1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #define VERSION "20071127" 20 21 #include <sys/cdefs.h> 22 __FBSDID("$FreeBSD$"); 23 24 /* 25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 26 * 27 * The 3945ABG network adapter doesn't use traditional hardware as 28 * many other adaptors do. Instead at run time the eeprom is set into a known 29 * state and told to load boot firmware. The boot firmware loads an init and a 30 * main binary firmware image into SRAM on the card via DMA. 31 * Once the firmware is loaded, the driver/hw then 32 * communicate by way of circular dma rings via the the SRAM to the firmware. 33 * 34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 35 * The 4 tx data rings allow for prioritization QoS. 36 * 37 * The rx data ring consists of 32 dma buffers. Two registers are used to 38 * indicate where in the ring the driver and the firmware are up to. The 39 * driver sets the initial read index (reg1) and the initial write index (reg2), 40 * the firmware updates the read index (reg1) on rx of a packet and fires an 41 * interrupt. The driver then processes the buffers starting at reg1 indicating 42 * to the firmware which buffers have been accessed by updating reg2. At the 43 * same time allocating new memory for the processed buffer. 44 * 45 * A similar thing happens with the tx rings. The difference is the firmware 46 * stop processing buffers once the queue is full and until confirmation 47 * of a successful transmition (tx_intr) has occurred. 48 * 49 * The command ring operates in the same manner as the tx queues. 50 * 51 * All communication direct to the card (ie eeprom) is classed as Stage1 52 * communication 53 * 54 * All communication via the firmware to the card is classed as State2. 55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 56 * firmware. The bootstrap firmware and runtime firmware are loaded 57 * from host memory via dma to the card then told to execute. From this point 58 * on the majority of communications between the driver and the card goes 59 * via the firmware. 60 */ 61 62 #include <sys/param.h> 63 #include <sys/sysctl.h> 64 #include <sys/sockio.h> 65 #include <sys/mbuf.h> 66 #include <sys/kernel.h> 67 #include <sys/socket.h> 68 #include <sys/systm.h> 69 #include <sys/malloc.h> 70 #include <sys/queue.h> 71 #include <sys/taskqueue.h> 72 #include <sys/module.h> 73 #include <sys/bus.h> 74 #include <sys/endian.h> 75 #include <sys/linker.h> 76 #include <sys/firmware.h> 77 78 #include <machine/bus.h> 79 #include <machine/resource.h> 80 #include <sys/rman.h> 81 82 #include <dev/pci/pcireg.h> 83 #include <dev/pci/pcivar.h> 84 85 #include <net/bpf.h> 86 #include <net/if.h> 87 #include <net/if_arp.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <net80211/ieee80211_var.h> 94 #include <net80211/ieee80211_radiotap.h> 95 #include <net80211/ieee80211_regdomain.h> 96 97 #include <netinet/in.h> 98 #include <netinet/in_systm.h> 99 #include <netinet/in_var.h> 100 #include <netinet/ip.h> 101 #include <netinet/if_ether.h> 102 103 #include <dev/wpi/if_wpireg.h> 104 #include <dev/wpi/if_wpivar.h> 105 106 #define WPI_DEBUG 107 108 #ifdef WPI_DEBUG 109 #define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0) 110 #define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0) 111 112 enum { 113 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 114 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 115 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 116 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 117 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 118 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 119 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 120 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 121 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 122 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 123 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 124 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 125 WPI_DEBUG_ANY = 0xffffffff 126 }; 127 128 int wpi_debug = 0; 129 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 130 131 #else 132 #define DPRINTF(x) 133 #define DPRINTFN(n, x) 134 #endif 135 136 struct wpi_ident { 137 uint16_t vendor; 138 uint16_t device; 139 uint16_t subdevice; 140 const char *name; 141 }; 142 143 static const struct wpi_ident wpi_ident_table[] = { 144 /* The below entries support ABG regardless of the subid */ 145 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 146 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 147 /* The below entries only support BG */ 148 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB" }, 149 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB" }, 150 { 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB" }, 151 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB" }, 152 { 0, 0, 0, NULL } 153 }; 154 155 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 156 void **, bus_size_t, bus_size_t, int); 157 static void wpi_dma_contig_free(struct wpi_dma_info *); 158 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 159 static int wpi_alloc_shared(struct wpi_softc *); 160 static void wpi_free_shared(struct wpi_softc *); 161 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 162 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 163 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 164 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 165 int, int); 166 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 167 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 168 static struct ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *); 169 static int wpi_media_change(struct ifnet *); 170 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int); 171 static void wpi_mem_lock(struct wpi_softc *); 172 static void wpi_mem_unlock(struct wpi_softc *); 173 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 174 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 175 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 176 const uint32_t *, int); 177 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 178 static int wpi_alloc_fwmem(struct wpi_softc *); 179 static void wpi_free_fwmem(struct wpi_softc *); 180 static int wpi_load_firmware(struct wpi_softc *); 181 static void wpi_unload_firmware(struct wpi_softc *); 182 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 183 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 184 struct wpi_rx_data *); 185 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 186 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 187 static void wpi_notif_intr(struct wpi_softc *); 188 static void wpi_intr(void *); 189 static void wpi_ops(void *, int); 190 static uint8_t wpi_plcp_signal(int); 191 static int wpi_queue_cmd(struct wpi_softc *, int, int, int); 192 static void wpi_watchdog(void *); 193 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 194 struct ieee80211_node *, int); 195 static void wpi_start(struct ifnet *); 196 static void wpi_scan_start(struct ieee80211com *); 197 static void wpi_scan_end(struct ieee80211com *); 198 static void wpi_set_channel(struct ieee80211com *); 199 static void wpi_scan_curchan(struct ieee80211com *, unsigned long); 200 static void wpi_scan_mindwell(struct ieee80211com *); 201 static int wpi_ioctl(struct ifnet *, u_long, caddr_t); 202 static void wpi_read_eeprom(struct wpi_softc *); 203 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 204 static void wpi_read_eeprom_group(struct wpi_softc *, int); 205 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 206 static int wpi_wme_update(struct ieee80211com *); 207 static int wpi_mrr_setup(struct wpi_softc *); 208 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 209 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 210 #if 0 211 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 212 #endif 213 static int wpi_auth(struct wpi_softc *); 214 static int wpi_run(struct wpi_softc *); 215 static int wpi_scan(struct wpi_softc *); 216 static int wpi_config(struct wpi_softc *); 217 static void wpi_stop_master(struct wpi_softc *); 218 static int wpi_power_up(struct wpi_softc *); 219 static int wpi_reset(struct wpi_softc *); 220 static void wpi_hw_config(struct wpi_softc *); 221 static void wpi_init(void *); 222 static void wpi_init_locked(struct wpi_softc *, int); 223 static void wpi_stop(struct wpi_softc *); 224 static void wpi_stop_locked(struct wpi_softc *); 225 static void wpi_iter_func(void *, struct ieee80211_node *); 226 227 static void wpi_newassoc(struct ieee80211_node *, int); 228 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 229 int); 230 static void wpi_calib_timeout(void *); 231 static void wpi_power_calibration(struct wpi_softc *, int); 232 static int wpi_get_power_index(struct wpi_softc *, 233 struct wpi_power_group *, struct ieee80211_channel *, int); 234 static const char *wpi_cmd_str(int); 235 static int wpi_probe(device_t); 236 static int wpi_attach(device_t); 237 static int wpi_detach(device_t); 238 static int wpi_shutdown(device_t); 239 static int wpi_suspend(device_t); 240 static int wpi_resume(device_t); 241 242 243 static device_method_t wpi_methods[] = { 244 /* Device interface */ 245 DEVMETHOD(device_probe, wpi_probe), 246 DEVMETHOD(device_attach, wpi_attach), 247 DEVMETHOD(device_detach, wpi_detach), 248 DEVMETHOD(device_shutdown, wpi_shutdown), 249 DEVMETHOD(device_suspend, wpi_suspend), 250 DEVMETHOD(device_resume, wpi_resume), 251 252 { 0, 0 } 253 }; 254 255 static driver_t wpi_driver = { 256 "wpi", 257 wpi_methods, 258 sizeof (struct wpi_softc) 259 }; 260 261 static devclass_t wpi_devclass; 262 263 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 264 265 static const uint8_t wpi_ridx_to_plcp[] = { 266 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 267 /* R1-R4 (ral/ural is R4-R1) */ 268 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 269 /* CCK: device-dependent */ 270 10, 20, 55, 110 271 }; 272 static const uint8_t wpi_ridx_to_rate[] = { 273 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 274 2, 4, 11, 22 /*CCK */ 275 }; 276 277 278 static int 279 wpi_probe(device_t dev) 280 { 281 const struct wpi_ident *ident; 282 283 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 284 if (pci_get_vendor(dev) == ident->vendor && 285 pci_get_device(dev) == ident->device) { 286 device_set_desc(dev, ident->name); 287 return 0; 288 } 289 } 290 return ENXIO; 291 } 292 293 /** 294 * Load the firmare image from disk to the allocated dma buffer. 295 * we also maintain the reference to the firmware pointer as there 296 * is times where we may need to reload the firmware but we are not 297 * in a context that can access the filesystem (ie taskq cause by restart) 298 * 299 * @return 0 on success, an errno on failure 300 */ 301 static int 302 wpi_load_firmware(struct wpi_softc *sc) 303 { 304 const struct firmware *fp ; 305 struct wpi_dma_info *dma = &sc->fw_dma; 306 const struct wpi_firmware_hdr *hdr; 307 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 308 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 309 int error; 310 311 DPRINTFN(WPI_DEBUG_FIRMWARE, 312 ("Attempting Loading Firmware from wpi_fw module\n")); 313 314 WPI_UNLOCK(sc); 315 316 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 317 device_printf(sc->sc_dev, 318 "could not load firmware image 'wpifw'\n"); 319 error = ENOENT; 320 WPI_LOCK(sc); 321 goto fail; 322 } 323 324 fp = sc->fw_fp; 325 326 WPI_LOCK(sc); 327 328 /* Validate the firmware is minimum a particular version */ 329 if (fp->version < WPI_FW_MINVERSION) { 330 device_printf(sc->sc_dev, 331 "firmware version is too old. Need %d, got %d\n", 332 WPI_FW_MINVERSION, 333 fp->version); 334 error = ENXIO; 335 goto fail; 336 } 337 338 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 339 device_printf(sc->sc_dev, 340 "firmware file too short: %zu bytes\n", fp->datasize); 341 error = ENXIO; 342 goto fail; 343 } 344 345 hdr = (const struct wpi_firmware_hdr *)fp->data; 346 347 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 348 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 349 350 rtextsz = le32toh(hdr->rtextsz); 351 rdatasz = le32toh(hdr->rdatasz); 352 itextsz = le32toh(hdr->itextsz); 353 idatasz = le32toh(hdr->idatasz); 354 btextsz = le32toh(hdr->btextsz); 355 356 /* check that all firmware segments are present */ 357 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 358 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 359 device_printf(sc->sc_dev, 360 "firmware file too short: %zu bytes\n", fp->datasize); 361 error = ENXIO; /* XXX appropriate error code? */ 362 goto fail; 363 } 364 365 /* get pointers to firmware segments */ 366 rtext = (const uint8_t *)(hdr + 1); 367 rdata = rtext + rtextsz; 368 itext = rdata + rdatasz; 369 idata = itext + itextsz; 370 btext = idata + idatasz; 371 372 DPRINTFN(WPI_DEBUG_FIRMWARE, 373 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 374 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 375 (le32toh(hdr->version) & 0xff000000) >> 24, 376 (le32toh(hdr->version) & 0x00ff0000) >> 16, 377 (le32toh(hdr->version) & 0x0000ffff), 378 rtextsz, rdatasz, 379 itextsz, idatasz, btextsz)); 380 381 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 382 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 383 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 384 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 385 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 386 387 /* sanity checks */ 388 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 389 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 390 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 391 idatasz > WPI_FW_INIT_DATA_MAXSZ || 392 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 393 (btextsz & 3) != 0) { 394 device_printf(sc->sc_dev, "firmware invalid\n"); 395 error = EINVAL; 396 goto fail; 397 } 398 399 /* copy initialization images into pre-allocated DMA-safe memory */ 400 memcpy(dma->vaddr, idata, idatasz); 401 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 402 403 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 404 405 /* tell adapter where to find initialization images */ 406 wpi_mem_lock(sc); 407 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 408 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 