xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 0761549550dad58bfcc0f227ba6ffa78b4d8c017)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*
23  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24  *
25  * The 3945ABG network adapter doesn't use traditional hardware as
26  * many other adaptors do. Instead at run time the eeprom is set into a known
27  * state and told to load boot firmware. The boot firmware loads an init and a
28  * main  binary firmware image into SRAM on the card via DMA.
29  * Once the firmware is loaded, the driver/hw then
30  * communicate by way of circular dma rings via the SRAM to the firmware.
31  *
32  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33  * The 4 tx data rings allow for prioritization QoS.
34  *
35  * The rx data ring consists of 32 dma buffers. Two registers are used to
36  * indicate where in the ring the driver and the firmware are up to. The
37  * driver sets the initial read index (reg1) and the initial write index (reg2),
38  * the firmware updates the read index (reg1) on rx of a packet and fires an
39  * interrupt. The driver then processes the buffers starting at reg1 indicating
40  * to the firmware which buffers have been accessed by updating reg2. At the
41  * same time allocating new memory for the processed buffer.
42  *
43  * A similar thing happens with the tx rings. The difference is the firmware
44  * stop processing buffers once the queue is full and until confirmation
45  * of a successful transmition (tx_done) has occurred.
46  *
47  * The command ring operates in the same manner as the tx queues.
48  *
49  * All communication direct to the card (ie eeprom) is classed as Stage1
50  * communication
51  *
52  * All communication via the firmware to the card is classed as State2.
53  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54  * firmware. The bootstrap firmware and runtime firmware are loaded
55  * from host memory via dma to the card then told to execute. From this point
56  * on the majority of communications between the driver and the card goes
57  * via the firmware.
58  */
59 
60 #include "opt_wlan.h"
61 #include "opt_wpi.h"
62 
63 #include <sys/param.h>
64 #include <sys/sysctl.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/systm.h>
70 #include <sys/malloc.h>
71 #include <sys/queue.h>
72 #include <sys/taskqueue.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/endian.h>
76 #include <sys/linker.h>
77 #include <sys/firmware.h>
78 
79 #include <machine/bus.h>
80 #include <machine/resource.h>
81 #include <sys/rman.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/if_ether.h>
99 #include <netinet/ip.h>
100 
101 #include <net80211/ieee80211_var.h>
102 #include <net80211/ieee80211_radiotap.h>
103 #include <net80211/ieee80211_regdomain.h>
104 #include <net80211/ieee80211_ratectl.h>
105 
106 #include <dev/wpi/if_wpireg.h>
107 #include <dev/wpi/if_wpivar.h>
108 #include <dev/wpi/if_wpi_debug.h>
109 
110 struct wpi_ident {
111 	uint16_t	vendor;
112 	uint16_t	device;
113 	uint16_t	subdevice;
114 	const char	*name;
115 };
116 
117 static const struct wpi_ident wpi_ident_table[] = {
118 	/* The below entries support ABG regardless of the subid */
119 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	/* The below entries only support BG */
122 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0, 0, 0, NULL }
127 };
128 
129 static int	wpi_probe(device_t);
130 static int	wpi_attach(device_t);
131 static void	wpi_radiotap_attach(struct wpi_softc *);
132 static void	wpi_sysctlattach(struct wpi_softc *);
133 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
134 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
135 		    const uint8_t [IEEE80211_ADDR_LEN],
136 		    const uint8_t [IEEE80211_ADDR_LEN]);
137 static void	wpi_vap_delete(struct ieee80211vap *);
138 static int	wpi_detach(device_t);
139 static int	wpi_shutdown(device_t);
140 static int	wpi_suspend(device_t);
141 static int	wpi_resume(device_t);
142 static int	wpi_nic_lock(struct wpi_softc *);
143 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
144 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
145 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
146 		    void **, bus_size_t, bus_size_t);
147 static void	wpi_dma_contig_free(struct wpi_dma_info *);
148 static int	wpi_alloc_shared(struct wpi_softc *);
149 static void	wpi_free_shared(struct wpi_softc *);
150 static int	wpi_alloc_fwmem(struct wpi_softc *);
151 static void	wpi_free_fwmem(struct wpi_softc *);
152 static int	wpi_alloc_rx_ring(struct wpi_softc *);
153 static void	wpi_update_rx_ring(struct wpi_softc *);
154 static void	wpi_reset_rx_ring(struct wpi_softc *);
155 static void	wpi_free_rx_ring(struct wpi_softc *);
156 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
157 		    int);
158 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
159 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161 static int	wpi_read_eeprom(struct wpi_softc *,
162 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
163 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
164 static void	wpi_read_eeprom_band(struct wpi_softc *, int);
165 static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
166 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
167 		    struct ieee80211_channel *);
168 static int	wpi_setregdomain(struct ieee80211com *,
169 		    struct ieee80211_regdomain *, int,
170 		    struct ieee80211_channel[]);
171 static int	wpi_read_eeprom_group(struct wpi_softc *, int);
172 static void	wpi_node_free(struct ieee80211_node *);
173 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
174 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
175 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
176 static void	wpi_calib_timeout(void *);
177 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
178 		    struct wpi_rx_data *);
179 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
180 		    struct wpi_rx_data *);
181 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
182 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
183 static void	wpi_notif_intr(struct wpi_softc *);
184 static void	wpi_wakeup_intr(struct wpi_softc *);
185 static void	wpi_fatal_intr(struct wpi_softc *);
186 static void	wpi_intr(void *);
187 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
188 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
189 		    struct ieee80211_node *);
190 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
191 		    struct ieee80211_node *,
192 		    const struct ieee80211_bpf_params *);
193 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
194 		    const struct ieee80211_bpf_params *);
195 static void	wpi_start(struct ifnet *);
196 static void	wpi_start_locked(struct ifnet *);
197 static void	wpi_watchdog_rfkill(void *);
198 static void	wpi_watchdog(void *);
199 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
200 static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
201 static int	wpi_mrr_setup(struct wpi_softc *);
202 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
203 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
204 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
205 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
206 static int	wpi_updateedca(struct ieee80211com *);
207 static void	wpi_set_promisc(struct wpi_softc *);
208 static void	wpi_update_promisc(struct ifnet *);
209 static void	wpi_update_mcast(struct ifnet *);
210 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
211 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
212 static void	wpi_power_calibration(struct wpi_softc *);
213 static int	wpi_set_txpower(struct wpi_softc *, int);
214 static int	wpi_get_power_index(struct wpi_softc *,
215 		    struct wpi_power_group *, struct ieee80211_channel *, int);
216 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
217 static int	wpi_send_btcoex(struct wpi_softc *);
218 static int	wpi_send_rxon(struct wpi_softc *, int, int);
219 static int	wpi_config(struct wpi_softc *);
220 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
221 		    struct ieee80211_channel *, uint8_t);
222 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
223 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
224 		    struct ieee80211_channel *);
225 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
226 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
227 static void	wpi_update_beacon(struct ieee80211vap *, int);
228 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
229 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
230 static int	wpi_key_alloc(struct ieee80211vap *, struct ieee80211_key *,
231 		    ieee80211_keyix *, ieee80211_keyix *);
232 static int	wpi_key_set(struct ieee80211vap *,
233 		    const struct ieee80211_key *,
234 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
235 static int	wpi_key_delete(struct ieee80211vap *,
236 		    const struct ieee80211_key *);
237 static int	wpi_post_alive(struct wpi_softc *);
238 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
239 static int	wpi_load_firmware(struct wpi_softc *);
240 static int	wpi_read_firmware(struct wpi_softc *);
241 static void	wpi_unload_firmware(struct wpi_softc *);
242 static int	wpi_clock_wait(struct wpi_softc *);
243 static int	wpi_apm_init(struct wpi_softc *);
244 static void	wpi_apm_stop_master(struct wpi_softc *);
245 static void	wpi_apm_stop(struct wpi_softc *);
246 static void	wpi_nic_config(struct wpi_softc *);
247 static int	wpi_hw_init(struct wpi_softc *);
248 static void	wpi_hw_stop(struct wpi_softc *);
249 static void	wpi_radio_on(void *, int);
250 static void	wpi_radio_off(void *, int);
251 static void	wpi_init_locked(struct wpi_softc *);
252 static void	wpi_init(void *);
253 static void	wpi_stop_locked(struct wpi_softc *);
254 static void	wpi_stop(struct wpi_softc *);
255 static void	wpi_scan_start(struct ieee80211com *);
256 static void	wpi_scan_end(struct ieee80211com *);
257 static void	wpi_set_channel(struct ieee80211com *);
258 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
259 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
260 static void	wpi_hw_reset(void *, int);
261 
262 static device_method_t wpi_methods[] = {
263 	/* Device interface */
264 	DEVMETHOD(device_probe,		wpi_probe),
265 	DEVMETHOD(device_attach,	wpi_attach),
266 	DEVMETHOD(device_detach,	wpi_detach),
267 	DEVMETHOD(device_shutdown,	wpi_shutdown),
268 	DEVMETHOD(device_suspend,	wpi_suspend),
269 	DEVMETHOD(device_resume,	wpi_resume),
270 
271 	DEVMETHOD_END
272 };
273 
274 static driver_t wpi_driver = {
275 	"wpi",
276 	wpi_methods,
277 	sizeof (struct wpi_softc)
278 };
279 static devclass_t wpi_devclass;
280 
281 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282 
283 MODULE_VERSION(wpi, 1);
284 
285 MODULE_DEPEND(wpi, pci,  1, 1, 1);
286 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
287 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
288 
289 static int
290 wpi_probe(device_t dev)
291 {
292 	const struct wpi_ident *ident;
293 
294 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
295 		if (pci_get_vendor(dev) == ident->vendor &&
296 		    pci_get_device(dev) == ident->device) {
297 			device_set_desc(dev, ident->name);
298 			return (BUS_PROBE_DEFAULT);
299 		}
300 	}
301 	return ENXIO;
302 }
303 
304 static int
305 wpi_attach(device_t dev)
306 {
307 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
308 	struct ieee80211com *ic;
309 	struct ifnet *ifp;
310 	int i, error, rid, supportsa = 1;
311 	const struct wpi_ident *ident;
312 	uint8_t macaddr[IEEE80211_ADDR_LEN];
313 
314 	sc->sc_dev = dev;
315 
316 #ifdef	WPI_DEBUG
317 	error = resource_int_value(device_get_name(sc->sc_dev),
318 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
319 	if (error != 0)
320 		sc->sc_debug = 0;
321 #else
322 	sc->sc_debug = 0;
323 #endif
324 
325 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
326 
327 	/*
328 	 * Get the offset of the PCI Express Capability Structure in PCI
329 	 * Configuration Space.
330 	 */
331 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
332 	if (error != 0) {
333 		device_printf(dev, "PCIe capability structure not found!\n");
334 		return error;
335 	}
336 
337 	/*
338 	 * Some card's only support 802.11b/g not a, check to see if
339 	 * this is one such card. A 0x0 in the subdevice table indicates
340 	 * the entire subdevice range is to be ignored.
341 	 */
342 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
343 		if (ident->subdevice &&
344 		    pci_get_subdevice(dev) == ident->subdevice) {
345 		    supportsa = 0;
346 		    break;
347 		}
348 	}
349 
350 	/* Clear device-specific "PCI retry timeout" register (41h). */
351 	pci_write_config(dev, 0x41, 0, 1);
352 
353 	/* Enable bus-mastering. */
354 	pci_enable_busmaster(dev);
355 
356 	rid = PCIR_BAR(0);
357 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
358 	    RF_ACTIVE);
359 	if (sc->mem == NULL) {
360 		device_printf(dev, "can't map mem space\n");
361 		error = ENOMEM;
362 		return error;
363 	}
364 	sc->sc_st = rman_get_bustag(sc->mem);
365 	sc->sc_sh = rman_get_bushandle(sc->mem);
366 
367 	i = 1;
368 	rid = 0;
369 	if (pci_alloc_msi(dev, &i) == 0)
370 		rid = 1;
371 	/* Install interrupt handler. */
372 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
373 	    (rid != 0 ? 0 : RF_SHAREABLE));
374 	if (sc->irq == NULL) {
375 		device_printf(dev, "can't map interrupt\n");
376 		error = ENOMEM;
377 		goto fail;
378 	}
379 
380 	WPI_LOCK_INIT(sc);
381 
382 	sc->sc_unr = new_unrhdr(WPI_ID_IBSS_MIN, WPI_ID_IBSS_MAX, &sc->sc_mtx);
383 
384 	/* Allocate DMA memory for firmware transfers. */
385 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
386 		device_printf(dev,
387 		    "could not allocate memory for firmware, error %d\n",
388 		    error);
389 		goto fail;
390 	}
391 
392 	/* Allocate shared page. */
393 	if ((error = wpi_alloc_shared(sc)) != 0) {
394 		device_printf(dev, "could not allocate shared page\n");
395 		goto fail;
396 	}
397 
398 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
399 	for (i = 0; i < WPI_NTXQUEUES; i++) {
400 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
401 			device_printf(dev,
402 			    "could not allocate TX ring %d, error %d\n", i,
403 			    error);
404 			goto fail;
405 		}
406 	}
407 
408 	/* Allocate RX ring. */
409 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
410 		device_printf(dev, "could not allocate RX ring, error %d\n",
411 		    error);
412 		goto fail;
413 	}
414 
415 	/* Clear pending interrupts. */
416 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
417 
418 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
419 	if (ifp == NULL) {
420 		device_printf(dev, "can not allocate ifnet structure\n");
421 		goto fail;
422 	}
423 
424 	ic = ifp->if_l2com;
425 	ic->ic_ifp = ifp;
426 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
427 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
428 
429 	/* Set device capabilities. */
430 	ic->ic_caps =
431 		  IEEE80211_C_STA		/* station mode supported */
432 		| IEEE80211_C_IBSS		/* IBSS mode supported */
433 		| IEEE80211_C_MONITOR		/* monitor mode supported */
434 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
435 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
436 		| IEEE80211_C_TXPMGT		/* tx power management */
437 		| IEEE80211_C_SHSLOT		/* short slot time supported */
438 		| IEEE80211_C_WPA		/* 802.11i */
439 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
440 #if 0
441 		| IEEE80211_C_HOSTAP		/* Host access point mode */
442 #endif
443 		| IEEE80211_C_WME		/* 802.11e */
444 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
445 		;
446 
447 	ic->ic_cryptocaps =
448 		  IEEE80211_CRYPTO_AES_CCM;
449 
450 	ic->ic_flags |= IEEE80211_F_DATAPAD;
451 
452 	/*
453 	 * Read in the eeprom and also setup the channels for
454 	 * net80211. We don't set the rates as net80211 does this for us
455 	 */
456 	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
457 		device_printf(dev, "could not read EEPROM, error %d\n",
458 		    error);
459 		goto fail;
460         }
461 
462 #ifdef	WPI_DEBUG
463 	if (bootverbose) {
464 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
465 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
466 			  sc->type > 1 ? 'B': '?');
467 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
468 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
469 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
470 			  supportsa ? "does" : "does not");
471 
472 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
473 	       what sc->rev really represents - benjsc 20070615 */
474 	}
475 #endif
476 
477 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
478 	ifp->if_softc = sc;
479 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
480 	ifp->if_init = wpi_init;
481 	ifp->if_ioctl = wpi_ioctl;
482 	ifp->if_start = wpi_start;
483 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
484 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
485 	IFQ_SET_READY(&ifp->if_snd);
486 
487 	ieee80211_ifattach(ic, macaddr);
488 	ic->ic_vap_create = wpi_vap_create;
489 	ic->ic_vap_delete = wpi_vap_delete;
490 	ic->ic_raw_xmit = wpi_raw_xmit;
491 	ic->ic_node_alloc = wpi_node_alloc;
492 	sc->sc_node_free = ic->ic_node_free;
493 	ic->ic_node_free = wpi_node_free;
494 	ic->ic_wme.wme_update = wpi_updateedca;
495 	ic->ic_update_promisc = wpi_update_promisc;
496 	ic->ic_update_mcast = wpi_update_mcast;
497 	ic->ic_scan_start = wpi_scan_start;
498 	ic->ic_scan_end = wpi_scan_end;
499 	ic->ic_set_channel = wpi_set_channel;
500 	sc->sc_scan_curchan = ic->ic_scan_curchan;
501 	ic->ic_scan_curchan = wpi_scan_curchan;
502 	ic->ic_scan_mindwell = wpi_scan_mindwell;
503 	ic->ic_setregdomain = wpi_setregdomain;
504 
505 	wpi_radiotap_attach(sc);
506 
507 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
508 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
509 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
510 	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
511 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
512 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
513 
514 	wpi_sysctlattach(sc);
515 
516 	/*
517 	 * Hook our interrupt after all initialization is complete.
518 	 */
519 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
520 	    NULL, wpi_intr, sc, &sc->sc_ih);
521 	if (error != 0) {
522 		device_printf(dev, "can't establish interrupt, error %d\n",
523 		    error);
524 		goto fail;
525 	}
526 
527 	if (bootverbose)
528 		ieee80211_announce(ic);
529 
530 #ifdef WPI_DEBUG
531 	if (sc->sc_debug & WPI_DEBUG_HW)
532 		ieee80211_announce_channels(ic);
533 #endif
534 
535 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
536 	return 0;
537 
538 fail:	wpi_detach(dev);
539 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
540 	return error;
541 }
542 
543 /*
544  * Attach the interface to 802.11 radiotap.
