xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 0e1497aefd602cea581d2380d22e67dfdcac6b4e)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include <sys/param.h>
63 #include <sys/sysctl.h>
64 #include <sys/sockio.h>
65 #include <sys/mbuf.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/queue.h>
71 #include <sys/taskqueue.h>
72 #include <sys/module.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 #include <sys/linker.h>
76 #include <sys/firmware.h>
77 
78 #include <machine/bus.h>
79 #include <machine/resource.h>
80 #include <sys/rman.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 
85 #include <net/bpf.h>
86 #include <net/if.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <net80211/ieee80211_var.h>
94 #include <net80211/ieee80211_radiotap.h>
95 #include <net80211/ieee80211_regdomain.h>
96 #include <net80211/ieee80211_ratectl.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103 
104 #include <dev/wpi/if_wpireg.h>
105 #include <dev/wpi/if_wpivar.h>
106 
107 #define WPI_DEBUG
108 
109 #ifdef WPI_DEBUG
110 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
111 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
112 #define	WPI_DEBUG_SET	(wpi_debug != 0)
113 
114 enum {
115 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
116 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
117 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
118 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
119 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
120 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
121 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
122 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
123 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
124 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
125 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
126 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
127 	WPI_DEBUG_ANY		= 0xffffffff
128 };
129 
130 static int wpi_debug = 0;
131 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132 TUNABLE_INT("debug.wpi", &wpi_debug);
133 
134 #else
135 #define DPRINTF(x)
136 #define DPRINTFN(n, x)
137 #define WPI_DEBUG_SET	0
138 #endif
139 
140 struct wpi_ident {
141 	uint16_t	vendor;
142 	uint16_t	device;
143 	uint16_t	subdevice;
144 	const char	*name;
145 };
146 
147 static const struct wpi_ident wpi_ident_table[] = {
148 	/* The below entries support ABG regardless of the subid */
149 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151 	/* The below entries only support BG */
152 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0, 0, 0, NULL }
157 };
158 
159 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160 		    const char name[IFNAMSIZ], int unit, int opmode,
161 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
163 static void	wpi_vap_delete(struct ieee80211vap *);
164 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165 		    void **, bus_size_t, bus_size_t, int);
166 static void	wpi_dma_contig_free(struct wpi_dma_info *);
167 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168 static int	wpi_alloc_shared(struct wpi_softc *);
169 static void	wpi_free_shared(struct wpi_softc *);
170 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174 		    int, int);
175 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177 static void	wpi_newassoc(struct ieee80211_node *, int);
178 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
179 static void	wpi_mem_lock(struct wpi_softc *);
180 static void	wpi_mem_unlock(struct wpi_softc *);
181 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
182 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
183 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
184 		    const uint32_t *, int);
185 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
186 static int	wpi_alloc_fwmem(struct wpi_softc *);
187 static void	wpi_free_fwmem(struct wpi_softc *);
188 static int	wpi_load_firmware(struct wpi_softc *);
189 static void	wpi_unload_firmware(struct wpi_softc *);
190 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
191 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
192 		    struct wpi_rx_data *);
193 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
194 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_notif_intr(struct wpi_softc *);
196 static void	wpi_intr(void *);
197 static uint8_t	wpi_plcp_signal(int);
198 static void	wpi_watchdog(void *);
199 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
200 		    struct ieee80211_node *, int);
201 static void	wpi_start(struct ifnet *);
202 static void	wpi_start_locked(struct ifnet *);
203 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
204 		    const struct ieee80211_bpf_params *);
205 static void	wpi_scan_start(struct ieee80211com *);
206 static void	wpi_scan_end(struct ieee80211com *);
207 static void	wpi_set_channel(struct ieee80211com *);
208 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
209 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
210 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
211 static void	wpi_read_eeprom(struct wpi_softc *,
212 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
213 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
214 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
215 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
216 static int	wpi_wme_update(struct ieee80211com *);
217 static int	wpi_mrr_setup(struct wpi_softc *);
218 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
219 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
220 #if 0
221 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
222 #endif
223 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
224 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
225 static int	wpi_scan(struct wpi_softc *);
226 static int	wpi_config(struct wpi_softc *);
227 static void	wpi_stop_master(struct wpi_softc *);
228 static int	wpi_power_up(struct wpi_softc *);
229 static int	wpi_reset(struct wpi_softc *);
230 static void	wpi_hwreset(void *, int);
231 static void	wpi_rfreset(void *, int);
232 static void	wpi_hw_config(struct wpi_softc *);
233 static void	wpi_init(void *);
234 static void	wpi_init_locked(struct wpi_softc *, int);
235 static void	wpi_stop(struct wpi_softc *);
236 static void	wpi_stop_locked(struct wpi_softc *);
237 
238 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
239 		    int);
240 static void	wpi_calib_timeout(void *);
241 static void	wpi_power_calibration(struct wpi_softc *, int);
242 static int	wpi_get_power_index(struct wpi_softc *,
243 		    struct wpi_power_group *, struct ieee80211_channel *, int);
244 #ifdef WPI_DEBUG
245 static const char *wpi_cmd_str(int);
246 #endif
247 static int wpi_probe(device_t);
248 static int wpi_attach(device_t);
249 static int wpi_detach(device_t);
250 static int wpi_shutdown(device_t);
251 static int wpi_suspend(device_t);
252 static int wpi_resume(device_t);
253 
254 
255 static device_method_t wpi_methods[] = {
256 	/* Device interface */
257 	DEVMETHOD(device_probe,		wpi_probe),
258 	DEVMETHOD(device_attach,	wpi_attach),
259 	DEVMETHOD(device_detach,	wpi_detach),
260 	DEVMETHOD(device_shutdown,	wpi_shutdown),
261 	DEVMETHOD(device_suspend,	wpi_suspend),
262 	DEVMETHOD(device_resume,	wpi_resume),
263 
264 	{ 0, 0 }
265 };
266 
267 static driver_t wpi_driver = {
268 	"wpi",
269 	wpi_methods,
270 	sizeof (struct wpi_softc)
271 };
272 
273 static devclass_t wpi_devclass;
274 
275 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
276 
277 static const uint8_t wpi_ridx_to_plcp[] = {
278 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
279 	/* R1-R4 (ral/ural is R4-R1) */
280 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
281 	/* CCK: device-dependent */
282 	10, 20, 55, 110
283 };
284 static const uint8_t wpi_ridx_to_rate[] = {
285 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
286 	2, 4, 11, 22 /*CCK */
287 };
288 
289 
290 static int
291 wpi_probe(device_t dev)
292 {
293 	const struct wpi_ident *ident;
294 
295 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
296 		if (pci_get_vendor(dev) == ident->vendor &&
297 		    pci_get_device(dev) == ident->device) {
298 			device_set_desc(dev, ident->name);
299 			return 0;
300 		}
301 	}
302 	return ENXIO;
303 }
304 
305 /**
306  * Load the firmare image from disk to the allocated dma buffer.
307  * we also maintain the reference to the firmware pointer as there
308  * is times where we may need to reload the firmware but we are not
309  * in a context that can access the filesystem (ie taskq cause by restart)
310  *
311  * @return 0 on success, an errno on failure
312  */
313 static int
314 wpi_load_firmware(struct wpi_softc *sc)
315 {
316 	const struct firmware *fp;
317 	struct wpi_dma_info *dma = &sc->fw_dma;
318 	const struct wpi_firmware_hdr *hdr;
319 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
320 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
321 	int error;
322 
323 	DPRINTFN(WPI_DEBUG_FIRMWARE,
324 	    ("Attempting Loading Firmware from wpi_fw module\n"));
325 
326 	WPI_UNLOCK(sc);
327 
328 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
329 		device_printf(sc->sc_dev,
330 		    "could not load firmware image 'wpifw'\n");
331 		error = ENOENT;
332 		WPI_LOCK(sc);
333 		goto fail;
334 	}
335 
336 	fp = sc->fw_fp;
337 
338 	WPI_LOCK(sc);
339 
340 	/* Validate the firmware is minimum a particular version */
341 	if (fp->version < WPI_FW_MINVERSION) {
342 	    device_printf(sc->sc_dev,
343 			   "firmware version is too old. Need %d, got %d\n",
344 			   WPI_FW_MINVERSION,
345 			   fp->version);
346 	    error = ENXIO;
347 	    goto fail;
348 	}
349 
350 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
351 		device_printf(sc->sc_dev,
352 		    "firmware file too short: %zu bytes\n", fp->datasize);
353 		error = ENXIO;
354 		goto fail;
355 	}
356 
357 	hdr = (const struct wpi_firmware_hdr *)fp->data;
358 
359 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
360 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
361 
362 	rtextsz = le32toh(hdr->rtextsz);
363 	rdatasz = le32toh(hdr->rdatasz);
364 	itextsz = le32toh(hdr->itextsz);
365 	idatasz = le32toh(hdr->idatasz);
366 	btextsz = le32toh(hdr->btextsz);
367 
368 	/* check that all firmware segments are present */
369 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
370 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
371 		device_printf(sc->sc_dev,
372 		    "firmware file too short: %zu bytes\n", fp->datasize);
373 		error = ENXIO; /* XXX appropriate error code? */
374 		goto fail;
375 	}
376 
377 	/* get pointers to firmware segments */
378 	rtext = (const uint8_t *)(hdr + 1);
379 	rdata = rtext + rtextsz;
380 	itext = rdata + rdatasz;
381 	idata = itext + itextsz;
382 	btext = idata + idatasz;
383 
384 	DPRINTFN(WPI_DEBUG_FIRMWARE,
385 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
386 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
387 	     (le32toh(hdr->version) & 0xff000000) >> 24,
388 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
389 	     (le32toh(hdr->version) & 0x0000ffff),
390 	     rtextsz, rdatasz,
391 	     itextsz, idatasz, btextsz));
392 
393 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
394 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
395 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
396 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
397 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
398 
399 	/* sanity checks */
400 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
401 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
402 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
403 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
404 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
405 	    (btextsz & 3) != 0) {
406 		device_printf(sc->sc_dev, "firmware invalid\n");
407 		error = EINVAL;
408 		goto fail;
409 	}
410 
411 	/* copy initialization images into pre-allocated DMA-safe memory */
412 	memcpy(dma->vaddr, idata, idatasz);
413 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
414 
415 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
416 
417 	/* tell adapter where to find initialization images */
418 	wpi_mem_lock(sc);
419 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
420 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
421 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
422 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
423 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
424 	wpi_mem_unlock(sc);
425 
426 	/* load firmware boot code */
427 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
428 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
429 	    goto fail;
430 	}
431 
432 	/* now press "execute" */
433 	WPI_WRITE(sc, WPI_RESET, 0);
434 
435 	/* wait at most one second for the first alive notification */
436 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
437 		device_printf(sc->sc_dev,
438 		    "timeout waiting for adapter to initialize\n");
439 		goto fail;
440 	}
441 
442 	/* copy runtime images into pre-allocated DMA-sage memory */
443 	memcpy(dma->vaddr, rdata, rdatasz);
444 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
445 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
446 
447 	/* tell adapter where to find runtime images */
448 	wpi_mem_lock(sc);
449 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
450 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
451 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
452 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
453 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
454 	wpi_mem_unlock(sc);
455 
456 	/* wait at most one second for the first alive notification */
457 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
458 		device_printf(sc->sc_dev,
459 		    "timeout waiting for adapter to initialize2\n");
460 		goto fail;
461 	}
462 
463 	DPRINTFN(WPI_DEBUG_FIRMWARE,
464 	    ("Firmware loaded to driver successfully\n"));
465 	return error;
466 fail:
467 	wpi_unload_firmware(sc);
468 	return error;
469 }
470 
471 /**
472  * Free the referenced firmware image
473  */
474 static void
475 wpi_unload_firmware(struct wpi_softc *sc)
476 {
477 
478 	if (sc->fw_fp) {
479 		WPI_UNLOCK(sc);
480 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
481 		WPI_LOCK(sc);
482 		sc->fw_fp = NULL;
483 	}
484 }
485 
486 static int
487 wpi_attach(device_t dev)
488 {
489 	struct wpi_softc *sc = device_get_softc(dev);
490 	struct ifnet *ifp;
491 	struct ieee80211com *ic;
492 	int ac, error, supportsa = 1;
493 	uint32_t tmp;
494 	const struct wpi_ident *ident;
495 	uint8_t macaddr[IEEE80211_ADDR_LEN];
496 
497 	sc->sc_dev = dev;
498 
499 	if (bootverbose || WPI_DEBUG_SET)
500 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501 
502 	/*
503 	 * Some card's only support 802.11b/g not a, check to see if
504 	 * this is one such card. A 0x0 in the subdevice table indicates
505 	 * the entire subdevice range is to be ignored.
