1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #include <machine/bus.h> 79 #include <machine/resource.h> 80 #include <sys/rman.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 85 #include <net/bpf.h> 86 #include <net/if.h> 87 #include <net/if_arp.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <net80211/ieee80211_var.h> 94 #include <net80211/ieee80211_radiotap.h> 95 #include <net80211/ieee80211_regdomain.h> 96 #include <net80211/ieee80211_ratectl.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_systm.h> 100 #include <netinet/in_var.h> 101 #include <netinet/ip.h> 102 #include <netinet/if_ether.h> 103 104 #include <dev/wpi/if_wpireg.h> 105 #include <dev/wpi/if_wpivar.h> 106 107 #define WPI_DEBUG 108 109 #ifdef WPI_DEBUG 110 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 111 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 112 #define WPI_DEBUG_SET (wpi_debug != 0) 113 114 enum { 115 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 116 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 117 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 118 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 119 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 120 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 121 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 122 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 123 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 124 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 125 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 126 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 127 WPI_DEBUG_ANY = 0xffffffff 128 }; 129 130 static int wpi_debug = 0; 131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 132 TUNABLE_INT("debug.wpi", &wpi_debug); 133 134 #else 135 #define DPRINTF(x) 136 #define DPRINTFN(n, x) 137 #define WPI_DEBUG_SET 0 138 #endif 139 140 struct wpi_ident { 141 uint16_t vendor; 142 uint16_t device; 143 uint16_t subdevice; 144 const char *name; 145 }; 146 147 static const struct wpi_ident wpi_ident_table[] = { 148 /* The below entries support ABG regardless of the subid */ 149 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 150 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 151 /* The below entries only support BG */ 152 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 153 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 154 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 155 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0, 0, 0, NULL } 157 }; 158 159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 160 const char name[IFNAMSIZ], int unit, int opmode, 161 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 162 const uint8_t mac[IEEE80211_ADDR_LEN]); 163 static void wpi_vap_delete(struct ieee80211vap *); 164 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 165 void **, bus_size_t, bus_size_t, int); 166 static void wpi_dma_contig_free(struct wpi_dma_info *); 167 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 168 static int wpi_alloc_shared(struct wpi_softc *); 169 static void wpi_free_shared(struct wpi_softc *); 170 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 171 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 172 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 173 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 174 int, int); 175 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 176 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 177 static void wpi_newassoc(struct ieee80211_node *, int); 178 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 179 static void wpi_mem_lock(struct wpi_softc *); 180 static void wpi_mem_unlock(struct wpi_softc *); 181 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 182 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 183 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 184 const uint32_t *, int); 185 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 186 static int wpi_alloc_fwmem(struct wpi_softc *); 187 static void wpi_free_fwmem(struct wpi_softc *); 188 static int wpi_load_firmware(struct wpi_softc *); 189 static void wpi_unload_firmware(struct wpi_softc *); 190 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 191 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 192 struct wpi_rx_data *); 193 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 194 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 195 static void wpi_notif_intr(struct wpi_softc *); 196 static void wpi_intr(void *); 197 static uint8_t wpi_plcp_signal(int); 198 static void wpi_watchdog(void *); 199 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 200 struct ieee80211_node *, int); 201 static void wpi_start(struct ifnet *); 202 static void wpi_start_locked(struct ifnet *); 203 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 204 const struct ieee80211_bpf_params *); 205 static void wpi_scan_start(struct ieee80211com *); 206 static void wpi_scan_end(struct ieee80211com *); 207 static void wpi_set_channel(struct ieee80211com *); 208 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 209 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 210 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 211 static void wpi_read_eeprom(struct wpi_softc *, 212 uint8_t macaddr[IEEE80211_ADDR_LEN]); 213 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 214 static void wpi_read_eeprom_group(struct wpi_softc *, int); 215 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 216 static int wpi_wme_update(struct ieee80211com *); 217 static int wpi_mrr_setup(struct wpi_softc *); 218 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 219 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 220 #if 0 221 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 222 #endif 223 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 224 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 225 static int wpi_scan(struct wpi_softc *); 226 static int wpi_config(struct wpi_softc *); 227 static void wpi_stop_master(struct wpi_softc *); 228 static int wpi_power_up(struct wpi_softc *); 229 static int wpi_reset(struct wpi_softc *); 230 static void wpi_hwreset(void *, int); 231 static void wpi_rfreset(void *, int); 232 static void wpi_hw_config(struct wpi_softc *); 233 static void wpi_init(void *); 234 static void wpi_init_locked(struct wpi_softc *, int); 235 static void wpi_stop(struct wpi_softc *); 236 static void wpi_stop_locked(struct wpi_softc *); 237 238 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 239 int); 240 static void wpi_calib_timeout(void *); 241 static void wpi_power_calibration(struct wpi_softc *, int); 242 static int wpi_get_power_index(struct wpi_softc *, 243 struct wpi_power_group *, struct ieee80211_channel *, int); 244 #ifdef WPI_DEBUG 245 static const char *wpi_cmd_str(int); 246 #endif 247 static int wpi_probe(device_t); 248 static int wpi_attach(device_t); 249 static int wpi_detach(device_t); 250 static int wpi_shutdown(device_t); 251 static int wpi_suspend(device_t); 252 static int wpi_resume(device_t); 253 254 255 static device_method_t wpi_methods[] = { 256 /* Device interface */ 257 DEVMETHOD(device_probe, wpi_probe), 258 DEVMETHOD(device_attach, wpi_attach), 259 DEVMETHOD(device_detach, wpi_detach), 260 DEVMETHOD(device_shutdown, wpi_shutdown), 261 DEVMETHOD(device_suspend, wpi_suspend), 262 DEVMETHOD(device_resume, wpi_resume), 263 264 { 0, 0 } 265 }; 266 267 static driver_t wpi_driver = { 268 "wpi", 269 wpi_methods, 270 sizeof (struct wpi_softc) 271 }; 272 273 static devclass_t wpi_devclass; 274 275 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 276 277 static const uint8_t wpi_ridx_to_plcp[] = { 278 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 279 /* R1-R4 (ral/ural is R4-R1) */ 280 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 281 /* CCK: device-dependent */ 282 10, 20, 55, 110 283 }; 284 static const uint8_t wpi_ridx_to_rate[] = { 285 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 286 2, 4, 11, 22 /*CCK */ 287 }; 288 289 290 static int 291 wpi_probe(device_t dev) 292 { 293 const struct wpi_ident *ident; 294 295 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 296 if (pci_get_vendor(dev) == ident->vendor && 297 pci_get_device(dev) == ident->device) { 298 device_set_desc(dev, ident->name); 299 return 0; 300 } 301 } 302 return ENXIO; 303 } 304 305 /** 306 * Load the firmare image from disk to the allocated dma buffer. 307 * we also maintain the reference to the firmware pointer as there 308 * is times where we may need to reload the firmware but we are not 309 * in a context that can access the filesystem (ie taskq cause by restart) 310 * 311 * @return 0 on success, an errno on failure 312 */ 313 static int 314 wpi_load_firmware(struct wpi_softc *sc) 315 { 316 const struct firmware *fp; 317 struct wpi_dma_info *dma = &sc->fw_dma; 318 const struct wpi_firmware_hdr *hdr; 319 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 320 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 321 int error; 322 323 DPRINTFN(WPI_DEBUG_FIRMWARE, 324 ("Attempting Loading Firmware from wpi_fw module\n")); 325 326 WPI_UNLOCK(sc); 327 328 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 329 device_printf(sc->sc_dev, 330 "could not load firmware image 'wpifw'\n"); 331 error = ENOENT; 332 WPI_LOCK(sc); 333 goto fail; 334 } 335 336 fp = sc->fw_fp; 337 338 WPI_LOCK(sc); 339 340 /* Validate the firmware is minimum a particular version */ 341 if (fp->version < WPI_FW_MINVERSION) { 342 device_printf(sc->sc_dev, 343 "firmware version is too old. Need %d, got %d\n", 344 WPI_FW_MINVERSION, 345 fp->version); 346 error = ENXIO; 347 goto fail; 348 } 349 350 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 351 device_printf(sc->sc_dev, 352 "firmware file too short: %zu bytes\n", fp->datasize); 353 error = ENXIO; 354 goto fail; 355 } 356 357 hdr = (const struct wpi_firmware_hdr *)fp->data; 358 359 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 360 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 361 362 rtextsz = le32toh(hdr->rtextsz); 363 rdatasz = le32toh(hdr->rdatasz); 364 itextsz = le32toh(hdr->itextsz); 365 idatasz = le32toh(hdr->idatasz); 366 btextsz = le32toh(hdr->btextsz); 367 368 /* check that all firmware segments are present */ 369 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 370 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 371 device_printf(sc->sc_dev, 372 "firmware file too short: %zu bytes\n", fp->datasize); 373 error = ENXIO; /* XXX appropriate error code? */ 374 goto fail; 375 } 376 377 /* get pointers to firmware segments */ 378 rtext = (const uint8_t *)(hdr + 1); 379 rdata = rtext + rtextsz; 380 itext = rdata + rdatasz; 381 idata = itext + itextsz; 382 btext = idata + idatasz; 383 384 DPRINTFN(WPI_DEBUG_FIRMWARE, 385 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 386 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 387 (le32toh(hdr->version) & 0xff000000) >> 24, 388 (le32toh(hdr->version) & 0x00ff0000) >> 16, 389 (le32toh(hdr->version) & 0x0000ffff), 390 rtextsz, rdatasz, 391 itextsz, idatasz, btextsz)); 392 393 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 394 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 395 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 396 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 397 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 398 399 /* sanity checks */ 400 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 401 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 402 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 403 idatasz > WPI_FW_INIT_DATA_MAXSZ || 404 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 405 (btextsz & 3) != 0) { 406 device_printf(sc->sc_dev, "firmware invalid\n"); 407 error = EINVAL; 408 goto fail; 409 } 410 411 /* copy initialization images into pre-allocated DMA-safe memory */ 412 memcpy(dma->vaddr, idata, idatasz); 413 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 414 415 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 416 417 /* tell adapter where to find initialization images */ 418 wpi_mem_lock(sc); 419 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 420 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 421 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 422 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 423 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 424 wpi_mem_unlock(sc); 425 426 /* load firmware boot code */ 427 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 428 device_printf(sc->sc_dev, "Failed to load microcode\n"); 429 goto fail; 430 } 431 432 /* now press "execute" */ 433 WPI_WRITE(sc, WPI_RESET, 0); 434 435 /* wait at most one second for the first alive notification */ 436 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 437 device_printf(sc->sc_dev, 438 "timeout waiting for adapter to initialize\n"); 439 goto fail; 440 } 441 442 /* copy runtime images into pre-allocated DMA-sage memory */ 443 memcpy(dma->vaddr, rdata, rdatasz); 444 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 445 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 446 447 /* tell adapter where to find runtime images */ 448 wpi_mem_lock(sc); 449 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 450 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 451 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 452 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 453 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 454 wpi_mem_unlock(sc); 455 456 /* wait at most one second for the first alive notification */ 457 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 458 device_printf(sc->sc_dev, 459 "timeout waiting for adapter to initialize2\n"); 460 goto fail; 461 } 462 463 DPRINTFN(WPI_DEBUG_FIRMWARE, 464 ("Firmware loaded to driver successfully\n")); 465 return error; 466 fail: 467 wpi_unload_firmware(sc); 468 return error; 469 } 470 471 /** 472 * Free the referenced firmware image 473 */ 474 static void 475 wpi_unload_firmware(struct wpi_softc *sc) 476 { 477 478 if (sc->fw_fp) { 479 WPI_UNLOCK(sc); 480 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 481 WPI_LOCK(sc); 482 sc->fw_fp = NULL; 483 } 484 } 485 486 static int 487 wpi_attach(device_t dev) 488 { 489 struct wpi_softc *sc = device_get_softc(dev); 490 struct ifnet *ifp; 491 struct ieee80211com *ic; 492 int ac, error, supportsa = 1; 493 uint32_t tmp; 494 const struct wpi_ident *ident; 495 uint8_t macaddr[IEEE80211_ADDR_LEN]; 496 497 sc->sc_dev = dev; 498 499 if (bootverbose || WPI_DEBUG_SET) 500 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 501 502 /* 503 * Some card's only support 802.11b/g not a, check to see if 504 * this is one such card. A 0x0 in the subdevice table indicates 505 * the entire subdevice range is to be ignored. 