545  */
546 static void
547 wpi_radiotap_attach(struct wpi_softc *sc)
548 {
549 	struct ifnet *ifp = sc->sc_ifp;
550 	struct ieee80211com *ic = ifp->if_l2com;
551 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
552 	ieee80211_radiotap_attach(ic,
553 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
554 		WPI_TX_RADIOTAP_PRESENT,
555 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
556 		WPI_RX_RADIOTAP_PRESENT);
557 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
558 }
559 
560 static void
561 wpi_sysctlattach(struct wpi_softc *sc)
562 {
563 #ifdef  WPI_DEBUG
564 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
565 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
566 
567 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
568 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
569 		"control debugging printfs");
570 #endif
571 }
572 
573 static struct ieee80211vap *
574 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
575     enum ieee80211_opmode opmode, int flags,
576     const uint8_t bssid[IEEE80211_ADDR_LEN],
577     const uint8_t mac[IEEE80211_ADDR_LEN])
578 {
579 	struct wpi_vap *wvp;
580 	struct wpi_buf *bcn;
581 	struct ieee80211vap *vap;
582 
583 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
584 		return NULL;
585 
586 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
587 	    M_80211_VAP, M_NOWAIT | M_ZERO);
588 	if (wvp == NULL)
589 		return NULL;
590 	vap = &wvp->vap;
591 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
592 
593 	bcn = &wvp->wv_bcbuf;
594 	bcn->data = NULL;
595 
596 	/* Override with driver methods. */
597 	wvp->newstate = vap->iv_newstate;
598 	vap->iv_key_alloc = wpi_key_alloc;
599 	vap->iv_key_set = wpi_key_set;
600 	vap->iv_key_delete = wpi_key_delete;
601 	vap->iv_newstate = wpi_newstate;
602 	vap->iv_update_beacon = wpi_update_beacon;
603 
604 	ieee80211_ratectl_init(vap);
605 	/* Complete setup. */
606 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
607 	ic->ic_opmode = opmode;
608 	return vap;
609 }
610 
611 static void
612 wpi_vap_delete(struct ieee80211vap *vap)
613 {
614 	struct wpi_vap *wvp = WPI_VAP(vap);
615 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
616 
617 	ieee80211_ratectl_deinit(vap);
618 	ieee80211_vap_detach(vap);
619 
620 	if (bcn->data != NULL)
621 		free(bcn->data, M_DEVBUF);
622 	free(wvp, M_80211_VAP);
623 }
624 
625 static int
626 wpi_detach(device_t dev)
627 {
628 	struct wpi_softc *sc = device_get_softc(dev);
629 	struct ifnet *ifp = sc->sc_ifp;
630 	struct ieee80211com *ic;
631 	int qid;
632 
633 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
634 
635 	if (ifp != NULL) {
636 		ic = ifp->if_l2com;
637 
638 		ieee80211_draintask(ic, &sc->sc_reinittask);
639 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
640 
641 		wpi_stop(sc);
642 
643 		callout_drain(&sc->watchdog_to);
644 		callout_drain(&sc->watchdog_rfkill);
645 		callout_drain(&sc->calib_to);
646 		ieee80211_ifdetach(ic);
647 	}
648 
649 	/* Uninstall interrupt handler. */
650 	if (sc->irq != NULL) {
651 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
652 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
653 		    sc->irq);
654 		pci_release_msi(dev);
655 	}
656 
657 	if (sc->txq[0].data_dmat) {
658 		/* Free DMA resources. */
659 		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
660 			wpi_free_tx_ring(sc, &sc->txq[qid]);
661 
662 		wpi_free_rx_ring(sc);
663 		wpi_free_shared(sc);
664 	}
665 
666 	if (sc->fw_dma.tag)
667 		wpi_free_fwmem(sc);
668 
669 	if (sc->mem != NULL)
670 		bus_release_resource(dev, SYS_RES_MEMORY,
671 		    rman_get_rid(sc->mem), sc->mem);
672 
673 	if (ifp != NULL)
674 		if_free(ifp);
675 
676 	delete_unrhdr(sc->sc_unr);
677 
678 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
679 	WPI_LOCK_DESTROY(sc);
680 	return 0;
681 }
682 
683 static int
684 wpi_shutdown(device_t dev)
685 {
686 	struct wpi_softc *sc = device_get_softc(dev);
687 
688 	wpi_stop(sc);
689 	return 0;
690 }
691 
692 static int
693 wpi_suspend(device_t dev)
694 {
695 	struct wpi_softc *sc = device_get_softc(dev);
696 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
697 
698 	ieee80211_suspend_all(ic);
699 	return 0;
700 }
701 
702 static int
703 wpi_resume(device_t dev)
704 {
705 	struct wpi_softc *sc = device_get_softc(dev);
706 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
707 
708 	/* Clear device-specific "PCI retry timeout" register (41h). */
709 	pci_write_config(dev, 0x41, 0, 1);
710 
711 	ieee80211_resume_all(ic);
712 	return 0;
713 }
714 
715 /*
716  * Grab exclusive access to NIC memory.
717  */
718 static int
719 wpi_nic_lock(struct wpi_softc *sc)
720 {
721 	int ntries;
722 
723 	/* Request exclusive access to NIC. */
724 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
725 
726 	/* Spin until we actually get the lock. */
727 	for (ntries = 0; ntries < 1000; ntries++) {
728 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
729 		     (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
730 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
731 			return 0;
732 		DELAY(10);
733 	}
734 
735 	device_printf(sc->sc_dev, "could not lock memory\n");
736 
737 	return ETIMEDOUT;
738 }
739 
740 /*
741  * Release lock on NIC memory.
742  */
743 static __inline void
744 wpi_nic_unlock(struct wpi_softc *sc)
745 {
746 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
747 }
748 
749 static __inline uint32_t
750 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
751 {
752 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
753 	WPI_BARRIER_READ_WRITE(sc);
754 	return WPI_READ(sc, WPI_PRPH_RDATA);
755 }
756 
757 static __inline void
758 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
759 {
760 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
761 	WPI_BARRIER_WRITE(sc);
762 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
763 }
764 
765 static __inline void
766 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
767 {
768 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
769 }
770 
771 static __inline void
772 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
773 {
774 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
775 }
776 
777 static __inline void
778 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
779     const uint32_t *data, int count)
780 {
781 	for (; count > 0; count--, data++, addr += 4)
782 		wpi_prph_write(sc, addr, *data);
783 }
784 
785 static __inline uint32_t
786 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
787 {
788 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
789 	WPI_BARRIER_READ_WRITE(sc);
790 	return WPI_READ(sc, WPI_MEM_RDATA);
791 }
792 
793 static __inline void
794 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
795     int count)
796 {
797 	for (; count > 0; count--, addr += 4)
798 		*data++ = wpi_mem_read(sc, addr);
799 }
800 
801 static int
802 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
803 {
804 	uint8_t *out = data;
805 	uint32_t val;
806 	int error, ntries;
807 
808 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
809 
810 	if ((error = wpi_nic_lock(sc)) != 0)
811 		return error;
812 
813 	for (; count > 0; count -= 2, addr++) {
814 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
815 		for (ntries = 0; ntries < 10; ntries++) {
816 			val = WPI_READ(sc, WPI_EEPROM);
817 			if (val & WPI_EEPROM_READ_VALID)
818 				break;
819 			DELAY(5);
820 		}
821 		if (ntries == 10) {
822 			device_printf(sc->sc_dev,
823 			    "timeout reading ROM at 0x%x\n", addr);
824 			return ETIMEDOUT;
825 		}
826 		*out++= val >> 16;
827 		if (count > 1)
828 			*out ++= val >> 24;
829 	}
830 
831 	wpi_nic_unlock(sc);
832 
833 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
834 
835 	return 0;
836 }
837 
838 static void
839 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
840 {
841 	if (error != 0)
842 		return;
843 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
844 	*(bus_addr_t *)arg = segs[0].ds_addr;
845 }
846 
847 /*
848  * Allocates a contiguous block of dma memory of the requested size and
849  * alignment.
850  */
851 static int
852 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
853     void **kvap, bus_size_t size, bus_size_t alignment)
854 {
855 	int error;
856 
857 	dma->tag = NULL;
858 	dma->size = size;
859 
860 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
861 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
862 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
863 	if (error != 0)
864 		goto fail;
865 
866 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
867 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
868 	if (error != 0)
869 		goto fail;
870 
871 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
872 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
873 	if (error != 0)
874 		goto fail;
875 
876 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
877 
878 	if (kvap != NULL)
879 		*kvap = dma->vaddr;
880 
881 	return 0;
882 
883 fail:	wpi_dma_contig_free(dma);
884 	return error;
885 }
886 
887 static void
888 wpi_dma_contig_free(struct wpi_dma_info *dma)
889 {
890 	if (dma->vaddr != NULL) {
891 		bus_dmamap_sync(dma->tag, dma->map,
892 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
893 		bus_dmamap_unload(dma->tag, dma->map);
894 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
895 		dma->vaddr = NULL;
896 	}
897 	if (dma->tag != NULL) {
898 		bus_dma_tag_destroy(dma->tag);
899 		dma->tag = NULL;
900 	}
901 }
902 
903 /*
904  * Allocate a shared page between host and NIC.
905  */
906 static int
907 wpi_alloc_shared(struct wpi_softc *sc)
908 {
909 	/* Shared buffer must be aligned on a 4KB boundary. */
910 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
911 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
912 }
913 
914 static void
915 wpi_free_shared(struct wpi_softc *sc)
916 {
917 	wpi_dma_contig_free(&sc->shared_dma);
918 }
919 
920 /*
921  * Allocate DMA-safe memory for firmware transfer.
922  */
923 static int
924 wpi_alloc_fwmem(struct wpi_softc *sc)
925 {
926 	/* Must be aligned on a 16-byte boundary. */
927 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
928 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
929 }
930 
931 static void
932 wpi_free_fwmem(struct wpi_softc *sc)
933 {
934 	wpi_dma_contig_free(&sc->fw_dma);
935 }
936 
937 static int
938 wpi_alloc_rx_ring(struct wpi_softc *sc)
939 {
940 	struct wpi_rx_ring *ring = &sc->rxq;
941 	bus_size_t size;
942 	int i, error;
943 
944 	ring->cur = 0;
945 	ring->update = 0;
946 
947 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
948 
949 	/* Allocate RX descriptors (16KB aligned.) */
950 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
951 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
952 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
953 	if (error != 0) {
954 		device_printf(sc->sc_dev,
955 		    "%s: could not allocate RX ring DMA memory, error %d\n",
956 		    __func__, error);
957 		goto fail;
958 	}
959 
960 	/* Create RX buffer DMA tag. */
961         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
962 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
963 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
964 	    &ring->data_dmat);
965         if (error != 0) {
966                 device_printf(sc->sc_dev,
967 		    "%s: could not create RX buf DMA tag, error %d\n",
968 		    __func__, error);
969                 goto fail;
970         }
971 
972 	/*
973 	 * Allocate and map RX buffers.
974 	 */
975 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
976 		struct wpi_rx_data *data = &ring->data[i];
977 		bus_addr_t paddr;
978 
979 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
980 		if (error != 0) {
981 			device_printf(sc->sc_dev,
982 			    "%s: could not create RX buf DMA map, error %d\n",
983 			    __func__, error);
984 			goto fail;
985 		}
986 
987 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
988 		if (data->m == NULL) {
989 			device_printf(sc->sc_dev,
990 			    "%s: could not allocate RX mbuf\n", __func__);
991 			error = ENOBUFS;
992 			goto fail;
993 		}
994 
995 		error = bus_dmamap_load(ring->data_dmat, data->map,
996 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
997 		    &paddr, BUS_DMA_NOWAIT);
998 		if (error != 0 && error != EFBIG) {
999 			device_printf(sc->sc_dev,
1000 			    "%s: can't map mbuf (error %d)\n", __func__,
1001 			    error);
1002 			goto fail;
1003 		}
1004 
1005 		/* Set physical address of RX buffer. */
1006 		ring->desc[i] = htole32(paddr);
1007 	}
1008 
1009 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1010 	    BUS_DMASYNC_PREWRITE);
1011 
1012 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1013 
1014 	return 0;
1015 
1016 fail:	wpi_free_rx_ring(sc);
1017 
1018 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1019 
1020 	return error;
1021 }
1022 
1023 static void
1024 wpi_update_rx_ring(struct wpi_softc *sc)
1025 {
1026 	struct wpi_rx_ring *ring = &sc->rxq;
1027 
1028 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1029 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1030 		    __func__);
1031 
1032 		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1033 		ring->update = 1;
1034 	} else
1035 		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1036 }
1037 
1038 static void
1039 wpi_reset_rx_ring(struct wpi_softc *sc)
1040 {
1041 	struct wpi_rx_ring *ring = &sc->rxq;
1042 	int ntries;
1043 
1044 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1045 
1046 	if (wpi_nic_lock(sc) == 0) {
1047 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1048 		for (ntries = 0; ntries < 1000; ntries++) {
1049 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1050 			    WPI_FH_RX_STATUS_IDLE)
1051 				break;
1052 			DELAY(10);
1053 		}
1054 #ifdef WPI_DEBUG
1055 		if (ntries == 1000) {
1056 			device_printf(sc->sc_dev,
1057 			    "timeout resetting Rx ring\n");
1058 		}
1059 #endif
1060 		wpi_nic_unlock(sc);
1061 	}
1062 
1063 	ring->cur = 0;
1064 	ring->update = 0;
1065 }
1066 
1067 static void
1068 wpi_free_rx_ring(struct wpi_softc *sc)
1069 {
1070 	struct wpi_rx_ring *ring = &sc->rxq;
1071 	int i;
1072 
1073 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1074 
1075 	wpi_dma_contig_free(&ring->desc_dma);
1076 
1077 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1078 		struct wpi_rx_data *data = &ring->data[i];
1079 
1080 		if (data->m != NULL) {
1081 			bus_dmamap_sync(ring->data_dmat, data->map,
1082 			    BUS_DMASYNC_POSTREAD);
1083 			bus_dmamap_unload(ring->data_dmat, data->map);
1084 			m_freem(data->m);
1085 			data->m = NULL;
1086 		}
1087 		if (data->map != NULL)
1088 			bus_dmamap_destroy(ring->data_dmat, data->map);
1089 	}
1090 	if (ring->data_dmat != NULL) {
1091 		bus_dma_tag_destroy(ring->data_dmat);
1092 		ring->data_dmat = NULL;
1093 	}
1094 }
1095 
1096 static int
1097 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1098 {
1099 	bus_addr_t paddr;
1100 	bus_size_t size;
1101 	int i, error;
1102 
1103 	ring->qid = qid;
1104 	ring->queued = 0;
1105 	ring->cur = 0;
1106 	ring->update = 0;
1107 
1108 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1109 
1110 	/* Allocate TX descriptors (16KB aligned.) */
1111 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1112 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1113 	    size, WPI_RING_DMA_ALIGN);
1114 	if (error != 0) {
1115 		device_printf(sc->sc_dev,
1116 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1117 		    __func__, error);
1118 		goto fail;
1119 	}
1120 
1121 	/* Update shared area with ring physical address. */
1122 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1123 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1124 	    BUS_DMASYNC_PREWRITE);
1125 
1126 	/*
1127 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1128 	 * to allocate commands space for other rings.
1129 	 * XXX Do we really need to allocate descriptors for other rings?
1130 	 */
1131 	if (qid > 4)
1132 		return 0;
1133 
1134 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1135 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1136 	    size, 4);
1137 	if (error != 0) {
1138 		device_printf(sc->sc_dev,
1139 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1140 		    __func__, error);
1141 		goto fail;
1142 	}
1143 
1144 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1145 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1146 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1147 	    &ring->data_dmat);
1148 	if (error != 0) {
1149 		device_printf(sc->sc_dev,
1150 		    "%s: could not create TX buf DMA tag, error %d\n",
1151 		    __func__, error);
1152 		goto fail;
1153 	}
1154 
1155 	paddr = ring->cmd_dma.paddr;
1156 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1157 		struct wpi_tx_data *data = &ring->data[i];
1158 
1159 		data->cmd_paddr = paddr;
1160 		paddr += sizeof (struct wpi_tx_cmd);
1161 
1162 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1163 		if (error != 0) {
1164 			device_printf(sc->sc_dev,
1165 			    "%s: could not create TX buf DMA map, error %d\n",
1166 			    __func__, error);
1167 			goto fail;
1168 		}
1169 	}
1170 
1171 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1172 
1173 	return 0;
1174 
1175 fail:	wpi_free_tx_ring(sc, ring);
1176 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1177 	return error;
1178 }
1179 
1180 static void
1181 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1182 {
1183 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1184 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1185 		    __func__, ring->qid);
1186 
1187 		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1188 		ring->update = 1;
1189 	} else
1190 		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1191 }
1192 
1193 static void
1194 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1195 {
1196 	int i;
1197 
1198 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1199 
1200 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1201 		struct wpi_tx_data *data = &ring->data[i];
1202 
1203 		if (data->m != NULL) {
1204 			bus_dmamap_sync(ring->data_dmat, data->map,
1205 			    BUS_DMASYNC_POSTWRITE);
1206 			bus_dmamap_unload(ring->data_dmat, data->map);
1207 			m_freem(data->m);
1208 			data->m = NULL;
1209 		}
1210 	}
1211 	/* Clear TX descriptors. */
1212 	memset(ring->desc, 0, ring->desc_dma.size);
1213 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1214 	    BUS_DMASYNC_PREWRITE);
1215 	sc->qfullmsk &= ~(1 << ring->qid);
1216 	ring->queued = 0;
1217 	ring->cur = 0;
1218 	ring->update = 0;
1219 }
1220 
1221 static void
1222 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1223 {
1224 	int i;
1225 
1226 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1227 
1228 	wpi_dma_contig_free(&ring->desc_dma);
1229 	wpi_dma_contig_free(&ring->cmd_dma);
1230 
1231 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1232 		struct wpi_tx_data *data = &ring->data[i];
1233 
1234 		if (data->m != NULL) {
1235 			bus_dmamap_sync(ring->data_dmat, data->map,
1236 			    BUS_DMASYNC_POSTWRITE);
1237 			bus_dmamap_unload(ring->data_dmat, data->map);
1238 			m_freem(data->m);
1239 		}
1240 		if (data->map != NULL)
1241 			bus_dmamap_destroy(ring->data_dmat, data->map);
1242 	}
1243 	if (ring->data_dmat != NULL) {
1244 		bus_dma_tag_destroy(ring->data_dmat);
1245 		ring->data_dmat = NULL;
1246 	}
1247 }
1248 
1249 /*
1250  * Extract various information from EEPROM.