506 	 */
507 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508 		if (ident->subdevice &&
509 		    pci_get_subdevice(dev) == ident->subdevice) {
510 		    supportsa = 0;
511 		    break;
512 		}
513 	}
514 
515 	/* Create the tasks that can be queued */
516 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
517 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
518 
519 	WPI_LOCK_INIT(sc);
520 
521 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523 
524 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
525 		device_printf(dev, "chip is in D%d power mode "
526 		    "-- setting to D0\n", pci_get_powerstate(dev));
527 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
528 	}
529 
530 	/* disable the retry timeout register */
531 	pci_write_config(dev, 0x41, 0, 1);
532 
533 	/* enable bus-mastering */
534 	pci_enable_busmaster(dev);
535 
536 	sc->mem_rid = PCIR_BAR(0);
537 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
538 	    RF_ACTIVE);
539 	if (sc->mem == NULL) {
540 		device_printf(dev, "could not allocate memory resource\n");
541 		error = ENOMEM;
542 		goto fail;
543 	}
544 
545 	sc->sc_st = rman_get_bustag(sc->mem);
546 	sc->sc_sh = rman_get_bushandle(sc->mem);
547 
548 	sc->irq_rid = 0;
549 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
550 	    RF_ACTIVE | RF_SHAREABLE);
551 	if (sc->irq == NULL) {
552 		device_printf(dev, "could not allocate interrupt resource\n");
553 		error = ENOMEM;
554 		goto fail;
555 	}
556 
557 	/*
558 	 * Allocate DMA memory for firmware transfers.
559 	 */
560 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
561 		printf(": could not allocate firmware memory\n");
562 		error = ENOMEM;
563 		goto fail;
564 	}
565 
566 	/*
567 	 * Put adapter into a known state.
568 	 */
569 	if ((error = wpi_reset(sc)) != 0) {
570 		device_printf(dev, "could not reset adapter\n");
571 		goto fail;
572 	}
573 
574 	wpi_mem_lock(sc);
575 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
576 	if (bootverbose || WPI_DEBUG_SET)
577 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
578 
579 	wpi_mem_unlock(sc);
580 
581 	/* Allocate shared page */
582 	if ((error = wpi_alloc_shared(sc)) != 0) {
583 		device_printf(dev, "could not allocate shared page\n");
584 		goto fail;
585 	}
586 
587 	/* tx data queues  - 4 for QoS purposes */
588 	for (ac = 0; ac < WME_NUM_AC; ac++) {
589 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
590 		if (error != 0) {
591 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
592 		    goto fail;
593 		}
594 	}
595 
596 	/* command queue to talk to the card's firmware */
597 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
598 	if (error != 0) {
599 		device_printf(dev, "could not allocate command ring\n");
600 		goto fail;
601 	}
602 
603 	/* receive data queue */
604 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
605 	if (error != 0) {
606 		device_printf(dev, "could not allocate Rx ring\n");
607 		goto fail;
608 	}
609 
610 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
611 	if (ifp == NULL) {
612 		device_printf(dev, "can not if_alloc()\n");
613 		error = ENOMEM;
614 		goto fail;
615 	}
616 	ic = ifp->if_l2com;
617 
618 	ic->ic_ifp = ifp;
619 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
620 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
621 
622 	/* set device capabilities */
623 	ic->ic_caps =
624 		  IEEE80211_C_STA		/* station mode supported */
625 		| IEEE80211_C_MONITOR		/* monitor mode supported */
626 		| IEEE80211_C_TXPMGT		/* tx power management */
627 		| IEEE80211_C_SHSLOT		/* short slot time supported */
628 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
629 		| IEEE80211_C_WPA		/* 802.11i */
630 /* XXX looks like WME is partly supported? */
631 #if 0
632 		| IEEE80211_C_IBSS		/* IBSS mode support */
633 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
634 		| IEEE80211_C_WME		/* 802.11e */
635 		| IEEE80211_C_HOSTAP		/* Host access point mode */
636 #endif
637 		;
638 
639 	/*
640 	 * Read in the eeprom and also setup the channels for
641 	 * net80211. We don't set the rates as net80211 does this for us
642 	 */
643 	wpi_read_eeprom(sc, macaddr);
644 
645 	if (bootverbose || WPI_DEBUG_SET) {
646 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
647 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
648 			  sc->type > 1 ? 'B': '?');
649 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
650 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
651 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
652 			  supportsa ? "does" : "does not");
653 
654 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
655 	       what sc->rev really represents - benjsc 20070615 */
656 	}
657 
658 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
659 	ifp->if_softc = sc;
660 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
661 	ifp->if_init = wpi_init;
662 	ifp->if_ioctl = wpi_ioctl;
663 	ifp->if_start = wpi_start;
664 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
665 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
666 	IFQ_SET_READY(&ifp->if_snd);
667 
668 	ieee80211_ifattach(ic, macaddr);
669 	/* override default methods */
670 	ic->ic_raw_xmit = wpi_raw_xmit;
671 	ic->ic_newassoc = wpi_newassoc;
672 	ic->ic_wme.wme_update = wpi_wme_update;
673 	ic->ic_scan_start = wpi_scan_start;
674 	ic->ic_scan_end = wpi_scan_end;
675 	ic->ic_set_channel = wpi_set_channel;
676 	ic->ic_scan_curchan = wpi_scan_curchan;
677 	ic->ic_scan_mindwell = wpi_scan_mindwell;
678 
679 	ic->ic_vap_create = wpi_vap_create;
680 	ic->ic_vap_delete = wpi_vap_delete;
681 
682 	ieee80211_radiotap_attach(ic,
683 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
684 		WPI_TX_RADIOTAP_PRESENT,
685 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
686 		WPI_RX_RADIOTAP_PRESENT);
687 
688 	/*
689 	 * Hook our interrupt after all initialization is complete.
690 	 */
691 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
692 	    NULL, wpi_intr, sc, &sc->sc_ih);
693 	if (error != 0) {
694 		device_printf(dev, "could not set up interrupt\n");
695 		goto fail;
696 	}
697 
698 	if (bootverbose)
699 		ieee80211_announce(ic);
700 #ifdef XXX_DEBUG
701 	ieee80211_announce_channels(ic);
702 #endif
703 	return 0;
704 
705 fail:	wpi_detach(dev);
706 	return ENXIO;
707 }
708 
709 static int
710 wpi_detach(device_t dev)
711 {
712 	struct wpi_softc *sc = device_get_softc(dev);
713 	struct ifnet *ifp = sc->sc_ifp;
714 	struct ieee80211com *ic;
715 	int ac;
716 
717 	if (ifp != NULL) {
718 		ic = ifp->if_l2com;
719 
720 		ieee80211_draintask(ic, &sc->sc_restarttask);
721 		ieee80211_draintask(ic, &sc->sc_radiotask);
722 		wpi_stop(sc);
723 		callout_drain(&sc->watchdog_to);
724 		callout_drain(&sc->calib_to);
725 		ieee80211_ifdetach(ic);
726 	}
727 
728 	WPI_LOCK(sc);
729 	if (sc->txq[0].data_dmat) {
730 		for (ac = 0; ac < WME_NUM_AC; ac++)
731 			wpi_free_tx_ring(sc, &sc->txq[ac]);
732 
733 		wpi_free_tx_ring(sc, &sc->cmdq);
734 		wpi_free_rx_ring(sc, &sc->rxq);
735 		wpi_free_shared(sc);
736 	}
737 
738 	if (sc->fw_fp != NULL) {
739 		wpi_unload_firmware(sc);
740 	}
741 
742 	if (sc->fw_dma.tag)
743 		wpi_free_fwmem(sc);
744 	WPI_UNLOCK(sc);
745 
746 	if (sc->irq != NULL) {
747 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
749 	}
750 
751 	if (sc->mem != NULL)
752 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
753 
754 	if (ifp != NULL)
755 		if_free(ifp);
756 
757 	WPI_LOCK_DESTROY(sc);
758 
759 	return 0;
760 }
761 
762 static struct ieee80211vap *
763 wpi_vap_create(struct ieee80211com *ic,
764 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
765 	const uint8_t bssid[IEEE80211_ADDR_LEN],
766 	const uint8_t mac[IEEE80211_ADDR_LEN])
767 {
768 	struct wpi_vap *wvp;
769 	struct ieee80211vap *vap;
770 
771 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
772 		return NULL;
773 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
774 	    M_80211_VAP, M_NOWAIT | M_ZERO);
775 	if (wvp == NULL)
776 		return NULL;
777 	vap = &wvp->vap;
778 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
779 	/* override with driver methods */
780 	wvp->newstate = vap->iv_newstate;
781 	vap->iv_newstate = wpi_newstate;
782 
783 	ieee80211_ratectl_init(vap);
784 	/* complete setup */
785 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
786 	ic->ic_opmode = opmode;
787 	return vap;
788 }
789 
790 static void
791 wpi_vap_delete(struct ieee80211vap *vap)
792 {
793 	struct wpi_vap *wvp = WPI_VAP(vap);
794 
795 	ieee80211_ratectl_deinit(vap);
796 	ieee80211_vap_detach(vap);
797 	free(wvp, M_80211_VAP);
798 }
799 
800 static void
801 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802 {
803 	if (error != 0)
804 		return;
805 
806 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
807 
808 	*(bus_addr_t *)arg = segs[0].ds_addr;
809 }
810 
811 /*
812  * Allocates a contiguous block of dma memory of the requested size and
813  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
814  * allocations greater than 4096 may fail. Hence if the requested alignment is
815  * greater we allocate 'alignment' size extra memory and shift the vaddr and
816  * paddr after the dma load. This bypasses the problem at the cost of a little
817  * more memory.
818  */
819 static int
820 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
821     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
822 {
823 	int error;
824 	bus_size_t align;
825 	bus_size_t reqsize;
826 
827 	DPRINTFN(WPI_DEBUG_DMA,
828 	    ("Size: %zd - alignment %zd\n", size, alignment));
829 
830 	dma->size = size;
831 	dma->tag = NULL;
832 
833 	if (alignment > 4096) {
834 		align = PAGE_SIZE;
835 		reqsize = size + alignment;
836 	} else {
837 		align = alignment;
838 		reqsize = size;
839 	}
840 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
841 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
842 	    NULL, NULL, reqsize,
843 	    1, reqsize, flags,
844 	    NULL, NULL, &dma->tag);
845 	if (error != 0) {
846 		device_printf(sc->sc_dev,
847 		    "could not create shared page DMA tag\n");
848 		goto fail;
849 	}
850 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
851 	    flags | BUS_DMA_ZERO, &dma->map);
852 	if (error != 0) {
853 		device_printf(sc->sc_dev,
854 		    "could not allocate shared page DMA memory\n");
855 		goto fail;
856 	}
857 
858 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
859 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
860 
861 	/* Save the original pointers so we can free all the memory */
862 	dma->paddr = dma->paddr_start;
863 	dma->vaddr = dma->vaddr_start;
864 
865 	/*
866 	 * Check the alignment and increment by 4096 until we get the
867 	 * requested alignment. Fail if can't obtain the alignment
868 	 * we requested.
869 	 */
870 	if ((dma->paddr & (alignment -1 )) != 0) {
871 		int i;
872 
873 		for (i = 0; i < alignment / 4096; i++) {
874 			if ((dma->paddr & (alignment - 1 )) == 0)
875 				break;
876 			dma->paddr += 4096;
877 			dma->vaddr += 4096;
878 		}
879 		if (i == alignment / 4096) {
880 			device_printf(sc->sc_dev,
881 			    "alignment requirement was not satisfied\n");
882 			goto fail;
883 		}
884 	}
885 
886 	if (error != 0) {
887 		device_printf(sc->sc_dev,
888 		    "could not load shared page DMA map\n");
889 		goto fail;
890 	}
891 
892 	if (kvap != NULL)
893 		*kvap = dma->vaddr;
894 
895 	return 0;
896 
897 fail:
898 	wpi_dma_contig_free(dma);
899 	return error;
900 }
901 
902 static void
903 wpi_dma_contig_free(struct wpi_dma_info *dma)
904 {
905 	if (dma->tag) {
906 		if (dma->map != NULL) {
907 			if (dma->paddr_start != 0) {
908 				bus_dmamap_sync(dma->tag, dma->map,
909 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910 				bus_dmamap_unload(dma->tag, dma->map);
911 			}
912 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
913 		}
914 		bus_dma_tag_destroy(dma->tag);
915 	}
916 }
917 
918 /*
919  * Allocate a shared page between host and NIC.
920  */
921 static int
922 wpi_alloc_shared(struct wpi_softc *sc)
923 {
924 	int error;
925 
926 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
927 	    (void **)&sc->shared, sizeof (struct wpi_shared),
928 	    PAGE_SIZE,
929 	    BUS_DMA_NOWAIT);
930 
931 	if (error != 0) {
932 		device_printf(sc->sc_dev,
933 		    "could not allocate shared area DMA memory\n");
934 	}
935 
936 	return error;
937 }
938 
939 static void
940 wpi_free_shared(struct wpi_softc *sc)
941 {
942 	wpi_dma_contig_free(&sc->shared_dma);
943 }
944 
945 static int
946 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
947 {
948 
949 	int i, error;
950 
951 	ring->cur = 0;
952 
953 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
954 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
955 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
956 
957 	if (error != 0) {
958 		device_printf(sc->sc_dev,
959 		    "%s: could not allocate rx ring DMA memory, error %d\n",
960 		    __func__, error);
961 		goto fail;
962 	}
963 
964         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
965 	    BUS_SPACE_MAXADDR_32BIT,
966             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
967             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
968         if (error != 0) {
969                 device_printf(sc->sc_dev,
970 		    "%s: bus_dma_tag_create_failed, error %d\n",
971 		    __func__, error);
972                 goto fail;
973         }
974 
975 	/*
976 	 * Setup Rx buffers.
