xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 10f0bcab61ef441cb5af32fb706688d8cbd55dc0)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip.h>
101 #include <netinet/if_ether.h>
102 
103 #include <dev/wpi/if_wpireg.h>
104 #include <dev/wpi/if_wpivar.h>
105 
106 #define WPI_DEBUG
107 
108 #ifdef WPI_DEBUG
109 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
110 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
111 
112 enum {
113 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
114 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
115 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
116 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
117 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
118 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
119 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
120 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
121 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
122 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
123 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
124 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
125 	WPI_DEBUG_ANY		= 0xffffffff
126 };
127 
128 int wpi_debug = 0;
129 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
130 
131 #else
132 #define DPRINTF(x)
133 #define DPRINTFN(n, x)
134 #endif
135 
136 struct wpi_ident {
137 	uint16_t	vendor;
138 	uint16_t	device;
139 	uint16_t	subdevice;
140 	const char	*name;
141 };
142 
143 static const struct wpi_ident wpi_ident_table[] = {
144 	/* The below entries support ABG regardless of the subid */
145 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
146 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
147 	/* The below entries only support BG */
148 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945AB"  },
149 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945AB"  },
150 	{ 0x8086, 0x4222, 0x1014, "Intel(R) PRO/Wireless 3945AB"  },
151 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945AB"  },
152 	{ 0, 0, 0, NULL }
153 };
154 
155 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
156 		    void **, bus_size_t, bus_size_t, int);
157 static void	wpi_dma_contig_free(struct wpi_dma_info *);
158 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
159 static int	wpi_alloc_shared(struct wpi_softc *);
160 static void	wpi_free_shared(struct wpi_softc *);
161 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
162 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
163 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
164 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
165 		    int, int);
166 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
167 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
168 static struct	ieee80211_node *wpi_node_alloc(struct ieee80211_node_table *);
169 static int	wpi_media_change(struct ifnet *);
170 static int	wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
171 static void	wpi_mem_lock(struct wpi_softc *);
172 static void	wpi_mem_unlock(struct wpi_softc *);
173 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
174 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
175 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
176 		    const uint32_t *, int);
177 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
178 static int	wpi_alloc_fwmem(struct wpi_softc *);
179 static void	wpi_free_fwmem(struct wpi_softc *);
180 static int	wpi_load_firmware(struct wpi_softc *);
181 static void	wpi_unload_firmware(struct wpi_softc *);
182 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
183 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
184 		    struct wpi_rx_data *);
185 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
186 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
187 static void	wpi_notif_intr(struct wpi_softc *);
188 static void	wpi_intr(void *);
189 static void	wpi_ops(void *, int);
190 static uint8_t	wpi_plcp_signal(int);
191 static int	wpi_queue_cmd(struct wpi_softc *, int, int, int);
192 static void	wpi_watchdog(void *);
193 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
194 		    struct ieee80211_node *, int);
195 static void	wpi_start(struct ifnet *);
196 static void	wpi_scan_start(struct ieee80211com *);
197 static void	wpi_scan_end(struct ieee80211com *);
198 static void	wpi_set_channel(struct ieee80211com *);
199 static void	wpi_scan_curchan(struct ieee80211com *, unsigned long);
200 static void	wpi_scan_mindwell(struct ieee80211com *);
201 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
202 static void	wpi_read_eeprom(struct wpi_softc *);
203 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
204 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
205 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
206 static int	wpi_wme_update(struct ieee80211com *);
207 static int	wpi_mrr_setup(struct wpi_softc *);
208 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
209 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
210 #if 0
211 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
212 #endif
213 static int	wpi_auth(struct wpi_softc *);
214 static int	wpi_run(struct wpi_softc *);
215 static int	wpi_scan(struct wpi_softc *);
216 static int	wpi_config(struct wpi_softc *);
217 static void	wpi_stop_master(struct wpi_softc *);
218 static int	wpi_power_up(struct wpi_softc *);
219 static int	wpi_reset(struct wpi_softc *);
220 static void	wpi_hw_config(struct wpi_softc *);
221 static void	wpi_init(void *);
222 static void	wpi_init_locked(struct wpi_softc *, int);
223 static void	wpi_stop(struct wpi_softc *);
224 static void	wpi_stop_locked(struct wpi_softc *);
225 static void	wpi_iter_func(void *, struct ieee80211_node *);
226 
227 static void	wpi_newassoc(struct ieee80211_node *, int);
228 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
229 		    int);
230 static void	wpi_calib_timeout(void *);
231 static void	wpi_power_calibration(struct wpi_softc *, int);
232 static int	wpi_get_power_index(struct wpi_softc *,
233 		    struct wpi_power_group *, struct ieee80211_channel *, int);
234 static const char *wpi_cmd_str(int);
235 static int wpi_probe(device_t);
236 static int wpi_attach(device_t);
237 static int wpi_detach(device_t);
238 static int wpi_shutdown(device_t);
239 static int wpi_suspend(device_t);
240 static int wpi_resume(device_t);
241 
242 
243 static device_method_t wpi_methods[] = {
244 	/* Device interface */
245 	DEVMETHOD(device_probe,		wpi_probe),
246 	DEVMETHOD(device_attach,	wpi_attach),
247 	DEVMETHOD(device_detach,	wpi_detach),
248 	DEVMETHOD(device_shutdown,	wpi_shutdown),
249 	DEVMETHOD(device_suspend,	wpi_suspend),
250 	DEVMETHOD(device_resume,	wpi_resume),
251 
252 	{ 0, 0 }
253 };
254 
255 static driver_t wpi_driver = {
256 	"wpi",
257 	wpi_methods,
258 	sizeof (struct wpi_softc)
259 };
260 
261 static devclass_t wpi_devclass;
262 
263 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
264 
265 static const uint8_t wpi_ridx_to_plcp[] = {
266 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
267 	/* R1-R4 (ral/ural is R4-R1) */
268 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
269 	/* CCK: device-dependent */
270 	10, 20, 55, 110
271 };
272 static const uint8_t wpi_ridx_to_rate[] = {
273 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
274 	2, 4, 11, 22 /*CCK */
275 };
276 
277 
278 static int
279 wpi_probe(device_t dev)
280 {
281 	const struct wpi_ident *ident;
282 
283 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
284 		if (pci_get_vendor(dev) == ident->vendor &&
285 		    pci_get_device(dev) == ident->device) {
286 			device_set_desc(dev, ident->name);
287 			return 0;
288 		}
289 	}
290 	return ENXIO;
291 }
292 
293 /**
294  * Load the firmare image from disk to the allocated dma buffer.
295  * we also maintain the reference to the firmware pointer as there
296  * is times where we may need to reload the firmware but we are not
297  * in a context that can access the filesystem (ie taskq cause by restart)
298  *
299  * @return 0 on success, an errno on failure
300  */
301 static int
302 wpi_load_firmware(struct wpi_softc *sc)
303 {
304 	const struct firmware *fp ;
305 	struct wpi_dma_info *dma = &sc->fw_dma;
306 	const struct wpi_firmware_hdr *hdr;
307 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
308 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
309 	int error;
310 
311 	DPRINTFN(WPI_DEBUG_FIRMWARE,
312 	    ("Attempting Loading Firmware from wpi_fw module\n"));
313 
314 	WPI_UNLOCK(sc);
315 
316 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
317 		device_printf(sc->sc_dev,
318 		    "could not load firmware image 'wpifw'\n");
319 		error = ENOENT;
320 		WPI_LOCK(sc);
321 		goto fail;
322 	}
323 
324 	fp = sc->fw_fp;
325 
326 	WPI_LOCK(sc);
327 
328 	/* Validate the firmware is minimum a particular version */
329 	if (fp->version < WPI_FW_MINVERSION) {
330 	    device_printf(sc->sc_dev,
331 			   "firmware version is too old. Need %d, got %d\n",
332 			   WPI_FW_MINVERSION,
333 			   fp->version);
334 	    error = ENXIO;
335 	    goto fail;
336 	}
337 
338 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
339 		device_printf(sc->sc_dev,
340 		    "firmware file too short: %zu bytes\n", fp->datasize);
341 		error = ENXIO;
342 		goto fail;
343 	}
344 
345 	hdr = (const struct wpi_firmware_hdr *)fp->data;
346 
347 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
348 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
349 
350 	rtextsz = le32toh(hdr->rtextsz);
351 	rdatasz = le32toh(hdr->rdatasz);
352 	itextsz = le32toh(hdr->itextsz);
353 	idatasz = le32toh(hdr->idatasz);
354 	btextsz = le32toh(hdr->btextsz);
355 
356 	/* check that all firmware segments are present */
357 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
358 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
359 		device_printf(sc->sc_dev,
360 		    "firmware file too short: %zu bytes\n", fp->datasize);
361 		error = ENXIO; /* XXX appropriate error code? */
362 		goto fail;
363 	}
364 
365 	/* get pointers to firmware segments */
366 	rtext = (const uint8_t *)(hdr + 1);
367 	rdata = rtext + rtextsz;
368 	itext = rdata + rdatasz;
369 	idata = itext + itextsz;
370 	btext = idata + idatasz;
371 
372 	DPRINTFN(WPI_DEBUG_FIRMWARE,
373 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
374 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
375 	     (le32toh(hdr->version) & 0xff000000) >> 24,
376 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
377 	     (le32toh(hdr->version) & 0x0000ffff),
378 	     rtextsz, rdatasz,
379 	     itextsz, idatasz, btextsz));
380 
381 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
382 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
383 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
384 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
385 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
386 
387 	/* sanity checks */
388 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
389 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
390 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
391 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
392 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
393 	    (btextsz & 3) != 0) {
394 		device_printf(sc->sc_dev, "firmware invalid\n");
395 		error = EINVAL;
396 		goto fail;
397 	}
398 
399 	/* copy initialization images into pre-allocated DMA-safe memory */
400 	memcpy(dma->vaddr, idata, idatasz);
401 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
402 
403 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
404 
405 	/* tell adapter where to find initialization images */
406 	wpi_mem_lock(sc);
407 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
408 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
409 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
410 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
411 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
412 	wpi_mem_unlock(sc);
413 
414 	/* load firmware boot code */
415 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
416 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
417 	    goto fail;
418 	}
419 
420 	/* now press "execute" */
421 	WPI_WRITE(sc, WPI_RESET, 0);
422 
423 	/* wait at most one second for the first alive notification */
424 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
425 		device_printf(sc->sc_dev,
426 		    "timeout waiting for adapter to initialize\n");
427 		goto fail;
428 	}
429 
430 	/* copy runtime images into pre-allocated DMA-sage memory */
431 	memcpy(dma->vaddr, rdata, rdatasz);
432 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
433 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
434 
435 	/* tell adapter where to find runtime images */
436 	wpi_mem_lock(sc);
437 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
438 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
439 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
440 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
441 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
442 	wpi_mem_unlock(sc);
443 
444 	/* wait at most one second for the first alive notification */
445 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
446 		device_printf(sc->sc_dev,
447 		    "timeout waiting for adapter to initialize2\n");
448 		goto fail;
449 	}
450 
451 	DPRINTFN(WPI_DEBUG_FIRMWARE,
452 	    ("Firmware loaded to driver successfully\n"));
453 	return error;
454 fail:
455 	wpi_unload_firmware(sc);
456 	return error;
457 }
458 
459 /**
460  * Free the referenced firmware image
461  */
462 static void
463 wpi_unload_firmware(struct wpi_softc *sc)
464 {
465 
466 	if (sc->fw_fp) {
467 		WPI_UNLOCK(sc);
468 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
469 		WPI_LOCK(sc);
470 		sc->fw_fp = NULL;
471 	}
472 }
473 
474 static int
475 wpi_attach(device_t dev)
476 {
477 	struct wpi_softc *sc = device_get_softc(dev);
478 	struct ifnet *ifp;
479 	struct ieee80211com *ic = &sc->sc_ic;
480 	int ac, error, supportsa = 1;
481 	uint32_t tmp;
482 	const struct wpi_ident *ident;
483 
484 	sc->sc_dev = dev;
485 
486 	if (bootverbose || wpi_debug)
487 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
488 
489 	/*
490 	 * Some card's only support 802.11b/g not a, check to see if
491 	 * this is one such card. A 0x0 in the subdevice table indicates
492 	 * the entire subdevice range is to be ignored.
493 	 */
494 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
495 		if (ident->subdevice &&
496 		    pci_get_subdevice(dev) == ident->subdevice) {
497 		    supportsa = 0;
498 		    break;
499 		}
500 	}
501 
502 #if __FreeBSD_version >= 700000
503 	/*
504 	 * Create the taskqueues used by the driver. Primarily
505 	 * sc_tq handles most the task
506 	 */
507 	sc->sc_tq = taskqueue_create("wpi_taskq", M_NOWAIT | M_ZERO,
508 	    taskqueue_thread_enqueue, &sc->sc_tq);
509 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
510 	    device_get_nameunit(dev));
511 #else
512 #error "Sorry, this driver is not yet ready for FreeBSD < 7.0"
513 #endif
514 
515 	/* Create the tasks that can be queued */
516 	TASK_INIT(&sc->sc_opstask, 0, wpi_ops, sc);
517 
518 	WPI_LOCK_INIT(sc);
519 	WPI_CMD_LOCK_INIT(sc);
520 
521 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523 
524 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
525 		device_printf(dev, "chip is in D%d power mode "
526 		    "-- setting to D0\n", pci_get_powerstate(dev));
527 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
528 	}
529 
530 	/* disable the retry timeout register */
531 	pci_write_config(dev, 0x41, 0, 1);
532 
533 	/* enable bus-mastering */
534 	pci_enable_busmaster(dev);
535 
536 	sc->mem_rid = PCIR_BAR(0);
537 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
538 	    RF_ACTIVE);
539 	if (sc->mem == NULL) {
540 		device_printf(dev, "could not allocate memory resource\n");
541 		error = ENOMEM;
542 		goto fail;
543 	}
544 
545 	sc->sc_st = rman_get_bustag(sc->mem);
546 	sc->sc_sh = rman_get_bushandle(sc->mem);
547 
548 	sc->irq_rid = 0;
549 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
550 	    RF_ACTIVE | RF_SHAREABLE);
551 	if (sc->irq == NULL) {
552 		device_printf(dev, "could not allocate interrupt resource\n");
553 		error = ENOMEM;
554 		goto fail;
555 	}
556 
557 	/*
558 	 * Allocate DMA memory for firmware transfers.
