4781 4782 if (!(k->wk_flags & IEEE80211_KEY_RECV)) { 4783 /* XMIT keys are handled in wpi_tx_data(). */ 4784 return 1; 4785 } 4786 4787 /* Handle group keys. */ 4788 if (&vap->iv_nw_keys[0] <= k && 4789 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { 4790 WPI_NT_LOCK(sc); 4791 if (set) 4792 wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix); 4793 else 4794 wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix); 4795 WPI_NT_UNLOCK(sc); 4796 4797 if (vap->iv_state == IEEE80211_S_RUN) { 4798 ieee80211_iterate_nodes(&ic->ic_sta, 4799 set ? wpi_load_key_cb : wpi_del_key_cb, 4800 __DECONST(void *, k)); 4801 } 4802 4803 return 1; 4804 } 4805 4806 switch (vap->iv_opmode) { 4807 case IEEE80211_M_STA: 4808 ni = vap->iv_bss; 4809 break; 4810 4811 case IEEE80211_M_IBSS: 4812 case IEEE80211_M_AHDEMO: 4813 case IEEE80211_M_HOSTAP: 4814 ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr); 4815 if (ni == NULL) 4816 return 0; /* should not happen */ 4817 4818 ni_ref = 1; 4819 break; 4820 4821 default: 4822 device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__, 4823 vap->iv_opmode); 4824 return 0; 4825 } 4826 4827 WPI_NT_LOCK(sc); 4828 if (set) 4829 error = wpi_load_key(ni, k); 4830 else 4831 error = wpi_del_key(ni, k); 4832 WPI_NT_UNLOCK(sc); 4833 4834 if (ni_ref) 4835 ieee80211_node_decref(ni); 4836 4837 return error; 4838 } 4839 4840 static int 4841 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 4842 { 4843 return wpi_process_key(vap, k, 1); 4844 } 4845 4846 static int 4847 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 4848 { 4849 return wpi_process_key(vap, k, 0); 4850 } 4851 4852 /* 4853 * This function is called after the runtime firmware notifies us of its 4854 * readiness (called in a process context). 4855 */ 4856 static int 4857 wpi_post_alive(struct wpi_softc *sc) 4858 { 4859 int ntries, error; 4860 4861 /* Check (again) that the radio is not disabled. */ 4862 if ((error = wpi_nic_lock(sc)) != 0) 4863 return error; 4864 4865 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4866 4867 /* NB: Runtime firmware must be up and running. */ 4868 if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) { 4869 device_printf(sc->sc_dev, 4870 "RF switch: radio disabled (%s)\n", __func__); 4871 wpi_nic_unlock(sc); 4872 return EPERM; /* :-) */ 4873 } 4874 wpi_nic_unlock(sc); 4875 4876 /* Wait for thermal sensor to calibrate. */ 4877 for (ntries = 0; ntries < 1000; ntries++) { 4878 if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0) 4879 break; 4880 DELAY(10); 4881 } 4882 4883 if (ntries == 1000) { 4884 device_printf(sc->sc_dev, 4885 "timeout waiting for thermal sensor calibration\n"); 4886 return ETIMEDOUT; 4887 } 4888 4889 DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp); 4890 return 0; 4891 } 4892 4893 /* 4894 * The firmware boot code is small and is intended to be copied directly into 4895 * the NIC internal memory (no DMA transfer). 4896 */ 4897 static int 4898 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size) 4899 { 4900 int error, ntries; 4901 4902 DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size); 4903 4904 size /= sizeof (uint32_t); 4905 4906 if ((error = wpi_nic_lock(sc)) != 0) 4907 return error; 4908 4909 /* Copy microcode image into NIC memory. */ 4910 wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE, 4911 (const uint32_t *)ucode, size); 4912 4913 wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0); 4914 wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE); 4915 wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size); 4916 4917 /* Start boot load now. */ 4918 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START); 4919 4920 /* Wait for transfer to complete. */ 4921 for (ntries = 