977 	 */
978 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
979 		struct wpi_rx_data *data = &ring->data[i];
980 		struct mbuf *m;
981 		bus_addr_t paddr;
982 
983 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
984 		if (error != 0) {
985 			device_printf(sc->sc_dev,
986 			    "%s: bus_dmamap_create failed, error %d\n",
987 			    __func__, error);
988 			goto fail;
989 		}
990 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
991 		if (m == NULL) {
992 			device_printf(sc->sc_dev,
993 			   "%s: could not allocate rx mbuf\n", __func__);
994 			error = ENOMEM;
995 			goto fail;
996 		}
997 		/* map page */
998 		error = bus_dmamap_load(ring->data_dmat, data->map,
999 		    mtod(m, caddr_t), MJUMPAGESIZE,
1000 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1001 		if (error != 0 && error != EFBIG) {
1002 			device_printf(sc->sc_dev,
1003 			    "%s: bus_dmamap_load failed, error %d\n",
1004 			    __func__, error);
1005 			m_freem(m);
1006 			error = ENOMEM;	/* XXX unique code */
1007 			goto fail;
1008 		}
1009 		bus_dmamap_sync(ring->data_dmat, data->map,
1010 		    BUS_DMASYNC_PREWRITE);
1011 
1012 		data->m = m;
1013 		ring->desc[i] = htole32(paddr);
1014 	}
1015 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1016 	    BUS_DMASYNC_PREWRITE);
1017 	return 0;
1018 fail:
1019 	wpi_free_rx_ring(sc, ring);
1020 	return error;
1021 }
1022 
1023 static void
1024 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1025 {
1026 	int ntries;
1027 
1028 	wpi_mem_lock(sc);
1029 
1030 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1031 
1032 	for (ntries = 0; ntries < 100; ntries++) {
1033 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1034 			break;
1035 		DELAY(10);
1036 	}
1037 
1038 	wpi_mem_unlock(sc);
1039 
1040 #ifdef WPI_DEBUG
1041 	if (ntries == 100 && wpi_debug > 0)
1042 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1043 #endif
1044 
1045 	ring->cur = 0;
1046 }
1047 
1048 static void
1049 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1050 {
1051 	int i;
1052 
1053 	wpi_dma_contig_free(&ring->desc_dma);
1054 
1055 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1056 		if (ring->data[i].m != NULL)
1057 			m_freem(ring->data[i].m);
1058 }
1059 
1060 static int
1061 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1062 	int qid)
1063 {
1064 	struct wpi_tx_data *data;
1065 	int i, error;
1066 
1067 	ring->qid = qid;
1068 	ring->count = count;
1069 	ring->queued = 0;
1070 	ring->cur = 0;
1071 	ring->data = NULL;
1072 
1073 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1074 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1075 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1076 
1077 	if (error != 0) {
1078 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1079 	    goto fail;
1080 	}
1081 
1082 	/* update shared page with ring's base address */
1083 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1084 
1085 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1086 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1087 		BUS_DMA_NOWAIT);
1088 
1089 	if (error != 0) {
1090 		device_printf(sc->sc_dev,
1091 		    "could not allocate tx command DMA memory\n");
1092 		goto fail;
1093 	}
1094 
1095 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1096 	    M_NOWAIT | M_ZERO);
1097 	if (ring->data == NULL) {
1098 		device_printf(sc->sc_dev,
1099 		    "could not allocate tx data slots\n");
1100 		goto fail;
1101 	}
1102 
1103 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1104 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1105 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1106 	    &ring->data_dmat);
1107 	if (error != 0) {
1108 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1109 		goto fail;
1110 	}
1111 
1112 	for (i = 0; i < count; i++) {
1113 		data = &ring->data[i];
1114 
1115 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1116 		if (error != 0) {
1117 			device_printf(sc->sc_dev,
1118 			    "could not create tx buf DMA map\n");
1119 			goto fail;
1120 		}
1121 		bus_dmamap_sync(ring->data_dmat, data->map,
1122 		    BUS_DMASYNC_PREWRITE);
1123 	}
1124 
1125 	return 0;
1126 
1127 fail:
1128 	wpi_free_tx_ring(sc, ring);
1129 	return error;
1130 }
1131 
1132 static void
1133 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1134 {
1135 	struct wpi_tx_data *data;
1136 	int i, ntries;
1137 
1138 	wpi_mem_lock(sc);
1139 
1140 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1141 	for (ntries = 0; ntries < 100; ntries++) {
1142 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1143 			break;
1144 		DELAY(10);
1145 	}
1146 #ifdef WPI_DEBUG
1147 	if (ntries == 100 && wpi_debug > 0)
1148 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1149 		    ring->qid);
1150 #endif
1151 	wpi_mem_unlock(sc);
1152 
1153 	for (i = 0; i < ring->count; i++) {
1154 		data = &ring->data[i];
1155 
1156 		if (data->m != NULL) {
1157 			bus_dmamap_unload(ring->data_dmat, data->map);
1158 			m_freem(data->m);
1159 			data->m = NULL;
1160 		}
1161 	}
1162 
1163 	ring->queued = 0;
1164 	ring->cur = 0;
1165 }
1166 
1167 static void
1168 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1169 {
1170 	struct wpi_tx_data *data;
1171 	int i;
1172 
1173 	wpi_dma_contig_free(&ring->desc_dma);
1174 	wpi_dma_contig_free(&ring->cmd_dma);
1175 
1176 	if (ring->data != NULL) {
1177 		for (i = 0; i < ring->count; i++) {
1178 			data = &ring->data[i];
1179 
1180 			if (data->m != NULL) {
1181 				bus_dmamap_sync(ring->data_dmat, data->map,
1182 				    BUS_DMASYNC_POSTWRITE);
1183 				bus_dmamap_unload(ring->data_dmat, data->map);
1184 				m_freem(data->m);
1185 				data->m = NULL;
1186 			}
1187 		}
1188 		free(ring->data, M_DEVBUF);
1189 	}
1190 
1191 	if (ring->data_dmat != NULL)
1192 		bus_dma_tag_destroy(ring->data_dmat);
1193 }
1194 
1195 static int
1196 wpi_shutdown(device_t dev)
1197 {
1198 	struct wpi_softc *sc = device_get_softc(dev);
1199 
1200 	WPI_LOCK(sc);
1201 	wpi_stop_locked(sc);
1202 	wpi_unload_firmware(sc);
1203 	WPI_UNLOCK(sc);
1204 
1205 	return 0;
1206 }
1207 
1208 static int
1209 wpi_suspend(device_t dev)
1210 {
1211 	struct wpi_softc *sc = device_get_softc(dev);
1212 
1213 	wpi_stop(sc);
1214 	return 0;
1215 }
1216 
1217 static int
1218 wpi_resume(device_t dev)
1219 {
1220 	struct wpi_softc *sc = device_get_softc(dev);
1221 	struct ifnet *ifp = sc->sc_ifp;
1222 
1223 	pci_write_config(dev, 0x41, 0, 1);
1224 
1225 	if (ifp->if_flags & IFF_UP) {
1226 		wpi_init(ifp->if_softc);
1227 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1228 			wpi_start(ifp);
1229 	}
1230 	return 0;
1231 }
1232 
1233 /**
1234  * Called by net80211 when ever there is a change to 80211 state machine
1235  */
1236 static int
1237 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1238 {
1239 	struct wpi_vap *wvp = WPI_VAP(vap);
1240 	struct ieee80211com *ic = vap->iv_ic;
1241 	struct ifnet *ifp = ic->ic_ifp;
1242 	struct wpi_softc *sc = ifp->if_softc;
1243 	int error;
1244 
1245 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1246 		ieee80211_state_name[vap->iv_state],
1247 		ieee80211_state_name[nstate], sc->flags));
1248 
1249 	IEEE80211_UNLOCK(ic);
1250 	WPI_LOCK(sc);
1251 	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1252 		/*
1253 		 * On !INIT -> SCAN transitions, we need to clear any possible
1254 		 * knowledge about associations.
1255 		 */
1256 		error = wpi_config(sc);
1257 		if (error != 0) {
1258 			device_printf(sc->sc_dev,
1259 			    "%s: device config failed, error %d\n",
1260 			    __func__, error);
1261 		}
1262 	}
1263 	if (nstate == IEEE80211_S_AUTH ||
1264 	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1265 		/*
1266 		 * The node must be registered in the firmware before auth.
1267 		 * Also the associd must be cleared on RUN -> ASSOC
1268 		 * transitions.
1269 		 */
1270 		error = wpi_auth(sc, vap);
1271 		if (error != 0) {
1272 			device_printf(sc->sc_dev,
1273 			    "%s: could not move to auth state, error %d\n",
1274 			    __func__, error);
1275 		}
1276 	}
1277 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1278 		error = wpi_run(sc, vap);
1279 		if (error != 0) {
1280 			device_printf(sc->sc_dev,
1281 			    "%s: could not move to run state, error %d\n",
1282 			    __func__, error);
1283 		}
1284 	}
1285 	if (nstate == IEEE80211_S_RUN) {
1286 		/* RUN -> RUN transition; just restart the timers */
1287 		wpi_calib_timeout(sc);
1288 		/* XXX split out rate control timer */
1289 	}
1290 	WPI_UNLOCK(sc);
1291 	IEEE80211_LOCK(ic);
1292 	return wvp->newstate(vap, nstate, arg);
1293 }
1294 
1295 /*
1296  * Grab exclusive access to NIC memory.
1297  */
1298 static void
1299 wpi_mem_lock(struct wpi_softc *sc)
1300 {
1301 	int ntries;
1302 	uint32_t tmp;
1303 
1304 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1305 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1306 
1307 	/* spin until we actually get the lock */
1308 	for (ntries = 0; ntries < 100; ntries++) {
1309 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1310 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1311 			break;
1312 		DELAY(10);
1313 	}
1314 	if (ntries == 100)
1315 		device_printf(sc->sc_dev, "could not lock memory\n");
1316 }
1317 
1318 /*
1319  * Release lock on NIC memory.
1320  */
1321 static void
1322 wpi_mem_unlock(struct wpi_softc *sc)
1323 {
1324 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1325 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1326 }
1327 
1328 static uint32_t
1329 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1330 {
1331 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1332 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1333 }
1334 
1335 static void
1336 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1337 {
1338 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1339 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1340 }
1341 
1342 static void
1343 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1344     const uint32_t *data, int wlen)
1345 {
1346 	for (; wlen > 0; wlen--, data++, addr+=4)
1347 		wpi_mem_write(sc, addr, *data);
1348 }
1349 
1350 /*
1351  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1352  * using the traditional bit-bang method. Data is read up until len bytes have
1353  * been obtained.
1354  */
1355 static uint16_t
1356 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1357 {
1358 	int ntries;
1359 	uint32_t val;
1360 	uint8_t *out = data;
1361 
1362 	wpi_mem_lock(sc);
1363 
1364 	for (; len > 0; len -= 2, addr++) {
1365 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1366 
1367 		for (ntries = 0; ntries < 10; ntries++) {
1368 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1369 				break;
1370 			DELAY(5);
1371 		}
1372 
1373 		if (ntries == 10) {
1374 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1375 			return ETIMEDOUT;
1376 		}
1377 
1378 		*out++= val >> 16;
1379 		if (len > 1)
1380 			*out ++= val >> 24;
1381 	}
1382 
1383 	wpi_mem_unlock(sc);
1384 
1385 	return 0;
1386 }
1387 
1388 /*
1389  * The firmware text and data segments are transferred to the NIC using DMA.
1390  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1391  * where to find it.  Once the NIC has copied the firmware into its internal
1392  * memory, we can free our local copy in the driver.