506 */ 507 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 508 if (ident->subdevice && 509 pci_get_subdevice(dev) == ident->subdevice) { 510 supportsa = 0; 511 break; 512 } 513 } 514 515 /* Create the tasks that can be queued */ 516 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc); 517 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc); 518 519 WPI_LOCK_INIT(sc); 520 521 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 522 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 523 524 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 525 device_printf(dev, "chip is in D%d power mode " 526 "-- setting to D0\n", pci_get_powerstate(dev)); 527 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 528 } 529 530 /* disable the retry timeout register */ 531 pci_write_config(dev, 0x41, 0, 1); 532 533 /* enable bus-mastering */ 534 pci_enable_busmaster(dev); 535 536 sc->mem_rid = PCIR_BAR(0); 537 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 538 RF_ACTIVE); 539 if (sc->mem == NULL) { 540 device_printf(dev, "could not allocate memory resource\n"); 541 error = ENOMEM; 542 goto fail; 543 } 544 545 sc->sc_st = rman_get_bustag(sc->mem); 546 sc->sc_sh = rman_get_bushandle(sc->mem); 547 548 sc->irq_rid = 0; 549 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 550 RF_ACTIVE | RF_SHAREABLE); 551 if (sc->irq == NULL) { 552 device_printf(dev, "could not allocate interrupt resource\n"); 553 error = ENOMEM; 554 goto fail; 555 } 556 557 /* 558 * Allocate DMA memory for firmware transfers. 559 */ 560 if ((error = wpi_alloc_fwmem(sc)) != 0) { 561 printf(": could not allocate firmware memory\n"); 562 error = ENOMEM; 563 goto fail; 564 } 565 566 /* 567 * Put adapter into a known state. 568 */ 569 if ((error = wpi_reset(sc)) != 0) { 570 device_printf(dev, "could not reset adapter\n"); 571 goto fail; 572 } 573 574 wpi_mem_lock(sc); 575 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 576 if (bootverbose || WPI_DEBUG_SET) 577 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 578 579 wpi_mem_unlock(sc); 580 581 /* Allocate shared page */ 582 if ((error = wpi_alloc_shared(sc)) != 0) { 583 device_printf(dev, "could not allocate shared page\n"); 584 goto fail; 585 } 586 587 /* tx data queues - 4 for QoS purposes */ 588 for (ac = 0; ac < WME_NUM_AC; ac++) { 589 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 590 if (error != 0) { 591 device_printf(dev, "could not allocate Tx ring %d\n",ac); 592 goto fail; 593 } 594 } 595 596 /* command queue to talk to the card's firmware */ 597 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 598 if (error != 0) { 599 device_printf(dev, "could not allocate command ring\n"); 600 goto fail; 601 } 602 603 /* receive data queue */ 604 error = wpi_alloc_rx_ring(sc, &sc->rxq); 605 if (error != 0) { 606 device_printf(dev, "could not allocate Rx ring\n"); 607 goto fail; 608 } 609 610 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 611 if (ifp == NULL) { 612 device_printf(dev, "can not if_alloc()\n"); 613 error = ENOMEM; 614 goto fail; 615 } 616 ic = ifp->if_l2com; 617 618 ic->ic_ifp = ifp; 619 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 620 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 621 622 /* set device capabilities */ 623 ic->ic_caps = 624 IEEE80211_C_STA /* station mode supported */ 625 | IEEE80211_C_MONITOR /* monitor mode supported */ 626 | IEEE80211_C_TXPMGT /* tx power management */ 627 | IEEE80211_C_SHSLOT /* short slot time supported */ 628 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 629 | IEEE80211_C_WPA /* 802.11i */ 630 /* XXX looks like WME is partly supported? */ 631 #if 0 632 | IEEE80211_C_IBSS /* IBSS mode support */ 633 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 634 | IEEE80211_C_WME /* 802.11e */ 635 | IEEE80211_C_HOSTAP /* Host access point mode */ 636 #endif 637 ; 638 639 /* 640 * Read in the eeprom and also setup the channels for 641 * net80211. We don't set the rates as net80211 does this for us 642 */ 643 wpi_read_eeprom(sc, macaddr); 644 645 if (bootverbose || WPI_DEBUG_SET) { 646 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 647 device_printf(sc->sc_dev, "Hardware Type: %c\n", 648 sc->type > 1 ? 'B': '?'); 649 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 650 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 651 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 652 supportsa ? "does" : "does not"); 653 654 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 655 what sc->rev really represents - benjsc 20070615 */ 656 } 657 658 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 659 ifp->if_softc = sc; 660 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 661 ifp->if_init = wpi_init; 662 ifp->if_ioctl = wpi_ioctl; 663 ifp->if_start = wpi_start; 664 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 665 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 666 IFQ_SET_READY(&ifp->if_snd); 667 668 ieee80211_ifattach(ic, macaddr); 669 /* override default methods */ 670 ic->ic_raw_xmit = wpi_raw_xmit; 671 ic->ic_newassoc = wpi_newassoc; 672 ic->ic_wme.wme_update = wpi_wme_update; 673 ic->ic_scan_start = wpi_scan_start; 674 ic->ic_scan_end = wpi_scan_end; 675 ic->ic_set_channel = wpi_set_channel; 676 ic->ic_scan_curchan = wpi_scan_curchan; 677 ic->ic_scan_mindwell = wpi_scan_mindwell; 678 679 ic->ic_vap_create = wpi_vap_create; 680 ic->ic_vap_delete = wpi_vap_delete; 681 682 ieee80211_radiotap_attach(ic, 683 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 684 WPI_TX_RADIOTAP_PRESENT, 685 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 686 WPI_RX_RADIOTAP_PRESENT); 687 688 /* 689 * Hook our interrupt after all initialization is complete. 690 */ 691 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 692 NULL, wpi_intr, sc, &sc->sc_ih); 693 if (error != 0) { 694 device_printf(dev, "could not set up interrupt\n"); 695 goto fail; 696 } 697 698 if (bootverbose) 699 ieee80211_announce(ic); 700 #ifdef XXX_DEBUG 701 ieee80211_announce_channels(ic); 702 #endif 703 return 0; 704 705 fail: wpi_detach(dev); 706 return ENXIO; 707 } 708 709 static int 710 wpi_detach(device_t dev) 711 { 712 struct wpi_softc *sc = device_get_softc(dev); 713 struct ifnet *ifp = sc->sc_ifp; 714 struct ieee80211com *ic; 715 int ac; 716 717 if (ifp != NULL) { 718 ic = ifp->if_l2com; 719 720 ieee80211_draintask(ic, &sc->sc_restarttask); 721 ieee80211_draintask(ic, &sc->sc_radiotask); 722 wpi_stop(sc); 723 callout_drain(&sc->watchdog_to); 724 callout_drain(&sc->calib_to); 725 ieee80211_ifdetach(ic); 726 } 727 728 WPI_LOCK(sc); 729 if (sc->txq[0].data_dmat) { 730 for (ac = 0; ac < WME_NUM_AC; ac++) 731 wpi_free_tx_ring(sc, &sc->txq[ac]); 732 733 wpi_free_tx_ring(sc, &sc->cmdq); 734 wpi_free_rx_ring(sc, &sc->rxq); 735 wpi_free_shared(sc); 736 } 737 738 if (sc->fw_fp != NULL) { 739 wpi_unload_firmware(sc); 740 } 741 742 if (sc->fw_dma.tag) 743 wpi_free_fwmem(sc); 744 WPI_UNLOCK(sc); 745 746 if (sc->irq != NULL) { 747 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 748 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 749 } 750 751 if (sc->mem != NULL) 752 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 753 754 if (ifp != NULL) 755 if_free(ifp); 756 757 WPI_LOCK_DESTROY(sc); 758 759 return 0; 760 } 761 762 static struct ieee80211vap * 763 wpi_vap_create(struct ieee80211com *ic, 764 const char name[IFNAMSIZ], int unit, int opmode, int flags, 765 const uint8_t bssid[IEEE80211_ADDR_LEN], 766 const uint8_t mac[IEEE80211_ADDR_LEN]) 767 { 768 struct wpi_vap *wvp; 769 struct ieee80211vap *vap; 770 771 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 772 return NULL; 773 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap), 774 M_80211_VAP, M_NOWAIT | M_ZERO); 775 if (wvp == NULL) 776 return NULL; 777 vap = &wvp->vap; 778 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 779 /* override with driver methods */ 780 wvp->newstate = vap->iv_newstate; 781 vap->iv_newstate = wpi_newstate; 782 783 ieee80211_ratectl_init(vap); 784 /* complete setup */ 785 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 786 ic->ic_opmode = opmode; 787 return vap; 788 } 789 790 static void 791 wpi_vap_delete(struct ieee80211vap *vap) 792 { 793 struct wpi_vap *wvp = WPI_VAP(vap); 794 795 ieee80211_ratectl_deinit(vap); 796 ieee80211_vap_detach(vap); 797 free(wvp, M_80211_VAP); 798 } 799 800 static void 801 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 802 { 803 if (error != 0) 804 return; 805 806 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 807 808 *(bus_addr_t *)arg = segs[0].ds_addr; 809 } 810 811 /* 812 * Allocates a contiguous block of dma memory of the requested size and 813 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 814 * allocations greater than 4096 may fail. Hence if the requested alignment is 815 * greater we allocate 'alignment' size extra memory and shift the vaddr and 816 * paddr after the dma load. This bypasses the problem at the cost of a little 817 * more memory. 818 */ 819 static int 820 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 821 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 822 { 823 int error; 824 bus_size_t align; 825 bus_size_t reqsize; 826 827 DPRINTFN(WPI_DEBUG_DMA, 828 ("Size: %zd - alignment %zd\n", size, alignment)); 829 830 dma->size = size; 831 dma->tag = NULL; 832 833 if (alignment > 4096) { 834 align = PAGE_SIZE; 835 reqsize = size + alignment; 836 } else { 837 align = alignment; 838 reqsize = size; 839 } 840 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 841 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 842 NULL, NULL, reqsize, 843 1, reqsize, flags, 844 NULL, NULL, &dma->tag); 845 if (error != 0) { 846 device_printf(sc->sc_dev, 847 "could not create shared page DMA tag\n"); 848 goto fail; 849 } 850 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 851 flags | BUS_DMA_ZERO, &dma->map); 852 if (error != 0) { 853 device_printf(sc->sc_dev, 854 "could not allocate shared page DMA memory\n"); 855 goto fail; 856 } 857 858 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 859 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 860 861 /* Save the original pointers so we can free all the memory */ 862 dma->paddr = dma->paddr_start; 863 dma->vaddr = dma->vaddr_start; 864 865 /* 866 * Check the alignment and increment by 4096 until we get the 867 * requested alignment. Fail if can't obtain the alignment 868 * we requested. 869 */ 870 if ((dma->paddr & (alignment -1 )) != 0) { 871 int i; 872 873 for (i = 0; i < alignment / 4096; i++) { 874 if ((dma->paddr & (alignment - 1 )) == 0) 875 break; 876 dma->paddr += 4096; 877 dma->vaddr += 4096; 878 } 879 if (i == alignment / 4096) { 880 device_printf(sc->sc_dev, 881 "alignment requirement was not satisfied\n"); 882 goto fail; 883 } 884 } 885 886 if (error != 0) { 887 device_printf(sc->sc_dev, 888 "could not load shared page DMA map\n"); 889 goto fail; 890 } 891 892 if (kvap != NULL) 893 *kvap = dma->vaddr; 894 895 return 0; 896 897 fail: 898 wpi_dma_contig_free(dma); 899 return error; 900 } 901 902 static void 903 wpi_dma_contig_free(struct wpi_dma_info *dma) 904 { 905 if (dma->tag) { 906 if (dma->map != NULL) { 907 if (dma->paddr_start != 0) { 908 bus_dmamap_sync(dma->tag, dma->map, 909 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 910 bus_dmamap_unload(dma->tag, dma->map); 911 } 912 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 913 } 914 bus_dma_tag_destroy(dma->tag); 915 } 916 } 917 918 /* 919 * Allocate a shared page between host and NIC. 920 */ 921 static int 922 wpi_alloc_shared(struct wpi_softc *sc) 923 { 924 int error; 925 926 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 927 (void **)&sc->shared, sizeof (struct wpi_shared), 928 PAGE_SIZE, 929 BUS_DMA_NOWAIT); 930 931 if (error != 0) { 932 device_printf(sc->sc_dev, 933 "could not allocate shared area DMA memory\n"); 934 } 935 936 return error; 937 } 938 939 static void 940 wpi_free_shared(struct wpi_softc *sc) 941 { 942 wpi_dma_contig_free(&sc->shared_dma); 943 } 944 945 static int 946 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 947 { 948 949 int i, error; 950 951 ring->cur = 0; 952 953 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 954 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 955 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 956 957 if (error != 0) { 958 device_printf(sc->sc_dev, 959 "%s: could not allocate rx ring DMA memory, error %d\n", 960 __func__, error); 961 goto fail; 962 } 963 964 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 965 BUS_SPACE_MAXADDR_32BIT, 966 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 967 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 968 if (error != 0) { 969 device_printf(sc->sc_dev, 970 "%s: bus_dma_tag_create_failed, error %d\n", 971 __func__, error); 972 goto fail; 973 } 974 975 /* 976 * Setup Rx buffers. 