559 	 */
560 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
561 		printf(": could not allocate firmware memory\n");
562 		error = ENOMEM;
563 		goto fail;
564 	}
565 
566 	/*
567 	 * Put adapter into a known state.
568 	 */
569 	if ((error = wpi_reset(sc)) != 0) {
570 		device_printf(dev, "could not reset adapter\n");
571 		goto fail;
572 	}
573 
574 	wpi_mem_lock(sc);
575 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
576 	if (bootverbose || wpi_debug)
577 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
578 
579 	wpi_mem_unlock(sc);
580 
581 	/* Allocate shared page */
582 	if ((error = wpi_alloc_shared(sc)) != 0) {
583 		device_printf(dev, "could not allocate shared page\n");
584 		goto fail;
585 	}
586 
587 	/* tx data queues  - 4 for QoS purposes */
588 	for (ac = 0; ac < WME_NUM_AC; ac++) {
589 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
590 		if (error != 0) {
591 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
592 		    goto fail;
593 		}
594 	}
595 
596 	/* command queue to talk to the card's firmware */
597 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
598 	if (error != 0) {
599 		device_printf(dev, "could not allocate command ring\n");
600 		goto fail;
601 	}
602 
603 	/* receive data queue */
604 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
605 	if (error != 0) {
606 		device_printf(dev, "could not allocate Rx ring\n");
607 		goto fail;
608 	}
609 
610 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
611 	if (ifp == NULL) {
612 		device_printf(dev, "can not if_alloc()\n");
613 		error = ENOMEM;
614 		goto fail;
615 	}
616 
617 	ic->ic_ifp = ifp;
618 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
619 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
620 	ic->ic_state = IEEE80211_S_INIT;
621 
622 	/* set device capabilities */
623 	ic->ic_caps =
624 		  IEEE80211_C_MONITOR		/* monitor mode supported */
625 		| IEEE80211_C_TXPMGT		/* tx power management */
626 		| IEEE80211_C_SHSLOT		/* short slot time supported */
627 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
628 		| IEEE80211_C_WPA		/* 802.11i */
629 /* XXX looks like WME is partly supported? */
630 #if 0
631 		| IEEE80211_C_IBSS		/* IBSS mode support */
632 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
633 		| IEEE80211_C_WME		/* 802.11e */
634 		| IEEE80211_C_HOSTAP		/* Host access point mode */
635 #endif
636 		;
637 
638 	/*
639 	 * Read in the eeprom and also setup the channels for
640 	 * net80211. We don't set the rates as net80211 does this for us
641 	 */
642 	wpi_read_eeprom(sc);
643 
644 	if (bootverbose || wpi_debug) {
645 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
646 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
647 			  sc->type > 1 ? 'B': '?');
648 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
649 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
650 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
651 			  supportsa ? "does" : "does not");
652 
653 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
654 	       what sc->rev really represents - benjsc 20070615 */
655 	}
656 
657 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
658 	ifp->if_softc = sc;
659 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
660 	ifp->if_init = wpi_init;
661 	ifp->if_ioctl = wpi_ioctl;
662 	ifp->if_start = wpi_start;
663 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
664 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
665 	IFQ_SET_READY(&ifp->if_snd);
666 	ieee80211_ifattach(ic);
667 
668 	/* override default methods */
669 	ic->ic_node_alloc = wpi_node_alloc;
670 	ic->ic_newassoc = wpi_newassoc;
671 	ic->ic_wme.wme_update = wpi_wme_update;
672 	ic->ic_scan_start = wpi_scan_start;
673 	ic->ic_scan_end = wpi_scan_end;
674 	ic->ic_set_channel = wpi_set_channel;
675 	ic->ic_scan_curchan = wpi_scan_curchan;
676 	ic->ic_scan_mindwell = wpi_scan_mindwell;
677 
678 	/* override state transition machine */
679 	sc->sc_newstate = ic->ic_newstate;
680 	ic->ic_newstate = wpi_newstate;
681 	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
682 
683 	ieee80211_amrr_init(&sc->amrr, ic,
684 			   IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
685 			   IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD);
686 
687 	/* whilst ieee80211_ifattach will listen for ieee80211 frames,
688 	 * we also want to listen for the lower level radio frames
689 	 */
690 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
691 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
692 	    &sc->sc_drvbpf);
693 
694 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
695 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
696 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
697 
698 	sc->sc_txtap_len = sizeof sc->sc_txtap;
699 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
700 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
701 
702 	/*
703 	 * Hook our interrupt after all initialization is complete.
704 	 */
705 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
706 	    NULL, wpi_intr, sc, &sc->sc_ih);
707 	if (error != 0) {
708 		device_printf(dev, "could not set up interrupt\n");
709 		goto fail;
710 	}
711 
712 	if (bootverbose)
713 		ieee80211_announce(ic);
714 #ifdef XXX_DEBUG
715 	ieee80211_announce_channels(ic);
716 #endif
717 
718 	return 0;
719 
720 fail:	wpi_detach(dev);
721 	return ENXIO;
722 }
723 
724 static int
725 wpi_detach(device_t dev)
726 {
727 	struct wpi_softc *sc = device_get_softc(dev);
728 	struct ieee80211com *ic = &sc->sc_ic;
729 	struct ifnet *ifp = ic->ic_ifp;
730 	int ac;
731 
732 	if (ifp != NULL) {
733 		wpi_stop(sc);
734 		callout_drain(&sc->watchdog_to);
735 		callout_drain(&sc->calib_to);
736 		bpfdetach(ifp);
737 		ieee80211_ifdetach(ic);
738 	}
739 
740 	WPI_LOCK(sc);
741 	if (sc->txq[0].data_dmat) {
742 		for (ac = 0; ac < WME_NUM_AC; ac++)
743 			wpi_free_tx_ring(sc, &sc->txq[ac]);
744 
745 		wpi_free_tx_ring(sc, &sc->cmdq);
746 		wpi_free_rx_ring(sc, &sc->rxq);
747 		wpi_free_shared(sc);
748 	}
749 
750 	if (sc->fw_fp != NULL) {
751 		wpi_unload_firmware(sc);
752 	}
753 
754 	if (sc->fw_dma.tag)
755 		wpi_free_fwmem(sc);
756 	WPI_UNLOCK(sc);
757 
758 	if (sc->irq != NULL) {
759 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
760 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
761 	}
762 
763 	if (sc->mem != NULL)
764 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
765 
766 	if (ifp != NULL)
767 		if_free(ifp);
768 
769 	taskqueue_free(sc->sc_tq);
770 
771 	WPI_LOCK_DESTROY(sc);
772 	WPI_CMD_LOCK_DESTROY(sc);
773 
774 	return 0;
775 }
776 
777 static void
778 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
779 {
780 	if (error != 0)
781 		return;
782 
783 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
784 
785 	*(bus_addr_t *)arg = segs[0].ds_addr;
786 }
787 
788 /*
789  * Allocates a contiguous block of dma memory of the requested size and
790  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
791  * allocations greater than 4096 may fail. Hence if the requested alignment is
792  * greater we allocate 'alignment' size extra memory and shift the vaddr and
793  * paddr after the dma load. This bypasses the problem at the cost of a little
794  * more memory.
795  */
796 static int
797 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
798     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
799 {
800 	int error;
801 	bus_size_t align;
802 	bus_size_t reqsize;
803 
804 	DPRINTFN(WPI_DEBUG_DMA,
805 	    ("Size: %zd - alignment %zd\n", size, alignment));
806 
807 	dma->size = size;
808 	dma->tag = NULL;
809 
810 	if (alignment > 4096) {
811 		align = PAGE_SIZE;
812 		reqsize = size + alignment;
813 	} else {
814 		align = alignment;
815 		reqsize = size;
816 	}
817 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
818 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
819 	    NULL, NULL, reqsize,
820 	    1, reqsize, flags,
821 	    NULL, NULL, &dma->tag);
822 	if (error != 0) {
823 		device_printf(sc->sc_dev,
824 		    "could not create shared page DMA tag\n");
825 		goto fail;
826 	}
827 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
828 	    flags | BUS_DMA_ZERO, &dma->map);
829 	if (error != 0) {
830 		device_printf(sc->sc_dev,
831 		    "could not allocate shared page DMA memory\n");
832 		goto fail;
833 	}
834 
835 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
836 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
837 
838 	/* Save the original pointers so we can free all the memory */
839 	dma->paddr = dma->paddr_start;
840 	dma->vaddr = dma->vaddr_start;
841 
842 	/*
843 	 * Check the alignment and increment by 4096 until we get the
844 	 * requested alignment. Fail if can't obtain the alignment
845 	 * we requested.
846 	 */
847 	if ((dma->paddr & (alignment -1 )) != 0) {
848 		int i;
849 
850 		for (i = 0; i < alignment / 4096; i++) {
851 			if ((dma->paddr & (alignment - 1 )) == 0)
852 				break;
853 			dma->paddr += 4096;
854 			dma->vaddr += 4096;
855 		}
856 		if (i == alignment / 4096) {
857 			device_printf(sc->sc_dev,
858 			    "alignment requirement was not satisfied\n");
859 			goto fail;
860 		}
861 	}
862 
863 	if (error != 0) {
864 		device_printf(sc->sc_dev,
865 		    "could not load shared page DMA map\n");
866 		goto fail;
867 	}
868 
869 	if (kvap != NULL)
870 		*kvap = dma->vaddr;
871 
872 	return 0;
873 
874 fail:
875 	wpi_dma_contig_free(dma);
876 	return error;
877 }
878 
879 static void
880 wpi_dma_contig_free(struct wpi_dma_info *dma)
881 {
882 	if (dma->tag) {
883 		if (dma->map != NULL) {
884 			if (dma->paddr_start != 0) {
885 				bus_dmamap_sync(dma->tag, dma->map,
886 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
887 				bus_dmamap_unload(dma->tag, dma->map);
888 			}
889 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
890 		}
891 		bus_dma_tag_destroy(dma->tag);
892 	}
893 }
894 
895 /*
896  * Allocate a shared page between host and NIC.
897  */
898 static int
899 wpi_alloc_shared(struct wpi_softc *sc)
900 {
901 	int error;
902 
903 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
904 	    (void **)&sc->shared, sizeof (struct wpi_shared),
905 	    PAGE_SIZE,
906 	    BUS_DMA_NOWAIT);
907 
908 	if (error != 0) {
909 		device_printf(sc->sc_dev,
910 		    "could not allocate shared area DMA memory\n");
911 	}
912 
913 	return error;
914 }
915 
916 static void
917 wpi_free_shared(struct wpi_softc *sc)
918 {
919 	wpi_dma_contig_free(&sc->shared_dma);
920 }
921 
922 static int
923 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
924 {
925 
926 	int i, error;
927 
928 	ring->cur = 0;
929 
930 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
931 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
932 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
933 
934 	if (error != 0) {
935 		device_printf(sc->sc_dev,
936 		    "%s: could not allocate rx ring DMA memory, error %d\n",
937 		    __func__, error);
938 		goto fail;
939 	}
940 
941         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
942 	    BUS_SPACE_MAXADDR_32BIT,
943             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
944             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
945         if (error != 0) {
946                 device_printf(sc->sc_dev,
947 		    "%s: bus_dma_tag_create_failed, error %d\n",
948 		    __func__, error);
949                 goto fail;
950         }
951 
952 	/*
953 	 * Setup Rx buffers.