1251  */
1252 static int
1253 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1254 {
1255 #define WPI_CHK(res) do {		\
1256 	if ((error = res) != 0)		\
1257 		goto fail;		\
1258 } while (0)
1259 	int error, i;
1260 
1261 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1262 
1263 	/* Adapter has to be powered on for EEPROM access to work. */
1264 	if ((error = wpi_apm_init(sc)) != 0) {
1265 		device_printf(sc->sc_dev,
1266 		    "%s: could not power ON adapter, error %d\n", __func__,
1267 		    error);
1268 		return error;
1269 	}
1270 
1271 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1272 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1273 		error = EIO;
1274 		goto fail;
1275 	}
1276 	/* Clear HW ownership of EEPROM. */
1277 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1278 
1279 	/* Read the hardware capabilities, revision and SKU type. */
1280 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1281 	    sizeof(sc->cap)));
1282 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1283 	    sizeof(sc->rev)));
1284 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1285 	    sizeof(sc->type)));
1286 
1287 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
1288 	    sc->type);
1289 
1290 	/* Read the regulatory domain (4 ASCII characters.) */
1291 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1292 	    sizeof(sc->domain)));
1293 
1294 	/* Read MAC address. */
1295 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1296 	    IEEE80211_ADDR_LEN));
1297 
1298 	/* Read the list of authorized channels. */
1299 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1300 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1301 
1302 	/* Read the list of TX power groups. */
1303 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1304 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1305 
1306 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1307 
1308 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1309 	    __func__);
1310 
1311 	return error;
1312 #undef WPI_CHK
1313 }
1314 
1315 /*
1316  * Translate EEPROM flags to net80211.
1317  */
1318 static uint32_t
1319 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1320 {
1321 	uint32_t nflags;
1322 
1323 	nflags = 0;
1324 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1325 		nflags |= IEEE80211_CHAN_PASSIVE;
1326 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1327 		nflags |= IEEE80211_CHAN_NOADHOC;
1328 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1329 		nflags |= IEEE80211_CHAN_DFS;
1330 		/* XXX apparently IBSS may still be marked */
1331 		nflags |= IEEE80211_CHAN_NOADHOC;
1332 	}
1333 
1334 	return nflags;
1335 }
1336 
1337 static void
1338 wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1339 {
1340 	struct ifnet *ifp = sc->sc_ifp;
1341 	struct ieee80211com *ic = ifp->if_l2com;
1342 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1343 	const struct wpi_chan_band *band = &wpi_bands[n];
1344 	struct ieee80211_channel *c;
1345 	uint8_t chan;
1346 	int i, nflags;
1347 
1348 	for (i = 0; i < band->nchan; i++) {
1349 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1350 			DPRINTF(sc, WPI_DEBUG_HW,
1351 			    "Channel Not Valid: %d, band %d\n",
1352 			     band->chan[i],n);
1353 			continue;
1354 		}
1355 
1356 		chan = band->chan[i];
1357 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1358 
1359 		c = &ic->ic_channels[ic->ic_nchans++];
1360 		c->ic_ieee = chan;
1361 		c->ic_maxregpower = channels[i].maxpwr;
1362 		c->ic_maxpower = 2*c->ic_maxregpower;
1363 
1364 		if (n == 0) {	/* 2GHz band */
1365 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1366 			/* G =>'s B is supported */
1367 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1368 			c = &ic->ic_channels[ic->ic_nchans++];
1369 			c[0] = c[-1];
1370 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1371 		} else {	/* 5GHz band */
1372 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1373 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1374 		}
1375 
1376 		/* Save maximum allowed TX power for this channel. */
1377 		sc->maxpwr[chan] = channels[i].maxpwr;
1378 
1379 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1380 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1381 		    " offset %d\n", chan, c->ic_freq,
1382 		    channels[i].flags, sc->maxpwr[chan],
1383 		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1384 	}
1385 }
1386 
1387 /**
1388  * Read the eeprom to find out what channels are valid for the given
1389  * band and update net80211 with what we find.
1390  */
1391 static int
1392 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1393 {
1394 	struct ifnet *ifp = sc->sc_ifp;
1395 	struct ieee80211com *ic = ifp->if_l2com;
1396 	const struct wpi_chan_band *band = &wpi_bands[n];
1397 	int error;
1398 
1399 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1400 
1401 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1402 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1403 	if (error != 0) {
1404 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1405 		return error;
1406 	}
1407 
1408 	wpi_read_eeprom_band(sc, n);
1409 
1410 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1411 
1412 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1413 
1414 	return 0;
1415 }
1416 
1417 static struct wpi_eeprom_chan *
1418 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1419 {
1420 	int i, j;
1421 
1422 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1423 		for (i = 0; i < wpi_bands[j].nchan; i++)
1424 			if (wpi_bands[j].chan[i] == c->ic_ieee)
1425 				return &sc->eeprom_channels[j][i];
1426 
1427 	return NULL;
1428 }
1429 
1430 /*
1431  * Enforce flags read from EEPROM.
1432  */
1433 static int
1434 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1435     int nchan, struct ieee80211_channel chans[])
1436 {
1437 	struct ifnet *ifp = ic->ic_ifp;
1438 	struct wpi_softc *sc = ifp->if_softc;
1439 	int i;
1440 
1441 	for (i = 0; i < nchan; i++) {
1442 		struct ieee80211_channel *c = &chans[i];
1443 		struct wpi_eeprom_chan *channel;
1444 
1445 		channel = wpi_find_eeprom_channel(sc, c);
1446 		if (channel == NULL) {
1447 			if_printf(ic->ic_ifp,
1448 			    "%s: invalid channel %u freq %u/0x%x\n",
1449 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1450 			return EINVAL;
1451 		}
1452 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 static int
1459 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1460 {
1461 	struct wpi_power_group *group = &sc->groups[n];
1462 	struct wpi_eeprom_group rgroup;
1463 	int i, error;
1464 
1465 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1466 
1467 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1468 	    &rgroup, sizeof rgroup)) != 0) {
1469 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1470 		return error;
1471 	}
1472 
1473 	/* Save TX power group information. */
1474 	group->chan   = rgroup.chan;
1475 	group->maxpwr = rgroup.maxpwr;
1476 	/* Retrieve temperature at which the samples were taken. */
1477 	group->temp   = (int16_t)le16toh(rgroup.temp);
1478 
1479 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1480 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1481 	    group->maxpwr, group->temp);
1482 
1483 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1484 		group->samples[i].index = rgroup.samples[i].index;
1485 		group->samples[i].power = rgroup.samples[i].power;
1486 
1487 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1488 		    "\tsample %d: index=%d power=%d\n", i,
1489 		    group->samples[i].index, group->samples[i].power);
1490 	}
1491 
1492 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1493 
1494 	return 0;
1495 }
1496 
1497 static struct ieee80211_node *
1498 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1499 {
1500 	struct wpi_node *wn;
1501 
1502 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1503 	    M_NOWAIT | M_ZERO);
1504 
1505 	if (wn == NULL)
1506 		return NULL;
1507 
1508 	wn->id = WPI_ID_UNDEFINED;
1509 
1510 	return &wn->ni;
1511 }
1512 
1513 static void
1514 wpi_node_free(struct ieee80211_node *ni)
1515 {
1516 	struct ieee80211com *ic = ni->ni_ic;
1517 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1518 	struct wpi_node *wn = (struct wpi_node *)ni;
1519 
1520 	if (wn->id >= WPI_ID_IBSS_MIN && wn->id <= WPI_ID_IBSS_MAX) {
1521 		free_unr(sc->sc_unr, wn->id);
1522 
1523 		WPI_LOCK(sc);
1524 		if (sc->rxon.filter & htole32(WPI_FILTER_BSS))
1525 			wpi_del_node(sc, ni);
1526 		WPI_UNLOCK(sc);
1527 	}
1528 
1529 	sc->sc_node_free(ni);
1530 }
1531 
1532 /**
1533  * Called by net80211 when ever there is a change to 80211 state machine
1534  */
1535 static int
1536 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1537 {
1538 	struct wpi_vap *wvp = WPI_VAP(vap);
1539 	struct ieee80211com *ic = vap->iv_ic;
1540 	struct ifnet *ifp = ic->ic_ifp;
1541 	struct wpi_softc *sc = ifp->if_softc;
1542 	int error = 0;
1543 
1544 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1545 
1546 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1547 		ieee80211_state_name[vap->iv_state],
1548 		ieee80211_state_name[nstate]);
1549 
1550 	IEEE80211_UNLOCK(ic);
1551 	WPI_LOCK(sc);
1552 	switch (nstate) {
1553 	case IEEE80211_S_SCAN:
1554 		if ((vap->iv_opmode == IEEE80211_M_IBSS ||
1555 		    vap->iv_opmode == IEEE80211_M_AHDEMO) &&
1556 		    (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
1557 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1558 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1559 				device_printf(sc->sc_dev,
1560 				    "%s: could not send RXON\n", __func__);
1561 			}
1562 		}
1563 		break;
1564 
1565 	case IEEE80211_S_ASSOC:
1566 		if (vap->iv_state != IEEE80211_S_RUN)
1567 			break;
1568 		/* FALLTHROUGH */
1569 	case IEEE80211_S_AUTH:
1570 		/*
1571 		 * The node must be registered in the firmware before auth.
1572 		 * Also the associd must be cleared on RUN -> ASSOC
1573 		 * transitions.
1574 		 */
1575 		if ((error = wpi_auth(sc, vap)) != 0) {
1576 			device_printf(sc->sc_dev,
1577 			    "%s: could not move to AUTH state, error %d\n",
1578 			    __func__, error);
1579 		}
1580 		break;
1581 
1582 	case IEEE80211_S_RUN:
1583 		/*
1584 		 * RUN -> RUN transition; Just restart the timers.
1585 		 */
1586 		if (vap->iv_state == IEEE80211_S_RUN) {
1587 			wpi_calib_timeout(sc);
1588 			break;
1589 		}
1590 
1591 		/*
1592 		 * !RUN -> RUN requires setting the association id
1593 		 * which is done with a firmware cmd.  We also defer
1594 		 * starting the timers until that work is done.
1595 		 */
1596 		if ((error = wpi_run(sc, vap)) != 0) {
1597 			device_printf(sc->sc_dev,
1598 			    "%s: could not move to RUN state\n", __func__);
1599 		}
1600 		break;
1601 
1602 	default:
1603 		break;
1604 	}
1605 	WPI_UNLOCK(sc);
1606 	IEEE80211_LOCK(ic);
1607 	if (error != 0) {
1608 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1609 		return error;
1610 	}
1611 
1612 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1613 
1614 	return wvp->newstate(vap, nstate, arg);
1615 }
1616 
1617 static void
1618 wpi_calib_timeout(void *arg)
1619 {
1620 	struct wpi_softc *sc = arg;
1621 	struct ifnet *ifp = sc->sc_ifp;
1622 	struct ieee80211com *ic = ifp->if_l2com;
1623 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1624 
1625 	if (vap->iv_state != IEEE80211_S_RUN)
1626 		return;
1627 
1628 	wpi_power_calibration(sc);
1629 
1630 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1631 }
1632 
1633 static __inline uint8_t
1634 rate2plcp(const uint8_t rate)
1635 {
1636 	switch (rate) {
1637 	case 12:	return 0xd;
1638 	case 18:	return 0xf;
1639 	case 24:	return 0x5;
1640 	case 36:	return 0x7;
1641 	case 48:	return 0x9;
1642 	case 72:	return 0xb;
1643 	case 96:	return 0x1;
1644 	case 108:	return 0x3;
1645 	case 2:		return 10;
1646 	case 4:		return 20;
1647 	case 11:	return 55;
1648 	case 22:	return 110;
1649 	default:	return 0;
1650 	}
1651 }
1652 
1653 static __inline uint8_t
1654 plcp2rate(const uint8_t plcp)
1655 {
1656 	switch (plcp) {
1657 	case 0xd:	return 12;
1658 	case 0xf:	return 18;
1659 	case 0x5:	return 24;
1660 	case 0x7:	return 36;
1661 	case 0x9:	return 48;
1662 	case 0xb:	return 72;
1663 	case 0x1:	return 96;
1664 	case 0x3:	return 108;
1665 	case 10:	return 2;
1666 	case 20:	return 4;
1667 	case 55:	return 11;
1668 	case 110:	return 22;
1669 	default:	return 0;
1670 	}
1671 }
1672 
1673 /* Quickly determine if a given rate is CCK or OFDM. */
1674 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1675 
1676 static void
1677 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1678     struct wpi_rx_data *data)
1679 {
1680 	struct ifnet *ifp = sc->sc_ifp;
1681 	const struct ieee80211_cipher *cip = NULL;
1682 	struct ieee80211com *ic = ifp->if_l2com;
1683 	struct wpi_rx_ring *ring = &sc->rxq;
1684 	struct wpi_rx_stat *stat;
1685 	struct wpi_rx_head *head;
1686 	struct wpi_rx_tail *tail;
1687 	struct ieee80211_frame *wh;
1688 	struct ieee80211_node *ni;
1689 	struct mbuf *m, *m1;
1690 	bus_addr_t paddr;
1691 	uint32_t flags;
1692 	uint16_t len;
1693 	int error;
1694 
1695 	stat = (struct wpi_rx_stat *)(desc + 1);
1696 
1697 	if (stat->len > WPI_STAT_MAXLEN) {
1698 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1699 		goto fail1;
1700 	}
1701 
1702 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1703 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1704 	len = le16toh(head->len);
1705 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1706 	flags = le32toh(tail->flags);
1707 
1708 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1709 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1710 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1711 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1712 
1713 	/* Discard frames with a bad FCS early. */
1714 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1715 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1716 		    __func__, flags);
1717 		goto fail1;
1718 	}
1719 	/* Discard frames that are too short. */
1720 	if (len < sizeof (*wh)) {
1721 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1722 		    __func__, len);
1723 		goto fail1;
1724 	}
1725 
1726 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1727 	if (m1 == NULL) {
1728 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1729 		    __func__);
1730 		goto fail1;
1731 	}
1732 	bus_dmamap_unload(ring->data_dmat, data->map);
1733 
1734 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1735 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1736 	if (error != 0 && error != EFBIG) {
1737 		device_printf(sc->sc_dev,
1738 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1739 		m_freem(m1);
1740 
1741 		/* Try to reload the old mbuf. */
1742 		error = bus_dmamap_load(ring->data_dmat, data->map,
1743 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1744 		    &paddr, BUS_DMA_NOWAIT);
1745 		if (error != 0 && error != EFBIG) {
1746 			panic("%s: could not load old RX mbuf", __func__);
1747 		}
1748 		/* Physical address may have changed. */
1749 		ring->desc[ring->cur] = htole32(paddr);
1750 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1751 		    BUS_DMASYNC_PREWRITE);
1752 		goto fail1;
1753 	}
1754 
1755 	m = data->m;
1756 	data->m = m1;
1757 	/* Update RX descriptor. */
1758 	ring->desc[ring->cur] = htole32(paddr);
1759 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1760 	    BUS_DMASYNC_PREWRITE);
1761 
1762 	/* Finalize mbuf. */
1763 	m->m_pkthdr.rcvif = ifp;
1764 	m->m_data = (caddr_t)(head + 1);
1765 	m->m_pkthdr.len = m->m_len = len;
1766 
1767 	/* Grab a reference to the source node. */
1768 	wh = mtod(m, struct ieee80211_frame *);
1769 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1770 
1771 	if (ni != NULL)
1772 		cip = ni->ni_ucastkey.wk_cipher;
1773 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1774 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1775 	    cip != NULL && cip->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
1776 		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP)
1777 			goto fail2;
1778 
1779 		/* Check whether decryption was successful or not. */
1780 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1781 			DPRINTF(sc, WPI_DEBUG_RECV,
1782 			    "CCMP decryption failed 0x%x\n", flags);
1783 			goto fail2;
1784 		}
1785 		m->m_flags |= M_WEP;
1786 	}
1787 
1788 	if (ieee80211_radiotap_active(ic)) {
1789 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1790 
1791 		tap->wr_flags = 0;
1792 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1793 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1794 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1795 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1796 		tap->wr_tsft = tail->tstamp;
1797 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1798 		tap->wr_rate = plcp2rate(head->plcp);
1799 	}
1800 
1801 	WPI_UNLOCK(sc);
1802 
1803 	/* Send the frame to the 802.11 layer. */
1804 	if (ni != NULL) {
1805 		(void)ieee80211_input(ni, m, stat->rssi, -WPI_RSSI_OFFSET);
1806 		/* Node is no longer needed. */
1807 		ieee80211_free_node(ni);
1808 	} else
1809 		(void)ieee80211_input_all(ic, m, stat->rssi, -WPI_RSSI_OFFSET);
1810 
1811 	WPI_LOCK(sc);
1812 
1813 	return;
1814 
1815 fail2:	ieee80211_free_node(ni);
1816 	m_freem(m);
1817 
1818 fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1819 }
1820 
1821 static void
1822 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1823     struct wpi_rx_data *data)
1824 {
1825 	/* Ignore */
1826 }
1827 
1828 static void
1829 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1830 {
1831 	struct ifnet *ifp = sc->sc_ifp;
1832 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1833 	struct wpi_tx_data *data = &ring->data[desc->idx];
1834 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1835 	struct mbuf *m;
1836 	struct ieee80211_node *ni;
1837 	struct ieee80211vap *vap;
1838 	int ackfailcnt = stat->ackfailcnt;
1839 	int status = le32toh(stat->status);
1840 
1841 	KASSERT(data->ni != NULL, ("no node"));
1842 
1843 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1844 
1845 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1846 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1847 	    "status %x\n", __func__, desc->qid, desc->idx, ackfailcnt,
1848 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1849 
1850 	/* Unmap and free mbuf. */
1851 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1852 	bus_dmamap_unload(ring->data_dmat, data->map);
1853 	m = data->m, data->m = NULL;
1854 	ni = data->ni, data->ni = NULL;
1855 	vap = ni->ni_vap;
1856 
1857 	/*
1858 	 * Update rate control statistics for the node.