977 */ 978 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 979 struct wpi_rx_data *data = &ring->data[i]; 980 struct mbuf *m; 981 bus_addr_t paddr; 982 983 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 984 if (error != 0) { 985 device_printf(sc->sc_dev, 986 "%s: bus_dmamap_create failed, error %d\n", 987 __func__, error); 988 goto fail; 989 } 990 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 991 if (m == NULL) { 992 device_printf(sc->sc_dev, 993 "%s: could not allocate rx mbuf\n", __func__); 994 error = ENOMEM; 995 goto fail; 996 } 997 /* map page */ 998 error = bus_dmamap_load(ring->data_dmat, data->map, 999 mtod(m, caddr_t), MJUMPAGESIZE, 1000 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1001 if (error != 0 && error != EFBIG) { 1002 device_printf(sc->sc_dev, 1003 "%s: bus_dmamap_load failed, error %d\n", 1004 __func__, error); 1005 m_freem(m); 1006 error = ENOMEM; /* XXX unique code */ 1007 goto fail; 1008 } 1009 bus_dmamap_sync(ring->data_dmat, data->map, 1010 BUS_DMASYNC_PREWRITE); 1011 1012 data->m = m; 1013 ring->desc[i] = htole32(paddr); 1014 } 1015 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1016 BUS_DMASYNC_PREWRITE); 1017 return 0; 1018 fail: 1019 wpi_free_rx_ring(sc, ring); 1020 return error; 1021 } 1022 1023 static void 1024 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1025 { 1026 int ntries; 1027 1028 wpi_mem_lock(sc); 1029 1030 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1031 1032 for (ntries = 0; ntries < 100; ntries++) { 1033 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1034 break; 1035 DELAY(10); 1036 } 1037 1038 wpi_mem_unlock(sc); 1039 1040 #ifdef WPI_DEBUG 1041 if (ntries == 100 && wpi_debug > 0) 1042 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1043 #endif 1044 1045 ring->cur = 0; 1046 } 1047 1048 static void 1049 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1050 { 1051 int i; 1052 1053 wpi_dma_contig_free(&ring->desc_dma); 1054 1055 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1056 if (ring->data[i].m != NULL) 1057 m_freem(ring->data[i].m); 1058 } 1059 1060 static int 1061 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1062 int qid) 1063 { 1064 struct wpi_tx_data *data; 1065 int i, error; 1066 1067 ring->qid = qid; 1068 ring->count = count; 1069 ring->queued = 0; 1070 ring->cur = 0; 1071 ring->data = NULL; 1072 1073 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1074 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1075 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1076 1077 if (error != 0) { 1078 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1079 goto fail; 1080 } 1081 1082 /* update shared page with ring's base address */ 1083 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1084 1085 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1086 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1087 BUS_DMA_NOWAIT); 1088 1089 if (error != 0) { 1090 device_printf(sc->sc_dev, 1091 "could not allocate tx command DMA memory\n"); 1092 goto fail; 1093 } 1094 1095 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1096 M_NOWAIT | M_ZERO); 1097 if (ring->data == NULL) { 1098 device_printf(sc->sc_dev, 1099 "could not allocate tx data slots\n"); 1100 goto fail; 1101 } 1102 1103 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1104 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1105 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1106 &ring->data_dmat); 1107 if (error != 0) { 1108 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1109 goto fail; 1110 } 1111 1112 for (i = 0; i < count; i++) { 1113 data = &ring->data[i]; 1114 1115 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1116 if (error != 0) { 1117 device_printf(sc->sc_dev, 1118 "could not create tx buf DMA map\n"); 1119 goto fail; 1120 } 1121 bus_dmamap_sync(ring->data_dmat, data->map, 1122 BUS_DMASYNC_PREWRITE); 1123 } 1124 1125 return 0; 1126 1127 fail: 1128 wpi_free_tx_ring(sc, ring); 1129 return error; 1130 } 1131 1132 static void 1133 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1134 { 1135 struct wpi_tx_data *data; 1136 int i, ntries; 1137 1138 wpi_mem_lock(sc); 1139 1140 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1141 for (ntries = 0; ntries < 100; ntries++) { 1142 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1143 break; 1144 DELAY(10); 1145 } 1146 #ifdef WPI_DEBUG 1147 if (ntries == 100 && wpi_debug > 0) 1148 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1149 ring->qid); 1150 #endif 1151 wpi_mem_unlock(sc); 1152 1153 for (i = 0; i < ring->count; i++) { 1154 data = &ring->data[i]; 1155 1156 if (data->m != NULL) { 1157 bus_dmamap_unload(ring->data_dmat, data->map); 1158 m_freem(data->m); 1159 data->m = NULL; 1160 } 1161 } 1162 1163 ring->queued = 0; 1164 ring->cur = 0; 1165 } 1166 1167 static void 1168 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1169 { 1170 struct wpi_tx_data *data; 1171 int i; 1172 1173 wpi_dma_contig_free(&ring->desc_dma); 1174 wpi_dma_contig_free(&ring->cmd_dma); 1175 1176 if (ring->data != NULL) { 1177 for (i = 0; i < ring->count; i++) { 1178 data = &ring->data[i]; 1179 1180 if (data->m != NULL) { 1181 bus_dmamap_sync(ring->data_dmat, data->map, 1182 BUS_DMASYNC_POSTWRITE); 1183 bus_dmamap_unload(ring->data_dmat, data->map); 1184 m_freem(data->m); 1185 data->m = NULL; 1186 } 1187 } 1188 free(ring->data, M_DEVBUF); 1189 } 1190 1191 if (ring->data_dmat != NULL) 1192 bus_dma_tag_destroy(ring->data_dmat); 1193 } 1194 1195 static int 1196 wpi_shutdown(device_t dev) 1197 { 1198 struct wpi_softc *sc = device_get_softc(dev); 1199 1200 WPI_LOCK(sc); 1201 wpi_stop_locked(sc); 1202 wpi_unload_firmware(sc); 1203 WPI_UNLOCK(sc); 1204 1205 return 0; 1206 } 1207 1208 static int 1209 wpi_suspend(device_t dev) 1210 { 1211 struct wpi_softc *sc = device_get_softc(dev); 1212 1213 wpi_stop(sc); 1214 return 0; 1215 } 1216 1217 static int 1218 wpi_resume(device_t dev) 1219 { 1220 struct wpi_softc *sc = device_get_softc(dev); 1221 struct ifnet *ifp = sc->sc_ifp; 1222 1223 pci_write_config(dev, 0x41, 0, 1); 1224 1225 if (ifp->if_flags & IFF_UP) { 1226 wpi_init(ifp->if_softc); 1227 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1228 wpi_start(ifp); 1229 } 1230 return 0; 1231 } 1232 1233 /** 1234 * Called by net80211 when ever there is a change to 80211 state machine 1235 */ 1236 static int 1237 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1238 { 1239 struct wpi_vap *wvp = WPI_VAP(vap); 1240 struct ieee80211com *ic = vap->iv_ic; 1241 struct ifnet *ifp = ic->ic_ifp; 1242 struct wpi_softc *sc = ifp->if_softc; 1243 int error; 1244 1245 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1246 ieee80211_state_name[vap->iv_state], 1247 ieee80211_state_name[nstate], sc->flags)); 1248 1249 IEEE80211_UNLOCK(ic); 1250 WPI_LOCK(sc); 1251 if (nstate == IEEE80211_S_AUTH) { 1252 /* The node must be registered in the firmware before auth */ 1253 error = wpi_auth(sc, vap); 1254 if (error != 0) { 1255 device_printf(sc->sc_dev, 1256 "%s: could not move to auth state, error %d\n", 1257 __func__, error); 1258 } 1259 } 1260 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1261 error = wpi_run(sc, vap); 1262 if (error != 0) { 1263 device_printf(sc->sc_dev, 1264 "%s: could not move to run state, error %d\n", 1265 __func__, error); 1266 } 1267 } 1268 if (nstate == IEEE80211_S_RUN) { 1269 /* RUN -> RUN transition; just restart the timers */ 1270 wpi_calib_timeout(sc); 1271 /* XXX split out rate control timer */ 1272 } 1273 WPI_UNLOCK(sc); 1274 IEEE80211_LOCK(ic); 1275 return wvp->newstate(vap, nstate, arg); 1276 } 1277 1278 /* 1279 * Grab exclusive access to NIC memory. 1280 */ 1281 static void 1282 wpi_mem_lock(struct wpi_softc *sc) 1283 { 1284 int ntries; 1285 uint32_t tmp; 1286 1287 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1288 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1289 1290 /* spin until we actually get the lock */ 1291 for (ntries = 0; ntries < 100; ntries++) { 1292 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1293 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1294 break; 1295 DELAY(10); 1296 } 1297 if (ntries == 100) 1298 device_printf(sc->sc_dev, "could not lock memory\n"); 1299 } 1300 1301 /* 1302 * Release lock on NIC memory. 1303 */ 1304 static void 1305 wpi_mem_unlock(struct wpi_softc *sc) 1306 { 1307 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1308 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1309 } 1310 1311 static uint32_t 1312 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1313 { 1314 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1315 return WPI_READ(sc, WPI_READ_MEM_DATA); 1316 } 1317 1318 static void 1319 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1320 { 1321 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1322 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1323 } 1324 1325 static void 1326 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1327 const uint32_t *data, int wlen) 1328 { 1329 for (; wlen > 0; wlen--, data++, addr+=4) 1330 wpi_mem_write(sc, addr, *data); 1331 } 1332 1333 /* 1334 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1335 * using the traditional bit-bang method. Data is read up until len bytes have 1336 * been obtained. 1337 */ 1338 static uint16_t 1339 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1340 { 1341 int ntries; 1342 uint32_t val; 1343 uint8_t *out = data; 1344 1345 wpi_mem_lock(sc); 1346 1347 for (; len > 0; len -= 2, addr++) { 1348 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1349 1350 for (ntries = 0; ntries < 10; ntries++) { 1351 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1352 break; 1353 DELAY(5); 1354 } 1355 1356 if (ntries == 10) { 1357 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1358 return ETIMEDOUT; 1359 } 1360 1361 *out++= val >> 16; 1362 if (len > 1) 1363 *out ++= val >> 24; 1364 } 1365 1366 wpi_mem_unlock(sc); 1367 1368 return 0; 1369 } 1370 1371 /* 1372 * The firmware text and data segments are transferred to the NIC using DMA. 1373 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1374 * where to find it. Once the NIC has copied the firmware into its internal 1375 * memory, we can free our local copy in the driver. 1376 */ 1377 static int 1378 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1379 { 1380 int error, ntries; 1381 1382 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1383 1384 size /= sizeof(uint32_t); 1385 1386 wpi_mem_lock(sc); 1387 1388 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1389 (const uint32_t *)fw, size); 1390 1391 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1392 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1393 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1394 1395 /* run microcode */ 1396 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1397 1398 /* wait while the adapter is busy copying the firmware */ 1399 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1400 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1401 DPRINTFN(WPI_DEBUG_HW, 1402 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1403 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1404 if (status & WPI_TX_IDLE(6)) { 1405 DPRINTFN(WPI_DEBUG_HW, 1406 ("Status Match! - ntries = %d\n", ntries)); 1407 break; 1408 } 1409 DELAY(10); 1410 } 1411 if (ntries == 1000) { 1412 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1413 error = ETIMEDOUT; 1414 } 1415 1416 /* start the microcode executing */ 1417 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1418 1419 wpi_mem_unlock(sc); 1420 1421 return (error); 1422 } 1423 1424 static void 1425 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1426 struct wpi_rx_data *data) 1427 { 1428 struct ifnet *ifp = sc->sc_ifp; 1429 struct ieee80211com *ic = ifp->if_l2com; 1430 struct wpi_rx_ring *ring = &sc->rxq; 1431 struct wpi_rx_stat *stat; 1432 struct wpi_rx_head *head; 1433 struct wpi_rx_tail *tail; 1434 struct ieee80211_node *ni; 1435 struct mbuf *m, *mnew; 1436 bus_addr_t paddr; 1437 int error; 1438 1439 stat = (struct wpi_rx_stat *)(desc + 1); 1440 1441 if (stat->len > WPI_STAT_MAXLEN) { 1442 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1443 ifp->if_ierrors++; 1444 return; 1445 } 1446 1447 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1448 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1449 1450 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1451 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1452 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1453 (uintmax_t)le64toh(tail->tstamp))); 1454 1455 /* discard Rx frames with bad CRC early */ 1456 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1457 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1458 le32toh(tail->flags))); 1459 ifp->if_ierrors++; 1460 return; 1461 } 1462 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1463 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1464 