954 	 */
955 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
956 		struct wpi_rx_data *data = &ring->data[i];
957 		struct mbuf *m;
958 		bus_addr_t paddr;
959 
960 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
961 		if (error != 0) {
962 			device_printf(sc->sc_dev,
963 			    "%s: bus_dmamap_create failed, error %d\n",
964 			    __func__, error);
965 			goto fail;
966 		}
967 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
968 		if (m == NULL) {
969 			device_printf(sc->sc_dev,
970 			   "%s: could not allocate rx mbuf\n", __func__);
971 			error = ENOMEM;
972 			goto fail;
973 		}
974 		/* map page */
975 		error = bus_dmamap_load(ring->data_dmat, data->map,
976 		    mtod(m, caddr_t), MJUMPAGESIZE,
977 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
978 		if (error != 0 && error != EFBIG) {
979 			device_printf(sc->sc_dev,
980 			    "%s: bus_dmamap_load failed, error %d\n",
981 			    __func__, error);
982 			m_freem(m);
983 			error = ENOMEM;	/* XXX unique code */
984 			goto fail;
985 		}
986 		bus_dmamap_sync(ring->data_dmat, data->map,
987 		    BUS_DMASYNC_PREWRITE);
988 
989 		data->m = m;
990 		ring->desc[i] = htole32(paddr);
991 	}
992 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
993 	    BUS_DMASYNC_PREWRITE);
994 	return 0;
995 fail:
996 	wpi_free_rx_ring(sc, ring);
997 	return error;
998 }
999 
1000 static void
1001 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1002 {
1003 	int ntries;
1004 
1005 	wpi_mem_lock(sc);
1006 
1007 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1008 
1009 	for (ntries = 0; ntries < 100; ntries++) {
1010 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1011 			break;
1012 		DELAY(10);
1013 	}
1014 
1015 	wpi_mem_unlock(sc);
1016 
1017 #ifdef WPI_DEBUG
1018 	if (ntries == 100)
1019 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1020 #endif
1021 
1022 	ring->cur = 0;
1023 }
1024 
1025 static void
1026 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1027 {
1028 	int i;
1029 
1030 	wpi_dma_contig_free(&ring->desc_dma);
1031 
1032 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1033 		if (ring->data[i].m != NULL)
1034 			m_freem(ring->data[i].m);
1035 }
1036 
1037 static int
1038 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1039 	int qid)
1040 {
1041 	struct wpi_tx_data *data;
1042 	int i, error;
1043 
1044 	ring->qid = qid;
1045 	ring->count = count;
1046 	ring->queued = 0;
1047 	ring->cur = 0;
1048 	ring->data = NULL;
1049 
1050 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1051 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1052 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1053 
1054 	if (error != 0) {
1055 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1056 	    goto fail;
1057 	}
1058 
1059 	/* update shared page with ring's base address */
1060 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1061 
1062 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1063 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1064 		BUS_DMA_NOWAIT);
1065 
1066 	if (error != 0) {
1067 		device_printf(sc->sc_dev,
1068 		    "could not allocate tx command DMA memory\n");
1069 		goto fail;
1070 	}
1071 
1072 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1073 	    M_NOWAIT | M_ZERO);
1074 	if (ring->data == NULL) {
1075 		device_printf(sc->sc_dev,
1076 		    "could not allocate tx data slots\n");
1077 		goto fail;
1078 	}
1079 
1080 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1081 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1082 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1083 	    &ring->data_dmat);
1084 	if (error != 0) {
1085 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1086 		goto fail;
1087 	}
1088 
1089 	for (i = 0; i < count; i++) {
1090 		data = &ring->data[i];
1091 
1092 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1093 		if (error != 0) {
1094 			device_printf(sc->sc_dev,
1095 			    "could not create tx buf DMA map\n");
1096 			goto fail;
1097 		}
1098 		bus_dmamap_sync(ring->data_dmat, data->map,
1099 		    BUS_DMASYNC_PREWRITE);
1100 	}
1101 
1102 	return 0;
1103 
1104 fail:
1105 	wpi_free_tx_ring(sc, ring);
1106 	return error;
1107 }
1108 
1109 static void
1110 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1111 {
1112 	struct wpi_tx_data *data;
1113 	int i, ntries;
1114 
1115 	wpi_mem_lock(sc);
1116 
1117 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1118 	for (ntries = 0; ntries < 100; ntries++) {
1119 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1120 			break;
1121 		DELAY(10);
1122 	}
1123 #ifdef WPI_DEBUG
1124 	if (ntries == 100)
1125 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1126 		    ring->qid);
1127 #endif
1128 	wpi_mem_unlock(sc);
1129 
1130 	for (i = 0; i < ring->count; i++) {
1131 		data = &ring->data[i];
1132 
1133 		if (data->m != NULL) {
1134 			bus_dmamap_unload(ring->data_dmat, data->map);
1135 			m_freem(data->m);
1136 			data->m = NULL;
1137 		}
1138 	}
1139 
1140 	ring->queued = 0;
1141 	ring->cur = 0;
1142 }
1143 
1144 static void
1145 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1146 {
1147 	struct wpi_tx_data *data;
1148 	int i;
1149 
1150 	wpi_dma_contig_free(&ring->desc_dma);
1151 	wpi_dma_contig_free(&ring->cmd_dma);
1152 
1153 	if (ring->data != NULL) {
1154 		for (i = 0; i < ring->count; i++) {
1155 			data = &ring->data[i];
1156 
1157 			if (data->m != NULL) {
1158 				bus_dmamap_sync(ring->data_dmat, data->map,
1159 				    BUS_DMASYNC_POSTWRITE);
1160 				bus_dmamap_unload(ring->data_dmat, data->map);
1161 				m_freem(data->m);
1162 				data->m = NULL;
1163 			}
1164 		}
1165 		free(ring->data, M_DEVBUF);
1166 	}
1167 
1168 	if (ring->data_dmat != NULL)
1169 		bus_dma_tag_destroy(ring->data_dmat);
1170 }
1171 
1172 static int
1173 wpi_shutdown(device_t dev)
1174 {
1175 	struct wpi_softc *sc = device_get_softc(dev);
1176 
1177 	WPI_LOCK(sc);
1178 	wpi_stop_locked(sc);
1179 	wpi_unload_firmware(sc);
1180 	WPI_UNLOCK(sc);
1181 
1182 	return 0;
1183 }
1184 
1185 static int
1186 wpi_suspend(device_t dev)
1187 {
1188 	struct wpi_softc *sc = device_get_softc(dev);
1189 
1190 	wpi_stop(sc);
1191 	return 0;
1192 }
1193 
1194 static int
1195 wpi_resume(device_t dev)
1196 {
1197 	struct wpi_softc *sc = device_get_softc(dev);
1198 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1199 
1200 	pci_write_config(dev, 0x41, 0, 1);
1201 
1202 	if (ifp->if_flags & IFF_UP) {
1203 		wpi_init(ifp->if_softc);
1204 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1205 			wpi_start(ifp);
1206 	}
1207 	return 0;
1208 }
1209 
1210 /* ARGSUSED */
1211 static struct ieee80211_node *
1212 wpi_node_alloc(struct ieee80211_node_table *ic)
1213 {
1214 	struct wpi_node *wn;
1215 
1216 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT |M_ZERO);
1217 
1218 	return &wn->ni;
1219 }
1220 
1221 static int
1222 wpi_media_change(struct ifnet *ifp)
1223 {
1224 	int error;
1225 
1226 	error = ieee80211_media_change(ifp);
1227 	if (error != ENETRESET)
1228 		return error;
1229 
1230 	if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1231 		wpi_init(ifp->if_softc);
1232 
1233 	return 0;
1234 }
1235 
1236 /**
1237  * Called by net80211 when ever there is a change to 80211 state machine
1238  */
1239 static int
1240 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1241 {
1242 	struct ifnet *ifp = ic->ic_ifp;
1243 	struct wpi_softc *sc = ifp->if_softc;
1244 
1245 	DPRINTF(("%s: %s -> %s\n", __func__,
1246 		 ieee80211_state_name[ic->ic_state],
1247 		 ieee80211_state_name[nstate]));
1248 
1249 	switch (nstate) {
1250 	case IEEE80211_S_SCAN:
1251 		/*
1252 		 * Scanning is handled in net80211 via the scan_start,
1253 		 * scan_end, scan_curchan functions. Hence all we do when
1254 		 * changing to the SCAN state is update the leds
1255 		 */
1256 
1257 		/* make the link LED blink while we're scanning */
1258 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1259 		break;
1260 
1261 	case IEEE80211_S_AUTH:
1262 		/* Delay the auth transition until we can update the firmware */
1263 		return wpi_queue_cmd(sc, WPI_AUTH, arg, WPI_QUEUE_NORMAL);
1264 
1265 	case IEEE80211_S_RUN:
1266 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1267 			/* link LED blinks while monitoring */
1268 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1269 			break;
1270 		}
1271 		if (ic->ic_state != IEEE80211_S_RUN)
1272 			/* set the association id first */
1273 			return wpi_queue_cmd(sc, WPI_RUN, arg,
1274 			    WPI_QUEUE_NORMAL);
1275 		break;
1276 
1277 	default:
1278 		break;
1279 	}
1280 
1281 	return sc->sc_newstate(ic, nstate, arg);
1282 }
1283 
1284 /*
1285  * Grab exclusive access to NIC memory.
1286  */
1287 static void
1288 wpi_mem_lock(struct wpi_softc *sc)
1289 {
1290 	int ntries;
1291 	uint32_t tmp;
1292 
1293 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1294 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1295 
1296 	/* spin until we actually get the lock */
1297 	for (ntries = 0; ntries < 100; ntries++) {
1298 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1299 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1300 			break;
1301 		DELAY(10);
1302 	}
1303 	if (ntries == 100)
1304 		device_printf(sc->sc_dev, "could not lock memory\n");
1305 }
1306 
1307 /*
1308  * Release lock on NIC memory.
1309  */
1310 static void
1311 wpi_mem_unlock(struct wpi_softc *sc)
1312 {
1313 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1314 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1315 }
1316 
1317 static uint32_t
1318 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1319 {
1320 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1321 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1322 }
1323 
1324 static void
1325 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1326 {
1327 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1328 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1329 }
1330 
1331 static void
1332 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1333     const uint32_t *data, int wlen)
1334 {
1335 	for (; wlen > 0; wlen--, data++, addr+=4)
1336 		wpi_mem_write(sc, addr, *data);
1337 }
1338 
1339 /*
1340  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1341  * using the traditional bit-bang method. Data is read up until len bytes have
1342  * been obtained.
1343  */
1344 static uint16_t
1345 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1346 {
1347 	int ntries;
1348 	uint32_t val;
1349 	uint8_t *out = data;
1350 
1351 	wpi_mem_lock(sc);
1352 
1353 	for (; len > 0; len -= 2, addr++) {
1354 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1355 
1356 		for (ntries = 0; ntries < 10; ntries++) {
1357 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1358 				break;
1359 			DELAY(5);
1360 		}
1361 
1362 		if (ntries == 10) {
1363 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1364 			return ETIMEDOUT;
1365 		}
1366 
1367 		*out++= val >> 16;
1368 		if (len > 1)
1369 			*out ++= val >> 24;
1370 	}
1371 
1372 	wpi_mem_unlock(sc);
1373 
1374 	return 0;
1375 }
1376 
1377 /*
1378  * The firmware text and data segments are transferred to the NIC using DMA.
1379  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1380  * where to find it.  Once the NIC has copied the firmware into its internal
1381  * memory, we can free our local copy in the driver.
1382  */
1383 static int
1384 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1385 {
1386 	int error, ntries;
1387 
1388 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1389 
1390 	size /= sizeof(uint32_t);
1391 
1392 	wpi_mem_lock(sc);
1393 
1394 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1395 	    (const uint32_t *)fw, size);
1396 
1397 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1398 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1399 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1400 
1401 	/* run microcode */
1402 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1403 
1404 	/* wait while the adapter is busy copying the firmware */
1405 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1406 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1407 		DPRINTFN(WPI_DEBUG_HW,
1408 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1409 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1410 		if (status & WPI_TX_IDLE(6)) {
1411 			DPRINTFN(WPI_DEBUG_HW,
1412 			    ("Status Match! - ntries = %d\n", ntries));
1413 			break;
1414 		}
1415 		DELAY(10);
1416 	}
1417 	if (ntries == 1000) {
1418 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1419 		error = ETIMEDOUT;
1420 	}
1421 
1422 	/* start the microcode executing */
1423 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1424 
1425 	wpi_mem_unlock(sc);
1426 
1427 	return (error);
1428 }
1429 
1430 static void
1431 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1432 	struct wpi_rx_data *data)
1433 {
1434 	struct ieee80211com *ic = &sc->sc_ic;
1435 	struct ifnet *ifp = ic->ic_ifp;
1436 	struct wpi_rx_ring *ring = &sc->rxq;
1437 	struct wpi_rx_stat *stat;
1438 	struct wpi_rx_head *head;
1439 	struct wpi_rx_tail *tail;
1440 	struct ieee80211_node *ni;
1441 	struct mbuf *m, *mnew;
1442 	bus_addr_t paddr;
1443 	int error;
1444 
1445 	stat = (struct wpi_rx_stat *)(desc + 1);
1446 
1447 	if (stat->len > WPI_STAT_MAXLEN) {
1448 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1449 		ifp->if_ierrors++;
1450 		return;
1451 	}
1452 
1453 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1454 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1455 
1456 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1457 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1458 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1459 	    (uintmax_t)le64toh(tail->tstamp)));
1460 
1461 	/* XXX don't need mbuf, just dma buffer */
1462 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1463 	if (mnew == NULL) {
1464 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1465 		    __func__));
1466 		ic->ic_stats.is_rx_nobuf++;
1467 		ifp->if_ierrors++;
1468 		return;
1469 	}
1470 	error = bus_dmamap_load(ring->data_dmat, data->map,
1471 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1472 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1473 	if (error != 0 && error != EFBIG) {
1474 		device_printf(sc->sc_dev,
1475 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1476 		m_freem(mnew);
1477 		ic->ic_stats.is_rx_nobuf++;	/* XXX need stat */
1478 		ifp->if_ierrors++;
1479 		return;
1480 	}
1481 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1482 
1483 	/* finalize mbuf and swap in new one */
1484 	m = data->m;
1485 	m->m_pkthdr.rcvif = ifp;
1486 	m->m_data = (caddr_t)(head + 1);
1487 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1488 
1489 	data->m = mnew;
1490 	/* update Rx descriptor */
1491 	ring->desc[ring->cur] = htole32(paddr);
1492 
1493 	if (bpf_peers_present(sc->sc_drvbpf)) {
1494 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1495 
1496 		tap->wr_flags = 0;
1497 		tap->wr_chan_freq =
1498 			htole16(ic->ic_channels[head->chan].ic_freq);
1499 		tap->wr_chan_flags =
1500 			htole16(ic->ic_channels[head->chan].ic_flags);
1501 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1502 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1503 		tap->wr_tsft = tail->tstamp;
1504 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1505 		switch (head->rate) {
1506 		/* CCK rates */
1507 		case  10: tap->wr_rate =   2; break;
1508 		case  20: tap->wr_rate =   4; break;
1509 		case  55: tap->wr_rate =  11; break;
1510 		case 110: tap->wr_rate =  22; break;
1511 		/* OFDM rates */
1512 		case 0xd: tap->wr_rate =  12; break;
1513 		case 0xf: tap->wr_rate =  18; break;
1514 		case 0x5: tap->wr_rate =  24; break;
1515 		case 0x7: tap->wr_rate =  36; break;
1516 		case 0x9: tap->wr_rate =  48; break;
1517 		case 0xb: tap->wr_rate =  72; break;
1518 		case 0x1: tap->wr_rate =  96; break;
1519 		case 0x3: tap->wr_rate = 108; break;
1520 		/* unknown rate: should not happen */
1521 		default:  tap->wr_rate =   0;
1522 		}
1523 		if (le16toh(head->flags) & 0x4)
1524 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1525 
1526 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1527 	}
1528 
1529 	WPI_UNLOCK(sc);
1530 
1531 	/* XXX frame length > sizeof(struct ieee80211_frame_min)? */
1532 	/* grab a reference to the source node */
1533 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1534 
1535 	/* send the frame to the 802.11 layer */
1536 	ieee80211_input(ic, m, ni, stat->rssi, 0, 0);
1537 
1538 	/* release node reference */
1539 	ieee80211_free_node(ni);
1540 	WPI_LOCK(sc);
1541 }
1542 
1543 static void
1544 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1545 {
1546 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1547 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1548 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1549 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1550 	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1551 
1552 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1553 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1554 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1555 	    le32toh(stat->status)));
1556 
1557 	/*
1558 	 * Update rate control statistics for the node.