1393  */
1394 static int
1395 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1396 {
1397 	int error, ntries;
1398 
1399 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1400 
1401 	size /= sizeof(uint32_t);
1402 
1403 	wpi_mem_lock(sc);
1404 
1405 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1406 	    (const uint32_t *)fw, size);
1407 
1408 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1409 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1410 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1411 
1412 	/* run microcode */
1413 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1414 
1415 	/* wait while the adapter is busy copying the firmware */
1416 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1417 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1418 		DPRINTFN(WPI_DEBUG_HW,
1419 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1420 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1421 		if (status & WPI_TX_IDLE(6)) {
1422 			DPRINTFN(WPI_DEBUG_HW,
1423 			    ("Status Match! - ntries = %d\n", ntries));
1424 			break;
1425 		}
1426 		DELAY(10);
1427 	}
1428 	if (ntries == 1000) {
1429 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1430 		error = ETIMEDOUT;
1431 	}
1432 
1433 	/* start the microcode executing */
1434 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1435 
1436 	wpi_mem_unlock(sc);
1437 
1438 	return (error);
1439 }
1440 
1441 static void
1442 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1443 	struct wpi_rx_data *data)
1444 {
1445 	struct ifnet *ifp = sc->sc_ifp;
1446 	struct ieee80211com *ic = ifp->if_l2com;
1447 	struct wpi_rx_ring *ring = &sc->rxq;
1448 	struct wpi_rx_stat *stat;
1449 	struct wpi_rx_head *head;
1450 	struct wpi_rx_tail *tail;
1451 	struct ieee80211_node *ni;
1452 	struct mbuf *m, *mnew;
1453 	bus_addr_t paddr;
1454 	int error;
1455 
1456 	stat = (struct wpi_rx_stat *)(desc + 1);
1457 
1458 	if (stat->len > WPI_STAT_MAXLEN) {
1459 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1460 		ifp->if_ierrors++;
1461 		return;
1462 	}
1463 
1464 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1465 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1466 
1467 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1468 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1469 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1470 	    (uintmax_t)le64toh(tail->tstamp)));
1471 
1472 	/* discard Rx frames with bad CRC early */
1473 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1474 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1475 		    le32toh(tail->flags)));
1476 		ifp->if_ierrors++;
1477 		return;
1478 	}
1479 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1480 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1481 		    le16toh(head->len)));
1482 		ifp->if_ierrors++;
1483 		return;
1484 	}
1485 
1486 	/* XXX don't need mbuf, just dma buffer */
1487 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1488 	if (mnew == NULL) {
1489 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1490 		    __func__));
1491 		ifp->if_ierrors++;
1492 		return;
1493 	}
1494 	error = bus_dmamap_load(ring->data_dmat, data->map,
1495 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1496 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1497 	if (error != 0 && error != EFBIG) {
1498 		device_printf(sc->sc_dev,
1499 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1500 		m_freem(mnew);
1501 		ifp->if_ierrors++;
1502 		return;
1503 	}
1504 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1505 
1506 	/* finalize mbuf and swap in new one */
1507 	m = data->m;
1508 	m->m_pkthdr.rcvif = ifp;
1509 	m->m_data = (caddr_t)(head + 1);
1510 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1511 
1512 	data->m = mnew;
1513 	/* update Rx descriptor */
1514 	ring->desc[ring->cur] = htole32(paddr);
1515 
1516 	if (ieee80211_radiotap_active(ic)) {
1517 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1518 
1519 		tap->wr_flags = 0;
1520 		tap->wr_chan_freq =
1521 			htole16(ic->ic_channels[head->chan].ic_freq);
1522 		tap->wr_chan_flags =
1523 			htole16(ic->ic_channels[head->chan].ic_flags);
1524 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1525 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1526 		tap->wr_tsft = tail->tstamp;
1527 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1528 		switch (head->rate) {
1529 		/* CCK rates */
1530 		case  10: tap->wr_rate =   2; break;
1531 		case  20: tap->wr_rate =   4; break;
1532 		case  55: tap->wr_rate =  11; break;
1533 		case 110: tap->wr_rate =  22; break;
1534 		/* OFDM rates */
1535 		case 0xd: tap->wr_rate =  12; break;
1536 		case 0xf: tap->wr_rate =  18; break;
1537 		case 0x5: tap->wr_rate =  24; break;
1538 		case 0x7: tap->wr_rate =  36; break;
1539 		case 0x9: tap->wr_rate =  48; break;
1540 		case 0xb: tap->wr_rate =  72; break;
1541 		case 0x1: tap->wr_rate =  96; break;
1542 		case 0x3: tap->wr_rate = 108; break;
1543 		/* unknown rate: should not happen */
1544 		default:  tap->wr_rate =   0;
1545 		}
1546 		if (le16toh(head->flags) & 0x4)
1547 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1548 	}
1549 
1550 	WPI_UNLOCK(sc);
1551 
1552 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1553 	if (ni != NULL) {
1554 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1555 		ieee80211_free_node(ni);
1556 	} else
1557 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1558 
1559 	WPI_LOCK(sc);
1560 }
1561 
1562 static void
1563 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1564 {
1565 	struct ifnet *ifp = sc->sc_ifp;
1566 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1567 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1568 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1569 	struct ieee80211_node *ni = txdata->ni;
1570 	struct ieee80211vap *vap = ni->ni_vap;
1571 	int retrycnt = 0;
1572 
1573 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1574 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1575 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1576 	    le32toh(stat->status)));
1577 
1578 	/*
1579 	 * Update rate control statistics for the node.
1580 	 * XXX we should not count mgmt frames since they're always sent at
1581 	 * the lowest available bit-rate.
1582 	 * XXX frames w/o ACK shouldn't be used either
1583 	 */
1584 	if (stat->ntries > 0) {
1585 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1586 		retrycnt = 1;
1587 	}
1588 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1589 	    &retrycnt, NULL);
1590 
1591 	/* XXX oerrors should only count errors !maxtries */
1592 	if ((le32toh(stat->status) & 0xff) != 1)
1593 		ifp->if_oerrors++;
1594 	else
1595 		ifp->if_opackets++;
1596 
1597 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1598 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1599 	/* XXX handle M_TXCB? */
1600 	m_freem(txdata->m);
1601 	txdata->m = NULL;
1602 	ieee80211_free_node(txdata->ni);
1603 	txdata->ni = NULL;
1604 
1605 	ring->queued--;
1606 
1607 	sc->sc_tx_timer = 0;
1608 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1609 	wpi_start_locked(ifp);
1610 }
1611 
1612 static void
1613 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1614 {
1615 	struct wpi_tx_ring *ring = &sc->cmdq;
1616 	struct wpi_tx_data *data;
1617 
1618 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1619 				 "type=%s len=%d\n", desc->qid, desc->idx,
1620 				 desc->flags, wpi_cmd_str(desc->type),
1621 				 le32toh(desc->len)));
1622 
1623 	if ((desc->qid & 7) != 4)
1624 		return;	/* not a command ack */
1625 
1626 	data = &ring->data[desc->idx];
1627 
1628 	/* if the command was mapped in a mbuf, free it */
1629 	if (data->m != NULL) {
1630 		bus_dmamap_unload(ring->data_dmat, data->map);
1631 		m_freem(data->m);
1632 		data->m = NULL;
1633 	}
1634 
1635 	sc->flags &= ~WPI_FLAG_BUSY;
1636 	wakeup(&ring->cmd[desc->idx]);
1637 }
1638 
1639 static void
1640 wpi_notif_intr(struct wpi_softc *sc)
1641 {
1642 	struct ifnet *ifp = sc->sc_ifp;
1643 	struct ieee80211com *ic = ifp->if_l2com;
1644 	struct wpi_rx_desc *desc;
1645 	struct wpi_rx_data *data;
1646 	uint32_t hw;
1647 
1648 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1649 	    BUS_DMASYNC_POSTREAD);
1650 
1651 	hw = le32toh(sc->shared->next);
1652 	while (sc->rxq.cur != hw) {
1653 		data = &sc->rxq.data[sc->rxq.cur];
1654 
1655 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1656 		    BUS_DMASYNC_POSTREAD);
1657 		desc = (void *)data->m->m_ext.ext_buf;
1658 
1659 		DPRINTFN(WPI_DEBUG_NOTIFY,
1660 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1661 			  desc->qid,
1662 			  desc->idx,
1663 			  desc->flags,
1664 			  desc->type,
1665 			  le32toh(desc->len)));
1666 
1667 		if (!(desc->qid & 0x80))	/* reply to a command */
1668 			wpi_cmd_intr(sc, desc);
1669 
1670 		switch (desc->type) {
1671 		case WPI_RX_DONE:
1672 			/* a 802.11 frame was received */
1673 			wpi_rx_intr(sc, desc, data);
1674 			break;
1675 
1676 		case WPI_TX_DONE:
1677 			/* a 802.11 frame has been transmitted */
1678 			wpi_tx_intr(sc, desc);
1679 			break;
1680 
1681 		case WPI_UC_READY:
1682 		{
1683 			struct wpi_ucode_info *uc =
1684 				(struct wpi_ucode_info *)(desc + 1);
1685 
1686 			/* the microcontroller is ready */
1687 			DPRINTF(("microcode alive notification version %x "
1688 				"alive %x\n", le32toh(uc->version),
1689 				le32toh(uc->valid)));
1690 
1691 			if (le32toh(uc->valid) != 1) {
1692 				device_printf(sc->sc_dev,
1693 				    "microcontroller initialization failed\n");
1694 				wpi_stop_locked(sc);
1695 			}
1696 			break;
1697 		}
1698 		case WPI_STATE_CHANGED:
1699 		{
1700 			uint32_t *status = (uint32_t *)(desc + 1);
1701 
1702 			/* enabled/disabled notification */
1703 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1704 
1705 			if (le32toh(*status) & 1) {
1706 				device_printf(sc->sc_dev,
1707 				    "Radio transmitter is switched off\n");
1708 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1709 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1710 				/* Disable firmware commands */
1711 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1712 			}
1713 			break;
1714 		}
1715 		case WPI_START_SCAN:
1716 		{
1717 #ifdef WPI_DEBUG
1718 			struct wpi_start_scan *scan =
1719 				(struct wpi_start_scan *)(desc + 1);
1720 #endif
1721 
1722 			DPRINTFN(WPI_DEBUG_SCANNING,
1723 				 ("scanning channel %d status %x\n",
1724 			    scan->chan, le32toh(scan->status)));
1725 			break;
1726 		}
1727 		case WPI_STOP_SCAN:
1728 		{
1729 #ifdef WPI_DEBUG
1730 			struct wpi_stop_scan *scan =
1731 				(struct wpi_stop_scan *)(desc + 1);
1732 #endif
1733 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1734 
1735 			DPRINTFN(WPI_DEBUG_SCANNING,
1736 			    ("scan finished nchan=%d status=%d chan=%d\n",
1737 			     scan->nchan, scan->status, scan->chan));
1738 
1739 			sc->sc_scan_timer = 0;
1740 			ieee80211_scan_next(vap);
1741 			break;
1742 		}
1743 		case WPI_MISSED_BEACON:
1744 		{
1745 			struct wpi_missed_beacon *beacon =
1746 				(struct wpi_missed_beacon *)(desc + 1);
1747 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1748 
1749 			if (le32toh(beacon->consecutive) >=
1750 			    vap->iv_bmissthreshold) {
1751 				DPRINTF(("Beacon miss: %u >= %u\n",
1752 					 le32toh(beacon->consecutive),
1753 					 vap->iv_bmissthreshold));
1754 				ieee80211_beacon_miss(ic);
1755 			}
1756 			break;
1757 		}
1758 		}
1759 
1760 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1761 	}
1762 
1763 	/* tell the firmware what we have processed */
1764 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1765 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1766 }
1767 
1768 static void
1769 wpi_intr(void *arg)
1770 {
1771 	struct wpi_softc *sc = arg;
1772 	uint32_t r;
1773 
1774 	WPI_LOCK(sc);
1775 
1776 	r = WPI_READ(sc, WPI_INTR);
1777 	if (r == 0 || r == 0xffffffff) {
1778 		WPI_UNLOCK(sc);
1779 		return;
1780 	}
1781 
1782 	/* disable interrupts */
1783 	WPI_WRITE(sc, WPI_MASK, 0);
1784 	/* ack interrupts */
1785 	WPI_WRITE(sc, WPI_INTR, r);
1786 
1787 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1788 		struct ifnet *ifp = sc->sc_ifp;
1789 		struct ieee80211com *ic = ifp->if_l2com;
1790 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1791 
1792 		device_printf(sc->sc_dev, "fatal firmware error\n");
1793 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1794 				"(Hardware Error)"));
1795 		if (vap != NULL)
1796 			ieee80211_cancel_scan(vap);
1797 		ieee80211_runtask(ic, &sc->sc_restarttask);
1798 		sc->flags &= ~WPI_FLAG_BUSY;
1799 		WPI_UNLOCK(sc);
1800 		return;
1801 	}
1802 
1803 	if (r & WPI_RX_INTR)
1804 		wpi_notif_intr(sc);
1805 
1806 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1807 		wakeup(sc);
1808 
1809 	/* re-enable interrupts */
1810 	if (sc->sc_ifp->if_flags & IFF_UP)
1811 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1812 
1813 	WPI_UNLOCK(sc);
1814 }
1815 
1816 static uint8_t
1817 wpi_plcp_signal(int rate)
1818 {
1819 	switch (rate) {
1820 	/* CCK rates (returned values are device-dependent) */
1821 	case 2:		return 10;
1822 	case 4:		return 20;
1823 	case 11:	return 55;
1824 	case 22:	return 110;
1825 
1826 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1827 	/* R1-R4 (ral/ural is R4-R1) */
1828 	case 12:	return 0xd;
1829 	case 18:	return 0xf;
1830 	case 24:	return 0x5;
1831 	case 36:	return 0x7;
1832 	case 48:	return 0x9;
1833 	case 72:	return 0xb;
1834 	case 96:	return 0x1;
1835 	case 108:	return 0x3;
1836 
1837 	/* unsupported rates (should not get there) */
1838 	default:	return 0;
1839 	}
1840 }
1841 
1842 /* quickly determine if a given rate is CCK or OFDM */
1843 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1844 
1845 /*
1846  * Construct the data packet for a transmit buffer and acutally put
1847  * the buffer onto the transmit ring, kicking the card to process the
1848  * the buffer.