le16toh(head->len))); 1465 ifp->if_ierrors++; 1466 return; 1467 } 1468 1469 /* XXX don't need mbuf, just dma buffer */ 1470 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1471 if (mnew == NULL) { 1472 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1473 __func__)); 1474 ifp->if_ierrors++; 1475 return; 1476 } 1477 error = bus_dmamap_load(ring->data_dmat, data->map, 1478 mtod(mnew, caddr_t), MJUMPAGESIZE, 1479 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1480 if (error != 0 && error != EFBIG) { 1481 device_printf(sc->sc_dev, 1482 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1483 m_freem(mnew); 1484 ifp->if_ierrors++; 1485 return; 1486 } 1487 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1488 1489 /* finalize mbuf and swap in new one */ 1490 m = data->m; 1491 m->m_pkthdr.rcvif = ifp; 1492 m->m_data = (caddr_t)(head + 1); 1493 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1494 1495 data->m = mnew; 1496 /* update Rx descriptor */ 1497 ring->desc[ring->cur] = htole32(paddr); 1498 1499 if (ieee80211_radiotap_active(ic)) { 1500 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1501 1502 tap->wr_flags = 0; 1503 tap->wr_chan_freq = 1504 htole16(ic->ic_channels[head->chan].ic_freq); 1505 tap->wr_chan_flags = 1506 htole16(ic->ic_channels[head->chan].ic_flags); 1507 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1508 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1509 tap->wr_tsft = tail->tstamp; 1510 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1511 switch (head->rate) { 1512 /* CCK rates */ 1513 case 10: tap->wr_rate = 2; break; 1514 case 20: tap->wr_rate = 4; break; 1515 case 55: tap->wr_rate = 11; break; 1516 case 110: tap->wr_rate = 22; break; 1517 /* OFDM rates */ 1518 case 0xd: tap->wr_rate = 12; break; 1519 case 0xf: tap->wr_rate = 18; break; 1520 case 0x5: tap->wr_rate = 24; break; 1521 case 0x7: tap->wr_rate = 36; break; 1522 case 0x9: tap->wr_rate = 48; break; 1523 case 0xb: tap->wr_rate = 72; break; 1524 case 0x1: tap->wr_rate = 96; break; 1525 case 0x3: tap->wr_rate = 108; break; 1526 /* unknown rate: should not happen */ 1527 default: tap->wr_rate = 0; 1528 } 1529 if (le16toh(head->flags) & 0x4) 1530 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1531 } 1532 1533 WPI_UNLOCK(sc); 1534 1535 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1536 if (ni != NULL) { 1537 (void) ieee80211_input(ni, m, stat->rssi, 0); 1538 ieee80211_free_node(ni); 1539 } else 1540 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1541 1542 WPI_LOCK(sc); 1543 } 1544 1545 static void 1546 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1547 { 1548 struct ifnet *ifp = sc->sc_ifp; 1549 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1550 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1551 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1552 struct ieee80211_node *ni = txdata->ni; 1553 struct ieee80211vap *vap = ni->ni_vap; 1554 int retrycnt = 0; 1555 1556 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1557 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1558 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1559 le32toh(stat->status))); 1560 1561 /* 1562 * Update rate control statistics for the node. 1563 * XXX we should not count mgmt frames since they're always sent at 1564 * the lowest available bit-rate. 1565 * XXX frames w/o ACK shouldn't be used either 1566 */ 1567 if (stat->ntries > 0) { 1568 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1569 retrycnt = 1; 1570 } 1571 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1572 &retrycnt, NULL); 1573 1574 /* XXX oerrors should only count errors !maxtries */ 1575 if ((le32toh(stat->status) & 0xff) != 1) 1576 ifp->if_oerrors++; 1577 else 1578 ifp->if_opackets++; 1579 1580 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1581 bus_dmamap_unload(ring->data_dmat, txdata->map); 1582 /* XXX handle M_TXCB? */ 1583 m_freem(txdata->m); 1584 txdata->m = NULL; 1585 ieee80211_free_node(txdata->ni); 1586 txdata->ni = NULL; 1587 1588 ring->queued--; 1589 1590 sc->sc_tx_timer = 0; 1591 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1592 wpi_start_locked(ifp); 1593 } 1594 1595 static void 1596 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1597 { 1598 struct wpi_tx_ring *ring = &sc->cmdq; 1599 struct wpi_tx_data *data; 1600 1601 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1602 "type=%s len=%d\n", desc->qid, desc->idx, 1603 desc->flags, wpi_cmd_str(desc->type), 1604 le32toh(desc->len))); 1605 1606 if ((desc->qid & 7) != 4) 1607 return; /* not a command ack */ 1608 1609 data = &ring->data[desc->idx]; 1610 1611 /* if the command was mapped in a mbuf, free it */ 1612 if (data->m != NULL) { 1613 bus_dmamap_unload(ring->data_dmat, data->map); 1614 m_freem(data->m); 1615 data->m = NULL; 1616 } 1617 1618 sc->flags &= ~WPI_FLAG_BUSY; 1619 wakeup(&ring->cmd[desc->idx]); 1620 } 1621 1622 static void 1623 wpi_notif_intr(struct wpi_softc *sc) 1624 { 1625 struct ifnet *ifp = sc->sc_ifp; 1626 struct ieee80211com *ic = ifp->if_l2com; 1627 struct wpi_rx_desc *desc; 1628 struct wpi_rx_data *data; 1629 uint32_t hw; 1630 1631 hw = le32toh(sc->shared->next); 1632 while (sc->rxq.cur != hw) { 1633 data = &sc->rxq.data[sc->rxq.cur]; 1634 desc = (void *)data->m->m_ext.ext_buf; 1635 1636 DPRINTFN(WPI_DEBUG_NOTIFY, 1637 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1638 desc->qid, 1639 desc->idx, 1640 desc->flags, 1641 desc->type, 1642 le32toh(desc->len))); 1643 1644 if (!(desc->qid & 0x80)) /* reply to a command */ 1645 wpi_cmd_intr(sc, desc); 1646 1647 switch (desc->type) { 1648 case WPI_RX_DONE: 1649 /* a 802.11 frame was received */ 1650 wpi_rx_intr(sc, desc, data); 1651 break; 1652 1653 case WPI_TX_DONE: 1654 /* a 802.11 frame has been transmitted */ 1655 wpi_tx_intr(sc, desc); 1656 break; 1657 1658 case WPI_UC_READY: 1659 { 1660 struct wpi_ucode_info *uc = 1661 (struct wpi_ucode_info *)(desc + 1); 1662 1663 /* the microcontroller is ready */ 1664 DPRINTF(("microcode alive notification version %x " 1665 "alive %x\n", le32toh(uc->version), 1666 le32toh(uc->valid))); 1667 1668 if (le32toh(uc->valid) != 1) { 1669 device_printf(sc->sc_dev, 1670 "microcontroller initialization failed\n"); 1671 wpi_stop_locked(sc); 1672 } 1673 break; 1674 } 1675 case WPI_STATE_CHANGED: 1676 { 1677 uint32_t *status = (uint32_t *)(desc + 1); 1678 1679 /* enabled/disabled notification */ 1680 DPRINTF(("state changed to %x\n", le32toh(*status))); 1681 1682 if (le32toh(*status) & 1) { 1683 device_printf(sc->sc_dev, 1684 "Radio transmitter is switched off\n"); 1685 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1686 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1687 /* Disable firmware commands */ 1688 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1689 } 1690 break; 1691 } 1692 case WPI_START_SCAN: 1693 { 1694 #ifdef WPI_DEBUG 1695 struct wpi_start_scan *scan = 1696 (struct wpi_start_scan *)(desc + 1); 1697 #endif 1698 1699 DPRINTFN(WPI_DEBUG_SCANNING, 1700 ("scanning channel %d status %x\n", 1701 scan->chan, le32toh(scan->status))); 1702 break; 1703 } 1704 case WPI_STOP_SCAN: 1705 { 1706 #ifdef WPI_DEBUG 1707 struct wpi_stop_scan *scan = 1708 (struct wpi_stop_scan *)(desc + 1); 1709 #endif 1710 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1711 1712 DPRINTFN(WPI_DEBUG_SCANNING, 1713 ("scan finished nchan=%d status=%d chan=%d\n", 1714 scan->nchan, scan->status, scan->chan)); 1715 1716 sc->sc_scan_timer = 0; 1717 ieee80211_scan_next(vap); 1718 break; 1719 } 1720 case WPI_MISSED_BEACON: 1721 { 1722 struct wpi_missed_beacon *beacon = 1723 (struct wpi_missed_beacon *)(desc + 1); 1724 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1725 1726 if (le32toh(beacon->consecutive) >= 1727 vap->iv_bmissthreshold) { 1728 DPRINTF(("Beacon miss: %u >= %u\n", 1729 le32toh(beacon->consecutive), 1730 vap->iv_bmissthreshold)); 1731 ieee80211_beacon_miss(ic); 1732 } 1733 break; 1734 } 1735 } 1736 1737 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1738 } 1739 1740 /* tell the firmware what we have processed */ 1741 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1742 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1743 } 1744 1745 static void 1746 wpi_intr(void *arg) 1747 { 1748 struct wpi_softc *sc = arg; 1749 uint32_t r; 1750 1751 WPI_LOCK(sc); 1752 1753 r = WPI_READ(sc, WPI_INTR); 1754 if (r == 0 || r == 0xffffffff) { 1755 WPI_UNLOCK(sc); 1756 return; 1757 } 1758 1759 /* disable interrupts */ 1760 WPI_WRITE(sc, WPI_MASK, 0); 1761 /* ack interrupts */ 1762 WPI_WRITE(sc, WPI_INTR, r); 1763 1764 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1765 struct ifnet *ifp = sc->sc_ifp; 1766 struct ieee80211com *ic = ifp->if_l2com; 1767 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1768 1769 device_printf(sc->sc_dev, "fatal firmware error\n"); 1770 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1771 "(Hardware Error)")); 1772 if (vap != NULL) 1773 ieee80211_cancel_scan(vap); 1774 ieee80211_runtask(ic, &sc->sc_restarttask); 1775 sc->flags &= ~WPI_FLAG_BUSY; 1776 WPI_UNLOCK(sc); 1777 return; 1778 } 1779 1780 if (r & WPI_RX_INTR) 1781 wpi_notif_intr(sc); 1782 1783 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1784 wakeup(sc); 1785 1786 /* re-enable interrupts */ 1787 if (sc->sc_ifp->if_flags & IFF_UP) 1788 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1789 1790 WPI_UNLOCK(sc); 1791 } 1792 1793 static uint8_t 1794 wpi_plcp_signal(int rate) 1795 { 1796 switch (rate) { 1797 /* CCK rates (returned values are device-dependent) */ 1798 case 2: return 10; 1799 case 4: return 20; 1800 case 11: return 55; 1801 case 22: return 110; 1802 1803 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1804 /* R1-R4 (ral/ural is R4-R1) */ 1805 case 12: return 0xd; 1806 case 18: return 0xf; 1807 case 24: return 0x5; 1808 case 36: return 0x7; 1809 case 48: return 0x9; 1810 case 72: return 0xb; 1811 case 96: return 0x1; 1812 case 108: return 0x3; 1813 1814 /* unsupported rates (should not get there) */ 1815 default: return 0; 1816 } 1817 } 1818 1819 /* quickly determine if a given rate is CCK or OFDM */ 1820 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1821 1822 /* 1823 * Construct the data packet for a transmit buffer and acutally put 1824 * the buffer onto the transmit ring, kicking the card to process the 1825 * the buffer. 1826 */ 1827 static int 1828 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1829 int ac) 1830 { 1831 struct ieee80211vap *vap = ni->ni_vap; 1832 struct ifnet *ifp = sc->sc_ifp; 1833 struct ieee80211com *ic = ifp->if_l2com; 1834 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1835 struct wpi_tx_ring *ring = &sc->txq[ac]; 1836 struct wpi_tx_desc *desc; 1837 struct wpi_tx_data *data; 1838 struct wpi_tx_cmd *cmd; 1839 struct wpi_cmd_data *tx; 1840 struct ieee80211_frame *wh; 1841 const struct ieee80211_txparam *tp; 1842 struct ieee80211_key *k; 1843 struct mbuf *mnew; 1844 int i, error, nsegs, rate, hdrlen, ismcast; 1845 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1846 1847 desc = &ring->desc[ring->cur]; 1848 data = &ring->data[ring->cur]; 1849 1850 wh = mtod(m0, struct ieee80211_frame *); 1851 1852 hdrlen = ieee80211_hdrsize(wh); 1853 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1854 1855 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1856 k = ieee80211_crypto_encap(ni, m0); 1857 if (k == NULL) { 1858 m_freem(m0); 1859 return ENOBUFS; 1860 } 1861 /* packet header may have moved, reset our local pointer */ 1862 wh = mtod(m0, struct ieee80211_frame *); 1863 } 1864 1865 cmd = &ring->cmd[ring->cur]; 1866 cmd->code = WPI_CMD_TX_DATA; 1867 cmd->flags = 0; 1868 cmd->qid = ring->qid; 1869 cmd->idx = ring->cur; 1870 1871 tx = (struct wpi_cmd_data *)cmd->data; 1872 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1873 tx->timeout = htole16(0); 1874 tx->ofdm_mask = 0xff; 1875 tx->cck_mask = 0x0f; 1876 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1877 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1878 tx->len = htole16(m0->m_pkthdr.len); 1879 1880 if (!ismcast) { 1881 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1882 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1883 tx->flags |= htole32(WPI_TX_NEED_ACK); 1884 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1885 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1886 tx->rts_ntries = 7; 1887 } 1888 } 1889 /* pick a rate */ 1890 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1891 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1892 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1893 /* tell h/w to set timestamp in probe responses */ 1894 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1895 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1896 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1897 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1898 tx->timeout = htole16(3); 1899 else 1900 tx->timeout = htole16(2); 1901 rate = tp->mgmtrate; 1902 } else if (ismcast) { 1903 rate = tp->mcastrate; 1904 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1905 rate = tp->ucastrate; 1906 } else { 1907 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1908 rate = ni->ni_txrate; 1909 } 1910 tx->rate = wpi_plcp_signal(rate); 1911 1912 /* be very persistant at sending frames out */ 1913 #if 0 1914 tx->data_ntries = tp->maxretry; 1915 #else 1916 tx->data_ntries = 15; /* XXX way too high */ 1917 #endif 1918 1919 if (ieee80211_radiotap_active_vap(vap)) { 1920 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1921 