xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 1670a1c2a47d10ecccd001970b859caf93cd3b6e)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 #include <net80211/ieee80211_ratectl.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103 
104 #include <dev/wpi/if_wpireg.h>
105 #include <dev/wpi/if_wpivar.h>
106 
107 #define WPI_DEBUG
108 
109 #ifdef WPI_DEBUG
110 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
111 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
112 #define	WPI_DEBUG_SET	(wpi_debug != 0)
113 
114 enum {
115 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
116 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
117 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
118 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
119 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
120 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
121 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
122 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
123 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
124 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
125 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
126 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
127 	WPI_DEBUG_ANY		= 0xffffffff
128 };
129 
130 static int wpi_debug = 0;
131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132 TUNABLE_INT("debug.wpi", &wpi_debug);
133 
134 #else
135 #define DPRINTF(x)
136 #define DPRINTFN(n, x)
137 #define WPI_DEBUG_SET	0
138 #endif
139 
140 struct wpi_ident {
141 	uint16_t	vendor;
142 	uint16_t	device;
143 	uint16_t	subdevice;
144 	const char	*name;
145 };
146 
147 static const struct wpi_ident wpi_ident_table[] = {
148 	/* The below entries support ABG regardless of the subid */
149 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151 	/* The below entries only support BG */
152 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0, 0, 0, NULL }
157 };
158 
159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160 		    const char name[IFNAMSIZ], int unit, int opmode,
161 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
163 static void	wpi_vap_delete(struct ieee80211vap *);
164 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165 		    void **, bus_size_t, bus_size_t, int);
166 static void	wpi_dma_contig_free(struct wpi_dma_info *);
167 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168 static int	wpi_alloc_shared(struct wpi_softc *);
169 static void	wpi_free_shared(struct wpi_softc *);
170 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174 		    int, int);
175 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177 static void	wpi_newassoc(struct ieee80211_node *, int);
178 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179 static void	wpi_mem_lock(struct wpi_softc *);
180 static void	wpi_mem_unlock(struct wpi_softc *);
181 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184 		    const uint32_t *, int);
185 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186 static int	wpi_alloc_fwmem(struct wpi_softc *);
187 static void	wpi_free_fwmem(struct wpi_softc *);
188 static int	wpi_load_firmware(struct wpi_softc *);
189 static void	wpi_unload_firmware(struct wpi_softc *);
190 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192 		    struct wpi_rx_data *);
193 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_notif_intr(struct wpi_softc *);
196 static void	wpi_intr(void *);
197 static uint8_t	wpi_plcp_signal(int);
198 static void	wpi_watchdog(void *);
199 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
200 		    struct ieee80211_node *, int);
201 static void	wpi_start(struct ifnet *);
202 static void	wpi_start_locked(struct ifnet *);
203 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204 		    const struct ieee80211_bpf_params *);
205 static void	wpi_scan_start(struct ieee80211com *);
206 static void	wpi_scan_end(struct ieee80211com *);
207 static void	wpi_set_channel(struct ieee80211com *);
208 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
210 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
211 static void	wpi_read_eeprom(struct wpi_softc *,
212 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
213 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
214 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
215 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216 static int	wpi_wme_update(struct ieee80211com *);
217 static int	wpi_mrr_setup(struct wpi_softc *);
218 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220 #if 0
221 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222 #endif
223 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
225 static int	wpi_scan(struct wpi_softc *);
226 static int	wpi_config(struct wpi_softc *);
227 static void	wpi_stop_master(struct wpi_softc *);
228 static int	wpi_power_up(struct wpi_softc *);
229 static int	wpi_reset(struct wpi_softc *);
230 static void	wpi_hwreset(void *, int);
231 static void	wpi_rfreset(void *, int);
232 static void	wpi_hw_config(struct wpi_softc *);
233 static void	wpi_init(void *);
234 static void	wpi_init_locked(struct wpi_softc *, int);
235 static void	wpi_stop(struct wpi_softc *);
236 static void	wpi_stop_locked(struct wpi_softc *);
237 
238 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
239 		    int);
240 static void	wpi_calib_timeout(void *);
241 static void	wpi_power_calibration(struct wpi_softc *, int);
242 static int	wpi_get_power_index(struct wpi_softc *,
243 		    struct wpi_power_group *, struct ieee80211_channel *, int);
244 #ifdef WPI_DEBUG
245 static const char *wpi_cmd_str(int);
246 #endif
247 static int wpi_probe(device_t);
248 static int wpi_attach(device_t);
249 static int wpi_detach(device_t);
250 static int wpi_shutdown(device_t);
251 static int wpi_suspend(device_t);
252 static int wpi_resume(device_t);
253 
254 
255 static device_method_t wpi_methods[] = {
256 	/* Device interface */
257 	DEVMETHOD(device_probe,		wpi_probe),
258 	DEVMETHOD(device_attach,	wpi_attach),
259 	DEVMETHOD(device_detach,	wpi_detach),
260 	DEVMETHOD(device_shutdown,	wpi_shutdown),
261 	DEVMETHOD(device_suspend,	wpi_suspend),
262 	DEVMETHOD(device_resume,	wpi_resume),
263 
264 	{ 0, 0 }
265 };
266 
267 static driver_t wpi_driver = {
268 	"wpi",
269 	wpi_methods,
270 	sizeof (struct wpi_softc)
271 };
272 
273 static devclass_t wpi_devclass;
274 
275 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
276 
277 static const uint8_t wpi_ridx_to_plcp[] = {
278 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
279 	/* R1-R4 (ral/ural is R4-R1) */
280 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
281 	/* CCK: device-dependent */
282 	10, 20, 55, 110
283 };
284 static const uint8_t wpi_ridx_to_rate[] = {
285 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
286 	2, 4, 11, 22 /*CCK */
287 };
288 
289 
290 static int
291 wpi_probe(device_t dev)
292 {
293 	const struct wpi_ident *ident;
294 
295 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
296 		if (pci_get_vendor(dev) == ident->vendor &&
297 		    pci_get_device(dev) == ident->device) {
298 			device_set_desc(dev, ident->name);
299 			return 0;
300 		}
301 	}
302 	return ENXIO;
303 }
304 
305 /**
306  * Load the firmare image from disk to the allocated dma buffer.
307  * we also maintain the reference to the firmware pointer as there
308  * is times where we may need to reload the firmware but we are not
309  * in a context that can access the filesystem (ie taskq cause by restart)
310  *
311  * @return 0 on success, an errno on failure
312  */
313 static int
314 wpi_load_firmware(struct wpi_softc *sc)
315 {
316 	const struct firmware *fp;
317 	struct wpi_dma_info *dma = &sc->fw_dma;
318 	const struct wpi_firmware_hdr *hdr;
319 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
320 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
321 	int error;
322 
323 	DPRINTFN(WPI_DEBUG_FIRMWARE,
324 	    ("Attempting Loading Firmware from wpi_fw module\n"));
325 
326 	WPI_UNLOCK(sc);
327 
328 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
329 		device_printf(sc->sc_dev,
330 		    "could not load firmware image 'wpifw'\n");
331 		error = ENOENT;
332 		WPI_LOCK(sc);
333 		goto fail;
334 	}
335 
336 	fp = sc->fw_fp;
337 
338 	WPI_LOCK(sc);
339 
340 	/* Validate the firmware is minimum a particular version */
341 	if (fp->version < WPI_FW_MINVERSION) {
342 	    device_printf(sc->sc_dev,
343 			   "firmware version is too old. Need %d, got %d\n",
344 			   WPI_FW_MINVERSION,
345 			   fp->version);
346 	    error = ENXIO;
347 	    goto fail;
348 	}
349 
350 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
351 		device_printf(sc->sc_dev,
352 		    "firmware file too short: %zu bytes\n", fp->datasize);
353 		error = ENXIO;
354 		goto fail;
355 	}
356 
357 	hdr = (const struct wpi_firmware_hdr *)fp->data;
358 
359 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
360 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
361 
362 	rtextsz = le32toh(hdr->rtextsz);
363 	rdatasz = le32toh(hdr->rdatasz);
364 	itextsz = le32toh(hdr->itextsz);
365 	idatasz = le32toh(hdr->idatasz);
366 	btextsz = le32toh(hdr->btextsz);
367 
368 	/* check that all firmware segments are present */
369 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
370 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
371 		device_printf(sc->sc_dev,
372 		    "firmware file too short: %zu bytes\n", fp->datasize);
373 		error = ENXIO; /* XXX appropriate error code? */
374 		goto fail;
375 	}
376 
377 	/* get pointers to firmware segments */
378 	rtext = (const uint8_t *)(hdr + 1);
379 	rdata = rtext + rtextsz;
380 	itext = rdata + rdatasz;
381 	idata = itext + itextsz;
382 	btext = idata + idatasz;
383 
384 	DPRINTFN(WPI_DEBUG_FIRMWARE,
385 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
386 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
387 	     (le32toh(hdr->version) & 0xff000000) >> 24,
388 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
389 	     (le32toh(hdr->version) & 0x0000ffff),
390 	     rtextsz, rdatasz,
391 	     itextsz, idatasz, btextsz));
392 
393 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
394 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
395 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
396 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
397 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
398 
399 	/* sanity checks */
400 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
401 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
402 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
403 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
404 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
405 	    (btextsz & 3) != 0) {
406 		device_printf(sc->sc_dev, "firmware invalid\n");
407 		error = EINVAL;
408 		goto fail;
409 	}
410 
411 	/* copy initialization images into pre-allocated DMA-safe memory */
412 	memcpy(dma->vaddr, idata, idatasz);
413 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
414 
415 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
416 
417 	/* tell adapter where to find initialization images */
418 	wpi_mem_lock(sc);
419 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
420 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
421 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
422 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
423 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
424 	wpi_mem_unlock(sc);
425 
426 	/* load firmware boot code */
427 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
428 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
429 	    goto fail;
430 	}
431 
432 	/* now press "execute" */
433 	WPI_WRITE(sc, WPI_RESET, 0);
434 
435 	/* wait at most one second for the first alive notification */
436 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
437 		device_printf(sc->sc_dev,
438 		    "timeout waiting for adapter to initialize\n");
439 		goto fail;
440 	}
441 
442 	/* copy runtime images into pre-allocated DMA-sage memory */
443 	memcpy(dma->vaddr, rdata, rdatasz);
444 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
445 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
446 
447 	/* tell adapter where to find runtime images */
448 	wpi_mem_lock(sc);
449 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
450 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
451 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
452 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
453 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
454 	wpi_mem_unlock(sc);
455 
456 	/* wait at most one second for the first alive notification */
457 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
458 		device_printf(sc->sc_dev,
459 		    "timeout waiting for adapter to initialize2\n");
460 		goto fail;
461 	}
462 
463 	DPRINTFN(WPI_DEBUG_FIRMWARE,
464 	    ("Firmware loaded to driver successfully\n"));
465 	return error;
466 fail:
467 	wpi_unload_firmware(sc);
468 	return error;
469 }
470 
471 /**
472  * Free the referenced firmware image
473  */
474 static void
475 wpi_unload_firmware(struct wpi_softc *sc)
476 {
477 
478 	if (sc->fw_fp) {
479 		WPI_UNLOCK(sc);
480 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
481 		WPI_LOCK(sc);
482 		sc->fw_fp = NULL;
483 	}
484 }
485 
486 static int
487 wpi_attach(device_t dev)
488 {
489 	struct wpi_softc *sc = device_get_softc(dev);
490 	struct ifnet *ifp;
491 	struct ieee80211com *ic;
492 	int ac, error, supportsa = 1;
493 	uint32_t tmp;
494 	const struct wpi_ident *ident;
495 	uint8_t macaddr[IEEE80211_ADDR_LEN];
496 
497 	sc->sc_dev = dev;
498 
499 	if (bootverbose || WPI_DEBUG_SET)
500 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501 
502 	/*
503 	 * Some card's only support 802.11b/g not a, check to see if
504 	 * this is one such card. A 0x0 in the subdevice table indicates
505 	 * the entire subdevice range is to be ignored.
506 	 */
507 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508 		if (ident->subdevice &&
509 		    pci_get_subdevice(dev) == ident->subdevice) {
510 		    supportsa = 0;
511 		    break;
512 		}
513 	}
514 
515 	/* Create the tasks that can be queued */
516 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
517 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
518 
519 	WPI_LOCK_INIT(sc);
520 
521 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523 
524 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
525 		device_printf(dev, "chip is in D%d power mode "
526 		    "-- setting to D0\n", pci_get_powerstate(dev));
527 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
528 	}
529 
530 	/* disable the retry timeout register */
531 	pci_write_config(dev, 0x41, 0, 1);
532 
533 	/* enable bus-mastering */
534 	pci_enable_busmaster(dev);
535 
536 	sc->mem_rid = PCIR_BAR(0);
537 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
538 	    RF_ACTIVE);
539 	if (sc->mem == NULL) {
540 		device_printf(dev, "could not allocate memory resource\n");
541 		error = ENOMEM;
542 		goto fail;
543 	}
544 
545 	sc->sc_st = rman_get_bustag(sc->mem);
546 	sc->sc_sh = rman_get_bushandle(sc->mem);
547 
548 	sc->irq_rid = 0;
549 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
550 	    RF_ACTIVE | RF_SHAREABLE);
551 	if (sc->irq == NULL) {
552 		device_printf(dev, "could not allocate interrupt resource\n");
553 		error = ENOMEM;
554 		goto fail;
555 	}
556 
557 	/*
558 	 * Allocate DMA memory for firmware transfers.