1849  */
1850 static int
1851 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1852 	int ac)
1853 {
1854 	struct ieee80211vap *vap = ni->ni_vap;
1855 	struct ifnet *ifp = sc->sc_ifp;
1856 	struct ieee80211com *ic = ifp->if_l2com;
1857 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1858 	struct wpi_tx_ring *ring = &sc->txq[ac];
1859 	struct wpi_tx_desc *desc;
1860 	struct wpi_tx_data *data;
1861 	struct wpi_tx_cmd *cmd;
1862 	struct wpi_cmd_data *tx;
1863 	struct ieee80211_frame *wh;
1864 	const struct ieee80211_txparam *tp;
1865 	struct ieee80211_key *k;
1866 	struct mbuf *mnew;
1867 	int i, error, nsegs, rate, hdrlen, ismcast;
1868 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1869 
1870 	desc = &ring->desc[ring->cur];
1871 	data = &ring->data[ring->cur];
1872 
1873 	wh = mtod(m0, struct ieee80211_frame *);
1874 
1875 	hdrlen = ieee80211_hdrsize(wh);
1876 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1877 
1878 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1879 		k = ieee80211_crypto_encap(ni, m0);
1880 		if (k == NULL) {
1881 			m_freem(m0);
1882 			return ENOBUFS;
1883 		}
1884 		/* packet header may have moved, reset our local pointer */
1885 		wh = mtod(m0, struct ieee80211_frame *);
1886 	}
1887 
1888 	cmd = &ring->cmd[ring->cur];
1889 	cmd->code = WPI_CMD_TX_DATA;
1890 	cmd->flags = 0;
1891 	cmd->qid = ring->qid;
1892 	cmd->idx = ring->cur;
1893 
1894 	tx = (struct wpi_cmd_data *)cmd->data;
1895 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1896 	tx->timeout = htole16(0);
1897 	tx->ofdm_mask = 0xff;
1898 	tx->cck_mask = 0x0f;
1899 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1900 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1901 	tx->len = htole16(m0->m_pkthdr.len);
1902 
1903 	if (!ismcast) {
1904 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1905 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1906 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1907 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1908 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1909 			tx->rts_ntries = 7;
1910 		}
1911 	}
1912 	/* pick a rate */
1913 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1914 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1915 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1916 		/* tell h/w to set timestamp in probe responses */
1917 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1918 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1919 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1920 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1921 			tx->timeout = htole16(3);
1922 		else
1923 			tx->timeout = htole16(2);
1924 		rate = tp->mgmtrate;
1925 	} else if (ismcast) {
1926 		rate = tp->mcastrate;
1927 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1928 		rate = tp->ucastrate;
1929 	} else {
1930 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1931 		rate = ni->ni_txrate;
1932 	}
1933 	tx->rate = wpi_plcp_signal(rate);
1934 
1935 	/* be very persistant at sending frames out */
1936 #if 0
1937 	tx->data_ntries = tp->maxretry;
1938 #else
1939 	tx->data_ntries = 15;		/* XXX way too high */
1940 #endif
1941 
1942 	if (ieee80211_radiotap_active_vap(vap)) {
1943 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1944 		tap->wt_flags = 0;
1945 		tap->wt_rate = rate;
1946 		tap->wt_hwqueue = ac;
1947 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1948 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1949 
1950 		ieee80211_radiotap_tx(vap, m0);
1951 	}
1952 
1953 	/* save and trim IEEE802.11 header */
1954 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1955 	m_adj(m0, hdrlen);
1956 
1957 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1958 	    &nsegs, BUS_DMA_NOWAIT);
1959 	if (error != 0 && error != EFBIG) {
1960 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1961 		    error);
1962 		m_freem(m0);
1963 		return error;
1964 	}
1965 	if (error != 0) {
1966 		/* XXX use m_collapse */
1967 		mnew = m_defrag(m0, M_DONTWAIT);
1968 		if (mnew == NULL) {
1969 			device_printf(sc->sc_dev,
1970 			    "could not defragment mbuf\n");
1971 			m_freem(m0);
1972 			return ENOBUFS;
1973 		}
1974 		m0 = mnew;
1975 
1976 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1977 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1978 		if (error != 0) {
1979 			device_printf(sc->sc_dev,
1980 			    "could not map mbuf (error %d)\n", error);
1981 			m_freem(m0);
1982 			return error;
1983 		}
1984 	}
1985 
1986 	data->m = m0;
1987 	data->ni = ni;
1988 
1989 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1990 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1991 
1992 	/* first scatter/gather segment is used by the tx data command */
1993 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1994 	    (1 + nsegs) << 24);
1995 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1996 	    ring->cur * sizeof (struct wpi_tx_cmd));
1997 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1998 	for (i = 1; i <= nsegs; i++) {
1999 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2000 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2001 	}
2002 
2003 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2004 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2005 	    BUS_DMASYNC_PREWRITE);
2006 
2007 	ring->queued++;
2008 
2009 	/* kick ring */
2010 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2011 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2012 
2013 	return 0;
2014 }
2015 
2016 /**
2017  * Process data waiting to be sent on the IFNET output queue
2018  */
2019 static void
2020 wpi_start(struct ifnet *ifp)
2021 {
2022 	struct wpi_softc *sc = ifp->if_softc;
2023 
2024 	WPI_LOCK(sc);
2025 	wpi_start_locked(ifp);
2026 	WPI_UNLOCK(sc);
2027 }
2028 
2029 static void
2030 wpi_start_locked(struct ifnet *ifp)
2031 {
2032 	struct wpi_softc *sc = ifp->if_softc;
2033 	struct ieee80211_node *ni;
2034 	struct mbuf *m;
2035 	int ac;
2036 
2037 	WPI_LOCK_ASSERT(sc);
2038 
2039 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2040 		return;
2041 
2042 	for (;;) {
2043 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2044 		if (m == NULL)
2045 			break;
2046 		ac = M_WME_GETAC(m);
2047 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2048 			/* there is no place left in this ring */
2049 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2050 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2051 			break;
2052 		}
2053 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2054 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2055 			ieee80211_free_node(ni);
2056 			ifp->if_oerrors++;
2057 			break;
2058 		}
2059 		sc->sc_tx_timer = 5;
2060 	}
2061 }
2062 
2063 static int
2064 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2065 	const struct ieee80211_bpf_params *params)
2066 {
2067 	struct ieee80211com *ic = ni->ni_ic;
2068 	struct ifnet *ifp = ic->ic_ifp;
2069 	struct wpi_softc *sc = ifp->if_softc;
2070 
2071 	/* prevent management frames from being sent if we're not ready */
2072 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2073 		m_freem(m);
2074 		ieee80211_free_node(ni);
2075 		return ENETDOWN;
2076 	}
2077 	WPI_LOCK(sc);
2078 
2079 	/* management frames go into ring 0 */
2080 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2081 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2082 		m_freem(m);
2083 		WPI_UNLOCK(sc);
2084 		ieee80211_free_node(ni);
2085 		return ENOBUFS;		/* XXX */
2086 	}
2087 
2088 	ifp->if_opackets++;
2089 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2090 		goto bad;
2091 	sc->sc_tx_timer = 5;
2092 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2093 
2094 	WPI_UNLOCK(sc);
2095 	return 0;
2096 bad:
2097 	ifp->if_oerrors++;
2098 	WPI_UNLOCK(sc);
2099 	ieee80211_free_node(ni);
2100 	return EIO;		/* XXX */
2101 }
2102 
2103 static int
2104 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2105 {
2106 	struct wpi_softc *sc = ifp->if_softc;
2107 	struct ieee80211com *ic = ifp->if_l2com;
2108 	struct ifreq *ifr = (struct ifreq *) data;
2109 	int error = 0, startall = 0;
2110 
2111 	switch (cmd) {
2112 	case SIOCSIFFLAGS:
2113 		WPI_LOCK(sc);
2114 		if ((ifp->if_flags & IFF_UP)) {
2115 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2116 				wpi_init_locked(sc, 0);
2117 				startall = 1;
2118 			}
2119 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2120 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2121 			wpi_stop_locked(sc);
2122 		WPI_UNLOCK(sc);
2123 		if (startall)
2124 			ieee80211_start_all(ic);
2125 		break;
2126 	case SIOCGIFMEDIA:
2127 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2128 		break;
2129 	case SIOCGIFADDR:
2130 		error = ether_ioctl(ifp, cmd, data);
2131 		break;
2132 	default:
2133 		error = EINVAL;
2134 		break;
2135 	}
2136 	return error;
2137 }
2138 
2139 /*
2140  * Extract various information from EEPROM.
2141  */
2142 static void
2143 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2144 {
2145 	int i;
2146 
2147 	/* read the hardware capabilities, revision and SKU type */
2148 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2149 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2150 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2151 
2152 	/* read the regulatory domain */
2153 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2154 
2155 	/* read in the hw MAC address */
2156 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2157 
2158 	/* read the list of authorized channels */
2159 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2160 		wpi_read_eeprom_channels(sc,i);
2161 
2162 	/* read the power level calibration info for each group */
2163 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2164 		wpi_read_eeprom_group(sc,i);
2165 }
2166 
2167 /*
2168  * Send a command to the firmware.
2169  */
2170 static int
2171 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2172 {
2173 	struct wpi_tx_ring *ring = &sc->cmdq;
2174 	struct wpi_tx_desc *desc;
2175 	struct wpi_tx_cmd *cmd;
2176 
2177 #ifdef WPI_DEBUG
2178 	if (!async) {
2179 		WPI_LOCK_ASSERT(sc);
2180 	}
2181 #endif
2182 
2183 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2184 		    async));
2185 
2186 	if (sc->flags & WPI_FLAG_BUSY) {
2187 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2188 		    __func__, code);
2189 		return EAGAIN;
2190 	}
2191 	sc->flags|= WPI_FLAG_BUSY;
2192 
2193 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2194 	    code, size));
2195 
2196 	desc = &ring->desc[ring->cur];
2197 	cmd = &ring->cmd[ring->cur];
2198 
2199 	cmd->code = code;
2200 	cmd->flags = 0;
2201 	cmd->qid = ring->qid;
2202 	cmd->idx = ring->cur;
2203 	memcpy(cmd->data, buf, size);
2204 
2205 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2206 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2207 		ring->cur * sizeof (struct wpi_tx_cmd));
2208 	desc->segs[0].len  = htole32(4 + size);
2209 
2210 	/* kick cmd ring */
2211 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2212 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2213 
2214 	if (async) {
2215 		sc->flags &= ~ WPI_FLAG_BUSY;
2216 		return 0;
2217 	}
2218 
2219 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2220 }
2221 
2222 static int
2223 wpi_wme_update(struct ieee80211com *ic)
2224 {
2225 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2226 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2227 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2228 	const struct wmeParams *wmep;
2229 	struct wpi_wme_setup wme;
2230 	int ac;
2231 
2232 	/* don't override default WME values if WME is not actually enabled */
2233 	if (!(ic->ic_flags & IEEE80211_F_WME))
2234 		return 0;
2235 
2236 	wme.flags = 0;
2237 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2238 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2239 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2240 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2241 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2242 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2243 
2244 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2245 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2246 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2247 	}
2248 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2249 #undef WPI_USEC
2250 #undef WPI_EXP2
2251 }
2252 
2253 /*
2254  * Configure h/w multi-rate retries.
2255  */
2256 static int
2257 wpi_mrr_setup(struct wpi_softc *sc)
2258 {
2259 	struct ifnet *ifp = sc->sc_ifp;
2260 	struct ieee80211com *ic = ifp->if_l2com;
2261 	struct wpi_mrr_setup mrr;
2262 	int i, error;
2263 
2264 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2265 
2266 	/* CCK rates (not used with 802.11a) */
2267 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2268 		mrr.rates[i].flags = 0;
2269 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2270 		/* fallback to the immediate lower CCK rate (if any) */
2271 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2272 		/* try one time at this rate before falling back to "next" */
2273 		mrr.rates[i].ntries = 1;
2274 	}
2275 
2276 	/* OFDM rates (not used with 802.11b) */
2277 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2278 		mrr.rates[i].flags = 0;
2279 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2280 		/* fallback to the immediate lower OFDM rate (if any) */
2281 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2282 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2283 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2284 			WPI_OFDM6 : WPI_CCK2) :
2285 		    i - 1;
2286 		/* try one time at this rate before falling back to "next" */
2287 		mrr.rates[i].ntries = 1;
2288 	}
2289 
2290 	/* setup MRR for control frames */
2291 	mrr.which = htole32(WPI_MRR_CTL);
2292 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2293 	if (error != 0) {
2294 		device_printf(sc->sc_dev,
2295 		    "could not setup MRR for control frames\n");
2296 		return error;
2297 	}
2298 
2299 	/* setup MRR for data frames */
2300 	mrr.which = htole32(WPI_MRR_DATA);
2301 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2302 	if (error != 0) {
2303 		device_printf(sc->sc_dev,
2304 		    "could not setup MRR for data frames\n");
2305 		return error;
2306 	}
2307 
2308 	return 0;
2309 }
2310 
2311 static void
2312 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2313 {
2314 	struct wpi_cmd_led led;
2315 
2316 	led.which = which;
2317 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2318 	led.off = off;
2319 	led.on = on;
2320 
2321 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2322 }
2323 
2324 static void
2325 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2326 {
2327 	struct wpi_cmd_tsf tsf;
2328 	uint64_t val, mod;
2329 
2330 	memset(&tsf, 0, sizeof tsf);
2331 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2332 	tsf.bintval = htole16(ni->ni_intval);
2333 	tsf.lintval = htole16(10);
2334 
2335 	/* compute remaining time until next beacon */
2336 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2337 	mod = le64toh(tsf.tstamp) % val;
2338 	tsf.binitval = htole32((uint32_t)(val - mod));
2339 
2340 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2341 		device_printf(sc->sc_dev, "could not enable TSF\n");
2342 }
2343 
2344 #if 0
2345 /*
2346  * Build a beacon frame that the firmware will broadcast periodically in
2347  * IBSS or HostAP modes.