tap->wt_flags = 0; 1922 tap->wt_rate = rate; 1923 tap->wt_hwqueue = ac; 1924 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1925 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1926 1927 ieee80211_radiotap_tx(vap, m0); 1928 } 1929 1930 /* save and trim IEEE802.11 header */ 1931 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1932 m_adj(m0, hdrlen); 1933 1934 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1935 &nsegs, BUS_DMA_NOWAIT); 1936 if (error != 0 && error != EFBIG) { 1937 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1938 error); 1939 m_freem(m0); 1940 return error; 1941 } 1942 if (error != 0) { 1943 /* XXX use m_collapse */ 1944 mnew = m_defrag(m0, M_DONTWAIT); 1945 if (mnew == NULL) { 1946 device_printf(sc->sc_dev, 1947 "could not defragment mbuf\n"); 1948 m_freem(m0); 1949 return ENOBUFS; 1950 } 1951 m0 = mnew; 1952 1953 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1954 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1955 if (error != 0) { 1956 device_printf(sc->sc_dev, 1957 "could not map mbuf (error %d)\n", error); 1958 m_freem(m0); 1959 return error; 1960 } 1961 } 1962 1963 data->m = m0; 1964 data->ni = ni; 1965 1966 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1967 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1968 1969 /* first scatter/gather segment is used by the tx data command */ 1970 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1971 (1 + nsegs) << 24); 1972 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1973 ring->cur * sizeof (struct wpi_tx_cmd)); 1974 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 1975 for (i = 1; i <= nsegs; i++) { 1976 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 1977 desc->segs[i].len = htole32(segs[i - 1].ds_len); 1978 } 1979 1980 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1981 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1982 BUS_DMASYNC_PREWRITE); 1983 1984 ring->queued++; 1985 1986 /* kick ring */ 1987 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 1988 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 1989 1990 return 0; 1991 } 1992 1993 /** 1994 * Process data waiting to be sent on the IFNET output queue 1995 */ 1996 static void 1997 wpi_start(struct ifnet *ifp) 1998 { 1999 struct wpi_softc *sc = ifp->if_softc; 2000 2001 WPI_LOCK(sc); 2002 wpi_start_locked(ifp); 2003 WPI_UNLOCK(sc); 2004 } 2005 2006 static void 2007 wpi_start_locked(struct ifnet *ifp) 2008 { 2009 struct wpi_softc *sc = ifp->if_softc; 2010 struct ieee80211_node *ni; 2011 struct mbuf *m; 2012 int ac; 2013 2014 WPI_LOCK_ASSERT(sc); 2015 2016 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2017 return; 2018 2019 for (;;) { 2020 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 2021 if (m == NULL) 2022 break; 2023 ac = M_WME_GETAC(m); 2024 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2025 /* there is no place left in this ring */ 2026 IFQ_DRV_PREPEND(&ifp->if_snd, m); 2027 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2028 break; 2029 } 2030 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2031 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2032 ieee80211_free_node(ni); 2033 ifp->if_oerrors++; 2034 break; 2035 } 2036 sc->sc_tx_timer = 5; 2037 } 2038 } 2039 2040 static int 2041 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2042 const struct ieee80211_bpf_params *params) 2043 { 2044 struct ieee80211com *ic = ni->ni_ic; 2045 struct ifnet *ifp = ic->ic_ifp; 2046 struct wpi_softc *sc = ifp->if_softc; 2047 2048 /* prevent management frames from being sent if we're not ready */ 2049 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2050 m_freem(m); 2051 ieee80211_free_node(ni); 2052 return ENETDOWN; 2053 } 2054 WPI_LOCK(sc); 2055 2056 /* management frames go into ring 0 */ 2057 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2058 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2059 m_freem(m); 2060 WPI_UNLOCK(sc); 2061 ieee80211_free_node(ni); 2062 return ENOBUFS; /* XXX */ 2063 } 2064 2065 ifp->if_opackets++; 2066 if (wpi_tx_data(sc, m, ni, 0) != 0) 2067 goto bad; 2068 sc->sc_tx_timer = 5; 2069 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2070 2071 WPI_UNLOCK(sc); 2072 return 0; 2073 bad: 2074 ifp->if_oerrors++; 2075 WPI_UNLOCK(sc); 2076 ieee80211_free_node(ni); 2077 return EIO; /* XXX */ 2078 } 2079 2080 static int 2081 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2082 { 2083 struct wpi_softc *sc = ifp->if_softc; 2084 struct ieee80211com *ic = ifp->if_l2com; 2085 struct ifreq *ifr = (struct ifreq *) data; 2086 int error = 0, startall = 0; 2087 2088 switch (cmd) { 2089 case SIOCSIFFLAGS: 2090 WPI_LOCK(sc); 2091 if ((ifp->if_flags & IFF_UP)) { 2092 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2093 wpi_init_locked(sc, 0); 2094 startall = 1; 2095 } 2096 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2097 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2098 wpi_stop_locked(sc); 2099 WPI_UNLOCK(sc); 2100 if (startall) 2101 ieee80211_start_all(ic); 2102 break; 2103 case SIOCGIFMEDIA: 2104 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2105 break; 2106 case SIOCGIFADDR: 2107 error = ether_ioctl(ifp, cmd, data); 2108 break; 2109 default: 2110 error = EINVAL; 2111 break; 2112 } 2113 return error; 2114 } 2115 2116 /* 2117 * Extract various information from EEPROM. 2118 */ 2119 static void 2120 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2121 { 2122 int i; 2123 2124 /* read the hardware capabilities, revision and SKU type */ 2125 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2126 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2127 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2128 2129 /* read the regulatory domain */ 2130 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2131 2132 /* read in the hw MAC address */ 2133 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2134 2135 /* read the list of authorized channels */ 2136 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2137 wpi_read_eeprom_channels(sc,i); 2138 2139 /* read the power level calibration info for each group */ 2140 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2141 wpi_read_eeprom_group(sc,i); 2142 } 2143 2144 /* 2145 * Send a command to the firmware. 2146 */ 2147 static int 2148 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2149 { 2150 struct wpi_tx_ring *ring = &sc->cmdq; 2151 struct wpi_tx_desc *desc; 2152 struct wpi_tx_cmd *cmd; 2153 2154 #ifdef WPI_DEBUG 2155 if (!async) { 2156 WPI_LOCK_ASSERT(sc); 2157 } 2158 #endif 2159 2160 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2161 async)); 2162 2163 if (sc->flags & WPI_FLAG_BUSY) { 2164 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2165 __func__, code); 2166 return EAGAIN; 2167 } 2168 sc->flags|= WPI_FLAG_BUSY; 2169 2170 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2171 code, size)); 2172 2173 desc = &ring->desc[ring->cur]; 2174 cmd = &ring->cmd[ring->cur]; 2175 2176 cmd->code = code; 2177 cmd->flags = 0; 2178 cmd->qid = ring->qid; 2179 cmd->idx = ring->cur; 2180 memcpy(cmd->data, buf, size); 2181 2182 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2183 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2184 ring->cur * sizeof (struct wpi_tx_cmd)); 2185 desc->segs[0].len = htole32(4 + size); 2186 2187 /* kick cmd ring */ 2188 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2189 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2190 2191 if (async) { 2192 sc->flags &= ~ WPI_FLAG_BUSY; 2193 return 0; 2194 } 2195 2196 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2197 } 2198 2199 static int 2200 wpi_wme_update(struct ieee80211com *ic) 2201 { 2202 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2203 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2204 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2205 const struct wmeParams *wmep; 2206 struct wpi_wme_setup wme; 2207 int ac; 2208 2209 /* don't override default WME values if WME is not actually enabled */ 2210 if (!(ic->ic_flags & IEEE80211_F_WME)) 2211 return 0; 2212 2213 wme.flags = 0; 2214 for (ac = 0; ac < WME_NUM_AC; ac++) { 2215 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2216 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2217 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2218 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2219 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2220 2221 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2222 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2223 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2224 } 2225 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2226 #undef WPI_USEC 2227 #undef WPI_EXP2 2228 } 2229 2230 /* 2231 * Configure h/w multi-rate retries. 2232 */ 2233 static int 2234 wpi_mrr_setup(struct wpi_softc *sc) 2235 { 2236 struct ifnet *ifp = sc->sc_ifp; 2237 struct ieee80211com *ic = ifp->if_l2com; 2238 struct wpi_mrr_setup mrr; 2239 int i, error; 2240 2241 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2242 2243 /* CCK rates (not used with 802.11a) */ 2244 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2245 mrr.rates[i].flags = 0; 2246 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2247 /* fallback to the immediate lower CCK rate (if any) */ 2248 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2249 /* try one time at this rate before falling back to "next" */ 2250 mrr.rates[i].ntries = 1; 2251 } 2252 2253 /* OFDM rates (not used with 802.11b) */ 2254 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2255 mrr.rates[i].flags = 0; 2256 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2257 /* fallback to the immediate lower OFDM rate (if any) */ 2258 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2259 mrr.rates[i].next = (i == WPI_OFDM6) ? 2260 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2261 WPI_OFDM6 : WPI_CCK2) : 2262 i - 1; 2263 /* try one time at this rate before falling back to "next" */ 2264 mrr.rates[i].ntries = 1; 2265 } 2266 2267 /* setup MRR for control frames */ 2268 mrr.which = htole32(WPI_MRR_CTL); 2269 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2270 if (error != 0) { 2271 device_printf(sc->sc_dev, 2272 "could not setup MRR for control frames\n"); 2273 return error; 2274 } 2275 2276 /* setup MRR for data frames */ 2277 mrr.which = htole32(WPI_MRR_DATA); 2278 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2279 if (error != 0) { 2280 device_printf(sc->sc_dev, 2281 "could not setup MRR for data frames\n"); 2282 return error; 2283 } 2284 2285 return 0; 2286 } 2287 2288 static void 2289 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2290 { 2291 struct wpi_cmd_led led; 2292 2293 led.which = which; 2294 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2295 led.off = off; 2296 led.on = on; 2297 2298 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2299 } 2300 2301 static void 2302 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2303 { 2304 struct wpi_cmd_tsf tsf; 2305 uint64_t val, mod; 2306 2307 memset(&tsf, 0, sizeof tsf); 2308 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2309 tsf.bintval = htole16(ni->ni_intval); 2310 tsf.lintval = htole16(10); 2311 2312 /* compute remaining time until next beacon */ 2313 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2314 mod = le64toh(tsf.tstamp) % val; 2315 tsf.binitval = htole32((uint32_t)(val - mod)); 2316 2317 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2318 device_printf(sc->sc_dev, "could not enable TSF\n"); 2319 } 2320 2321 #if 0 2322 /* 2323 * Build a beacon frame that the firmware will broadcast periodically in 2324 * IBSS or HostAP modes. 