0; ntries < 1000; ntries++) { 4922 uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS); 4923 DPRINTF(sc, WPI_DEBUG_HW, 4924 "firmware status=0x%x, val=0x%x, result=0x%x\n", status, 4925 WPI_FH_TX_STATUS_IDLE(6), 4926 status & WPI_FH_TX_STATUS_IDLE(6)); 4927 if (status & WPI_FH_TX_STATUS_IDLE(6)) { 4928 DPRINTF(sc, WPI_DEBUG_HW, 4929 "Status Match! - ntries = %d\n", ntries); 4930 break; 4931 } 4932 DELAY(10); 4933 } 4934 if (ntries == 1000) { 4935 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 4936 __func__); 4937 wpi_nic_unlock(sc); 4938 return ETIMEDOUT; 4939 } 4940 4941 /* Enable boot after power up. */ 4942 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN); 4943 4944 wpi_nic_unlock(sc); 4945 return 0; 4946 } 4947 4948 static int 4949 wpi_load_firmware(struct wpi_softc *sc) 4950 { 4951 struct wpi_fw_info *fw = &sc->fw; 4952 struct wpi_dma_info *dma = &sc->fw_dma; 4953 int error; 4954 4955 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4956 4957 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 4958 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 4959 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4960 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz); 4961 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4962 4963 /* Tell adapter where to find initialization sections. */ 4964 if ((error = wpi_nic_lock(sc)) != 0) 4965 return error; 4966 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); 4967 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz); 4968 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, 4969 dma->paddr + WPI_FW_DATA_MAXSZ); 4970 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 4971 wpi_nic_unlock(sc); 4972 4973 /* Load firmware boot code. */ 4974 error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 4975 if (error != 0) { 4976 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 4977 __func__); 4978 return error; 4979 } 4980 4981 /* Now press "execute". */ 4982 WPI_WRITE(sc, WPI_RESET, 0); 4983 4984 /* Wait at most one second for first alive notification. */ 4985 if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 4986 device_printf(sc->sc_dev, 4987 "%s: timeout waiting for adapter to initialize, error %d\n", 4988 __func__, error); 4989 return error; 4990 } 4991 4992 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 4993 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 4994 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4995 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz); 4996 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4997 4998 /* Tell adapter where to find runtime sections. */ 4999 if ((error = wpi_nic_lock(sc)) != 0) 5000 return error; 5001 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); 5002 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5003 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, 5004 dma->paddr + WPI_FW_DATA_MAXSZ); 5005 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, 5006 WPI_FW_UPDATED | fw->main.textsz); 5007 wpi_nic_unlock(sc); 5008 5009 return 0; 5010 } 5011 5012 static int 5013 wpi_read_firmware(struct wpi_softc *sc) 5014 { 5015 const struct firmware *fp; 5016 struct wpi_fw_info *fw = &sc->fw; 5017 const struct wpi_firmware_hdr *hdr; 5018 int error; 5019 5020 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5021 5022 DPRINTF(sc, WPI_DEBUG_FIRMWARE, 5023 "Attempting Loading Firmware from %s module\n", WPI_FW_NAME); 5024 5025 WPI_UNLOCK(sc); 5026 fp = firmware_get(WPI_FW_NAME); 5027 WPI_LOCK(sc); 5028 5029 if (fp == NULL) { 5030 device_printf(sc->sc_dev, 5031 "could not load firmware image '%s'\n", WPI_FW_NAME); 5032 return EINVAL; 5033 } 5034 5035 sc->fw_fp = fp; 5036 5037 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 