1859 	 */
1860 	WPI_UNLOCK(sc);
1861 	if ((status & 0xff) != 1) {
1862 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1863 		ieee80211_ratectl_tx_complete(vap, ni,
1864 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
1865 	} else {
1866 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1867 		ieee80211_ratectl_tx_complete(vap, ni,
1868 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
1869 	}
1870 
1871 	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1872 	WPI_LOCK(sc);
1873 
1874 	sc->sc_tx_timer = 0;
1875 	if (--ring->queued < WPI_TX_RING_LOMARK) {
1876 		sc->qfullmsk &= ~(1 << ring->qid);
1877 		if (sc->qfullmsk == 0 &&
1878 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1879 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1880 			wpi_start_locked(ifp);
1881 		}
1882 	}
1883 
1884 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1885 }
1886 
1887 /*
1888  * Process a "command done" firmware notification.  This is where we wakeup
1889  * processes waiting for a synchronous command completion.
1890  */
1891 static void
1892 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1893 {
1894 	struct wpi_tx_ring *ring = &sc->txq[4];
1895 	struct wpi_tx_data *data;
1896 
1897 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid=%x idx=%d flags=%x "
1898 				   "type=%s len=%d\n", desc->qid, desc->idx,
1899 				   desc->flags, wpi_cmd_str(desc->type),
1900 				   le32toh(desc->len));
1901 
1902 	if ((desc->qid & 7) != 4)
1903 		return;	/* Not a command ack. */
1904 
1905 	data = &ring->data[desc->idx];
1906 
1907 	/* If the command was mapped in an mbuf, free it. */
1908 	if (data->m != NULL) {
1909 		bus_dmamap_sync(ring->data_dmat, data->map,
1910 		    BUS_DMASYNC_POSTWRITE);
1911 		bus_dmamap_unload(ring->data_dmat, data->map);
1912 		m_freem(data->m);
1913 		data->m = NULL;
1914 	}
1915 
1916 	sc->flags &= ~WPI_FLAG_BUSY;
1917 	wakeup(&ring->cmd[desc->idx]);
1918 }
1919 
1920 static void
1921 wpi_notif_intr(struct wpi_softc *sc)
1922 {
1923 	struct ifnet *ifp = sc->sc_ifp;
1924 	struct ieee80211com *ic = ifp->if_l2com;
1925 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1926 	int hw;
1927 
1928 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1929 	    BUS_DMASYNC_POSTREAD);
1930 
1931 	hw = le32toh(sc->shared->next);
1932 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1933 
1934 	while (sc->rxq.cur != hw) {
1935 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1936 
1937 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1938 		struct wpi_rx_desc *desc;
1939 
1940 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1941 		    BUS_DMASYNC_POSTREAD);
1942 		desc = mtod(data->m, struct wpi_rx_desc *);
1943 
1944 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
1945 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
1946 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
1947 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
1948 
1949 		if (!(desc->qid & 0x80))	/* Reply to a command. */
1950 			wpi_cmd_done(sc, desc);
1951 
1952 		switch (desc->type) {
1953 		case WPI_RX_DONE:
1954 			/* An 802.11 frame has been received. */
1955 			wpi_rx_done(sc, desc, data);
1956 			break;
1957 
1958 		case WPI_TX_DONE:
1959 			/* An 802.11 frame has been transmitted. */
1960 			wpi_tx_done(sc, desc);
1961 			break;
1962 
1963 		case WPI_RX_STATISTICS:
1964 		case WPI_BEACON_STATISTICS:
1965 			wpi_rx_statistics(sc, desc, data);
1966 			break;
1967 
1968 		case WPI_BEACON_MISSED:
1969 		{
1970 			struct wpi_beacon_missed *miss =
1971 			    (struct wpi_beacon_missed *)(desc + 1);
1972 			int misses;
1973 
1974 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1975 			    BUS_DMASYNC_POSTREAD);
1976 			misses = le32toh(miss->consecutive);
1977 
1978 			DPRINTF(sc, WPI_DEBUG_STATE,
1979 			    "%s: beacons missed %d/%d\n", __func__, misses,
1980 			    le32toh(miss->total));
1981 
1982 			if (vap->iv_state == IEEE80211_S_RUN &&
1983 			    (ic->ic_flags & IEEE80211_S_SCAN) == 0) {
1984 				if (misses >=  vap->iv_bmissthreshold) {
1985 					WPI_UNLOCK(sc);
1986 					ieee80211_beacon_miss(ic);
1987 					WPI_LOCK(sc);
1988 				}
1989 			}
1990 			break;
1991 		}
1992 		case WPI_UC_READY:
1993 		{
1994 			struct wpi_ucode_info *uc =
1995 			    (struct wpi_ucode_info *)(desc + 1);
1996 
1997 			/* The microcontroller is ready. */
1998 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1999 			    BUS_DMASYNC_POSTREAD);
2000 			DPRINTF(sc, WPI_DEBUG_RESET,
2001 			    "microcode alive notification version=%d.%d "
2002 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2003 			    uc->subtype, le32toh(uc->valid));
2004 
2005 			if (le32toh(uc->valid) != 1) {
2006 				device_printf(sc->sc_dev,
2007 				    "microcontroller initialization failed\n");
2008 				wpi_stop_locked(sc);
2009 			}
2010 			/* Save the address of the error log in SRAM. */
2011 			sc->errptr = le32toh(uc->errptr);
2012 			break;
2013 		}
2014 		case WPI_STATE_CHANGED:
2015 		{
2016                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2017                             BUS_DMASYNC_POSTREAD);
2018 
2019 			uint32_t *status = (uint32_t *)(desc + 1);
2020 
2021 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2022 			    le32toh(*status));
2023 
2024 			if (le32toh(*status) & 1) {
2025 				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2026 				return;
2027 			}
2028 			break;
2029 		}
2030 		case WPI_START_SCAN:
2031 		{
2032 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2033 			    BUS_DMASYNC_POSTREAD);
2034 #ifdef WPI_DEBUG
2035 			struct wpi_start_scan *scan =
2036 			    (struct wpi_start_scan *)(desc + 1);
2037 			DPRINTF(sc, WPI_DEBUG_SCAN,
2038 			    "%s: scanning channel %d status %x\n",
2039 			    __func__, scan->chan, le32toh(scan->status));
2040 #endif
2041 			break;
2042 		}
2043 		case WPI_STOP_SCAN:
2044 		{
2045 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2046 			    BUS_DMASYNC_POSTREAD);
2047 #ifdef WPI_DEBUG
2048 			struct wpi_stop_scan *scan =
2049 			    (struct wpi_stop_scan *)(desc + 1);
2050 			DPRINTF(sc, WPI_DEBUG_SCAN,
2051 			    "scan finished nchan=%d status=%d chan=%d\n",
2052 			    scan->nchan, scan->status, scan->chan);
2053 #endif
2054 			sc->sc_scan_timer = 0;
2055 			WPI_UNLOCK(sc);
2056 			ieee80211_scan_next(vap);
2057 			WPI_LOCK(sc);
2058 			break;
2059 		}
2060 		}
2061 	}
2062 
2063 	/* Tell the firmware what we have processed. */
2064 	wpi_update_rx_ring(sc);
2065 }
2066 
2067 /*
2068  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2069  * from power-down sleep mode.
2070  */
2071 static void
2072 wpi_wakeup_intr(struct wpi_softc *sc)
2073 {
2074 	int qid;
2075 
2076 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2077 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2078 
2079 	/* Wakeup RX and TX rings. */
2080 	if (sc->rxq.update) {
2081 		sc->rxq.update = 0;
2082 		wpi_update_rx_ring(sc);
2083 	}
2084 	for (qid = 0; qid < WPI_NTXQUEUES; qid++) {
2085 		struct wpi_tx_ring *ring = &sc->txq[qid];
2086 
2087 		if (ring->update) {
2088 			ring->update = 0;
2089 			wpi_update_tx_ring(sc, ring);
2090 		}
2091 	}
2092 
2093 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2094 }
2095 
2096 /*
2097  * Dump the error log of the firmware when a firmware panic occurs.  Although
2098  * we can't debug the firmware because it is neither open source nor free, it
2099  * can help us to identify certain classes of problems.
2100  */
2101 static void
2102 wpi_fatal_intr(struct wpi_softc *sc)
2103 {
2104 	struct wpi_fw_dump dump;
2105 	uint32_t i, offset, count;
2106 	const uint32_t size_errmsg =
2107 	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2108 
2109 	/* Check that the error log address is valid. */
2110 	if (sc->errptr < WPI_FW_DATA_BASE ||
2111 	    sc->errptr + sizeof (dump) >
2112 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2113 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2114 		    sc->errptr);
2115                 return;
2116         }
2117 	if (wpi_nic_lock(sc) != 0) {
2118 		printf("%s: could not read firmware error log\n", __func__);
2119                 return;
2120         }
2121 	/* Read number of entries in the log. */
2122 	count = wpi_mem_read(sc, sc->errptr);
2123 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2124 		printf("%s: invalid count field (count = %u)\n", __func__,
2125 		    count);
2126 		wpi_nic_unlock(sc);
2127 		return;
2128 	}
2129 	/* Skip "count" field. */
2130 	offset = sc->errptr + sizeof (uint32_t);
2131 	printf("firmware error log (count = %u):\n", count);
2132 	for (i = 0; i < count; i++) {
2133 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2134 		    sizeof (dump) / sizeof (uint32_t));
2135 
2136 		printf("  error type = \"%s\" (0x%08X)\n",
2137 		    (dump.desc < size_errmsg) ?
2138 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2139 		    dump.desc);
2140 		printf("  error data      = 0x%08X\n",
2141 		    dump.data);
2142 		printf("  branch link     = 0x%08X%08X\n",
2143 		    dump.blink[0], dump.blink[1]);
2144 		printf("  interrupt link  = 0x%08X%08X\n",
2145 		    dump.ilink[0], dump.ilink[1]);
2146 		printf("  time            = %u\n", dump.time);
2147 
2148 		offset += sizeof (dump);
2149 	}
2150 	wpi_nic_unlock(sc);
2151 	/* Dump driver status (TX and RX rings) while we're here. */
2152 	printf("driver status:\n");
2153 	for (i = 0; i < WPI_NTXQUEUES; i++) {
2154 		struct wpi_tx_ring *ring = &sc->txq[i];
2155 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2156 		    i, ring->qid, ring->cur, ring->queued);
2157 	}
2158 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2159 }
2160 
2161 static void
2162 wpi_intr(void *arg)
2163 {
2164 	struct wpi_softc *sc = arg;
2165 	struct ifnet *ifp = sc->sc_ifp;
2166 	uint32_t r1, r2;
2167 
2168 	WPI_LOCK(sc);
2169 
2170 	/* Disable interrupts. */
2171 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2172 
2173 	r1 = WPI_READ(sc, WPI_INT);
2174 
2175 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
2176 		WPI_UNLOCK(sc);
2177 		return;	/* Hardware gone! */
2178 	}
2179 
2180 	r2 = WPI_READ(sc, WPI_FH_INT);
2181 
2182 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2183 	    r1, r2);
2184 
2185 	if (r1 == 0 && r2 == 0)
2186 		goto done;	/* Interrupt not for us. */
2187 
2188 	/* Acknowledge interrupts. */
2189 	WPI_WRITE(sc, WPI_INT, r1);
2190 	WPI_WRITE(sc, WPI_FH_INT, r2);
2191 
2192 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2193 		struct ieee80211com *ic = ifp->if_l2com;
2194 
2195 		device_printf(sc->sc_dev, "fatal firmware error\n");
2196 		wpi_fatal_intr(sc);
2197 		DPRINTF(sc, WPI_DEBUG_HW,
2198 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2199 		    "(Hardware Error)");
2200 		ieee80211_runtask(ic, &sc->sc_reinittask);
2201 		sc->flags &= ~WPI_FLAG_BUSY;
2202 		WPI_UNLOCK(sc);
2203 		return;
2204 	}
2205 
2206 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2207 	    (r2 & WPI_FH_INT_RX))
2208 		wpi_notif_intr(sc);
2209 
2210 	if (r1 & WPI_INT_ALIVE)
2211 		wakeup(sc);	/* Firmware is alive. */
2212 
2213 	if (r1 & WPI_INT_WAKEUP)
2214 		wpi_wakeup_intr(sc);
2215 
2216 done:
2217 	/* Re-enable interrupts. */
2218 	if (ifp->if_flags & IFF_UP)
2219 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2220 
2221 	WPI_UNLOCK(sc);
2222 }
2223 
2224 static int
2225 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2226 {
2227 	struct ifnet *ifp = sc->sc_ifp;
2228 	struct ieee80211com *ic = ifp->if_l2com;
2229 	struct ieee80211_frame *wh;
2230 	struct wpi_tx_cmd *cmd;
2231 	struct wpi_tx_data *data;
2232 	struct wpi_tx_desc *desc;
2233 	struct wpi_tx_ring *ring;
2234 	struct mbuf *m1;
2235 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2236 	int error, i, hdrspace, nsegs, totlen;
2237 
2238 	WPI_LOCK_ASSERT(sc);
2239 
2240 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2241 
2242 	wh = mtod(buf->m, struct ieee80211_frame *);
2243 	hdrspace = ieee80211_anyhdrspace(ic, wh);
2244 	totlen = buf->m->m_pkthdr.len;
2245 
2246 	ring = &sc->txq[buf->ac];
2247 	desc = &ring->desc[ring->cur];
2248 	data = &ring->data[ring->cur];
2249 
2250 	/* Prepare TX firmware command. */
2251 	cmd = &ring->cmd[ring->cur];
2252 	cmd->code = buf->code;
2253 	cmd->flags = 0;
2254 	cmd->qid = ring->qid;
2255 	cmd->idx = ring->cur;
2256 
2257 	memcpy(cmd->data, buf->data, buf->size);
2258 
2259 	/* Save and trim IEEE802.11 header. */
2260 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrspace);
2261 	m_adj(buf->m, hdrspace);
2262 
2263 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2264 	    segs, &nsegs, BUS_DMA_NOWAIT);
2265 	if (error != 0 && error != EFBIG) {
2266 		device_printf(sc->sc_dev,
2267 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2268 		m_freem(buf->m);
2269 		return error;
2270 	}
2271 	if (error != 0) {
2272 		/* Too many DMA segments, linearize mbuf. */
2273 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER);
2274 		if (m1 == NULL) {
2275 			device_printf(sc->sc_dev,
2276 			    "%s: could not defrag mbuf\n", __func__);
2277 			m_freem(buf->m);
2278 			return ENOBUFS;
2279 		}
2280 		buf->m = m1;
2281 
2282 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2283 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2284 		if (error != 0) {
2285 			device_printf(sc->sc_dev,
2286 			    "%s: can't map mbuf (error %d)\n", __func__, error);
2287 			m_freem(buf->m);
2288 			return error;
2289 		}
2290 	}
2291 
2292 	data->m = buf->m;
2293 	data->ni = buf->ni;
2294 
2295 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2296 	    __func__, ring->qid, ring->cur, totlen, nsegs);
2297 
2298 	/* Fill TX descriptor. */
2299 	desc->nsegs = WPI_PAD32(totlen) << 4 | (1 + nsegs);
2300 	/* First DMA segment is used by the TX command. */
2301 	desc->segs[0].addr = htole32(data->cmd_paddr);
2302 	desc->segs[0].len  = htole32(4 + buf->size + hdrspace);
2303 	/* Other DMA segments are for data payload. */
2304 	seg = &segs[0];
2305 	for (i = 1; i <= nsegs; i++) {
2306 		desc->segs[i].addr = htole32(seg->ds_addr);
2307 		desc->segs[i].len  = htole32(seg->ds_len);
2308 		seg++;
2309 	}
2310 
2311 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2312 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2313 	    BUS_DMASYNC_PREWRITE);
2314 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2315 	    BUS_DMASYNC_PREWRITE);
2316 
2317 	/* Kick TX ring. */
2318 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2319 	wpi_update_tx_ring(sc, ring);
2320 
2321 	/* Mark TX ring as full if we reach a certain threshold. */
2322 	if (++ring->queued > WPI_TX_RING_HIMARK)
2323 		sc->qfullmsk |= 1 << ring->qid;
2324 
2325 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2326 
2327 	return 0;
2328 }
2329 
2330 /*
2331  * Construct the data packet for a transmit buffer.
