xref: /freebsd/sys/dev/wpi/if_wpi.c (revision 0572ccaa4543b0abef8ef81e384c1d04de9f3da1)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include "opt_wlan.h"
63 
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79 
80 #include <machine/bus.h>
81 #include <machine/resource.h>
82 #include <sys/rman.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 
87 #include <net/bpf.h>
88 #include <net/if.h>
89 #include <net/if_var.h>
90 #include <net/if_arp.h>
91 #include <net/ethernet.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_types.h>
95 
96 #include <net80211/ieee80211_var.h>
97 #include <net80211/ieee80211_radiotap.h>
98 #include <net80211/ieee80211_regdomain.h>
99 #include <net80211/ieee80211_ratectl.h>
100 
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip.h>
105 #include <netinet/if_ether.h>
106 
107 #include <dev/wpi/if_wpireg.h>
108 #include <dev/wpi/if_wpivar.h>
109 
110 #define WPI_DEBUG
111 
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
114 #define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
115 #define	WPI_DEBUG_SET	(wpi_debug != 0)
116 
117 enum {
118 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130 	WPI_DEBUG_ANY		= 0xffffffff
131 };
132 
133 static int wpi_debug = 0;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136 
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET	0
141 #endif
142 
143 struct wpi_ident {
144 	uint16_t	vendor;
145 	uint16_t	device;
146 	uint16_t	subdevice;
147 	const char	*name;
148 };
149 
150 static const struct wpi_ident wpi_ident_table[] = {
151 	/* The below entries support ABG regardless of the subid */
152 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154 	/* The below entries only support BG */
155 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159 	{ 0, 0, 0, NULL }
160 };
161 
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
164 		    const uint8_t [IEEE80211_ADDR_LEN],
165 		    const uint8_t [IEEE80211_ADDR_LEN]);
166 static void	wpi_vap_delete(struct ieee80211vap *);
167 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168 		    void **, bus_size_t, bus_size_t, int);
169 static void	wpi_dma_contig_free(struct wpi_dma_info *);
170 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int	wpi_alloc_shared(struct wpi_softc *);
172 static void	wpi_free_shared(struct wpi_softc *);
173 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177 		    int, int);
178 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
181 static void	wpi_mem_lock(struct wpi_softc *);
182 static void	wpi_mem_unlock(struct wpi_softc *);
183 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
184 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
185 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
186 		    const uint32_t *, int);
187 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
188 static int	wpi_alloc_fwmem(struct wpi_softc *);
189 static void	wpi_free_fwmem(struct wpi_softc *);
190 static int	wpi_load_firmware(struct wpi_softc *);
191 static void	wpi_unload_firmware(struct wpi_softc *);
192 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
193 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
194 		    struct wpi_rx_data *);
195 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
196 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
197 static void	wpi_notif_intr(struct wpi_softc *);
198 static void	wpi_intr(void *);
199 static uint8_t	wpi_plcp_signal(int);
200 static void	wpi_watchdog(void *);
201 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
202 		    struct ieee80211_node *, int);
203 static void	wpi_start(struct ifnet *);
204 static void	wpi_start_locked(struct ifnet *);
205 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
206 		    const struct ieee80211_bpf_params *);
207 static void	wpi_scan_start(struct ieee80211com *);
208 static void	wpi_scan_end(struct ieee80211com *);
209 static void	wpi_set_channel(struct ieee80211com *);
210 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
211 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
212 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
213 static void	wpi_read_eeprom(struct wpi_softc *,
214 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
215 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
216 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
217 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
218 static int	wpi_wme_update(struct ieee80211com *);
219 static int	wpi_mrr_setup(struct wpi_softc *);
220 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
221 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
222 #if 0
223 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
224 #endif
225 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
226 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
227 static int	wpi_scan(struct wpi_softc *);
228 static int	wpi_config(struct wpi_softc *);
229 static void	wpi_stop_master(struct wpi_softc *);
230 static int	wpi_power_up(struct wpi_softc *);
231 static int	wpi_reset(struct wpi_softc *);
232 static void	wpi_hwreset(void *, int);
233 static void	wpi_rfreset(void *, int);
234 static void	wpi_hw_config(struct wpi_softc *);
235 static void	wpi_init(void *);
236 static void	wpi_init_locked(struct wpi_softc *, int);
237 static void	wpi_stop(struct wpi_softc *);
238 static void	wpi_stop_locked(struct wpi_softc *);
239 
240 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
241 		    int);
242 static void	wpi_calib_timeout(void *);
243 static void	wpi_power_calibration(struct wpi_softc *, int);
244 static int	wpi_get_power_index(struct wpi_softc *,
245 		    struct wpi_power_group *, struct ieee80211_channel *, int);
246 #ifdef WPI_DEBUG
247 static const char *wpi_cmd_str(int);
248 #endif
249 static int wpi_probe(device_t);
250 static int wpi_attach(device_t);
251 static int wpi_detach(device_t);
252 static int wpi_shutdown(device_t);
253 static int wpi_suspend(device_t);
254 static int wpi_resume(device_t);
255 
256 static device_method_t wpi_methods[] = {
257 	/* Device interface */
258 	DEVMETHOD(device_probe,		wpi_probe),
259 	DEVMETHOD(device_attach,	wpi_attach),
260 	DEVMETHOD(device_detach,	wpi_detach),
261 	DEVMETHOD(device_shutdown,	wpi_shutdown),
262 	DEVMETHOD(device_suspend,	wpi_suspend),
263 	DEVMETHOD(device_resume,	wpi_resume),
264 
265 	DEVMETHOD_END
266 };
267 
268 static driver_t wpi_driver = {
269 	"wpi",
270 	wpi_methods,
271 	sizeof (struct wpi_softc)
272 };
273 
274 static devclass_t wpi_devclass;
275 
276 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
277 
278 MODULE_VERSION(wpi, 1);
279 
280 static const uint8_t wpi_ridx_to_plcp[] = {
281 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
282 	/* R1-R4 (ral/ural is R4-R1) */
283 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
284 	/* CCK: device-dependent */
285 	10, 20, 55, 110
286 };
287 
288 static const uint8_t wpi_ridx_to_rate[] = {
289 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
290 	2, 4, 11, 22 /*CCK */
291 };
292 
293 static int
294 wpi_probe(device_t dev)
295 {
296 	const struct wpi_ident *ident;
297 
298 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
299 		if (pci_get_vendor(dev) == ident->vendor &&
300 		    pci_get_device(dev) == ident->device) {
301 			device_set_desc(dev, ident->name);
302 			return (BUS_PROBE_DEFAULT);
303 		}
304 	}
305 	return ENXIO;
306 }
307 
308 /**
309  * Load the firmare image from disk to the allocated dma buffer.