2348  */
2349 static int
2350 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2351 {
2352 	struct ifnet *ifp = sc->sc_ifp;
2353 	struct ieee80211com *ic = ifp->if_l2com;
2354 	struct wpi_tx_ring *ring = &sc->cmdq;
2355 	struct wpi_tx_desc *desc;
2356 	struct wpi_tx_data *data;
2357 	struct wpi_tx_cmd *cmd;
2358 	struct wpi_cmd_beacon *bcn;
2359 	struct ieee80211_beacon_offsets bo;
2360 	struct mbuf *m0;
2361 	bus_addr_t physaddr;
2362 	int error;
2363 
2364 	desc = &ring->desc[ring->cur];
2365 	data = &ring->data[ring->cur];
2366 
2367 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2368 	if (m0 == NULL) {
2369 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2370 		return ENOMEM;
2371 	}
2372 
2373 	cmd = &ring->cmd[ring->cur];
2374 	cmd->code = WPI_CMD_SET_BEACON;
2375 	cmd->flags = 0;
2376 	cmd->qid = ring->qid;
2377 	cmd->idx = ring->cur;
2378 
2379 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2380 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2381 	bcn->id = WPI_ID_BROADCAST;
2382 	bcn->ofdm_mask = 0xff;
2383 	bcn->cck_mask = 0x0f;
2384 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2385 	bcn->len = htole16(m0->m_pkthdr.len);
2386 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2387 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2388 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2389 
2390 	/* save and trim IEEE802.11 header */
2391 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2392 	m_adj(m0, sizeof (struct ieee80211_frame));
2393 
2394 	/* assume beacon frame is contiguous */
2395 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2396 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2397 	if (error != 0) {
2398 		device_printf(sc->sc_dev, "could not map beacon\n");
2399 		m_freem(m0);
2400 		return error;
2401 	}
2402 
2403 	data->m = m0;
2404 
2405 	/* first scatter/gather segment is used by the beacon command */
2406 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2407 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2408 		ring->cur * sizeof (struct wpi_tx_cmd));
2409 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2410 	desc->segs[1].addr = htole32(physaddr);
2411 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2412 
2413 	/* kick cmd ring */
2414 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2415 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2416 
2417 	return 0;
2418 }
2419 #endif
2420 
2421 static int
2422 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2423 {
2424 	struct ieee80211com *ic = vap->iv_ic;
2425 	struct ieee80211_node *ni = vap->iv_bss;
2426 	struct wpi_node_info node;
2427 	int error;
2428 
2429 
2430 	/* update adapter's configuration */
2431 	sc->config.associd = 0;
2432 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2433 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2434 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2435 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2436 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2437 		    WPI_CONFIG_24GHZ);
2438 	} else {
2439 		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2440 		    WPI_CONFIG_24GHZ);
2441 	}
2442 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2443 		sc->config.cck_mask  = 0;
2444 		sc->config.ofdm_mask = 0x15;
2445 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2446 		sc->config.cck_mask  = 0x03;
2447 		sc->config.ofdm_mask = 0;
2448 	} else {
2449 		/* XXX assume 802.11b/g */
2450 		sc->config.cck_mask  = 0x0f;
2451 		sc->config.ofdm_mask = 0x15;
2452 	}
2453 
2454 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2455 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2456 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2457 		sizeof (struct wpi_config), 1);
2458 	if (error != 0) {
2459 		device_printf(sc->sc_dev, "could not configure\n");
2460 		return error;
2461 	}
2462 
2463 	/* configuration has changed, set Tx power accordingly */
2464 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2465 		device_printf(sc->sc_dev, "could not set Tx power\n");
2466 		return error;
2467 	}
2468 
2469 	/* add default node */
2470 	memset(&node, 0, sizeof node);
2471 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2472 	node.id = WPI_ID_BSS;
2473 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2474 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2475 	node.action = htole32(WPI_ACTION_SET_RATE);
2476 	node.antenna = WPI_ANTENNA_BOTH;
2477 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2478 	if (error != 0)
2479 		device_printf(sc->sc_dev, "could not add BSS node\n");
2480 
2481 	return (error);
2482 }
2483 
2484 static int
2485 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2486 {
2487 	struct ieee80211com *ic = vap->iv_ic;
2488 	struct ieee80211_node *ni = vap->iv_bss;
2489 	int error;
2490 
2491 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2492 		/* link LED blinks while monitoring */
2493 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2494 		return 0;
2495 	}
2496 
2497 	wpi_enable_tsf(sc, ni);
2498 
2499 	/* update adapter's configuration */
2500 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2501 	/* short preamble/slot time are negotiated when associating */
2502 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2503 	    WPI_CONFIG_SHSLOT);
2504 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2505 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2506 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2507 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2508 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2509 
2510 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2511 
2512 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2513 		    sc->config.flags));
2514 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2515 		    wpi_config), 1);
2516 	if (error != 0) {
2517 		device_printf(sc->sc_dev, "could not update configuration\n");
2518 		return error;
2519 	}
2520 
2521 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2522 	if (error != 0) {
2523 		device_printf(sc->sc_dev, "could set txpower\n");
2524 		return error;
2525 	}
2526 
2527 	/* link LED always on while associated */
2528 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2529 
2530 	/* start automatic rate control timer */
2531 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2532 
2533 	return (error);
2534 }
2535 
2536 /*
2537  * Send a scan request to the firmware.  Since this command is huge, we map it
2538  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2539  * much of this code is similar to that in wpi_cmd but because we must manually
2540  * construct the probe & channels, we duplicate what's needed here. XXX In the
2541  * future, this function should be modified to use wpi_cmd to help cleanup the
2542  * code base.
2543  */
2544 static int
2545 wpi_scan(struct wpi_softc *sc)
2546 {
2547 	struct ifnet *ifp = sc->sc_ifp;
2548 	struct ieee80211com *ic = ifp->if_l2com;
2549 	struct ieee80211_scan_state *ss = ic->ic_scan;
2550 	struct wpi_tx_ring *ring = &sc->cmdq;
2551 	struct wpi_tx_desc *desc;
2552 	struct wpi_tx_data *data;
2553 	struct wpi_tx_cmd *cmd;
2554 	struct wpi_scan_hdr *hdr;
2555 	struct wpi_scan_chan *chan;
2556 	struct ieee80211_frame *wh;
2557 	struct ieee80211_rateset *rs;
2558 	struct ieee80211_channel *c;
2559 	enum ieee80211_phymode mode;
2560 	uint8_t *frm;
2561 	int nrates, pktlen, error, i, nssid;
2562 	bus_addr_t physaddr;
2563 
2564 	desc = &ring->desc[ring->cur];
2565 	data = &ring->data[ring->cur];
2566 
2567 	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2568 	if (data->m == NULL) {
2569 		device_printf(sc->sc_dev,
2570 		    "could not allocate mbuf for scan command\n");
2571 		return ENOMEM;
2572 	}
2573 
2574 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2575 	cmd->code = WPI_CMD_SCAN;
2576 	cmd->flags = 0;
2577 	cmd->qid = ring->qid;
2578 	cmd->idx = ring->cur;
2579 
2580 	hdr = (struct wpi_scan_hdr *)cmd->data;
2581 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2582 
2583 	/*
2584 	 * Move to the next channel if no packets are received within 5 msecs
2585 	 * after sending the probe request (this helps to reduce the duration
2586 	 * of active scans).
2587 	 */
2588 	hdr->quiet = htole16(5);
2589 	hdr->threshold = htole16(1);
2590 
2591 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2592 		/* send probe requests at 6Mbps */
2593 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2594 
2595 		/* Enable crc checking */
2596 		hdr->promotion = htole16(1);
2597 	} else {
2598 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2599 		/* send probe requests at 1Mbps */
2600 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2601 	}
2602 	hdr->tx.id = WPI_ID_BROADCAST;
2603 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2604 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2605 
2606 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2607 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2608 	for (i = 0; i < nssid; i++) {
2609 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2610 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2611 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2612 		    hdr->scan_essids[i].esslen);
2613 #ifdef WPI_DEBUG
2614 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2615 			printf("Scanning Essid: ");
2616 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2617 			    hdr->scan_essids[i].esslen);
2618 			printf("\n");
2619 		}
2620 #endif
2621 	}
2622 
2623 	/*
2624 	 * Build a probe request frame.  Most of the following code is a
2625 	 * copy & paste of what is done in net80211.
2626 	 */
2627 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2628 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2629 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2630 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2631 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2632 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2633 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2634 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2635 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2636 
2637 	frm = (uint8_t *)(wh + 1);
2638 
2639 	/* add essid IE, the hardware will fill this in for us */
2640 	*frm++ = IEEE80211_ELEMID_SSID;
2641 	*frm++ = 0;
2642 
2643 	mode = ieee80211_chan2mode(ic->ic_curchan);
2644 	rs = &ic->ic_sup_rates[mode];
2645 
2646 	/* add supported rates IE */
2647 	*frm++ = IEEE80211_ELEMID_RATES;
2648 	nrates = rs->rs_nrates;
2649 	if (nrates > IEEE80211_RATE_SIZE)
2650 		nrates = IEEE80211_RATE_SIZE;
2651 	*frm++ = nrates;
2652 	memcpy(frm, rs->rs_rates, nrates);
2653 	frm += nrates;
2654 
2655 	/* add supported xrates IE */
2656 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2657 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2658 		*frm++ = IEEE80211_ELEMID_XRATES;
2659 		*frm++ = nrates;
2660 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2661 		frm += nrates;
2662 	}
2663 
2664 	/* setup length of probe request */
2665 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2666 
2667 	/*
2668 	 * Construct information about the channel that we
2669 	 * want to scan. The firmware expects this to be directly
2670 	 * after the scan probe request
2671 	 */
2672 	c = ic->ic_curchan;
2673 	chan = (struct wpi_scan_chan *)frm;
2674 	chan->chan = ieee80211_chan2ieee(ic, c);
2675 	chan->flags = 0;
2676 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2677 		chan->flags |= WPI_CHAN_ACTIVE;
2678 		if (nssid != 0)
2679 			chan->flags |= WPI_CHAN_DIRECT;
2680 	}
2681 	chan->gain_dsp = 0x6e; /* Default level */
2682 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2683 		chan->active = htole16(10);
2684 		chan->passive = htole16(ss->ss_maxdwell);
2685 		chan->gain_radio = 0x3b;
2686 	} else {
2687 		chan->active = htole16(20);
2688 		chan->passive = htole16(ss->ss_maxdwell);
2689 		chan->gain_radio = 0x28;
2690 	}
2691 
2692 	DPRINTFN(WPI_DEBUG_SCANNING,
2693 	    ("Scanning %u Passive: %d\n",
2694 	     chan->chan,
2695 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2696 
2697 	hdr->nchan++;
2698 	chan++;
2699 
2700 	frm += sizeof (struct wpi_scan_chan);
2701 #if 0
2702 	// XXX All Channels....
2703 	for (c  = &ic->ic_channels[1];
2704 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2705 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2706 			continue;
2707 
2708 		chan->chan = ieee80211_chan2ieee(ic, c);
2709 		chan->flags = 0;
2710 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2711 		    chan->flags |= WPI_CHAN_ACTIVE;
2712 		    if (ic->ic_des_ssid[0].len != 0)
2713 			chan->flags |= WPI_CHAN_DIRECT;
2714 		}
2715 		chan->gain_dsp = 0x6e; /* Default level */
2716 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2717 			chan->active = htole16(10);
2718 			chan->passive = htole16(110);
2719 			chan->gain_radio = 0x3b;
2720 		} else {
2721 			chan->active = htole16(20);
2722 			chan->passive = htole16(120);
2723 			chan->gain_radio = 0x28;
2724 		}
2725 
2726 		DPRINTFN(WPI_DEBUG_SCANNING,
2727 			 ("Scanning %u Passive: %d\n",
2728 			  chan->chan,
2729 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2730 
2731 		hdr->nchan++;
2732 		chan++;
2733 
2734 		frm += sizeof (struct wpi_scan_chan);
2735 	}
2736 #endif
2737 
2738 	hdr->len = htole16(frm - (uint8_t *)hdr);
2739 	pktlen = frm - (uint8_t *)cmd;
2740 
2741 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2742 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2743 	if (error != 0) {
2744 		device_printf(sc->sc_dev, "could not map scan command\n");
2745 		m_freem(data->m);
2746 		data->m = NULL;
2747 		return error;
2748 	}
2749 
2750 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2751 	desc->segs[0].addr = htole32(physaddr);
2752 	desc->segs[0].len  = htole32(pktlen);
2753 
2754 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2755 	    BUS_DMASYNC_PREWRITE);
2756 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2757 
2758 	/* kick cmd ring */
2759 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2760 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2761 
2762 	sc->sc_scan_timer = 5;
2763 	return 0;	/* will be notified async. of failure/success */
2764 }
2765 
2766 /**
2767  * Configure the card to listen to a particular channel, this transisions the
2768  * card in to being able to receive frames from remote devices.