2332  */
2333 static int
2334 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2335 {
2336 	const struct ieee80211_txparam *tp;
2337 	struct ieee80211vap *vap = ni->ni_vap;
2338 	struct ieee80211com *ic = ni->ni_ic;
2339 	struct wpi_node *wn = (void *)ni;
2340 	struct ieee80211_channel *chan;
2341 	struct ieee80211_frame *wh;
2342 	struct ieee80211_key *k = NULL;
2343 	struct wpi_cmd_data tx;
2344 	struct wpi_buf tx_data;
2345 	uint32_t flags;
2346 	uint16_t qos;
2347 	uint8_t tid, type;
2348 	int ac, error, rate, ismcast, hdrlen, totlen;
2349 
2350 	wh = mtod(m, struct ieee80211_frame *);
2351 	hdrlen = ieee80211_anyhdrsize(wh);
2352 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2353 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2354 
2355 	/* Select EDCA Access Category and TX ring for this frame. */
2356 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2357  		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2358 		tid = qos & IEEE80211_QOS_TID;
2359 	} else {
2360 		qos = 0;
2361 		tid = 0;
2362         }
2363 	ac = M_WME_GETAC(m);
2364 
2365 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2366 		ni->ni_chan : ic->ic_curchan;
2367 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2368 
2369 	/* Choose a TX rate index. */
2370 	if (type == IEEE80211_FC0_TYPE_MGT)
2371 		rate = tp->mgmtrate;
2372 	else if (ismcast)
2373 		rate = tp->mcastrate;
2374 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2375 		rate = tp->ucastrate;
2376 	else if (m->m_flags & M_EAPOL)
2377 		rate = tp->mgmtrate;
2378 	else {
2379 		/* XXX pass pktlen */
2380 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2381 		rate = ni->ni_txrate;
2382 	}
2383 
2384 	/* Encrypt the frame if need be. */
2385 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2386 		/* Retrieve key for TX. */
2387 		k = ieee80211_crypto_encap(ni, m);
2388 		if (k == NULL) {
2389 			error = ENOBUFS;
2390 			goto fail;
2391 		}
2392 		/* 802.11 header may have moved. */
2393 		wh = mtod(m, struct ieee80211_frame *);
2394 	}
2395 	totlen = m->m_pkthdr.len - (hdrlen & 3);
2396 
2397 	if (ieee80211_radiotap_active_vap(vap)) {
2398 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2399 
2400 		tap->wt_flags = IEEE80211_RADIOTAP_F_DATAPAD;
2401 		tap->wt_rate = rate;
2402 		if (k != NULL)
2403 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2404 
2405 		ieee80211_radiotap_tx(vap, m);
2406 	}
2407 
2408 	flags = 0;
2409 	if (!ismcast) {
2410 		/* Unicast frame, check if an ACK is expected. */
2411 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2412 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2413 			flags |= WPI_TX_NEED_ACK;
2414 	}
2415 
2416 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2417 		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2418 
2419 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2420 	if (!ismcast) {
2421 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2422 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2423 			flags |= WPI_TX_NEED_RTS;
2424 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2425 		    WPI_RATE_IS_OFDM(rate)) {
2426 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2427 				flags |= WPI_TX_NEED_CTS;
2428 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2429 				flags |= WPI_TX_NEED_RTS;
2430 		}
2431 
2432 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2433 			flags |= WPI_TX_FULL_TXOP;
2434 	}
2435 
2436 	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2437 	if (type == IEEE80211_FC0_TYPE_MGT) {
2438 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2439 
2440 		/* Tell HW to set timestamp in probe responses. */
2441 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2442 			flags |= WPI_TX_INSERT_TSTAMP;
2443 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2444 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2445 			tx.timeout = htole16(3);
2446 		else
2447 			tx.timeout = htole16(2);
2448 	}
2449 
2450 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2451 		tx.id = WPI_ID_BROADCAST;
2452 	else {
2453 		if (wn->id == WPI_ID_UNDEFINED &&
2454 		    (vap->iv_opmode == IEEE80211_M_IBSS ||
2455 		    vap->iv_opmode == IEEE80211_M_AHDEMO)) {
2456 			error = wpi_add_ibss_node(sc, ni);
2457 			if (error != 0) {
2458 				device_printf(sc->sc_dev,
2459 				    "%s: could not add IBSS node, error %d\n",
2460 				    __func__, error);
2461 				goto fail;
2462 			}
2463 		}
2464 
2465 		if (wn->id == WPI_ID_UNDEFINED) {
2466 			device_printf(sc->sc_dev,
2467 			    "%s: undefined node id\n", __func__);
2468 			error = EINVAL;
2469 			goto fail;
2470 		}
2471 
2472 		tx.id = wn->id;
2473 	}
2474 
2475 	if (type != IEEE80211_FC0_TYPE_MGT)
2476 		tx.data_ntries = tp->maxretry;
2477 
2478 	tx.len = htole16(totlen);
2479 	tx.flags = htole32(flags);
2480 	tx.plcp = rate2plcp(rate);
2481 	tx.tid = tid;
2482 	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2483 	tx.ofdm_mask = 0xff;
2484 	tx.cck_mask = 0x0f;
2485 	tx.rts_ntries = 7;
2486 
2487 	if (k != NULL && k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2488 		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
2489 			tx.security = WPI_CIPHER_CCMP;
2490 			memcpy(tx.key, k->wk_key, k->wk_keylen);
2491 		}
2492 	}
2493 
2494 	tx_data.data = &tx;
2495 	tx_data.ni = ni;
2496 	tx_data.m = m;
2497 	tx_data.size = sizeof(tx);
2498 	tx_data.code = WPI_CMD_TX_DATA;
2499 	tx_data.ac = ac;
2500 
2501 	return wpi_cmd2(sc, &tx_data);
2502 
2503 fail:	m_freem(m);
2504 	return error;
2505 }
2506 
2507 static int
2508 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2509     const struct ieee80211_bpf_params *params)
2510 {
2511 	struct ieee80211vap *vap = ni->ni_vap;
2512 	struct ieee80211_frame *wh;
2513 	struct wpi_cmd_data tx;
2514 	struct wpi_buf tx_data;
2515 	uint32_t flags;
2516 	uint8_t type;
2517 	int ac, rate, hdrlen, totlen;
2518 
2519 	wh = mtod(m, struct ieee80211_frame *);
2520 	hdrlen = ieee80211_anyhdrsize(wh);
2521 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2522 	totlen = m->m_pkthdr.len - (hdrlen & 3);
2523 
2524 	ac = params->ibp_pri & 3;
2525 
2526 	/* Choose a TX rate index. */
2527 	rate = params->ibp_rate0;
2528 
2529 	flags = 0;
2530 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2531 		flags |= WPI_TX_NEED_ACK;
2532 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2533 		flags |= WPI_TX_NEED_RTS;
2534 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2535 		flags |= WPI_TX_NEED_CTS;
2536 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2537 		flags |= WPI_TX_FULL_TXOP;
2538 
2539 	if (ieee80211_radiotap_active_vap(vap)) {
2540 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2541 
2542 		tap->wt_flags = 0;
2543 		tap->wt_rate = rate;
2544 		if (params->ibp_flags & IEEE80211_BPF_DATAPAD)
2545 			tap->wt_flags |= IEEE80211_RADIOTAP_F_DATAPAD;
2546 
2547 		ieee80211_radiotap_tx(vap, m);
2548 	}
2549 
2550 	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2551 	if (type == IEEE80211_FC0_TYPE_MGT) {
2552 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2553 
2554 		/* Tell HW to set timestamp in probe responses. */
2555 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2556 			flags |= WPI_TX_INSERT_TSTAMP;
2557 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2558 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2559 			tx.timeout = htole16(3);
2560 		else
2561 			tx.timeout = htole16(2);
2562 	}
2563 
2564 	tx.len = htole16(totlen);
2565 	tx.flags = htole32(flags);
2566 	tx.plcp = rate2plcp(rate);
2567 	tx.id = WPI_ID_BROADCAST;
2568 	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2569 	tx.rts_ntries = params->ibp_try1;
2570 	tx.data_ntries = params->ibp_try0;
2571 
2572 	tx_data.data = &tx;
2573 	tx_data.ni = ni;
2574 	tx_data.m = m;
2575 	tx_data.size = sizeof(tx);
2576 	tx_data.code = WPI_CMD_TX_DATA;
2577 	tx_data.ac = ac;
2578 
2579 	return wpi_cmd2(sc, &tx_data);
2580 }
2581 
2582 static int
2583 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2584     const struct ieee80211_bpf_params *params)
2585 {
2586 	struct ieee80211com *ic = ni->ni_ic;
2587 	struct ifnet *ifp = ic->ic_ifp;
2588 	struct wpi_softc *sc = ifp->if_softc;
2589 	int error = 0;
2590 
2591 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2592 
2593 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2594 		ieee80211_free_node(ni);
2595 		m_freem(m);
2596 		return ENETDOWN;
2597 	}
2598 
2599 	WPI_LOCK(sc);
2600 	if (params == NULL) {
2601 		/*
2602 		 * Legacy path; interpret frame contents to decide
2603 		 * precisely how to send the frame.
2604 		 */
2605 		error = wpi_tx_data(sc, m, ni);
2606 	} else {
2607 		/*
2608 		 * Caller supplied explicit parameters to use in
2609 		 * sending the frame.
2610 		 */
2611 		error = wpi_tx_data_raw(sc, m, ni, params);
2612 	}
2613 	WPI_UNLOCK(sc);
2614 
2615 	if (error != 0) {
2616 		/* NB: m is reclaimed on tx failure */
2617 		ieee80211_free_node(ni);
2618 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2619 
2620 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2621 
2622 		return error;
2623 	}
2624 
2625 	sc->sc_tx_timer = 5;
2626 
2627 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2628 
2629 	return 0;
2630 }
2631 
2632 /**
2633  * Process data waiting to be sent on the IFNET output queue
2634  */
2635 static void
2636 wpi_start(struct ifnet *ifp)
2637 {
2638 	struct wpi_softc *sc = ifp->if_softc;
2639 
2640 	WPI_LOCK(sc);
2641 	wpi_start_locked(ifp);
2642 	WPI_UNLOCK(sc);
2643 }
2644 
2645 static void
2646 wpi_start_locked(struct ifnet *ifp)
2647 {
2648 	struct wpi_softc *sc = ifp->if_softc;
2649 	struct ieee80211_node *ni;
2650 	struct mbuf *m;
2651 
2652 	WPI_LOCK_ASSERT(sc);
2653 
2654 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2655 
2656 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2657 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
2658 		return;
2659 
2660 	for (;;) {
2661 		if (sc->qfullmsk != 0) {
2662 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2663 			break;
2664 		}
2665 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2666 		if (m == NULL)
2667 			break;
2668 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2669 		if (wpi_tx_data(sc, m, ni) != 0) {
2670 			WPI_UNLOCK(sc);
2671 			ieee80211_free_node(ni);
2672 			WPI_LOCK(sc);
2673 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2674 		} else
2675 			sc->sc_tx_timer = 5;
2676 	}
2677 
2678 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2679 }
2680 
2681 static void
2682 wpi_watchdog_rfkill(void *arg)
2683 {
2684 	struct wpi_softc *sc = arg;
2685 	struct ifnet *ifp = sc->sc_ifp;
2686 	struct ieee80211com *ic = ifp->if_l2com;
2687 
2688 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2689 
2690 	/* No need to lock firmware memory. */
2691 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2692 		/* Radio kill switch is still off. */
2693 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2694 		    sc);
2695 	} else
2696 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2697 }
2698 
2699 /**
2700  * Called every second, wpi_watchdog used by the watch dog timer
2701  * to check that the card is still alive
2702  */
2703 static void
2704 wpi_watchdog(void *arg)
2705 {
2706 	struct wpi_softc *sc = arg;
2707 	struct ifnet *ifp = sc->sc_ifp;
2708 	struct ieee80211com *ic = ifp->if_l2com;
2709 
2710 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "Watchdog: tick\n");
2711 
2712 	if (sc->sc_tx_timer > 0) {
2713 		if (--sc->sc_tx_timer == 0) {
2714 			if_printf(ifp, "device timeout\n");
2715 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2716 			ieee80211_runtask(ic, &sc->sc_reinittask);
2717 		}
2718 	}
2719 
2720 	if (sc->sc_scan_timer > 0) {
2721 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2722 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
2723 			if_printf(ifp, "scan timeout\n");
2724 			ieee80211_cancel_scan(vap);
2725 			ieee80211_runtask(ic, &sc->sc_reinittask);
2726 		}
2727 	}
2728 
2729 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2730 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2731 }
2732 
2733 static int
2734 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2735 {
2736 	struct wpi_softc *sc = ifp->if_softc;
2737 	struct ieee80211com *ic = ifp->if_l2com;
2738 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2739 	struct ifreq *ifr = (struct ifreq *) data;
2740 	int error = 0, startall = 0, stop = 0;
2741 
2742 	switch (cmd) {
2743 	case SIOCGIFADDR:
2744 		error = ether_ioctl(ifp, cmd, data);
2745 		break;
2746 	case SIOCSIFFLAGS:
2747 		WPI_LOCK(sc);
2748 		if (ifp->if_flags & IFF_UP) {
2749 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2750 				wpi_init_locked(sc);
2751 				if (WPI_READ(sc, WPI_GP_CNTRL) &
2752 				    WPI_GP_CNTRL_RFKILL)
2753 					startall = 1;
2754 				else
2755 					stop = 1;
2756 			}
2757 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2758 			wpi_stop_locked(sc);
2759 		WPI_UNLOCK(sc);
2760 		if (startall)
2761 			ieee80211_start_all(ic);
2762 		else if (vap != NULL && stop)
2763 			ieee80211_stop(vap);
2764 		break;
2765 	case SIOCGIFMEDIA:
2766 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2767 		break;
2768 	default:
2769 		error = EINVAL;
2770 		break;
2771 	}
2772 	return error;
2773 }
2774 
2775 /*
2776  * Send a command to the firmware.
2777  */
2778 static int
2779 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
2780     int async)
2781 {
2782 	struct wpi_tx_ring *ring = &sc->txq[4];
2783 	struct wpi_tx_desc *desc;
2784 	struct wpi_tx_data *data;
2785 	struct wpi_tx_cmd *cmd;
2786 	struct mbuf *m;
2787 	bus_addr_t paddr;
2788 	int totlen, error;
2789 
2790 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2791 
2792 	if (async == 0)
2793 		WPI_LOCK_ASSERT(sc);
2794 
2795 	DPRINTF(sc, WPI_DEBUG_CMD, "wpi_cmd %s size %zu async %d\n",
2796 	    wpi_cmd_str(code), size, async);
2797 
2798 	if (sc->flags & WPI_FLAG_BUSY) {
2799 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2800 		    __func__, code);
2801 		return EAGAIN;
2802 	}
2803 	sc->flags |= WPI_FLAG_BUSY;
2804 
2805 	desc = &ring->desc[ring->cur];
2806 	data = &ring->data[ring->cur];
2807 	totlen = 4 + size;
2808 
2809 	if (size > sizeof cmd->data) {
2810 		/* Command is too large to fit in a descriptor. */
2811 		if (totlen > MCLBYTES)
2812 			return EINVAL;
2813 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2814 		if (m == NULL)
2815 			return ENOMEM;
2816 		cmd = mtod(m, struct wpi_tx_cmd *);
2817 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
2818 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2819 		if (error != 0) {
2820 			m_freem(m);
2821 			return error;
2822 		}
2823 		data->m = m;
2824 	} else {
2825 		cmd = &ring->cmd[ring->cur];
2826 		paddr = data->cmd_paddr;
2827 	}
2828 
2829 	cmd->code = code;
2830 	cmd->flags = 0;
2831 	cmd->qid = ring->qid;
2832 	cmd->idx = ring->cur;
2833 	memcpy(cmd->data, buf, size);
2834 
2835 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
2836 	desc->segs[0].addr = htole32(paddr);
2837 	desc->segs[0].len  = htole32(totlen);
2838 
2839 	if (size > sizeof cmd->data) {
2840 		bus_dmamap_sync(ring->data_dmat, data->map,
2841 		    BUS_DMASYNC_PREWRITE);
2842 	} else {
2843 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2844 		    BUS_DMASYNC_PREWRITE);
2845 	}
2846 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2847 	    BUS_DMASYNC_PREWRITE);
2848 
2849 	/* Kick command ring. */
2850 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2851 	wpi_update_tx_ring(sc, ring);
2852 
2853 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2854 
2855 	if (async) {
2856 		sc->flags &= ~WPI_FLAG_BUSY;
2857 		return 0;
2858 	}
2859 
2860 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2861 }
2862 
2863 /*
2864  * Configure HW multi-rate retries.
2865  */
2866 static int
2867 wpi_mrr_setup(struct wpi_softc *sc)
2868 {
2869 	struct ifnet *ifp = sc->sc_ifp;
2870 	struct ieee80211com *ic = ifp->if_l2com;
2871 	struct wpi_mrr_setup mrr;
2872 	int i, error;
2873 
2874 	/* CCK rates (not used with 802.11a). */
2875 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2876 		mrr.rates[i].flags = 0;
2877 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2878 		/* Fallback to the immediate lower CCK rate (if any.) */
2879 		mrr.rates[i].next =
2880 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2881 		/* Try one time at this rate before falling back to "next". */
2882 		mrr.rates[i].ntries = 1;
2883 	}
2884 	/* OFDM rates (not used with 802.11b). */
2885 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2886 		mrr.rates[i].flags = 0;
2887 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2888 		/* Fallback to the immediate lower rate (if any.) */
2889 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2890 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2891 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2892 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2893 		    i - 1;
2894 		/* Try one time at this rate before falling back to "next". */
2895 		mrr.rates[i].ntries = 1;
2896 	}
2897 	/* Setup MRR for control frames. */
2898 	mrr.which = htole32(WPI_MRR_CTL);
2899 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2900 	if (error != 0) {
2901 		device_printf(sc->sc_dev,
2902 		    "could not setup MRR for control frames\n");
2903 		return error;
2904 	}
2905 	/* Setup MRR for data frames. */
2906 	mrr.which = htole32(WPI_MRR_DATA);
2907 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2908 	if (error != 0) {
2909 		device_printf(sc->sc_dev,
2910 		    "could not setup MRR for data frames\n");
2911 		return error;
2912 	}
2913 	return 0;
2914 }
2915 
2916 static int
2917 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2918 {
2919 	struct ieee80211com *ic = ni->ni_ic;
2920 	struct wpi_node *wn = (void *)ni;
2921 	struct wpi_node_info node;
2922 
2923 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2924 
2925 	if (wn->id == WPI_ID_UNDEFINED)
2926 		return EINVAL;
2927 
2928 	memset(&node, 0, sizeof node);
2929 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid);
2930 	node.id = wn->id;
2931 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2932 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2933 	node.action = htole32(WPI_ACTION_SET_RATE);
2934 	node.antenna = WPI_ANTENNA_BOTH;
2935 
2936 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2937 }
2938 
2939 /*
2940  * Broadcast node is used to send group-addressed and management frames.