310  * we also maintain the reference to the firmware pointer as there
311  * is times where we may need to reload the firmware but we are not
312  * in a context that can access the filesystem (ie taskq cause by restart)
313  *
314  * @return 0 on success, an errno on failure
315  */
316 static int
317 wpi_load_firmware(struct wpi_softc *sc)
318 {
319 	const struct firmware *fp;
320 	struct wpi_dma_info *dma = &sc->fw_dma;
321 	const struct wpi_firmware_hdr *hdr;
322 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
323 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
324 	int error;
325 
326 	DPRINTFN(WPI_DEBUG_FIRMWARE,
327 	    ("Attempting Loading Firmware from wpi_fw module\n"));
328 
329 	WPI_UNLOCK(sc);
330 
331 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
332 		device_printf(sc->sc_dev,
333 		    "could not load firmware image 'wpifw'\n");
334 		error = ENOENT;
335 		WPI_LOCK(sc);
336 		goto fail;
337 	}
338 
339 	fp = sc->fw_fp;
340 
341 	WPI_LOCK(sc);
342 
343 	/* Validate the firmware is minimum a particular version */
344 	if (fp->version < WPI_FW_MINVERSION) {
345 	    device_printf(sc->sc_dev,
346 			   "firmware version is too old. Need %d, got %d\n",
347 			   WPI_FW_MINVERSION,
348 			   fp->version);
349 	    error = ENXIO;
350 	    goto fail;
351 	}
352 
353 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
354 		device_printf(sc->sc_dev,
355 		    "firmware file too short: %zu bytes\n", fp->datasize);
356 		error = ENXIO;
357 		goto fail;
358 	}
359 
360 	hdr = (const struct wpi_firmware_hdr *)fp->data;
361 
362 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
363 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
364 
365 	rtextsz = le32toh(hdr->rtextsz);
366 	rdatasz = le32toh(hdr->rdatasz);
367 	itextsz = le32toh(hdr->itextsz);
368 	idatasz = le32toh(hdr->idatasz);
369 	btextsz = le32toh(hdr->btextsz);
370 
371 	/* check that all firmware segments are present */
372 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
373 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
374 		device_printf(sc->sc_dev,
375 		    "firmware file too short: %zu bytes\n", fp->datasize);
376 		error = ENXIO; /* XXX appropriate error code? */
377 		goto fail;
378 	}
379 
380 	/* get pointers to firmware segments */
381 	rtext = (const uint8_t *)(hdr + 1);
382 	rdata = rtext + rtextsz;
383 	itext = rdata + rdatasz;
384 	idata = itext + itextsz;
385 	btext = idata + idatasz;
386 
387 	DPRINTFN(WPI_DEBUG_FIRMWARE,
388 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
389 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
390 	     (le32toh(hdr->version) & 0xff000000) >> 24,
391 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
392 	     (le32toh(hdr->version) & 0x0000ffff),
393 	     rtextsz, rdatasz,
394 	     itextsz, idatasz, btextsz));
395 
396 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
397 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
398 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
399 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
400 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
401 
402 	/* sanity checks */
403 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
404 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
405 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
406 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
407 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
408 	    (btextsz & 3) != 0) {
409 		device_printf(sc->sc_dev, "firmware invalid\n");
410 		error = EINVAL;
411 		goto fail;
412 	}
413 
414 	/* copy initialization images into pre-allocated DMA-safe memory */
415 	memcpy(dma->vaddr, idata, idatasz);
416 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
417 
418 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
419 
420 	/* tell adapter where to find initialization images */
421 	wpi_mem_lock(sc);
422 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
423 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
424 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
425 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
426 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
427 	wpi_mem_unlock(sc);
428 
429 	/* load firmware boot code */
430 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
431 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
432 	    goto fail;
433 	}
434 
435 	/* now press "execute" */
436 	WPI_WRITE(sc, WPI_RESET, 0);
437 
438 	/* wait at most one second for the first alive notification */
439 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
440 		device_printf(sc->sc_dev,
441 		    "timeout waiting for adapter to initialize\n");
442 		goto fail;
443 	}
444 
445 	/* copy runtime images into pre-allocated DMA-sage memory */
446 	memcpy(dma->vaddr, rdata, rdatasz);
447 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
448 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
449 
450 	/* tell adapter where to find runtime images */
451 	wpi_mem_lock(sc);
452 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
453 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
454 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
455 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
456 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
457 	wpi_mem_unlock(sc);
458 
459 	/* wait at most one second for the first alive notification */
460 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
461 		device_printf(sc->sc_dev,
462 		    "timeout waiting for adapter to initialize2\n");
463 		goto fail;
464 	}
465 
466 	DPRINTFN(WPI_DEBUG_FIRMWARE,
467 	    ("Firmware loaded to driver successfully\n"));
468 	return error;
469 fail:
470 	wpi_unload_firmware(sc);
471 	return error;
472 }
473 
474 /**
475  * Free the referenced firmware image
476  */
477 static void
478 wpi_unload_firmware(struct wpi_softc *sc)
479 {
480 
481 	if (sc->fw_fp) {
482 		WPI_UNLOCK(sc);
483 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
484 		WPI_LOCK(sc);
485 		sc->fw_fp = NULL;
486 	}
487 }
488 
489 static int
490 wpi_attach(device_t dev)
491 {
492 	struct wpi_softc *sc = device_get_softc(dev);
493 	struct ifnet *ifp;
494 	struct ieee80211com *ic;
495 	int ac, error, rid, supportsa = 1;
496 	uint32_t tmp;
497 	const struct wpi_ident *ident;
498 	uint8_t macaddr[IEEE80211_ADDR_LEN];
499 
500 	sc->sc_dev = dev;
501 
502 	if (bootverbose || WPI_DEBUG_SET)
503 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
504 
505 	/*
506 	 * Some card's only support 802.11b/g not a, check to see if
507 	 * this is one such card. A 0x0 in the subdevice table indicates
508 	 * the entire subdevice range is to be ignored.
509 	 */
510 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
511 		if (ident->subdevice &&
512 		    pci_get_subdevice(dev) == ident->subdevice) {
513 		    supportsa = 0;
514 		    break;
515 		}
516 	}
517 
518 	/* Create the tasks that can be queued */
519 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
520 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
521 
522 	WPI_LOCK_INIT(sc);
523 
524 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
525 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
526 
527 	/* disable the retry timeout register */
528 	pci_write_config(dev, 0x41, 0, 1);
529 
530 	/* enable bus-mastering */
531 	pci_enable_busmaster(dev);
532 
533 	rid = PCIR_BAR(0);
534 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
535 	    RF_ACTIVE);
536 	if (sc->mem == NULL) {
537 		device_printf(dev, "could not allocate memory resource\n");
538 		error = ENOMEM;
539 		goto fail;
540 	}
541 
542 	sc->sc_st = rman_get_bustag(sc->mem);
543 	sc->sc_sh = rman_get_bushandle(sc->mem);
544 
545 	rid = 0;
546 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
547 	    RF_ACTIVE | RF_SHAREABLE);
548 	if (sc->irq == NULL) {
549 		device_printf(dev, "could not allocate interrupt resource\n");
550 		error = ENOMEM;
551 		goto fail;
552 	}
553 
554 	/*
555 	 * Allocate DMA memory for firmware transfers.
556 	 */
557 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
558 		printf(": could not allocate firmware memory\n");
559 		error = ENOMEM;
560 		goto fail;
561 	}
562 
563 	/*
564 	 * Put adapter into a known state.