559 	 */
560 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
561 		printf(": could not allocate firmware memory\n");
562 		error = ENOMEM;
563 		goto fail;
564 	}
565 
566 	/*
567 	 * Put adapter into a known state.
568 	 */
569 	if ((error = wpi_reset(sc)) != 0) {
570 		device_printf(dev, "could not reset adapter\n");
571 		goto fail;
572 	}
573 
574 	wpi_mem_lock(sc);
575 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
576 	if (bootverbose || WPI_DEBUG_SET)
577 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
578 
579 	wpi_mem_unlock(sc);
580 
581 	/* Allocate shared page */
582 	if ((error = wpi_alloc_shared(sc)) != 0) {
583 		device_printf(dev, "could not allocate shared page\n");
584 		goto fail;
585 	}
586 
587 	/* tx data queues  - 4 for QoS purposes */
588 	for (ac = 0; ac < WME_NUM_AC; ac++) {
589 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
590 		if (error != 0) {
591 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
592 		    goto fail;
593 		}
594 	}
595 
596 	/* command queue to talk to the card's firmware */
597 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
598 	if (error != 0) {
599 		device_printf(dev, "could not allocate command ring\n");
600 		goto fail;
601 	}
602 
603 	/* receive data queue */
604 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
605 	if (error != 0) {
606 		device_printf(dev, "could not allocate Rx ring\n");
607 		goto fail;
608 	}
609 
610 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
611 	if (ifp == NULL) {
612 		device_printf(dev, "can not if_alloc()\n");
613 		error = ENOMEM;
614 		goto fail;
615 	}
616 	ic = ifp->if_l2com;
617 
618 	ic->ic_ifp = ifp;
619 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
620 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
621 
622 	/* set device capabilities */
623 	ic->ic_caps =
624 		  IEEE80211_C_STA		/* station mode supported */
625 		| IEEE80211_C_MONITOR		/* monitor mode supported */
626 		| IEEE80211_C_TXPMGT		/* tx power management */
627 		| IEEE80211_C_SHSLOT		/* short slot time supported */
628 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
629 		| IEEE80211_C_WPA		/* 802.11i */
630 /* XXX looks like WME is partly supported? */
631 #if 0
632 		| IEEE80211_C_IBSS		/* IBSS mode support */
633 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
634 		| IEEE80211_C_WME		/* 802.11e */
635 		| IEEE80211_C_HOSTAP		/* Host access point mode */
636 #endif
637 		;
638 
639 	/*
640 	 * Read in the eeprom and also setup the channels for
641 	 * net80211. We don't set the rates as net80211 does this for us
642 	 */
643 	wpi_read_eeprom(sc, macaddr);
644 
645 	if (bootverbose || WPI_DEBUG_SET) {
646 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
647 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
648 			  sc->type > 1 ? 'B': '?');
649 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
650 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
651 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
652 			  supportsa ? "does" : "does not");
653 
654 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
655 	       what sc->rev really represents - benjsc 20070615 */
656 	}
657 
658 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
659 	ifp->if_softc = sc;
660 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
661 	ifp->if_init = wpi_init;
662 	ifp->if_ioctl = wpi_ioctl;
663 	ifp->if_start = wpi_start;
664 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
665 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
666 	IFQ_SET_READY(&ifp->if_snd);
667 
668 	ieee80211_ifattach(ic, macaddr);
669 	/* override default methods */
670 	ic->ic_raw_xmit = wpi_raw_xmit;
671 	ic->ic_newassoc = wpi_newassoc;
672 	ic->ic_wme.wme_update = wpi_wme_update;
673 	ic->ic_scan_start = wpi_scan_start;
674 	ic->ic_scan_end = wpi_scan_end;
675 	ic->ic_set_channel = wpi_set_channel;
676 	ic->ic_scan_curchan = wpi_scan_curchan;
677 	ic->ic_scan_mindwell = wpi_scan_mindwell;
678 
679 	ic->ic_vap_create = wpi_vap_create;
680 	ic->ic_vap_delete = wpi_vap_delete;
681 
682 	ieee80211_radiotap_attach(ic,
683 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
684 		WPI_TX_RADIOTAP_PRESENT,
685 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
686 		WPI_RX_RADIOTAP_PRESENT);
687 
688 	/*
689 	 * Hook our interrupt after all initialization is complete.
690 	 */
691 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
692 	    NULL, wpi_intr, sc, &sc->sc_ih);
693 	if (error != 0) {
694 		device_printf(dev, "could not set up interrupt\n");
695 		goto fail;
696 	}
697 
698 	if (bootverbose)
699 		ieee80211_announce(ic);
700 #ifdef XXX_DEBUG
701 	ieee80211_announce_channels(ic);
702 #endif
703 	return 0;
704 
705 fail:	wpi_detach(dev);
706 	return ENXIO;
707 }
708 
709 static int
710 wpi_detach(device_t dev)
711 {
712 	struct wpi_softc *sc = device_get_softc(dev);
713 	struct ifnet *ifp = sc->sc_ifp;
714 	struct ieee80211com *ic;
715 	int ac;
716 
717 	if (ifp != NULL) {
718 		ic = ifp->if_l2com;
719 
720 		ieee80211_draintask(ic, &sc->sc_restarttask);
721 		ieee80211_draintask(ic, &sc->sc_radiotask);
722 		wpi_stop(sc);
723 		callout_drain(&sc->watchdog_to);
724 		callout_drain(&sc->calib_to);
725 		ieee80211_ifdetach(ic);
726 	}
727 
728 	WPI_LOCK(sc);
729 	if (sc->txq[0].data_dmat) {
730 		for (ac = 0; ac < WME_NUM_AC; ac++)
731 			wpi_free_tx_ring(sc, &sc->txq[ac]);
732 
733 		wpi_free_tx_ring(sc, &sc->cmdq);
734 		wpi_free_rx_ring(sc, &sc->rxq);
735 		wpi_free_shared(sc);
736 	}
737 
738 	if (sc->fw_fp != NULL) {
739 		wpi_unload_firmware(sc);
740 	}
741 
742 	if (sc->fw_dma.tag)
743 		wpi_free_fwmem(sc);
744 	WPI_UNLOCK(sc);
745 
746 	if (sc->irq != NULL) {
747 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
749 	}
750 
751 	if (sc->mem != NULL)
752 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
753 
754 	if (ifp != NULL)
755 		if_free(ifp);
756 
757 	WPI_LOCK_DESTROY(sc);
758 
759 	return 0;
760 }
761 
762 static struct ieee80211vap *
763 wpi_vap_create(struct ieee80211com *ic,
764 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
765 	const uint8_t bssid[IEEE80211_ADDR_LEN],
766 	const uint8_t mac[IEEE80211_ADDR_LEN])
767 {
768 	struct wpi_vap *wvp;
769 	struct ieee80211vap *vap;
770 
771 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
772 		return NULL;
773 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
774 	    M_80211_VAP, M_NOWAIT | M_ZERO);
775 	if (wvp == NULL)
776 		return NULL;
777 	vap = &wvp->vap;
778 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
779 	/* override with driver methods */
780 	wvp->newstate = vap->iv_newstate;
781 	vap->iv_newstate = wpi_newstate;
782 
783 	ieee80211_ratectl_init(vap);
784 	/* complete setup */
785 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
786 	ic->ic_opmode = opmode;
787 	return vap;
788 }
789 
790 static void
791 wpi_vap_delete(struct ieee80211vap *vap)
792 {
793 	struct wpi_vap *wvp = WPI_VAP(vap);
794 
795 	ieee80211_ratectl_deinit(vap);
796 	ieee80211_vap_detach(vap);
797 	free(wvp, M_80211_VAP);
798 }
799 
800 static void
801 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802 {
803 	if (error != 0)
804 		return;
805 
806 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
807 
808 	*(bus_addr_t *)arg = segs[0].ds_addr;
809 }
810 
811 /*
812  * Allocates a contiguous block of dma memory of the requested size and
813  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
814  * allocations greater than 4096 may fail. Hence if the requested alignment is
815  * greater we allocate 'alignment' size extra memory and shift the vaddr and
816  * paddr after the dma load. This bypasses the problem at the cost of a little
817  * more memory.
818  */
819 static int
820 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
821     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
822 {
823 	int error;
824 	bus_size_t align;
825 	bus_size_t reqsize;
826 
827 	DPRINTFN(WPI_DEBUG_DMA,
828 	    ("Size: %zd - alignment %zd\n", size, alignment));
829 
830 	dma->size = size;
831 	dma->tag = NULL;
832 
833 	if (alignment > 4096) {
834 		align = PAGE_SIZE;
835 		reqsize = size + alignment;
836 	} else {
837 		align = alignment;
838 		reqsize = size;
839 	}
840 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
841 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
842 	    NULL, NULL, reqsize,
843 	    1, reqsize, flags,
844 	    NULL, NULL, &dma->tag);
845 	if (error != 0) {
846 		device_printf(sc->sc_dev,
847 		    "could not create shared page DMA tag\n");
848 		goto fail;
849 	}
850 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
851 	    flags | BUS_DMA_ZERO, &dma->map);
852 	if (error != 0) {
853 		device_printf(sc->sc_dev,
854 		    "could not allocate shared page DMA memory\n");
855 		goto fail;
856 	}
857 
858 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
859 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
860 
861 	/* Save the original pointers so we can free all the memory */
862 	dma->paddr = dma->paddr_start;
863 	dma->vaddr = dma->vaddr_start;
864 
865 	/*
866 	 * Check the alignment and increment by 4096 until we get the
867 	 * requested alignment. Fail if can't obtain the alignment
868 	 * we requested.
869 	 */
870 	if ((dma->paddr & (alignment -1 )) != 0) {
871 		int i;
872 
873 		for (i = 0; i < alignment / 4096; i++) {
874 			if ((dma->paddr & (alignment - 1 )) == 0)
875 				break;
876 			dma->paddr += 4096;
877 			dma->vaddr += 4096;
878 		}
879 		if (i == alignment / 4096) {
880 			device_printf(sc->sc_dev,
881 			    "alignment requirement was not satisfied\n");
882 			goto fail;
883 		}
884 	}
885 
886 	if (error != 0) {
887 		device_printf(sc->sc_dev,
888 		    "could not load shared page DMA map\n");
889 		goto fail;
890 	}
891 
892 	if (kvap != NULL)
893 		*kvap = dma->vaddr;
894 
895 	return 0;
896 
897 fail:
898 	wpi_dma_contig_free(dma);
899 	return error;
900 }
901 
902 static void
903 wpi_dma_contig_free(struct wpi_dma_info *dma)
904 {
905 	if (dma->tag) {
906 		if (dma->map != NULL) {
907 			if (dma->paddr_start != 0) {
908 				bus_dmamap_sync(dma->tag, dma->map,
909 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910 				bus_dmamap_unload(dma->tag, dma->map);
911 			}
912 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
913 		}
914 		bus_dma_tag_destroy(dma->tag);
915 	}
916 }
917 
918 /*
919  * Allocate a shared page between host and NIC.
920  */
921 static int
922 wpi_alloc_shared(struct wpi_softc *sc)
923 {
924 	int error;
925 
926 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
927 	    (void **)&sc->shared, sizeof (struct wpi_shared),
928 	    PAGE_SIZE,
929 	    BUS_DMA_NOWAIT);
930 
931 	if (error != 0) {
932 		device_printf(sc->sc_dev,
933 		    "could not allocate shared area DMA memory\n");
934 	}
935 
936 	return error;
937 }
938 
939 static void
940 wpi_free_shared(struct wpi_softc *sc)
941 {
942 	wpi_dma_contig_free(&sc->shared_dma);
943 }
944 
945 static int
946 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
947 {
948 
949 	int i, error;
950 
951 	ring->cur = 0;
952 
953 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
954 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
955 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
956 
957 	if (error != 0) {
958 		device_printf(sc->sc_dev,
959 		    "%s: could not allocate rx ring DMA memory, error %d\n",
960 		    __func__, error);
961 		goto fail;
962 	}
963 
964         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
965 	    BUS_SPACE_MAXADDR_32BIT,
966             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
967             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
968         if (error != 0) {
969                 device_printf(sc->sc_dev,
970 		    "%s: bus_dma_tag_create_failed, error %d\n",
971 		    __func__, error);
972                 goto fail;
973         }
974 
975 	/*
976 	 * Setup Rx buffers.