5038 device_printf(sc->sc_dev, 5039 "firmware file too short: %zu bytes\n", fp->datasize); 5040 error = EINVAL; 5041 goto fail; 5042 } 5043 5044 fw->size = fp->datasize; 5045 fw->data = (const uint8_t *)fp->data; 5046 5047 /* Extract firmware header information. */ 5048 hdr = (const struct wpi_firmware_hdr *)fw->data; 5049 5050 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 5051 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 5052 5053 fw->main.textsz = le32toh(hdr->rtextsz); 5054 fw->main.datasz = le32toh(hdr->rdatasz); 5055 fw->init.textsz = le32toh(hdr->itextsz); 5056 fw->init.datasz = le32toh(hdr->idatasz); 5057 fw->boot.textsz = le32toh(hdr->btextsz); 5058 fw->boot.datasz = 0; 5059 5060 /* Sanity-check firmware header. */ 5061 if (fw->main.textsz > WPI_FW_TEXT_MAXSZ || 5062 fw->main.datasz > WPI_FW_DATA_MAXSZ || 5063 fw->init.textsz > WPI_FW_TEXT_MAXSZ || 5064 fw->init.datasz > WPI_FW_DATA_MAXSZ || 5065 fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ || 5066 (fw->boot.textsz & 3) != 0) { 5067 device_printf(sc->sc_dev, "invalid firmware header\n"); 5068 error = EINVAL; 5069 goto fail; 5070 } 5071 5072 /* Check that all firmware sections fit. */ 5073 if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz + 5074 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5075 device_printf(sc->sc_dev, 5076 "firmware file too short: %zu bytes\n", fw->size); 5077 error = EINVAL; 5078 goto fail; 5079 } 5080 5081 /* Get pointers to firmware sections. */ 5082 fw->main.text = (const uint8_t *)(hdr + 1); 5083 fw->main.data = fw->main.text + fw->main.textsz; 5084 fw->init.text = fw->main.data + fw->main.datasz; 5085 fw->init.data = fw->init.text + fw->init.textsz; 5086 fw->boot.text = fw->init.data + fw->init.datasz; 5087 5088 DPRINTF(sc, WPI_DEBUG_FIRMWARE, 5089 "Firmware Version: Major %d, Minor %d, Driver %d, \n" 5090 "runtime (text: %u, data: %u) init (text: %u, data %u) " 5091 "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver), 5092 fw->main.textsz, fw->main.datasz, 5093 fw->init.textsz, fw->init.datasz, fw->boot.textsz); 5094 5095 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text); 5096 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data); 5097 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text); 5098 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data); 5099 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text); 5100 5101 return 0; 5102 5103 fail: wpi_unload_firmware(sc); 5104 return error; 5105 } 5106 5107 /** 5108 * Free the referenced firmware image 5109 */ 5110 static void 5111 wpi_unload_firmware(struct wpi_softc *sc) 5112 { 5113 if (sc->fw_fp != NULL) { 5114 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 5115 sc->fw_fp = NULL; 5116 } 5117 } 5118 5119 static int 5120 wpi_clock_wait(struct wpi_softc *sc) 5121 { 5122 int ntries; 5123 5124 /* Set "initialization complete" bit. */ 5125 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE); 5126 5127 /* Wait for clock stabilization. */ 5128 for (ntries = 0; ntries < 2500; ntries++) { 5129 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY) 5130 return 0; 5131 DELAY(100); 5132 } 5133 device_printf(sc->sc_dev, 5134 "%s: timeout waiting for clock stabilization\n", __func__); 5135 5136 return ETIMEDOUT; 5137 } 5138 5139 static int 5140 wpi_apm_init(struct wpi_softc *sc) 5141 { 5142 uint32_t reg; 5143 int error; 5144 5145 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5146 5147 /* Disable L0s exit timer (NMI bug workaround). */ 5148 WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER); 5149 /* Don't wait for ICH L0s (ICH bug workaround). */ 5150 WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX); 5151 5152 /* Set FH wait threshold