565 	 */
566 	if ((error = wpi_reset(sc)) != 0) {
567 		device_printf(dev, "could not reset adapter\n");
568 		goto fail;
569 	}
570 
571 	wpi_mem_lock(sc);
572 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
573 	if (bootverbose || WPI_DEBUG_SET)
574 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
575 
576 	wpi_mem_unlock(sc);
577 
578 	/* Allocate shared page */
579 	if ((error = wpi_alloc_shared(sc)) != 0) {
580 		device_printf(dev, "could not allocate shared page\n");
581 		goto fail;
582 	}
583 
584 	/* tx data queues  - 4 for QoS purposes */
585 	for (ac = 0; ac < WME_NUM_AC; ac++) {
586 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
587 		if (error != 0) {
588 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
589 		    goto fail;
590 		}
591 	}
592 
593 	/* command queue to talk to the card's firmware */
594 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
595 	if (error != 0) {
596 		device_printf(dev, "could not allocate command ring\n");
597 		goto fail;
598 	}
599 
600 	/* receive data queue */
601 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
602 	if (error != 0) {
603 		device_printf(dev, "could not allocate Rx ring\n");
604 		goto fail;
605 	}
606 
607 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
608 	if (ifp == NULL) {
609 		device_printf(dev, "can not if_alloc()\n");
610 		error = ENOMEM;
611 		goto fail;
612 	}
613 	ic = ifp->if_l2com;
614 
615 	ic->ic_ifp = ifp;
616 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
617 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
618 
619 	/* set device capabilities */
620 	ic->ic_caps =
621 		  IEEE80211_C_STA		/* station mode supported */
622 		| IEEE80211_C_MONITOR		/* monitor mode supported */
623 		| IEEE80211_C_TXPMGT		/* tx power management */
624 		| IEEE80211_C_SHSLOT		/* short slot time supported */
625 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
626 		| IEEE80211_C_WPA		/* 802.11i */
627 /* XXX looks like WME is partly supported? */
628 #if 0
629 		| IEEE80211_C_IBSS		/* IBSS mode support */
630 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
631 		| IEEE80211_C_WME		/* 802.11e */
632 		| IEEE80211_C_HOSTAP		/* Host access point mode */
633 #endif
634 		;
635 
636 	/*
637 	 * Read in the eeprom and also setup the channels for
638 	 * net80211. We don't set the rates as net80211 does this for us
639 	 */
640 	wpi_read_eeprom(sc, macaddr);
641 
642 	if (bootverbose || WPI_DEBUG_SET) {
643 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
644 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
645 			  sc->type > 1 ? 'B': '?');
646 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
647 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
648 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
649 			  supportsa ? "does" : "does not");
650 
651 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
652 	       what sc->rev really represents - benjsc 20070615 */
653 	}
654 
655 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
656 	ifp->if_softc = sc;
657 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
658 	ifp->if_init = wpi_init;
659 	ifp->if_ioctl = wpi_ioctl;
660 	ifp->if_start = wpi_start;
661 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
662 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
663 	IFQ_SET_READY(&ifp->if_snd);
664 
665 	ieee80211_ifattach(ic, macaddr);
666 	/* override default methods */
667 	ic->ic_raw_xmit = wpi_raw_xmit;
668 	ic->ic_wme.wme_update = wpi_wme_update;
669 	ic->ic_scan_start = wpi_scan_start;
670 	ic->ic_scan_end = wpi_scan_end;
671 	ic->ic_set_channel = wpi_set_channel;
672 	ic->ic_scan_curchan = wpi_scan_curchan;
673 	ic->ic_scan_mindwell = wpi_scan_mindwell;
674 
675 	ic->ic_vap_create = wpi_vap_create;
676 	ic->ic_vap_delete = wpi_vap_delete;
677 
678 	ieee80211_radiotap_attach(ic,
679 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
680 		WPI_TX_RADIOTAP_PRESENT,
681 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
682 		WPI_RX_RADIOTAP_PRESENT);
683 
684 	/*
685 	 * Hook our interrupt after all initialization is complete.
686 	 */
687 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
688 	    NULL, wpi_intr, sc, &sc->sc_ih);
689 	if (error != 0) {
690 		device_printf(dev, "could not set up interrupt\n");
691 		goto fail;
692 	}
693 
694 	if (bootverbose)
695 		ieee80211_announce(ic);
696 #ifdef XXX_DEBUG
697 	ieee80211_announce_channels(ic);
698 #endif
699 	return 0;
700 
701 fail:	wpi_detach(dev);
702 	return ENXIO;
703 }
704 
705 static int
706 wpi_detach(device_t dev)
707 {
708 	struct wpi_softc *sc = device_get_softc(dev);
709 	struct ifnet *ifp = sc->sc_ifp;
710 	struct ieee80211com *ic;
711 	int ac;
712 
713 	if (sc->irq != NULL)
714 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
715 
716 	if (ifp != NULL) {
717 		ic = ifp->if_l2com;
718 
719 		ieee80211_draintask(ic, &sc->sc_restarttask);
720 		ieee80211_draintask(ic, &sc->sc_radiotask);
721 		wpi_stop(sc);
722 		callout_drain(&sc->watchdog_to);
723 		callout_drain(&sc->calib_to);
724 		ieee80211_ifdetach(ic);
725 	}
726 
727 	WPI_LOCK(sc);
728 	if (sc->txq[0].data_dmat) {
729 		for (ac = 0; ac < WME_NUM_AC; ac++)
730 			wpi_free_tx_ring(sc, &sc->txq[ac]);
731 
732 		wpi_free_tx_ring(sc, &sc->cmdq);
733 		wpi_free_rx_ring(sc, &sc->rxq);
734 		wpi_free_shared(sc);
735 	}
736 
737 	if (sc->fw_fp != NULL) {
738 		wpi_unload_firmware(sc);
739 	}
740 
741 	if (sc->fw_dma.tag)
742 		wpi_free_fwmem(sc);
743 	WPI_UNLOCK(sc);
744 
745 	if (sc->irq != NULL)
746 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
747 		    sc->irq);
748 	if (sc->mem != NULL)
749 		bus_release_resource(dev, SYS_RES_MEMORY,
750 		    rman_get_rid(sc->mem), sc->mem);
751 
752 	if (ifp != NULL)
753 		if_free(ifp);
754 
755 	WPI_LOCK_DESTROY(sc);
756 
757 	return 0;
758 }
759 
760 static struct ieee80211vap *
761 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
762     enum ieee80211_opmode opmode, int flags,
763     const uint8_t bssid[IEEE80211_ADDR_LEN],
764     const uint8_t mac[IEEE80211_ADDR_LEN])
765 {
766 	struct wpi_vap *wvp;
767 	struct ieee80211vap *vap;
768 
769 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
770 		return NULL;
771 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
772 	    M_80211_VAP, M_NOWAIT | M_ZERO);
773 	if (wvp == NULL)
774 		return NULL;
775 	vap = &wvp->vap;
776 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
777 	/* override with driver methods */
778 	wvp->newstate = vap->iv_newstate;
779 	vap->iv_newstate = wpi_newstate;
780 
781 	ieee80211_ratectl_init(vap);
782 	/* complete setup */
783 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
784 	ic->ic_opmode = opmode;
785 	return vap;
786 }
787 
788 static void
789 wpi_vap_delete(struct ieee80211vap *vap)
790 {
791 	struct wpi_vap *wvp = WPI_VAP(vap);
792 
793 	ieee80211_ratectl_deinit(vap);
794 	ieee80211_vap_detach(vap);
795 	free(wvp, M_80211_VAP);
796 }
797 
798 static void
799 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
800 {
801 	if (error != 0)
802 		return;
803 
804 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
805 
806 	*(bus_addr_t *)arg = segs[0].ds_addr;
807 }
808 
809 /*
810  * Allocates a contiguous block of dma memory of the requested size and
811  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
812  * allocations greater than 4096 may fail. Hence if the requested alignment is
813  * greater we allocate 'alignment' size extra memory and shift the vaddr and
814  * paddr after the dma load. This bypasses the problem at the cost of a little
815  * more memory.
816  */
817 static int
818 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
819     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
820 {
821 	int error;
822 	bus_size_t align;
823 	bus_size_t reqsize;
824 
825 	DPRINTFN(WPI_DEBUG_DMA,
826 	    ("Size: %zd - alignment %zd\n", size, alignment));
827 
828 	dma->size = size;
829 	dma->tag = NULL;
830 
831 	if (alignment > 4096) {
832 		align = PAGE_SIZE;
833 		reqsize = size + alignment;
834 	} else {
835 		align = alignment;
836 		reqsize = size;
837 	}
838 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
839 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
840 	    NULL, NULL, reqsize,
841 	    1, reqsize, flags,
842 	    NULL, NULL, &dma->tag);
843 	if (error != 0) {
844 		device_printf(sc->sc_dev,
845 		    "could not create shared page DMA tag\n");
846 		goto fail;
847 	}
848 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
849 	    flags | BUS_DMA_ZERO, &dma->map);
850 	if (error != 0) {
851 		device_printf(sc->sc_dev,
852 		    "could not allocate shared page DMA memory\n");
853 		goto fail;
854 	}
855 
856 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
857 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
858 
859 	/* Save the original pointers so we can free all the memory */
860 	dma->paddr = dma->paddr_start;
861 	dma->vaddr = dma->vaddr_start;
862 
863 	/*
864 	 * Check the alignment and increment by 4096 until we get the
865 	 * requested alignment. Fail if can't obtain the alignment
866 	 * we requested.