977 	 */
978 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
979 		struct wpi_rx_data *data = &ring->data[i];
980 		struct mbuf *m;
981 		bus_addr_t paddr;
982 
983 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
984 		if (error != 0) {
985 			device_printf(sc->sc_dev,
986 			    "%s: bus_dmamap_create failed, error %d\n",
987 			    __func__, error);
988 			goto fail;
989 		}
990 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
991 		if (m == NULL) {
992 			device_printf(sc->sc_dev,
993 			   "%s: could not allocate rx mbuf\n", __func__);
994 			error = ENOMEM;
995 			goto fail;
996 		}
997 		/* map page */
998 		error = bus_dmamap_load(ring->data_dmat, data->map,
999 		    mtod(m, caddr_t), MJUMPAGESIZE,
1000 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1001 		if (error != 0 && error != EFBIG) {
1002 			device_printf(sc->sc_dev,
1003 			    "%s: bus_dmamap_load failed, error %d\n",
1004 			    __func__, error);
1005 			m_freem(m);
1006 			error = ENOMEM;	/* XXX unique code */
1007 			goto fail;
1008 		}
1009 		bus_dmamap_sync(ring->data_dmat, data->map,
1010 		    BUS_DMASYNC_PREWRITE);
1011 
1012 		data->m = m;
1013 		ring->desc[i] = htole32(paddr);
1014 	}
1015 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1016 	    BUS_DMASYNC_PREWRITE);
1017 	return 0;
1018 fail:
1019 	wpi_free_rx_ring(sc, ring);
1020 	return error;
1021 }
1022 
1023 static void
1024 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1025 {
1026 	int ntries;
1027 
1028 	wpi_mem_lock(sc);
1029 
1030 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1031 
1032 	for (ntries = 0; ntries < 100; ntries++) {
1033 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1034 			break;
1035 		DELAY(10);
1036 	}
1037 
1038 	wpi_mem_unlock(sc);
1039 
1040 #ifdef WPI_DEBUG
1041 	if (ntries == 100 && wpi_debug > 0)
1042 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1043 #endif
1044 
1045 	ring->cur = 0;
1046 }
1047 
1048 static void
1049 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1050 {
1051 	int i;
1052 
1053 	wpi_dma_contig_free(&ring->desc_dma);
1054 
1055 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1056 		if (ring->data[i].m != NULL)
1057 			m_freem(ring->data[i].m);
1058 }
1059 
1060 static int
1061 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1062 	int qid)
1063 {
1064 	struct wpi_tx_data *data;
1065 	int i, error;
1066 
1067 	ring->qid = qid;
1068 	ring->count = count;
1069 	ring->queued = 0;
1070 	ring->cur = 0;
1071 	ring->data = NULL;
1072 
1073 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1074 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1075 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1076 
1077 	if (error != 0) {
1078 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1079 	    goto fail;
1080 	}
1081 
1082 	/* update shared page with ring's base address */
1083 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1084 
1085 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1086 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1087 		BUS_DMA_NOWAIT);
1088 
1089 	if (error != 0) {
1090 		device_printf(sc->sc_dev,
1091 		    "could not allocate tx command DMA memory\n");
1092 		goto fail;
1093 	}
1094 
1095 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1096 	    M_NOWAIT | M_ZERO);
1097 	if (ring->data == NULL) {
1098 		device_printf(sc->sc_dev,
1099 		    "could not allocate tx data slots\n");
1100 		goto fail;
1101 	}
1102 
1103 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1104 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1105 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1106 	    &ring->data_dmat);
1107 	if (error != 0) {
1108 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1109 		goto fail;
1110 	}
1111 
1112 	for (i = 0; i < count; i++) {
1113 		data = &ring->data[i];
1114 
1115 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1116 		if (error != 0) {
1117 			device_printf(sc->sc_dev,
1118 			    "could not create tx buf DMA map\n");
1119 			goto fail;
1120 		}
1121 		bus_dmamap_sync(ring->data_dmat, data->map,
1122 		    BUS_DMASYNC_PREWRITE);
1123 	}
1124 
1125 	return 0;
1126 
1127 fail:
1128 	wpi_free_tx_ring(sc, ring);
1129 	return error;
1130 }
1131 
1132 static void
1133 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1134 {
1135 	struct wpi_tx_data *data;
1136 	int i, ntries;
1137 
1138 	wpi_mem_lock(sc);
1139 
1140 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1141 	for (ntries = 0; ntries < 100; ntries++) {
1142 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1143 			break;
1144 		DELAY(10);
1145 	}
1146 #ifdef WPI_DEBUG
1147 	if (ntries == 100 && wpi_debug > 0)
1148 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1149 		    ring->qid);
1150 #endif
1151 	wpi_mem_unlock(sc);
1152 
1153 	for (i = 0; i < ring->count; i++) {
1154 		data = &ring->data[i];
1155 
1156 		if (data->m != NULL) {
1157 			bus_dmamap_unload(ring->data_dmat, data->map);
1158 			m_freem(data->m);
1159 			data->m = NULL;
1160 		}
1161 	}
1162 
1163 	ring->queued = 0;
1164 	ring->cur = 0;
1165 }
1166 
1167 static void
1168 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1169 {
1170 	struct wpi_tx_data *data;
1171 	int i;
1172 
1173 	wpi_dma_contig_free(&ring->desc_dma);
1174 	wpi_dma_contig_free(&ring->cmd_dma);
1175 
1176 	if (ring->data != NULL) {
1177 		for (i = 0; i < ring->count; i++) {
1178 			data = &ring->data[i];
1179 
1180 			if (data->m != NULL) {
1181 				bus_dmamap_sync(ring->data_dmat, data->map,
1182 				    BUS_DMASYNC_POSTWRITE);
1183 				bus_dmamap_unload(ring->data_dmat, data->map);
1184 				m_freem(data->m);
1185 				data->m = NULL;
1186 			}
1187 		}
1188 		free(ring->data, M_DEVBUF);
1189 	}
1190 
1191 	if (ring->data_dmat != NULL)
1192 		bus_dma_tag_destroy(ring->data_dmat);
1193 }
1194 
1195 static int
1196 wpi_shutdown(device_t dev)
1197 {
1198 	struct wpi_softc *sc = device_get_softc(dev);
1199 
1200 	WPI_LOCK(sc);
1201 	wpi_stop_locked(sc);
1202 	wpi_unload_firmware(sc);
1203 	WPI_UNLOCK(sc);
1204 
1205 	return 0;
1206 }
1207 
1208 static int
1209 wpi_suspend(device_t dev)
1210 {
1211 	struct wpi_softc *sc = device_get_softc(dev);
1212 
1213 	wpi_stop(sc);
1214 	return 0;
1215 }
1216 
1217 static int
1218 wpi_resume(device_t dev)
1219 {
1220 	struct wpi_softc *sc = device_get_softc(dev);
1221 	struct ifnet *ifp = sc->sc_ifp;
1222 
1223 	pci_write_config(dev, 0x41, 0, 1);
1224 
1225 	if (ifp->if_flags & IFF_UP) {
1226 		wpi_init(ifp->if_softc);
1227 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1228 			wpi_start(ifp);
1229 	}
1230 	return 0;
1231 }
1232 
1233 /**
1234  * Called by net80211 when ever there is a change to 80211 state machine
1235  */
1236 static int
1237 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1238 {
1239 	struct wpi_vap *wvp = WPI_VAP(vap);
1240 	struct ieee80211com *ic = vap->iv_ic;
1241 	struct ifnet *ifp = ic->ic_ifp;
1242 	struct wpi_softc *sc = ifp->if_softc;
1243 	int error;
1244 
1245 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1246 		ieee80211_state_name[vap->iv_state],
1247 		ieee80211_state_name[nstate], sc->flags));
1248 
1249 	IEEE80211_UNLOCK(ic);
1250 	WPI_LOCK(sc);
1251 	if (nstate == IEEE80211_S_AUTH) {
1252 		/* The node must be registered in the firmware before auth */
1253 		error = wpi_auth(sc, vap);
1254 		if (error != 0) {
1255 			device_printf(sc->sc_dev,
1256 			    "%s: could not move to auth state, error %d\n",
1257 			    __func__, error);
1258 		}
1259 	}
1260 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1261 		error = wpi_run(sc, vap);
1262 		if (error != 0) {
1263 			device_printf(sc->sc_dev,
1264 			    "%s: could not move to run state, error %d\n",
1265 			    __func__, error);
1266 		}
1267 	}
1268 	if (nstate == IEEE80211_S_RUN) {
1269 		/* RUN -> RUN transition; just restart the timers */
1270 		wpi_calib_timeout(sc);
1271 		/* XXX split out rate control timer */
1272 	}
1273 	WPI_UNLOCK(sc);
1274 	IEEE80211_LOCK(ic);
1275 	return wvp->newstate(vap, nstate, arg);
1276 }
1277 
1278 /*
1279  * Grab exclusive access to NIC memory.
1280  */
1281 static void
1282 wpi_mem_lock(struct wpi_softc *sc)
1283 {
1284 	int ntries;
1285 	uint32_t tmp;
1286 
1287 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1288 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1289 
1290 	/* spin until we actually get the lock */
1291 	for (ntries = 0; ntries < 100; ntries++) {
1292 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1293 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1294 			break;
1295 		DELAY(10);
1296 	}
1297 	if (ntries == 100)
1298 		device_printf(sc->sc_dev, "could not lock memory\n");
1299 }
1300 
1301 /*
1302  * Release lock on NIC memory.
1303  */
1304 static void
1305 wpi_mem_unlock(struct wpi_softc *sc)
1306 {
1307 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1308 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1309 }
1310 
1311 static uint32_t
1312 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1313 {
1314 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1315 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1316 }
1317 
1318 static void
1319 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1320 {
1321 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1322 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1323 }
1324 
1325 static void
1326 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1327     const uint32_t *data, int wlen)
1328 {
1329 	for (; wlen > 0; wlen--, data++, addr+=4)
1330 		wpi_mem_write(sc, addr, *data);
1331 }
1332 
1333 /*
1334  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1335  * using the traditional bit-bang method. Data is read up until len bytes have
1336  * been obtained.
1337  */
1338 static uint16_t
1339 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1340 {
1341 	int ntries;
1342 	uint32_t val;
1343 	uint8_t *out = data;
1344 
1345 	wpi_mem_lock(sc);
1346 
1347 	for (; len > 0; len -= 2, addr++) {
1348 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1349 
1350 		for (ntries = 0; ntries < 10; ntries++) {
1351 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1352 				break;
1353 			DELAY(5);
1354 		}
1355 
1356 		if (ntries == 10) {
1357 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1358 			return ETIMEDOUT;
1359 		}
1360 
1361 		*out++= val >> 16;
1362 		if (len > 1)
1363 			*out ++= val >> 24;
1364 	}
1365 
1366 	wpi_mem_unlock(sc);
1367 
1368 	return 0;
1369 }
1370 
1371 /*
1372  * The firmware text and data segments are transferred to the NIC using DMA.
1373  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1374  * where to find it.  Once the NIC has copied the firmware into its internal
1375  * memory, we can free our local copy in the driver.