to max (HW bug under stress workaround). */ 5153 WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000); 5154 5155 /* Retrieve PCIe Active State Power Management (ASPM). */ 5156 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1); 5157 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 5158 if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */ 5159 WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA); 5160 else 5161 WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA); 5162 5163 WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT); 5164 5165 /* Wait for clock stabilization before accessing prph. */ 5166 if ((error = wpi_clock_wait(sc)) != 0) 5167 return error; 5168 5169 if ((error = wpi_nic_lock(sc)) != 0) 5170 return error; 5171 /* Cleanup. */ 5172 wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400); 5173 wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200); 5174 5175 /* Enable DMA and BSM (Bootstrap State Machine). */ 5176 wpi_prph_write(sc, WPI_APMG_CLK_EN, 5177 WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT); 5178 DELAY(20); 5179 /* Disable L1-Active. */ 5180 wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS); 5181 wpi_nic_unlock(sc); 5182 5183 return 0; 5184 } 5185 5186 static void 5187 wpi_apm_stop_master(struct wpi_softc *sc) 5188 { 5189 int ntries; 5190 5191 /* Stop busmaster DMA activity. */ 5192 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER); 5193 5194 if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) == 5195 WPI_GP_CNTRL_MAC_PS) 5196 return; /* Already asleep. */ 5197 5198 for (ntries = 0; ntries < 100; ntries++) { 5199 if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED) 5200 return; 5201 DELAY(10); 5202 } 5203 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", 5204 __func__); 5205 } 5206 5207 static void 5208 wpi_apm_stop(struct wpi_softc *sc) 5209 { 5210 wpi_apm_stop_master(sc); 5211 5212 /* Reset the entire device. */ 5213 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW); 5214 DELAY(10); 5215 /* Clear "initialization complete" bit. */ 5216 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE); 5217 } 5218 5219 static void 5220 wpi_nic_config(struct wpi_softc *sc) 5221 { 5222 uint32_t rev; 5223 5224 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5225 5226 /* voodoo from the Linux "driver".. */ 5227 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 5228 if ((rev & 0xc0) == 0x40) 5229 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB); 5230 else if (!(rev & 0x80)) 5231 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM); 5232 5233 if (sc->cap == 0x80) 5234 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC); 5235 5236 if ((sc->rev & 0xf0) == 0xd0) 5237 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); 5238 else 5239 WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); 5240 5241 if (sc->type > 1) 5242 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B); 5243 } 5244 5245 static int 5246 wpi_hw_init(struct wpi_softc *sc) 5247 { 5248 uint8_t chnl; 5249 int ntries, error; 5250 5251 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 5252 5253 /* Clear pending interrupts. */ 5254 WPI_WRITE(sc, WPI_INT, 0xffffffff); 5255 5256 if ((error = wpi_apm_init(sc)) != 0) { 5257 device_printf(sc->sc_dev, 5258 "%s: could not power ON adapter, error %d\n", __func__, 5259 error); 5260 return error; 5261 } 5262 5263 /* Select VMAIN power source. */ 5264 if ((error = wpi_nic_lock(sc)) != 0) 5265 return error; 5266 wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK); 5267 wpi_nic_unlock(sc); 5268 /* Spin until VMAIN gets selected. */ 5269 for (ntries = 0; ntries < 5000; ntries++) { 5270 if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN) 5271 