867 	 */
868 	if ((dma->paddr & (alignment -1 )) != 0) {
869 		int i;
870 
871 		for (i = 0; i < alignment / 4096; i++) {
872 			if ((dma->paddr & (alignment - 1 )) == 0)
873 				break;
874 			dma->paddr += 4096;
875 			dma->vaddr += 4096;
876 		}
877 		if (i == alignment / 4096) {
878 			device_printf(sc->sc_dev,
879 			    "alignment requirement was not satisfied\n");
880 			goto fail;
881 		}
882 	}
883 
884 	if (error != 0) {
885 		device_printf(sc->sc_dev,
886 		    "could not load shared page DMA map\n");
887 		goto fail;
888 	}
889 
890 	if (kvap != NULL)
891 		*kvap = dma->vaddr;
892 
893 	return 0;
894 
895 fail:
896 	wpi_dma_contig_free(dma);
897 	return error;
898 }
899 
900 static void
901 wpi_dma_contig_free(struct wpi_dma_info *dma)
902 {
903 	if (dma->tag) {
904 		if (dma->map != NULL) {
905 			if (dma->paddr_start != 0) {
906 				bus_dmamap_sync(dma->tag, dma->map,
907 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
908 				bus_dmamap_unload(dma->tag, dma->map);
909 			}
910 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
911 		}
912 		bus_dma_tag_destroy(dma->tag);
913 	}
914 }
915 
916 /*
917  * Allocate a shared page between host and NIC.
918  */
919 static int
920 wpi_alloc_shared(struct wpi_softc *sc)
921 {
922 	int error;
923 
924 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
925 	    (void **)&sc->shared, sizeof (struct wpi_shared),
926 	    PAGE_SIZE,
927 	    BUS_DMA_NOWAIT);
928 
929 	if (error != 0) {
930 		device_printf(sc->sc_dev,
931 		    "could not allocate shared area DMA memory\n");
932 	}
933 
934 	return error;
935 }
936 
937 static void
938 wpi_free_shared(struct wpi_softc *sc)
939 {
940 	wpi_dma_contig_free(&sc->shared_dma);
941 }
942 
943 static int
944 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
945 {
946 
947 	int i, error;
948 
949 	ring->cur = 0;
950 
951 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
952 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
953 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
954 
955 	if (error != 0) {
956 		device_printf(sc->sc_dev,
957 		    "%s: could not allocate rx ring DMA memory, error %d\n",
958 		    __func__, error);
959 		goto fail;
960 	}
961 
962         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
963 	    BUS_SPACE_MAXADDR_32BIT,
964             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
965             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
966         if (error != 0) {
967                 device_printf(sc->sc_dev,
968 		    "%s: bus_dma_tag_create_failed, error %d\n",
969 		    __func__, error);
970                 goto fail;
971         }
972 
973 	/*
974 	 * Setup Rx buffers.
975 	 */
976 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
977 		struct wpi_rx_data *data = &ring->data[i];
978 		struct mbuf *m;
979 		bus_addr_t paddr;
980 
981 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
982 		if (error != 0) {
983 			device_printf(sc->sc_dev,
984 			    "%s: bus_dmamap_create failed, error %d\n",
985 			    __func__, error);
986 			goto fail;
987 		}
988 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
989 		if (m == NULL) {
990 			device_printf(sc->sc_dev,
991 			   "%s: could not allocate rx mbuf\n", __func__);
992 			error = ENOMEM;
993 			goto fail;
994 		}
995 		/* map page */
996 		error = bus_dmamap_load(ring->data_dmat, data->map,
997 		    mtod(m, caddr_t), MJUMPAGESIZE,
998 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
999 		if (error != 0 && error != EFBIG) {
1000 			device_printf(sc->sc_dev,
1001 			    "%s: bus_dmamap_load failed, error %d\n",
1002 			    __func__, error);
1003 			m_freem(m);
1004 			error = ENOMEM;	/* XXX unique code */
1005 			goto fail;
1006 		}
1007 		bus_dmamap_sync(ring->data_dmat, data->map,
1008 		    BUS_DMASYNC_PREWRITE);
1009 
1010 		data->m = m;
1011 		ring->desc[i] = htole32(paddr);
1012 	}
1013 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1014 	    BUS_DMASYNC_PREWRITE);
1015 	return 0;
1016 fail:
1017 	wpi_free_rx_ring(sc, ring);
1018 	return error;
1019 }
1020 
1021 static void
1022 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1023 {
1024 	int ntries;
1025 
1026 	wpi_mem_lock(sc);
1027 
1028 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1029 
1030 	for (ntries = 0; ntries < 100; ntries++) {
1031 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1032 			break;
1033 		DELAY(10);
1034 	}
1035 
1036 	wpi_mem_unlock(sc);
1037 
1038 #ifdef WPI_DEBUG
1039 	if (ntries == 100 && wpi_debug > 0)
1040 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1041 #endif
1042 
1043 	ring->cur = 0;
1044 }
1045 
1046 static void
1047 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1048 {
1049 	int i;
1050 
1051 	wpi_dma_contig_free(&ring->desc_dma);
1052 
1053 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1054 		struct wpi_rx_data *data = &ring->data[i];
1055 
1056 		if (data->m != NULL) {
1057 			bus_dmamap_sync(ring->data_dmat, data->map,
1058 			    BUS_DMASYNC_POSTREAD);
1059 			bus_dmamap_unload(ring->data_dmat, data->map);
1060 			m_freem(data->m);
1061 		}
1062 		if (data->map != NULL)
1063 			bus_dmamap_destroy(ring->data_dmat, data->map);
1064 	}
1065 }
1066 
1067 static int
1068 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1069 	int qid)
1070 {
1071 	struct wpi_tx_data *data;
1072 	int i, error;
1073 
1074 	ring->qid = qid;
1075 	ring->count = count;
1076 	ring->queued = 0;
1077 	ring->cur = 0;
1078 	ring->data = NULL;
1079 
1080 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1081 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1082 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1083 
1084 	if (error != 0) {
1085 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1086 	    goto fail;
1087 	}
1088 
1089 	/* update shared page with ring's base address */
1090 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1091 
1092 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1093 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1094 		BUS_DMA_NOWAIT);
1095 
1096 	if (error != 0) {
1097 		device_printf(sc->sc_dev,
1098 		    "could not allocate tx command DMA memory\n");
1099 		goto fail;
1100 	}
1101 
1102 	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1103 	    M_NOWAIT | M_ZERO);
1104 	if (ring->data == NULL) {
1105 		device_printf(sc->sc_dev,
1106 		    "could not allocate tx data slots\n");
1107 		goto fail;
1108 	}
1109 
1110 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1111 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1112 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1113 	    &ring->data_dmat);
1114 	if (error != 0) {
1115 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1116 		goto fail;
1117 	}
1118 
1119 	for (i = 0; i < count; i++) {
1120 		data = &ring->data[i];
1121 
1122 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1123 		if (error != 0) {
1124 			device_printf(sc->sc_dev,
1125 			    "could not create tx buf DMA map\n");
1126 			goto fail;
1127 		}
1128 		bus_dmamap_sync(ring->data_dmat, data->map,
1129 		    BUS_DMASYNC_PREWRITE);
1130 	}
1131 
1132 	return 0;