2325 */ 2326 static int 2327 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2328 { 2329 struct ifnet *ifp = sc->sc_ifp; 2330 struct ieee80211com *ic = ifp->if_l2com; 2331 struct wpi_tx_ring *ring = &sc->cmdq; 2332 struct wpi_tx_desc *desc; 2333 struct wpi_tx_data *data; 2334 struct wpi_tx_cmd *cmd; 2335 struct wpi_cmd_beacon *bcn; 2336 struct ieee80211_beacon_offsets bo; 2337 struct mbuf *m0; 2338 bus_addr_t physaddr; 2339 int error; 2340 2341 desc = &ring->desc[ring->cur]; 2342 data = &ring->data[ring->cur]; 2343 2344 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2345 if (m0 == NULL) { 2346 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2347 return ENOMEM; 2348 } 2349 2350 cmd = &ring->cmd[ring->cur]; 2351 cmd->code = WPI_CMD_SET_BEACON; 2352 cmd->flags = 0; 2353 cmd->qid = ring->qid; 2354 cmd->idx = ring->cur; 2355 2356 bcn = (struct wpi_cmd_beacon *)cmd->data; 2357 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2358 bcn->id = WPI_ID_BROADCAST; 2359 bcn->ofdm_mask = 0xff; 2360 bcn->cck_mask = 0x0f; 2361 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2362 bcn->len = htole16(m0->m_pkthdr.len); 2363 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2364 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2365 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2366 2367 /* save and trim IEEE802.11 header */ 2368 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2369 m_adj(m0, sizeof (struct ieee80211_frame)); 2370 2371 /* assume beacon frame is contiguous */ 2372 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2373 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2374 if (error != 0) { 2375 device_printf(sc->sc_dev, "could not map beacon\n"); 2376 m_freem(m0); 2377 return error; 2378 } 2379 2380 data->m = m0; 2381 2382 /* first scatter/gather segment is used by the beacon command */ 2383 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2384 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2385 ring->cur * sizeof (struct wpi_tx_cmd)); 2386 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2387 desc->segs[1].addr = htole32(physaddr); 2388 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2389 2390 /* kick cmd ring */ 2391 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2392 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2393 2394 return 0; 2395 } 2396 #endif 2397 2398 static int 2399 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2400 { 2401 struct ieee80211com *ic = vap->iv_ic; 2402 struct ieee80211_node *ni = vap->iv_bss; 2403 struct wpi_node_info node; 2404 int error; 2405 2406 2407 /* update adapter's configuration */ 2408 sc->config.associd = 0; 2409 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2410 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2411 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2412 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2413 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2414 WPI_CONFIG_24GHZ); 2415 } 2416 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2417 sc->config.cck_mask = 0; 2418 sc->config.ofdm_mask = 0x15; 2419 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2420 sc->config.cck_mask = 0x03; 2421 sc->config.ofdm_mask = 0; 2422 } else { 2423 /* XXX assume 802.11b/g */ 2424 sc->config.cck_mask = 0x0f; 2425 sc->config.ofdm_mask = 0x15; 2426 } 2427 2428 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2429 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2430 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2431 sizeof (struct wpi_config), 1); 2432 if (error != 0) { 2433 device_printf(sc->sc_dev, "could not configure\n"); 2434 return error; 2435 } 2436 2437 /* configuration has changed, set Tx power accordingly */ 2438 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2439 device_printf(sc->sc_dev, "could not set Tx power\n"); 2440 return error; 2441 } 2442 2443 /* add default node */ 2444 memset(&node, 0, sizeof node); 2445 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2446 node.id = WPI_ID_BSS; 2447 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2448 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2449 node.action = htole32(WPI_ACTION_SET_RATE); 2450 node.antenna = WPI_ANTENNA_BOTH; 2451 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2452 if (error != 0) 2453 device_printf(sc->sc_dev, "could not add BSS node\n"); 2454 2455 return (error); 2456 } 2457 2458 static int 2459 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2460 { 2461 struct ieee80211com *ic = vap->iv_ic; 2462 struct ieee80211_node *ni = vap->iv_bss; 2463 int error; 2464 2465 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2466 /* link LED blinks while monitoring */ 2467 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2468 return 0; 2469 } 2470 2471 wpi_enable_tsf(sc, ni); 2472 2473 /* update adapter's configuration */ 2474 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2475 /* short preamble/slot time are negotiated when associating */ 2476 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2477 WPI_CONFIG_SHSLOT); 2478 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2479 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2480 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2481 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2482 sc->config.filter |= htole32(WPI_FILTER_BSS); 2483 2484 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2485 2486 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2487 sc->config.flags)); 2488 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2489 wpi_config), 1); 2490 if (error != 0) { 2491 device_printf(sc->sc_dev, "could not update configuration\n"); 2492 return error; 2493 } 2494 2495 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2496 if (error != 0) { 2497 device_printf(sc->sc_dev, "could set txpower\n"); 2498 return error; 2499 } 2500 2501 /* link LED always on while associated */ 2502 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2503 2504 /* start automatic rate control timer */ 2505 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2506 2507 return (error); 2508 } 2509 2510 /* 2511 * Send a scan request to the firmware. Since this command is huge, we map it 2512 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2513 * much of this code is similar to that in wpi_cmd but because we must manually 2514 * construct the probe & channels, we duplicate what's needed here. XXX In the 2515 * future, this function should be modified to use wpi_cmd to help cleanup the 2516 * code base. 2517 */ 2518 static int 2519 wpi_scan(struct wpi_softc *sc) 2520 { 2521 struct ifnet *ifp = sc->sc_ifp; 2522 struct ieee80211com *ic = ifp->if_l2com; 2523 struct ieee80211_scan_state *ss = ic->ic_scan; 2524 struct wpi_tx_ring *ring = &sc->cmdq; 2525 struct wpi_tx_desc *desc; 2526 struct wpi_tx_data *data; 2527 struct wpi_tx_cmd *cmd; 2528 struct wpi_scan_hdr *hdr; 2529 struct wpi_scan_chan *chan; 2530 struct ieee80211_frame *wh; 2531 struct ieee80211_rateset *rs; 2532 struct ieee80211_channel *c; 2533 enum ieee80211_phymode mode; 2534 uint8_t *frm; 2535 int nrates, pktlen, error, i, nssid; 2536 bus_addr_t physaddr; 2537 2538 desc = &ring->desc[ring->cur]; 2539 data = &ring->data[ring->cur]; 2540 2541 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2542 if (data->m == NULL) { 2543 device_printf(sc->sc_dev, 2544 "could not allocate mbuf for scan command\n"); 2545 return ENOMEM; 2546 } 2547 2548 cmd = mtod(data->m, struct wpi_tx_cmd *); 2549 cmd->code = WPI_CMD_SCAN; 2550 cmd->flags = 0; 2551 cmd->qid = ring->qid; 2552 cmd->idx = ring->cur; 2553 2554 hdr = (struct wpi_scan_hdr *)cmd->data; 2555 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2556 2557 /* 2558 * Move to the next channel if no packets are received within 5 msecs 2559 * after sending the probe request (this helps to reduce the duration 2560 * of active scans). 2561 */ 2562 hdr->quiet = htole16(5); 2563 hdr->threshold = htole16(1); 2564 2565 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2566 /* send probe requests at 6Mbps */ 2567 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2568 2569 /* Enable crc checking */ 2570 hdr->promotion = htole16(1); 2571 } else { 2572 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2573 /* send probe requests at 1Mbps */ 2574 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2575 } 2576 hdr->tx.id = WPI_ID_BROADCAST; 2577 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2578 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2579 2580 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2581 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2582 for (i = 0; i < nssid; i++) { 2583 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2584 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2585 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2586 hdr->scan_essids[i].esslen); 2587 #ifdef WPI_DEBUG 2588 if (wpi_debug & WPI_DEBUG_SCANNING) { 2589 printf("Scanning Essid: "); 2590 ieee80211_print_essid(hdr->scan_essids[i].essid, 2591 hdr->scan_essids[i].esslen); 2592 printf("\n"); 2593 } 2594 #endif 2595 } 2596 2597 /* 2598 * Build a probe request frame. Most of the following code is a 2599 * copy & paste of what is done in net80211. 2600 */ 2601 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2602 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2603 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2604 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2605 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2606 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2607 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2608 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2609 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2610 2611 frm = (uint8_t *)(wh + 1); 2612 2613 /* add essid IE, the hardware will fill this in for us */ 2614 *frm++ = IEEE80211_ELEMID_SSID; 2615 *frm++ = 0; 2616 2617 mode = ieee80211_chan2mode(ic->ic_curchan); 2618 rs = &ic->ic_sup_rates[mode]; 2619 2620 /* add supported rates IE */ 2621 *frm++ = IEEE80211_ELEMID_RATES; 2622 nrates = rs->rs_nrates; 2623 if (nrates > IEEE80211_RATE_SIZE) 2624 nrates = IEEE80211_RATE_SIZE; 2625 *frm++ = nrates; 2626 memcpy(frm, rs->rs_rates, nrates); 2627 frm += nrates; 2628 2629 /* add supported xrates IE */ 2630 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2631 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2632 *frm++ = IEEE80211_ELEMID_XRATES; 2633 *frm++ = nrates; 2634 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2635 frm += nrates; 2636 } 2637 2638 /* setup length of probe request */ 2639 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2640 2641 /* 2642 * Construct information about the channel that we 2643 * want to scan. The firmware expects this to be directly 2644 * after the scan probe request 2645 */ 2646 c = ic->ic_curchan; 2647 chan = (struct wpi_scan_chan *)frm; 2648 chan->chan = ieee80211_chan2ieee(ic, c); 2649 chan->flags = 0; 2650 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2651 chan->flags |= WPI_CHAN_ACTIVE; 2652 if (nssid != 0) 2653 chan->flags |= WPI_CHAN_DIRECT; 2654 } 2655 chan->gain_dsp = 0x6e; /* Default level */ 2656 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2657 chan->active = htole16(10); 2658 chan->passive = htole16(ss->ss_maxdwell); 2659 chan->gain_radio = 0x3b; 2660 } else { 2661 chan->active = htole16(20); 2662 chan->passive = htole16(ss->ss_maxdwell); 2663 chan->gain_radio = 0x28; 2664 } 2665 2666 DPRINTFN(WPI_DEBUG_SCANNING, 2667 ("Scanning %u Passive: %d\n", 2668 chan->chan, 2669 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2670 2671 hdr->nchan++; 2672 chan++; 2673 2674 frm += sizeof (struct wpi_scan_chan); 2675 #if 0 2676 // XXX All Channels.... 2677 for (c = &ic->ic_channels[1]; 2678 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2679 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2680 continue; 2681 2682 chan->chan = ieee80211_chan2ieee(ic, c); 2683 chan->flags = 0; 2684 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2685 chan->flags |= WPI_CHAN_ACTIVE; 2686 if (ic->ic_des_ssid[0].len != 0) 2687 chan->flags |= WPI_CHAN_DIRECT; 2688 } 2689 chan->gain_dsp = 0x6e; /* Default level */ 2690 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2691 chan->active = htole16(10); 2692 chan->passive = htole16(110); 2693 chan->gain_radio = 0x3b; 2694 } else { 2695 chan->active = htole16(20); 2696 chan->passive = htole16(120); 2697 chan->gain_radio = 0x28; 2698 } 2699 2700 DPRINTFN(WPI_DEBUG_SCANNING, 2701 ("Scanning %u Passive: %d\n", 2702 chan->chan, 2703 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2704 2705 hdr->nchan++; 2706 chan++; 2707 2708 frm += sizeof (struct wpi_scan_chan); 2709 } 2710 #endif 2711 2712 hdr->len = htole16(frm - (uint8_t *)hdr); 2713 pktlen = frm - (uint8_t *)cmd; 2714 2715 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2716 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2717 if (error != 0) { 2718 device_printf(sc->sc_dev, "could not map scan command\n"); 2719 m_freem(data->m); 2720 data->m = NULL; 2721 return error; 2722 } 2723 2724 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2725 desc->segs[0].addr = htole32(physaddr); 2726 desc->segs[0].len = htole32(pktlen); 2727 2728 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2729 BUS_DMASYNC_PREWRITE); 2730 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2731 2732 /* kick cmd ring */ 2733 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2734 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2735 2736 sc->sc_scan_timer = 5; 2737 return 0; /* will be notified async. of failure/success */ 2738 } 2739 2740 /** 2741 * Configure the card to listen to a particular channel, this transisions the 2742 * card in to being able to receive frames from remote devices. 