2769  */
2770 static int
2771 wpi_config(struct wpi_softc *sc)
2772 {
2773 	struct ifnet *ifp = sc->sc_ifp;
2774 	struct ieee80211com *ic = ifp->if_l2com;
2775 	struct wpi_power power;
2776 	struct wpi_bluetooth bluetooth;
2777 	struct wpi_node_info node;
2778 	int error;
2779 
2780 	/* set power mode */
2781 	memset(&power, 0, sizeof power);
2782 	power.flags = htole32(WPI_POWER_CAM|0x8);
2783 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2784 	if (error != 0) {
2785 		device_printf(sc->sc_dev, "could not set power mode\n");
2786 		return error;
2787 	}
2788 
2789 	/* configure bluetooth coexistence */
2790 	memset(&bluetooth, 0, sizeof bluetooth);
2791 	bluetooth.flags = 3;
2792 	bluetooth.lead = 0xaa;
2793 	bluetooth.kill = 1;
2794 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2795 	    0);
2796 	if (error != 0) {
2797 		device_printf(sc->sc_dev,
2798 		    "could not configure bluetooth coexistence\n");
2799 		return error;
2800 	}
2801 
2802 	/* configure adapter */
2803 	memset(&sc->config, 0, sizeof (struct wpi_config));
2804 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2805 	/*set default channel*/
2806 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2807 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2808 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2809 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2810 		    WPI_CONFIG_24GHZ);
2811 	}
2812 	sc->config.filter = 0;
2813 	switch (ic->ic_opmode) {
2814 	case IEEE80211_M_STA:
2815 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2816 		sc->config.mode = WPI_MODE_STA;
2817 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2818 		break;
2819 	case IEEE80211_M_IBSS:
2820 	case IEEE80211_M_AHDEMO:
2821 		sc->config.mode = WPI_MODE_IBSS;
2822 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2823 					     WPI_FILTER_MULTICAST);
2824 		break;
2825 	case IEEE80211_M_HOSTAP:
2826 		sc->config.mode = WPI_MODE_HOSTAP;
2827 		break;
2828 	case IEEE80211_M_MONITOR:
2829 		sc->config.mode = WPI_MODE_MONITOR;
2830 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2831 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2832 		break;
2833 	default:
2834 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2835 		return EINVAL;
2836 	}
2837 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2838 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2839 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2840 		sizeof (struct wpi_config), 0);
2841 	if (error != 0) {
2842 		device_printf(sc->sc_dev, "configure command failed\n");
2843 		return error;
2844 	}
2845 
2846 	/* configuration has changed, set Tx power accordingly */
2847 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2848 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2849 	    return error;
2850 	}
2851 
2852 	/* add broadcast node */
2853 	memset(&node, 0, sizeof node);
2854 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2855 	node.id = WPI_ID_BROADCAST;
2856 	node.rate = wpi_plcp_signal(2);
2857 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2858 	if (error != 0) {
2859 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2860 		return error;
2861 	}
2862 
2863 	/* Setup rate scalling */
2864 	error = wpi_mrr_setup(sc);
2865 	if (error != 0) {
2866 		device_printf(sc->sc_dev, "could not setup MRR\n");
2867 		return error;
2868 	}
2869 
2870 	return 0;
2871 }
2872 
2873 static void
2874 wpi_stop_master(struct wpi_softc *sc)
2875 {
2876 	uint32_t tmp;
2877 	int ntries;
2878 
2879 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2880 
2881 	tmp = WPI_READ(sc, WPI_RESET);
2882 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2883 
2884 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2885 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2886 		return;	/* already asleep */
2887 
2888 	for (ntries = 0; ntries < 100; ntries++) {
2889 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2890 			break;
2891 		DELAY(10);
2892 	}
2893 	if (ntries == 100) {
2894 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2895 	}
2896 }
2897 
2898 static int
2899 wpi_power_up(struct wpi_softc *sc)
2900 {
2901 	uint32_t tmp;
2902 	int ntries;
2903 
2904 	wpi_mem_lock(sc);
2905 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2906 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2907 	wpi_mem_unlock(sc);
2908 
2909 	for (ntries = 0; ntries < 5000; ntries++) {
2910 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2911 			break;
2912 		DELAY(10);
2913 	}
2914 	if (ntries == 5000) {
2915 		device_printf(sc->sc_dev,
2916 		    "timeout waiting for NIC to power up\n");
2917 		return ETIMEDOUT;
2918 	}
2919 	return 0;
2920 }
2921 
2922 static int
2923 wpi_reset(struct wpi_softc *sc)
2924 {
2925 	uint32_t tmp;
2926 	int ntries;
2927 
2928 	DPRINTFN(WPI_DEBUG_HW,
2929 	    ("Resetting the card - clearing any uploaded firmware\n"));
2930 
2931 	/* clear any pending interrupts */
2932 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2933 
2934 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2935 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2936 
2937 	tmp = WPI_READ(sc, WPI_CHICKEN);
2938 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2939 
2940 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2941 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2942 
2943 	/* wait for clock stabilization */
2944 	for (ntries = 0; ntries < 25000; ntries++) {
2945 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2946 			break;
2947 		DELAY(10);
2948 	}
2949 	if (ntries == 25000) {
2950 		device_printf(sc->sc_dev,
2951 		    "timeout waiting for clock stabilization\n");
2952 		return ETIMEDOUT;
2953 	}
2954 
2955 	/* initialize EEPROM */
2956 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2957 
2958 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2959 		device_printf(sc->sc_dev, "EEPROM not found\n");
2960 		return EIO;
2961 	}
2962 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2963 
2964 	return 0;
2965 }
2966 
2967 static void
2968 wpi_hw_config(struct wpi_softc *sc)
2969 {
2970 	uint32_t rev, hw;
2971 
2972 	/* voodoo from the Linux "driver".. */
2973 	hw = WPI_READ(sc, WPI_HWCONFIG);
2974 
2975 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2976 	if ((rev & 0xc0) == 0x40)
2977 		hw |= WPI_HW_ALM_MB;
2978 	else if (!(rev & 0x80))
2979 		hw |= WPI_HW_ALM_MM;
2980 
2981 	if (sc->cap == 0x80)
2982 		hw |= WPI_HW_SKU_MRC;
2983 
2984 	hw &= ~WPI_HW_REV_D;
2985 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2986 		hw |= WPI_HW_REV_D;
2987 
2988 	if (sc->type > 1)
2989 		hw |= WPI_HW_TYPE_B;
2990 
2991 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2992 }
2993 
2994 static void
2995 wpi_rfkill_resume(struct wpi_softc *sc)
2996 {
2997 	struct ifnet *ifp = sc->sc_ifp;
2998 	struct ieee80211com *ic = ifp->if_l2com;
2999 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3000 	int ntries;
3001 
3002 	/* enable firmware again */
3003 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3004 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3005 
3006 	/* wait for thermal sensors to calibrate */
3007 	for (ntries = 0; ntries < 1000; ntries++) {
3008 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3009 			break;
3010 		DELAY(10);
3011 	}
3012 
3013 	if (ntries == 1000) {
3014 		device_printf(sc->sc_dev,
3015 		    "timeout waiting for thermal calibration\n");
3016 		return;
3017 	}
3018 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3019 
3020 	if (wpi_config(sc) != 0) {
3021 		device_printf(sc->sc_dev, "device config failed\n");
3022 		return;
3023 	}
3024 
3025 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3026 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3027 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3028 
3029 	if (vap != NULL) {
3030 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3031 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3032 				ieee80211_beacon_miss(ic);
3033 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3034 			} else
3035 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3036 		} else {
3037 			ieee80211_scan_next(vap);
3038 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3039 		}
3040 	}
3041 
3042 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3043 }
3044 
3045 static void
3046 wpi_init_locked(struct wpi_softc *sc, int force)
3047 {
3048 	struct ifnet *ifp = sc->sc_ifp;
3049 	uint32_t tmp;
3050 	int ntries, qid;
3051 
3052 	wpi_stop_locked(sc);
3053 	(void)wpi_reset(sc);
3054 
3055 	wpi_mem_lock(sc);
3056 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3057 	DELAY(20);
3058 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3059 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3060 	wpi_mem_unlock(sc);
3061 
3062 	(void)wpi_power_up(sc);
3063 	wpi_hw_config(sc);
3064 
3065 	/* init Rx ring */
3066 	wpi_mem_lock(sc);
3067 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3068 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3069 	    offsetof(struct wpi_shared, next));
3070 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3071 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3072 	wpi_mem_unlock(sc);
3073 
3074 	/* init Tx rings */
3075 	wpi_mem_lock(sc);
3076 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3077 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3078 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3079 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3080 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3081 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3082 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3083 
3084 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3085 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3086 
3087 	for (qid = 0; qid < 6; qid++) {
3088 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3089 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3090 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3091 	}
3092 	wpi_mem_unlock(sc);
3093 
3094 	/* clear "radio off" and "disable command" bits (reversed logic) */
3095 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3096 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3097 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3098 
3099 	/* clear any pending interrupts */
3100 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3101 
3102 	/* enable interrupts */
3103 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3104 
3105 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3106 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3107 
3108 	if ((wpi_load_firmware(sc)) != 0) {
3109 	    device_printf(sc->sc_dev,
3110 		"A problem occurred loading the firmware to the driver\n");
3111 	    return;
3112 	}
3113 
3114 	/* At this point the firmware is up and running. If the hardware
3115 	 * RF switch is turned off thermal calibration will fail, though
3116 	 * the card is still happy to continue to accept commands, catch
3117 	 * this case and schedule a task to watch for it to be turned on.
3118 	 */
3119 	wpi_mem_lock(sc);
3120 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3121 	wpi_mem_unlock(sc);
3122 
3123 	if (!(tmp & 0x1)) {
3124 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3125 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3126 		goto out;
3127 	}
3128 
3129 	/* wait for thermal sensors to calibrate */
3130 	for (ntries = 0; ntries < 1000; ntries++) {
3131 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3132 			break;
3133 		DELAY(10);
3134 	}
3135 
3136 	if (ntries == 1000) {
3137 		device_printf(sc->sc_dev,
3138 		    "timeout waiting for thermal sensors calibration\n");
3139 		return;
3140 	}
3141 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3142 
3143 	if (wpi_config(sc) != 0) {
3144 		device_printf(sc->sc_dev, "device config failed\n");
3145 		return;
3146 	}
3147 
3148 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3149 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3150 out:
3151 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3152 }
3153 
3154 static void
3155 wpi_init(void *arg)
3156 {
3157 	struct wpi_softc *sc = arg;
3158 	struct ifnet *ifp = sc->sc_ifp;
3159 	struct ieee80211com *ic = ifp->if_l2com;
3160 
3161 	WPI_LOCK(sc);
3162 	wpi_init_locked(sc, 0);
3163 	WPI_UNLOCK(sc);
3164 
3165 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3166 		ieee80211_start_all(ic);		/* start all vaps */
3167 }
3168 
3169 static void
3170 wpi_stop_locked(struct wpi_softc *sc)
3171 {
3172 	struct ifnet *ifp = sc->sc_ifp;
3173 	uint32_t tmp;
3174 	int ac;
3175 
3176 	sc->sc_tx_timer = 0;
3177 	sc->sc_scan_timer = 0;
3178 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3179 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3180 	callout_stop(&sc->watchdog_to);
3181 	callout_stop(&sc->calib_to);
3182 
3183 
3184 	/* disable interrupts */
3185 	WPI_WRITE(sc, WPI_MASK, 0);
3186 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3187 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3188 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3189 
3190 	wpi_mem_lock(sc);
3191 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3192 	wpi_mem_unlock(sc);
3193 
3194 	/* reset all Tx rings */
3195 	for (ac = 0; ac < 4; ac++)
3196 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3197 	wpi_reset_tx_ring(sc, &sc->cmdq);
3198 
3199 	/* reset Rx ring */
3200 	wpi_reset_rx_ring(sc, &sc->rxq);
3201 
3202 	wpi_mem_lock(sc);
3203 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3204 	wpi_mem_unlock(sc);
3205 
3206 	DELAY(5);
3207 
3208 	wpi_stop_master(sc);
3209 
3210 	tmp = WPI_READ(sc, WPI_RESET);
3211 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3212 	sc->flags &= ~WPI_FLAG_BUSY;
3213 }
3214 
3215 static void
3216 wpi_stop(struct wpi_softc *sc)
3217 {
3218 	WPI_LOCK(sc);
3219 	wpi_stop_locked(sc);
3220 	WPI_UNLOCK(sc);
3221 }
3222 
3223 static void
3224 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3225 {
3226 
3227 	/* XXX move */
3228 	ieee80211_ratectl_node_init(ni);
3229 }
3230 
3231 static void
3232 wpi_calib_timeout(void *arg)
3233 {
3234 	struct wpi_softc *sc = arg;
3235 	struct ifnet *ifp = sc->sc_ifp;
3236 	struct ieee80211com *ic = ifp->if_l2com;
3237 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3238 	int temp;
3239 
3240 	if (vap->iv_state != IEEE80211_S_RUN)
3241 		return;
3242 
3243 	/* update sensor data */
3244 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3245 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3246 
3247 	wpi_power_calibration(sc, temp);
3248 
3249 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3250 }
3251 
3252 /*
3253  * This function is called periodically (every 60 seconds) to adjust output
3254  * power to temperature changes.
3255  */
3256 static void
3257 wpi_power_calibration(struct wpi_softc *sc, int temp)
3258 {
3259 	struct ifnet *ifp = sc->sc_ifp;
3260 	struct ieee80211com *ic = ifp->if_l2com;
3261 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3262 
3263 	/* sanity-check read value */
3264 	if (temp < -260 || temp > 25) {
3265 		/* this can't be correct, ignore */
3266 		DPRINTFN(WPI_DEBUG_TEMP,
3267 		    ("out-of-range temperature reported: %d\n", temp));
3268 		return;
3269 	}
3270 
3271 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3272 
3273 	/* adjust Tx power if need be */
3274 	if (abs(temp - sc->temp) <= 6)
3275 		return;
3276 
3277 	sc->temp = temp;
3278 
3279 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3280 		/* just warn, too bad for the automatic calibration... */
3281 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3282 	}
3283 }
3284 
3285 /**
3286  * Read the eeprom to find out what channels are valid for the given
3287  * band and update net80211 with what we find.