1133 
1134 fail:
1135 	wpi_free_tx_ring(sc, ring);
1136 	return error;
1137 }
1138 
1139 static void
1140 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1141 {
1142 	struct wpi_tx_data *data;
1143 	int i, ntries;
1144 
1145 	wpi_mem_lock(sc);
1146 
1147 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1148 	for (ntries = 0; ntries < 100; ntries++) {
1149 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1150 			break;
1151 		DELAY(10);
1152 	}
1153 #ifdef WPI_DEBUG
1154 	if (ntries == 100 && wpi_debug > 0)
1155 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1156 		    ring->qid);
1157 #endif
1158 	wpi_mem_unlock(sc);
1159 
1160 	for (i = 0; i < ring->count; i++) {
1161 		data = &ring->data[i];
1162 
1163 		if (data->m != NULL) {
1164 			bus_dmamap_unload(ring->data_dmat, data->map);
1165 			m_freem(data->m);
1166 			data->m = NULL;
1167 		}
1168 	}
1169 
1170 	ring->queued = 0;
1171 	ring->cur = 0;
1172 }
1173 
1174 static void
1175 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1176 {
1177 	struct wpi_tx_data *data;
1178 	int i;
1179 
1180 	wpi_dma_contig_free(&ring->desc_dma);
1181 	wpi_dma_contig_free(&ring->cmd_dma);
1182 
1183 	if (ring->data != NULL) {
1184 		for (i = 0; i < ring->count; i++) {
1185 			data = &ring->data[i];
1186 
1187 			if (data->m != NULL) {
1188 				bus_dmamap_sync(ring->data_dmat, data->map,
1189 				    BUS_DMASYNC_POSTWRITE);
1190 				bus_dmamap_unload(ring->data_dmat, data->map);
1191 				m_freem(data->m);
1192 				data->m = NULL;
1193 			}
1194 		}
1195 		free(ring->data, M_DEVBUF);
1196 	}
1197 
1198 	if (ring->data_dmat != NULL)
1199 		bus_dma_tag_destroy(ring->data_dmat);
1200 }
1201 
1202 static int
1203 wpi_shutdown(device_t dev)
1204 {
1205 	struct wpi_softc *sc = device_get_softc(dev);
1206 
1207 	WPI_LOCK(sc);
1208 	wpi_stop_locked(sc);
1209 	wpi_unload_firmware(sc);
1210 	WPI_UNLOCK(sc);
1211 
1212 	return 0;
1213 }
1214 
1215 static int
1216 wpi_suspend(device_t dev)
1217 {
1218 	struct wpi_softc *sc = device_get_softc(dev);
1219 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1220 
1221 	ieee80211_suspend_all(ic);
1222 	return 0;
1223 }
1224 
1225 static int
1226 wpi_resume(device_t dev)
1227 {
1228 	struct wpi_softc *sc = device_get_softc(dev);
1229 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1230 
1231 	pci_write_config(dev, 0x41, 0, 1);
1232 
1233 	ieee80211_resume_all(ic);
1234 	return 0;
1235 }
1236 
1237 /**
1238  * Called by net80211 when ever there is a change to 80211 state machine
1239  */
1240 static int
1241 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1242 {
1243 	struct wpi_vap *wvp = WPI_VAP(vap);
1244 	struct ieee80211com *ic = vap->iv_ic;
1245 	struct ifnet *ifp = ic->ic_ifp;
1246 	struct wpi_softc *sc = ifp->if_softc;
1247 	int error;
1248 
1249 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1250 		ieee80211_state_name[vap->iv_state],
1251 		ieee80211_state_name[nstate], sc->flags));
1252 
1253 	IEEE80211_UNLOCK(ic);
1254 	WPI_LOCK(sc);
1255 	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1256 		/*
1257 		 * On !INIT -> SCAN transitions, we need to clear any possible
1258 		 * knowledge about associations.
1259 		 */
1260 		error = wpi_config(sc);
1261 		if (error != 0) {
1262 			device_printf(sc->sc_dev,
1263 			    "%s: device config failed, error %d\n",
1264 			    __func__, error);
1265 		}
1266 	}
1267 	if (nstate == IEEE80211_S_AUTH ||
1268 	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1269 		/*
1270 		 * The node must be registered in the firmware before auth.
1271 		 * Also the associd must be cleared on RUN -> ASSOC
1272 		 * transitions.
1273 		 */
1274 		error = wpi_auth(sc, vap);
1275 		if (error != 0) {
1276 			device_printf(sc->sc_dev,
1277 			    "%s: could not move to auth state, error %d\n",
1278 			    __func__, error);
1279 		}
1280 	}
1281 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1282 		error = wpi_run(sc, vap);
1283 		if (error != 0) {
1284 			device_printf(sc->sc_dev,
1285 			    "%s: could not move to run state, error %d\n",
1286 			    __func__, error);
1287 		}
1288 	}
1289 	if (nstate == IEEE80211_S_RUN) {
1290 		/* RUN -> RUN transition; just restart the timers */
1291 		wpi_calib_timeout(sc);
1292 		/* XXX split out rate control timer */
1293 	}
1294 	WPI_UNLOCK(sc);
1295 	IEEE80211_LOCK(ic);
1296 	return wvp->newstate(vap, nstate, arg);
1297 }
1298 
1299 /*
1300  * Grab exclusive access to NIC memory.
1301  */
1302 static void
1303 wpi_mem_lock(struct wpi_softc *sc)
1304 {
1305 	int ntries;
1306 	uint32_t tmp;
1307 
1308 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1309 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1310 
1311 	/* spin until we actually get the lock */
1312 	for (ntries = 0; ntries < 100; ntries++) {
1313 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1314 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1315 			break;
1316 		DELAY(10);
1317 	}
1318 	if (ntries == 100)
1319 		device_printf(sc->sc_dev, "could not lock memory\n");
1320 }
1321 
1322 /*
1323  * Release lock on NIC memory.
1324  */
1325 static void
1326 wpi_mem_unlock(struct wpi_softc *sc)
1327 {
1328 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1329 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1330 }
1331 
1332 static uint32_t
1333 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1334 {
1335 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1336 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1337 }
1338 
1339 static void
1340 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1341 {
1342 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1343 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1344 }
1345 
1346 static void
1347 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1348     const uint32_t *data, int wlen)
1349 {
1350 	for (; wlen > 0; wlen--, data++, addr+=4)
1351 		wpi_mem_write(sc, addr, *data);
1352 }
1353 
1354 /*
1355  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1356  * using the traditional bit-bang method. Data is read up until len bytes have
1357  * been obtained.
1358  */
1359 static uint16_t
1360 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1361 {
1362 	int ntries;
1363 	uint32_t val;
1364 	uint8_t *out = data;
1365 
1366 	wpi_mem_lock(sc);
1367 
1368 	for (; len > 0; len -= 2, addr++) {
1369 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1370 
1371 		for (ntries = 0; ntries < 10; ntries++) {
1372 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1373 				break;
1374 			DELAY(5);
1375 		}
1376 
1377 		if (ntries == 10) {
1378 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1379 			return ETIMEDOUT;
1380 		}
1381 
1382 		*out++= val >> 16;
1383 		if (len > 1)
1384 			*out ++= val >> 24;
1385 	}
1386 
1387 	wpi_mem_unlock(sc);
1388 
1389 	return 0;
1390 }
1391 
1392 /*
1393  * The firmware text and data segments are transferred to the NIC using DMA.
1394  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1395  * where to find it.  Once the NIC has copied the firmware into its internal
1396  * memory, we can free our local copy in the driver.