1559 	 * XXX we should not count mgmt frames since they're always sent at
1560 	 * the lowest available bit-rate.
1561 	 * XXX frames w/o ACK shouldn't be used either
1562 	 */
1563 	wn->amn.amn_txcnt++;
1564 	if (stat->ntries > 0) {
1565 		DPRINTFN(3, ("%d retries\n", stat->ntries));
1566 		wn->amn.amn_retrycnt++;
1567 	}
1568 
1569 	/* XXX oerrors should only count errors !maxtries */
1570 	if ((le32toh(stat->status) & 0xff) != 1)
1571 		ifp->if_oerrors++;
1572 	else
1573 		ifp->if_opackets++;
1574 
1575 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1576 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1577 	/* XXX handle M_TXCB? */
1578 	m_freem(txdata->m);
1579 	txdata->m = NULL;
1580 	ieee80211_free_node(txdata->ni);
1581 	txdata->ni = NULL;
1582 
1583 	ring->queued--;
1584 
1585 	sc->sc_tx_timer = 0;
1586 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1587 	wpi_start(ifp);
1588 }
1589 
1590 static void
1591 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1592 {
1593 	struct wpi_tx_ring *ring = &sc->cmdq;
1594 	struct wpi_tx_data *data;
1595 
1596 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1597 				 "type=%s len=%d\n", desc->qid, desc->idx,
1598 				 desc->flags, wpi_cmd_str(desc->type),
1599 				 le32toh(desc->len)));
1600 
1601 	if ((desc->qid & 7) != 4)
1602 		return;	/* not a command ack */
1603 
1604 	data = &ring->data[desc->idx];
1605 
1606 	/* if the command was mapped in a mbuf, free it */
1607 	if (data->m != NULL) {
1608 		bus_dmamap_unload(ring->data_dmat, data->map);
1609 		m_freem(data->m);
1610 		data->m = NULL;
1611 	}
1612 
1613 	sc->flags &= ~WPI_FLAG_BUSY;
1614 	wakeup(&ring->cmd[desc->idx]);
1615 }
1616 
1617 static void
1618 wpi_notif_intr(struct wpi_softc *sc)
1619 {
1620 	struct ieee80211com *ic = &sc->sc_ic;
1621 	struct ifnet *ifp = ic->ic_ifp;
1622 	struct wpi_rx_desc *desc;
1623 	struct wpi_rx_data *data;
1624 	uint32_t hw;
1625 
1626 	hw = le32toh(sc->shared->next);
1627 	while (sc->rxq.cur != hw) {
1628 		data = &sc->rxq.data[sc->rxq.cur];
1629 		desc = (void *)data->m->m_ext.ext_buf;
1630 
1631 		DPRINTFN(WPI_DEBUG_NOTIFY,
1632 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1633 			  desc->qid,
1634 			  desc->idx,
1635 			  desc->flags,
1636 			  desc->type,
1637 			  le32toh(desc->len)));
1638 
1639 		if (!(desc->qid & 0x80))	/* reply to a command */
1640 			wpi_cmd_intr(sc, desc);
1641 
1642 		switch (desc->type) {
1643 		case WPI_RX_DONE:
1644 			/* a 802.11 frame was received */
1645 			wpi_rx_intr(sc, desc, data);
1646 			break;
1647 
1648 		case WPI_TX_DONE:
1649 			/* a 802.11 frame has been transmitted */
1650 			wpi_tx_intr(sc, desc);
1651 			break;
1652 
1653 		case WPI_UC_READY:
1654 		{
1655 			struct wpi_ucode_info *uc =
1656 				(struct wpi_ucode_info *)(desc + 1);
1657 
1658 			/* the microcontroller is ready */
1659 			DPRINTF(("microcode alive notification version %x "
1660 				"alive %x\n", le32toh(uc->version),
1661 				le32toh(uc->valid)));
1662 
1663 			if (le32toh(uc->valid) != 1) {
1664 				device_printf(sc->sc_dev,
1665 				    "microcontroller initialization failed\n");
1666 				wpi_stop_locked(sc);
1667 			}
1668 			break;
1669 		}
1670 		case WPI_STATE_CHANGED:
1671 		{
1672 			uint32_t *status = (uint32_t *)(desc + 1);
1673 
1674 			/* enabled/disabled notification */
1675 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1676 
1677 			if (le32toh(*status) & 1) {
1678 				device_printf(sc->sc_dev,
1679 				    "Radio transmitter is switched off\n");
1680 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1681 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1682 				/* Disable firmware commands */
1683 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1684 			}
1685 			break;
1686 		}
1687 		case WPI_START_SCAN:
1688 		{
1689 			struct wpi_start_scan *scan =
1690 				(struct wpi_start_scan *)(desc + 1);
1691 
1692 			DPRINTFN(WPI_DEBUG_SCANNING,
1693 				 ("scanning channel %d status %x\n",
1694 			    scan->chan, le32toh(scan->status)));
1695 			break;
1696 		}
1697 		case WPI_STOP_SCAN:
1698 		{
1699 			struct wpi_stop_scan *scan =
1700 				(struct wpi_stop_scan *)(desc + 1);
1701 
1702 			DPRINTFN(WPI_DEBUG_SCANNING,
1703 			    ("scan finished nchan=%d status=%d chan=%d\n",
1704 			     scan->nchan, scan->status, scan->chan));
1705 
1706 			sc->sc_scan_timer = 0;
1707 			ieee80211_scan_next(ic);
1708 			break;
1709 		}
1710 		case WPI_MISSED_BEACON:
1711 		{
1712 		    struct wpi_missed_beacon *beacon =
1713 				(struct wpi_missed_beacon *)(desc + 1);
1714 
1715                     if (le32toh(beacon->consecutive) >=
1716 			ic->ic_bmissthreshold) {
1717 			DPRINTF(("Beacon miss: %u >= %u\n",
1718 				 le32toh(beacon->consecutive),
1719 				 ic->ic_bmissthreshold));
1720 			ieee80211_beacon_miss(ic);
1721 		    }
1722 		    break;
1723 		}
1724 		}
1725 
1726 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1727 	}
1728 
1729 	/* tell the firmware what we have processed */
1730 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1731 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1732 }
1733 
1734 static void
1735 wpi_intr(void *arg)
1736 {
1737 	struct wpi_softc *sc = arg;
1738 	uint32_t r;
1739 
1740 	WPI_LOCK(sc);
1741 
1742 	r = WPI_READ(sc, WPI_INTR);
1743 	if (r == 0 || r == 0xffffffff) {
1744 		WPI_UNLOCK(sc);
1745 		return;
1746 	}
1747 
1748 	/* disable interrupts */
1749 	WPI_WRITE(sc, WPI_MASK, 0);
1750 	/* ack interrupts */
1751 	WPI_WRITE(sc, WPI_INTR, r);
1752 
1753 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1754 		device_printf(sc->sc_dev, "fatal firmware error\n");
1755 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1756 				"(Hardware Error)"));
1757 		wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
1758 		sc->flags &= ~WPI_FLAG_BUSY;
1759 		WPI_UNLOCK(sc);
1760 		return;
1761 	}
1762 
1763 	if (r & WPI_RX_INTR)
1764 		wpi_notif_intr(sc);
1765 
1766 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1767 		wakeup(sc);
1768 
1769 	/* re-enable interrupts */
1770 	if (sc->sc_ifp->if_flags & IFF_UP)
1771 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1772 
1773 	WPI_UNLOCK(sc);
1774 }
1775 
1776 static uint8_t
1777 wpi_plcp_signal(int rate)
1778 {
1779 	switch (rate) {
1780 	/* CCK rates (returned values are device-dependent) */
1781 	case 2:		return 10;
1782 	case 4:		return 20;
1783 	case 11:	return 55;
1784 	case 22:	return 110;
1785 
1786 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1787 	/* R1-R4 (ral/ural is R4-R1) */
1788 	case 12:	return 0xd;
1789 	case 18:	return 0xf;
1790 	case 24:	return 0x5;
1791 	case 36:	return 0x7;
1792 	case 48:	return 0x9;
1793 	case 72:	return 0xb;
1794 	case 96:	return 0x1;
1795 	case 108:	return 0x3;
1796 
1797 	/* unsupported rates (should not get there) */
1798 	default:	return 0;
1799 	}
1800 }
1801 
1802 /* quickly determine if a given rate is CCK or OFDM */
1803 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1804 
1805 /*
1806  * Construct the data packet for a transmit buffer and acutally put
1807  * the buffer onto the transmit ring, kicking the card to process the
1808  * the buffer.
1809  */
1810 static int
1811 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1812 	int ac)
1813 {
1814 	struct ieee80211com *ic = &sc->sc_ic;
1815 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1816 	struct wpi_tx_ring *ring = &sc->txq[ac];
1817 	struct wpi_tx_desc *desc;
1818 	struct wpi_tx_data *data;
1819 	struct wpi_tx_cmd *cmd;
1820 	struct wpi_cmd_data *tx;
1821 	struct ieee80211_frame *wh;
1822 	struct ieee80211_key *k;
1823 	struct mbuf *mnew;
1824 	int i, error, nsegs, rate, hdrlen, ismcast;
1825 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1826 
1827 	desc = &ring->desc[ring->cur];
1828 	data = &ring->data[ring->cur];
1829 
1830 	wh = mtod(m0, struct ieee80211_frame *);
1831 
1832 	hdrlen = ieee80211_hdrsize(wh);
1833 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1834 
1835 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1836 		k = ieee80211_crypto_encap(ic, ni, m0);
1837 		if (k == NULL) {
1838 			m_freem(m0);
1839 			return ENOBUFS;
1840 		}
1841 		/* packet header may have moved, reset our local pointer */
1842 		wh = mtod(m0, struct ieee80211_frame *);
1843 	}
1844 
1845 	cmd = &ring->cmd[ring->cur];
1846 	cmd->code = WPI_CMD_TX_DATA;
1847 	cmd->flags = 0;
1848 	cmd->qid = ring->qid;
1849 	cmd->idx = ring->cur;
1850 
1851 	tx = (struct wpi_cmd_data *)cmd->data;
1852 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1853 	tx->timeout= htole16(0);
1854 	tx->ofdm_mask = 0xff;
1855 	tx->cck_mask = 0x0f;
1856 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1857 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1858 	tx->len = htole16(m0->m_pkthdr.len);
1859 
1860 	if (!ismcast) {
1861 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1862 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1863 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1864 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
1865 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1866 			tx->rts_ntries = 7;
1867 		}
1868 	}
1869 
1870 	/* pick a rate */
1871 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MASK) {
1872 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1873 		/* tell h/w to set timestamp in probe responses */
1874 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1875 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1876 
1877 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1878 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1879 			tx->timeout = htole16(3);
1880 		else
1881 			tx->timeout = htole16(2);
1882 
1883 		rate = ni->ni_rates.rs_rates[0] & IEEE80211_RATE_VAL;
1884 	} else if (ismcast) {
1885 		rate = ic->ic_mcast_rate;
1886 	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1887 		rate = ic->ic_fixed_rate;
1888 	} else {
1889 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1890 		rate &= IEEE80211_RATE_VAL;
1891 	}
1892 	tx->rate = wpi_plcp_signal(rate);
1893 
1894 	/* be very persistant at sending frames out */
1895 	tx->data_ntries = 15;	/* XXX Way too high */
1896 
1897 	if (bpf_peers_present(sc->sc_drvbpf)) {
1898 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1899 		tap->wt_flags = 0;
1900 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1901 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1902 		tap->wt_rate = rate;
1903 		tap->wt_hwqueue = ac;
1904 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1905 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1906 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1907 	}
1908 
1909 	/* save and trim IEEE802.11 header */
1910 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1911 	m_adj(m0, hdrlen);
1912 
1913 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1914 	    &nsegs, BUS_DMA_NOWAIT);
1915 	if (error != 0 && error != EFBIG) {
1916 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1917 		    error);
1918 		m_freem(m0);
1919 		return error;
1920 	}
1921 	if (error != 0) {
1922 		/* XXX use m_collapse */
1923 		mnew = m_defrag(m0, M_DONTWAIT);
1924 		if (mnew == NULL) {
1925 			device_printf(sc->sc_dev,
1926 			    "could not defragment mbuf\n");
1927 			m_freem(m0);
1928 			return ENOBUFS;
1929 		}
1930 		m0 = mnew;
1931 
1932 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1933 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1934 		if (error != 0) {
1935 			device_printf(sc->sc_dev,
1936 			    "could not map mbuf (error %d)\n", error);
1937 			m_freem(m0);
1938 			return error;
1939 		}
1940 	}
1941 
1942 	data->m = m0;
1943 	data->ni = ni;
1944 
1945 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1946 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1947 
1948 	/* first scatter/gather segment is used by the tx data command */
1949 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1950 	    (1 + nsegs) << 24);
1951 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1952 	    ring->cur * sizeof (struct wpi_tx_cmd));
1953 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1954 	for (i = 1; i <= nsegs; i++) {
1955 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1956 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1957 	}
1958 
1959 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1960 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1961 	    BUS_DMASYNC_PREWRITE);
1962 
1963 	ring->queued++;
1964 
1965 	/* kick ring */
1966 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1967 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
1968 
1969 	return 0;
1970 }
1971 
1972 /**
1973  * Process data waiting to be sent on the IFNET output queue
1974  */
1975 static void
1976 wpi_start(struct ifnet *ifp)
1977 {
1978 	struct wpi_softc *sc = ifp->if_softc;
1979 	struct ieee80211com *ic = &sc->sc_ic;
1980 	struct ieee80211_node *ni;
1981 	struct ether_header *eh;
1982 	struct mbuf *m0;
1983 	int ac, waslocked;
1984 
1985 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1986 		return;
1987 
1988 	waslocked = WPI_LOCK_OWNED(sc);
1989 	if (!waslocked)
1990 		WPI_LOCK(sc);
1991 
1992 	for (;;) {
1993 		IF_DEQUEUE(&ic->ic_mgtq, m0);
1994 		if (m0 != NULL) {
1995 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1996 			m0->m_pkthdr.rcvif = NULL;
1997 
1998 			/* management frames go into ring 0 */
1999 			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2000 				ifp->if_oerrors++;
2001 				continue;
2002 			}
2003 
2004 			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2005 				ifp->if_oerrors++;
2006 				break;
2007 			}
2008 		} else {
2009 			if (ic->ic_state != IEEE80211_S_RUN)
2010 				break;
2011 
2012 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2013 			if (m0 == NULL)
2014 				break;
2015 
2016 			/*
2017 			 * Cancel any background scan.