409 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 410 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 411 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 412 wpi_mem_unlock(sc); 413 414 /* load firmware boot code */ 415 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 416 device_printf(sc->sc_dev, "Failed to load microcode\n"); 417 goto fail; 418 } 419 420 /* now press "execute" */ 421 WPI_WRITE(sc, WPI_RESET, 0); 422 423 /* wait at most one second for the first alive notification */ 424 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 425 device_printf(sc->sc_dev, 426 "timeout waiting for adapter to initialize\n"); 427 goto fail; 428 } 429 430 /* copy runtime images into pre-allocated DMA-sage memory */ 431 memcpy(dma->vaddr, rdata, rdatasz); 432 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 433 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 434 435 /* tell adapter where to find runtime images */ 436 wpi_mem_lock(sc); 437 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 438 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 439 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 440 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 441 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 442 wpi_mem_unlock(sc); 443 444 /* wait at most one second for the first alive notification */ 445 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 446 device_printf(sc->sc_dev, 447 "timeout waiting for adapter to initialize2\n"); 448 goto fail; 449 } 450 451 DPRINTFN(WPI_DEBUG_FIRMWARE, 452 ("Firmware loaded to driver successfully\n")); 453 return error; 454 fail: 455 wpi_unload_firmware(sc); 456 return error; 457 } 458 459 /** 460 * Free the referenced firmware image 461 */ 462 static void 463 wpi_unload_firmware(struct wpi_softc *sc) 464 { 465 466 if (sc->fw_fp) { 467 WPI_UNLOCK(sc); 468 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 469 WPI_LOCK(sc); 470 sc->fw_fp = NULL; 471 } 472 } 473 474 static int 475 wpi_attach(device_t dev) 476 { 477 struct wpi_softc *sc = device_get_softc(dev); 478 struct ifnet *ifp; 479 struct ieee80211com *ic = &sc->sc_ic; 480 int ac, error, supportsa = 1; 481 uint32_t tmp; 482 const struct wpi_ident *ident; 483 484 sc->sc_dev = dev; 485 486 if (bootverbose || wpi_debug) 487 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 488 489 /* 490 * Some card's only support 802.11b/g not a, check to see if 491 * this is one such card. A 0x0 in the subdevice table indicates 492 * the entire subdevice range is to be ignored. 493 */ 494 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 495 if (ident->subdevice && 496 pci_get_subdevice(dev) == ident->subdevice) { 497 supportsa = 0; 498 break; 499 } 500 } 501 502 #if __FreeBSD_version >= 700000 503 /* 504 * Create the taskqueues used by the driver. Primarily 505 * sc_tq handles most the task 506 */ 507 sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO, 508 taskqueue_thread_enqueue, &sc->sc_tq); 509 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 510 device_get_nameunit(dev)); 511 #else 512 #error "Sorry, this driver is not yet ready for FreeBSD < 7.0" 513 #endif 514 515 /* Create the tasks that can be queued */ 516 TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc); 517 518 WPI_LOCK_INIT(sc); 519 WPI_CMD_LOCK_INIT(sc); 520 521 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 522 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 523 524 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 525 device_printf(dev, "chip is in D%d power mode " 526 "-- setting to D0\n", pci_get_powerstate(dev)); 527 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 528 } 529 530 /* disable the retry timeout register */ 531 pci_write_config(dev, 0x41, 0, 1); 532 533 /* enable bus-mastering */ 534 pci_enable_busmaster(dev); 535 536 sc->mem_rid = PCIR_BAR(0); 537 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 538 RF_ACTIVE); 539 if (sc->mem == NULL) { 540 device_printf(dev, "could not allocate memory resource\n"); 541 error = ENOMEM; 542 goto fail; 543 } 544 545 sc->sc_st = rman_get_bustag(sc->mem); 546 sc->sc_sh = rman_get_bushandle(sc->mem); 547 548 sc->irq_rid = 0; 549 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 550 RF_ACTIVE | RF_SHAREABLE); 551 if (sc->irq == NULL) { 552 device_printf(dev, "could not allocate interrupt resource\n"); 553 error = ENOMEM; 554 goto fail; 555 } 556 557 /* 558 * Allocate DMA memory for firmware transfers. 559 */ 560 if ((error = wpi_alloc_fwmem(sc)) != 0) { 561 printf(": could not allocate firmware memory\n"); 562 error = ENOMEM; 563 goto fail; 564 } 565 566 /* 567 * Put adapter into a known state. 568 */ 569 if ((error = wpi_reset(sc)) != 0) { 570 device_printf(dev, "could not reset adapter\n"); 571 goto fail; 572 } 573 574 wpi_mem_lock(sc); 575 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 576 if (bootverbose || wpi_debug) 577 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 578 579 wpi_mem_unlock(sc); 580 581 /* Allocate shared page */ 582 if ((error = wpi_alloc_shared(sc)) != 0) { 583 device_printf(dev, "could not allocate shared page\n"); 584 goto fail; 585 } 586 587 /* tx data queues - 4 for QoS purposes */ 588 for (ac = 0; ac < WME_NUM_AC; ac++) { 589 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 590 if (error != 0) { 591 device_printf(dev, "could not allocate Tx ring %d\n",ac); 592 goto fail; 593 } 594 } 595 596 /* command queue to talk to the card's firmware */ 597 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 598 if (error != 0) { 599 device_printf(dev, "could not allocate command ring\n"); 600 goto fail; 601 } 602 603 /* receive data queue */ 604 error = wpi_alloc_rx_ring(sc, &sc->rxq); 605 if (error != 0) { 606 device_printf(dev, "could not allocate Rx ring\n"); 607 goto fail; 608 } 609 610 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 611 if (ifp == NULL) { 612 device_printf(dev, "can not if_alloc()\n"); 613 error = ENOMEM; 614 goto fail; 615 } 616 617 ic->ic_ifp = ifp; 618 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 619 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 620 ic->ic_state = IEEE80211_S_INIT; 621 622 /* set device capabilities */ 623 ic->ic_caps = 624 IEEE80211_C_MONITOR /* monitor mode supported */ 625 | IEEE80211_C_TXPMGT /* tx power management */ 626 | IEEE80211_C_SHSLOT /* short slot time supported */ 627 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 628 | IEEE80211_C_WPA /* 802.11i */ 629 /* XXX looks like WME is partly supported? */ 630 #if 0 631 | IEEE80211_C_IBSS /* IBSS mode support */ 632 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 633 | IEEE80211_C_WME /* 802.11e */ 634 | IEEE80211_C_HOSTAP /* Host access point mode */ 635 #endif 636 ; 637 638 /* 639 * Read in the eeprom and also setup the channels for 640 * net80211. We don't set the rates as net80211 does this for us 641 */ 642 wpi_read_eeprom(sc); 643 644 if (bootverbose || wpi_debug) { 645 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 646 device_printf(sc->sc_dev, "Hardware Type: %c\n", 647 sc->type > 1 ? 'B': '?'); 648 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 649 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 650 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 651 supportsa ? "does" : "does not"); 652 653 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 654 what sc->rev really represents - benjsc 20070615 */ 655 } 656 657 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 658 ifp->if_softc = sc; 659 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 660 ifp->if_init = wpi_init; 661 ifp->if_ioctl = wpi_ioctl; 662 ifp->if_start = wpi_start; 663 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 664 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 665 IFQ_SET_READY(&ifp->if_snd); 666 ieee80211_ifattach(ic); 667 668 /* override default methods */ 669 ic->ic_node_alloc = wpi_node_alloc; 670 ic->ic_newassoc = wpi_newassoc; 671 ic->ic_wme.wme_update = wpi_wme_update; 672 ic->ic_scan_start = wpi_scan_start; 673 ic->ic_scan_end = wpi_scan_end; 674 ic->ic_set_channel = wpi_set_channel; 675 ic->ic_scan_curchan = wpi_scan_curchan; 676 ic->ic_scan_mindwell = wpi_scan_mindwell; 677 678 /* override state transition machine */ 679 sc->sc_newstate = ic->ic_newstate; 680 ic->ic_newstate = wpi_newstate; 681 ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status); 682 683 ieee80211_amrr_init(&sc->amrr, ic, 684 IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD, 685 IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD); 686 687 /* whilst ieee80211_ifattach will listen for ieee80211 frames, 688 * we also want to listen for the lower level radio frames 689 */ 690 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 691 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap), 692 &sc->sc_drvbpf); 693 694 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 695 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 696 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT); 697 698 sc->sc_txtap_len = sizeof sc->sc_txtap; 699 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 700 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT); 701 702 /* 703 * Hook our interrupt after all initialization is complete. 704 */ 705 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE, 706 NULL, wpi_intr, sc, &sc->sc_ih); 707 if (error != 0) { 708 device_printf(dev, "could not set up interrupt\n"); 709 goto fail; 710 } 711 712 if (bootverbose) 713 ieee80211_announce(ic); 714 #ifdef XXX_DEBUG 715 ieee80211_announce_channels(ic); 716 #endif 717 718 return 0; 719 720 fail: wpi_detach(dev); 721 return ENXIO; 722 } 723 724 static int 725 wpi_detach(device_t dev) 726 { 727 struct wpi_softc *sc = device_get_softc(dev); 728 struct ieee80211com *ic = &sc->sc_ic; 729 struct ifnet *ifp = ic->ic_ifp; 730 int ac; 731 732 if (ifp != NULL) { 733 wpi_stop(sc); 734 callout_drain(&sc->watchdog_to); 735 callout_drain(&sc->calib_to); 736 bpfdetach(ifp); 737 ieee80211_ifdetach(ic); 738 } 739 740 WPI_LOCK(sc); 741 if (sc->txq[0].data_dmat) { 742 for (ac = 0; ac < WME_NUM_AC; ac++) 743 wpi_free_tx_ring(sc, &sc->txq[ac]); 744 745 wpi_free_tx_ring(sc, &sc->cmdq); 746 wpi_free_rx_ring(sc, &sc->rxq); 747 wpi_free_shared(sc); 748 } 749 750 if (sc->fw_fp != NULL) { 751 wpi_unload_firmware(sc); 752 } 753 754 if (sc->fw_dma.tag) 755 wpi_free_fwmem(sc); 756 WPI_UNLOCK(sc); 757 758 if (sc->irq != NULL) { 759 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 760 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 761 } 762 763 if (sc->mem != NULL) 764 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 765 766 if (ifp != NULL) 767 if_free(ifp); 768 769 taskqueue_free(sc->sc_tq); 770 771 WPI_LOCK_DESTROY(sc); 772 WPI_CMD_LOCK_DESTROY(sc); 773 774 return 0; 775 } 776 777 static void 778 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 779 { 780 if (error != 0) 781 return; 782 783 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 784 785 *(bus_addr_t *)arg = segs[0].ds_addr; 786 } 787 788 /* 789 * Allocates a contiguous block of dma memory of the requested size and 790 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 791 * allocations greater than 4096 may fail. Hence if the requested alignment is 792 * greater we allocate 'alignment' size extra memory and shift the vaddr and 793 * paddr after the dma load. This bypasses the problem at the cost of a little 794 * more memory. 795 */ 796 static int 797 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 798 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 799 { 800 int error; 801 bus_size_t align; 802 bus_size_t reqsize; 803 804 DPRINTFN(WPI_DEBUG_DMA, 805 ("Size: %zd - alignment %zd\n", size, alignment)); 806 807 dma->size = size; 808 dma->tag = NULL; 809 810 if (alignment > 4096) { 811 align = PAGE_SIZE; 812 reqsize = size + alignment; 813 } else { 814 align = alignment; 815 reqsize = size; 816 } 817 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align, 818 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 819 NULL, NULL, reqsize, 820 1, reqsize, flags, 821 NULL, NULL, &dma->tag); 822 if (error != 0) { 823 device_printf(sc->sc_dev, 824 "could not create shared page DMA tag\n"); 825 goto fail; 826 } 827 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 828 flags | BUS_DMA_ZERO, &dma->map); 829 if (error != 0) { 830 device_printf(sc->sc_dev, 831 "could not allocate shared page DMA memory\n"); 832 goto fail; 833 } 834 835 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 836 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 837 838 /* Save the original pointers so we can free all the memory */ 839 dma->paddr = dma->paddr_start; 840 dma->vaddr = dma->vaddr_start; 841 842 /* 843 * Check the alignment and increment by 4096 until we get the 844 * requested alignment. Fail if can't obtain the alignment 845 * we requested. 846 */ 847 if ((dma->paddr & (alignment -1 )) != 0) { 848 int i; 849 850 for (i = 0; i < alignment / 4096; i++) { 851 if ((dma->paddr & (alignment - 1 )) == 0) 852 break; 853 dma->paddr += 4096; 854 dma->vaddr += 4096; 855 } 856 if (i == alignment / 4096) { 857 device_printf(sc->sc_dev, 858 "alignment requirement was not satisfied\n"); 859 goto fail; 860 } 861 } 862 863 if (error != 0) { 864 device_printf(sc->sc_dev, 865 "could not load shared page DMA map\n"); 866 goto fail; 867 } 868 869 if (kvap != NULL) 870 *kvap = dma->vaddr; 871 872 return 0; 873 874 fail: 875 wpi_dma_contig_free(dma); 876 return error; 877 } 878 879 static void 880 wpi_dma_contig_free(struct wpi_dma_info *dma) 881 { 882 if (dma->tag) { 883 if (dma->map != NULL) { 884 if (dma->paddr_start != 0) { 885 bus_dmamap_sync(dma->tag, dma->map, 886 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 887 bus_dmamap_unload(dma->tag, dma->map); 888 } 889 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 890 } 891 bus_dma_tag_destroy(dma->tag); 892 } 893 } 894 895 /* 896 * Allocate a shared page between host and NIC. 897 */ 898 static int 899 wpi_alloc_shared(struct wpi_softc *sc) 900 { 901 int error; 902 903 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 904 (void **)&sc->shared, sizeof (struct wpi_shared), 905 PAGE_SIZE, 906 BUS_DMA_NOWAIT); 907 908 if (error != 0) { 909 device_printf(sc->sc_dev, 910 "could not allocate shared area DMA memory\n"); 911 } 912 913 return error; 914 } 915 916 static void 917 wpi_free_shared(struct wpi_softc *sc) 918 { 919 wpi_dma_contig_free(&sc->shared_dma); 920 } 921 922 static int 923 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 924 { 925 926 int i, error; 927 928 ring->cur = 0; 929 930 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 931 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 932 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 933 934 if (error != 0) { 935 device_printf(sc->sc_dev, 936 "%s: could not allocate rx ring DMA memory, error %d\n", 937 __func__, error); 938 goto fail; 939 } 940 941 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 942 BUS_SPACE_MAXADDR_32BIT, 943 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 944 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 945 if (error != 0) { 946 device_printf(sc->sc_dev, 947 "%s: bus_dma_tag_create_failed, error %d\n", 948 __func__, error); 949 goto fail; 950 } 951 952 /* 953 * Setup Rx buffers. 