2941  */
2942 static int
2943 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
2944 {
2945 	struct ifnet *ifp = sc->sc_ifp;
2946 	struct ieee80211com *ic = ifp->if_l2com;
2947 	struct wpi_node_info node;
2948 
2949 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2950 
2951 	memset(&node, 0, sizeof node);
2952 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
2953 	node.id = WPI_ID_BROADCAST;
2954 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2955 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2956 	node.action = htole32(WPI_ACTION_SET_RATE);
2957 	node.antenna = WPI_ANTENNA_BOTH;
2958 
2959 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
2960 }
2961 
2962 static int
2963 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2964 {
2965 	struct wpi_node *wn = (void *)ni;
2966 
2967 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2968 
2969 	if (wn->id != WPI_ID_UNDEFINED)
2970 		return EINVAL;
2971 
2972 	wn->id = alloc_unrl(sc->sc_unr);
2973 
2974 	if (wn->id == (uint8_t)-1)
2975 		return ENOBUFS;
2976 
2977 	return wpi_add_node(sc, ni);
2978 }
2979 
2980 static void
2981 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2982 {
2983 	struct wpi_node *wn = (void *)ni;
2984 	struct wpi_cmd_del_node node;
2985 	int error;
2986 
2987 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2988 
2989 	if (wn->id == WPI_ID_UNDEFINED) {
2990 		device_printf(sc->sc_dev, "%s: undefined node id passed\n",
2991 		    __func__);
2992 		return;
2993 	}
2994 
2995 	memset(&node, 0, sizeof node);
2996 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid);
2997 	node.count = 1;
2998 
2999 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3000 	if (error != 0) {
3001 		device_printf(sc->sc_dev,
3002 		    "%s: could not delete node %u, error %d\n", __func__,
3003 		    wn->id, error);
3004 	}
3005 }
3006 
3007 static int
3008 wpi_updateedca(struct ieee80211com *ic)
3009 {
3010 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3011 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3012 	struct wpi_edca_params cmd;
3013 	int aci, error;
3014 
3015 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3016 
3017 	memset(&cmd, 0, sizeof cmd);
3018 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3019 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3020 		const struct wmeParams *ac =
3021 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3022 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3023 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3024 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3025 		cmd.ac[aci].txoplimit =
3026 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3027 
3028 		DPRINTF(sc, WPI_DEBUG_EDCA,
3029 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3030 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3031 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3032 		    cmd.ac[aci].txoplimit);
3033 	}
3034 	IEEE80211_UNLOCK(ic);
3035 	WPI_LOCK(sc);
3036 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3037 	WPI_UNLOCK(sc);
3038 	IEEE80211_LOCK(ic);
3039 
3040 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3041 
3042 	return error;
3043 #undef WPI_EXP2
3044 }
3045 
3046 static void
3047 wpi_set_promisc(struct wpi_softc *sc)
3048 {
3049 	struct ifnet *ifp = sc->sc_ifp;
3050 	uint32_t promisc_filter;
3051 
3052 	promisc_filter = WPI_FILTER_PROMISC | WPI_FILTER_CTL;
3053 
3054 	if (ifp->if_flags & IFF_PROMISC)
3055 		sc->rxon.filter |= htole32(promisc_filter);
3056 	else
3057 		sc->rxon.filter &= ~htole32(promisc_filter);
3058 }
3059 
3060 static void
3061 wpi_update_promisc(struct ifnet *ifp)
3062 {
3063 	struct wpi_softc *sc = ifp->if_softc;
3064 
3065 	wpi_set_promisc(sc);
3066 
3067 	WPI_LOCK(sc);
3068 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3069 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3070 		    __func__);
3071 	}
3072 	WPI_UNLOCK(sc);
3073 }
3074 
3075 static void
3076 wpi_update_mcast(struct ifnet *ifp)
3077 {
3078 	/* Ignore */
3079 }
3080 
3081 static void
3082 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3083 {
3084 	struct wpi_cmd_led led;
3085 
3086 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3087 
3088 	led.which = which;
3089 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3090 	led.off = off;
3091 	led.on = on;
3092 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3093 }
3094 
3095 static int
3096 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3097 {
3098 	struct wpi_cmd_timing cmd;
3099 	uint64_t val, mod;
3100 
3101 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3102 
3103 	memset(&cmd, 0, sizeof cmd);
3104 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3105 	cmd.bintval = htole16(ni->ni_intval);
3106 	cmd.lintval = htole16(10);
3107 
3108 	/* Compute remaining time until next beacon. */
3109 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3110 	mod = le64toh(cmd.tstamp) % val;
3111 	cmd.binitval = htole32((uint32_t)(val - mod));
3112 
3113 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3114 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3115 
3116 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3117 }
3118 
3119 /*
3120  * This function is called periodically (every 60 seconds) to adjust output
3121  * power to temperature changes.
3122  */
3123 static void
3124 wpi_power_calibration(struct wpi_softc *sc)
3125 {
3126 	int temp;
3127 
3128 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3129 
3130 	/* Update sensor data. */
3131 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3132 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3133 
3134 	/* Sanity-check read value. */
3135 	if (temp < -260 || temp > 25) {
3136 		/* This can't be correct, ignore. */
3137 		DPRINTF(sc, WPI_DEBUG_TEMP,
3138 		    "out-of-range temperature reported: %d\n", temp);
3139 		return;
3140 	}
3141 
3142 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3143 
3144 	/* Adjust Tx power if need be. */
3145 	if (abs(temp - sc->temp) <= 6)
3146 		return;
3147 
3148 	sc->temp = temp;
3149 
3150 	if (wpi_set_txpower(sc, 1) != 0) {
3151 		/* just warn, too bad for the automatic calibration... */
3152 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3153 	}
3154 }
3155 
3156 /*
3157  * Set TX power for current channel.
3158  */
3159 static int
3160 wpi_set_txpower(struct wpi_softc *sc, int async)
3161 {
3162 	struct ifnet *ifp = sc->sc_ifp;
3163 	struct ieee80211com *ic = ifp->if_l2com;
3164 	struct ieee80211_channel *ch;
3165 	struct wpi_power_group *group;
3166 	struct wpi_cmd_txpower cmd;
3167 	uint8_t chan;
3168 	int idx, i;
3169 
3170 	/* Retrieve current channel from last RXON. */
3171 	chan = sc->rxon.chan;
3172 	ch = &ic->ic_channels[chan];
3173 
3174 	/* Find the TX power group to which this channel belongs. */
3175 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3176 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3177 			if (chan <= group->chan)
3178 				break;
3179 	} else
3180 		group = &sc->groups[0];
3181 
3182 	memset(&cmd, 0, sizeof cmd);
3183 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3184 	cmd.chan = htole16(chan);
3185 
3186 	/* Set TX power for all OFDM and CCK rates. */
3187 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3188 		/* Retrieve TX power for this channel/rate. */
3189 		idx = wpi_get_power_index(sc, group, ch, i);
3190 
3191 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3192 
3193 		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3194 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3195 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3196 		} else {
3197 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3198 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3199 		}
3200 		DPRINTF(sc, WPI_DEBUG_TEMP,
3201 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3202 	}
3203 
3204 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3205 }
3206 
3207 /*
3208  * Determine Tx power index for a given channel/rate combination.
3209  * This takes into account the regulatory information from EEPROM and the
3210  * current temperature.
3211  */
3212 static int
3213 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3214     struct ieee80211_channel *c, int ridx)
3215 {
3216 /* Fixed-point arithmetic division using a n-bit fractional part. */
3217 #define fdivround(a, b, n)      \
3218 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3219 
3220 /* Linear interpolation. */
3221 #define interpolate(x, x1, y1, x2, y2, n)       \
3222 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3223 
3224 	struct ifnet *ifp = sc->sc_ifp;
3225 	struct ieee80211com *ic = ifp->if_l2com;
3226 	struct wpi_power_sample *sample;
3227 	int pwr, idx;
3228 	u_int chan;
3229 
3230 	/* Get channel number. */
3231 	chan = ieee80211_chan2ieee(ic, c);
3232 
3233 	/* Default TX power is group maximum TX power minus 3dB. */
3234 	pwr = group->maxpwr / 2;
3235 
3236 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3237 	switch (ridx) {
3238 	case WPI_RIDX_OFDM36:
3239 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3240 		break;
3241 	case WPI_RIDX_OFDM48:
3242 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3243 		break;
3244 	case WPI_RIDX_OFDM54:
3245 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3246 		break;
3247 	}
3248 
3249 	/* Never exceed the channel maximum allowed TX power. */
3250 	pwr = min(pwr, sc->maxpwr[chan]);
3251 
3252 	/* Retrieve TX power index into gain tables from samples. */
3253 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3254 		if (pwr > sample[1].power)
3255 			break;
3256 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3257 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3258 	    sample[1].power, sample[1].index, 19);
3259 
3260 	/*-
3261 	 * Adjust power index based on current temperature:
3262 	 * - if cooler than factory-calibrated: decrease output power
3263 	 * - if warmer than factory-calibrated: increase output power
3264 	 */
3265 	idx -= (sc->temp - group->temp) * 11 / 100;
3266 
3267 	/* Decrease TX power for CCK rates (-5dB). */
3268 	if (ridx >= WPI_RIDX_CCK1)
3269 		idx += 10;
3270 
3271 	/* Make sure idx stays in a valid range. */
3272 	if (idx < 0)
3273 		return 0;
3274 	if (idx > WPI_MAX_PWR_INDEX)
3275 		return WPI_MAX_PWR_INDEX;
3276 	return idx;
3277 
3278 #undef interpolate
3279 #undef fdivround
3280 }
3281 
3282 /*
3283  * Set STA mode power saving level (between 0 and 5).
3284  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3285  */
3286 static int
3287 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3288 {
3289 	struct wpi_pmgt_cmd cmd;
3290 	const struct wpi_pmgt *pmgt;
3291 	uint32_t max, skip_dtim;
3292 	uint32_t reg;
3293 	int i;
3294 
3295 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3296 	    "%s: dtim=%d, level=%d, async=%d\n",
3297 	    __func__, dtim, level, async);
3298 
3299 	/* Select which PS parameters to use. */
3300 	if (dtim <= 10)
3301 		pmgt = &wpi_pmgt[0][level];
3302 	else
3303 		pmgt = &wpi_pmgt[1][level];
3304 
3305 	memset(&cmd, 0, sizeof cmd);
3306 	if (level != 0)	/* not CAM */
3307 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3308 	/* Retrieve PCIe Active State Power Management (ASPM). */
3309 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3310 	if (!(reg & 0x1))	/* L0s Entry disabled. */
3311 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3312 
3313 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3314 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3315 
3316 	if (dtim == 0) {
3317 		dtim = 1;
3318 		skip_dtim = 0;
3319 	} else
3320 		skip_dtim = pmgt->skip_dtim;
3321 
3322 	if (skip_dtim != 0) {
3323 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3324 		max = pmgt->intval[4];
3325 		if (max == (uint32_t)-1)
3326 			max = dtim * (skip_dtim + 1);
3327 		else if (max > dtim)
3328 			max = (max / dtim) * dtim;
3329 	} else
3330 		max = dtim;
3331 
3332 	for (i = 0; i < 5; i++)
3333 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3334 
3335 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3336 }
3337 
3338 static int
3339 wpi_send_btcoex(struct wpi_softc *sc)
3340 {
3341 	struct wpi_bluetooth cmd;
3342 
3343         memset(&cmd, 0, sizeof cmd);
3344         cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3345         cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3346         cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3347 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3348 	    __func__);
3349         return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3350 }
3351 
3352 static int
3353 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3354 {
3355 	int error;
3356 
3357 	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3358 		struct wpi_assoc rxon_assoc;
3359 
3360 		rxon_assoc.flags = sc->rxon.flags;
3361 		rxon_assoc.filter = sc->rxon.filter;
3362 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3363 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3364 		rxon_assoc.reserved = 0;
3365 
3366 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3367 		    sizeof (struct wpi_assoc), async);
3368 	} else {
3369 		error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3370 		    sizeof (struct wpi_rxon), async);
3371 	}
3372 	if (error != 0) {
3373 		device_printf(sc->sc_dev, "RXON command failed, error %d\n",
3374 		    error);
3375 		return error;
3376 	}
3377 
3378 	/* Configuration has changed, set Tx power accordingly. */
3379 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3380 		device_printf(sc->sc_dev,
3381 		    "%s: could not set TX power, error %d\n", __func__, error);
3382 		return error;
3383 	}
3384 
3385 	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3386 		/* Add broadcast node. */
3387 		error = wpi_add_broadcast_node(sc, async);
3388 		if (error != 0) {
3389 			device_printf(sc->sc_dev,
3390 			    "could not add broadcast node, error %d\n", error);
3391 			return error;
3392 		}
3393 	}
3394 
3395 	return 0;
3396 }
3397 
3398 /**
3399  * Configure the card to listen to a particular channel, this transisions the
3400  * card in to being able to receive frames from remote devices.
3401  */
3402 static int
3403 wpi_config(struct wpi_softc *sc)
3404 {
3405 	struct ifnet *ifp = sc->sc_ifp;
3406 	struct ieee80211com *ic = ifp->if_l2com;
3407 	uint32_t flags;
3408 	int error;
3409 
3410 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3411 
3412 	/* Set power saving level to CAM during initialization. */
3413 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3414 		device_printf(sc->sc_dev,
3415 		    "%s: could not set power saving level\n", __func__);
3416 		return error;
3417 	}
3418 
3419 	/* Configure bluetooth coexistence. */
3420 	if ((error = wpi_send_btcoex(sc)) != 0) {
3421 		device_printf(sc->sc_dev,
3422 		    "could not configure bluetooth coexistence\n");
3423 		return error;
3424 	}
3425 
3426 	/* Configure adapter. */
3427 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3428 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
3429 
3430 	/* Set default channel. */
3431 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3432 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3433 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3434 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3435 
3436 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3437 	switch (ic->ic_opmode) {
3438 	case IEEE80211_M_STA:
3439 		sc->rxon.mode = WPI_MODE_STA;
3440 		break;
3441 	case IEEE80211_M_IBSS:
3442 		sc->rxon.mode = WPI_MODE_IBSS;
3443 		sc->rxon.filter |= WPI_FILTER_BEACON;
3444 		break;
3445 	/* XXX workaround for passive channels selection */
3446 	case IEEE80211_M_AHDEMO:
3447 	case IEEE80211_M_HOSTAP:
3448 		sc->rxon.mode = WPI_MODE_HOSTAP;
3449 		break;
3450 	case IEEE80211_M_MONITOR:
3451 		sc->rxon.mode = WPI_MODE_MONITOR;
3452 		break;
3453 	default:
3454 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
3455 		return EINVAL;
3456 	}
3457 	sc->rxon.filter = htole32(sc->rxon.filter);
3458 	wpi_set_promisc(sc);
3459 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3460 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3461 
3462 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3463 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3464 		    __func__);
3465 		return error;
3466 	}
3467 
3468 	/* Setup rate scalling. */
3469 	if ((error = wpi_mrr_setup(sc)) != 0) {
3470 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3471 		    error);
3472 		return error;
3473 	}
3474 
3475 	/* Disable beacon notifications (unused). */
3476 	flags = WPI_STATISTICS_BEACON_DISABLE;
3477 	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3478 	if (error != 0) {
3479 		device_printf(sc->sc_dev,
3480 		    "could not disable beacon statistics, error %d\n", error);
3481 		return error;
3482 	}
3483 
3484 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3485 
3486 	return 0;
3487 }
3488 
3489 static uint16_t
3490 wpi_get_active_dwell_time(struct wpi_softc *sc,
3491     struct ieee80211_channel *c, uint8_t n_probes)
3492 {
3493 	/* No channel? Default to 2GHz settings. */
3494 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3495 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3496 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3497 	}
3498 
3499 	/* 5GHz dwell time. */
3500 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3501 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3502 }
3503 
3504 /*
3505  * Limit the total dwell time to 85% of the beacon interval.
3506  *
3507  * Returns the dwell time in milliseconds.
3508  */
3509 static uint16_t
3510 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3511 {
3512 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3513 	struct ieee80211vap *vap = NULL;
3514 	int bintval = 0;
3515 
3516 	/* bintval is in TU (1.024mS) */
3517 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
3518 		vap = TAILQ_FIRST(&ic->ic_vaps);
3519 		bintval = vap->iv_bss->ni_intval;
3520 	}
3521 
3522 	/*
3523 	 * If it's non-zero, we should calculate the minimum of
3524 	 * it and the DWELL_BASE.
3525 	 *
3526 	 * XXX Yes, the math should take into account that bintval
3527 	 * is 1.024mS, not 1mS..
3528 	 */
3529 	if (bintval > 0) {
3530 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3531 		    bintval);
3532 		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3533 	}
3534 
3535 	/* No association context? Default. */
3536 	return (WPI_PASSIVE_DWELL_BASE);
3537 }
3538 
3539 static uint16_t
3540 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3541 {
3542 	uint16_t passive;
3543 
3544 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3545 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3546 	else
3547 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3548 
3549 	/* Clamp to the beacon interval if we're associated. */
3550 	return (wpi_limit_dwell(sc, passive));
3551 }
3552 
3553 /*
3554  * Send a scan request to the firmware.
3555  */
3556 static int
3557 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3558 {
3559 	struct ifnet *ifp = sc->sc_ifp;
3560 	struct ieee80211com *ic = ifp->if_l2com;
3561 	struct ieee80211_scan_state *ss = ic->ic_scan;
3562 	struct wpi_scan_hdr *hdr;
3563 	struct wpi_cmd_data *tx;
3564 	struct wpi_scan_essid *essids;
3565 	struct wpi_scan_chan *chan;
3566 	struct ieee80211_frame *wh;
3567 	struct ieee80211_rateset *rs;
3568 	uint16_t dwell_active, dwell_passive;
3569 	uint8_t *buf, *frm;
3570 	int buflen, error, i, nssid;
3571 
3572 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3573 
3574 	/*
3575 	 * We are absolutely not allowed to send a scan command when another
3576 	 * scan command is pending.
3577 	 */
3578 	if (sc->sc_scan_timer) {
3579 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3580 		    __func__);
3581 		return (EAGAIN);
3582 	}
3583 
3584 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3585 	if (buf == NULL) {
3586 		device_printf(sc->sc_dev,
3587 		    "%s: could not allocate buffer for scan command\n",
3588 		    __func__);
3589 		return ENOMEM;
3590 	}
3591 	hdr = (struct wpi_scan_hdr *)buf;
3592 
3593 	/*
3594 	 * Move to the next channel if no packets are received within 10 msecs
3595 	 * after sending the probe request.
3596 	 */
3597 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3598 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3599 	/*
3600 	 * Max needs to be greater than active and passive and quiet!
3601 	 * It's also in microseconds!