1397  */
1398 static int
1399 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1400 {
1401 	int error, ntries;
1402 
1403 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1404 
1405 	size /= sizeof(uint32_t);
1406 
1407 	wpi_mem_lock(sc);
1408 
1409 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1410 	    (const uint32_t *)fw, size);
1411 
1412 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1413 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1414 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1415 
1416 	/* run microcode */
1417 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1418 
1419 	/* wait while the adapter is busy copying the firmware */
1420 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1421 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1422 		DPRINTFN(WPI_DEBUG_HW,
1423 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1424 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1425 		if (status & WPI_TX_IDLE(6)) {
1426 			DPRINTFN(WPI_DEBUG_HW,
1427 			    ("Status Match! - ntries = %d\n", ntries));
1428 			break;
1429 		}
1430 		DELAY(10);
1431 	}
1432 	if (ntries == 1000) {
1433 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1434 		error = ETIMEDOUT;
1435 	}
1436 
1437 	/* start the microcode executing */
1438 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1439 
1440 	wpi_mem_unlock(sc);
1441 
1442 	return (error);
1443 }
1444 
1445 static void
1446 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1447 	struct wpi_rx_data *data)
1448 {
1449 	struct ifnet *ifp = sc->sc_ifp;
1450 	struct ieee80211com *ic = ifp->if_l2com;
1451 	struct wpi_rx_ring *ring = &sc->rxq;
1452 	struct wpi_rx_stat *stat;
1453 	struct wpi_rx_head *head;
1454 	struct wpi_rx_tail *tail;
1455 	struct ieee80211_node *ni;
1456 	struct mbuf *m, *mnew;
1457 	bus_addr_t paddr;
1458 	int error;
1459 
1460 	stat = (struct wpi_rx_stat *)(desc + 1);
1461 
1462 	if (stat->len > WPI_STAT_MAXLEN) {
1463 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1464 		ifp->if_ierrors++;
1465 		return;
1466 	}
1467 
1468 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1469 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1470 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1471 
1472 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1473 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1474 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1475 	    (uintmax_t)le64toh(tail->tstamp)));
1476 
1477 	/* discard Rx frames with bad CRC early */
1478 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1479 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1480 		    le32toh(tail->flags)));
1481 		ifp->if_ierrors++;
1482 		return;
1483 	}
1484 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1485 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1486 		    le16toh(head->len)));
1487 		ifp->if_ierrors++;
1488 		return;
1489 	}
1490 
1491 	/* XXX don't need mbuf, just dma buffer */
1492 	mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1493 	if (mnew == NULL) {
1494 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1495 		    __func__));
1496 		ifp->if_ierrors++;
1497 		return;
1498 	}
1499 	bus_dmamap_unload(ring->data_dmat, data->map);
1500 
1501 	error = bus_dmamap_load(ring->data_dmat, data->map,
1502 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1503 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1504 	if (error != 0 && error != EFBIG) {
1505 		device_printf(sc->sc_dev,
1506 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1507 		m_freem(mnew);
1508 		ifp->if_ierrors++;
1509 		return;
1510 	}
1511 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1512 
1513 	/* finalize mbuf and swap in new one */
1514 	m = data->m;
1515 	m->m_pkthdr.rcvif = ifp;
1516 	m->m_data = (caddr_t)(head + 1);
1517 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1518 
1519 	data->m = mnew;
1520 	/* update Rx descriptor */
1521 	ring->desc[ring->cur] = htole32(paddr);
1522 
1523 	if (ieee80211_radiotap_active(ic)) {
1524 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1525 
1526 		tap->wr_flags = 0;
1527 		tap->wr_chan_freq =
1528 			htole16(ic->ic_channels[head->chan].ic_freq);
1529 		tap->wr_chan_flags =
1530 			htole16(ic->ic_channels[head->chan].ic_flags);
1531 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1532 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1533 		tap->wr_tsft = tail->tstamp;
1534 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1535 		switch (head->rate) {
1536 		/* CCK rates */
1537 		case  10: tap->wr_rate =   2; break;
1538 		case  20: tap->wr_rate =   4; break;
1539 		case  55: tap->wr_rate =  11; break;
1540 		case 110: tap->wr_rate =  22; break;
1541 		/* OFDM rates */
1542 		case 0xd: tap->wr_rate =  12; break;
1543 		case 0xf: tap->wr_rate =  18; break;
1544 		case 0x5: tap->wr_rate =  24; break;
1545 		case 0x7: tap->wr_rate =  36; break;
1546 		case 0x9: tap->wr_rate =  48; break;
1547 		case 0xb: tap->wr_rate =  72; break;
1548 		case 0x1: tap->wr_rate =  96; break;
1549 		case 0x3: tap->wr_rate = 108; break;
1550 		/* unknown rate: should not happen */
1551 		default:  tap->wr_rate =   0;
1552 		}
1553 		if (le16toh(head->flags) & 0x4)
1554 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1555 	}
1556 
1557 	WPI_UNLOCK(sc);
1558 
1559 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1560 	if (ni != NULL) {
1561 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1562 		ieee80211_free_node(ni);
1563 	} else
1564 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1565 
1566 	WPI_LOCK(sc);
1567 }
1568 
1569 static void
1570 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1571 {
1572 	struct ifnet *ifp = sc->sc_ifp;
1573 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1574 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1575 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1576 	struct ieee80211_node *ni = txdata->ni;
1577 	struct ieee80211vap *vap = ni->ni_vap;
1578 	int retrycnt = 0;
1579 
1580 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1581 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1582 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1583 	    le32toh(stat->status)));
1584 
1585 	/*
1586 	 * Update rate control statistics for the node.
1587 	 * XXX we should not count mgmt frames since they're always sent at
1588 	 * the lowest available bit-rate.