1376  */
1377 static int
1378 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1379 {
1380 	int error, ntries;
1381 
1382 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1383 
1384 	size /= sizeof(uint32_t);
1385 
1386 	wpi_mem_lock(sc);
1387 
1388 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1389 	    (const uint32_t *)fw, size);
1390 
1391 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1392 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1393 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1394 
1395 	/* run microcode */
1396 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1397 
1398 	/* wait while the adapter is busy copying the firmware */
1399 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1400 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1401 		DPRINTFN(WPI_DEBUG_HW,
1402 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1403 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1404 		if (status & WPI_TX_IDLE(6)) {
1405 			DPRINTFN(WPI_DEBUG_HW,
1406 			    ("Status Match! - ntries = %d\n", ntries));
1407 			break;
1408 		}
1409 		DELAY(10);
1410 	}
1411 	if (ntries == 1000) {
1412 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1413 		error = ETIMEDOUT;
1414 	}
1415 
1416 	/* start the microcode executing */
1417 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1418 
1419 	wpi_mem_unlock(sc);
1420 
1421 	return (error);
1422 }
1423 
1424 static void
1425 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1426 	struct wpi_rx_data *data)
1427 {
1428 	struct ifnet *ifp = sc->sc_ifp;
1429 	struct ieee80211com *ic = ifp->if_l2com;
1430 	struct wpi_rx_ring *ring = &sc->rxq;
1431 	struct wpi_rx_stat *stat;
1432 	struct wpi_rx_head *head;
1433 	struct wpi_rx_tail *tail;
1434 	struct ieee80211_node *ni;
1435 	struct mbuf *m, *mnew;
1436 	bus_addr_t paddr;
1437 	int error;
1438 
1439 	stat = (struct wpi_rx_stat *)(desc + 1);
1440 
1441 	if (stat->len > WPI_STAT_MAXLEN) {
1442 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1443 		ifp->if_ierrors++;
1444 		return;
1445 	}
1446 
1447 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1448 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1449 
1450 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1451 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1452 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1453 	    (uintmax_t)le64toh(tail->tstamp)));
1454 
1455 	/* discard Rx frames with bad CRC early */
1456 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1457 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1458 		    le32toh(tail->flags)));
1459 		ifp->if_ierrors++;
1460 		return;
1461 	}
1462 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1463 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1464 		    le16toh(head->len)));
1465 		ifp->if_ierrors++;
1466 		return;
1467 	}
1468 
1469 	/* XXX don't need mbuf, just dma buffer */
1470 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1471 	if (mnew == NULL) {
1472 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1473 		    __func__));
1474 		ifp->if_ierrors++;
1475 		return;
1476 	}
1477 	error = bus_dmamap_load(ring->data_dmat, data->map,
1478 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1479 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1480 	if (error != 0 && error != EFBIG) {
1481 		device_printf(sc->sc_dev,
1482 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1483 		m_freem(mnew);
1484 		ifp->if_ierrors++;
1485 		return;
1486 	}
1487 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1488 
1489 	/* finalize mbuf and swap in new one */
1490 	m = data->m;
1491 	m->m_pkthdr.rcvif = ifp;
1492 	m->m_data = (caddr_t)(head + 1);
1493 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1494 
1495 	data->m = mnew;
1496 	/* update Rx descriptor */
1497 	ring->desc[ring->cur] = htole32(paddr);
1498 
1499 	if (ieee80211_radiotap_active(ic)) {
1500 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1501 
1502 		tap->wr_flags = 0;
1503 		tap->wr_chan_freq =
1504 			htole16(ic->ic_channels[head->chan].ic_freq);
1505 		tap->wr_chan_flags =
1506 			htole16(ic->ic_channels[head->chan].ic_flags);
1507 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1508 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1509 		tap->wr_tsft = tail->tstamp;
1510 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1511 		switch (head->rate) {
1512 		/* CCK rates */
1513 		case  10: tap->wr_rate =   2; break;
1514 		case  20: tap->wr_rate =   4; break;
1515 		case  55: tap->wr_rate =  11; break;
1516 		case 110: tap->wr_rate =  22; break;
1517 		/* OFDM rates */
1518 		case 0xd: tap->wr_rate =  12; break;
1519 		case 0xf: tap->wr_rate =  18; break;
1520 		case 0x5: tap->wr_rate =  24; break;
1521 		case 0x7: tap->wr_rate =  36; break;
1522 		case 0x9: tap->wr_rate =  48; break;
1523 		case 0xb: tap->wr_rate =  72; break;
1524 		case 0x1: tap->wr_rate =  96; break;
1525 		case 0x3: tap->wr_rate = 108; break;
1526 		/* unknown rate: should not happen */
1527 		default:  tap->wr_rate =   0;
1528 		}
1529 		if (le16toh(head->flags) & 0x4)
1530 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1531 	}
1532 
1533 	WPI_UNLOCK(sc);
1534 
1535 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1536 	if (ni != NULL) {
1537 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1538 		ieee80211_free_node(ni);
1539 	} else
1540 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1541 
1542 	WPI_LOCK(sc);
1543 }
1544 
1545 static void
1546 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1547 {
1548 	struct ifnet *ifp = sc->sc_ifp;
1549 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1550 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1551 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1552 	struct ieee80211_node *ni = txdata->ni;
1553 	struct ieee80211vap *vap = ni->ni_vap;
1554 	int retrycnt = 0;
1555 
1556 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1557 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1558 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1559 	    le32toh(stat->status)));
1560 
1561 	/*
1562 	 * Update rate control statistics for the node.
1563 	 * XXX we should not count mgmt frames since they're always sent at
1564 	 * the lowest available bit-rate.
1565 	 * XXX frames w/o ACK shouldn't be used either
1566 	 */
1567 	if (stat->ntries > 0) {
1568 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1569 		retrycnt = 1;
1570 	}
1571 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1572 	    &retrycnt, NULL);
1573 
1574 	/* XXX oerrors should only count errors !maxtries */
1575 	if ((le32toh(stat->status) & 0xff) != 1)
1576 		ifp->if_oerrors++;
1577 	else
1578 		ifp->if_opackets++;
1579 
1580 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1581 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1582 	/* XXX handle M_TXCB? */
1583 	m_freem(txdata->m);
1584 	txdata->m = NULL;
1585 	ieee80211_free_node(txdata->ni);
1586 	txdata->ni = NULL;
1587 
1588 	ring->queued--;
1589 
1590 	sc->sc_tx_timer = 0;
1591 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1592 	wpi_start_locked(ifp);
1593 }
1594 
1595 static void
1596 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1597 {
1598 	struct wpi_tx_ring *ring = &sc->cmdq;
1599 	struct wpi_tx_data *data;
1600 
1601 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1602 				 "type=%s len=%d\n", desc->qid, desc->idx,
1603 				 desc->flags, wpi_cmd_str(desc->type),
1604 				 le32toh(desc->len)));
1605 
1606 	if ((desc->qid & 7) != 4)
1607 		return;	/* not a command ack */
1608 
1609 	data = &ring->data[desc->idx];
1610 
1611 	/* if the command was mapped in a mbuf, free it */
1612 	if (data->m != NULL) {
1613 		bus_dmamap_unload(ring->data_dmat, data->map);
1614 		m_freem(data->m);
1615 		data->m = NULL;
1616 	}
1617 
1618 	sc->flags &= ~WPI_FLAG_BUSY;
1619 	wakeup(&ring->cmd[desc->idx]);
1620 }
1621 
1622 static void
1623 wpi_notif_intr(struct wpi_softc *sc)
1624 {
1625 	struct ifnet *ifp = sc->sc_ifp;
1626 	struct ieee80211com *ic = ifp->if_l2com;
1627 	struct wpi_rx_desc *desc;
1628 	struct wpi_rx_data *data;
1629 	uint32_t hw;
1630 
1631 	hw = le32toh(sc->shared->next);
1632 	while (sc->rxq.cur != hw) {
1633 		data = &sc->rxq.data[sc->rxq.cur];
1634 		desc = (void *)data->m->m_ext.ext_buf;
1635 
1636 		DPRINTFN(WPI_DEBUG_NOTIFY,
1637 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1638 			  desc->qid,
1639 			  desc->idx,
1640 			  desc->flags,
1641 			  desc->type,
1642 			  le32toh(desc->len)));
1643 
1644 		if (!(desc->qid & 0x80))	/* reply to a command */
1645 			wpi_cmd_intr(sc, desc);
1646 
1647 		switch (desc->type) {
1648 		case WPI_RX_DONE:
1649 			/* a 802.11 frame was received */
1650 			wpi_rx_intr(sc, desc, data);
1651 			break;
1652 
1653 		case WPI_TX_DONE:
1654 			/* a 802.11 frame has been transmitted */
1655 			wpi_tx_intr(sc, desc);
1656 			break;
1657 
1658 		case WPI_UC_READY:
1659 		{
1660 			struct wpi_ucode_info *uc =
1661 				(struct wpi_ucode_info *)(desc + 1);
1662 
1663 			/* the microcontroller is ready */
1664 			DPRINTF(("microcode alive notification version %x "
1665 				"alive %x\n", le32toh(uc->version),
1666 				le32toh(uc->valid)));
1667 
1668 			if (le32toh(uc->valid) != 1) {
1669 				device_printf(sc->sc_dev,
1670 				    "microcontroller initialization failed\n");
1671 				wpi_stop_locked(sc);
1672 			}
1673 			break;
1674 		}
1675 		case WPI_STATE_CHANGED:
1676 		{
1677 			uint32_t *status = (uint32_t *)(desc + 1);
1678 
1679 			/* enabled/disabled notification */
1680 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1681 
1682 			if (le32toh(*status) & 1) {
1683 				device_printf(sc->sc_dev,
1684 				    "Radio transmitter is switched off\n");
1685 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1686 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1687 				/* Disable firmware commands */
1688 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1689 			}
1690 			break;
1691 		}
1692 		case WPI_START_SCAN:
1693 		{
1694 #ifdef WPI_DEBUG
1695 			struct wpi_start_scan *scan =
1696 				(struct wpi_start_scan *)(desc + 1);
1697 #endif
1698 
1699 			DPRINTFN(WPI_DEBUG_SCANNING,
1700 				 ("scanning channel %d status %x\n",
1701 			    scan->chan, le32toh(scan->status)));
1702 			break;
1703 		}
1704 		case WPI_STOP_SCAN:
1705 		{
1706 #ifdef WPI_DEBUG
1707 			struct wpi_stop_scan *scan =
1708 				(struct wpi_stop_scan *)(desc + 1);
1709 #endif
1710 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1711 
1712 			DPRINTFN(WPI_DEBUG_SCANNING,
1713 			    ("scan finished nchan=%d status=%d chan=%d\n",
1714 			     scan->nchan, scan->status, scan->chan));
1715 
1716 			sc->sc_scan_timer = 0;
1717 			ieee80211_scan_next(vap);
1718 			break;
1719 		}
1720 		case WPI_MISSED_BEACON:
1721 		{
1722 			struct wpi_missed_beacon *beacon =
1723 				(struct wpi_missed_beacon *)(desc + 1);
1724 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1725 
1726 			if (le32toh(beacon->consecutive) >=
1727 			    vap->iv_bmissthreshold) {
1728 				DPRINTF(("Beacon miss: %u >= %u\n",
1729 					 le32toh(beacon->consecutive),
1730 					 vap->iv_bmissthreshold));
1731 				ieee80211_beacon_miss(ic);
1732 			}
1733 			break;
1734 		}
1735 		}
1736 
1737 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1738 	}
1739 
1740 	/* tell the firmware what we have processed */
1741 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1742 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1743 }
1744 
1745 static void
1746 wpi_intr(void *arg)
1747 {
1748 	struct wpi_softc *sc = arg;
1749 	uint32_t r;
1750 
1751 	WPI_LOCK(sc);
1752 
1753 	r = WPI_READ(sc, WPI_INTR);
1754 	if (r == 0 || r == 0xffffffff) {
1755 		WPI_UNLOCK(sc);
1756 		return;
1757 	}
1758 
1759 	/* disable interrupts */
1760 	WPI_WRITE(sc, WPI_MASK, 0);
1761 	/* ack interrupts */
1762 	WPI_WRITE(sc, WPI_INTR, r);
1763 
1764 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1765 		struct ifnet *ifp = sc->sc_ifp;
1766 		struct ieee80211com *ic = ifp->if_l2com;
1767 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1768 
1769 		device_printf(sc->sc_dev, "fatal firmware error\n");
1770 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1771 				"(Hardware Error)"));
1772 		if (vap != NULL)
1773 			ieee80211_cancel_scan(vap);
1774 		ieee80211_runtask(ic, &sc->sc_restarttask);
1775 		sc->flags &= ~WPI_FLAG_BUSY;
1776 		WPI_UNLOCK(sc);
1777 		return;
1778 	}
1779 
1780 	if (r & WPI_RX_INTR)
1781 		wpi_notif_intr(sc);
1782 
1783 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1784 		wakeup(sc);
1785 
1786 	/* re-enable interrupts */
1787 	if (sc->sc_ifp->if_flags & IFF_UP)
1788 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1789 
1790 	WPI_UNLOCK(sc);
1791 }
1792 
1793 static uint8_t
1794 wpi_plcp_signal(int rate)
1795 {
1796 	switch (rate) {
1797 	/* CCK rates (returned values are device-dependent) */
1798 	case 2:		return 10;
1799 	case 4:		return 20;
1800 	case 11:	return 55;
1801 	case 22:	return 110;
1802 
1803 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1804 	/* R1-R4 (ral/ural is R4-R1) */
1805 	case 12:	return 0xd;
1806 	case 18:	return 0xf;
1807 	case 24:	return 0x5;
1808 	case 36:	return 0x7;
1809 	case 48:	return 0x9;
1810 	case 72:	return 0xb;
1811 	case 96:	return 0x1;
1812 	case 108:	return 0x3;
1813 
1814 	/* unsupported rates (should not get there) */
1815 	default:	return 0;
1816 	}
1817 }
1818 
1819 /* quickly determine if a given rate is CCK or OFDM */
1820 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1821 
1822 /*
1823  * Construct the data packet for a transmit buffer and acutally put
1824  * the buffer onto the transmit ring, kicking the card to process the
1825  * the buffer.