2018 			 */
2019 			if (ic->ic_flags & IEEE80211_F_SCAN)
2020 				ieee80211_cancel_scan(ic);
2021 
2022 			if (m0->m_len < sizeof (*eh) &&
2023 			    (m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
2024 				ifp->if_oerrors++;
2025 				continue;
2026 			}
2027 			eh = mtod(m0, struct ether_header *);
2028 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2029 			if (ni == NULL) {
2030 				m_freem(m0);
2031 				ifp->if_oerrors++;
2032 				continue;
2033 			}
2034 
2035 			/* classify mbuf so we can find which tx ring to use */
2036 			if (ieee80211_classify(ic, m0, ni) != 0) {
2037 				m_freem(m0);
2038 				ieee80211_free_node(ni);
2039 				ifp->if_oerrors++;
2040 				continue;
2041 			}
2042 
2043 			ac = M_WME_GETAC(m0);
2044 			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2045 				/* there is no place left in this ring */
2046 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2047 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2048 				break;
2049 			}
2050 
2051 			BPF_MTAP(ifp, m0);
2052 
2053 			m0 = ieee80211_encap(ic, m0, ni);
2054 			if (m0 == NULL) {
2055 				ieee80211_free_node(ni);
2056 				ifp->if_oerrors++;
2057 				continue;
2058 			}
2059 
2060 			if (bpf_peers_present(ic->ic_rawbpf))
2061 				bpf_mtap(ic->ic_rawbpf, m0);
2062 
2063 			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2064 				ieee80211_free_node(ni);
2065 				ifp->if_oerrors++;
2066 				break;
2067 			}
2068 		}
2069 
2070 		sc->sc_tx_timer = 5;
2071 		ic->ic_lastdata = ticks;
2072 	}
2073 
2074 	if (!waslocked)
2075 		WPI_UNLOCK(sc);
2076 }
2077 
2078 static int
2079 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2080 {
2081 	struct wpi_softc *sc = ifp->if_softc;
2082 	struct ieee80211com *ic = &sc->sc_ic;
2083 	int error = 0;
2084 
2085 	WPI_LOCK(sc);
2086 
2087 	switch (cmd) {
2088 	case SIOCSIFFLAGS:
2089 		if ((ifp->if_flags & IFF_UP)) {
2090 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
2091 				wpi_init_locked(sc, 0);
2092 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2093 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2094 			wpi_stop_locked(sc);
2095 		break;
2096 	default:
2097 		WPI_UNLOCK(sc);
2098 		error = ieee80211_ioctl(ic, cmd, data);
2099 		WPI_LOCK(sc);
2100 	}
2101 
2102 	if (error == ENETRESET) {
2103 		if ((ifp->if_flags & IFF_UP) &&
2104 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2105 		    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2106 			wpi_init_locked(sc, 0);
2107 		error = 0;
2108 	}
2109 
2110 	WPI_UNLOCK(sc);
2111 
2112 	return error;
2113 }
2114 
2115 /*
2116  * Extract various information from EEPROM.
2117  */
2118 static void
2119 wpi_read_eeprom(struct wpi_softc *sc)
2120 {
2121 	struct ieee80211com *ic = &sc->sc_ic;
2122 	int i;
2123 
2124 	/* read the hardware capabilities, revision and SKU type */
2125 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2126 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2127 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2128 
2129 	/* read the regulatory domain */
2130 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2131 
2132 	/* read in the hw MAC address */
2133 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2134 
2135 	/* read the list of authorized channels */
2136 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2137 		wpi_read_eeprom_channels(sc,i);
2138 
2139 	/* read the power level calibration info for each group */
2140 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2141 		wpi_read_eeprom_group(sc,i);
2142 }
2143 
2144 /*
2145  * Send a command to the firmware.
2146  */
2147 static int
2148 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2149 {
2150 	struct wpi_tx_ring *ring = &sc->cmdq;
2151 	struct wpi_tx_desc *desc;
2152 	struct wpi_tx_cmd *cmd;
2153 
2154 #ifdef WPI_DEBUG
2155 	if (!async) {
2156 		WPI_LOCK_ASSERT(sc);
2157 	}
2158 #endif
2159 
2160 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2161 		    async));
2162 
2163 	if (sc->flags & WPI_FLAG_BUSY) {
2164 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2165 		    __func__, code);
2166 		return EAGAIN;
2167 	}
2168 	sc->flags|= WPI_FLAG_BUSY;
2169 
2170 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2171 	    code, size));
2172 
2173 	desc = &ring->desc[ring->cur];
2174 	cmd = &ring->cmd[ring->cur];
2175 
2176 	cmd->code = code;
2177 	cmd->flags = 0;
2178 	cmd->qid = ring->qid;
2179 	cmd->idx = ring->cur;
2180 	memcpy(cmd->data, buf, size);
2181 
2182 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2183 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2184 		ring->cur * sizeof (struct wpi_tx_cmd));
2185 	desc->segs[0].len  = htole32(4 + size);
2186 
2187 	/* kick cmd ring */
2188 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2189 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2190 
2191 	if (async) {
2192 		sc->flags &= ~ WPI_FLAG_BUSY;
2193 		return 0;
2194 	}
2195 
2196 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2197 }
2198 
2199 static int
2200 wpi_wme_update(struct ieee80211com *ic)
2201 {
2202 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2203 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2204 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2205 	const struct wmeParams *wmep;
2206 	struct wpi_wme_setup wme;
2207 	int ac;
2208 
2209 	/* don't override default WME values if WME is not actually enabled */
2210 	if (!(ic->ic_flags & IEEE80211_F_WME))
2211 		return 0;
2212 
2213 	wme.flags = 0;
2214 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2215 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2216 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2217 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2218 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2219 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2220 
2221 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2222 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2223 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2224 	}
2225 
2226 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2227 #undef WPI_USEC
2228 #undef WPI_EXP2
2229 }
2230 
2231 /*
2232  * Configure h/w multi-rate retries.
2233  */
2234 static int
2235 wpi_mrr_setup(struct wpi_softc *sc)
2236 {
2237 	struct ieee80211com *ic = &sc->sc_ic;
2238 	struct wpi_mrr_setup mrr;
2239 	int i, error;
2240 
2241 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2242 
2243 	/* CCK rates (not used with 802.11a) */
2244 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2245 		mrr.rates[i].flags = 0;
2246 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2247 		/* fallback to the immediate lower CCK rate (if any) */
2248 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2249 		/* try one time at this rate before falling back to "next" */
2250 		mrr.rates[i].ntries = 1;
2251 	}
2252 
2253 	/* OFDM rates (not used with 802.11b) */
2254 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2255 		mrr.rates[i].flags = 0;
2256 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2257 		/* fallback to the immediate lower OFDM rate (if any) */
2258 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2259 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2260 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2261 			WPI_OFDM6 : WPI_CCK2) :
2262 		    i - 1;
2263 		/* try one time at this rate before falling back to "next" */
2264 		mrr.rates[i].ntries = 1;
2265 	}
2266 
2267 	/* setup MRR for control frames */
2268 	mrr.which = htole32(WPI_MRR_CTL);
2269 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2270 	if (error != 0) {
2271 		device_printf(sc->sc_dev,
2272 		    "could not setup MRR for control frames\n");
2273 		return error;
2274 	}
2275 
2276 	/* setup MRR for data frames */
2277 	mrr.which = htole32(WPI_MRR_DATA);
2278 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2279 	if (error != 0) {
2280 		device_printf(sc->sc_dev,
2281 		    "could not setup MRR for data frames\n");
2282 		return error;
2283 	}
2284 
2285 	return 0;
2286 }
2287 
2288 static void
2289 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2290 {
2291 	struct wpi_cmd_led led;
2292 
2293 	led.which = which;
2294 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2295 	led.off = off;
2296 	led.on = on;
2297 
2298 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2299 }
2300 
2301 static void
2302 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2303 {
2304 	struct wpi_cmd_tsf tsf;
2305 	uint64_t val, mod;
2306 
2307 	memset(&tsf, 0, sizeof tsf);
2308 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2309 	tsf.bintval = htole16(ni->ni_intval);
2310 	tsf.lintval = htole16(10);
2311 
2312 	/* compute remaining time until next beacon */
2313 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2314 	mod = le64toh(tsf.tstamp) % val;
2315 	tsf.binitval = htole32((uint32_t)(val - mod));
2316 
2317 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2318 		device_printf(sc->sc_dev, "could not enable TSF\n");
2319 }
2320 
2321 #if 0
2322 /*
2323  * Build a beacon frame that the firmware will broadcast periodically in
2324  * IBSS or HostAP modes.
2325  */
2326 static int
2327 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2328 {
2329 	struct ieee80211com *ic = &sc->sc_ic;
2330 	struct wpi_tx_ring *ring = &sc->cmdq;
2331 	struct wpi_tx_desc *desc;
2332 	struct wpi_tx_data *data;
2333 	struct wpi_tx_cmd *cmd;
2334 	struct wpi_cmd_beacon *bcn;
2335 	struct ieee80211_beacon_offsets bo;
2336 	struct mbuf *m0;
2337 	bus_addr_t physaddr;
2338 	int error;
2339 
2340 	desc = &ring->desc[ring->cur];
2341 	data = &ring->data[ring->cur];
2342 
2343 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2344 	if (m0 == NULL) {
2345 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2346 		return ENOMEM;
2347 	}
2348 
2349 	cmd = &ring->cmd[ring->cur];
2350 	cmd->code = WPI_CMD_SET_BEACON;
2351 	cmd->flags = 0;
2352 	cmd->qid = ring->qid;
2353 	cmd->idx = ring->cur;
2354 
2355 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2356 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2357 	bcn->id = WPI_ID_BROADCAST;
2358 	bcn->ofdm_mask = 0xff;
2359 	bcn->cck_mask = 0x0f;
2360 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2361 	bcn->len = htole16(m0->m_pkthdr.len);
2362 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2363 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2364 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2365 
2366 	/* save and trim IEEE802.11 header */
2367 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2368 	m_adj(m0, sizeof (struct ieee80211_frame));
2369 
2370 	/* assume beacon frame is contiguous */
2371 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2372 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2373 	if (error != 0) {
2374 		device_printf(sc->sc_dev, "could not map beacon\n");
2375 		m_freem(m0);
2376 		return error;
2377 	}
2378 
2379 	data->m = m0;
2380 
2381 	/* first scatter/gather segment is used by the beacon command */
2382 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2383 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2384 		ring->cur * sizeof (struct wpi_tx_cmd));
2385 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2386 	desc->segs[1].addr = htole32(physaddr);
2387 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2388 
2389 	/* kick cmd ring */
2390 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2391 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2392 
2393 	return 0;
2394 }
2395 #endif
2396 
2397 static int
2398 wpi_auth(struct wpi_softc *sc)
2399 {
2400 	struct ieee80211com *ic = &sc->sc_ic;
2401 	struct ieee80211_node *ni = ic->ic_bss;
2402 	struct wpi_node_info node;
2403 	int error;
2404 
2405 
2406 	/* update adapter's configuration */
2407 	sc->config.associd = 0;
2408 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2409 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2410 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2411 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2412 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2413 		    WPI_CONFIG_24GHZ);
2414 	}
2415 	switch (ic->ic_curmode) {
2416 	case IEEE80211_MODE_11A:
2417 		sc->config.cck_mask  = 0;
2418 		sc->config.ofdm_mask = 0x15;
2419 		break;
2420 	case IEEE80211_MODE_11B:
2421 		sc->config.cck_mask  = 0x03;
2422 		sc->config.ofdm_mask = 0;
2423 		break;
2424 	default:	/* assume 802.11b/g */
2425 		sc->config.cck_mask  = 0x0f;
2426 		sc->config.ofdm_mask = 0x15;
2427 	}
2428 
2429 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2430 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2431 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2432 		sizeof (struct wpi_config), 1);
2433 	if (error != 0) {
2434 		device_printf(sc->sc_dev, "could not configure\n");
2435 		return error;
2436 	}
2437 
2438 	/* configuration has changed, set Tx power accordingly */
2439 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2440 		device_printf(sc->sc_dev, "could not set Tx power\n");
2441 		return error;
2442 	}
2443 
2444 	/* add default node */
2445 	memset(&node, 0, sizeof node);
2446 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2447 	node.id = WPI_ID_BSS;
2448 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2449 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2450 	node.action = htole32(WPI_ACTION_SET_RATE);
2451 	node.antenna = WPI_ANTENNA_BOTH;
2452 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2453 	if (error != 0)
2454 		device_printf(sc->sc_dev, "could not add BSS node\n");
2455 
2456 	return (error);
2457 }
2458 
2459 static int
2460 wpi_run(struct wpi_softc *sc)
2461 {
2462 	struct ieee80211com *ic = &sc->sc_ic;
2463 	struct ieee80211_node *ni = ic->ic_bss;
2464 	int error;
2465 
2466 	ni = ic->ic_bss;
2467 	wpi_enable_tsf(sc, ni);
2468 
2469 	/* update adapter's configuration */
2470 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2471 	/* short preamble/slot time are negotiated when associating */
2472 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2473 	    WPI_CONFIG_SHSLOT);
2474 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2475 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2476 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2477 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2478 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2479 
2480 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2481 
2482 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2483 		    sc->config.flags));
2484 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2485 		    wpi_config), 1);
2486 	if (error != 0) {
2487 		device_printf(sc->sc_dev, "could not update configuration\n");
2488 		return error;
2489 	}
2490 
2491 	error = wpi_set_txpower(sc, ic->ic_bsschan, 1);
2492 	if (error != 0) {
2493 		device_printf(sc->sc_dev, "could set txpower\n");
2494 		return error;
2495 	}
2496 
2497 	if (ic->ic_opmode == IEEE80211_M_STA) {
2498 		/* fake a join to init the tx rate */
2499 		wpi_newassoc(ic->ic_bss, 1);
2500 	}
2501 
2502 	/* link LED always on while associated */
2503 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2504 
2505 	/* start automatic rate control timer */
2506 	callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
2507 
2508 	return (error);
2509 }
2510 
2511 /*
2512  * Send a scan request to the firmware.  Since this command is huge, we map it
2513  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2514  * much of this code is similar to that in wpi_cmd but because we must manually
2515  * construct the probe & channels, we duplicate what's needed here. XXX In the
2516  * future, this function should be modified to use wpi_cmd to help cleanup the
2517  * code base.