break; 5272 DELAY(10); 5273 } 5274 if (ntries == 5000) { 5275 device_printf(sc->sc_dev, "timeout selecting power source\n"); 5276 return ETIMEDOUT; 5277 } 5278 5279 /* Perform adapter initialization. */ 5280 wpi_nic_config(sc); 5281 5282 /* Initialize RX ring. */ 5283 if ((error = wpi_nic_lock(sc)) != 0) 5284 return error; 5285 /* Set physical address of RX ring. */ 5286 WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr); 5287 /* Set physical address of RX read pointer. */ 5288 WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr + 5289 offsetof(struct wpi_shared, next)); 5290 WPI_WRITE(sc, WPI_FH_RX_WPTR, 0); 5291 /* Enable RX. */ 5292 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 5293 WPI_FH_RX_CONFIG_DMA_ENA | 5294 WPI_FH_RX_CONFIG_RDRBD_ENA | 5295 WPI_FH_RX_CONFIG_WRSTATUS_ENA | 5296 WPI_FH_RX_CONFIG_MAXFRAG | 5297 WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) | 5298 WPI_FH_RX_CONFIG_IRQ_DST_HOST | 5299 WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1)); 5300 (void)WPI_READ(sc, WPI_FH_RSSR_TBL); /* barrier */ 5301 wpi_nic_unlock(sc); 5302 WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7); 5303 5304 /* Initialize TX rings. */ 5305 if ((error = wpi_nic_lock(sc)) != 0) 5306 return error; 5307 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2); /* bypass mode */ 5308 wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1); /* enable RA0 */ 5309 /* Enable all 6 TX rings. */ 5310 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f); 5311 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000); 5312 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002); 5313 wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4); 5314 wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5); 5315 /* Set physical address of TX rings. */ 5316 WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr); 5317 WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5); 5318 5319 /* Enable all DMA channels. */ 5320 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { 5321 WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0); 5322 WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0); 5323 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008); 5324 } 5325 wpi_nic_unlock(sc); 5326 (void)WPI_READ(sc, WPI_FH_TX_BASE); /* barrier */ 5327 5328 /* Clear "radio off" and "commands blocked" bits. */ 5329 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 5330 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED); 5331 5332 /* Clear pending interrupts. */ 5333 WPI_WRITE(sc, WPI_INT, 0xffffffff); 5334 /* Enable interrupts. */ 5335 WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF); 5336 5337 /* _Really_ make sure "radio off" bit is cleared! */ 5338 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 5339 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 5340 5341 if ((error = wpi_load_firmware(sc)) != 0) { 5342 device_printf(sc->sc_dev, 5343 "%s: could not load firmware, error %d\n", __func__, 5344 error); 5345 return error; 5346 } 5347 /* Wait at most one second for firmware alive notification. */ 5348 if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 5349 device_printf(sc->sc_dev, 5350 "%s: timeout waiting for adapter to initialize, error %d\n", 5351 __func__, error); 5352 return error; 5353 } 5354 5355 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 5356 5357 /* Do post-firmware initialization. */ 5358 return wpi_post_alive(sc); 5359 } 5360 5361 static void 5362 wpi_hw_stop(struct wpi_softc *sc) 5363 { 5364 uint8_t chnl, qid; 5365 int ntries; 5366 5367 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5368 5369 if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) 5370 wpi_nic_lock(sc); 5371 5372 WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO); 5373 5374 /* Disable interrupts. */ 5375 WPI_WRITE(sc, WPI_INT_MASK, 0); 5376 WPI_WRITE(sc, WPI_INT, 0xffffffff); 5377 WPI_WRITE(sc, WPI_FH_INT, 0xffffffff); 5378 5379 /* Make sure we no longer hold the NIC lock. */ 5380 wpi_nic_unlock(sc); 5381 5382 if (wpi_nic_lock(sc) == 0) { 5383 /* Stop TX scheduler. */ 5384 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0); 5385 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0); 5386 5387 /* Stop all DMA channels. */ 5388 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { 5389 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0); 5390 for (ntries = 0; ntries < 200; ntries++) { 5391 if (WPI_READ(sc, WPI_FH_TX_STATUS) & 5392 WPI_FH_TX_STATUS_IDLE(chnl)) 5393 break; 5394 DELAY(10); 5395 } 5396 } 5397 wpi_nic_unlock(sc); 5398 } 5399 5400 /* Stop RX ring. */ 5401 wpi_reset_rx_ring(sc); 5402 5403 /* Reset all TX rings. */ 5404 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) 5405 wpi_reset_tx_ring(sc, &sc->txq[qid]); 5406 5407 if (wpi_nic_lock(sc) == 0) { 5408 wpi_prph_write(sc, WPI_APMG_CLK_DIS, 5409 WPI_APMG_CLK_CTRL_DMA_CLK_RQT); 5410 wpi_nic_unlock(sc); 5411 } 5412 DELAY(5); 5413 /* Power OFF adapter. */ 5414 wpi_apm_stop(sc); 5415 } 5416 5417 static void 5418 wpi_radio_on(void *arg0, int pending) 5419 { 5420 struct wpi_softc *sc = arg0; 5421 struct ieee80211com *ic = &sc->sc_ic; 5422 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5423 5424 device_printf(sc->sc_dev, "RF switch: radio enabled\n"); 5425 5426 WPI_LOCK(sc); 5427 callout_stop(&sc->watchdog_rfkill); 5428 WPI_UNLOCK(sc); 5429 5430 if (vap != NULL) 5431 ieee80211_init(vap); 5432 } 5433 5434 static void 5435 wpi_radio_off(void *arg0, int pending) 5436 { 5437 struct wpi_softc *sc = arg0; 5438 struct ieee80211com *ic = &sc->sc_ic; 5439 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5440 5441 device_printf(sc->sc_dev, "RF switch: radio disabled\n"); 5442 5443 ieee80211_notify_radio(ic, 0); 5444 wpi_stop(sc); 5445 if (vap != NULL) 5446 ieee80211_stop(vap); 5447 5448 WPI_LOCK(sc); 5449 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc); 5450 WPI_UNLOCK(sc); 5451 } 5452 5453 static int 5454 wpi_init(struct wpi_softc *sc) 5455 { 5456 int error = 0; 5457 5458 WPI_LOCK(sc); 5459 5460 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 5461 5462 if (sc->sc_running != 0) 5463 goto end; 5464 5465 /* Check that the radio is not disabled by hardware switch. */ 5466 if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) { 5467 device_printf(sc->sc_dev, 5468 "RF switch: radio disabled (%s)\n", __func__); 5469 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, 5470 sc); 5471 error = EINPROGRESS; 5472 goto end; 5473 } 5474 5475 /* Read firmware images from the filesystem. */ 5476 if ((error = wpi_read_firmware(sc)) != 0) { 5477 device_printf(sc->sc_dev, 5478 "%s: could not read firmware, error %d\n", __func__, 5479 error); 5480 goto end; 5481 } 5482 5483 sc->sc_running = 1; 5484 5485 /* Initialize hardware and upload firmware. */ 5486 error = wpi_hw_init(sc); 5487 wpi_unload_firmware(sc); 5488 if (error != 0) { 5489 device_printf(sc->sc_dev, 5490 "%s: could not initialize hardware, error %d\n", __func__, 5491 error); 5492 goto fail; 5493 } 5494 5495 /* Configure adapter now that it is ready. */ 5496 if ((error = wpi_config(sc)) != 0) { 5497 device_printf(sc->sc_dev, 5498 "%s: could not configure device, error %d\n", __func__, 5499 error); 5500 goto fail; 5501 } 5502 5503 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 5504 5505 WPI_UNLOCK(sc); 5506 5507 return 0; 5508 5509 fail: wpi_stop_locked(sc); 5510 5511 end: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 5512 WPI_UNLOCK(sc); 5513 5514 return