1826  */
1827 static int
1828 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1829 	int ac)
1830 {
1831 	struct ieee80211vap *vap = ni->ni_vap;
1832 	struct ifnet *ifp = sc->sc_ifp;
1833 	struct ieee80211com *ic = ifp->if_l2com;
1834 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1835 	struct wpi_tx_ring *ring = &sc->txq[ac];
1836 	struct wpi_tx_desc *desc;
1837 	struct wpi_tx_data *data;
1838 	struct wpi_tx_cmd *cmd;
1839 	struct wpi_cmd_data *tx;
1840 	struct ieee80211_frame *wh;
1841 	const struct ieee80211_txparam *tp;
1842 	struct ieee80211_key *k;
1843 	struct mbuf *mnew;
1844 	int i, error, nsegs, rate, hdrlen, ismcast;
1845 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1846 
1847 	desc = &ring->desc[ring->cur];
1848 	data = &ring->data[ring->cur];
1849 
1850 	wh = mtod(m0, struct ieee80211_frame *);
1851 
1852 	hdrlen = ieee80211_hdrsize(wh);
1853 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1854 
1855 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1856 		k = ieee80211_crypto_encap(ni, m0);
1857 		if (k == NULL) {
1858 			m_freem(m0);
1859 			return ENOBUFS;
1860 		}
1861 		/* packet header may have moved, reset our local pointer */
1862 		wh = mtod(m0, struct ieee80211_frame *);
1863 	}
1864 
1865 	cmd = &ring->cmd[ring->cur];
1866 	cmd->code = WPI_CMD_TX_DATA;
1867 	cmd->flags = 0;
1868 	cmd->qid = ring->qid;
1869 	cmd->idx = ring->cur;
1870 
1871 	tx = (struct wpi_cmd_data *)cmd->data;
1872 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1873 	tx->timeout = htole16(0);
1874 	tx->ofdm_mask = 0xff;
1875 	tx->cck_mask = 0x0f;
1876 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1877 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1878 	tx->len = htole16(m0->m_pkthdr.len);
1879 
1880 	if (!ismcast) {
1881 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1882 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1883 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1884 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1885 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1886 			tx->rts_ntries = 7;
1887 		}
1888 	}
1889 	/* pick a rate */
1890 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1891 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1892 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1893 		/* tell h/w to set timestamp in probe responses */
1894 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1895 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1896 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1897 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1898 			tx->timeout = htole16(3);
1899 		else
1900 			tx->timeout = htole16(2);
1901 		rate = tp->mgmtrate;
1902 	} else if (ismcast) {
1903 		rate = tp->mcastrate;
1904 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1905 		rate = tp->ucastrate;
1906 	} else {
1907 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1908 		rate = ni->ni_txrate;
1909 	}
1910 	tx->rate = wpi_plcp_signal(rate);
1911 
1912 	/* be very persistant at sending frames out */
1913 #if 0
1914 	tx->data_ntries = tp->maxretry;
1915 #else
1916 	tx->data_ntries = 15;		/* XXX way too high */
1917 #endif
1918 
1919 	if (ieee80211_radiotap_active_vap(vap)) {
1920 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1921 		tap->wt_flags = 0;
1922 		tap->wt_rate = rate;
1923 		tap->wt_hwqueue = ac;
1924 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1925 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1926 
1927 		ieee80211_radiotap_tx(vap, m0);
1928 	}
1929 
1930 	/* save and trim IEEE802.11 header */
1931 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1932 	m_adj(m0, hdrlen);
1933 
1934 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1935 	    &nsegs, BUS_DMA_NOWAIT);
1936 	if (error != 0 && error != EFBIG) {
1937 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1938 		    error);
1939 		m_freem(m0);
1940 		return error;
1941 	}
1942 	if (error != 0) {
1943 		/* XXX use m_collapse */
1944 		mnew = m_defrag(m0, M_DONTWAIT);
1945 		if (mnew == NULL) {
1946 			device_printf(sc->sc_dev,
1947 			    "could not defragment mbuf\n");
1948 			m_freem(m0);
1949 			return ENOBUFS;
1950 		}
1951 		m0 = mnew;
1952 
1953 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1954 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1955 		if (error != 0) {
1956 			device_printf(sc->sc_dev,
1957 			    "could not map mbuf (error %d)\n", error);
1958 			m_freem(m0);
1959 			return error;
1960 		}
1961 	}
1962 
1963 	data->m = m0;
1964 	data->ni = ni;
1965 
1966 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1967 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1968 
1969 	/* first scatter/gather segment is used by the tx data command */
1970 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1971 	    (1 + nsegs) << 24);
1972 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1973 	    ring->cur * sizeof (struct wpi_tx_cmd));
1974 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1975 	for (i = 1; i <= nsegs; i++) {
1976 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1977 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1978 	}
1979 
1980 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1981 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1982 	    BUS_DMASYNC_PREWRITE);
1983 
1984 	ring->queued++;
1985 
1986 	/* kick ring */
1987 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1988 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1989 
1990 	return 0;
1991 }
1992 
1993 /**
1994  * Process data waiting to be sent on the IFNET output queue
1995  */
1996 static void
1997 wpi_start(struct ifnet *ifp)
1998 {
1999 	struct wpi_softc *sc = ifp->if_softc;
2000 
2001 	WPI_LOCK(sc);
2002 	wpi_start_locked(ifp);
2003 	WPI_UNLOCK(sc);
2004 }
2005 
2006 static void
2007 wpi_start_locked(struct ifnet *ifp)
2008 {
2009 	struct wpi_softc *sc = ifp->if_softc;
2010 	struct ieee80211_node *ni;
2011 	struct mbuf *m;
2012 	int ac;
2013 
2014 	WPI_LOCK_ASSERT(sc);
2015 
2016 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2017 		return;
2018 
2019 	for (;;) {
2020 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2021 		if (m == NULL)
2022 			break;
2023 		ac = M_WME_GETAC(m);
2024 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2025 			/* there is no place left in this ring */
2026 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2027 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2028 			break;
2029 		}
2030 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2031 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2032 			ieee80211_free_node(ni);
2033 			ifp->if_oerrors++;
2034 			break;
2035 		}
2036 		sc->sc_tx_timer = 5;
2037 	}
2038 }
2039 
2040 static int
2041 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2042 	const struct ieee80211_bpf_params *params)
2043 {
2044 	struct ieee80211com *ic = ni->ni_ic;
2045 	struct ifnet *ifp = ic->ic_ifp;
2046 	struct wpi_softc *sc = ifp->if_softc;
2047 
2048 	/* prevent management frames from being sent if we're not ready */
2049 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2050 		m_freem(m);
2051 		ieee80211_free_node(ni);
2052 		return ENETDOWN;
2053 	}
2054 	WPI_LOCK(sc);
2055 
2056 	/* management frames go into ring 0 */
2057 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2058 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2059 		m_freem(m);
2060 		WPI_UNLOCK(sc);
2061 		ieee80211_free_node(ni);
2062 		return ENOBUFS;		/* XXX */
2063 	}
2064 
2065 	ifp->if_opackets++;
2066 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2067 		goto bad;
2068 	sc->sc_tx_timer = 5;
2069 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2070 
2071 	WPI_UNLOCK(sc);
2072 	return 0;
2073 bad:
2074 	ifp->if_oerrors++;
2075 	WPI_UNLOCK(sc);
2076 	ieee80211_free_node(ni);
2077 	return EIO;		/* XXX */
2078 }
2079 
2080 static int
2081 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2082 {
2083 	struct wpi_softc *sc = ifp->if_softc;
2084 	struct ieee80211com *ic = ifp->if_l2com;
2085 	struct ifreq *ifr = (struct ifreq *) data;
2086 	int error = 0, startall = 0;
2087 
2088 	switch (cmd) {
2089 	case SIOCSIFFLAGS:
2090 		WPI_LOCK(sc);
2091 		if ((ifp->if_flags & IFF_UP)) {
2092 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2093 				wpi_init_locked(sc, 0);
2094 				startall = 1;
2095 			}
2096 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2097 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2098 			wpi_stop_locked(sc);
2099 		WPI_UNLOCK(sc);
2100 		if (startall)
2101 			ieee80211_start_all(ic);
2102 		break;
2103 	case SIOCGIFMEDIA:
2104 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2105 		break;
2106 	case SIOCGIFADDR:
2107 		error = ether_ioctl(ifp, cmd, data);
2108 		break;
2109 	default:
2110 		error = EINVAL;
2111 		break;
2112 	}
2113 	return error;
2114 }
2115 
2116 /*
2117  * Extract various information from EEPROM.
2118  */
2119 static void
2120 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2121 {
2122 	int i;
2123 
2124 	/* read the hardware capabilities, revision and SKU type */
2125 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2126 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2127 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2128 
2129 	/* read the regulatory domain */
2130 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2131 
2132 	/* read in the hw MAC address */
2133 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2134 
2135 	/* read the list of authorized channels */
2136 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2137 		wpi_read_eeprom_channels(sc,i);
2138 
2139 	/* read the power level calibration info for each group */
2140 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2141 		wpi_read_eeprom_group(sc,i);
2142 }
2143 
2144 /*
2145  * Send a command to the firmware.
2146  */
2147 static int
2148 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2149 {
2150 	struct wpi_tx_ring *ring = &sc->cmdq;
2151 	struct wpi_tx_desc *desc;
2152 	struct wpi_tx_cmd *cmd;
2153 
2154 #ifdef WPI_DEBUG
2155 	if (!async) {
2156 		WPI_LOCK_ASSERT(sc);
2157 	}
2158 #endif
2159 
2160 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2161 		    async));
2162 
2163 	if (sc->flags & WPI_FLAG_BUSY) {
2164 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2165 		    __func__, code);
2166 		return EAGAIN;
2167 	}
2168 	sc->flags|= WPI_FLAG_BUSY;
2169 
2170 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2171 	    code, size));
2172 
2173 	desc = &ring->desc[ring->cur];
2174 	cmd = &ring->cmd[ring->cur];
2175 
2176 	cmd->code = code;
2177 	cmd->flags = 0;
2178 	cmd->qid = ring->qid;
2179 	cmd->idx = ring->cur;
2180 	memcpy(cmd->data, buf, size);
2181 
2182 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2183 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2184 		ring->cur * sizeof (struct wpi_tx_cmd));
2185 	desc->segs[0].len  = htole32(4 + size);
2186 
2187 	/* kick cmd ring */
2188 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2189 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2190 
2191 	if (async) {
2192 		sc->flags &= ~ WPI_FLAG_BUSY;
2193 		return 0;
2194 	}
2195 
2196 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2197 }
2198 
2199 static int
2200 wpi_wme_update(struct ieee80211com *ic)
2201 {
2202 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2203 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2204 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2205 	const struct wmeParams *wmep;
2206 	struct wpi_wme_setup wme;
2207 	int ac;
2208 
2209 	/* don't override default WME values if WME is not actually enabled */
2210 	if (!(ic->ic_flags & IEEE80211_F_WME))
2211 		return 0;
2212 
2213 	wme.flags = 0;
2214 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2215 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2216 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2217 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2218 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2219 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2220 
2221 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2222 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2223 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2224 	}
2225 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2226 #undef WPI_USEC
2227 #undef WPI_EXP2
2228 }
2229 
2230 /*
2231  * Configure h/w multi-rate retries.
2232  */
2233 static int
2234 wpi_mrr_setup(struct wpi_softc *sc)
2235 {
2236 	struct ifnet *ifp = sc->sc_ifp;
2237 	struct ieee80211com *ic = ifp->if_l2com;
2238 	struct wpi_mrr_setup mrr;
2239 	int i, error;
2240 
2241 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2242 
2243 	/* CCK rates (not used with 802.11a) */
2244 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2245 		mrr.rates[i].flags = 0;
2246 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2247 		/* fallback to the immediate lower CCK rate (if any) */
2248 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2249 		/* try one time at this rate before falling back to "next" */
2250 		mrr.rates[i].ntries = 1;
2251 	}
2252 
2253 	/* OFDM rates (not used with 802.11b) */
2254 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2255 		mrr.rates[i].flags = 0;
2256 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2257 		/* fallback to the immediate lower OFDM rate (if any) */
2258 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2259 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2260 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2261 			WPI_OFDM6 : WPI_CCK2) :
2262 		    i - 1;
2263 		/* try one time at this rate before falling back to "next" */
2264 		mrr.rates[i].ntries = 1;
2265 	}
2266 
2267 	/* setup MRR for control frames */
2268 	mrr.which = htole32(WPI_MRR_CTL);
2269 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2270 	if (error != 0) {
2271 		device_printf(sc->sc_dev,
2272 		    "could not setup MRR for control frames\n");
2273 		return error;
2274 	}
2275 
2276 	/* setup MRR for data frames */
2277 	mrr.which = htole32(WPI_MRR_DATA);
2278 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2279 	if (error != 0) {
2280 		device_printf(sc->sc_dev,
2281 		    "could not setup MRR for data frames\n");
2282 		return error;
2283 	}
2284 
2285 	return 0;
2286 }
2287 
2288 static void
2289 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2290 {
2291 	struct wpi_cmd_led led;
2292 
2293 	led.which = which;
2294 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2295 	led.off = off;
2296 	led.on = on;
2297 
2298 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2299 }
2300 
2301 static void
2302 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2303 {
2304 	struct wpi_cmd_tsf tsf;
2305 	uint64_t val, mod;
2306 
2307 	memset(&tsf, 0, sizeof tsf);
2308 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2309 	tsf.bintval = htole16(ni->ni_intval);
2310 	tsf.lintval = htole16(10);
2311 
2312 	/* compute remaining time until next beacon */
2313 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2314 	mod = le64toh(tsf.tstamp) % val;
2315 	tsf.binitval = htole32((uint32_t)(val - mod));
2316 
2317 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2318 		device_printf(sc->sc_dev, "could not enable TSF\n");
2319 }
2320 
2321 #if 0
2322 /*
2323  * Build a beacon frame that the firmware will broadcast periodically in
2324  * IBSS or HostAP modes.