3288  */
3289 static void
3290 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3291 {
3292 	struct ifnet *ifp = sc->sc_ifp;
3293 	struct ieee80211com *ic = ifp->if_l2com;
3294 	const struct wpi_chan_band *band = &wpi_bands[n];
3295 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3296 	struct ieee80211_channel *c;
3297 	int chan, i, passive;
3298 
3299 	wpi_read_prom_data(sc, band->addr, channels,
3300 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3301 
3302 	for (i = 0; i < band->nchan; i++) {
3303 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3304 			DPRINTFN(WPI_DEBUG_HW,
3305 			    ("Channel Not Valid: %d, band %d\n",
3306 			     band->chan[i],n));
3307 			continue;
3308 		}
3309 
3310 		passive = 0;
3311 		chan = band->chan[i];
3312 		c = &ic->ic_channels[ic->ic_nchans++];
3313 
3314 		/* is active scan allowed on this channel? */
3315 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3316 			passive = IEEE80211_CHAN_PASSIVE;
3317 		}
3318 
3319 		if (n == 0) {	/* 2GHz band */
3320 			c->ic_ieee = chan;
3321 			c->ic_freq = ieee80211_ieee2mhz(chan,
3322 			    IEEE80211_CHAN_2GHZ);
3323 			c->ic_flags = IEEE80211_CHAN_B | passive;
3324 
3325 			c = &ic->ic_channels[ic->ic_nchans++];
3326 			c->ic_ieee = chan;
3327 			c->ic_freq = ieee80211_ieee2mhz(chan,
3328 			    IEEE80211_CHAN_2GHZ);
3329 			c->ic_flags = IEEE80211_CHAN_G | passive;
3330 
3331 		} else {	/* 5GHz band */
3332 			/*
3333 			 * Some 3945ABG adapters support channels 7, 8, 11
3334 			 * and 12 in the 2GHz *and* 5GHz bands.
3335 			 * Because of limitations in our net80211(9) stack,
3336 			 * we can't support these channels in 5GHz band.
3337 			 * XXX not true; just need to map to proper frequency
3338 			 */
3339 			if (chan <= 14)
3340 				continue;
3341 
3342 			c->ic_ieee = chan;
3343 			c->ic_freq = ieee80211_ieee2mhz(chan,
3344 			    IEEE80211_CHAN_5GHZ);
3345 			c->ic_flags = IEEE80211_CHAN_A | passive;
3346 		}
3347 
3348 		/* save maximum allowed power for this channel */
3349 		sc->maxpwr[chan] = channels[i].maxpwr;
3350 
3351 #if 0
3352 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3353 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3354 		//ic->ic_channels[chan].ic_minpower...
3355 		//ic->ic_channels[chan].ic_maxregtxpower...
3356 #endif
3357 
3358 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3359 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3360 		    channels[i].flags, sc->maxpwr[chan],
3361 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3362 		    ic->ic_nchans));
3363 	}
3364 }
3365 
3366 static void
3367 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3368 {
3369 	struct wpi_power_group *group = &sc->groups[n];
3370 	struct wpi_eeprom_group rgroup;
3371 	int i;
3372 
3373 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3374 	    sizeof rgroup);
3375 
3376 	/* save power group information */
3377 	group->chan   = rgroup.chan;
3378 	group->maxpwr = rgroup.maxpwr;
3379 	/* temperature at which the samples were taken */
3380 	group->temp   = (int16_t)le16toh(rgroup.temp);
3381 
3382 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3383 		    group->chan, group->maxpwr, group->temp));
3384 
3385 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3386 		group->samples[i].index = rgroup.samples[i].index;
3387 		group->samples[i].power = rgroup.samples[i].power;
3388 
3389 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3390 			    group->samples[i].index, group->samples[i].power));
3391 	}
3392 }
3393 
3394 /*
3395  * Update Tx power to match what is defined for channel `c'.
3396  */
3397 static int
3398 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3399 {
3400 	struct ifnet *ifp = sc->sc_ifp;
3401 	struct ieee80211com *ic = ifp->if_l2com;
3402 	struct wpi_power_group *group;
3403 	struct wpi_cmd_txpower txpower;
3404 	u_int chan;
3405 	int i;
3406 
3407 	/* get channel number */
3408 	chan = ieee80211_chan2ieee(ic, c);
3409 
3410 	/* find the power group to which this channel belongs */
3411 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3412 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3413 			if (chan <= group->chan)
3414 				break;
3415 	} else
3416 		group = &sc->groups[0];
3417 
3418 	memset(&txpower, 0, sizeof txpower);
3419 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3420 	txpower.channel = htole16(chan);
3421 
3422 	/* set Tx power for all OFDM and CCK rates */
3423 	for (i = 0; i <= 11 ; i++) {
3424 		/* retrieve Tx power for this channel/rate combination */
3425 		int idx = wpi_get_power_index(sc, group, c,
3426 		    wpi_ridx_to_rate[i]);
3427 
3428 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3429 
3430 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3431 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3432 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3433 		} else {
3434 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3435 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3436 		}
3437 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3438 			    chan, wpi_ridx_to_rate[i], idx));
3439 	}
3440 
3441 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3442 }
3443 
3444 /*
3445  * Determine Tx power index for a given channel/rate combination.
3446  * This takes into account the regulatory information from EEPROM and the
3447  * current temperature.
3448  */
3449 static int
3450 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3451     struct ieee80211_channel *c, int rate)
3452 {
3453 /* fixed-point arithmetic division using a n-bit fractional part */
3454 #define fdivround(a, b, n)      \
3455 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3456 
3457 /* linear interpolation */
3458 #define interpolate(x, x1, y1, x2, y2, n)       \
3459 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3460 
3461 	struct ifnet *ifp = sc->sc_ifp;
3462 	struct ieee80211com *ic = ifp->if_l2com;
3463 	struct wpi_power_sample *sample;
3464 	int pwr, idx;
3465 	u_int chan;
3466 
3467 	/* get channel number */
3468 	chan = ieee80211_chan2ieee(ic, c);
3469 
3470 	/* default power is group's maximum power - 3dB */
3471 	pwr = group->maxpwr / 2;
3472 
3473 	/* decrease power for highest OFDM rates to reduce distortion */
3474 	switch (rate) {
3475 		case 72:	/* 36Mb/s */
3476 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3477 			break;
3478 		case 96:	/* 48Mb/s */
3479 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3480 			break;
3481 		case 108:	/* 54Mb/s */
3482 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3483 			break;
3484 	}
3485 
3486 	/* never exceed channel's maximum allowed Tx power */
3487 	pwr = min(pwr, sc->maxpwr[chan]);
3488 
3489 	/* retrieve power index into gain tables from samples */
3490 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3491 		if (pwr > sample[1].power)
3492 			break;
3493 	/* fixed-point linear interpolation using a 19-bit fractional part */
3494 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3495 	    sample[1].power, sample[1].index, 19);
3496 
3497 	/*
3498 	 *  Adjust power index based on current temperature
3499 	 *	- if colder than factory-calibrated: decreate output power
3500 	 *	- if warmer than factory-calibrated: increase output power
3501 	 */
3502 	idx -= (sc->temp - group->temp) * 11 / 100;
3503 
3504 	/* decrease power for CCK rates (-5dB) */
3505 	if (!WPI_RATE_IS_OFDM(rate))
3506 		idx += 10;
3507 
3508 	/* keep power index in a valid range */
3509 	if (idx < 0)
3510 		return 0;
3511 	if (idx > WPI_MAX_PWR_INDEX)
3512 		return WPI_MAX_PWR_INDEX;
3513 	return idx;
3514 
3515 #undef interpolate
3516 #undef fdivround
3517 }
3518 
3519 /**
3520  * Called by net80211 framework to indicate that a scan
3521  * is starting. This function doesn't actually do the scan,
3522  * wpi_scan_curchan starts things off. This function is more
3523  * of an early warning from the framework we should get ready
3524  * for the scan.
3525  */
3526 static void
3527 wpi_scan_start(struct ieee80211com *ic)
3528 {
3529 	struct ifnet *ifp = ic->ic_ifp;
3530 	struct wpi_softc *sc = ifp->if_softc;
3531 
3532 	WPI_LOCK(sc);
3533 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3534 	WPI_UNLOCK(sc);
3535 }
3536 
3537 /**
3538  * Called by the net80211 framework, indicates that the
3539  * scan has ended. If there is a scan in progress on the card
3540  * then it should be aborted.
3541  */
3542 static void
3543 wpi_scan_end(struct ieee80211com *ic)
3544 {
3545 	/* XXX ignore */
3546 }
3547 
3548 /**
3549  * Called by the net80211 framework to indicate to the driver
3550  * that the channel should be changed
3551  */
3552 static void
3553 wpi_set_channel(struct ieee80211com *ic)
3554 {
3555 	struct ifnet *ifp = ic->ic_ifp;
3556 	struct wpi_softc *sc = ifp->if_softc;
3557 	int error;
3558 
3559 	/*
3560 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3561 	 * are already taken care of by their respective firmware commands.
3562 	 */
3563 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3564 		WPI_LOCK(sc);
3565 		error = wpi_config(sc);
3566 		WPI_UNLOCK(sc);
3567 		if (error != 0)
3568 			device_printf(sc->sc_dev,
3569 			    "error %d settting channel\n", error);
3570 	}
3571 }
3572 
3573 /**
3574  * Called by net80211 to indicate that we need to scan the current
3575  * channel. The channel is previously be set via the wpi_set_channel
3576  * callback.
3577  */
3578 static void
3579 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3580 {
3581 	struct ieee80211vap *vap = ss->ss_vap;
3582 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3583 	struct wpi_softc *sc = ifp->if_softc;
3584 
3585 	WPI_LOCK(sc);
3586 	if (wpi_scan(sc))
3587 		ieee80211_cancel_scan(vap);
3588 	WPI_UNLOCK(sc);
3589 }
3590 
3591 /**
3592  * Called by the net80211 framework to indicate
3593  * the minimum dwell time has been met, terminate the scan.
3594  * We don't actually terminate the scan as the firmware will notify
3595  * us when it's finished and we have no way to interrupt it.
3596  */
3597 static void
3598 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3599 {
3600 	/* NB: don't try to abort scan; wait for firmware to finish */
3601 }
3602 
3603 static void
3604 wpi_hwreset(void *arg, int pending)
3605 {
3606 	struct wpi_softc *sc = arg;
3607 
3608 	WPI_LOCK(sc);
3609 	wpi_init_locked(sc, 0);
3610 	WPI_UNLOCK(sc);
3611 }
3612 
3613 static void
3614 wpi_rfreset(void *arg, int pending)
3615 {
3616 	struct wpi_softc *sc = arg;
3617 
3618 	WPI_LOCK(sc);
3619 	wpi_rfkill_resume(sc);
3620 	WPI_UNLOCK(sc);
3621 }
3622 
3623 /*
3624  * Allocate DMA-safe memory for firmware transfer.
3625  */
3626 static int
3627 wpi_alloc_fwmem(struct wpi_softc *sc)
3628 {
3629 	/* allocate enough contiguous space to store text and data */
3630 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3631 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3632 	    BUS_DMA_NOWAIT);
3633 }
3634 
3635 static void
3636 wpi_free_fwmem(struct wpi_softc *sc)
3637 {
3638 	wpi_dma_contig_free(&sc->fw_dma);
3639 }
3640 
3641 /**
3642  * Called every second, wpi_watchdog used by the watch dog timer
3643  * to check that the card is still alive
3644  */
3645 static void
3646 wpi_watchdog(void *arg)
3647 {
3648 	struct wpi_softc *sc = arg;
3649 	struct ifnet *ifp = sc->sc_ifp;
3650 	struct ieee80211com *ic = ifp->if_l2com;
3651 	uint32_t tmp;
3652 
3653 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3654 
3655 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3656 		/* No need to lock firmware memory */
3657 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3658 
3659 		if ((tmp & 0x1) == 0) {
3660 			/* Radio kill switch is still off */
3661 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3662 			return;
3663 		}
3664 
3665 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3666 		ieee80211_runtask(ic, &sc->sc_radiotask);
3667 		return;
3668 	}
3669 
3670 	if (sc->sc_tx_timer > 0) {
3671 		if (--sc->sc_tx_timer == 0) {
3672 			device_printf(sc->sc_dev,"device timeout\n");
3673 			ifp->if_oerrors++;
3674 			ieee80211_runtask(ic, &sc->sc_restarttask);
3675 		}
3676 	}
3677 	if (sc->sc_scan_timer > 0) {
3678 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3679 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3680 			device_printf(sc->sc_dev,"scan timeout\n");
3681 			ieee80211_cancel_scan(vap);
3682 			ieee80211_runtask(ic, &sc->sc_restarttask);
3683 		}
3684 	}
3685 
3686 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3687 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3688 }
3689 
3690 #ifdef WPI_DEBUG
3691 static const char *wpi_cmd_str(int cmd)
3692 {
3693 	switch (cmd) {
3694 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3695 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3696 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3697 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3698 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3699 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3700 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3701 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3702 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3703 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3704 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3705 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3706 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3707 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3708 
3709 	default:
3710 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3711 		return "UNKNOWN CMD";	/* Make the compiler happy */
3712 	}
3713 }
3714 #endif
3715 
3716 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3717 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3718 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3719