3602 	 */
3603 	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3604 	hdr->pause_svc = htole32((4 << 24) |
3605 	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3606 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3607 
3608 	tx = (struct wpi_cmd_data *)(hdr + 1);
3609 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3610 	tx->id = WPI_ID_BROADCAST;
3611 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3612 
3613 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3614 		/* Send probe requests at 6Mbps. */
3615 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3616 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3617 	} else {
3618 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3619 		/* Send probe requests at 1Mbps. */
3620 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3621 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3622 	}
3623 
3624 	essids = (struct wpi_scan_essid *)(tx + 1);
3625 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3626 	for (i = 0; i < nssid; i++) {
3627 		essids[i].id = IEEE80211_ELEMID_SSID;
3628 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3629 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3630 #ifdef WPI_DEBUG
3631 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3632 			printf("Scanning Essid: ");
3633 			ieee80211_print_essid(essids[i].data, essids[i].len);
3634 			printf("\n");
3635 		}
3636 #endif
3637 	}
3638 
3639 	/*
3640 	 * Build a probe request frame.  Most of the following code is a
3641 	 * copy & paste of what is done in net80211.
3642 	 */
3643 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3644 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3645 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3646 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3647 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3648 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
3649 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3650 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3651 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3652 
3653 	frm = (uint8_t *)(wh + 1);
3654 	frm = ieee80211_add_ssid(frm, NULL, 0);
3655 	frm = ieee80211_add_rates(frm, rs);
3656 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3657 		frm = ieee80211_add_xrates(frm, rs);
3658 
3659 	/* Set length of probe request. */
3660 	tx->len = htole16(frm - (uint8_t *)wh);
3661 
3662 	/*
3663 	 * Construct information about the channel that we
3664 	 * want to scan. The firmware expects this to be directly
3665 	 * after the scan probe request
3666 	 */
3667 	chan = (struct wpi_scan_chan *)frm;
3668 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3669 	chan->flags = 0;
3670 	if (nssid) {
3671 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3672 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3673 	} else
3674 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3675 
3676 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
3677 		chan->flags |= WPI_CHAN_ACTIVE;
3678 
3679 	/*
3680 	 * Calculate the active/passive dwell times.
3681 	 */
3682 
3683 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3684 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3685 
3686 	/* Make sure they're valid. */
3687 	if (dwell_passive <= dwell_active)
3688 		dwell_passive = dwell_active + 1;
3689 
3690 	chan->active = htole16(dwell_active);
3691 	chan->passive = htole16(dwell_passive);
3692 
3693 	chan->dsp_gain = 0x6e;  /* Default level */
3694 
3695 	if (IEEE80211_IS_CHAN_5GHZ(c))
3696 		chan->rf_gain = 0x3b;
3697 	else
3698 		chan->rf_gain = 0x28;
3699 
3700 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
3701 	     chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
3702 
3703 	hdr->nchan++;
3704 	chan++;
3705 
3706 	buflen = (uint8_t *)chan - buf;
3707 	hdr->len = htole16(buflen);
3708 
3709 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
3710 	    hdr->nchan);
3711 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
3712 	free(buf, M_DEVBUF);
3713 
3714 	sc->sc_scan_timer = 5;
3715 
3716 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3717 
3718 	return error;
3719 }
3720 
3721 static int
3722 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
3723 {
3724 	struct ieee80211com *ic = vap->iv_ic;
3725 	struct ieee80211_node *ni = vap->iv_bss;
3726 	int error;
3727 
3728 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3729 
3730 	/* Update adapter configuration. */
3731 	sc->rxon.associd = 0;
3732 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
3733 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3734 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3735 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3736 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3737 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3738 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3739 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3740 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3741 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3742 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3743 		sc->rxon.cck_mask  = 0;
3744 		sc->rxon.ofdm_mask = 0x15;
3745 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3746 		sc->rxon.cck_mask  = 0x03;
3747 		sc->rxon.ofdm_mask = 0;
3748 	} else {
3749 		/* Assume 802.11b/g. */
3750 		sc->rxon.cck_mask  = 0x0f;
3751 		sc->rxon.ofdm_mask = 0x15;
3752 	}
3753 
3754 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
3755 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
3756 	    sc->rxon.ofdm_mask);
3757 
3758 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3759 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3760 		    __func__);
3761 	}
3762 
3763 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3764 
3765 	return error;
3766 }
3767 
3768 static int
3769 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
3770 {
3771 	struct ifnet *ifp = sc->sc_ifp;
3772 	struct ieee80211com *ic = ifp->if_l2com;
3773 	struct ieee80211vap *vap = ni->ni_vap;
3774 	struct wpi_vap *wvp = WPI_VAP(vap);
3775 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
3776 	struct ieee80211_beacon_offsets bo;
3777 	struct wpi_cmd_beacon *cmd;
3778 	struct mbuf *m;
3779 	int totlen;
3780 
3781 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3782 
3783 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
3784 		return EINVAL;
3785 
3786 	m = ieee80211_beacon_alloc(ni, &bo);
3787 	if (m == NULL) {
3788 		device_printf(sc->sc_dev,
3789 		    "%s: could not allocate beacon frame\n", __func__);
3790 		return ENOMEM;
3791 	}
3792 	totlen = m->m_pkthdr.len;
3793 
3794 	if (bcn->data == NULL) {
3795 		cmd = malloc(sizeof(struct wpi_cmd_beacon), M_DEVBUF,
3796 		    M_NOWAIT | M_ZERO);
3797 
3798 		if (cmd == NULL) {
3799 			device_printf(sc->sc_dev,
3800 			    "could not allocate buffer for beacon command\n");
3801 			m_freem(m);
3802 			return ENOMEM;
3803 		}
3804 
3805 		cmd->id = WPI_ID_BROADCAST;
3806 		cmd->ofdm_mask = 0xff;
3807 		cmd->cck_mask = 0x0f;
3808 		cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
3809 		cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
3810 
3811 		bcn->data = cmd;
3812 		bcn->ni = NULL;
3813 		bcn->code = WPI_CMD_SET_BEACON;
3814 		bcn->ac = 4;
3815 		bcn->size = sizeof(struct wpi_cmd_beacon);
3816 	} else
3817 		cmd = bcn->data;
3818 
3819 	cmd->len = htole16(totlen);
3820 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3821 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3822 
3823 	/* NB: m will be freed in wpi_cmd_done() */
3824 	bcn->m = m;
3825 
3826 	return wpi_cmd2(sc, bcn);
3827 }
3828 
3829 static void
3830 wpi_update_beacon(struct ieee80211vap *vap, int item)
3831 {
3832 	struct ieee80211_node *ni = vap->iv_bss;
3833 	struct ifnet *ifp = vap->iv_ifp;
3834 	struct wpi_softc *sc = ifp->if_softc;
3835 	int error;
3836 
3837 	WPI_LOCK(sc);
3838 	if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3839 		device_printf(sc->sc_dev,
3840 		    "%s: could not update beacon frame, error %d", __func__,
3841 		    error);
3842 	}
3843 	WPI_UNLOCK(sc);
3844 }
3845 
3846 static int
3847 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
3848 {
3849 	struct ieee80211com *ic = vap->iv_ic;
3850 	struct ieee80211_node *ni = vap->iv_bss;
3851 	int error;
3852 
3853 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3854 
3855 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
3856 		/* Link LED blinks while monitoring. */
3857 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3858 		return 0;
3859 	}
3860 
3861 	/* XXX kernel panic workaround */
3862 	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
3863 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
3864 		    __func__);
3865 		return EINVAL;
3866 	}
3867 
3868 	if ((error = wpi_set_timing(sc, ni)) != 0) {
3869 		device_printf(sc->sc_dev,
3870 		    "%s: could not set timing, error %d\n", __func__, error);
3871 		return error;
3872 	}
3873 
3874 	/* Update adapter configuration. */
3875 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3876 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
3877 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3878 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3879 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3880 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3881 	/* Short preamble and slot time are negotiated when associating. */
3882 	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
3883 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3884 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3885 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3886 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3887 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3888 		sc->rxon.cck_mask  = 0;
3889 		sc->rxon.ofdm_mask = 0x15;
3890 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3891 		sc->rxon.cck_mask  = 0x03;
3892 		sc->rxon.ofdm_mask = 0;
3893 	} else {
3894 		/* Assume 802.11b/g. */
3895 		sc->rxon.cck_mask  = 0x0f;
3896 		sc->rxon.ofdm_mask = 0x15;
3897 	}
3898 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
3899 
3900 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
3901 
3902 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
3903 	    sc->rxon.chan, sc->rxon.flags);
3904 
3905 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3906 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3907 		    __func__);
3908 		return error;
3909 	}
3910 
3911 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3912 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3913 			device_printf(sc->sc_dev,
3914 			    "%s: could not setup beacon, error %d\n", __func__,
3915 			    error);
3916 			return error;
3917 		}
3918 	}
3919 
3920 	if (vap->iv_opmode == IEEE80211_M_STA) {
3921 		/* Add BSS node. */
3922 		((struct wpi_node *)ni)->id = WPI_ID_BSS;
3923 		if ((error = wpi_add_node(sc, ni)) != 0) {
3924 			device_printf(sc->sc_dev,
3925 			    "%s: could not add BSS node, error %d\n", __func__,
3926 			    error);
3927 			return error;
3928 		}
3929 	}
3930 
3931 	/* Link LED always on while associated. */
3932 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3933 
3934 	/* Start periodic calibration timer. */
3935 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3936 
3937 	/* Enable power-saving mode if requested by user. */
3938 	if (vap->iv_flags & IEEE80211_F_PMGTON)
3939 		(void)wpi_set_pslevel(sc, 0, 3, 1);
3940 	else
3941 		(void)wpi_set_pslevel(sc, 0, 0, 1);
3942 
3943 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3944 
3945 	return 0;
3946 }
3947 
3948 static int
3949 wpi_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
3950     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3951 {
3952 	struct ifnet *ifp = vap->iv_ifp;
3953 	struct wpi_softc *sc = ifp->if_softc;
3954 
3955 	if (!(&vap->iv_nw_keys[0] <= k &&
3956 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
3957 		if (k->wk_flags & IEEE80211_KEY_GROUP) {
3958 			/* should not happen */
3959 			DPRINTF(sc, WPI_DEBUG_KEY, "%s: bogus group key\n",
3960 			    __func__);
3961 			return 0;
3962 		}
3963 		*keyix = 0;	/* NB: use key index 0 for ucast key */
3964 	} else {
3965 		*keyix = *rxkeyix = k - vap->iv_nw_keys;
3966 
3967 		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM)
3968 			k->wk_flags |= IEEE80211_KEY_SWCRYPT;
3969 	}
3970 	return 1;
3971 }
3972 
3973 static int
3974 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
3975     const uint8_t mac[IEEE80211_ADDR_LEN])
3976 {
3977 	const struct ieee80211_cipher *cip = k->wk_cipher;
3978 	struct ieee80211com *ic = vap->iv_ic;
3979 	struct ieee80211_node *ni = vap->iv_bss;
3980 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3981 	struct wpi_node *wn = (void *)ni;
3982 	struct wpi_node_info node;
3983 	uint16_t kflags;
3984 	int error;
3985 
3986 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3987 
3988 	switch (cip->ic_cipher) {
3989 	case IEEE80211_CIPHER_AES_CCM:
3990 		if (k->wk_flags & IEEE80211_KEY_GROUP)
3991 			return 1;
3992 
3993 		kflags = WPI_KFLAG_CCMP;
3994 		break;
3995 	default:
3996 		/* null_key_set() */
3997 		return 1;
3998 	}
3999 
4000 	if (wn->id == WPI_ID_UNDEFINED)
4001 		return 0;
4002 
4003 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4004 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4005 		kflags |= WPI_KFLAG_MULTICAST;
4006 
4007 	memset(&node, 0, sizeof node);
4008 	node.id = wn->id;
4009 	node.control = WPI_NODE_UPDATE;
4010 	node.flags = WPI_FLAG_KEY_SET;
4011 	node.kflags = htole16(kflags);
4012 	memcpy(node.key, k->wk_key, k->wk_keylen);
4013 
4014 	DPRINTF(sc, WPI_DEBUG_KEY, "set key id=%d for node %d\n", k->wk_keyix,
4015 	    node.id);
4016 
4017 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4018 	if (error != 0) {
4019 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4020 		    error);
4021 		return 0;
4022 	}
4023 
4024 	return 1;
4025 }
4026 
4027 static int
4028 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4029 {
4030 	const struct ieee80211_cipher *cip = k->wk_cipher;
4031 	struct ieee80211com *ic = vap->iv_ic;
4032 	struct ieee80211_node *ni = vap->iv_bss;
4033 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4034 	struct wpi_node *wn = (void *)ni;
4035 	struct wpi_node_info node;
4036 
4037 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4038 
4039 	switch (cip->ic_cipher) {
4040 	case IEEE80211_CIPHER_AES_CCM:
4041 		break;
4042 	default:
4043 		/* null_key_delete() */
4044 		return 1;
4045 	}
4046 
4047 	if (vap->iv_state != IEEE80211_S_RUN ||
4048 	    (k->wk_flags & IEEE80211_KEY_GROUP))
4049 		return 1; /* Nothing to do. */
4050 
4051 	memset(&node, 0, sizeof node);
4052 	node.id = wn->id;
4053 	node.control = WPI_NODE_UPDATE;
4054 	node.flags = WPI_FLAG_KEY_SET;
4055 
4056 	DPRINTF(sc, WPI_DEBUG_KEY, "delete keys for node %d\n", node.id);
4057 	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4058 
4059 	return 1;
4060 }
4061 
4062 /*
4063  * This function is called after the runtime firmware notifies us of its
4064  * readiness (called in a process context).
4065  */
4066 static int
4067 wpi_post_alive(struct wpi_softc *sc)
4068 {
4069 	int ntries, error;
4070 
4071 	/* Check (again) that the radio is not disabled. */
4072 	if ((error = wpi_nic_lock(sc)) != 0)
4073 		return error;
4074 
4075 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4076 
4077 	/* NB: Runtime firmware must be up and running. */
4078 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4079  		device_printf(sc->sc_dev,
4080 		    "RF switch: radio disabled (%s)\n", __func__);
4081 		wpi_nic_unlock(sc);
4082 		return EPERM;   /* :-) */
4083 	}
4084 	wpi_nic_unlock(sc);
4085 
4086 	/* Wait for thermal sensor to calibrate. */
4087 	for (ntries = 0; ntries < 1000; ntries++) {
4088 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4089 			break;
4090 		DELAY(10);
4091 	}
4092 
4093 	if (ntries == 1000) {
4094 		device_printf(sc->sc_dev,
4095 		    "timeout waiting for thermal sensor calibration\n");
4096                 return ETIMEDOUT;
4097         }
4098 
4099         DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4100         return 0;
4101 }
4102 
4103 /*
4104  * The firmware boot code is small and is intended to be copied directly into
4105  * the NIC internal memory (no DMA transfer).