2325  */
2326 static int
2327 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2328 {
2329 	struct ifnet *ifp = sc->sc_ifp;
2330 	struct ieee80211com *ic = ifp->if_l2com;
2331 	struct wpi_tx_ring *ring = &sc->cmdq;
2332 	struct wpi_tx_desc *desc;
2333 	struct wpi_tx_data *data;
2334 	struct wpi_tx_cmd *cmd;
2335 	struct wpi_cmd_beacon *bcn;
2336 	struct ieee80211_beacon_offsets bo;
2337 	struct mbuf *m0;
2338 	bus_addr_t physaddr;
2339 	int error;
2340 
2341 	desc = &ring->desc[ring->cur];
2342 	data = &ring->data[ring->cur];
2343 
2344 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2345 	if (m0 == NULL) {
2346 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2347 		return ENOMEM;
2348 	}
2349 
2350 	cmd = &ring->cmd[ring->cur];
2351 	cmd->code = WPI_CMD_SET_BEACON;
2352 	cmd->flags = 0;
2353 	cmd->qid = ring->qid;
2354 	cmd->idx = ring->cur;
2355 
2356 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2357 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2358 	bcn->id = WPI_ID_BROADCAST;
2359 	bcn->ofdm_mask = 0xff;
2360 	bcn->cck_mask = 0x0f;
2361 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2362 	bcn->len = htole16(m0->m_pkthdr.len);
2363 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2364 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2365 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2366 
2367 	/* save and trim IEEE802.11 header */
2368 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2369 	m_adj(m0, sizeof (struct ieee80211_frame));
2370 
2371 	/* assume beacon frame is contiguous */
2372 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2373 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2374 	if (error != 0) {
2375 		device_printf(sc->sc_dev, "could not map beacon\n");
2376 		m_freem(m0);
2377 		return error;
2378 	}
2379 
2380 	data->m = m0;
2381 
2382 	/* first scatter/gather segment is used by the beacon command */
2383 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2384 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2385 		ring->cur * sizeof (struct wpi_tx_cmd));
2386 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2387 	desc->segs[1].addr = htole32(physaddr);
2388 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2389 
2390 	/* kick cmd ring */
2391 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2392 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2393 
2394 	return 0;
2395 }
2396 #endif
2397 
2398 static int
2399 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2400 {
2401 	struct ieee80211com *ic = vap->iv_ic;
2402 	struct ieee80211_node *ni = vap->iv_bss;
2403 	struct wpi_node_info node;
2404 	int error;
2405 
2406 
2407 	/* update adapter's configuration */
2408 	sc->config.associd = 0;
2409 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2410 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2411 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2412 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2413 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2414 		    WPI_CONFIG_24GHZ);
2415 	}
2416 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2417 		sc->config.cck_mask  = 0;
2418 		sc->config.ofdm_mask = 0x15;
2419 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2420 		sc->config.cck_mask  = 0x03;
2421 		sc->config.ofdm_mask = 0;
2422 	} else {
2423 		/* XXX assume 802.11b/g */
2424 		sc->config.cck_mask  = 0x0f;
2425 		sc->config.ofdm_mask = 0x15;
2426 	}
2427 
2428 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2429 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2430 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2431 		sizeof (struct wpi_config), 1);
2432 	if (error != 0) {
2433 		device_printf(sc->sc_dev, "could not configure\n");
2434 		return error;
2435 	}
2436 
2437 	/* configuration has changed, set Tx power accordingly */
2438 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2439 		device_printf(sc->sc_dev, "could not set Tx power\n");
2440 		return error;
2441 	}
2442 
2443 	/* add default node */
2444 	memset(&node, 0, sizeof node);
2445 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2446 	node.id = WPI_ID_BSS;
2447 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2448 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2449 	node.action = htole32(WPI_ACTION_SET_RATE);
2450 	node.antenna = WPI_ANTENNA_BOTH;
2451 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2452 	if (error != 0)
2453 		device_printf(sc->sc_dev, "could not add BSS node\n");
2454 
2455 	return (error);
2456 }
2457 
2458 static int
2459 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2460 {
2461 	struct ieee80211com *ic = vap->iv_ic;
2462 	struct ieee80211_node *ni = vap->iv_bss;
2463 	int error;
2464 
2465 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2466 		/* link LED blinks while monitoring */
2467 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2468 		return 0;
2469 	}
2470 
2471 	wpi_enable_tsf(sc, ni);
2472 
2473 	/* update adapter's configuration */
2474 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2475 	/* short preamble/slot time are negotiated when associating */
2476 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2477 	    WPI_CONFIG_SHSLOT);
2478 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2479 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2480 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2481 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2482 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2483 
2484 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2485 
2486 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2487 		    sc->config.flags));
2488 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2489 		    wpi_config), 1);
2490 	if (error != 0) {
2491 		device_printf(sc->sc_dev, "could not update configuration\n");
2492 		return error;
2493 	}
2494 
2495 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2496 	if (error != 0) {
2497 		device_printf(sc->sc_dev, "could set txpower\n");
2498 		return error;
2499 	}
2500 
2501 	/* link LED always on while associated */
2502 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2503 
2504 	/* start automatic rate control timer */
2505 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2506 
2507 	return (error);
2508 }
2509 
2510 /*
2511  * Send a scan request to the firmware.  Since this command is huge, we map it
2512  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2513  * much of this code is similar to that in wpi_cmd but because we must manually
2514  * construct the probe & channels, we duplicate what's needed here. XXX In the
2515  * future, this function should be modified to use wpi_cmd to help cleanup the
2516  * code base.
2517  */
2518 static int
2519 wpi_scan(struct wpi_softc *sc)
2520 {
2521 	struct ifnet *ifp = sc->sc_ifp;
2522 	struct ieee80211com *ic = ifp->if_l2com;
2523 	struct ieee80211_scan_state *ss = ic->ic_scan;
2524 	struct wpi_tx_ring *ring = &sc->cmdq;
2525 	struct wpi_tx_desc *desc;
2526 	struct wpi_tx_data *data;
2527 	struct wpi_tx_cmd *cmd;
2528 	struct wpi_scan_hdr *hdr;
2529 	struct wpi_scan_chan *chan;
2530 	struct ieee80211_frame *wh;
2531 	struct ieee80211_rateset *rs;
2532 	struct ieee80211_channel *c;
2533 	enum ieee80211_phymode mode;
2534 	uint8_t *frm;
2535 	int nrates, pktlen, error, i, nssid;
2536 	bus_addr_t physaddr;
2537 
2538 	desc = &ring->desc[ring->cur];
2539 	data = &ring->data[ring->cur];
2540 
2541 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2542 	if (data->m == NULL) {
2543 		device_printf(sc->sc_dev,
2544 		    "could not allocate mbuf for scan command\n");
2545 		return ENOMEM;
2546 	}
2547 
2548 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2549 	cmd->code = WPI_CMD_SCAN;
2550 	cmd->flags = 0;
2551 	cmd->qid = ring->qid;
2552 	cmd->idx = ring->cur;
2553 
2554 	hdr = (struct wpi_scan_hdr *)cmd->data;
2555 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2556 
2557 	/*
2558 	 * Move to the next channel if no packets are received within 5 msecs
2559 	 * after sending the probe request (this helps to reduce the duration
2560 	 * of active scans).
2561 	 */
2562 	hdr->quiet = htole16(5);
2563 	hdr->threshold = htole16(1);
2564 
2565 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2566 		/* send probe requests at 6Mbps */
2567 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2568 
2569 		/* Enable crc checking */
2570 		hdr->promotion = htole16(1);
2571 	} else {
2572 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2573 		/* send probe requests at 1Mbps */
2574 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2575 	}
2576 	hdr->tx.id = WPI_ID_BROADCAST;
2577 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2578 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2579 
2580 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2581 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2582 	for (i = 0; i < nssid; i++) {
2583 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2584 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2585 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2586 		    hdr->scan_essids[i].esslen);
2587 #ifdef WPI_DEBUG
2588 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2589 			printf("Scanning Essid: ");
2590 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2591 			    hdr->scan_essids[i].esslen);
2592 			printf("\n");
2593 		}
2594 #endif
2595 	}
2596 
2597 	/*
2598 	 * Build a probe request frame.  Most of the following code is a
2599 	 * copy & paste of what is done in net80211.
2600 	 */
2601 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2602 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2603 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2604 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2605 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2606 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2607 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2608 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2609 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2610 
2611 	frm = (uint8_t *)(wh + 1);
2612 
2613 	/* add essid IE, the hardware will fill this in for us */
2614 	*frm++ = IEEE80211_ELEMID_SSID;
2615 	*frm++ = 0;
2616 
2617 	mode = ieee80211_chan2mode(ic->ic_curchan);
2618 	rs = &ic->ic_sup_rates[mode];
2619 
2620 	/* add supported rates IE */
2621 	*frm++ = IEEE80211_ELEMID_RATES;
2622 	nrates = rs->rs_nrates;
2623 	if (nrates > IEEE80211_RATE_SIZE)
2624 		nrates = IEEE80211_RATE_SIZE;
2625 	*frm++ = nrates;
2626 	memcpy(frm, rs->rs_rates, nrates);
2627 	frm += nrates;
2628 
2629 	/* add supported xrates IE */
2630 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2631 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2632 		*frm++ = IEEE80211_ELEMID_XRATES;
2633 		*frm++ = nrates;
2634 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2635 		frm += nrates;
2636 	}
2637 
2638 	/* setup length of probe request */
2639 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2640 
2641 	/*
2642 	 * Construct information about the channel that we
2643 	 * want to scan. The firmware expects this to be directly
2644 	 * after the scan probe request
2645 	 */
2646 	c = ic->ic_curchan;
2647 	chan = (struct wpi_scan_chan *)frm;
2648 	chan->chan = ieee80211_chan2ieee(ic, c);
2649 	chan->flags = 0;
2650 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2651 		chan->flags |= WPI_CHAN_ACTIVE;
2652 		if (nssid != 0)
2653 			chan->flags |= WPI_CHAN_DIRECT;
2654 	}
2655 	chan->gain_dsp = 0x6e; /* Default level */
2656 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2657 		chan->active = htole16(10);
2658 		chan->passive = htole16(ss->ss_maxdwell);
2659 		chan->gain_radio = 0x3b;
2660 	} else {
2661 		chan->active = htole16(20);
2662 		chan->passive = htole16(ss->ss_maxdwell);
2663 		chan->gain_radio = 0x28;
2664 	}
2665 
2666 	DPRINTFN(WPI_DEBUG_SCANNING,
2667 	    ("Scanning %u Passive: %d\n",
2668 	     chan->chan,
2669 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2670 
2671 	hdr->nchan++;
2672 	chan++;
2673 
2674 	frm += sizeof (struct wpi_scan_chan);
2675 #if 0
2676 	// XXX All Channels....
2677 	for (c  = &ic->ic_channels[1];
2678 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2679 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2680 			continue;
2681 
2682 		chan->chan = ieee80211_chan2ieee(ic, c);
2683 		chan->flags = 0;
2684 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2685 		    chan->flags |= WPI_CHAN_ACTIVE;
2686 		    if (ic->ic_des_ssid[0].len != 0)
2687 			chan->flags |= WPI_CHAN_DIRECT;
2688 		}
2689 		chan->gain_dsp = 0x6e; /* Default level */
2690 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2691 			chan->active = htole16(10);
2692 			chan->passive = htole16(110);
2693 			chan->gain_radio = 0x3b;
2694 		} else {
2695 			chan->active = htole16(20);
2696 			chan->passive = htole16(120);
2697 			chan->gain_radio = 0x28;
2698 		}
2699 
2700 		DPRINTFN(WPI_DEBUG_SCANNING,
2701 			 ("Scanning %u Passive: %d\n",
2702 			  chan->chan,
2703 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2704 
2705 		hdr->nchan++;
2706 		chan++;
2707 
2708 		frm += sizeof (struct wpi_scan_chan);
2709 	}
2710 #endif
2711 
2712 	hdr->len = htole16(frm - (uint8_t *)hdr);
2713 	pktlen = frm - (uint8_t *)cmd;
2714 
2715 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2716 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2717 	if (error != 0) {
2718 		device_printf(sc->sc_dev, "could not map scan command\n");
2719 		m_freem(data->m);
2720 		data->m = NULL;
2721 		return error;
2722 	}
2723 
2724 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2725 	desc->segs[0].addr = htole32(physaddr);
2726 	desc->segs[0].len  = htole32(pktlen);
2727 
2728 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2729 	    BUS_DMASYNC_PREWRITE);
2730 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2731 
2732 	/* kick cmd ring */
2733 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2734 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2735 
2736 	sc->sc_scan_timer = 5;
2737 	return 0;	/* will be notified async. of failure/success */
2738 }
2739 
2740 /**
2741  * Configure the card to listen to a particular channel, this transisions the
2742  * card in to being able to receive frames from remote devices.