2518  */
2519 static int
2520 wpi_scan(struct wpi_softc *sc)
2521 {
2522 	struct ieee80211com *ic = &sc->sc_ic;
2523 	struct ieee80211_scan_state *ss = ic->ic_scan;
2524 	struct wpi_tx_ring *ring = &sc->cmdq;
2525 	struct wpi_tx_desc *desc;
2526 	struct wpi_tx_data *data;
2527 	struct wpi_tx_cmd *cmd;
2528 	struct wpi_scan_hdr *hdr;
2529 	struct wpi_scan_chan *chan;
2530 	struct ieee80211_frame *wh;
2531 	struct ieee80211_rateset *rs;
2532 	struct ieee80211_channel *c;
2533 	enum ieee80211_phymode mode;
2534 	uint8_t *frm;
2535 	int nrates, pktlen, error, i, nssid;
2536 	bus_addr_t physaddr;
2537 	struct ifnet *ifp = ic->ic_ifp;
2538 
2539 	desc = &ring->desc[ring->cur];
2540 	data = &ring->data[ring->cur];
2541 
2542 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2543 	if (data->m == NULL) {
2544 		device_printf(sc->sc_dev,
2545 		    "could not allocate mbuf for scan command\n");
2546 		return ENOMEM;
2547 	}
2548 
2549 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2550 	cmd->code = WPI_CMD_SCAN;
2551 	cmd->flags = 0;
2552 	cmd->qid = ring->qid;
2553 	cmd->idx = ring->cur;
2554 
2555 	hdr = (struct wpi_scan_hdr *)cmd->data;
2556 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2557 
2558 	/*
2559 	 * Move to the next channel if no packets are received within 5 msecs
2560 	 * after sending the probe request (this helps to reduce the duration
2561 	 * of active scans).
2562 	 */
2563 	hdr->quiet = htole16(5);
2564 	hdr->threshold = htole16(1);
2565 
2566 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2567 		/* send probe requests at 6Mbps */
2568 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2569 
2570 		/* Enable crc checking */
2571 		hdr->promotion = htole16(1);
2572 	} else {
2573 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2574 		/* send probe requests at 1Mbps */
2575 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2576 	}
2577 	hdr->tx.id = WPI_ID_BROADCAST;
2578 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2579 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2580 
2581 	/*XXX Need to cater for multiple essids */
2582 	memset(&hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2583 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2584 	for (i = 0; i < nssid; i++ ){
2585 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2586 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2587 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2588 		    hdr->scan_essids[i].esslen);
2589 #ifdef WPI_DEBUG
2590 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2591 			printf("Scanning Essid: ");
2592 			ieee80211_print_essid(ic->ic_des_ssid[i].ssid,
2593 			    ic->ic_des_ssid[i].len);
2594 			printf("\n");
2595 		}
2596 #endif
2597 	}
2598 
2599 	/*
2600 	 * Build a probe request frame.  Most of the following code is a
2601 	 * copy & paste of what is done in net80211.
2602 	 */
2603 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2604 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2605 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2606 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2607 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2608 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2609 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2610 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2611 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2612 
2613 	frm = (uint8_t *)(wh + 1);
2614 
2615 	/* add essid IE, the hardware will fill this in for us */
2616 	*frm++ = IEEE80211_ELEMID_SSID;
2617 	*frm++ = 0;
2618 
2619 	mode = ieee80211_chan2mode(ic->ic_curchan);
2620 	rs = &ic->ic_sup_rates[mode];
2621 
2622 	/* add supported rates IE */
2623 	*frm++ = IEEE80211_ELEMID_RATES;
2624 	nrates = rs->rs_nrates;
2625 	if (nrates > IEEE80211_RATE_SIZE)
2626 		nrates = IEEE80211_RATE_SIZE;
2627 	*frm++ = nrates;
2628 	memcpy(frm, rs->rs_rates, nrates);
2629 	frm += nrates;
2630 
2631 	/* add supported xrates IE */
2632 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2633 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2634 		*frm++ = IEEE80211_ELEMID_XRATES;
2635 		*frm++ = nrates;
2636 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2637 		frm += nrates;
2638 	}
2639 
2640 	/* setup length of probe request */
2641 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2642 
2643 	/*
2644 	 * Construct information about the channel that we
2645 	 * want to scan. The firmware expects this to be directly
2646 	 * after the scan probe request
2647 	 */
2648 	c = ic->ic_curchan;
2649 	chan = (struct wpi_scan_chan *)frm;
2650 	chan->chan = ieee80211_chan2ieee(ic, c);
2651 	chan->flags = 0;
2652 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2653 		chan->flags |= WPI_CHAN_ACTIVE;
2654 		if (ic->ic_des_ssid[0].len != 0)
2655 			chan->flags |= WPI_CHAN_DIRECT;
2656 	}
2657 	chan->gain_dsp = 0x6e; /* Default level */
2658 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2659 		chan->active = htole16(10);
2660 		chan->passive = htole16(sc->maxdwell);
2661 		chan->gain_radio = 0x3b;
2662 	} else {
2663 		chan->active = htole16(20);
2664 		chan->passive = htole16(sc->maxdwell);
2665 		chan->gain_radio = 0x28;
2666 	}
2667 
2668 	DPRINTFN(WPI_DEBUG_SCANNING,
2669 	    ("Scanning %u Passive: %d\n",
2670 	     chan->chan,
2671 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2672 
2673 	hdr->nchan++;
2674 	chan++;
2675 
2676 	frm += sizeof (struct wpi_scan_chan);
2677 #if 0
2678 	// XXX All Channels....
2679 	for (c  = &ic->ic_channels[1];
2680 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2681 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2682 			continue;
2683 
2684 		chan->chan = ieee80211_chan2ieee(ic, c);
2685 		chan->flags = 0;
2686 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2687 		    chan->flags |= WPI_CHAN_ACTIVE;
2688 		    if (ic->ic_des_ssid[0].len != 0)
2689 			chan->flags |= WPI_CHAN_DIRECT;
2690 		}
2691 		chan->gain_dsp = 0x6e; /* Default level */
2692 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2693 			chan->active = htole16(10);
2694 			chan->passive = htole16(110);
2695 			chan->gain_radio = 0x3b;
2696 		} else {
2697 			chan->active = htole16(20);
2698 			chan->passive = htole16(120);
2699 			chan->gain_radio = 0x28;
2700 		}
2701 
2702 		DPRINTFN(WPI_DEBUG_SCANNING,
2703 			 ("Scanning %u Passive: %d\n",
2704 			  chan->chan,
2705 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2706 
2707 		hdr->nchan++;
2708 		chan++;
2709 
2710 		frm += sizeof (struct wpi_scan_chan);
2711 	}
2712 #endif
2713 
2714 	hdr->len = htole16(frm - (uint8_t *)hdr);
2715 	pktlen = frm - (uint8_t *)cmd;
2716 
2717 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2718 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2719 	if (error != 0) {
2720 		device_printf(sc->sc_dev, "could not map scan command\n");
2721 		m_freem(data->m);
2722 		data->m = NULL;
2723 		return error;
2724 	}
2725 
2726 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2727 	desc->segs[0].addr = htole32(physaddr);
2728 	desc->segs[0].len  = htole32(pktlen);
2729 
2730 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2731 	    BUS_DMASYNC_PREWRITE);
2732 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2733 
2734 	/* kick cmd ring */
2735 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2736 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2737 
2738 	sc->sc_scan_timer = 5;
2739 	return 0;	/* will be notified async. of failure/success */
2740 }
2741 
2742 /**
2743  * Configure the card to listen to a particular channel, this transisions the
2744  * card in to being able to receive frames from remote devices.
2745  */
2746 static int
2747 wpi_config(struct wpi_softc *sc)
2748 {
2749 	struct ieee80211com *ic = &sc->sc_ic;
2750 	struct ifnet *ifp = ic->ic_ifp;
2751 	struct wpi_power power;
2752 	struct wpi_bluetooth bluetooth;
2753 	struct wpi_node_info node;
2754 	int error;
2755 
2756 	/* set power mode */
2757 	memset(&power, 0, sizeof power);
2758 	power.flags = htole32(WPI_POWER_CAM|0x8);
2759 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2760 	if (error != 0) {
2761 		device_printf(sc->sc_dev, "could not set power mode\n");
2762 		return error;
2763 	}
2764 
2765 	/* configure bluetooth coexistence */
2766 	memset(&bluetooth, 0, sizeof bluetooth);
2767 	bluetooth.flags = 3;
2768 	bluetooth.lead = 0xaa;
2769 	bluetooth.kill = 1;
2770 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2771 	    0);
2772 	if (error != 0) {
2773 		device_printf(sc->sc_dev,
2774 		    "could not configure bluetooth coexistence\n");
2775 		return error;
2776 	}
2777 
2778 	/* configure adapter */
2779 	memset(&sc->config, 0, sizeof (struct wpi_config));
2780 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2781 	/*set default channel*/
2782 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2783 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2784 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2785 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2786 		    WPI_CONFIG_24GHZ);
2787 	}
2788 	sc->config.filter = 0;
2789 	switch (ic->ic_opmode) {
2790 	case IEEE80211_M_STA:
2791 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2792 		sc->config.mode = WPI_MODE_STA;
2793 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2794 		break;
2795 	case IEEE80211_M_IBSS:
2796 	case IEEE80211_M_AHDEMO:
2797 		sc->config.mode = WPI_MODE_IBSS;
2798 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2799 					     WPI_FILTER_MULTICAST);
2800 		break;
2801 	case IEEE80211_M_HOSTAP:
2802 		sc->config.mode = WPI_MODE_HOSTAP;
2803 		break;
2804 	case IEEE80211_M_MONITOR:
2805 		sc->config.mode = WPI_MODE_MONITOR;
2806 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2807 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2808 		break;
2809 	}
2810 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2811 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2812 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2813 		sizeof (struct wpi_config), 0);
2814 	if (error != 0) {
2815 		device_printf(sc->sc_dev, "configure command failed\n");
2816 		return error;
2817 	}
2818 
2819 	/* configuration has changed, set Tx power accordingly */
2820 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2821 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2822 	    return error;
2823 	}
2824 
2825 	/* add broadcast node */
2826 	memset(&node, 0, sizeof node);
2827 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2828 	node.id = WPI_ID_BROADCAST;
2829 	node.rate = wpi_plcp_signal(2);
2830 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2831 	if (error != 0) {
2832 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2833 		return error;
2834 	}
2835 
2836 	/* Setup rate scalling */
2837 	error = wpi_mrr_setup(sc);
2838 	if (error != 0) {
2839 		device_printf(sc->sc_dev, "could not setup MRR\n");
2840 		return error;
2841 	}
2842 
2843 	return 0;
2844 }
2845 
2846 static void
2847 wpi_stop_master(struct wpi_softc *sc)
2848 {
2849 	uint32_t tmp;
2850 	int ntries;
2851 
2852 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2853 
2854 	tmp = WPI_READ(sc, WPI_RESET);
2855 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2856 
2857 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2858 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2859 		return;	/* already asleep */
2860 
2861 	for (ntries = 0; ntries < 100; ntries++) {
2862 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2863 			break;
2864 		DELAY(10);
2865 	}
2866 	if (ntries == 100) {
2867 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2868 	}
2869 }
2870 
2871 static int
2872 wpi_power_up(struct wpi_softc *sc)
2873 {
2874 	uint32_t tmp;
2875 	int ntries;
2876 
2877 	wpi_mem_lock(sc);
2878 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2879 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2880 	wpi_mem_unlock(sc);
2881 
2882 	for (ntries = 0; ntries < 5000; ntries++) {
2883 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2884 			break;
2885 		DELAY(10);
2886 	}
2887 	if (ntries == 5000) {
2888 		device_printf(sc->sc_dev,
2889 		    "timeout waiting for NIC to power up\n");
2890 		return ETIMEDOUT;
2891 	}
2892 	return 0;
2893 }
2894 
2895 static int
2896 wpi_reset(struct wpi_softc *sc)
2897 {
2898 	uint32_t tmp;
2899 	int ntries;
2900 
2901 	DPRINTFN(WPI_DEBUG_HW,
2902 	    ("Resetting the card - clearing any uploaded firmware\n"));
2903 
2904 	/* clear any pending interrupts */
2905 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2906 
2907 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2908 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2909 
2910 	tmp = WPI_READ(sc, WPI_CHICKEN);
2911 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2912 
2913 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2914 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2915 
2916 	/* wait for clock stabilization */
2917 	for (ntries = 0; ntries < 25000; ntries++) {
2918 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2919 			break;
2920 		DELAY(10);
2921 	}
2922 	if (ntries == 25000) {
2923 		device_printf(sc->sc_dev,
2924 		    "timeout waiting for clock stabilization\n");
2925 		return ETIMEDOUT;
2926 	}
2927 
2928 	/* initialize EEPROM */
2929 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2930 
2931 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2932 		device_printf(sc->sc_dev, "EEPROM not found\n");
2933 		return EIO;
2934 	}
2935 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2936 
2937 	return 0;
2938 }
2939 
2940 static void
2941 wpi_hw_config(struct wpi_softc *sc)
2942 {
2943 	uint32_t rev, hw;
2944 
2945 	/* voodoo from the Linux "driver".. */
2946 	hw = WPI_READ(sc, WPI_HWCONFIG);
2947 
2948 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2949 	if ((rev & 0xc0) == 0x40)
2950 		hw |= WPI_HW_ALM_MB;
2951 	else if (!(rev & 0x80))
2952 		hw |= WPI_HW_ALM_MM;
2953 
2954 	if (sc->cap == 0x80)
2955 		hw |= WPI_HW_SKU_MRC;
2956 
2957 	hw &= ~WPI_HW_REV_D;
2958 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2959 		hw |= WPI_HW_REV_D;
2960 
2961 	if (sc->type > 1)