954 */ 955 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 956 struct wpi_rx_data *data = &ring->data[i]; 957 struct mbuf *m; 958 bus_addr_t paddr; 959 960 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 961 if (error != 0) { 962 device_printf(sc->sc_dev, 963 "%s: bus_dmamap_create failed, error %d\n", 964 __func__, error); 965 goto fail; 966 } 967 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 968 if (m == NULL) { 969 device_printf(sc->sc_dev, 970 "%s: could not allocate rx mbuf\n", __func__); 971 error = ENOMEM; 972 goto fail; 973 } 974 /* map page */ 975 error = bus_dmamap_load(ring->data_dmat, data->map, 976 mtod(m, caddr_t), MJUMPAGESIZE, 977 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 978 if (error != 0 && error != EFBIG) { 979 device_printf(sc->sc_dev, 980 "%s: bus_dmamap_load failed, error %d\n", 981 __func__, error); 982 m_freem(m); 983 error = ENOMEM; /* XXX unique code */ 984 goto fail; 985 } 986 bus_dmamap_sync(ring->data_dmat, data->map, 987 BUS_DMASYNC_PREWRITE); 988 989 data->m = m; 990 ring->desc[i] = htole32(paddr); 991 } 992 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 993 BUS_DMASYNC_PREWRITE); 994 return 0; 995 fail: 996 wpi_free_rx_ring(sc, ring); 997 return error; 998 } 999 1000 static void 1001 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1002 { 1003 int ntries; 1004 1005 wpi_mem_lock(sc); 1006 1007 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1008 1009 for (ntries = 0; ntries < 100; ntries++) { 1010 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1011 break; 1012 DELAY(10); 1013 } 1014 1015 wpi_mem_unlock(sc); 1016 1017 #ifdef WPI_DEBUG 1018 if (ntries == 100) 1019 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1020 #endif 1021 1022 ring->cur = 0; 1023 } 1024 1025 static void 1026 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1027 { 1028 int i; 1029 1030 wpi_dma_contig_free(&ring->desc_dma); 1031 1032 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1033 if (ring->data[i].m != NULL) 1034 m_freem(ring->data[i].m); 1035 } 1036 1037 static int 1038 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1039 int qid) 1040 { 1041 struct wpi_tx_data *data; 1042 int i, error; 1043 1044 ring->qid = qid; 1045 ring->count = count; 1046 ring->queued = 0; 1047 ring->cur = 0; 1048 ring->data = NULL; 1049 1050 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1051 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1052 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1053 1054 if (error != 0) { 1055 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1056 goto fail; 1057 } 1058 1059 /* update shared page with ring's base address */ 1060 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1061 1062 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1063 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1064 BUS_DMA_NOWAIT); 1065 1066 if (error != 0) { 1067 device_printf(sc->sc_dev, 1068 "could not allocate tx command DMA memory\n"); 1069 goto fail; 1070 } 1071 1072 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1073 M_NOWAIT | M_ZERO); 1074 if (ring->data == NULL) { 1075 device_printf(sc->sc_dev, 1076 "could not allocate tx data slots\n"); 1077 goto fail; 1078 } 1079 1080 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1081 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1082 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1083 &ring->data_dmat); 1084 if (error != 0) { 1085 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1086 goto fail; 1087 } 1088 1089 for (i = 0; i < count; i++) { 1090 data = &ring->data[i]; 1091 1092 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1093 if (error != 0) { 1094 device_printf(sc->sc_dev, 1095 "could not create tx buf DMA map\n"); 1096 goto fail; 1097 } 1098 bus_dmamap_sync(ring->data_dmat, data->map, 1099 BUS_DMASYNC_PREWRITE); 1100 } 1101 1102 return 0; 1103 1104 fail: 1105 wpi_free_tx_ring(sc, ring); 1106 return error; 1107 } 1108 1109 static void 1110 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1111 { 1112 struct wpi_tx_data *data; 1113 int i, ntries; 1114 1115 wpi_mem_lock(sc); 1116 1117 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1118 for (ntries = 0; ntries < 100; ntries++) { 1119 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1120 break; 1121 DELAY(10); 1122 } 1123 #ifdef WPI_DEBUG 1124 if (ntries == 100) 1125 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1126 ring->qid); 1127 #endif 1128 wpi_mem_unlock(sc); 1129 1130 for (i = 0; i < ring->count; i++) { 1131 data = &ring->data[i]; 1132 1133 if (data->m != NULL) { 1134 bus_dmamap_unload(ring->data_dmat, data->map); 1135 m_freem(data->m); 1136 data->m = NULL; 1137 } 1138 } 1139 1140 ring->queued = 0; 1141 ring->cur = 0; 1142 } 1143 1144 static void 1145 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1146 { 1147 struct wpi_tx_data *data; 1148 int i; 1149 1150 wpi_dma_contig_free(&ring->desc_dma); 1151 wpi_dma_contig_free(&ring->cmd_dma); 1152 1153 if (ring->data != NULL) { 1154 for (i = 0; i < ring->count; i++) { 1155 data = &ring->data[i]; 1156 1157 if (data->m != NULL) { 1158 bus_dmamap_sync(ring->data_dmat, data->map, 1159 BUS_DMASYNC_POSTWRITE); 1160 bus_dmamap_unload(ring->data_dmat, data->map); 1161 m_freem(data->m); 1162 data->m = NULL; 1163 } 1164 } 1165 free(ring->data, M_DEVBUF); 1166 } 1167 1168 if (ring->data_dmat != NULL) 1169 bus_dma_tag_destroy(ring->data_dmat); 1170 } 1171 1172 static int 1173 wpi_shutdown(device_t dev) 1174 { 1175 struct wpi_softc *sc = device_get_softc(dev); 1176 1177 WPI_LOCK(sc); 1178 wpi_stop_locked(sc); 1179 wpi_unload_firmware(sc); 1180 WPI_UNLOCK(sc); 1181 1182 return 0; 1183 } 1184 1185 static int 1186 wpi_suspend(device_t dev) 1187 { 1188 struct wpi_softc *sc = device_get_softc(dev); 1189 1190 wpi_stop(sc); 1191 return 0; 1192 } 1193 1194 static int 1195 wpi_resume(device_t dev) 1196 { 1197 struct wpi_softc *sc = device_get_softc(dev); 1198 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1199 1200 pci_write_config(dev, 0x41, 0, 1); 1201 1202 if (ifp->if_flags & IFF_UP) { 1203 wpi_init(ifp->if_softc); 1204 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1205 wpi_start(ifp); 1206 } 1207 return 0; 1208 } 1209 1210 /* ARGSUSED */ 1211 static struct ieee80211_node * 1212 wpi_node_alloc(struct ieee80211_node_table *ic) 1213 { 1214 struct wpi_node *wn; 1215 1216 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT |M_ZERO); 1217 1218 return &wn->ni; 1219 } 1220 1221 static int 1222 wpi_media_change(struct ifnet *ifp) 1223 { 1224 int error; 1225 1226 error = ieee80211_media_change(ifp); 1227 if (error != ENETRESET) 1228 return error; 1229 1230 if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 1231 wpi_init(ifp->if_softc); 1232 1233 return 0; 1234 } 1235 1236 /** 1237 * Called by net80211 when ever there is a change to 80211 state machine 1238 */ 1239 static int 1240 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1241 { 1242 struct ifnet *ifp = ic->ic_ifp; 1243 struct wpi_softc *sc = ifp->if_softc; 1244 1245 DPRINTF(("%s: %s -> %s\n", __func__, 1246 ieee80211_state_name[ic->ic_state], 1247 ieee80211_state_name[nstate])); 1248 1249 switch (nstate) { 1250 case IEEE80211_S_SCAN: 1251 /* 1252 * Scanning is handled in net80211 via the scan_start, 1253 * scan_end, scan_curchan functions. Hence all we do when 1254 * changing to the SCAN state is update the leds 1255 */ 1256 1257 /* make the link LED blink while we're scanning */ 1258 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 1259 break; 1260 1261 case IEEE80211_S_AUTH: 1262 /* Delay the auth transition until we can update the firmware */ 1263 return wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL); 1264 1265 case IEEE80211_S_RUN: 1266 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 1267 /* link LED blinks while monitoring */ 1268 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 1269 break; 1270 } 1271 if (ic->ic_state != IEEE80211_S_RUN) 1272 /* set the association id first */ 1273 return wpi_queue_cmd(sc, WPI_RUN, arg, 1274 WPI_QUEUE_NORMAL); 1275 break; 1276 1277 default: 1278 break; 1279 } 1280 1281 return sc->sc_newstate(ic, nstate, arg); 1282 } 1283 1284 /* 1285 * Grab exclusive access to NIC memory. 1286 */ 1287 static void 1288 wpi_mem_lock(struct wpi_softc *sc) 1289 { 1290 int ntries; 1291 uint32_t tmp; 1292 1293 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1294 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1295 1296 /* spin until we actually get the lock */ 1297 for (ntries = 0; ntries < 100; ntries++) { 1298 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1299 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1300 break; 1301 DELAY(10); 1302 } 1303 if (ntries == 100) 1304 device_printf(sc->sc_dev, "could not lock memory\n"); 1305 } 1306 1307 /* 1308 * Release lock on NIC memory. 1309 */ 1310 static void 1311 wpi_mem_unlock(struct wpi_softc *sc) 1312 { 1313 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1314 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1315 } 1316 1317 static uint32_t 1318 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1319 { 1320 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1321 return WPI_READ(sc, WPI_READ_MEM_DATA); 1322 } 1323 1324 static void 1325 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1326 { 1327 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1328 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1329 } 1330 1331 static void 1332 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1333 const uint32_t *data, int wlen) 1334 { 1335 for (; wlen > 0; wlen--, data++, addr+=4) 1336 wpi_mem_write(sc, addr, *data); 1337 } 1338 1339 /* 1340 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1341 * using the traditional bit-bang method. Data is read up until len bytes have 1342 * been obtained. 1343 */ 1344 static uint16_t 1345 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1346 { 1347 int ntries; 1348 uint32_t val; 1349 uint8_t *out = data; 1350 1351 wpi_mem_lock(sc); 1352 1353 for (; len > 0; len -= 2, addr++) { 1354 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1355 1356 for (ntries = 0; ntries < 10; ntries++) { 1357 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1358 break; 1359 DELAY(5); 1360 } 1361 1362 if (ntries == 10) { 1363 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1364 return ETIMEDOUT; 1365 } 1366 1367 *out++= val >> 16; 1368 if (len > 1) 1369 *out ++= val >> 24; 1370 } 1371 1372 wpi_mem_unlock(sc); 1373 1374 return 0; 1375 } 1376 1377 /* 1378 * The firmware text and data segments are transferred to the NIC using DMA. 1379 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1380 * where to find it. Once the NIC has copied the firmware into its internal 1381 * memory, we can free our local copy in the driver. 1382 */ 1383 static int 1384 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1385 { 1386 int error, ntries; 1387 1388 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1389 1390 size /= sizeof(uint32_t); 1391 1392 wpi_mem_lock(sc); 1393 1394 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1395 (const uint32_t *)fw, size); 1396 1397 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1398 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1399 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1400 1401 /* run microcode */ 1402 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1403 1404 /* wait while the adapter is busy copying the firmware */ 1405 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1406 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1407 DPRINTFN(WPI_DEBUG_HW, 1408 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1409 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1410 if (status & WPI_TX_IDLE(6)) { 1411 DPRINTFN(WPI_DEBUG_HW, 1412 ("Status Match! - ntries = %d\n", ntries)); 1413 break; 1414 } 1415 DELAY(10); 1416 } 1417 if (ntries == 1000) { 1418 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1419 error = ETIMEDOUT; 1420 } 1421 1422 /* start the microcode executing */ 1423 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1424 1425 wpi_mem_unlock(sc); 1426 1427 return (error); 1428 } 1429 1430 static void 1431 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1432 struct wpi_rx_data *data) 1433 { 1434 struct ieee80211com *ic = &sc->sc_ic; 1435 struct ifnet *ifp = ic->ic_ifp; 1436 struct wpi_rx_ring *ring = &sc->rxq; 1437 struct wpi_rx_stat *stat; 1438 struct wpi_rx_head *head; 1439 struct wpi_rx_tail *tail; 1440 struct ieee80211_node *ni; 1441 struct mbuf *m, *mnew; 1442 bus_addr_t paddr; 1443 int error; 1444 1445 stat = (struct wpi_rx_stat *)(desc + 1); 1446 1447 if (stat->len > WPI_STAT_MAXLEN) { 1448 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1449 ifp->if_ierrors++; 1450 return; 1451 } 1452 1453 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1454 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1455 1456 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1457 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1458 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1459 (uintmax_t)le64toh(tail->tstamp))); 1460 1461 /* XXX don't need mbuf, just dma buffer */ 1462 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1463 if (mnew == NULL) { 1464 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1465 __func__)); 1466 ic->ic_stats.is_rx_nobuf++; 1467 ifp->if_ierrors++; 1468 return; 1469 } 1470 error = bus_dmamap_load(ring->data_dmat, data->map, 1471 mtod(mnew, caddr_t), MJUMPAGESIZE, 1472 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1473 if (error != 0 && error != EFBIG) { 1474 device_printf(sc->sc_dev, 1475 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1476 m_freem(mnew); 1477 ic->ic_stats.is_rx_nobuf++; /* XXX need stat */ 1478 ifp->if_ierrors++; 1479 return; 1480 } 1481 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1482 1483 /* finalize mbuf and swap in new one */ 1484 m = data->m; 1485 m->m_pkthdr.rcvif = ifp; 1486 m->m_data = (caddr_t)(head + 1); 1487 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1488 1489 data->m = mnew; 1490 /* update Rx descriptor */ 1491 ring->desc[ring->cur] = htole32(paddr); 1492 1493 if (bpf_peers_present(sc->sc_drvbpf)) { 1494 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1495 1496 tap->wr_flags = 0; 1497 tap->wr_chan_freq = 1498 htole16(ic->ic_channels[head->chan].ic_freq); 1499 tap->wr_chan_flags = 1500 htole16(ic->ic_channels[head->chan].ic_flags); 1501 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1502 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1503 tap->wr_tsft = tail->tstamp; 1504 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1505 switch (head->rate) { 1506 /* CCK rates */ 1507 case 10: tap->wr_rate = 2; break; 1508 case 20: tap->wr_rate = 4; break; 1509 case 55: tap->wr_rate = 11; break; 1510 case 110: tap->wr_rate = 22; break; 1511 /* OFDM rates */ 1512 case 0xd: tap->wr_rate = 12; break; 1513 case 0xf: tap->wr_rate = 18; break; 1514 case 0x5: tap->wr_rate = 24; break; 1515 case 0x7: tap->wr_rate = 36; break; 1516 case 0x9: tap->wr_rate = 48; break; 1517 case 0xb: tap->wr_rate = 72; break; 1518 case 0x1: tap->wr_rate = 96; break; 1519 case 0x3: tap->wr_rate = 108; break; 1520 /* unknown rate: should not happen */ 1521 default: tap->wr_rate = 0; 1522 } 1523 if (le16toh(head->flags) & 0x4) 1524 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1525 1526 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1527 } 1528 1529 WPI_UNLOCK(sc); 1530 1531 /* XXX frame length > sizeof(struct ieee80211_frame_min)? */ 1532 /* grab a reference to the source node */ 1533 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1534 1535 /* send the frame to the 802.11 layer */ 1536 ieee80211_input(ic, m, ni, stat->rssi, 0, 0); 1537 1538 /* release node reference */ 1539 ieee80211_free_node(ni); 1540 WPI_LOCK(sc); 1541 } 1542 1543 static void 1544 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1545 { 1546 struct ifnet *ifp = sc->sc_ic.ic_ifp; 1547 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1548 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1549 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1550 struct wpi_node *wn = (struct wpi_node *)txdata->ni; 1551 1552 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1553 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1554 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1555 le32toh(stat->status))); 1556 1557 /* 1558 * Update rate control statistics for the node. 1559 * XXX we should not count mgmt frames since they're always sent at 1560 * the lowest available bit-rate. 1561 * XXX frames w/o ACK shouldn't be used either 1562 */ 1563 wn->amn.amn_txcnt++; 1564 if (stat->ntries > 0) { 1565 DPRINTFN(3, ("%d retries\n", stat->ntries)); 1566 wn->amn.amn_retrycnt++; 1567 } 1568 1569 /* XXX oerrors should only count errors !maxtries */ 1570 if ((le32toh(stat->status) & 0xff) != 1) 1571 ifp->if_oerrors++; 1572 else 1573 ifp->if_opackets++; 1574 1575 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1576 bus_dmamap_unload(ring->data_dmat, txdata->map); 1577 /* XXX handle M_TXCB? */ 1578 m_freem(txdata->m); 1579 txdata->m = NULL; 1580 ieee80211_free_node(txdata->ni); 1581 txdata->ni = NULL; 1582 1583 ring->queued--; 1584 1585 sc->sc_tx_timer = 0; 1586 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1587 wpi_start(ifp); 1588 } 1589 1590 static void 1591 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1592 { 1593 struct wpi_tx_ring *ring = &sc->cmdq; 1594 struct wpi_tx_data *data; 1595 1596 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1597 "type=%s len=%d\n", desc->qid, desc->idx, 1598 desc->flags, wpi_cmd_str(desc->type), 1599 le32toh(desc->len))); 1600 1601 if ((desc->qid & 7) != 4) 1602 return; /* not a command ack */ 1603 1604 data = &ring->data[desc->idx]; 1605 1606 /* if the command was mapped in a mbuf, free it */ 1607 if (data->m != NULL) { 1608 bus_dmamap_unload(ring->data_dmat, data->map); 1609 m_freem(data->m); 1610 data->m = NULL; 1611 } 1612 1613 sc->flags &= ~WPI_FLAG_BUSY; 1614 wakeup(&ring->cmd[desc->idx]); 1615 } 1616 1617 static void 1618 wpi_notif_intr(struct wpi_softc *sc) 1619 { 1620 struct ieee80211com *ic = &sc->sc_ic; 1621 struct ifnet *ifp = ic->ic_ifp; 1622 struct wpi_rx_desc *desc; 1623 struct wpi_rx_data *data; 1624 uint32_t hw; 1625 1626 hw = le32toh(sc->shared->next); 1627 while (sc->rxq.cur != hw) { 1628 data = &sc->rxq.data[sc->rxq.cur]; 1629 desc = (void *)data->m->m_ext.ext_buf; 1630 1631 DPRINTFN(WPI_DEBUG_NOTIFY, 1632 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1633 desc->qid, 1634 desc->idx, 1635 desc->flags, 1636 desc->type, 1637 le32toh(desc->len))); 1638 1639 if (!(desc->qid & 0x80)) /* reply to a command */ 1640 wpi_cmd_intr(sc, desc); 1641 1642 switch (desc->type) { 1643 case WPI_RX_DONE: 1644 /* a 802.11 frame was received */ 1645 wpi_rx_intr(sc, desc, data); 1646 break; 1647 1648 case WPI_TX_DONE: 1649 /* a 802.11 frame has been transmitted */ 1650 wpi_tx_intr(sc, desc); 1651 break; 1652 1653 case WPI_UC_READY: 1654 { 1655 struct wpi_ucode_info *uc = 1656 (struct wpi_ucode_info *)(desc + 1); 1657 1658 /* the microcontroller is ready */ 1659 DPRINTF(("microcode alive notification version %x " 1660 "alive %x\n", le32toh(uc->version), 1661 le32toh(uc->valid))); 1662 1663 if (le32toh(uc->valid) != 1) { 1664 device_printf(sc->sc_dev, 1665 "microcontroller initialization failed\n"); 1666 wpi_stop_locked(sc); 1667 } 1668 break; 1669 } 1670 case WPI_STATE_CHANGED: 1671 { 1672 uint32_t *status = (uint32_t *)(desc + 1); 1673 1674 /* enabled/disabled notification */ 1675 DPRINTF(("state changed to %x\n", le32toh(*status))); 1676 1677 if (le32toh(*status) & 1) { 1678 device_printf(sc->sc_dev, 1679 "Radio transmitter is switched off\n"); 1680 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1681 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1682 /* Disable firmware commands */ 1683 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1684 } 1685 break; 1686 } 1687 case WPI_START_SCAN: 1688 { 1689 struct wpi_start_scan *scan = 1690 (struct wpi_start_scan *)(desc + 1); 1691 1692 DPRINTFN(WPI_DEBUG_SCANNING, 1693 ("scanning channel %d status %x\n", 1694 scan->chan, le32toh(scan->status))); 1695 break; 1696 } 1697 case WPI_STOP_SCAN: 1698 { 1699 struct wpi_stop_scan *scan = 1700 (struct wpi_stop_scan *)(desc + 1); 1701 1702 DPRINTFN(WPI_DEBUG_SCANNING, 1703 ("scan finished nchan=%d status=%d chan=%d\n", 1704 scan->nchan, scan->status, scan->chan)); 1705 1706 sc->sc_scan_timer = 0; 1707 ieee80211_scan_next(ic); 1708 break; 1709 } 1710 case WPI_MISSED_BEACON: 1711 { 1712 struct wpi_missed_beacon *beacon = 1713 (struct wpi_missed_beacon *)(desc + 1); 1714 1715 if (le32toh(beacon->consecutive) >= 1716 ic->ic_bmissthreshold) { 1717 DPRINTF(("Beacon miss: %u >= %u\n", 1718 le32toh(beacon->consecutive), 1719 ic->ic_bmissthreshold)); 1720 ieee80211_beacon_miss(ic); 1721 } 1722 break; 1723 } 1724 } 1725 1726 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1727 } 1728 1729 /* tell the firmware what we have processed */ 1730 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1731 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1732 } 1733 1734 static void 1735 wpi_intr(void *arg) 1736 { 1737 struct wpi_softc *sc = arg; 1738 uint32_t r; 1739 1740 WPI_LOCK(sc); 1741 1742 r = WPI_READ(sc, WPI_INTR); 1743 if (r == 0 || r == 0xffffffff) { 1744 WPI_UNLOCK(sc); 1745 return; 1746 } 1747 1748 /* disable interrupts */ 1749 WPI_WRITE(sc, WPI_MASK, 0); 1750 /* ack interrupts */ 1751 WPI_WRITE(sc, WPI_INTR, r); 1752 1753 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1754 device_printf(sc->sc_dev, "fatal firmware error\n"); 1755 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1756 "(Hardware Error)")); 1757 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 1758 sc->flags &= ~WPI_FLAG_BUSY; 1759 WPI_UNLOCK(sc); 1760 return; 1761 } 1762 1763 if (r & WPI_RX_INTR) 1764 wpi_notif_intr(sc); 1765 1766 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1767 wakeup(sc); 1768 1769 /* re-enable interrupts */ 1770 if (sc->sc_ifp->if_flags & IFF_UP) 1771 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1772 1773 WPI_UNLOCK(sc); 1774 } 1775 1776 static uint8_t 1777 wpi_plcp_signal(int rate) 1778 { 1779 switch (rate) { 1780 /* CCK rates (returned values are device-dependent) */ 1781 case 2: return 10; 1782 case 4: return 20; 1783 case 11: return 55; 1784 case 22: return 110; 1785 1786 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1787 /* R1-R4 (ral/ural is R4-R1) */ 1788 case 12: return 0xd; 1789 case 18: return 0xf; 1790 case 24: return 0x5; 1791 case 36: return 0x7; 1792 case 48: return 0x9; 1793 case 72: return 0xb; 1794 case 96: return 0x1; 1795 case 108: return 0x3; 1796 1797 /* unsupported rates (should not get there) */ 1798 default: return 0; 1799 } 1800 } 1801 1802 /* quickly determine if a given rate is CCK or OFDM */ 1803 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1804 1805 /* 1806 * Construct the data packet for a transmit buffer and acutally put 1807 * the buffer onto the transmit ring, kicking the card to process the 1808 * the buffer. 1809 */ 1810 static int 1811 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1812 int ac) 1813 { 1814 struct ieee80211com *ic = &sc->sc_ic; 1815 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1816 struct wpi_tx_ring *ring = &sc->txq[ac]; 1817 struct wpi_tx_desc *desc; 1818 struct wpi_tx_data *data; 1819 struct wpi_tx_cmd *cmd; 1820 struct wpi_cmd_data *tx; 1821 struct ieee80211_frame *wh; 1822 struct ieee80211_key *k; 1823 struct mbuf *mnew; 1824 int i, error, nsegs, rate, hdrlen, ismcast; 1825 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1826 1827 desc = &ring->desc[ring->cur]; 1828 data = &ring->data[ring->cur]; 1829 1830 wh = mtod(m0, struct ieee80211_frame *); 1831 1832 hdrlen = ieee80211_hdrsize(wh); 1833 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1834 1835 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1836 k = ieee80211_crypto_encap(ic, ni, m0); 1837 if (k == NULL) { 1838 m_freem(m0); 1839 return ENOBUFS; 1840 } 1841 /* packet header may have moved, reset our local pointer */ 1842 wh = mtod(m0, struct ieee80211_frame *); 1843 } 1844 1845 cmd = &ring->cmd[ring->cur]; 1846 cmd->code = WPI_CMD_TX_DATA; 1847 cmd->flags = 0; 1848 cmd->qid = ring->qid; 1849 cmd->idx = ring->cur; 1850 1851 tx = (struct wpi_cmd_data *)cmd->data; 1852 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1853 tx->timeout= htole16(0); 1854 tx->ofdm_mask = 0xff; 1855 tx->cck_mask = 0x0f; 1856 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1857 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1858 tx->len = htole16(m0->m_pkthdr.len); 1859 1860 if (!ismcast) { 1861 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1862 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1863 tx->flags |= htole32(WPI_TX_NEED_ACK); 1864 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { 1865 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1866 tx->rts_ntries = 7; 1867 } 1868 } 1869 1870 /* pick a rate */ 1871 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MASK) { 1872 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1873 /* tell h/w to set timestamp in probe responses */ 1874 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1875 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1876 1877 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1878 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1879 tx->timeout = htole16(3); 1880 else 1881 tx->timeout = htole16(2); 1882 1883 rate = ni->ni_rates.rs_rates[0] & IEEE80211_RATE_VAL; 1884 } else if (ismcast) { 1885 rate = ic->ic_mcast_rate; 1886 } else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1887 rate = ic->ic_fixed_rate; 1888 } else { 1889 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1890 rate &= IEEE80211_RATE_VAL; 1891 } 1892 tx->rate = wpi_plcp_signal(rate); 1893 1894 /* be very persistant at sending frames out */ 1895 tx->data_ntries = 15; /* XXX Way too high */ 1896 1897 if (bpf_peers_present(sc->sc_drvbpf)) { 1898 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1899 tap->wt_flags = 0; 1900 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); 1901 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); 1902 tap->wt_rate = rate; 1903 tap->wt_hwqueue = ac; 1904 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1905 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1906 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1907 } 1908 1909 /* save and trim IEEE802.11 header */ 1910 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1911 m_adj(m0, hdrlen); 1912 1913 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs, 1914 &nsegs, BUS_DMA_NOWAIT); 1915 if (error != 0 && error != EFBIG) { 1916 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1917 error); 1918 m_freem(m0); 1919 return error; 1920 } 1921 if (error != 0) { 1922 /* XXX use m_collapse */ 1923 mnew = m_defrag(m0, M_DONTWAIT); 1924 if (mnew == NULL) { 1925 device_printf(sc->sc_dev, 1926 "could not defragment mbuf\n"); 1927 m_freem(m0); 1928 return ENOBUFS; 1929 } 1930 m0 = mnew; 1931 1932 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 1933 m0, segs, &nsegs, BUS_DMA_NOWAIT); 1934 if (error != 0) { 1935 device_printf(sc->sc_dev, 1936 "could not map mbuf (error %d)\n", error); 1937 m_freem(m0); 1938 return error; 1939 } 1940 } 1941 1942 data->m = m0; 1943 data->ni = ni; 1944 1945 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1946 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1947 1948 /* first scatter/gather