2743  */
2744 static int
2745 wpi_config(struct wpi_softc *sc)
2746 {
2747 	struct ifnet *ifp = sc->sc_ifp;
2748 	struct ieee80211com *ic = ifp->if_l2com;
2749 	struct wpi_power power;
2750 	struct wpi_bluetooth bluetooth;
2751 	struct wpi_node_info node;
2752 	int error;
2753 
2754 	/* set power mode */
2755 	memset(&power, 0, sizeof power);
2756 	power.flags = htole32(WPI_POWER_CAM|0x8);
2757 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2758 	if (error != 0) {
2759 		device_printf(sc->sc_dev, "could not set power mode\n");
2760 		return error;
2761 	}
2762 
2763 	/* configure bluetooth coexistence */
2764 	memset(&bluetooth, 0, sizeof bluetooth);
2765 	bluetooth.flags = 3;
2766 	bluetooth.lead = 0xaa;
2767 	bluetooth.kill = 1;
2768 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2769 	    0);
2770 	if (error != 0) {
2771 		device_printf(sc->sc_dev,
2772 		    "could not configure bluetooth coexistence\n");
2773 		return error;
2774 	}
2775 
2776 	/* configure adapter */
2777 	memset(&sc->config, 0, sizeof (struct wpi_config));
2778 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2779 	/*set default channel*/
2780 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2781 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2782 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2783 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2784 		    WPI_CONFIG_24GHZ);
2785 	}
2786 	sc->config.filter = 0;
2787 	switch (ic->ic_opmode) {
2788 	case IEEE80211_M_STA:
2789 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2790 		sc->config.mode = WPI_MODE_STA;
2791 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2792 		break;
2793 	case IEEE80211_M_IBSS:
2794 	case IEEE80211_M_AHDEMO:
2795 		sc->config.mode = WPI_MODE_IBSS;
2796 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2797 					     WPI_FILTER_MULTICAST);
2798 		break;
2799 	case IEEE80211_M_HOSTAP:
2800 		sc->config.mode = WPI_MODE_HOSTAP;
2801 		break;
2802 	case IEEE80211_M_MONITOR:
2803 		sc->config.mode = WPI_MODE_MONITOR;
2804 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2805 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2806 		break;
2807 	default:
2808 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2809 		return EINVAL;
2810 	}
2811 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2812 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2813 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2814 		sizeof (struct wpi_config), 0);
2815 	if (error != 0) {
2816 		device_printf(sc->sc_dev, "configure command failed\n");
2817 		return error;
2818 	}
2819 
2820 	/* configuration has changed, set Tx power accordingly */
2821 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2822 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2823 	    return error;
2824 	}
2825 
2826 	/* add broadcast node */
2827 	memset(&node, 0, sizeof node);
2828 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2829 	node.id = WPI_ID_BROADCAST;
2830 	node.rate = wpi_plcp_signal(2);
2831 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2832 	if (error != 0) {
2833 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2834 		return error;
2835 	}
2836 
2837 	/* Setup rate scalling */
2838 	error = wpi_mrr_setup(sc);
2839 	if (error != 0) {
2840 		device_printf(sc->sc_dev, "could not setup MRR\n");
2841 		return error;
2842 	}
2843 
2844 	return 0;
2845 }
2846 
2847 static void
2848 wpi_stop_master(struct wpi_softc *sc)
2849 {
2850 	uint32_t tmp;
2851 	int ntries;
2852 
2853 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2854 
2855 	tmp = WPI_READ(sc, WPI_RESET);
2856 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2857 
2858 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2859 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2860 		return;	/* already asleep */
2861 
2862 	for (ntries = 0; ntries < 100; ntries++) {
2863 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2864 			break;
2865 		DELAY(10);
2866 	}
2867 	if (ntries == 100) {
2868 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2869 	}
2870 }
2871 
2872 static int
2873 wpi_power_up(struct wpi_softc *sc)
2874 {
2875 	uint32_t tmp;
2876 	int ntries;
2877 
2878 	wpi_mem_lock(sc);
2879 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2880 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2881 	wpi_mem_unlock(sc);
2882 
2883 	for (ntries = 0; ntries < 5000; ntries++) {
2884 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2885 			break;
2886 		DELAY(10);
2887 	}
2888 	if (ntries == 5000) {
2889 		device_printf(sc->sc_dev,
2890 		    "timeout waiting for NIC to power up\n");
2891 		return ETIMEDOUT;
2892 	}
2893 	return 0;
2894 }
2895 
2896 static int
2897 wpi_reset(struct wpi_softc *sc)
2898 {
2899 	uint32_t tmp;
2900 	int ntries;
2901 
2902 	DPRINTFN(WPI_DEBUG_HW,
2903 	    ("Resetting the card - clearing any uploaded firmware\n"));
2904 
2905 	/* clear any pending interrupts */
2906 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2907 
2908 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2909 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2910 
2911 	tmp = WPI_READ(sc, WPI_CHICKEN);
2912 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2913 
2914 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2915 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2916 
2917 	/* wait for clock stabilization */
2918 	for (ntries = 0; ntries < 25000; ntries++) {
2919 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2920 			break;
2921 		DELAY(10);
2922 	}
2923 	if (ntries == 25000) {
2924 		device_printf(sc->sc_dev,
2925 		    "timeout waiting for clock stabilization\n");
2926 		return ETIMEDOUT;
2927 	}
2928 
2929 	/* initialize EEPROM */
2930 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2931 
2932 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2933 		device_printf(sc->sc_dev, "EEPROM not found\n");
2934 		return EIO;
2935 	}
2936 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2937 
2938 	return 0;
2939 }
2940 
2941 static void
2942 wpi_hw_config(struct wpi_softc *sc)
2943 {
2944 	uint32_t rev, hw;
2945 
2946 	/* voodoo from the Linux "driver".. */
2947 	hw = WPI_READ(sc, WPI_HWCONFIG);
2948 
2949 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2950 	if ((rev & 0xc0) == 0x40)
2951 		hw |= WPI_HW_ALM_MB;
2952 	else if (!(rev & 0x80))
2953 		hw |= WPI_HW_ALM_MM;
2954 
2955 	if (sc->cap == 0x80)
2956 		hw |= WPI_HW_SKU_MRC;
2957 
2958 	hw &= ~WPI_HW_REV_D;
2959 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2960 		hw |= WPI_HW_REV_D;
2961 
2962 	if (sc->type > 1)
2963 		hw |= WPI_HW_TYPE_B;
2964 
2965 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2966 }
2967 
2968 static void
2969 wpi_rfkill_resume(struct wpi_softc *sc)
2970 {
2971 	struct ifnet *ifp = sc->sc_ifp;
2972 	struct ieee80211com *ic = ifp->if_l2com;
2973 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2974 	int ntries;
2975 
2976 	/* enable firmware again */
2977 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2978 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2979 
2980 	/* wait for thermal sensors to calibrate */
2981 	for (ntries = 0; ntries < 1000; ntries++) {
2982 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2983 			break;
2984 		DELAY(10);
2985 	}
2986 
2987 	if (ntries == 1000) {
2988 		device_printf(sc->sc_dev,
2989 		    "timeout waiting for thermal calibration\n");
2990 		WPI_UNLOCK(sc);
2991 		return;
2992 	}
2993 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
2994 
2995 	if (wpi_config(sc) != 0) {
2996 		device_printf(sc->sc_dev, "device config failed\n");
2997 		WPI_UNLOCK(sc);
2998 		return;
2999 	}
3000 
3001 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3002 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3003 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3004 
3005 	if (vap != NULL) {
3006 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3007 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3008 				ieee80211_beacon_miss(ic);
3009 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3010 			} else
3011 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3012 		} else {
3013 			ieee80211_scan_next(vap);
3014 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3015 		}
3016 	}
3017 
3018 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3019 }
3020 
3021 static void
3022 wpi_init_locked(struct wpi_softc *sc, int force)
3023 {
3024 	struct ifnet *ifp = sc->sc_ifp;
3025 	uint32_t tmp;
3026 	int ntries, qid;
3027 
3028 	wpi_stop_locked(sc);
3029 	(void)wpi_reset(sc);
3030 
3031 	wpi_mem_lock(sc);
3032 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3033 	DELAY(20);
3034 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3035 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3036 	wpi_mem_unlock(sc);
3037 
3038 	(void)wpi_power_up(sc);
3039 	wpi_hw_config(sc);
3040 
3041 	/* init Rx ring */
3042 	wpi_mem_lock(sc);
3043 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3044 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3045 	    offsetof(struct wpi_shared, next));
3046 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3047 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3048 	wpi_mem_unlock(sc);
3049 
3050 	/* init Tx rings */
3051 	wpi_mem_lock(sc);
3052 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3053 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3054 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3055 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3056 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3057 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3058 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3059 
3060 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3061 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3062 
3063 	for (qid = 0; qid < 6; qid++) {
3064 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3065 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3066 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3067 	}
3068 	wpi_mem_unlock(sc);
3069 
3070 	/* clear "radio off" and "disable command" bits (reversed logic) */
3071 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3072 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3073 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3074 
3075 	/* clear any pending interrupts */
3076 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3077 
3078 	/* enable interrupts */
3079 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3080 
3081 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3082 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3083 
3084 	if ((wpi_load_firmware(sc)) != 0) {
3085 	    device_printf(sc->sc_dev,
3086 		"A problem occurred loading the firmware to the driver\n");
3087 	    return;
3088 	}
3089 
3090 	/* At this point the firmware is up and running. If the hardware
3091 	 * RF switch is turned off thermal calibration will fail, though
3092 	 * the card is still happy to continue to accept commands, catch
3093 	 * this case and schedule a task to watch for it to be turned on.
3094 	 */
3095 	wpi_mem_lock(sc);
3096 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3097 	wpi_mem_unlock(sc);
3098 
3099 	if (!(tmp & 0x1)) {
3100 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3101 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3102 		goto out;
3103 	}
3104 
3105 	/* wait for thermal sensors to calibrate */
3106 	for (ntries = 0; ntries < 1000; ntries++) {
3107 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3108 			break;
3109 		DELAY(10);
3110 	}
3111 
3112 	if (ntries == 1000) {
3113 		device_printf(sc->sc_dev,
3114 		    "timeout waiting for thermal sensors calibration\n");
3115 		return;
3116 	}
3117 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3118 
3119 	if (wpi_config(sc) != 0) {
3120 		device_printf(sc->sc_dev, "device config failed\n");
3121 		return;
3122 	}
3123 
3124 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3125 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3126 out:
3127 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3128 }
3129 
3130 static void
3131 wpi_init(void *arg)
3132 {
3133 	struct wpi_softc *sc = arg;
3134 	struct ifnet *ifp = sc->sc_ifp;
3135 	struct ieee80211com *ic = ifp->if_l2com;
3136 
3137 	WPI_LOCK(sc);
3138 	wpi_init_locked(sc, 0);
3139 	WPI_UNLOCK(sc);
3140 
3141 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3142 		ieee80211_start_all(ic);		/* start all vaps */
3143 }
3144 
3145 static void
3146 wpi_stop_locked(struct wpi_softc *sc)
3147 {
3148 	struct ifnet *ifp = sc->sc_ifp;
3149 	uint32_t tmp;
3150 	int ac;
3151 
3152 	sc->sc_tx_timer = 0;
3153 	sc->sc_scan_timer = 0;
3154 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3155 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3156 	callout_stop(&sc->watchdog_to);
3157 	callout_stop(&sc->calib_to);
3158 
3159 
3160 	/* disable interrupts */
3161 	WPI_WRITE(sc, WPI_MASK, 0);
3162 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3163 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3164 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3165 
3166 	wpi_mem_lock(sc);
3167 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3168 	wpi_mem_unlock(sc);
3169 
3170 	/* reset all Tx rings */
3171 	for (ac = 0; ac < 4; ac++)
3172 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3173 	wpi_reset_tx_ring(sc, &sc->cmdq);
3174 
3175 	/* reset Rx ring */
3176 	wpi_reset_rx_ring(sc, &sc->rxq);
3177 
3178 	wpi_mem_lock(sc);
3179 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3180 	wpi_mem_unlock(sc);
3181 
3182 	DELAY(5);
3183 
3184 	wpi_stop_master(sc);
3185 
3186 	tmp = WPI_READ(sc, WPI_RESET);
3187 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3188 	sc->flags &= ~WPI_FLAG_BUSY;
3189 }
3190 
3191 static void
3192 wpi_stop(struct wpi_softc *sc)
3193 {
3194 	WPI_LOCK(sc);
3195 	wpi_stop_locked(sc);
3196 	WPI_UNLOCK(sc);
3197 }
3198 
3199 static void
3200 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3201 {
3202 
3203 	/* XXX move */
3204 	ieee80211_ratectl_node_init(ni);
3205 }
3206 
3207 static void
3208 wpi_calib_timeout(void *arg)
3209 {
3210 	struct wpi_softc *sc = arg;
3211 	struct ifnet *ifp = sc->sc_ifp;
3212 	struct ieee80211com *ic = ifp->if_l2com;
3213 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3214 	int temp;
3215 
3216 	if (vap->iv_state != IEEE80211_S_RUN)
3217 		return;
3218 
3219 	/* update sensor data */
3220 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3221 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3222 
3223 	wpi_power_calibration(sc, temp);
3224 
3225 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3226 }
3227 
3228 /*
3229  * This function is called periodically (every 60 seconds) to adjust output
3230  * power to temperature changes.
3231  */
3232 static void
3233 wpi_power_calibration(struct wpi_softc *sc, int temp)
3234 {
3235 	struct ifnet *ifp = sc->sc_ifp;
3236 	struct ieee80211com *ic = ifp->if_l2com;
3237 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3238 
3239 	/* sanity-check read value */
3240 	if (temp < -260 || temp > 25) {
3241 		/* this can't be correct, ignore */
3242 		DPRINTFN(WPI_DEBUG_TEMP,
3243 		    ("out-of-range temperature reported: %d\n", temp));
3244 		return;
3245 	}
3246 
3247 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3248 
3249 	/* adjust Tx power if need be */
3250 	if (abs(temp - sc->temp) <= 6)
3251 		return;
3252 
3253 	sc->temp = temp;
3254 
3255 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3256 		/* just warn, too bad for the automatic calibration... */
3257 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3258 	}
3259 }
3260 
3261 /**
3262  * Read the eeprom to find out what channels are valid for the given
3263  * band and update net80211 with what we find.