2962 		hw |= WPI_HW_TYPE_B;
2963 
2964 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2965 }
2966 
2967 static void
2968 wpi_rfkill_resume(struct wpi_softc *sc)
2969 {
2970 	struct ifnet *ifp = sc->sc_ifp;
2971 	struct ieee80211com *ic = &sc->sc_ic;
2972 	int ntries;
2973 
2974 	/* enable firmware again */
2975 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2976 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2977 
2978 	/* wait for thermal sensors to calibrate */
2979 	for (ntries = 0; ntries < 1000; ntries++) {
2980 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2981 			break;
2982 		DELAY(10);
2983 	}
2984 
2985 	if (ntries == 1000) {
2986 		device_printf(sc->sc_dev,
2987 		    "timeout waiting for thermal calibration\n");
2988 		WPI_UNLOCK(sc);
2989 		return;
2990 	}
2991 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
2992 
2993 	if (wpi_config(sc) != 0) {
2994 		device_printf(sc->sc_dev, "device config failed\n");
2995 		WPI_UNLOCK(sc);
2996 		return;
2997 	}
2998 
2999 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3000 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3001 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3002 
3003 	if (ic->ic_flags & IEEE80211_F_SCAN)
3004 		ieee80211_scan_next(ic);
3005 
3006 	ieee80211_beacon_miss(ic);
3007 
3008 	/* reset the led sequence */
3009 	switch (ic->ic_state) {
3010 		case IEEE80211_S_SCAN:
3011 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3012 			break;
3013 
3014 		case IEEE80211_S_RUN:
3015 			if (ic->ic_opmode == IEEE80211_M_MONITOR)
3016 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3017 			else
3018 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3019 			break;
3020 
3021 		default:
3022 			break;	/* please compiler */
3023 	}
3024 
3025 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3026 }
3027 
3028 static void
3029 wpi_init(void *arg)
3030 {
3031 	struct wpi_softc *sc = arg;
3032 
3033 	WPI_LOCK(sc);
3034 	wpi_init_locked(sc, 0);
3035 	WPI_UNLOCK(sc);
3036 }
3037 
3038 static void
3039 wpi_init_locked(struct wpi_softc *sc, int force)
3040 {
3041 	struct ieee80211com *ic = &sc->sc_ic;
3042 	struct ifnet *ifp = ic->ic_ifp;
3043 	uint32_t tmp;
3044 	int ntries, qid;
3045 
3046 	wpi_stop_locked(sc);
3047 	(void)wpi_reset(sc);
3048 
3049 	wpi_mem_lock(sc);
3050 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3051 	DELAY(20);
3052 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3053 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3054 	wpi_mem_unlock(sc);
3055 
3056 	(void)wpi_power_up(sc);
3057 	wpi_hw_config(sc);
3058 
3059 	/* init Rx ring */
3060 	wpi_mem_lock(sc);
3061 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3062 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3063 	    offsetof(struct wpi_shared, next));
3064 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3065 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3066 	wpi_mem_unlock(sc);
3067 
3068 	/* init Tx rings */
3069 	wpi_mem_lock(sc);
3070 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3071 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3072 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3073 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3074 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3075 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3076 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3077 
3078 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3079 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3080 
3081 	for (qid = 0; qid < 6; qid++) {
3082 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3083 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3084 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3085 	}
3086 	wpi_mem_unlock(sc);
3087 
3088 	/* clear "radio off" and "disable command" bits (reversed logic) */
3089 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3090 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3091 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3092 
3093 	/* clear any pending interrupts */
3094 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3095 
3096 	/* enable interrupts */
3097 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3098 
3099 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3100 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3101 
3102 	if ((wpi_load_firmware(sc)) != 0) {
3103 	    device_printf(sc->sc_dev,
3104 		"A problem occurred loading the firmware to the driver\n");
3105 	    return;
3106 	}
3107 
3108 	/* At this point the firmware is up and running. If the hardware
3109 	 * RF switch is turned off thermal calibration will fail, though
3110 	 * the card is still happy to continue to accept commands, catch
3111 	 * this case and schedule a task to watch for it to be turned on.
3112 	 */
3113 	wpi_mem_lock(sc);
3114 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3115 	wpi_mem_unlock(sc);
3116 
3117 	if (!(tmp & 0x1)) {
3118 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3119 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3120 		goto out;
3121 	}
3122 
3123 	/* wait for thermal sensors to calibrate */
3124 	for (ntries = 0; ntries < 1000; ntries++) {
3125 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3126 			break;
3127 		DELAY(10);
3128 	}
3129 
3130 	if (ntries == 1000) {
3131 		device_printf(sc->sc_dev,
3132 		    "timeout waiting for thermal sensors calibration\n");
3133 		return;
3134 	}
3135 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3136 
3137 	if (wpi_config(sc) != 0) {
3138 		device_printf(sc->sc_dev, "device config failed\n");
3139 		return;
3140 	}
3141 
3142 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3143 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3144 out:
3145 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3146 
3147 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3148 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3149 	else if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3150 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3151 	return;
3152 }
3153 
3154 static void
3155 wpi_stop(struct wpi_softc *sc)
3156 {
3157 
3158 	WPI_LOCK(sc);
3159 	wpi_stop_locked(sc);
3160 	WPI_UNLOCK(sc);
3161 
3162 }
3163 static void
3164 wpi_stop_locked(struct wpi_softc *sc)
3165 
3166 {
3167 	struct ieee80211com *ic = &sc->sc_ic;
3168 	struct ifnet *ifp = ic->ic_ifp;
3169 	uint32_t tmp;
3170 	int ac;
3171 
3172 	sc->sc_tx_timer = 0;
3173 	sc->sc_scan_timer = 0;
3174 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3175 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3176 	callout_stop(&sc->watchdog_to);
3177 	callout_stop(&sc->calib_to);
3178 
3179 
3180 	/* disable interrupts */
3181 	WPI_WRITE(sc, WPI_MASK, 0);
3182 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3183 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3184 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3185 
3186 	/* Clear any commands left in the command buffer */
3187 	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
3188 	memset(sc->sc_cmd_arg, 0, sizeof(sc->sc_cmd_arg));
3189 	sc->sc_cmd_cur = 0;
3190 	sc->sc_cmd_next = 0;
3191 
3192 	wpi_mem_lock(sc);
3193 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3194 	wpi_mem_unlock(sc);
3195 
3196 	/* reset all Tx rings */
3197 	for (ac = 0; ac < 4; ac++)
3198 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3199 	wpi_reset_tx_ring(sc, &sc->cmdq);
3200 
3201 	/* reset Rx ring */
3202 	wpi_reset_rx_ring(sc, &sc->rxq);
3203 
3204 	wpi_mem_lock(sc);
3205 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3206 	wpi_mem_unlock(sc);
3207 
3208 	DELAY(5);
3209 
3210 	wpi_stop_master(sc);
3211 
3212 	tmp = WPI_READ(sc, WPI_RESET);
3213 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3214 	sc->flags &= ~WPI_FLAG_BUSY;
3215 
3216 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3217 }
3218 
3219 static void
3220 wpi_iter_func(void *arg, struct ieee80211_node *ni)
3221 {
3222 	struct wpi_softc *sc = arg;
3223 	struct wpi_node *wn = (struct wpi_node *)ni;
3224 
3225 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
3226 }
3227 
3228 static void
3229 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3230 {
3231 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3232 	int i;
3233 
3234 	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
3235 
3236 	for (i = ni->ni_rates.rs_nrates - 1;
3237 	    i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
3238 	    i--);
3239 	ni->ni_txrate = i;
3240 }
3241 
3242 static void
3243 wpi_calib_timeout(void *arg)
3244 {
3245 	struct wpi_softc *sc = arg;
3246 	struct ieee80211com *ic = &sc->sc_ic;
3247 	int temp;
3248 
3249 	if (ic->ic_state != IEEE80211_S_RUN)
3250 		return;
3251 
3252 	/* automatic rate control triggered every 500ms */
3253 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
3254 		if (ic->ic_opmode == IEEE80211_M_STA)
3255 			wpi_iter_func(sc, ic->ic_bss);
3256 		else
3257 			ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
3258 	}
3259 
3260 	/* update sensor data */
3261 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3262 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3263 #if 0
3264 	//XXX Used by OpenBSD Sensor Framework
3265 	sc->sensor.value = temp + 260;
3266 #endif
3267 
3268 	/* automatic power calibration every 60s */
3269 	if (++sc->calib_cnt >= 120) {
3270 		wpi_power_calibration(sc, temp);
3271 		sc->calib_cnt = 0;
3272 	}
3273 
3274 	callout_reset(&sc->calib_to, hz/2, wpi_calib_timeout, sc);
3275 }
3276 
3277 /*
3278  * This function is called periodically (every 60 seconds) to adjust output
3279  * power to temperature changes.
3280  */
3281 static void
3282 wpi_power_calibration(struct wpi_softc *sc, int temp)
3283 {
3284 	/* sanity-check read value */
3285 	if (temp < -260 || temp > 25) {
3286 		/* this can't be correct, ignore */
3287 		DPRINTFN(WPI_DEBUG_TEMP,
3288 		    ("out-of-range temperature reported: %d\n", temp));
3289 		return;
3290 	}
3291 
3292 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3293 
3294 	/* adjust Tx power if need be */
3295 	if (abs(temp - sc->temp) <= 6)
3296 		return;
3297 
3298 	sc->temp = temp;
3299 
3300 	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan,1) != 0) {
3301 		/* just warn, too bad for the automatic calibration... */
3302 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3303 	}
3304 }
3305 
3306 /**
3307  * Read the eeprom to find out what channels are valid for the given
3308  * band and update net80211 with what we find.
3309  */
3310 static void
3311 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3312 {
3313 	struct ieee80211com *ic = &sc->sc_ic;
3314 	const struct wpi_chan_band *band = &wpi_bands[n];
3315 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3316 	int chan, i, offset, passive;
3317 
3318 	wpi_read_prom_data(sc, band->addr, channels,
3319 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3320 
3321 	for (i = 0; i < band->nchan; i++) {
3322 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3323 			DPRINTFN(WPI_DEBUG_HW,
3324 			    ("Channel Not Valid: %d, band %d\n",
3325 			     band->chan[i],n));
3326 			continue;
3327 		}
3328 
3329 		passive = 0;
3330 		chan = band->chan[i];
3331 		offset = ic->ic_nchans;
3332 
3333 		/* is active scan allowed on this channel? */
3334 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3335 			passive = IEEE80211_CHAN_PASSIVE;
3336 		}
3337 
3338 		if (n == 0) {	/* 2GHz band */
3339 			ic->ic_channels[offset].ic_ieee = chan;
3340 			ic->ic_channels[offset].ic_freq =
3341 			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3342 			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_B | passive;
3343 			offset++;
3344 			ic->ic_channels[offset].ic_ieee = chan;
3345 			ic->ic_channels[offset].ic_freq =
3346 			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
3347 			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_G | passive;
3348 			offset++;
3349 
3350 		} else {	/* 5GHz band */
3351 			/*
3352 			 * Some 3945ABG adapters support channels 7, 8, 11
3353 			 * and 12 in the 2GHz *and* 5GHz bands.
3354 			 * Because of limitations in our net80211(9) stack,
3355 			 * we can't support these channels in 5GHz band.
3356 			 * XXX not true; just need to map to proper frequency
3357 			 */
3358 			if (chan <= 14)
3359 				continue;
3360 
3361 			ic->ic_channels[offset].ic_ieee = chan;
3362 			ic->ic_channels[offset].ic_freq =
3363 			ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
3364 			ic->ic_channels[offset].ic_flags = IEEE80211_CHAN_A | passive;
3365 			offset++;
3366 		}
3367 
3368 		/* save maximum allowed power for this channel */
3369 		sc->maxpwr[chan] = channels[i].maxpwr;
3370 
3371 		ic->ic_nchans = offset;
3372 
3373 #if 0
3374 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3375 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3376 		//ic->ic_channels[chan].ic_minpower...
3377 		//ic->ic_channels[chan].ic_maxregtxpower...
3378 #endif
3379 
3380 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
3381 			    chan, channels[i].flags, sc->maxpwr[chan], offset));
3382 	}
3383 }
3384 
3385 static void
3386 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3387 {
3388 	struct wpi_power_group *group = &sc->groups[n];
3389 	struct wpi_eeprom_group rgroup;
3390 	int i;
3391 
3392 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3393 	    sizeof rgroup);
3394 
3395 	/* save power group information */
3396 	group->chan   = rgroup.chan;
3397 	group->maxpwr = rgroup.maxpwr;
3398 	/* temperature at which the samples were taken */
3399 	group->temp   = (int16_t)le16toh(rgroup.temp);
3400 
3401 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3402 		    group->chan, group->maxpwr, group->temp));
3403 
3404 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3405 		group->samples[i].index = rgroup.samples[i].index;
3406 		group->samples[i].power = rgroup.samples[i].power;
3407 
3408 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3409 			    group->samples[i].index, group->samples[i].power));
3410 	}
3411 }
3412 
3413 /*
3414  * Update Tx power to match what is defined for channel `c'.