segment is used by the tx data command */ 1949 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1950 (1 + nsegs) << 24); 1951 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1952 ring->cur * sizeof (struct wpi_tx_cmd)); 1953 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 1954 for (i = 1; i <= nsegs; i++) { 1955 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 1956 desc->segs[i].len = htole32(segs[i - 1].ds_len); 1957 } 1958 1959 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1960 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1961 BUS_DMASYNC_PREWRITE); 1962 1963 ring->queued++; 1964 1965 /* kick ring */ 1966 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 1967 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 1968 1969 return 0; 1970 } 1971 1972 /** 1973 * Process data waiting to be sent on the IFNET output queue 1974 */ 1975 static void 1976 wpi_start(struct ifnet *ifp) 1977 { 1978 struct wpi_softc *sc = ifp->if_softc; 1979 struct ieee80211com *ic = &sc->sc_ic; 1980 struct ieee80211_node *ni; 1981 struct ether_header *eh; 1982 struct mbuf *m0; 1983 int ac, waslocked; 1984 1985 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1986 return; 1987 1988 waslocked = WPI_LOCK_OWNED(sc); 1989 if (!waslocked) 1990 WPI_LOCK(sc); 1991 1992 for (;;) { 1993 IF_DEQUEUE(&ic->ic_mgtq, m0); 1994 if (m0 != NULL) { 1995 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1996 m0->m_pkthdr.rcvif = NULL; 1997 1998 /* management frames go into ring 0 */ 1999 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2000 ifp->if_oerrors++; 2001 continue; 2002 } 2003 2004 if (wpi_tx_data(sc, m0, ni, 0) != 0) { 2005 ifp->if_oerrors++; 2006 break; 2007 } 2008 } else { 2009 if (ic->ic_state != IEEE80211_S_RUN) 2010 break; 2011 2012 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 2013 if (m0 == NULL) 2014 break; 2015 2016 /* 2017 * Cancel any background scan. 2018 */ 2019 if (ic->ic_flags & IEEE80211_F_SCAN) 2020 ieee80211_cancel_scan(ic); 2021 2022 if (m0->m_len < sizeof (*eh) && 2023 (m0 = m_pullup(m0, sizeof (*eh))) != NULL) { 2024 ifp->if_oerrors++; 2025 continue; 2026 } 2027 eh = mtod(m0, struct ether_header *); 2028 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2029 if (ni == NULL) { 2030 m_freem(m0); 2031 ifp->if_oerrors++; 2032 continue; 2033 } 2034 2035 /* classify mbuf so we can find which tx ring to use */ 2036 if (ieee80211_classify(ic, m0, ni) != 0) { 2037 m_freem(m0); 2038 ieee80211_free_node(ni); 2039 ifp->if_oerrors++; 2040 continue; 2041 } 2042 2043 ac = M_WME_GETAC(m0); 2044 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2045 /* there is no place left in this ring */ 2046 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 2047 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2048 break; 2049 } 2050 2051 BPF_MTAP(ifp, m0); 2052 2053 m0 = ieee80211_encap(ic, m0, ni); 2054 if (m0 == NULL) { 2055 ieee80211_free_node(ni); 2056 ifp->if_oerrors++; 2057 continue; 2058 } 2059 2060 if (bpf_peers_present(ic->ic_rawbpf)) 2061 bpf_mtap(ic->ic_rawbpf, m0); 2062 2063 if (wpi_tx_data(sc, m0, ni, ac) != 0) { 2064 ieee80211_free_node(ni); 2065 ifp->if_oerrors++; 2066 break; 2067 } 2068 } 2069 2070 sc->sc_tx_timer = 5; 2071 ic->ic_lastdata = ticks; 2072 } 2073 2074 if (!waslocked) 2075 WPI_UNLOCK(sc); 2076 } 2077 2078 static int 2079 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2080 { 2081 struct wpi_softc *sc = ifp->if_softc; 2082 struct ieee80211com *ic = &sc->sc_ic; 2083 int error = 0; 2084 2085 WPI_LOCK(sc); 2086 2087 switch (cmd) { 2088 case SIOCSIFFLAGS: 2089 if ((ifp->if_flags & IFF_UP)) { 2090 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 2091 wpi_init_locked(sc, 0); 2092 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) || 2093 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2094 wpi_stop_locked(sc); 2095 break; 2096 default: 2097 WPI_UNLOCK(sc); 2098 error = ieee80211_ioctl(ic, cmd, data); 2099 WPI_LOCK(sc); 2100 } 2101 2102 if (error == ENETRESET) { 2103 if ((ifp->if_flags & IFF_UP) && 2104 (ifp->if_drv_flags & IFF_DRV_RUNNING) && 2105 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2106 wpi_init_locked(sc, 0); 2107 error = 0; 2108 } 2109 2110 WPI_UNLOCK(sc); 2111 2112 return error; 2113 } 2114 2115 /* 2116 * Extract various information from EEPROM. 2117 */ 2118 static void 2119 wpi_read_eeprom(struct wpi_softc *sc) 2120 { 2121 struct ieee80211com *ic = &sc->sc_ic; 2122 int i; 2123 2124 /* read the hardware capabilities, revision and SKU type */ 2125 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2126 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2127 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2128 2129 /* read the regulatory domain */ 2130 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2131 2132 /* read in the hw MAC address */ 2133 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6); 2134 2135 /* read the list of authorized channels */ 2136 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2137 wpi_read_eeprom_channels(sc,i); 2138 2139 /* read the power level calibration info for each group */ 2140 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2141 wpi_read_eeprom_group(sc,i); 2142 } 2143 2144 /* 2145 * Send a command to the firmware. 2146 */ 2147 static int 2148 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2149 { 2150 struct wpi_tx_ring *ring = &sc->cmdq; 2151 struct wpi_tx_desc *desc; 2152 struct wpi_tx_cmd *cmd; 2153 2154 #ifdef WPI_DEBUG 2155 if (!async) { 2156 WPI_LOCK_ASSERT(sc); 2157 } 2158 #endif 2159 2160 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2161 async)); 2162 2163 if (sc->flags & WPI_FLAG_BUSY) { 2164 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2165 __func__, code); 2166 return EAGAIN; 2167 } 2168 sc->flags|= WPI_FLAG_BUSY; 2169 2170 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2171 code, size)); 2172 2173 desc = &ring->desc[ring->cur]; 2174 cmd = &ring->cmd[ring->cur]; 2175 2176 cmd->code = code; 2177 cmd->flags = 0; 2178 cmd->qid = ring->qid; 2179 cmd->idx = ring->cur; 2180 memcpy(cmd->data, buf, size); 2181 2182 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2183 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2184 ring->cur * sizeof (struct wpi_tx_cmd)); 2185 desc->segs[0].len = htole32(4 + size); 2186 2187 /* kick cmd ring */ 2188 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2189 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2190 2191 if (async) { 2192 sc->flags &= ~ WPI_FLAG_BUSY; 2193 return 0; 2194 } 2195 2196 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 2197 } 2198 2199 static int 2200 wpi_wme_update(struct ieee80211com *ic) 2201 { 2202 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2203 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2204 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2205 const struct wmeParams *wmep; 2206 struct wpi_wme_setup wme; 2207 int ac; 2208 2209 /* don't override default WME values if WME is not actually enabled */ 2210 if (!(ic->ic_flags & IEEE80211_F_WME)) 2211 return 0; 2212 2213 wme.flags = 0; 2214 for (ac = 0; ac < WME_NUM_AC; ac++) { 2215 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2216 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2217 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2218 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2219 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2220 2221 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2222 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2223 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2224 } 2225 2226 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2227 #undef WPI_USEC 2228 #undef WPI_EXP2 2229 } 2230 2231 /* 2232 * Configure h/w multi-rate retries. 2233 */ 2234 static int 2235 wpi_mrr_setup(struct wpi_softc *sc) 2236 { 2237 struct ieee80211com *ic = &sc->sc_ic; 2238 struct wpi_mrr_setup mrr; 2239 int i, error; 2240 2241 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2242 2243 /* CCK rates (not used with 802.11a) */ 2244 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2245 mrr.rates[i].flags = 0; 2246 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2247 /* fallback to the immediate lower CCK rate (if any) */ 2248 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2249 /* try one time at this rate before falling back to "next" */ 2250 mrr.rates[i].ntries = 1; 2251 } 2252 2253 /* OFDM rates (not used with 802.11b) */ 2254 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2255 mrr.rates[i].flags = 0; 2256 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2257 /* fallback to the immediate lower OFDM rate (if any) */ 2258 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2259 mrr.rates[i].next = (i == WPI_OFDM6) ? 2260 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2261 WPI_OFDM6 : WPI_CCK2) : 2262 i - 1; 2263 /* try one time at this rate before falling back to "next" */ 2264 mrr.rates[i].ntries = 1; 2265 } 2266 2267 /* setup MRR for control frames */ 2268 mrr.which = htole32(WPI_MRR_CTL); 2269 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2270 if (error != 0) { 2271 device_printf(sc->sc_dev, 2272 "could not setup MRR for control frames\n"); 2273 return error; 2274 } 2275 2276 /* setup MRR for data frames */ 2277 mrr.which = htole32(WPI_MRR_DATA); 2278 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2279 if (error != 0) { 2280 device_printf(sc->sc_dev, 2281 "could not setup MRR for data frames\n"); 2282 return error; 2283 } 2284 2285 return 0; 2286 } 2287 2288 static void 2289 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2290 { 2291 struct wpi_cmd_led led; 2292 2293 led.which = which; 2294 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2295 led.off = off; 2296 led.on = on; 2297 2298 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2299 } 2300 2301 static void 2302 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2303 { 2304 struct wpi_cmd_tsf tsf; 2305 uint64_t val, mod; 2306 2307 memset(&tsf, 0, sizeof tsf); 2308 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2309 tsf.bintval = htole16(ni->ni_intval); 2310 tsf.lintval = htole16(10); 2311 2312 /* compute remaining time until next beacon */ 2313 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2314 mod = le64toh(tsf.tstamp) % val; 2315 tsf.binitval = htole32((uint32_t)(val - mod)); 2316 2317 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2318 device_printf(sc->sc_dev, "could not enable TSF\n"); 2319 } 2320 2321 #if 0 2322 /* 2323 * Build a beacon frame that the firmware will broadcast periodically in 2324 * IBSS or HostAP modes. 2325 */ 2326 static int 2327 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2328 { 2329 struct ieee80211com *ic = &sc->sc_ic; 2330 struct wpi_tx_ring *ring = &sc->cmdq; 2331 struct wpi_tx_desc *desc; 2332 struct wpi_tx_data *data; 2333 struct wpi_tx_cmd *cmd; 2334 struct wpi_cmd_beacon *bcn; 2335 struct ieee80211_beacon_offsets bo; 2336 struct mbuf *m0; 2337 bus_addr_t physaddr; 2338 int error; 2339 2340 desc = &ring->desc[ring->cur]; 2341 data = &ring->data[ring->cur]; 2342 2343 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2344 if (m0 == NULL) { 2345 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2346 return ENOMEM; 2347 } 2348 2349 cmd = &ring->cmd[ring->cur]; 2350 cmd->code = WPI_CMD_SET_BEACON; 2351 cmd->flags = 0; 2352 cmd->qid = ring->qid; 2353 cmd->idx = ring->cur; 2354 2355 bcn = (struct wpi_cmd_beacon *)cmd->data; 2356 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2357 bcn->id = WPI_ID_BROADCAST; 2358 bcn->ofdm_mask = 0xff; 2359 bcn->cck_mask = 0x0f; 2360 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2361 bcn->len = htole16(m0->m_pkthdr.len); 2362 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2363 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2364 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2365 2366 /* save and trim IEEE802.11 header */ 2367 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2368 m_adj(m0, sizeof (struct ieee80211_frame)); 2369 2370 /* assume beacon frame is contiguous */ 2371 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2372 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2373 if (error != 0) { 2374 device_printf(sc->sc_dev, "could not map beacon\n"); 2375 m_freem(m0); 2376 return error; 2377 } 2378 2379 data->m = m0; 2380 2381 /* first scatter/gather segment is used by the beacon command */ 2382 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2383 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2384 ring->cur * sizeof (struct wpi_tx_cmd)); 2385 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2386 desc->segs[1].addr = htole32(physaddr); 2387 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2388 2389 /* kick cmd ring */ 2390 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2391 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2392 2393 return 0; 2394 } 2395 #endif 2396 2397 static int 2398 wpi_auth(struct wpi_softc *sc) 2399 { 2400 struct ieee80211com *ic = &sc->sc_ic; 2401 struct ieee80211_node *ni = ic->ic_bss; 2402 struct wpi_node_info node; 2403 int error; 2404 2405 2406 /* update adapter's configuration */ 2407 sc->config.associd = 0; 2408 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2409 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2410 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2411 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2412 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2413 WPI_CONFIG_24GHZ); 2414 } 2415 switch (ic->ic_curmode) { 2416 case IEEE80211_MODE_11A: 2417 sc->config.cck_mask = 0; 2418 sc->config.ofdm_mask = 0x15; 2419 break; 2420 case IEEE80211_MODE_11B: 2421 sc->config.cck_mask = 0x03; 2422 sc->config.ofdm_mask = 0; 2423 break; 2424 default: /* assume 802.11b/g */ 2425 sc->config.cck_mask = 0x0f; 2426 sc->config.ofdm_mask = 0x15; 2427 } 2428 2429 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2430 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2431 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2432 sizeof (struct wpi_config), 1); 2433 if (error != 0) { 2434 device_printf(sc->sc_dev, "could not configure\n"); 2435 return error; 2436 } 2437 2438 /* configuration has changed, set Tx power accordingly */ 2439 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2440 