1589 	 * XXX frames w/o ACK shouldn't be used either
1590 	 */
1591 	if (stat->ntries > 0) {
1592 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1593 		retrycnt = 1;
1594 	}
1595 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1596 	    &retrycnt, NULL);
1597 
1598 	/* XXX oerrors should only count errors !maxtries */
1599 	if ((le32toh(stat->status) & 0xff) != 1)
1600 		ifp->if_oerrors++;
1601 	else
1602 		ifp->if_opackets++;
1603 
1604 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1605 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1606 	/* XXX handle M_TXCB? */
1607 	m_freem(txdata->m);
1608 	txdata->m = NULL;
1609 	ieee80211_free_node(txdata->ni);
1610 	txdata->ni = NULL;
1611 
1612 	ring->queued--;
1613 
1614 	sc->sc_tx_timer = 0;
1615 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1616 	wpi_start_locked(ifp);
1617 }
1618 
1619 static void
1620 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1621 {
1622 	struct wpi_tx_ring *ring = &sc->cmdq;
1623 	struct wpi_tx_data *data;
1624 
1625 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1626 				 "type=%s len=%d\n", desc->qid, desc->idx,
1627 				 desc->flags, wpi_cmd_str(desc->type),
1628 				 le32toh(desc->len)));
1629 
1630 	if ((desc->qid & 7) != 4)
1631 		return;	/* not a command ack */
1632 
1633 	data = &ring->data[desc->idx];
1634 
1635 	/* if the command was mapped in a mbuf, free it */
1636 	if (data->m != NULL) {
1637 		bus_dmamap_unload(ring->data_dmat, data->map);
1638 		m_freem(data->m);
1639 		data->m = NULL;
1640 	}
1641 
1642 	sc->flags &= ~WPI_FLAG_BUSY;
1643 	wakeup(&ring->cmd[desc->idx]);
1644 }
1645 
1646 static void
1647 wpi_notif_intr(struct wpi_softc *sc)
1648 {
1649 	struct ifnet *ifp = sc->sc_ifp;
1650 	struct ieee80211com *ic = ifp->if_l2com;
1651 	struct wpi_rx_desc *desc;
1652 	struct wpi_rx_data *data;
1653 	uint32_t hw;
1654 
1655 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1656 	    BUS_DMASYNC_POSTREAD);
1657 
1658 	hw = le32toh(sc->shared->next);
1659 	while (sc->rxq.cur != hw) {
1660 		data = &sc->rxq.data[sc->rxq.cur];
1661 
1662 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1663 		    BUS_DMASYNC_POSTREAD);
1664 		desc = (void *)data->m->m_ext.ext_buf;
1665 
1666 		DPRINTFN(WPI_DEBUG_NOTIFY,
1667 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1668 			  desc->qid,
1669 			  desc->idx,
1670 			  desc->flags,
1671 			  desc->type,
1672 			  le32toh(desc->len)));
1673 
1674 		if (!(desc->qid & 0x80))	/* reply to a command */
1675 			wpi_cmd_intr(sc, desc);
1676 
1677 		switch (desc->type) {
1678 		case WPI_RX_DONE:
1679 			/* a 802.11 frame was received */
1680 			wpi_rx_intr(sc, desc, data);
1681 			break;
1682 
1683 		case WPI_TX_DONE:
1684 			/* a 802.11 frame has been transmitted */
1685 			wpi_tx_intr(sc, desc);
1686 			break;
1687 
1688 		case WPI_UC_READY:
1689 		{
1690 			struct wpi_ucode_info *uc =
1691 				(struct wpi_ucode_info *)(desc + 1);
1692 
1693 			/* the microcontroller is ready */
1694 			DPRINTF(("microcode alive notification version %x "
1695 				"alive %x\n", le32toh(uc->version),
1696 				le32toh(uc->valid)));
1697 
1698 			if (le32toh(uc->valid) != 1) {
1699 				device_printf(sc->sc_dev,
1700 				    "microcontroller initialization failed\n");
1701 				wpi_stop_locked(sc);
1702 			}
1703 			break;
1704 		}
1705 		case WPI_STATE_CHANGED:
1706 		{
1707 			uint32_t *status = (uint32_t *)(desc + 1);
1708 
1709 			/* enabled/disabled notification */
1710 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1711 
1712 			if (le32toh(*status) & 1) {
1713 				device_printf(sc->sc_dev,
1714 				    "Radio transmitter is switched off\n");
1715 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1716 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1717 				/* Disable firmware commands */
1718 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1719 			}
1720 			break;
1721 		}
1722 		case WPI_START_SCAN:
1723 		{
1724 #ifdef WPI_DEBUG
1725 			struct wpi_start_scan *scan =
1726 				(struct wpi_start_scan *)(desc + 1);
1727 #endif
1728 
1729 			DPRINTFN(WPI_DEBUG_SCANNING,
1730 				 ("scanning channel %d status %x\n",
1731 			    scan->chan, le32toh(scan->status)));
1732 			break;
1733 		}
1734 		case WPI_STOP_SCAN:
1735 		{
1736 #ifdef WPI_DEBUG
1737 			struct wpi_stop_scan *scan =
1738 				(struct wpi_stop_scan *)(desc + 1);
1739 #endif
1740 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1741 
1742 			DPRINTFN(WPI_DEBUG_SCANNING,
1743 			    ("scan finished nchan=%d status=%d chan=%d\n",
1744 			     scan->nchan, scan->status, scan->chan));
1745 
1746 			sc->sc_scan_timer = 0;
1747 			ieee80211_scan_next(vap);
1748 			break;
1749 		}
1750 		case WPI_MISSED_BEACON:
1751 		{
1752 			struct wpi_missed_beacon *beacon =
1753 				(struct wpi_missed_beacon *)(desc + 1);
1754 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1755 
1756 			if (le32toh(beacon->consecutive) >=
1757 			    vap->iv_bmissthreshold) {
1758 				DPRINTF(("Beacon miss: %u >= %u\n",
1759 					 le32toh(beacon->consecutive),
1760 					 vap->iv_bmissthreshold));
1761 				ieee80211_beacon_miss(ic);
1762 			}
1763 			break;
1764 		}
1765 		}
1766 
1767 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1768 	}
1769 
1770 	/* tell the firmware what we have processed */
1771 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1772 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1773 }
1774 
1775 static void
1776 wpi_intr(void *arg)
1777 {
1778 	struct wpi_softc *sc = arg;
1779 	uint32_t r;
1780 
1781 	WPI_LOCK(sc);
1782 
1783 	r = WPI_READ(sc, WPI_INTR);
1784 	if (r == 0 || r == 0xffffffff) {
1785 		WPI_UNLOCK(sc);
1786 		return;
1787 	}
1788 
1789 	/* disable interrupts */
1790 	WPI_WRITE(sc, WPI_MASK, 0);
1791 	/* ack interrupts */
1792 	WPI_WRITE(sc, WPI_INTR, r);
1793 
1794 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1795 		struct ifnet *ifp = sc->sc_ifp;
1796 		struct ieee80211com *ic = ifp->if_l2com;
1797 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1798 
1799 		device_printf(sc->sc_dev, "fatal firmware error\n");
1800 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1801 				"(Hardware Error)"));
1802 		if (vap != NULL)
1803 			ieee80211_cancel_scan(vap);
1804 		ieee80211_runtask(ic, &sc->sc_restarttask);
1805 		sc->flags &= ~WPI_FLAG_BUSY;
1806 		WPI_UNLOCK(sc);
1807 		return;
1808 	}
1809 
1810 	if (r & WPI_RX_INTR)
1811 		wpi_notif_intr(sc);
1812 
1813 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1814 		wakeup(sc);
1815 
1816 	/* re-enable interrupts */
1817 	if (sc->sc_ifp->if_flags & IFF_UP)
1818 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1819 
1820 	WPI_UNLOCK(sc);
1821 }
1822 
1823 static uint8_t
1824 wpi_plcp_signal(int rate)
1825 {
1826 	switch (rate) {
1827 	/* CCK rates (returned values are device-dependent) */
1828 	case 2:		return 10;
1829 	case 4:		return 20;
1830 	case 11:	return 55;
1831 	case 22:	return 110;
1832 
1833 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1834 	/* R1-R4 (ral/ural is R4-R1) */
1835 	case 12:	return 0xd;
1836 	case 18:	return 0xf;
1837 	case 24:	return 0x5;
1838 	case 36:	return 0x7;
1839 	case 48:	return 0x9;
1840 	case 72:	return 0xb;
1841 	case 96:	return 0x1;
1842 	case 108:	return 0x3;
1843 
1844 	/* unsupported rates (should not get there) */
1845 	default:	return 0;
1846 	}
1847 }
1848 
1849 /* quickly determine if a given rate is CCK or OFDM */
1850 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1851 
1852 /*
1853  * Construct the data packet for a transmit buffer and acutally put
1854  * the buffer onto the transmit ring, kicking the card to process the
1855  * the buffer.