3415  */
3416 static int
3417 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3418 {
3419 	struct ieee80211com *ic = &sc->sc_ic;
3420 	struct wpi_power_group *group;
3421 	struct wpi_cmd_txpower txpower;
3422 	u_int chan;
3423 	int i;
3424 
3425 	/* get channel number */
3426 	chan = ieee80211_chan2ieee(ic, c);
3427 
3428 	/* find the power group to which this channel belongs */
3429 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3430 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3431 			if (chan <= group->chan)
3432 				break;
3433 	} else
3434 		group = &sc->groups[0];
3435 
3436 	memset(&txpower, 0, sizeof txpower);
3437 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3438 	txpower.channel = htole16(chan);
3439 
3440 	/* set Tx power for all OFDM and CCK rates */
3441 	for (i = 0; i <= 11 ; i++) {
3442 		/* retrieve Tx power for this channel/rate combination */
3443 		int idx = wpi_get_power_index(sc, group, c,
3444 		    wpi_ridx_to_rate[i]);
3445 
3446 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3447 
3448 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3449 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3450 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3451 		} else {
3452 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3453 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3454 		}
3455 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3456 			    chan, wpi_ridx_to_rate[i], idx));
3457 	}
3458 
3459 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3460 }
3461 
3462 /*
3463  * Determine Tx power index for a given channel/rate combination.
3464  * This takes into account the regulatory information from EEPROM and the
3465  * current temperature.
3466  */
3467 static int
3468 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3469     struct ieee80211_channel *c, int rate)
3470 {
3471 /* fixed-point arithmetic division using a n-bit fractional part */
3472 #define fdivround(a, b, n)      \
3473 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3474 
3475 /* linear interpolation */
3476 #define interpolate(x, x1, y1, x2, y2, n)       \
3477 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3478 
3479 	struct ieee80211com *ic = &sc->sc_ic;
3480 	struct wpi_power_sample *sample;
3481 	int pwr, idx;
3482 	u_int chan;
3483 
3484 	/* get channel number */
3485 	chan = ieee80211_chan2ieee(ic, c);
3486 
3487 	/* default power is group's maximum power - 3dB */
3488 	pwr = group->maxpwr / 2;
3489 
3490 	/* decrease power for highest OFDM rates to reduce distortion */
3491 	switch (rate) {
3492 		case 72:	/* 36Mb/s */
3493 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3494 			break;
3495 		case 96:	/* 48Mb/s */
3496 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3497 			break;
3498 		case 108:	/* 54Mb/s */
3499 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3500 			break;
3501 	}
3502 
3503 	/* never exceed channel's maximum allowed Tx power */
3504 	pwr = min(pwr, sc->maxpwr[chan]);
3505 
3506 	/* retrieve power index into gain tables from samples */
3507 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3508 		if (pwr > sample[1].power)
3509 			break;
3510 	/* fixed-point linear interpolation using a 19-bit fractional part */
3511 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3512 	    sample[1].power, sample[1].index, 19);
3513 
3514 	/*
3515 	 *  Adjust power index based on current temperature
3516 	 *	- if colder than factory-calibrated: decreate output power
3517 	 *	- if warmer than factory-calibrated: increase output power
3518 	 */
3519 	idx -= (sc->temp - group->temp) * 11 / 100;
3520 
3521 	/* decrease power for CCK rates (-5dB) */
3522 	if (!WPI_RATE_IS_OFDM(rate))
3523 		idx += 10;
3524 
3525 	/* keep power index in a valid range */
3526 	if (idx < 0)
3527 		return 0;
3528 	if (idx > WPI_MAX_PWR_INDEX)
3529 		return WPI_MAX_PWR_INDEX;
3530 	return idx;
3531 
3532 #undef interpolate
3533 #undef fdivround
3534 }
3535 
3536 /**
3537  * Called by net80211 framework to indicate that a scan
3538  * is starting. This function doesn't actually do the scan,
3539  * wpi_scan_curchan starts things off. This function is more
3540  * of an early warning from the framework we should get ready
3541  * for the scan.
3542  */
3543 static void
3544 wpi_scan_start(struct ieee80211com *ic)
3545 {
3546 	struct ifnet *ifp = ic->ic_ifp;
3547 	struct wpi_softc *sc = ifp->if_softc;
3548 
3549 	wpi_queue_cmd(sc, WPI_SCAN_START, 0, WPI_QUEUE_NORMAL);
3550 }
3551 
3552 /**
3553  * Called by the net80211 framework, indicates that the
3554  * scan has ended. If there is a scan in progress on the card
3555  * then it should be aborted.
3556  */
3557 static void
3558 wpi_scan_end(struct ieee80211com *ic)
3559 {
3560 	struct ifnet *ifp = ic->ic_ifp;
3561 	struct wpi_softc *sc = ifp->if_softc;
3562 
3563 	wpi_queue_cmd(sc, WPI_SCAN_STOP, 0, WPI_QUEUE_NORMAL);
3564 }
3565 
3566 /**
3567  * Called by the net80211 framework to indicate to the driver
3568  * that the channel should be changed
3569  */
3570 static void
3571 wpi_set_channel(struct ieee80211com *ic)
3572 {
3573 	struct ifnet *ifp = ic->ic_ifp;
3574 	struct wpi_softc *sc = ifp->if_softc;
3575 
3576 	/*
3577 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3578 	 * are already taken care of by their respective firmware commands.
3579 	 */
3580 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
3581 		wpi_queue_cmd(sc, WPI_SET_CHAN, 0, WPI_QUEUE_NORMAL);
3582 }
3583 
3584 /**
3585  * Called by net80211 to indicate that we need to scan the current
3586  * channel. The channel is previously be set via the wpi_set_channel
3587  * callback.
3588  */
3589 static void
3590 wpi_scan_curchan(struct ieee80211com *ic, unsigned long maxdwell)
3591 {
3592 	struct ifnet *ifp = ic->ic_ifp;
3593 	struct wpi_softc *sc = ifp->if_softc;
3594 
3595 	sc->maxdwell = maxdwell;
3596 
3597 	wpi_queue_cmd(sc, WPI_SCAN_CURCHAN, 0, WPI_QUEUE_NORMAL);
3598 }
3599 
3600 /**
3601  * Called by the net80211 framework to indicate
3602  * the minimum dwell time has been met, terminate the scan.
3603  * We don't actually terminate the scan as the firmware will notify
3604  * us when it's finished and we have no way to interrupt it.
3605  */
3606 static void
3607 wpi_scan_mindwell(struct ieee80211com *ic)
3608 {
3609 	/* NB: don't try to abort scan; wait for firmware to finish */
3610 }
3611 
3612 /**
3613  * The ops function is called to perform some actual work.
3614  * because we can't sleep from any of the ic callbacks, we queue an
3615  * op task with wpi_queue_cmd and have the taskqueue process that task.
3616  * The task that gets cued is a op task, which ends up calling this function.
3617  */
3618 static void
3619 wpi_ops(void *arg0, int pending)
3620 {
3621 	struct wpi_softc *sc = arg0;
3622 	struct ieee80211com *ic = &sc->sc_ic;
3623 	int cmd, arg, error;
3624 
3625 again:
3626 	WPI_CMD_LOCK(sc);
3627 	cmd = sc->sc_cmd[sc->sc_cmd_cur];
3628 	arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
3629 
3630 	if (cmd == 0) {
3631 		/* No more commands to process */
3632 		WPI_CMD_UNLOCK(sc);
3633 		return;
3634 	}
3635 	sc->sc_cmd[sc->sc_cmd_cur] = 0; /* free the slot */
3636 	sc->sc_cmd_arg[sc->sc_cmd_cur] = 0; /* free the slot */
3637 	sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % WPI_CMD_MAXOPS;
3638 	WPI_CMD_UNLOCK(sc);
3639 	WPI_LOCK(sc);
3640 
3641 	DPRINTFN(WPI_DEBUG_OPS,("wpi_ops: command: %d\n", cmd));
3642 
3643 	switch (cmd) {
3644 	case WPI_RESTART:
3645 		wpi_init_locked(sc, 0);
3646 		WPI_UNLOCK(sc);
3647 		return;
3648 
3649 	case WPI_RF_RESTART:
3650 		wpi_rfkill_resume(sc);
3651 		WPI_UNLOCK(sc);
3652 		return;
3653 	}
3654 
3655 	if (!(sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3656 		WPI_UNLOCK(sc);
3657 		return;
3658 	}
3659 
3660 	switch (cmd) {
3661 	case WPI_SCAN_START:
3662 		sc->flags |= WPI_FLAG_SCANNING;
3663 		break;
3664 
3665 	case WPI_SCAN_STOP:
3666 		sc->flags &= ~WPI_FLAG_SCANNING;
3667 		break;
3668 
3669 	case WPI_SCAN_CURCHAN:
3670 		if (wpi_scan(sc))
3671 			ieee80211_cancel_scan(ic);
3672 		break;
3673 
3674 	case WPI_SET_CHAN:
3675 		error = wpi_config(sc);
3676 		if (error != 0)
3677 			device_printf(sc->sc_dev,
3678 			    "error %d settting channel\n", error);
3679 		break;
3680 
3681 	case WPI_AUTH:
3682 		/* The node must be registered in the firmware before auth */
3683 		error = wpi_auth(sc);
3684 		if (error != 0) {
3685 			device_printf(sc->sc_dev,
3686 			    "%s: could not move to auth state, error %d\n",
3687 			    __func__, error);
3688 			WPI_UNLOCK(sc);
3689 			return;
3690 		}
3691 		/* Send the auth frame now */
3692 		sc->sc_newstate(ic, IEEE80211_S_AUTH, arg);
3693 		break;
3694 
3695 	case WPI_RUN:
3696 		error = wpi_run(sc);
3697 		if (error != 0) {
3698 			device_printf(sc->sc_dev,
3699 			    "%s: could not move to run state, error %d\n",
3700 			    __func__, error);
3701 			WPI_UNLOCK(sc);
3702 			return;
3703 		}
3704 		sc->sc_newstate(ic, IEEE80211_S_RUN, arg);
3705 		break;
3706 	}
3707 	WPI_UNLOCK(sc);
3708 
3709 	/* Take another pass */
3710 	goto again;
3711 }
3712 
3713 /**
3714  * queue a command for later execution in a different thread.
3715  * This is needed as the net80211 callbacks do not allow
3716  * sleeping, since we need to sleep to confirm commands have
3717  * been processed by the firmware, we must defer execution to
3718  * a sleep enabled thread.
3719  */
3720 static int
3721 wpi_queue_cmd(struct wpi_softc *sc, int cmd, int arg, int flush)
3722 {
3723 	WPI_CMD_LOCK(sc);
3724 
3725 	if (flush) {
3726 		memset(sc->sc_cmd, 0, sizeof (sc->sc_cmd));
3727 		memset(sc->sc_cmd_arg, 0, sizeof (sc->sc_cmd_arg));
3728 		sc->sc_cmd_cur = 0;
3729 		sc->sc_cmd_next = 0;
3730 	}
3731 
3732 	if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
3733 		WPI_CMD_UNLOCK(sc);
3734 		DPRINTF(("%s: command %d dropped\n", __func__, cmd));
3735 		return (EBUSY);
3736 	}
3737 
3738 	sc->sc_cmd[sc->sc_cmd_next] = cmd;
3739 	sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
3740 	sc->sc_cmd_next = (sc->sc_cmd_next + 1) % WPI_CMD_MAXOPS;
3741 
3742 	taskqueue_enqueue(sc->sc_tq, &sc->sc_opstask);
3743 
3744 	WPI_CMD_UNLOCK(sc);
3745 
3746 	return 0;
3747 }
3748 
3749 /*
3750  * Allocate DMA-safe memory for firmware transfer.
3751  */
3752 static int
3753 wpi_alloc_fwmem(struct wpi_softc *sc)
3754 {
3755 	/* allocate enough contiguous space to store text and data */
3756 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3757 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3758 	    BUS_DMA_NOWAIT);
3759 }
3760 
3761 static void
3762 wpi_free_fwmem(struct wpi_softc *sc)
3763 {
3764 	wpi_dma_contig_free(&sc->fw_dma);
3765 }
3766 
3767 /**
3768  * Called every second, wpi_watchdog used by the watch dog timer
3769  * to check that the card is still alive
3770  */
3771 static void
3772 wpi_watchdog(void *arg)
3773 {
3774 	struct wpi_softc *sc = arg;
3775 	struct ifnet *ifp = sc->sc_ifp;
3776 	uint32_t tmp;
3777 
3778 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3779 
3780 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3781 		/* No need to lock firmware memory */
3782 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3783 
3784 		if ((tmp & 0x1) == 0) {
3785 			/* Radio kill switch is still off */
3786 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3787 			return;
3788 		}
3789 
3790 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3791 		wpi_queue_cmd(sc, WPI_RF_RESTART, 0, WPI_QUEUE_CLEAR);
3792 		return;
3793 	}
3794 
3795 	if (sc->sc_tx_timer > 0) {
3796 		if (--sc->sc_tx_timer == 0) {
3797 			device_printf(sc->sc_dev,"device timeout\n");
3798 			ifp->if_oerrors++;
3799 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3800 		}
3801 	}
3802 	if (sc->sc_scan_timer > 0) {
3803 		if (--sc->sc_scan_timer == 0) {
3804 			device_printf(sc->sc_dev,"scan timeout\n");
3805 			ieee80211_cancel_scan(&sc->sc_ic);
3806 			wpi_queue_cmd(sc, WPI_RESTART, 0, WPI_QUEUE_CLEAR);
3807 		}
3808 	}
3809 
3810 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3811 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3812 }
3813 
3814 #ifdef WPI_DEBUG
3815 static const char *wpi_cmd_str(int cmd)
3816 {
3817 	switch(cmd) {
3818 		case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3819 		case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3820 		case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3821 		case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3822 		case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3823 		case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3824 		case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3825 		case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3826 		case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3827 		case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3828 		case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3829 		case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3830 		case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3831 		case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3832 
3833 		default:
3834 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3835 		return "UNKNOWN CMD"; // Make the compiler happy
3836 	}
3837 }
3838 #endif
3839 
3840 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3841 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3842 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3843 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3844