device_printf(sc->sc_dev, "could not set Tx power\n"); 2441 return error; 2442 } 2443 2444 /* add default node */ 2445 memset(&node, 0, sizeof node); 2446 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2447 node.id = WPI_ID_BSS; 2448 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2449 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2450 node.action = htole32(WPI_ACTION_SET_RATE); 2451 node.antenna = WPI_ANTENNA_BOTH; 2452 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2453 if (error != 0) 2454 device_printf(sc->sc_dev, "could not add BSS node\n"); 2455 2456 return (error); 2457 } 2458 2459 static int 2460 wpi_run(struct wpi_softc *sc) 2461 { 2462 struct ieee80211com *ic = &sc->sc_ic; 2463 struct ieee80211_node *ni = ic->ic_bss; 2464 int error; 2465 2466 ni = ic->ic_bss; 2467 wpi_enable_tsf(sc, ni); 2468 2469 /* update adapter's configuration */ 2470 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2471 /* short preamble/slot time are negotiated when associating */ 2472 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2473 WPI_CONFIG_SHSLOT); 2474 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2475 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2476 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2477 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2478 sc->config.filter |= htole32(WPI_FILTER_BSS); 2479 2480 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2481 2482 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2483 sc->config.flags)); 2484 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2485 wpi_config), 1); 2486 if (error != 0) { 2487 device_printf(sc->sc_dev, "could not update configuration\n"); 2488 return error; 2489 } 2490 2491 error = wpi_set_txpower(sc, ic->ic_bsschan, 1); 2492 if (error != 0) { 2493 device_printf(sc->sc_dev, "could set txpower\n"); 2494 return error; 2495 } 2496 2497 if (ic->ic_opmode == IEEE80211_M_STA) { 2498 /* fake a join to init the tx rate */ 2499 wpi_newassoc(ic->ic_bss, 1); 2500 } 2501 2502 /* link LED always on while associated */ 2503 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2504 2505 /* start automatic rate control timer */ 2506 callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc); 2507 2508 return (error); 2509 } 2510 2511 /* 2512 * Send a scan request to the firmware. Since this command is huge, we map it 2513 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2514 * much of this code is similar to that in wpi_cmd but because we must manually 2515 * construct the probe & channels, we duplicate what's needed here. XXX In the 2516 * future, this function should be modified to use wpi_cmd to help cleanup the 2517 * code base. 2518 */ 2519 static int 2520 wpi_scan(struct wpi_softc *sc) 2521 { 2522 struct ieee80211com *ic = &sc->sc_ic; 2523 struct ieee80211_scan_state *ss = ic->ic_scan; 2524 struct wpi_tx_ring *ring = &sc->cmdq; 2525 struct wpi_tx_desc *desc; 2526 struct wpi_tx_data *data; 2527 struct wpi_tx_cmd *cmd; 2528 struct wpi_scan_hdr *hdr; 2529 struct wpi_scan_chan *chan; 2530 struct ieee80211_frame *wh; 2531 struct ieee80211_rateset *rs; 2532 struct ieee80211_channel *c; 2533 enum ieee80211_phymode mode; 2534 uint8_t *frm; 2535 int nrates, pktlen, error, i, nssid; 2536 bus_addr_t physaddr; 2537 struct ifnet *ifp = ic->ic_ifp; 2538 2539 desc = &ring->desc[ring->cur]; 2540 data = &ring->data[ring->cur]; 2541 2542 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2543 if (data->m == NULL) { 2544 device_printf(sc->sc_dev, 2545 "could not allocate mbuf for scan command\n"); 2546 return ENOMEM; 2547 } 2548 2549 cmd = mtod(data->m, struct wpi_tx_cmd *); 2550 cmd->code = WPI_CMD_SCAN; 2551 cmd->flags = 0; 2552 cmd->qid = ring->qid; 2553 cmd->idx = ring->cur; 2554 2555 hdr = (struct wpi_scan_hdr *)cmd->data; 2556 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2557 2558 /* 2559 * Move to the next channel if no packets are received within 5 msecs 2560 * after sending the probe request (this helps to reduce the duration 2561 * of active scans). 2562 */ 2563 hdr->quiet = htole16(5); 2564 hdr->threshold = htole16(1); 2565 2566 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2567 /* send probe requests at 6Mbps */ 2568 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2569 2570 /* Enable crc checking */ 2571 hdr->promotion = htole16(1); 2572 } else { 2573 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2574 /* send probe requests at 1Mbps */ 2575 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2576 } 2577 hdr->tx.id = WPI_ID_BROADCAST; 2578 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2579 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2580 2581 /*XXX Need to cater for multiple essids */ 2582 memset(&hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2583 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2584 for (i = 0; i < nssid; i++ ){ 2585 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2586 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2587 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2588 hdr->scan_essids[i].esslen); 2589 #ifdef WPI_DEBUG 2590 if (wpi_debug & WPI_DEBUG_SCANNING) { 2591 printf("Scanning Essid: "); 2592 ieee80211_print_essid(ic->ic_des_ssid[i].ssid, 2593 ic->ic_des_ssid[i].len); 2594 printf("\n"); 2595 } 2596 #endif 2597 } 2598 2599 /* 2600 * Build a probe request frame. Most of the following code is a 2601 * copy & paste of what is done in net80211. 2602 */ 2603 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2604 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2605 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2606 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2607 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2608 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2609 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2610 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2611 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2612 2613 frm = (uint8_t *)(wh + 1); 2614 2615 /* add essid IE, the hardware will fill this in for us */ 2616 *frm++ = IEEE80211_ELEMID_SSID; 2617 *frm++ = 0; 2618 2619 mode = ieee80211_chan2mode(ic->ic_curchan); 2620 rs = &ic->ic_sup_rates[mode]; 2621 2622 /* add supported rates IE */ 2623 *frm++ = IEEE80211_ELEMID_RATES; 2624 nrates = rs->rs_nrates; 2625 if (nrates > IEEE80211_RATE_SIZE) 2626 nrates = IEEE80211_RATE_SIZE; 2627 *frm++ = nrates; 2628 memcpy(frm, rs->rs_rates, nrates); 2629 frm += nrates; 2630 2631 /* add supported xrates IE */ 2632 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2633 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2634 *frm++ = IEEE80211_ELEMID_XRATES; 2635 *frm++ = nrates; 2636 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2637 frm += nrates; 2638 } 2639 2640 /* setup length of probe request */ 2641 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2642 2643 /* 2644 * Construct information about the channel that we 2645 * want to scan. The firmware expects this to be directly 2646 * after the scan probe request 2647 */ 2648 c = ic->ic_curchan; 2649 chan = (struct wpi_scan_chan *)frm; 2650 chan->chan = ieee80211_chan2ieee(ic, c); 2651 chan->flags = 0; 2652 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2653 chan->flags |= WPI_CHAN_ACTIVE; 2654 if (ic->ic_des_ssid[0].len != 0) 2655 chan->flags |= WPI_CHAN_DIRECT; 2656 } 2657 chan->gain_dsp = 0x6e; /* Default level */ 2658 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2659 chan->active = htole16(10); 2660 chan->passive = htole16(sc->maxdwell); 2661 chan->gain_radio = 0x3b; 2662 } else { 2663 chan->active = htole16(20); 2664 chan->passive = htole16(sc->maxdwell); 2665 chan->gain_radio = 0x28; 2666 } 2667 2668 DPRINTFN(WPI_DEBUG_SCANNING, 2669 ("Scanning %u Passive: %d\n", 2670 chan->chan, 2671 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2672 2673 hdr->nchan++; 2674 chan++; 2675 2676 frm += sizeof (struct wpi_scan_chan); 2677 #if 0 2678 // XXX All Channels.... 2679 for (c = &ic->ic_channels[1]; 2680 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2681 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2682 continue; 2683 2684 chan->chan = ieee80211_chan2ieee(ic, c); 2685 chan->flags = 0; 2686 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2687 chan->flags |= WPI_CHAN_ACTIVE; 2688 if (ic->ic_des_ssid[0].len != 0) 2689 chan->flags |= WPI_CHAN_DIRECT; 2690 } 2691 chan->gain_dsp = 0x6e; /* Default level */ 2692 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2693 chan->active = htole16(10); 2694 chan->passive = htole16(110); 2695 chan->gain_radio = 0x3b; 2696 } else { 2697 chan->active = htole16(20); 2698 chan->passive = htole16(120); 2699 chan->gain_radio = 0x28; 2700 } 2701 2702 DPRINTFN(WPI_DEBUG_SCANNING, 2703 ("Scanning %u Passive: %d\n", 2704 chan->chan, 2705 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2706 2707 hdr->nchan++; 2708 chan++; 2709 2710 frm += sizeof (struct wpi_scan_chan); 2711 } 2712 #endif 2713 2714 hdr->len = htole16(frm - (uint8_t *)hdr); 2715 pktlen = frm - (uint8_t *)cmd; 2716 2717 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2718 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2719 if (error != 0) { 2720 device_printf(sc->sc_dev, "could not map scan command\n"); 2721 m_freem(data->m); 2722 data->m = NULL; 2723 return error; 2724 } 2725 2726 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2727 desc->segs[0].addr = htole32(physaddr); 2728 desc->segs[0].len = htole32(pktlen); 2729 2730 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2731 BUS_DMASYNC_PREWRITE); 2732 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2733 2734 /* kick cmd ring */ 2735 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2736 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2737 2738 sc->sc_scan_timer = 5; 2739 return 0; /* will be notified async. of failure/success */ 2740 } 2741 2742 /** 2743 * Configure the card to listen to a particular channel, this transisions the 2744 * card in to being able to receive frames from remote devices. 2745 */ 2746 static int 2747 wpi_config(struct wpi_softc *sc) 2748 { 2749 struct ieee80211com *ic = &sc->sc_ic; 2750 struct ifnet *ifp = ic->ic_ifp; 2751 struct wpi_power power; 2752 struct wpi_bluetooth bluetooth; 2753 struct wpi_node_info node; 2754 int error; 2755 2756 /* set power mode */ 2757 memset(&power, 0, sizeof power); 2758 power.flags = htole32(WPI_POWER_CAM|0x8); 2759 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2760 if (error != 0) { 2761 device_printf(sc->sc_dev, "could not set power mode\n"); 2762 return error; 2763 } 2764 2765 /* configure bluetooth coexistence */ 2766 memset(&bluetooth, 0, sizeof bluetooth); 2767 bluetooth.flags = 3; 2768 bluetooth.lead = 0xaa; 2769 bluetooth.kill = 1; 2770 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2771 0); 2772 if (error != 0) { 2773 device_printf(sc->sc_dev, 2774 "could not configure bluetooth coexistence\n"); 2775 return error; 2776 } 2777 2778 /* configure adapter */ 2779 memset(&sc->config, 0, sizeof (struct wpi_config)); 2780 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); 2781 /*set default channel*/ 2782 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2783 sc->config.flags = htole32(WPI_CONFIG_TSF); 2784 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2785 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2786 WPI_CONFIG_24GHZ); 2787 } 2788 sc->config.filter = 0; 2789 switch (ic->ic_opmode) { 2790 case IEEE80211_M_STA: 2791 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2792 sc->config.mode = WPI_MODE_STA; 2793 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2794 break; 2795 case IEEE80211_M_IBSS: 2796 case IEEE80211_M_AHDEMO: 2797 sc->config.mode = WPI_MODE_IBSS; 2798 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2799 WPI_FILTER_MULTICAST); 2800 break; 2801 case IEEE80211_M_HOSTAP: 2802 sc->config.mode = WPI_MODE_HOSTAP; 2803 break; 2804 case IEEE80211_M_MONITOR: 2805 sc->config.mode = WPI_MODE_MONITOR; 2806 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2807 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2808 break; 2809 } 2810 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2811 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2812 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2813 sizeof (struct wpi_config), 0); 2814 if (error != 0) { 2815 device_printf(sc->sc_dev, "configure command failed\n"); 2816 return error; 2817 } 2818 2819 /* configuration has changed, set Tx power accordingly */ 2820 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2821 device_printf(sc->sc_dev, "could not set Tx power\n"); 2822 return error; 2823 } 2824 2825 /* add broadcast node */ 2826 memset(&node, 0, sizeof node); 2827 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2828 node.id = WPI_ID_BROADCAST; 2829 node.rate = wpi_plcp_signal(2); 2830 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2831 if (error != 0) { 2832 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2833 return error; 2834 } 2835 2836 /* Setup rate scalling */ 2837 error = wpi_mrr_setup(sc); 2838 if (error != 0) { 2839 device_printf(sc->sc_dev, "could not setup MRR\n"); 2840 return error; 2841 } 2842 2843 return 0; 2844 } 2845 2846 static void 2847 wpi_stop_master(struct wpi_softc *sc) 2848 { 2849 uint32_t tmp; 2850 int ntries; 2851 2852 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2853 2854 tmp = WPI_READ(sc, WPI_RESET); 2855 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2856 2857 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2858 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2859 return; /* already asleep */ 2860 2861 for (ntries = 0; ntries < 100; ntries++) { 2862 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2863 break; 2864 DELAY(10); 2865 } 2866 if (ntries == 100) { 2867 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2868 } 2869 } 2870 2871 static int 2872 wpi_power_up(struct wpi_softc *sc) 2873 { 2874 uint32_t tmp; 2875 int ntries; 2876 2877 wpi_mem_lock(sc); 2878 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2879 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2880 wpi_mem_unlock(sc); 2881 2882 for (ntries = 0; ntries < 5000; ntries++) { 2883 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2884 break; 2885 DELAY(10); 2886 } 2887 if (ntries == 5000) { 2888 device_printf(sc->sc_dev, 2889 "timeout waiting for NIC to power up\n"); 2890 return ETIMEDOUT; 2891 } 2892 return 0; 2893 } 2894 2895 static int 2896 wpi_reset(struct wpi_softc *sc) 2897 { 2898 uint32_t tmp; 2899 int ntries; 2900 2901 DPRINTFN(WPI_DEBUG_HW, 2902 ("Resetting the card - clearing any uploaded firmware\n")); 2903 2904 /* clear any pending interrupts */ 2905 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2906 2907 tmp = WPI_READ(sc, WPI_PLL_CTL); 2908 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2909 2910 tmp = WPI_READ(sc, WPI_CHICKEN); 2911 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2912 2913 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2914 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2915 2916 /* wait for clock stabilization */ 2917 for (ntries = 0; ntries < 25000; ntries++) { 2918 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2919 break; 2920 DELAY(10); 2921 } 2922 if (ntries == 25000) { 2923 device_printf(sc->sc_dev, 2924 "timeout waiting for clock stabilization\n"); 2925 return ETIMEDOUT; 2926 } 2927 2928 /* initialize EEPROM */ 2929 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2930 2931 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2932 device_printf(sc->sc_dev, "EEPROM not found\n"); 2933 return EIO; 2934 } 2935 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2936 2937 return 0; 2938 } 2939 2940 static void 2941 wpi_hw_config(struct wpi_softc *sc) 2942 { 2943 uint32_t rev, hw; 2944 2945 /* voodoo from the Linux "driver".. */ 2946 hw = WPI_READ(sc, WPI_HWCONFIG); 2947 2948 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2949 if ((rev & 0xc0) == 0x40) 2950 hw |= WPI_HW_ALM_MB; 2951 else if (!