4106  */
4107 static int
4108 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4109 {
4110 	int error, ntries;
4111 
4112 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4113 
4114 	size /= sizeof (uint32_t);
4115 
4116 	if ((error = wpi_nic_lock(sc)) != 0)
4117 		return error;
4118 
4119 	/* Copy microcode image into NIC memory. */
4120 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4121 	    (const uint32_t *)ucode, size);
4122 
4123 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4124 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4125 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4126 
4127 	/* Start boot load now. */
4128 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4129 
4130 	/* Wait for transfer to complete. */
4131 	for (ntries = 0; ntries < 1000; ntries++) {
4132 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4133 		DPRINTF(sc, WPI_DEBUG_HW,
4134 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4135 		    WPI_FH_TX_STATUS_IDLE(6),
4136 		    status & WPI_FH_TX_STATUS_IDLE(6));
4137 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4138 			DPRINTF(sc, WPI_DEBUG_HW,
4139 			    "Status Match! - ntries = %d\n", ntries);
4140 			break;
4141 		}
4142 		DELAY(10);
4143 	}
4144 	if (ntries == 1000) {
4145 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4146 		    __func__);
4147 		wpi_nic_unlock(sc);
4148 		return ETIMEDOUT;
4149 	}
4150 
4151 	/* Enable boot after power up. */
4152 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4153 
4154 	wpi_nic_unlock(sc);
4155 	return 0;
4156 }
4157 
4158 static int
4159 wpi_load_firmware(struct wpi_softc *sc)
4160 {
4161 	struct wpi_fw_info *fw = &sc->fw;
4162 	struct wpi_dma_info *dma = &sc->fw_dma;
4163 	int error;
4164 
4165 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4166 
4167 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4168 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4169 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4170 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4171 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4172 
4173 	/* Tell adapter where to find initialization sections. */
4174 	if ((error = wpi_nic_lock(sc)) != 0)
4175 		return error;
4176 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4177 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4178 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4179 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4180 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4181 	wpi_nic_unlock(sc);
4182 
4183 	/* Load firmware boot code. */
4184 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4185 	if (error != 0) {
4186 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4187 		    __func__);
4188 		return error;
4189 	}
4190 
4191 	/* Now press "execute". */
4192 	WPI_WRITE(sc, WPI_RESET, 0);
4193 
4194 	/* Wait at most one second for first alive notification. */
4195 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4196 		device_printf(sc->sc_dev,
4197 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4198 		    __func__, error);
4199 		return error;
4200 	}
4201 
4202 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4203 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4204 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4205 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4206 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4207 
4208 	/* Tell adapter where to find runtime sections. */
4209 	if ((error = wpi_nic_lock(sc)) != 0)
4210 		return error;
4211 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4212 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4213 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4214 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4215 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4216 	    WPI_FW_UPDATED | fw->main.textsz);
4217 	wpi_nic_unlock(sc);
4218 
4219 	return 0;
4220 }
4221 
4222 static int
4223 wpi_read_firmware(struct wpi_softc *sc)
4224 {
4225 	const struct firmware *fp;
4226 	struct wpi_fw_info *fw = &sc->fw;
4227 	const struct wpi_firmware_hdr *hdr;
4228 	int error;
4229 
4230 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4231 
4232 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4233 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4234 
4235 	WPI_UNLOCK(sc);
4236 	fp = firmware_get(WPI_FW_NAME);
4237 	WPI_LOCK(sc);
4238 
4239 	if (fp == NULL) {
4240 		device_printf(sc->sc_dev,
4241 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4242 		return EINVAL;
4243 	}
4244 
4245 	sc->fw_fp = fp;
4246 
4247 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4248 		device_printf(sc->sc_dev,
4249 		    "firmware file too short: %zu bytes\n", fp->datasize);
4250 		error = EINVAL;
4251 		goto fail;
4252 	}
4253 
4254 	fw->size = fp->datasize;
4255 	fw->data = (const uint8_t *)fp->data;
4256 
4257 	/* Extract firmware header information. */
4258 	hdr = (const struct wpi_firmware_hdr *)fw->data;
4259 
4260 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4261 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4262 
4263 	fw->main.textsz = le32toh(hdr->rtextsz);
4264 	fw->main.datasz = le32toh(hdr->rdatasz);
4265 	fw->init.textsz = le32toh(hdr->itextsz);
4266 	fw->init.datasz = le32toh(hdr->idatasz);
4267 	fw->boot.textsz = le32toh(hdr->btextsz);
4268 	fw->boot.datasz = 0;
4269 
4270 	/* Sanity-check firmware header. */
4271 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4272 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4273 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4274 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4275 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4276 	    (fw->boot.textsz & 3) != 0) {
4277 		device_printf(sc->sc_dev, "invalid firmware header\n");
4278 		error = EINVAL;
4279 		goto fail;
4280 	}
4281 
4282 	/* Check that all firmware sections fit. */
4283 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4284 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4285 		device_printf(sc->sc_dev,
4286 		    "firmware file too short: %zu bytes\n", fw->size);
4287 		error = EINVAL;
4288 		goto fail;
4289 	}
4290 
4291 	/* Get pointers to firmware sections. */
4292 	fw->main.text = (const uint8_t *)(hdr + 1);
4293 	fw->main.data = fw->main.text + fw->main.textsz;
4294 	fw->init.text = fw->main.data + fw->main.datasz;
4295 	fw->init.data = fw->init.text + fw->init.textsz;
4296 	fw->boot.text = fw->init.data + fw->init.datasz;
4297 
4298 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4299 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4300 	    "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
4301 	    hdr->major, hdr->minor, le32toh(hdr->driver),
4302 	    fw->main.textsz, fw->main.datasz,
4303 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4304 
4305 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4306 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4307 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4308 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4309 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4310 
4311 	return 0;
4312 
4313 fail:	wpi_unload_firmware(sc);
4314 	return error;
4315 }
4316 
4317 /**
4318  * Free the referenced firmware image
4319  */
4320 static void
4321 wpi_unload_firmware(struct wpi_softc *sc)
4322 {
4323 	if (sc->fw_fp != NULL) {
4324 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4325 		sc->fw_fp = NULL;
4326 	}
4327 }
4328 
4329 static int
4330 wpi_clock_wait(struct wpi_softc *sc)
4331 {
4332 	int ntries;
4333 
4334 	/* Set "initialization complete" bit. */
4335 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4336 
4337 	/* Wait for clock stabilization. */
4338 	for (ntries = 0; ntries < 2500; ntries++) {
4339 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4340 			return 0;
4341 		DELAY(100);
4342 	}
4343 	device_printf(sc->sc_dev,
4344 	    "%s: timeout waiting for clock stabilization\n", __func__);
4345 
4346 	return ETIMEDOUT;
4347 }
4348 
4349 static int
4350 wpi_apm_init(struct wpi_softc *sc)
4351 {
4352 	uint32_t reg;
4353 	int error;
4354 
4355 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4356 
4357 	/* Disable L0s exit timer (NMI bug workaround). */
4358 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4359 	/* Don't wait for ICH L0s (ICH bug workaround). */
4360 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4361 
4362 	/* Set FH wait threshold to max (HW bug under stress workaround). */
4363 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4364 
4365 	/* Retrieve PCIe Active State Power Management (ASPM). */
4366 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4367 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4368 	if (reg & 0x02)	/* L1 Entry enabled. */
4369 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4370 	else
4371 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4372 
4373 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4374 
4375 	/* Wait for clock stabilization before accessing prph. */
4376 	if ((error = wpi_clock_wait(sc)) != 0)
4377 		return error;
4378 
4379 	if ((error = wpi_nic_lock(sc)) != 0)
4380 		return error;
4381 	/* Enable DMA and BSM (Bootstrap State Machine). */
4382 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4383 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4384 	DELAY(20);
4385 	/* Disable L1-Active. */
4386 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4387 	/* ??? */
4388 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000E00);
4389 	wpi_nic_unlock(sc);
4390 
4391 	return 0;
4392 }
4393 
4394 static void
4395 wpi_apm_stop_master(struct wpi_softc *sc)
4396 {
4397 	int ntries;
4398 
4399 	/* Stop busmaster DMA activity. */
4400 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4401 
4402 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4403 	    WPI_GP_CNTRL_MAC_PS)
4404 		return; /* Already asleep. */
4405 
4406 	for (ntries = 0; ntries < 100; ntries++) {
4407 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4408 			return;
4409 		DELAY(10);
4410 	}
4411 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
4412 }
4413 
4414 static void
4415 wpi_apm_stop(struct wpi_softc *sc)
4416 {
4417 	wpi_apm_stop_master(sc);
4418 
4419 	/* Reset the entire device. */
4420 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4421 	DELAY(10);
4422 	/* Clear "initialization complete" bit. */
4423 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4424 }
4425 
4426 static void
4427 wpi_nic_config(struct wpi_softc *sc)
4428 {
4429 	uint32_t rev;
4430 
4431 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4432 
4433 	/* voodoo from the Linux "driver".. */
4434 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4435 	if ((rev & 0xc0) == 0x40)
4436 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4437 	else if (!(rev & 0x80))
4438 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4439 
4440 	if (sc->cap == 0x80)
4441 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4442 
4443 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
4444 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4445 	else
4446 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4447 
4448 	if (sc->type > 1)
4449 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4450 }
4451 
4452 static int
4453 wpi_hw_init(struct wpi_softc *sc)
4454 {
4455 	int chnl, ntries, error;
4456 
4457 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4458 
4459 	/* Clear pending interrupts. */
4460 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4461 
4462 	if ((error = wpi_apm_init(sc)) != 0) {
4463 		device_printf(sc->sc_dev,
4464 		    "%s: could not power ON adapter, error %d\n", __func__,
4465 		    error);
4466 		return error;
4467 	}
4468 
4469 	/* Select VMAIN power source. */
4470 	if ((error = wpi_nic_lock(sc)) != 0)
4471 		return error;
4472 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
4473 	wpi_nic_unlock(sc);
4474 	/* Spin until VMAIN gets selected. */
4475 	for (ntries = 0; ntries < 5000; ntries++) {
4476 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
4477 			break;
4478 		DELAY(10);
4479 	}
4480 	if (ntries == 5000) {
4481 		device_printf(sc->sc_dev, "timeout selecting power source\n");
4482 		return ETIMEDOUT;
4483 	}
4484 
4485 	/* Perform adapter initialization. */
4486 	wpi_nic_config(sc);
4487 
4488 	/* Initialize RX ring. */
4489 	if ((error = wpi_nic_lock(sc)) != 0)
4490 		return error;
4491 	/* Set physical address of RX ring. */
4492 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
4493 	/* Set physical address of RX read pointer. */
4494 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
4495 	    offsetof(struct wpi_shared, next));
4496 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
4497 	/* Enable RX. */
4498 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
4499 	    WPI_FH_RX_CONFIG_DMA_ENA |
4500 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
4501 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
4502 	    WPI_FH_RX_CONFIG_MAXFRAG |
4503 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
4504 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
4505 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
4506 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
4507 	wpi_nic_unlock(sc);
4508 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
4509 
4510 	/* Initialize TX rings. */
4511 	if ((error = wpi_nic_lock(sc)) != 0)
4512 		return error;
4513 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
4514 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
4515 	/* Enable all 6 TX rings. */
4516 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
4517 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
4518 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
4519 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
4520 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
4521 	/* Set physical address of TX rings. */
4522 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
4523 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
4524 
4525 	/* Enable all DMA channels. */
4526 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4527 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
4528 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
4529 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
4530 	}
4531 	wpi_nic_unlock(sc);
4532 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
4533 
4534 	/* Clear "radio off" and "commands blocked" bits. */
4535 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4536 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
4537 
4538 	/* Clear pending interrupts. */
4539 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4540 	/* Enable interrupts. */
4541 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
4542 
4543 	/* _Really_ make sure "radio off" bit is cleared! */
4544 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4545 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4546 
4547 	if ((error = wpi_load_firmware(sc)) != 0) {
4548 		device_printf(sc->sc_dev,
4549 		    "%s: could not load firmware, error %d\n", __func__,
4550 		    error);
4551 		return error;
4552 	}
4553 	/* Wait at most one second for firmware alive notification. */
4554 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4555 		device_printf(sc->sc_dev,
4556 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4557 		    __func__, error);
4558 		return error;
4559 	}
4560 
4561 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4562 
4563 	/* Do post-firmware initialization. */
4564 	return wpi_post_alive(sc);
4565 }
4566 
4567 static void
4568 wpi_hw_stop(struct wpi_softc *sc)
4569 {
4570 	int chnl, qid, ntries;
4571 
4572 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4573 
4574 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
4575 		wpi_nic_lock(sc);
4576 
4577 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
4578 
4579 	/* Disable interrupts. */
4580 	WPI_WRITE(sc, WPI_INT_MASK, 0);
4581 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4582 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
4583 
4584 	/* Make sure we no longer hold the NIC lock. */
4585 	wpi_nic_unlock(sc);
4586 
4587 	if (wpi_nic_lock(sc) == 0) {
4588 		/* Stop TX scheduler. */
4589 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
4590 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
4591 
4592 		/* Stop all DMA channels. */
4593 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4594 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
4595 			for (ntries = 0; ntries < 200; ntries++) {
4596 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
4597 				    WPI_FH_TX_STATUS_IDLE(chnl))
4598 					break;
4599 				DELAY(10);
4600 			}
4601 		}
4602 		wpi_nic_unlock(sc);
4603 	}
4604 
4605 	/* Stop RX ring. */
4606 	wpi_reset_rx_ring(sc);
4607 
4608 	/* Reset all TX rings. */
4609 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
4610 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
4611 
4612 	if (wpi_nic_lock(sc) == 0) {
4613 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
4614 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
4615 		wpi_nic_unlock(sc);
4616 	}
4617 	DELAY(5);
4618 	/* Power OFF adapter. */
4619 	wpi_apm_stop(sc);
4620 }
4621 
4622 static void
4623 wpi_radio_on(void *arg0, int pending)
4624 {
4625 	struct wpi_softc *sc = arg0;
4626 	struct ifnet *ifp = sc->sc_ifp;
4627 	struct ieee80211com *ic = ifp->if_l2com;
4628 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4629 
4630 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
4631 
4632 	if (vap != NULL) {
4633 		wpi_init(sc);
4634 		ieee80211_init(vap);
4635 	}
4636 
4637 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
4638 		WPI_LOCK(sc);
4639 		callout_stop(&sc->watchdog_rfkill);
4640 		WPI_UNLOCK(sc);
4641 	}
4642 }
4643 
4644 static void
4645 wpi_radio_off(void *arg0, int pending)
4646 {
4647 	struct wpi_softc *sc = arg0;
4648 	struct ifnet *ifp = sc->sc_ifp;
4649 	struct ieee80211com *ic = ifp->if_l2com;
4650 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4651 
4652 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
4653 
4654 	wpi_stop(sc);
4655 	if (vap != NULL)
4656 		ieee80211_stop(vap);
4657 
4658 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
4659 }
4660 
4661 static void
4662 wpi_init_locked(struct wpi_softc *sc)
4663 {
4664 	struct ifnet *ifp = sc->sc_ifp;
4665 	int error;
4666 
4667 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4668 
4669 	WPI_LOCK_ASSERT(sc);
4670 
4671 	/* Check that the radio is not disabled by hardware switch. */
4672 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
4673 		device_printf(sc->sc_dev,
4674 		    "RF switch: radio disabled (%s)\n", __func__);
4675 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
4676 		    sc);
4677 		return;
4678 	}
4679 
4680 	/* Read firmware images from the filesystem. */
4681 	if ((error = wpi_read_firmware(sc)) != 0) {
4682 		device_printf(sc->sc_dev,
4683 		    "%s: could not read firmware, error %d\n", __func__,
4684 		    error);
4685 		goto fail;
4686 	}
4687 
4688 	/* Initialize hardware and upload firmware. */
4689 	error = wpi_hw_init(sc);
4690 	wpi_unload_firmware(sc);
4691 	if (error != 0) {
4692 		device_printf(sc->sc_dev,
4693 		    "%s: could not initialize hardware, error %d\n", __func__,
4694 		    error);
4695 		goto fail;
4696 	}
4697 
4698 	/* Configure adapter now that it is ready. */
4699 	if ((error = wpi_config(sc)) != 0) {
4700 		device_printf(sc->sc_dev,
4701 		    "%s: could not configure device, error %d\n", __func__,
4702 		    error);
4703 		goto fail;
4704 	}
4705 
4706 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4707 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4708 
4709 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
4710 
4711 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4712 
4713 	return;
4714 
4715 fail:	wpi_stop_locked(sc);
4716 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4717 }
4718 
4719 static void
4720 wpi_init(void *arg)
4721 {
4722 	struct wpi_softc *sc = arg;
4723 	struct ifnet *ifp = sc->sc_ifp;
4724 	struct ieee80211com *ic = ifp->if_l2com;
4725 
4726 	WPI_LOCK(sc);
4727 	wpi_init_locked(sc);
4728 	WPI_UNLOCK(sc);
4729 
4730 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4731 		ieee80211_start_all(ic);
4732 }
4733 
4734 static void
4735 wpi_stop_locked(struct wpi_softc *sc)
4736 {
4737 	struct ifnet *ifp = sc->sc_ifp;
4738 
4739 	WPI_LOCK_ASSERT(sc);
4740 
4741 	sc->sc_scan_timer = 0;
4742 	sc->sc_tx_timer = 0;
4743 	callout_stop(&sc->watchdog_to);
4744 	callout_stop(&sc->calib_to);
4745 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4746 
4747 	/* Power OFF hardware. */
4748 	wpi_hw_stop(sc);
4749 }
4750 
4751 static void
4752 wpi_stop(struct wpi_softc *sc)
4753 {
4754 	WPI_LOCK(sc);
4755 	wpi_stop_locked(sc);
4756 	WPI_UNLOCK(sc);
4757 }
4758 
4759 /*
4760  * Callback from net80211 to start a scan.
4761  */
4762 static void
4763 wpi_scan_start(struct ieee80211com *ic)
4764 {
4765 	struct ifnet *ifp = ic->ic_ifp;
4766 	struct wpi_softc *sc = ifp->if_softc;
4767 
4768 	WPI_LOCK(sc);
4769 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
4770 	WPI_UNLOCK(sc);
4771 }
4772 
4773 /*
4774  * Callback from net80211 to terminate a scan.
4775  */
4776 static void
4777 wpi_scan_end(struct ieee80211com *ic)
4778 {
4779 	struct ifnet *ifp = ic->ic_ifp;
4780 	struct wpi_softc *sc = ifp->if_softc;
4781 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4782 
4783 	if (vap->iv_state == IEEE80211_S_RUN) {
4784 		WPI_LOCK(sc);
4785 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4786 		WPI_UNLOCK(sc);
4787 	}
4788 }
4789 
4790 /**
4791  * Called by the net80211 framework to indicate to the driver
4792  * that the channel should be changed
4793  */
4794 static void
4795 wpi_set_channel(struct ieee80211com *ic)
4796 {
4797 	const struct ieee80211_channel *c = ic->ic_curchan;
4798 	struct ifnet *ifp = ic->ic_ifp;
4799 	struct wpi_softc *sc = ifp->if_softc;
4800 	int error;
4801 
4802 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4803 
4804 	WPI_LOCK(sc);
4805 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4806 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4807 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4808 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4809 
4810 	/*
4811 	 * Only need to set the channel in Monitor mode. AP scanning and auth
4812 	 * are already taken care of by their respective firmware commands.
4813 	 */
4814 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4815 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4816 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4817 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
4818 			    WPI_RXON_24GHZ);
4819 		} else {
4820 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
4821 			    WPI_RXON_24GHZ);
4822 		}
4823 		if ((error = wpi_send_rxon(sc, 0, 0)) != 0)
4824 			device_printf(sc->sc_dev,
4825 			    "%s: error %d settting channel\n", __func__,
4826 			    error);
4827 	}
4828 	WPI_UNLOCK(sc);
4829 }
4830 
4831 /**
4832  * Called by net80211 to indicate that we need to scan the current
4833  * channel. The channel is previously be set via the wpi_set_channel
4834  * callback.
4835  */
4836 static void
4837 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4838 {
4839 	struct ieee80211vap *vap = ss->ss_vap;
4840 	struct ieee80211com *ic = vap->iv_ic;
4841 	struct ifnet *ifp = ic->ic_ifp;
4842 	struct wpi_softc *sc = ifp->if_softc;
4843 	int error;
4844 
4845 	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
4846 		WPI_LOCK(sc);
4847 		error = wpi_scan(sc, ic->ic_curchan);
4848 		WPI_UNLOCK(sc);
4849 		if (error != 0)
4850 			ieee80211_cancel_scan(vap);
4851 	} else {
4852 		/* Send probe request when associated. */
4853 		sc->sc_scan_curchan(ss, maxdwell);
4854 	}
4855 }
4856 
4857 /**
4858  * Called by the net80211 framework to indicate
4859  * the minimum dwell time has been met, terminate the scan.
4860  * We don't actually terminate the scan as the firmware will notify
4861  * us when it's finished and we have no way to interrupt it.
4862  */
4863 static void
4864 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
4865 {
4866 	/* NB: don't try to abort scan; wait for firmware to finish */
4867 }
4868 
4869 static void
4870 wpi_hw_reset(void *arg, int pending)
4871 {
4872 	struct wpi_softc *sc = arg;
4873 	struct ifnet *ifp = sc->sc_ifp;
4874 	struct ieee80211com *ic = ifp->if_l2com;
4875 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4876 
4877 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4878 
4879 	wpi_stop(sc);
4880 	if (vap != NULL)
4881 		ieee80211_stop(vap);
4882 	wpi_init(sc);
4883 	if (vap != NULL)
4884 		ieee80211_init(vap);
4885 }
4886