error; 5515 } 5516 5517 static void 5518 wpi_stop_locked(struct wpi_softc *sc) 5519 { 5520 5521 WPI_LOCK_ASSERT(sc); 5522 5523 if (sc->sc_running == 0) 5524 return; 5525 5526 WPI_TX_LOCK(sc); 5527 WPI_TXQ_LOCK(sc); 5528 sc->sc_running = 0; 5529 WPI_TXQ_UNLOCK(sc); 5530 WPI_TX_UNLOCK(sc); 5531 5532 WPI_TXQ_STATE_LOCK(sc); 5533 callout_stop(&sc->tx_timeout); 5534 WPI_TXQ_STATE_UNLOCK(sc); 5535 5536 WPI_RXON_LOCK(sc); 5537 callout_stop(&sc->scan_timeout); 5538 callout_stop(&sc->calib_to); 5539 WPI_RXON_UNLOCK(sc); 5540 5541 /* Power OFF hardware. */ 5542 wpi_hw_stop(sc); 5543 } 5544 5545 static void 5546 wpi_stop(struct wpi_softc *sc) 5547 { 5548 WPI_LOCK(sc); 5549 wpi_stop_locked(sc); 5550 WPI_UNLOCK(sc); 5551 } 5552 5553 /* 5554 * Callback from net80211 to start a scan. 5555 */ 5556 static void 5557 wpi_scan_start(struct ieee80211com *ic) 5558 { 5559 struct wpi_softc *sc = ic->ic_softc; 5560 5561 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 5562 } 5563 5564 /* 5565 * Callback from net80211 to terminate a scan. 5566 */ 5567 static void 5568 wpi_scan_end(struct ieee80211com *ic) 5569 { 5570 struct wpi_softc *sc = ic->ic_softc; 5571 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5572 5573 if (vap->iv_state == IEEE80211_S_RUN) 5574 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 5575 } 5576 5577 /** 5578 * Called by the net80211 framework to indicate to the driver 5579 * that the channel should be changed 5580 */ 5581 static void 5582 wpi_set_channel(struct ieee80211com *ic) 5583 { 5584 const struct ieee80211_channel *c = ic->ic_curchan; 5585 struct wpi_softc *sc = ic->ic_softc; 5586 int error; 5587 5588 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5589 5590 WPI_LOCK(sc); 5591 sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); 5592 sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); 5593 WPI_UNLOCK(sc); 5594 WPI_TX_LOCK(sc); 5595 sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); 5596 sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); 5597 WPI_TX_UNLOCK(sc); 5598 5599 /* 5600 * Only need to set the channel in Monitor mode. AP scanning and auth 5601 * are already taken care of by their respective firmware commands. 5602 */ 5603 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 5604 WPI_RXON_LOCK(sc); 5605 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 5606 if (IEEE80211_IS_CHAN_2GHZ(c)) { 5607 sc->rxon.flags |= htole32(WPI_RXON_AUTO | 5608 WPI_RXON_24GHZ); 5609 } else { 5610 sc->rxon.flags &= ~htole32(WPI_RXON_AUTO | 5611 WPI_RXON_24GHZ); 5612 } 5613 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) 5614 device_printf(sc->sc_dev, 5615 "%s: error %d setting channel\n", __func__, 5616 error); 5617 WPI_RXON_UNLOCK(sc); 5618 } 5619 } 5620 5621 /** 5622 * Called by net80211 to indicate that we need to scan the current 5623 * channel. The channel is previously be set via the wpi_set_channel 5624 * callback. 5625 */ 5626 static void 5627 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 5628 { 5629 struct ieee80211vap *vap = ss->ss_vap; 5630 struct ieee80211com *ic = vap->iv_ic; 5631 struct wpi_softc *sc = ic->ic_softc; 5632 int error; 5633 5634 WPI_RXON_LOCK(sc); 5635 error = wpi_scan(sc, ic->ic_curchan); 5636 WPI_RXON_UNLOCK(sc); 5637 if (error != 0) 5638 ieee80211_cancel_scan(vap); 5639 } 5640 5641 /** 5642 * Called by the net80211 framework to indicate 5643 * the minimum dwell time has been met, terminate the scan. 5644 * We don't actually terminate the scan as the firmware will notify 5645 * us when it's finished and we have no way to interrupt it. 5646 */ 5647 static void 5648 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 5649 { 5650 /* NB: don't try to abort scan; wait for firmware to finish */ 5651 } 5652