(rev & 0x80)) 2952 hw |= WPI_HW_ALM_MM; 2953 2954 if (sc->cap == 0x80) 2955 hw |= WPI_HW_SKU_MRC; 2956 2957 hw &= ~WPI_HW_REV_D; 2958 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2959 hw |= WPI_HW_REV_D; 2960 2961 if (sc->type > 1) 2962 hw |= WPI_HW_TYPE_B; 2963 2964 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2965 } 2966 2967 static void 2968 wpi_rfkill_resume(struct wpi_softc *sc) 2969 { 2970 struct ifnet *ifp = sc->sc_ifp; 2971 struct ieee80211com *ic = &sc->sc_ic; 2972 int ntries; 2973 2974 /* enable firmware again */ 2975 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 2976 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 2977 2978 /* wait for thermal sensors to calibrate */ 2979 for (ntries = 0; ntries < 1000; ntries++) { 2980 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 2981 break; 2982 DELAY(10); 2983 } 2984 2985 if (ntries == 1000) { 2986 device_printf(sc->sc_dev, 2987 "timeout waiting for thermal calibration\n"); 2988 WPI_UNLOCK(sc); 2989 return; 2990 } 2991 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 2992 2993 if (wpi_config(sc) != 0) { 2994 device_printf(sc->sc_dev, "device config failed\n"); 2995 WPI_UNLOCK(sc); 2996 return; 2997 } 2998 2999 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3000 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3001 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3002 3003 if (ic->ic_flags & IEEE80211_F_SCAN) 3004 ieee80211_scan_next(ic); 3005 3006 ieee80211_beacon_miss(ic); 3007 3008 /* reset the led sequence */ 3009 switch (ic->ic_state) { 3010 case IEEE80211_S_SCAN: 3011 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3012 break; 3013 3014 case IEEE80211_S_RUN: 3015 if (ic->ic_opmode == IEEE80211_M_MONITOR) 3016 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3017 else 3018 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3019 break; 3020 3021 default: 3022 break; /* please compiler */ 3023 } 3024 3025 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3026 } 3027 3028 static void 3029 wpi_init(void *arg) 3030 { 3031 struct wpi_softc *sc = arg; 3032 3033 WPI_LOCK(sc); 3034 wpi_init_locked(sc, 0); 3035 WPI_UNLOCK(sc); 3036 } 3037 3038 static void 3039 wpi_init_locked(struct wpi_softc *sc, int force) 3040 { 3041 struct ieee80211com *ic = &sc->sc_ic; 3042 struct ifnet *ifp = ic->ic_ifp; 3043 uint32_t tmp; 3044 int ntries, qid; 3045 3046 wpi_stop_locked(sc); 3047 (void)wpi_reset(sc); 3048 3049 wpi_mem_lock(sc); 3050 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3051 DELAY(20); 3052 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3053 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3054 wpi_mem_unlock(sc); 3055 3056 (void)wpi_power_up(sc); 3057 wpi_hw_config(sc); 3058 3059 /* init Rx ring */ 3060 wpi_mem_lock(sc); 3061 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3062 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3063 offsetof(struct wpi_shared, next)); 3064 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3065 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3066 wpi_mem_unlock(sc); 3067 3068 /* init Tx rings */ 3069 wpi_mem_lock(sc); 3070 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3071 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3072 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3073 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3074 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3075 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3076 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3077 3078 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3079 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3080 3081 for (qid = 0; qid < 6; qid++) { 3082 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3083 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3084 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3085 } 3086 wpi_mem_unlock(sc); 3087 3088 /* clear "radio off" and "disable command" bits (reversed logic) */ 3089 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3090 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3091 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3092 3093 /* clear any pending interrupts */ 3094 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3095 3096 /* enable interrupts */ 3097 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3098 3099 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3100 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3101 3102 if ((wpi_load_firmware(sc)) != 0) { 3103 device_printf(sc->sc_dev, 3104 "A problem occurred loading the firmware to the driver\n"); 3105 return; 3106 } 3107 3108 /* At this point the firmware is up and running. If the hardware 3109 * RF switch is turned off thermal calibration will fail, though 3110 * the card is still happy to continue to accept commands, catch 3111 * this case and schedule a task to watch for it to be turned on. 3112 */ 3113 wpi_mem_lock(sc); 3114 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3115 wpi_mem_unlock(sc); 3116 3117 if (!(tmp & 0x1)) { 3118 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3119 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3120 goto out; 3121 } 3122 3123 /* wait for thermal sensors to calibrate */ 3124 for (ntries = 0; ntries < 1000; ntries++) { 3125 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3126 break; 3127 DELAY(10); 3128 } 3129 3130 if (ntries == 1000) { 3131 device_printf(sc->sc_dev, 3132 "timeout waiting for thermal sensors calibration\n"); 3133 return; 3134 } 3135 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3136 3137 if (wpi_config(sc) != 0) { 3138 device_printf(sc->sc_dev, "device config failed\n"); 3139 return; 3140 } 3141 3142 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3143 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3144 out: 3145 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3146 3147 if (ic->ic_opmode == IEEE80211_M_MONITOR) 3148 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 3149 else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 3150 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 3151 return; 3152 } 3153 3154 static void 3155 wpi_stop(struct wpi_softc *sc) 3156 { 3157 3158 WPI_LOCK(sc); 3159 wpi_stop_locked(sc); 3160 WPI_UNLOCK(sc); 3161 3162 } 3163 static void 3164 wpi_stop_locked(struct wpi_softc *sc) 3165 3166 { 3167 struct ieee80211com *ic = &sc->sc_ic; 3168 struct ifnet *ifp = ic->ic_ifp; 3169 uint32_t tmp; 3170 int ac; 3171 3172 sc->sc_tx_timer = 0; 3173 sc->sc_scan_timer = 0; 3174 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3175 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3176 callout_stop(&sc->watchdog_to); 3177 callout_stop(&sc->calib_to); 3178 3179 3180 /* disable interrupts */ 3181 WPI_WRITE(sc, WPI_MASK, 0); 3182 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3183 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3184 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3185 3186 /* Clear any commands left in the command buffer */ 3187 memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd)); 3188 memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg)); 3189 sc->sc_cmd_cur = 0; 3190 sc->sc_cmd_next = 0; 3191 3192 wpi_mem_lock(sc); 3193 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3194 wpi_mem_unlock(sc); 3195 3196 /* reset all Tx rings */ 3197 for (ac = 0; ac < 4; ac++) 3198 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3199 wpi_reset_tx_ring(sc, &sc->cmdq); 3200 3201 /* reset Rx ring */ 3202 wpi_reset_rx_ring(sc, &sc->rxq); 3203 3204 wpi_mem_lock(sc); 3205 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3206 wpi_mem_unlock(sc); 3207 3208 DELAY(5); 3209 3210 wpi_stop_master(sc); 3211 3212 tmp = WPI_READ(sc, WPI_RESET); 3213 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3214 sc->flags &= ~WPI_FLAG_BUSY; 3215 3216 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 3217 } 3218 3219 static void 3220 wpi_iter_func(void *arg, struct ieee80211_node *ni) 3221 { 3222 struct wpi_softc *sc = arg; 3223 struct wpi_node *wn = (struct wpi_node *)ni; 3224 3225 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); 3226 } 3227 3228 static void 3229 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3230 { 3231 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc; 3232 int i; 3233 3234 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn); 3235 3236 for (i = ni->ni_rates.rs_nrates - 1; 3237 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 3238 i--); 3239 ni->ni_txrate = i; 3240 } 3241 3242 static void 3243 wpi_calib_timeout(void *arg) 3244 { 3245 struct wpi_softc *sc = arg; 3246 struct ieee80211com *ic = &sc->sc_ic; 3247 int temp; 3248 3249 if (ic->ic_state != IEEE80211_S_RUN) 3250 return; 3251 3252 /* automatic rate control triggered every 500ms */ 3253 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 3254 if (ic->ic_opmode == IEEE80211_M_STA) 3255 wpi_iter_func(sc, ic->ic_bss); 3256 else 3257 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc); 3258 } 3259 3260 /* update sensor data */ 3261 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3262 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3263 #if 0 3264 //XXX Used by OpenBSD Sensor Framework 3265 sc->sensor.value = temp + 260; 3266 #endif 3267 3268 /* automatic power calibration every 60s */ 3269 if (++sc->calib_cnt >= 120) { 3270 wpi_power_calibration(sc, temp); 3271 sc->calib_cnt = 0; 3272 } 3273 3274 callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc); 3275 } 3276 3277 /* 3278 * This function is called periodically (every 60 seconds) to adjust output 3279 * power to temperature changes. 3280 */ 3281 static void 3282 wpi_power_calibration(struct wpi_softc *sc, int temp) 3283 { 3284 /* sanity-check read value */ 3285 if (temp < -260 || temp > 25) { 3286 /* this can't be correct, ignore */ 3287 DPRINTFN(WPI_DEBUG_TEMP, 3288 ("out-of-range temperature reported: %d\n", temp)); 3289 return; 3290 } 3291 3292 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3293 3294 /* adjust Tx power if need be */ 3295 if (abs(temp - sc->temp) <= 6) 3296 return; 3297 3298 sc->temp = temp; 3299 3300 if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan,1) != 0) { 3301 /* just warn, too bad for the automatic calibration... */ 3302 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3303 } 3304 } 3305 3306 /** 3307 * Read the eeprom to find out what channels are valid for the given 3308 * band and update net80211 with what we find. 3309 */ 3310 static void 3311 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3312 { 3313 struct ieee80211com *ic = &sc->sc_ic; 3314 const struct wpi_chan_band *band = &wpi_bands[n]; 3315 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3316 int chan, i, offset, passive; 3317 3318 wpi_read_prom_data(sc, band->addr, channels, 3319 band->nchan * sizeof (struct wpi_eeprom_chan)); 3320 3321 for (i = 0; i < band->nchan; i++) { 3322 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3323 DPRINTFN(WPI_DEBUG_HW, 3324 ("Channel Not Valid: %d, band %d\n", 3325 band->chan[i],n)); 3326 continue; 3327 } 3328 3329 passive = 0; 3330 chan = band->chan[i]; 3331 offset = ic->ic_nchans; 3332 3333 /* is active scan allowed on this channel? */ 3334 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3335 passive = IEEE80211_CHAN_PASSIVE; 3336 } 3337 3338 if (n == 0) { /* 2GHz band */ 3339 ic->ic_channels[offset].ic_ieee = chan; 3340 ic->ic_channels[offset].ic_freq = 3341 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 3342 ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive; 3343 offset++; 3344 ic->ic_channels[offset].ic_ieee = chan; 3345 ic->ic_channels[offset].ic_freq = 3346 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 3347 ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive; 3348 offset++; 3349 3350 } else { /* 5GHz band */ 3351 /* 3352 * Some 3945ABG adapters support channels 7, 8, 11 3353 * and 12 in the 2GHz *and* 5GHz bands. 3354 * Because of limitations in our net80211(9) stack, 3355 * we can't support these channels in 5GHz band. 3356 * XXX not true; just need to map to proper frequency 3357 */ 3358 if (chan <= 14) 3359 continue; 3360 3361 ic->ic_channels[offset].ic_ieee = chan; 3362 ic->ic_channels[offset].ic_freq = 3363 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); 3364 ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive; 3365 offset++; 3366 } 3367 3368 /* save maximum allowed power for this channel */ 3369 sc->maxpwr[chan] = channels[i].maxpwr; 3370 3371 ic->ic_nchans = offset; 3372 3373 #if 0 3374 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3375 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3376 //ic->ic_channels[chan].ic_minpower... 