2743 */ 2744 static int 2745 wpi_config(struct wpi_softc *sc) 2746 { 2747 struct ifnet *ifp = sc->sc_ifp; 2748 struct ieee80211com *ic = ifp->if_l2com; 2749 struct wpi_power power; 2750 struct wpi_bluetooth bluetooth; 2751 struct wpi_node_info node; 2752 int error; 2753 2754 /* set power mode */ 2755 memset(&power, 0, sizeof power); 2756 power.flags = htole32(WPI_POWER_CAM|0x8); 2757 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2758 if (error != 0) { 2759 device_printf(sc->sc_dev, "could not set power mode\n"); 2760 return error; 2761 } 2762 2763 /* configure bluetooth coexistence */ 2764 memset(&bluetooth, 0, sizeof bluetooth); 2765 bluetooth.flags = 3; 2766 bluetooth.lead = 0xaa; 2767 bluetooth.kill = 1; 2768 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2769 0); 2770 if (error != 0) { 2771 device_printf(sc->sc_dev, 2772 "could not configure bluetooth coexistence\n"); 2773 return error; 2774 } 2775 2776 /* configure adapter */ 2777 memset(&sc->config, 0, sizeof (struct wpi_config)); 2778 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2779 /*set default channel*/ 2780 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2781 sc->config.flags = htole32(WPI_CONFIG_TSF); 2782 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2783 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2784 WPI_CONFIG_24GHZ); 2785 } 2786 sc->config.filter = 0; 2787 switch (ic->ic_opmode) { 2788 case IEEE80211_M_STA: 2789 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2790 sc->config.mode = WPI_MODE_STA; 2791 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2792 break; 2793 case IEEE80211_M_IBSS: 2794 case IEEE80211_M_AHDEMO: 2795 sc->config.mode = WPI_MODE_IBSS; 2796 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2797 WPI_FILTER_MULTICAST); 2798 break; 2799 case IEEE80211_M_HOSTAP: 2800 sc->config.mode = WPI_MODE_HOSTAP; 2801 break; 2802 case IEEE80211_M_MONITOR: 2803 sc->config.mode = WPI_MODE_MONITOR; 2804 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2805 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2806 break; 2807 default: 2808 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2809 return EINVAL; 2810 } 2811 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2812 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2813 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2814 sizeof (struct wpi_config), 0); 2815 if (error != 0) { 2816 device_printf(sc->sc_dev, "configure command failed\n"); 2817 return error; 2818 } 2819 2820 /* configuration has changed, set Tx power accordingly */ 2821 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2822 device_printf(sc->sc_dev, "could not set Tx power\n"); 2823 return error; 2824 } 2825 2826 /* add broadcast node */ 2827 memset(&node, 0, sizeof node); 2828 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2829 node.id = WPI_ID_BROADCAST; 2830 node.rate = wpi_plcp_signal(2); 2831 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2832 if (error != 0) { 2833 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2834 return error; 2835 } 2836 2837 /* Setup rate scalling */ 2838 error = wpi_mrr_setup(sc); 2839 if (error != 0) { 2840 device_printf(sc->sc_dev, "could not setup MRR\n"); 2841 return error; 2842 } 2843 2844 return 0; 2845 } 2846 2847 static void 2848 wpi_stop_master(struct wpi_softc *sc) 2849 { 2850 uint32_t tmp; 2851 int ntries; 2852 2853 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2854 2855 tmp = WPI_READ(sc, WPI_RESET); 2856 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2857 2858 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2859 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2860 return; /* already asleep */ 2861 2862 for (ntries = 0; ntries < 100; ntries++) { 2863 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2864 break; 2865 DELAY(10); 2866 } 2867 if (ntries == 100) { 2868 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2869 } 2870 } 2871 2872 static int 2873 wpi_power_up(struct wpi_softc *sc) 2874 { 2875 uint32_t tmp; 2876 int ntries; 2877 2878 wpi_mem_lock(sc); 2879 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2880 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2881 wpi_mem_unlock(sc); 2882 2883 for (ntries = 0; ntries < 5000; ntries++) { 2884 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2885 break; 2886 DELAY(10); 2887 } 2888 if (ntries == 5000) { 2889 device_printf(sc->sc_dev, 2890 "timeout waiting for NIC to power up\n"); 2891 return ETIMEDOUT; 2892 } 2893 return 0; 2894 } 2895 2896 static int 2897 wpi_reset(struct wpi_softc *sc) 2898 { 2899 uint32_t tmp; 2900 int ntries; 2901 2902 DPRINTFN(WPI_DEBUG_HW, 2903 ("Resetting the card - clearing any uploaded firmware\n")); 2904 2905 /* clear any pending interrupts */ 2906 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2907 2908 tmp = WPI_READ(sc, WPI_PLL_CTL); 2909 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2910 2911 tmp = WPI_READ(sc, WPI_CHICKEN); 2912 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2913 2914 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2915 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2916 2917 /* wait for clock stabilization */ 2918 for (ntries = 0; ntries < 25000; ntries++) { 2919 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2920 break; 2921 DELAY(10); 2922 } 2923 if (ntries == 25000) { 2924 device_printf(sc->sc_dev, 2925 "timeout waiting for clock stabilization\n"); 2926 return ETIMEDOUT; 2927 } 2928 2929 /* initialize EEPROM */ 2930 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2931 2932 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2933 device_printf(sc->sc_dev, "EEPROM not found\n"); 2934 return EIO; 2935 } 2936 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2937 2938 return 0; 2939 } 2940 2941 static void 2942 wpi_hw_config(struct wpi_softc *sc) 2943 { 2944 uint32_t rev, hw; 2945 2946 /* voodoo from the Linux "driver".. */ 2947 hw = WPI_READ(sc, WPI_HWCONFIG); 2948 2949 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2950 if ((rev & 0xc0) == 0x40) 2951 hw |= WPI_HW_ALM_MB; 2952 else if (!(rev & 0x80)) 2953 hw |= WPI_HW_ALM_MM; 2954 2955 if (sc->cap == 0x80) 2956 hw |= WPI_HW_SKU_MRC; 2957 2958 hw &= ~WPI_HW_REV_D; 2959 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2960 hw |= WPI_HW_REV_D; 2961 2962 if (sc->type > 1) 2963 hw |= WPI_HW_TYPE_B; 2964 2965 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2966 } 2967 2968 static void 2969 wpi_rfkill_resume(struct wpi_softc *sc) 2970 { 2971 struct ifnet *ifp = sc->sc_ifp; 2972 struct ieee80211com *ic = ifp->if_l2com; 2973 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2974 int ntries; 2975 2976 /* enable firmware again */ 2977 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 2978 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 2979 2980 /* wait for thermal sensors to calibrate */ 2981 for (ntries = 0; ntries < 1000; ntries++) { 2982 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 2983 break; 2984 DELAY(10); 2985 } 2986 2987 if (ntries == 1000) { 2988 device_printf(sc->sc_dev, 2989 "timeout waiting for thermal calibration\n"); 2990 WPI_UNLOCK(sc); 2991 return; 2992 } 2993 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 2994 2995 if (wpi_config(sc) != 0) { 2996 device_printf(sc->sc_dev, "device config failed\n"); 2997 WPI_UNLOCK(sc); 2998 return; 2999 } 3000 3001 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3002 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3003 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3004 3005 if (vap != NULL) { 3006 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3007 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3008 ieee80211_beacon_miss(ic); 3009 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3010 } else 3011 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3012 } else { 3013 ieee80211_scan_next(vap); 3014 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3015 } 3016 } 3017 3018 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3019 } 3020 3021 static void 3022 wpi_init_locked(struct wpi_softc *sc, int force) 3023 { 3024 struct ifnet *ifp = sc->sc_ifp; 3025 uint32_t tmp; 3026 int ntries, qid; 3027 3028 wpi_stop_locked(sc); 3029 (void)wpi_reset(sc); 3030 3031 wpi_mem_lock(sc); 3032 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3033 DELAY(20); 3034 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3035 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3036 wpi_mem_unlock(sc); 3037 3038 (void)wpi_power_up(sc); 3039 wpi_hw_config(sc); 3040 3041 /* init Rx ring */ 3042 wpi_mem_lock(sc); 3043 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3044 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3045 offsetof(struct wpi_shared, next)); 3046 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3047 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3048 wpi_mem_unlock(sc); 3049 3050 /* init Tx rings */ 3051 wpi_mem_lock(sc); 3052 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3053 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3054 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3055 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3056 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3057 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3058 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3059 3060 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3061 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3062 3063 for (qid = 0; qid < 6; qid++) { 3064 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3065 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3066 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3067 } 3068 wpi_mem_unlock(sc); 3069 3070 /* clear "radio off" and "disable command" bits (reversed logic) */ 3071 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3072 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3073 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3074 3075 /* clear any pending interrupts */ 3076 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3077 3078 /* enable interrupts */ 3079 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3080 3081 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3082 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3083 3084 if ((wpi_load_firmware(sc)) != 0) { 3085 device_printf(sc->sc_dev, 3086 "A problem occurred loading the firmware to the driver\n"); 3087 return; 3088 } 3089 3090 /* At this point the firmware is up and running. If the hardware 3091 * RF switch is turned off thermal calibration will fail, though 3092 * the card is still happy to continue to accept commands, catch 3093 * this case and schedule a task to watch for it to be turned on. 3094 */ 3095 wpi_mem_lock(sc); 3096 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3097 wpi_mem_unlock(sc); 3098 3099 if (!(tmp & 0x1)) { 3100 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3101 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3102 goto out; 3103 } 3104 3105 /* wait for thermal sensors to calibrate */ 3106 for (ntries = 0; ntries < 1000; ntries++) { 3107 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3108 break; 3109 DELAY(10); 3110 } 3111 3112 if (ntries == 1000) { 3113 device_printf(sc->sc_dev, 3114 "timeout waiting for thermal sensors calibration\n"); 3115 return; 3116 } 3117 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3118 3119 if (wpi_config(sc) != 0) { 3120 device_printf(sc->sc_dev, "device config failed\n"); 3121 return; 3122 } 3123 3124 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3125 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3126 out: 3127 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3128 } 3129 3130 static void 3131 wpi_init(void *arg) 3132 { 3133 struct wpi_softc *sc = arg; 3134 struct ifnet *ifp = sc->sc_ifp; 3135 struct ieee80211com *ic = ifp->if_l2com; 3136 3137 WPI_LOCK(sc); 3138 wpi_init_locked(sc, 0); 3139 WPI_UNLOCK(sc); 3140 3141 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3142 ieee80211_start_all(ic); /* start all vaps */ 3143 } 3144 3145 static void 3146 wpi_stop_locked(struct wpi_softc *sc) 3147 { 3148 struct ifnet *ifp = sc->sc_ifp; 3149 uint32_t tmp; 3150 int ac; 3151 3152 sc->sc_tx_timer = 0; 3153 sc->sc_scan_timer = 0; 3154 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3155 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3156 callout_stop(&sc->watchdog_to); 3157 callout_stop(&sc->calib_to); 3158 3159 3160 /* disable interrupts */ 3161 WPI_WRITE(sc, WPI_MASK, 0); 3162 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3163 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3164 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3165 3166 wpi_mem_lock(sc); 3167 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3168 wpi_mem_unlock(sc); 3169 3170 /* reset all Tx rings */ 3171 for (ac = 0; ac < 4; ac++) 3172 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3173 wpi_reset_tx_ring(sc, &sc->cmdq); 3174 3175 /* reset Rx ring */ 3176 wpi_reset_rx_ring(sc, &sc->rxq); 3177 3178 wpi_mem_lock(sc); 3179 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3180 wpi_mem_unlock(sc); 3181 3182 DELAY(5); 3183 3184 wpi_stop_master(sc); 3185 3186 tmp = WPI_READ(sc, WPI_RESET); 3187 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3188 sc->flags &= ~WPI_FLAG_BUSY; 3189 } 3190 3191 static void 3192 wpi_stop(struct wpi_softc *sc) 3193 { 3194 WPI_LOCK(sc); 3195 wpi_stop_locked(sc); 3196 WPI_UNLOCK(sc); 3197 } 3198 3199 static void 3200 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3201 { 3202 3203 /* XXX move */ 3204 ieee80211_ratectl_node_init(ni); 3205 } 3206 3207 static void 3208 wpi_calib_timeout(void *arg) 3209 { 3210 struct wpi_softc *sc = arg; 3211 struct ifnet *ifp = sc->sc_ifp; 3212 struct ieee80211com *ic = ifp->if_l2com; 3213 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3214 int temp; 3215 3216 if (vap->iv_state != IEEE80211_S_RUN) 3217 return; 3218 3219 /* update sensor data */ 3220 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3221 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3222 3223 wpi_power_calibration(sc, temp); 3224 3225 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3226 } 3227 3228 /* 3229 * This function is called periodically (every 60 seconds) to adjust output 3230 * power to temperature changes. 