3264  */
3265 static void
3266 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3267 {
3268 	struct ifnet *ifp = sc->sc_ifp;
3269 	struct ieee80211com *ic = ifp->if_l2com;
3270 	const struct wpi_chan_band *band = &wpi_bands[n];
3271 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3272 	struct ieee80211_channel *c;
3273 	int chan, i, passive;
3274 
3275 	wpi_read_prom_data(sc, band->addr, channels,
3276 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3277 
3278 	for (i = 0; i < band->nchan; i++) {
3279 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3280 			DPRINTFN(WPI_DEBUG_HW,
3281 			    ("Channel Not Valid: %d, band %d\n",
3282 			     band->chan[i],n));
3283 			continue;
3284 		}
3285 
3286 		passive = 0;
3287 		chan = band->chan[i];
3288 		c = &ic->ic_channels[ic->ic_nchans++];
3289 
3290 		/* is active scan allowed on this channel? */
3291 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3292 			passive = IEEE80211_CHAN_PASSIVE;
3293 		}
3294 
3295 		if (n == 0) {	/* 2GHz band */
3296 			c->ic_ieee = chan;
3297 			c->ic_freq = ieee80211_ieee2mhz(chan,
3298 			    IEEE80211_CHAN_2GHZ);
3299 			c->ic_flags = IEEE80211_CHAN_B | passive;
3300 
3301 			c = &ic->ic_channels[ic->ic_nchans++];
3302 			c->ic_ieee = chan;
3303 			c->ic_freq = ieee80211_ieee2mhz(chan,
3304 			    IEEE80211_CHAN_2GHZ);
3305 			c->ic_flags = IEEE80211_CHAN_G | passive;
3306 
3307 		} else {	/* 5GHz band */
3308 			/*
3309 			 * Some 3945ABG adapters support channels 7, 8, 11
3310 			 * and 12 in the 2GHz *and* 5GHz bands.
3311 			 * Because of limitations in our net80211(9) stack,
3312 			 * we can't support these channels in 5GHz band.
3313 			 * XXX not true; just need to map to proper frequency
3314 			 */
3315 			if (chan <= 14)
3316 				continue;
3317 
3318 			c->ic_ieee = chan;
3319 			c->ic_freq = ieee80211_ieee2mhz(chan,
3320 			    IEEE80211_CHAN_5GHZ);
3321 			c->ic_flags = IEEE80211_CHAN_A | passive;
3322 		}
3323 
3324 		/* save maximum allowed power for this channel */
3325 		sc->maxpwr[chan] = channels[i].maxpwr;
3326 
3327 #if 0
3328 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3329 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3330 		//ic->ic_channels[chan].ic_minpower...
3331 		//ic->ic_channels[chan].ic_maxregtxpower...
3332 #endif
3333 
3334 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3335 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3336 		    channels[i].flags, sc->maxpwr[chan],
3337 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3338 		    ic->ic_nchans));
3339 	}
3340 }
3341 
3342 static void
3343 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3344 {
3345 	struct wpi_power_group *group = &sc->groups[n];
3346 	struct wpi_eeprom_group rgroup;
3347 	int i;
3348 
3349 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3350 	    sizeof rgroup);
3351 
3352 	/* save power group information */
3353 	group->chan   = rgroup.chan;
3354 	group->maxpwr = rgroup.maxpwr;
3355 	/* temperature at which the samples were taken */
3356 	group->temp   = (int16_t)le16toh(rgroup.temp);
3357 
3358 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3359 		    group->chan, group->maxpwr, group->temp));
3360 
3361 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3362 		group->samples[i].index = rgroup.samples[i].index;
3363 		group->samples[i].power = rgroup.samples[i].power;
3364 
3365 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3366 			    group->samples[i].index, group->samples[i].power));
3367 	}
3368 }
3369 
3370 /*
3371  * Update Tx power to match what is defined for channel `c'.
3372  */
3373 static int
3374 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3375 {
3376 	struct ifnet *ifp = sc->sc_ifp;
3377 	struct ieee80211com *ic = ifp->if_l2com;
3378 	struct wpi_power_group *group;
3379 	struct wpi_cmd_txpower txpower;
3380 	u_int chan;
3381 	int i;
3382 
3383 	/* get channel number */
3384 	chan = ieee80211_chan2ieee(ic, c);
3385 
3386 	/* find the power group to which this channel belongs */
3387 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3388 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3389 			if (chan <= group->chan)
3390 				break;
3391 	} else
3392 		group = &sc->groups[0];
3393 
3394 	memset(&txpower, 0, sizeof txpower);
3395 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3396 	txpower.channel = htole16(chan);
3397 
3398 	/* set Tx power for all OFDM and CCK rates */
3399 	for (i = 0; i <= 11 ; i++) {
3400 		/* retrieve Tx power for this channel/rate combination */
3401 		int idx = wpi_get_power_index(sc, group, c,
3402 		    wpi_ridx_to_rate[i]);
3403 
3404 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3405 
3406 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3407 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3408 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3409 		} else {
3410 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3411 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3412 		}
3413 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3414 			    chan, wpi_ridx_to_rate[i], idx));
3415 	}
3416 
3417 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3418 }
3419 
3420 /*
3421  * Determine Tx power index for a given channel/rate combination.
3422  * This takes into account the regulatory information from EEPROM and the
3423  * current temperature.
3424  */
3425 static int
3426 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3427     struct ieee80211_channel *c, int rate)
3428 {
3429 /* fixed-point arithmetic division using a n-bit fractional part */
3430 #define fdivround(a, b, n)      \
3431 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3432 
3433 /* linear interpolation */
3434 #define interpolate(x, x1, y1, x2, y2, n)       \
3435 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3436 
3437 	struct ifnet *ifp = sc->sc_ifp;
3438 	struct ieee80211com *ic = ifp->if_l2com;
3439 	struct wpi_power_sample *sample;
3440 	int pwr, idx;
3441 	u_int chan;
3442 
3443 	/* get channel number */
3444 	chan = ieee80211_chan2ieee(ic, c);
3445 
3446 	/* default power is group's maximum power - 3dB */
3447 	pwr = group->maxpwr / 2;
3448 
3449 	/* decrease power for highest OFDM rates to reduce distortion */
3450 	switch (rate) {
3451 		case 72:	/* 36Mb/s */
3452 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3453 			break;
3454 		case 96:	/* 48Mb/s */
3455 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3456 			break;
3457 		case 108:	/* 54Mb/s */
3458 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3459 			break;
3460 	}
3461 
3462 	/* never exceed channel's maximum allowed Tx power */
3463 	pwr = min(pwr, sc->maxpwr[chan]);
3464 
3465 	/* retrieve power index into gain tables from samples */
3466 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3467 		if (pwr > sample[1].power)
3468 			break;
3469 	/* fixed-point linear interpolation using a 19-bit fractional part */
3470 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3471 	    sample[1].power, sample[1].index, 19);
3472 
3473 	/*
3474 	 *  Adjust power index based on current temperature
3475 	 *	- if colder than factory-calibrated: decreate output power
3476 	 *	- if warmer than factory-calibrated: increase output power
3477 	 */
3478 	idx -= (sc->temp - group->temp) * 11 / 100;
3479 
3480 	/* decrease power for CCK rates (-5dB) */
3481 	if (!WPI_RATE_IS_OFDM(rate))
3482 		idx += 10;
3483 
3484 	/* keep power index in a valid range */
3485 	if (idx < 0)
3486 		return 0;
3487 	if (idx > WPI_MAX_PWR_INDEX)
3488 		return WPI_MAX_PWR_INDEX;
3489 	return idx;
3490 
3491 #undef interpolate
3492 #undef fdivround
3493 }
3494 
3495 /**
3496  * Called by net80211 framework to indicate that a scan
3497  * is starting. This function doesn't actually do the scan,
3498  * wpi_scan_curchan starts things off. This function is more
3499  * of an early warning from the framework we should get ready
3500  * for the scan.
3501  */
3502 static void
3503 wpi_scan_start(struct ieee80211com *ic)
3504 {
3505 	struct ifnet *ifp = ic->ic_ifp;
3506 	struct wpi_softc *sc = ifp->if_softc;
3507 
3508 	WPI_LOCK(sc);
3509 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3510 	WPI_UNLOCK(sc);
3511 }
3512 
3513 /**
3514  * Called by the net80211 framework, indicates that the
3515  * scan has ended. If there is a scan in progress on the card
3516  * then it should be aborted.
3517  */
3518 static void
3519 wpi_scan_end(struct ieee80211com *ic)
3520 {
3521 	/* XXX ignore */
3522 }
3523 
3524 /**
3525  * Called by the net80211 framework to indicate to the driver
3526  * that the channel should be changed
3527  */
3528 static void
3529 wpi_set_channel(struct ieee80211com *ic)
3530 {
3531 	struct ifnet *ifp = ic->ic_ifp;
3532 	struct wpi_softc *sc = ifp->if_softc;
3533 	int error;
3534 
3535 	/*
3536 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3537 	 * are already taken care of by their respective firmware commands.
3538 	 */
3539 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3540 		error = wpi_config(sc);
3541 		if (error != 0)
3542 			device_printf(sc->sc_dev,
3543 			    "error %d settting channel\n", error);
3544 	}
3545 }
3546 
3547 /**
3548  * Called by net80211 to indicate that we need to scan the current
3549  * channel. The channel is previously be set via the wpi_set_channel
3550  * callback.
3551  */
3552 static void
3553 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3554 {
3555 	struct ieee80211vap *vap = ss->ss_vap;
3556 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3557 	struct wpi_softc *sc = ifp->if_softc;
3558 
3559 	WPI_LOCK(sc);
3560 	if (wpi_scan(sc))
3561 		ieee80211_cancel_scan(vap);
3562 	WPI_UNLOCK(sc);
3563 }
3564 
3565 /**
3566  * Called by the net80211 framework to indicate
3567  * the minimum dwell time has been met, terminate the scan.
3568  * We don't actually terminate the scan as the firmware will notify
3569  * us when it's finished and we have no way to interrupt it.
3570  */
3571 static void
3572 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3573 {
3574 	/* NB: don't try to abort scan; wait for firmware to finish */
3575 }
3576 
3577 static void
3578 wpi_hwreset(void *arg, int pending)
3579 {
3580 	struct wpi_softc *sc = arg;
3581 
3582 	WPI_LOCK(sc);
3583 	wpi_init_locked(sc, 0);
3584 	WPI_UNLOCK(sc);
3585 }
3586 
3587 static void
3588 wpi_rfreset(void *arg, int pending)
3589 {
3590 	struct wpi_softc *sc = arg;
3591 
3592 	WPI_LOCK(sc);
3593 	wpi_rfkill_resume(sc);
3594 	WPI_UNLOCK(sc);
3595 }
3596 
3597 /*
3598  * Allocate DMA-safe memory for firmware transfer.
3599  */
3600 static int
3601 wpi_alloc_fwmem(struct wpi_softc *sc)
3602 {
3603 	/* allocate enough contiguous space to store text and data */
3604 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3605 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3606 	    BUS_DMA_NOWAIT);
3607 }
3608 
3609 static void
3610 wpi_free_fwmem(struct wpi_softc *sc)
3611 {
3612 	wpi_dma_contig_free(&sc->fw_dma);
3613 }
3614 
3615 /**
3616  * Called every second, wpi_watchdog used by the watch dog timer
3617  * to check that the card is still alive
3618  */
3619 static void
3620 wpi_watchdog(void *arg)
3621 {
3622 	struct wpi_softc *sc = arg;
3623 	struct ifnet *ifp = sc->sc_ifp;
3624 	struct ieee80211com *ic = ifp->if_l2com;
3625 	uint32_t tmp;
3626 
3627 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3628 
3629 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3630 		/* No need to lock firmware memory */
3631 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3632 
3633 		if ((tmp & 0x1) == 0) {
3634 			/* Radio kill switch is still off */
3635 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3636 			return;
3637 		}
3638 
3639 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3640 		ieee80211_runtask(ic, &sc->sc_radiotask);
3641 		return;
3642 	}
3643 
3644 	if (sc->sc_tx_timer > 0) {
3645 		if (--sc->sc_tx_timer == 0) {
3646 			device_printf(sc->sc_dev,"device timeout\n");
3647 			ifp->if_oerrors++;
3648 			ieee80211_runtask(ic, &sc->sc_restarttask);
3649 		}
3650 	}
3651 	if (sc->sc_scan_timer > 0) {
3652 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3653 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3654 			device_printf(sc->sc_dev,"scan timeout\n");
3655 			ieee80211_cancel_scan(vap);
3656 			ieee80211_runtask(ic, &sc->sc_restarttask);
3657 		}
3658 	}
3659 
3660 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3661 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3662 }
3663 
3664 #ifdef WPI_DEBUG
3665 static const char *wpi_cmd_str(int cmd)
3666 {
3667 	switch (cmd) {
3668 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3669 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3670 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3671 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3672 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3673 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3674 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3675 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3676 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3677 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3678 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3679 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3680 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3681 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3682 
3683 	default:
3684 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3685 		return "UNKNOWN CMD";	/* Make the compiler happy */
3686 	}
3687 }
3688 #endif
3689 
3690 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3691 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3692 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3693