3377 //ic->ic_channels[chan].ic_maxregtxpower... 3378 #endif 3379 3380 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n", 3381 chan, channels[i].flags, sc->maxpwr[chan], offset)); 3382 } 3383 } 3384 3385 static void 3386 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3387 { 3388 struct wpi_power_group *group = &sc->groups[n]; 3389 struct wpi_eeprom_group rgroup; 3390 int i; 3391 3392 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3393 sizeof rgroup); 3394 3395 /* save power group information */ 3396 group->chan = rgroup.chan; 3397 group->maxpwr = rgroup.maxpwr; 3398 /* temperature at which the samples were taken */ 3399 group->temp = (int16_t)le16toh(rgroup.temp); 3400 3401 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3402 group->chan, group->maxpwr, group->temp)); 3403 3404 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3405 group->samples[i].index = rgroup.samples[i].index; 3406 group->samples[i].power = rgroup.samples[i].power; 3407 3408 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3409 group->samples[i].index, group->samples[i].power)); 3410 } 3411 } 3412 3413 /* 3414 * Update Tx power to match what is defined for channel `c'. 3415 */ 3416 static int 3417 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3418 { 3419 struct ieee80211com *ic = &sc->sc_ic; 3420 struct wpi_power_group *group; 3421 struct wpi_cmd_txpower txpower; 3422 u_int chan; 3423 int i; 3424 3425 /* get channel number */ 3426 chan = ieee80211_chan2ieee(ic, c); 3427 3428 /* find the power group to which this channel belongs */ 3429 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3430 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3431 if (chan <= group->chan) 3432 break; 3433 } else 3434 group = &sc->groups[0]; 3435 3436 memset(&txpower, 0, sizeof txpower); 3437 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3438 txpower.channel = htole16(chan); 3439 3440 /* set Tx power for all OFDM and CCK rates */ 3441 for (i = 0; i <= 11 ; i++) { 3442 /* retrieve Tx power for this channel/rate combination */ 3443 int idx = wpi_get_power_index(sc, group, c, 3444 wpi_ridx_to_rate[i]); 3445 3446 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3447 3448 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3449 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3450 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3451 } else { 3452 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3453 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3454 } 3455 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3456 chan, wpi_ridx_to_rate[i], idx)); 3457 } 3458 3459 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3460 } 3461 3462 /* 3463 * Determine Tx power index for a given channel/rate combination. 3464 * This takes into account the regulatory information from EEPROM and the 3465 * current temperature. 3466 */ 3467 static int 3468 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3469 struct ieee80211_channel *c, int rate) 3470 { 3471 /* fixed-point arithmetic division using a n-bit fractional part */ 3472 #define fdivround(a, b, n) \ 3473 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3474 3475 /* linear interpolation */ 3476 #define interpolate(x, x1, y1, x2, y2, n) \ 3477 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3478 3479 struct ieee80211com *ic = &sc->sc_ic; 3480 struct wpi_power_sample *sample; 3481 int pwr, idx; 3482 u_int chan; 3483 3484 /* get channel number */ 3485 chan = ieee80211_chan2ieee(ic, c); 3486 3487 /* default power is group's maximum power - 3dB */ 3488 pwr = group->maxpwr / 2; 3489 3490 /* decrease power for highest OFDM rates to reduce distortion */ 3491 switch (rate) { 3492 case 72: /* 36Mb/s */ 3493 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3494 break; 3495 case 96: /* 48Mb/s */ 3496 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3497 break; 3498 case 108: /* 54Mb/s */ 3499 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3500 break; 3501 } 3502 3503 /* never exceed channel's maximum allowed Tx power */ 3504 pwr = min(pwr, sc->maxpwr[chan]); 3505 3506 /* retrieve power index into gain tables from samples */ 3507 for (sample = group->samples; sample < &group->samples[3]; sample++) 3508 if (pwr > sample[1].power) 3509 break; 3510 /* fixed-point linear interpolation using a 19-bit fractional part */ 3511 idx = interpolate(pwr, sample[0].power, sample[0].index, 3512 sample[1].power, sample[1].index, 19); 3513 3514 /* 3515 * Adjust power index based on current temperature 3516 * - if colder than factory-calibrated: decreate output power 3517 * - if warmer than factory-calibrated: increase output power 3518 */ 3519 idx -= (sc->temp - group->temp) * 11 / 100; 3520 3521 /* decrease power for CCK rates (-5dB) */ 3522 if (!WPI_RATE_IS_OFDM(rate)) 3523 idx += 10; 3524 3525 /* keep power index in a valid range */ 3526 if (idx < 0) 3527 return 0; 3528 if (idx > WPI_MAX_PWR_INDEX) 3529 return WPI_MAX_PWR_INDEX; 3530 return idx; 3531 3532 #undef interpolate 3533 #undef fdivround 3534 } 3535 3536 /** 3537 * Called by net80211 framework to indicate that a scan 3538 * is starting. This function doesn't actually do the scan, 3539 * wpi_scan_curchan starts things off. This function is more 3540 * of an early warning from the framework we should get ready 3541 * for the scan. 3542 */ 3543 static void 3544 wpi_scan_start(struct ieee80211com *ic) 3545 { 3546 struct ifnet *ifp = ic->ic_ifp; 3547 struct wpi_softc *sc = ifp->if_softc; 3548 3549 wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL); 3550 } 3551 3552 /** 3553 * Called by the net80211 framework, indicates that the 3554 * scan has ended. If there is a scan in progress on the card 3555 * then it should be aborted. 3556 */ 3557 static void 3558 wpi_scan_end(struct ieee80211com *ic) 3559 { 3560 struct ifnet *ifp = ic->ic_ifp; 3561 struct wpi_softc *sc = ifp->if_softc; 3562 3563 wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL); 3564 } 3565 3566 /** 3567 * Called by the net80211 framework to indicate to the driver 3568 * that the channel should be changed 3569 */ 3570 static void 3571 wpi_set_channel(struct ieee80211com *ic) 3572 { 3573 struct ifnet *ifp = ic->ic_ifp; 3574 struct wpi_softc *sc = ifp->if_softc; 3575 3576 /* 3577 * Only need to set the channel in Monitor mode. AP scanning and auth 3578 * are already taken care of by their respective firmware commands. 3579 */ 3580 if (ic->ic_opmode == IEEE80211_M_MONITOR) 3581 wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL); 3582 } 3583 3584 /** 3585 * Called by net80211 to indicate that we need to scan the current 3586 * channel. The channel is previously be set via the wpi_set_channel 3587 * callback. 3588 */ 3589 static void 3590 wpi_scan_curchan(struct ieee80211com *ic, unsigned long maxdwell) 3591 { 3592 struct ifnet *ifp = ic->ic_ifp; 3593 struct wpi_softc *sc = ifp->if_softc; 3594 3595 sc->maxdwell = maxdwell; 3596 3597 wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL); 3598 } 3599 3600 /** 3601 * Called by the net80211 framework to indicate 3602 * the minimum dwell time has been met, terminate the scan. 3603 * We don't actually terminate the scan as the firmware will notify 3604 * us when it's finished and we have no way to interrupt it. 3605 */ 3606 static void 3607 wpi_scan_mindwell(struct ieee80211com *ic) 3608 { 3609 /* NB: don't try to abort scan; wait for firmware to finish */ 3610 } 3611 3612 /** 3613 * The ops function is called to perform some actual work. 3614 * because we can't sleep from any of the ic callbacks, we queue an 3615 * op task with wpi_queue_cmd and have the taskqueue process that task. 3616 * The task that gets cued is a op task, which ends up calling this function. 3617 */ 3618 static void 3619 wpi_ops(void *arg0, int pending) 3620 { 3621 struct wpi_softc *sc = arg0; 3622 struct ieee80211com *ic = &sc->sc_ic; 3623 int cmd, arg, error; 3624 3625 again: 3626 WPI_CMD_LOCK(sc); 3627 cmd = sc->sc_cmd[sc->sc_cmd_cur]; 3628 arg = sc->sc_cmd_arg[sc->sc_cmd_cur]; 3629 3630 if (cmd == 0) { 3631 /* No more commands to process */ 3632 WPI_CMD_UNLOCK(sc); 3633 return; 3634 } 3635 sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */ 3636 sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */ 3637 sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS; 3638 WPI_CMD_UNLOCK(sc); 3639 WPI_LOCK(sc); 3640 3641 DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd)); 3642 3643 switch (cmd) { 3644 case WPI_RESTART: 3645 wpi_init_locked(sc, 0); 3646 WPI_UNLOCK(sc); 3647 return; 3648 3649 case WPI_RF_RESTART: 3650 wpi_rfkill_resume(sc); 3651 WPI_UNLOCK(sc); 3652 return; 3653 } 3654 3655 if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3656 WPI_UNLOCK(sc); 3657 return; 3658 } 3659 3660 switch (cmd) { 3661 case WPI_SCAN_START: 3662 sc->flags |= WPI_FLAG_SCANNING; 3663 break; 3664 3665 case WPI_SCAN_STOP: 3666 sc->flags &= ~WPI_FLAG_SCANNING; 3667 break; 3668 3669 case WPI_SCAN_CURCHAN: 3670 if (wpi_scan(sc)) 3671 ieee80211_cancel_scan(ic); 3672 break; 3673 3674 case WPI_SET_CHAN: 3675 error = wpi_config(sc); 3676 if (error != 0) 3677 device_printf(sc->sc_dev, 3678 "error %d settting channel\n", error); 3679 break; 3680 3681 case WPI_AUTH: 3682 /* The node must be registered in the firmware before auth */ 3683 error = wpi_auth(sc); 3684 if (error != 0) { 3685 device_printf(sc->sc_dev, 3686 "%s: could not move to auth state, error %d\n", 3687 __func__, error); 3688 WPI_UNLOCK(sc); 3689 return; 3690 } 3691 /* Send the auth frame now */ 3692 sc->sc_newstate(ic, IEEE80211_S_AUTH, arg); 3693 break; 3694 3695 case WPI_RUN: 3696 error = wpi_run(sc); 3697 if (error != 0) { 3698 device_printf(sc->sc_dev, 3699 "%s: could not move to run state, error %d\n", 3700 __func__, error); 3701 WPI_UNLOCK(sc); 3702 return; 3703 } 3704 sc->sc_newstate(ic, IEEE80211_S_RUN, arg); 3705 break; 3706 } 3707 WPI_UNLOCK(sc); 3708 3709 /* Take another pass */ 3710 goto again; 3711 } 3712 3713 /** 3714 * queue a command for later execution in a different thread. 3715 * This is needed as the net80211 callbacks do not allow 3716 * sleeping, since we need to sleep to confirm commands have 3717 * been processed by the firmware, we must defer execution to 3718 * a sleep enabled thread. 3719 */ 3720 static int 3721 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush) 3722 { 3723 WPI_CMD_LOCK(sc); 3724 3725 if (flush) { 3726 memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd)); 3727 memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg)); 3728 sc->sc_cmd_cur = 0; 3729 sc->sc_cmd_next = 0; 3730 } 3731 3732 if (sc->sc_cmd[sc->sc_cmd_next] != 0) { 3733 WPI_CMD_UNLOCK(sc); 3734 DPRINTF(("%s: command %d dropped\n", __func__, cmd)); 3735 return (EBUSY); 3736 } 3737 3738 sc->sc_cmd[sc->sc_cmd_next] = cmd; 3739 sc->sc_cmd_arg[sc->sc_cmd_next] = arg; 3740 sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS; 3741 3742 taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask); 3743 3744 WPI_CMD_UNLOCK(sc); 3745 3746 return 0; 3747 } 3748 3749 /* 3750 * Allocate DMA-safe memory for firmware transfer. 3751 */ 3752 static int 3753 wpi_alloc_fwmem(struct wpi_softc *sc) 3754 { 3755 /* allocate enough contiguous space to store text and data */ 3756 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3757 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3758 BUS_DMA_NOWAIT); 3759 } 3760 3761 static void 3762 wpi_free_fwmem(struct wpi_softc *sc) 3763 { 3764 wpi_dma_contig_free(&sc->fw_dma); 3765 } 3766 3767 /** 3768 * Called every second, wpi_watchdog used by the watch dog timer 3769 * to check that the card is still alive 3770 */ 3771 static void 3772 wpi_watchdog(void *arg) 3773 { 3774 struct wpi_softc *sc = arg; 3775 struct ifnet *ifp = sc->sc_ifp; 3776 uint32_t tmp; 3777 3778 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3779 3780 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3781 /* No need to lock firmware memory */ 3782 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3783 3784 if ((tmp & 0x1) == 0) { 3785 /* Radio kill switch is still off */ 3786 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3787 return; 3788 } 3789 3790 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3791 wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR); 3792 return; 3793 } 3794 3795 if (sc->sc_tx_timer > 0) { 3796 if (--sc->sc_tx_timer == 0) { 3797 device_printf(sc->sc_dev,"device timeout\n"); 3798 ifp->if_oerrors++; 3799 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 3800 } 3801 } 3802 if (sc->sc_scan_timer > 0) { 3803 if (--sc->sc_scan_timer == 0) { 3804 device_printf(sc->sc_dev,"scan timeout\n"); 3805 ieee80211_cancel_scan(&sc->sc_ic); 3806 wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR); 3807 } 3808 } 3809 3810 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3811 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3812 } 3813 3814 #ifdef WPI_DEBUG 3815 static const char *wpi_cmd_str(int cmd) 3816 { 3817 switch(cmd) { 3818 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3819 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3820 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3821 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3822 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3823 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3824 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3825 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3826 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3827 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3828 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3829 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3830 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3831 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3832 3833 default: 3834 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3835 return "UNKNOWN CMD"; // Make the compiler happy 3836 } 3837 } 3838 #endif 3839 3840 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3841 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3842 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3843 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3844