3231 */ 3232 static void 3233 wpi_power_calibration(struct wpi_softc *sc, int temp) 3234 { 3235 struct ifnet *ifp = sc->sc_ifp; 3236 struct ieee80211com *ic = ifp->if_l2com; 3237 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3238 3239 /* sanity-check read value */ 3240 if (temp < -260 || temp > 25) { 3241 /* this can't be correct, ignore */ 3242 DPRINTFN(WPI_DEBUG_TEMP, 3243 ("out-of-range temperature reported: %d\n", temp)); 3244 return; 3245 } 3246 3247 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3248 3249 /* adjust Tx power if need be */ 3250 if (abs(temp - sc->temp) <= 6) 3251 return; 3252 3253 sc->temp = temp; 3254 3255 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3256 /* just warn, too bad for the automatic calibration... */ 3257 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3258 } 3259 } 3260 3261 /** 3262 * Read the eeprom to find out what channels are valid for the given 3263 * band and update net80211 with what we find. 3264 */ 3265 static void 3266 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3267 { 3268 struct ifnet *ifp = sc->sc_ifp; 3269 struct ieee80211com *ic = ifp->if_l2com; 3270 const struct wpi_chan_band *band = &wpi_bands[n]; 3271 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3272 struct ieee80211_channel *c; 3273 int chan, i, passive; 3274 3275 wpi_read_prom_data(sc, band->addr, channels, 3276 band->nchan * sizeof (struct wpi_eeprom_chan)); 3277 3278 for (i = 0; i < band->nchan; i++) { 3279 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3280 DPRINTFN(WPI_DEBUG_HW, 3281 ("Channel Not Valid: %d, band %d\n", 3282 band->chan[i],n)); 3283 continue; 3284 } 3285 3286 passive = 0; 3287 chan = band->chan[i]; 3288 c = &ic->ic_channels[ic->ic_nchans++]; 3289 3290 /* is active scan allowed on this channel? */ 3291 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3292 passive = IEEE80211_CHAN_PASSIVE; 3293 } 3294 3295 if (n == 0) { /* 2GHz band */ 3296 c->ic_ieee = chan; 3297 c->ic_freq = ieee80211_ieee2mhz(chan, 3298 IEEE80211_CHAN_2GHZ); 3299 c->ic_flags = IEEE80211_CHAN_B | passive; 3300 3301 c = &ic->ic_channels[ic->ic_nchans++]; 3302 c->ic_ieee = chan; 3303 c->ic_freq = ieee80211_ieee2mhz(chan, 3304 IEEE80211_CHAN_2GHZ); 3305 c->ic_flags = IEEE80211_CHAN_G | passive; 3306 3307 } else { /* 5GHz band */ 3308 /* 3309 * Some 3945ABG adapters support channels 7, 8, 11 3310 * and 12 in the 2GHz *and* 5GHz bands. 3311 * Because of limitations in our net80211(9) stack, 3312 * we can't support these channels in 5GHz band. 3313 * XXX not true; just need to map to proper frequency 3314 */ 3315 if (chan <= 14) 3316 continue; 3317 3318 c->ic_ieee = chan; 3319 c->ic_freq = ieee80211_ieee2mhz(chan, 3320 IEEE80211_CHAN_5GHZ); 3321 c->ic_flags = IEEE80211_CHAN_A | passive; 3322 } 3323 3324 /* save maximum allowed power for this channel */ 3325 sc->maxpwr[chan] = channels[i].maxpwr; 3326 3327 #if 0 3328 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3329 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3330 //ic->ic_channels[chan].ic_minpower... 3331 //ic->ic_channels[chan].ic_maxregtxpower... 3332 #endif 3333 3334 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3335 " passive=%d, offset %d\n", chan, c->ic_freq, 3336 channels[i].flags, sc->maxpwr[chan], 3337 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3338 ic->ic_nchans)); 3339 } 3340 } 3341 3342 static void 3343 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3344 { 3345 struct wpi_power_group *group = &sc->groups[n]; 3346 struct wpi_eeprom_group rgroup; 3347 int i; 3348 3349 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3350 sizeof rgroup); 3351 3352 /* save power group information */ 3353 group->chan = rgroup.chan; 3354 group->maxpwr = rgroup.maxpwr; 3355 /* temperature at which the samples were taken */ 3356 group->temp = (int16_t)le16toh(rgroup.temp); 3357 3358 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3359 group->chan, group->maxpwr, group->temp)); 3360 3361 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3362 group->samples[i].index = rgroup.samples[i].index; 3363 group->samples[i].power = rgroup.samples[i].power; 3364 3365 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3366 group->samples[i].index, group->samples[i].power)); 3367 } 3368 } 3369 3370 /* 3371 * Update Tx power to match what is defined for channel `c'. 3372 */ 3373 static int 3374 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3375 { 3376 struct ifnet *ifp = sc->sc_ifp; 3377 struct ieee80211com *ic = ifp->if_l2com; 3378 struct wpi_power_group *group; 3379 struct wpi_cmd_txpower txpower; 3380 u_int chan; 3381 int i; 3382 3383 /* get channel number */ 3384 chan = ieee80211_chan2ieee(ic, c); 3385 3386 /* find the power group to which this channel belongs */ 3387 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3388 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3389 if (chan <= group->chan) 3390 break; 3391 } else 3392 group = &sc->groups[0]; 3393 3394 memset(&txpower, 0, sizeof txpower); 3395 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3396 txpower.channel = htole16(chan); 3397 3398 /* set Tx power for all OFDM and CCK rates */ 3399 for (i = 0; i <= 11 ; i++) { 3400 /* retrieve Tx power for this channel/rate combination */ 3401 int idx = wpi_get_power_index(sc, group, c, 3402 wpi_ridx_to_rate[i]); 3403 3404 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3405 3406 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3407 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3408 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3409 } else { 3410 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3411 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3412 } 3413 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3414 chan, wpi_ridx_to_rate[i], idx)); 3415 } 3416 3417 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3418 } 3419 3420 /* 3421 * Determine Tx power index for a given channel/rate combination. 3422 * This takes into account the regulatory information from EEPROM and the 3423 * current temperature. 3424 */ 3425 static int 3426 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3427 struct ieee80211_channel *c, int rate) 3428 { 3429 /* fixed-point arithmetic division using a n-bit fractional part */ 3430 #define fdivround(a, b, n) \ 3431 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3432 3433 /* linear interpolation */ 3434 #define interpolate(x, x1, y1, x2, y2, n) \ 3435 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3436 3437 struct ifnet *ifp = sc->sc_ifp; 3438 struct ieee80211com *ic = ifp->if_l2com; 3439 struct wpi_power_sample *sample; 3440 int pwr, idx; 3441 u_int chan; 3442 3443 /* get channel number */ 3444 chan = ieee80211_chan2ieee(ic, c); 3445 3446 /* default power is group's maximum power - 3dB */ 3447 pwr = group->maxpwr / 2; 3448 3449 /* decrease power for highest OFDM rates to reduce distortion */ 3450 switch (rate) { 3451 case 72: /* 36Mb/s */ 3452 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3453 break; 3454 case 96: /* 48Mb/s */ 3455 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3456 break; 3457 case 108: /* 54Mb/s */ 3458 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3459 break; 3460 } 3461 3462 /* never exceed channel's maximum allowed Tx power */ 3463 pwr = min(pwr, sc->maxpwr[chan]); 3464 3465 /* retrieve power index into gain tables from samples */ 3466 for (sample = group->samples; sample < &group->samples[3]; sample++) 3467 if (pwr > sample[1].power) 3468 break; 3469 /* fixed-point linear interpolation using a 19-bit fractional part */ 3470 idx = interpolate(pwr, sample[0].power, sample[0].index, 3471 sample[1].power, sample[1].index, 19); 3472 3473 /* 3474 * Adjust power index based on current temperature 3475 * - if colder than factory-calibrated: decreate output power 3476 * - if warmer than factory-calibrated: increase output power 3477 */ 3478 idx -= (sc->temp - group->temp) * 11 / 100; 3479 3480 /* decrease power for CCK rates (-5dB) */ 3481 if (!WPI_RATE_IS_OFDM(rate)) 3482 idx += 10; 3483 3484 /* keep power index in a valid range */ 3485 if (idx < 0) 3486 return 0; 3487 if (idx > WPI_MAX_PWR_INDEX) 3488 return WPI_MAX_PWR_INDEX; 3489 return idx; 3490 3491 #undef interpolate 3492 #undef fdivround 3493 } 3494 3495 /** 3496 * Called by net80211 framework to indicate that a scan 3497 * is starting. This function doesn't actually do the scan, 3498 * wpi_scan_curchan starts things off. This function is more 3499 * of an early warning from the framework we should get ready 3500 * for the scan. 3501 */ 3502 static void 3503 wpi_scan_start(struct ieee80211com *ic) 3504 { 3505 struct ifnet *ifp = ic->ic_ifp; 3506 struct wpi_softc *sc = ifp->if_softc; 3507 3508 WPI_LOCK(sc); 3509 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3510 WPI_UNLOCK(sc); 3511 } 3512 3513 /** 3514 * Called by the net80211 framework, indicates that the 3515 * scan has ended. If there is a scan in progress on the card 3516 * then it should be aborted. 3517 */ 3518 static void 3519 wpi_scan_end(struct ieee80211com *ic) 3520 { 3521 /* XXX ignore */ 3522 } 3523 3524 /** 3525 * Called by the net80211 framework to indicate to the driver 3526 * that the channel should be changed 3527 */ 3528 static void 3529 wpi_set_channel(struct ieee80211com *ic) 3530 { 3531 struct ifnet *ifp = ic->ic_ifp; 3532 struct wpi_softc *sc = ifp->if_softc; 3533 int error; 3534 3535 /* 3536 * Only need to set the channel in Monitor mode. AP scanning and auth 3537 * are already taken care of by their respective firmware commands. 3538 */ 3539 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3540 error = wpi_config(sc); 3541 if (error != 0) 3542 device_printf(sc->sc_dev, 3543 "error %d settting channel\n", error); 3544 } 3545 } 3546 3547 /** 3548 * Called by net80211 to indicate that we need to scan the current 3549 * channel. The channel is previously be set via the wpi_set_channel 3550 * callback. 3551 */ 3552 static void 3553 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3554 { 3555 struct ieee80211vap *vap = ss->ss_vap; 3556 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3557 struct wpi_softc *sc = ifp->if_softc; 3558 3559 WPI_LOCK(sc); 3560 if (wpi_scan(sc)) 3561 ieee80211_cancel_scan(vap); 3562 WPI_UNLOCK(sc); 3563 } 3564 3565 /** 3566 * Called by the net80211 framework to indicate 3567 * the minimum dwell time has been met, terminate the scan. 3568 * We don't actually terminate the scan as the firmware will notify 3569 * us when it's finished and we have no way to interrupt it. 3570 */ 3571 static void 3572 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3573 { 3574 /* NB: don't try to abort scan; wait for firmware to finish */ 3575 } 3576 3577 static void 3578 wpi_hwreset(void *arg, int pending) 3579 { 3580 struct wpi_softc *sc = arg; 3581 3582 WPI_LOCK(sc); 3583 wpi_init_locked(sc, 0); 3584 WPI_UNLOCK(sc); 3585 } 3586 3587 static void 3588 wpi_rfreset(void *arg, int pending) 3589 { 3590 struct wpi_softc *sc = arg; 3591 3592 WPI_LOCK(sc); 3593 wpi_rfkill_resume(sc); 3594 WPI_UNLOCK(sc); 3595 } 3596 3597 /* 3598 * Allocate DMA-safe memory for firmware transfer. 3599 */ 3600 static int 3601 wpi_alloc_fwmem(struct wpi_softc *sc) 3602 { 3603 /* allocate enough contiguous space to store text and data */ 3604 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3605 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3606 BUS_DMA_NOWAIT); 3607 } 3608 3609 static void 3610 wpi_free_fwmem(struct wpi_softc *sc) 3611 { 3612 wpi_dma_contig_free(&sc->fw_dma); 3613 } 3614 3615 /** 3616 * Called every second, wpi_watchdog used by the watch dog timer 3617 * to check that the card is still alive 3618 */ 3619 static void 3620 wpi_watchdog(void *arg) 3621 { 3622 struct wpi_softc *sc = arg; 3623 struct ifnet *ifp = sc->sc_ifp; 3624 struct ieee80211com *ic = ifp->if_l2com; 3625 uint32_t tmp; 3626 3627 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3628 3629 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3630 /* No need to lock firmware memory */ 3631 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3632 3633 if ((tmp & 0x1) == 0) { 3634 /* Radio kill switch is still off */ 3635 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3636 return; 3637 } 3638 3639 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3640 ieee80211_runtask(ic, &sc->sc_radiotask); 3641 return; 3642 } 3643 3644 if (sc->sc_tx_timer > 0) { 3645 if (--sc->sc_tx_timer == 0) { 3646 device_printf(sc->sc_dev,"device timeout\n"); 3647 ifp->if_oerrors++; 3648 ieee80211_runtask(ic, &sc->sc_restarttask); 3649 } 3650 } 3651 if (sc->sc_scan_timer > 0) { 3652 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3653 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3654 device_printf(sc->sc_dev,"scan timeout\n"); 3655 ieee80211_cancel_scan(vap); 3656 ieee80211_runtask(ic, &sc->sc_restarttask); 3657 } 3658 } 3659 3660 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3661 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3662 } 3663 3664 #ifdef WPI_DEBUG 3665 static const char *wpi_cmd_str(int cmd) 3666 { 3667 switch (cmd) { 3668 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3669 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3670 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3671 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3672 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3673 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3674 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3675 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3676 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3677 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3678 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3679 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3680 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3681 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3682 3683 default: 3684 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3685 return "UNKNOWN CMD"; /* Make the compiler happy */ 3686 } 3687 } 3688 #endif 3689 3690 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3691 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3692 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3693