1856  */
1857 static int
1858 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1859 	int ac)
1860 {
1861 	struct ieee80211vap *vap = ni->ni_vap;
1862 	struct ifnet *ifp = sc->sc_ifp;
1863 	struct ieee80211com *ic = ifp->if_l2com;
1864 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1865 	struct wpi_tx_ring *ring = &sc->txq[ac];
1866 	struct wpi_tx_desc *desc;
1867 	struct wpi_tx_data *data;
1868 	struct wpi_tx_cmd *cmd;
1869 	struct wpi_cmd_data *tx;
1870 	struct ieee80211_frame *wh;
1871 	const struct ieee80211_txparam *tp;
1872 	struct ieee80211_key *k;
1873 	struct mbuf *mnew;
1874 	int i, error, nsegs, rate, hdrlen, ismcast;
1875 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1876 
1877 	desc = &ring->desc[ring->cur];
1878 	data = &ring->data[ring->cur];
1879 
1880 	wh = mtod(m0, struct ieee80211_frame *);
1881 
1882 	hdrlen = ieee80211_hdrsize(wh);
1883 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1884 
1885 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1886 		k = ieee80211_crypto_encap(ni, m0);
1887 		if (k == NULL) {
1888 			m_freem(m0);
1889 			return ENOBUFS;
1890 		}
1891 		/* packet header may have moved, reset our local pointer */
1892 		wh = mtod(m0, struct ieee80211_frame *);
1893 	}
1894 
1895 	cmd = &ring->cmd[ring->cur];
1896 	cmd->code = WPI_CMD_TX_DATA;
1897 	cmd->flags = 0;
1898 	cmd->qid = ring->qid;
1899 	cmd->idx = ring->cur;
1900 
1901 	tx = (struct wpi_cmd_data *)cmd->data;
1902 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1903 	tx->timeout = htole16(0);
1904 	tx->ofdm_mask = 0xff;
1905 	tx->cck_mask = 0x0f;
1906 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1907 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1908 	tx->len = htole16(m0->m_pkthdr.len);
1909 
1910 	if (!ismcast) {
1911 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1912 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1913 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1914 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1915 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1916 			tx->rts_ntries = 7;
1917 		}
1918 	}
1919 	/* pick a rate */
1920 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1921 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1922 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1923 		/* tell h/w to set timestamp in probe responses */
1924 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1925 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1926 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1927 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1928 			tx->timeout = htole16(3);
1929 		else
1930 			tx->timeout = htole16(2);
1931 		rate = tp->mgmtrate;
1932 	} else if (ismcast) {
1933 		rate = tp->mcastrate;
1934 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1935 		rate = tp->ucastrate;
1936 	} else {
1937 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1938 		rate = ni->ni_txrate;
1939 	}
1940 	tx->rate = wpi_plcp_signal(rate);
1941 
1942 	/* be very persistant at sending frames out */
1943 #if 0
1944 	tx->data_ntries = tp->maxretry;
1945 #else
1946 	tx->data_ntries = 15;		/* XXX way too high */
1947 #endif
1948 
1949 	if (ieee80211_radiotap_active_vap(vap)) {
1950 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1951 		tap->wt_flags = 0;
1952 		tap->wt_rate = rate;
1953 		tap->wt_hwqueue = ac;
1954 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
1955 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1956 
1957 		ieee80211_radiotap_tx(vap, m0);
1958 	}
1959 
1960 	/* save and trim IEEE802.11 header */
1961 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1962 	m_adj(m0, hdrlen);
1963 
1964 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1965 	    &nsegs, BUS_DMA_NOWAIT);
1966 	if (error != 0 && error != EFBIG) {
1967 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1968 		    error);
1969 		m_freem(m0);
1970 		return error;
1971 	}
1972 	if (error != 0) {
1973 		/* XXX use m_collapse */
1974 		mnew = m_defrag(m0, M_NOWAIT);
1975 		if (mnew == NULL) {
1976 			device_printf(sc->sc_dev,
1977 			    "could not defragment mbuf\n");
1978 			m_freem(m0);
1979 			return ENOBUFS;
1980 		}
1981 		m0 = mnew;
1982 
1983 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1984 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1985 		if (error != 0) {
1986 			device_printf(sc->sc_dev,
1987 			    "could not map mbuf (error %d)\n", error);
1988 			m_freem(m0);
1989 			return error;
1990 		}
1991 	}
1992 
1993 	data->m = m0;
1994 	data->ni = ni;
1995 
1996 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1997 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1998 
1999 	/* first scatter/gather segment is used by the tx data command */
2000 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2001 	    (1 + nsegs) << 24);
2002 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2003 	    ring->cur * sizeof (struct wpi_tx_cmd));
2004 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2005 	for (i = 1; i <= nsegs; i++) {
2006 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2007 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2008 	}
2009 
2010 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2011 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2012 	    BUS_DMASYNC_PREWRITE);
2013 
2014 	ring->queued++;
2015 
2016 	/* kick ring */
2017 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2018 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2019 
2020 	return 0;
2021 }
2022 
2023 /**
2024  * Process data waiting to be sent on the IFNET output queue
2025  */
2026 static void
2027 wpi_start(struct ifnet *ifp)
2028 {
2029 	struct wpi_softc *sc = ifp->if_softc;
2030 
2031 	WPI_LOCK(sc);
2032 	wpi_start_locked(ifp);
2033 	WPI_UNLOCK(sc);
2034 }
2035 
2036 static void
2037 wpi_start_locked(struct ifnet *ifp)
2038 {
2039 	struct wpi_softc *sc = ifp->if_softc;
2040 	struct ieee80211_node *ni;
2041 	struct mbuf *m;
2042 	int ac;
2043 
2044 	WPI_LOCK_ASSERT(sc);
2045 
2046 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2047 		return;
2048 
2049 	for (;;) {
2050 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2051 		if (m == NULL)
2052 			break;
2053 		ac = M_WME_GETAC(m);
2054 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2055 			/* there is no place left in this ring */
2056 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2057 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2058 			break;
2059 		}
2060 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2061 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2062 			ieee80211_free_node(ni);
2063 			ifp->if_oerrors++;
2064 			break;
2065 		}
2066 		sc->sc_tx_timer = 5;
2067 	}
2068 }
2069 
2070 static int
2071 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2072 	const struct ieee80211_bpf_params *params)
2073 {
2074 	struct ieee80211com *ic = ni->ni_ic;
2075 	struct ifnet *ifp = ic->ic_ifp;
2076 	struct wpi_softc *sc = ifp->if_softc;
2077 
2078 	/* prevent management frames from being sent if we're not ready */
2079 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2080 		m_freem(m);
2081 		ieee80211_free_node(ni);
2082 		return ENETDOWN;
2083 	}
2084 	WPI_LOCK(sc);
2085 
2086 	/* management frames go into ring 0 */
2087 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2088 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2089 		m_freem(m);
2090 		WPI_UNLOCK(sc);
2091 		ieee80211_free_node(ni);
2092 		return ENOBUFS;		/* XXX */
2093 	}
2094 
2095 	ifp->if_opackets++;
2096 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2097 		goto bad;
2098 	sc->sc_tx_timer = 5;
2099 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2100 
2101 	WPI_UNLOCK(sc);
2102 	return 0;
2103 bad:
2104 	ifp->if_oerrors++;
2105 	WPI_UNLOCK(sc);
2106 	ieee80211_free_node(ni);
2107 	return EIO;		/* XXX */
2108 }
2109 
2110 static int
2111 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2112 {
2113 	struct wpi_softc *sc = ifp->if_softc;
2114 	struct ieee80211com *ic = ifp->if_l2com;
2115 	struct ifreq *ifr = (struct ifreq *) data;
2116 	int error = 0, startall = 0;
2117 
2118 	switch (cmd) {
2119 	case SIOCSIFFLAGS:
2120 		WPI_LOCK(sc);
2121 		if ((ifp->if_flags & IFF_UP)) {
2122 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2123 				wpi_init_locked(sc, 0);
2124 				startall = 1;
2125 			}
2126 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2127 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2128 			wpi_stop_locked(sc);
2129 		WPI_UNLOCK(sc);
2130 		if (startall)
2131 			ieee80211_start_all(ic);
2132 		break;
2133 	case SIOCGIFMEDIA:
2134 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2135 		break;
2136 	case SIOCGIFADDR:
2137 		error = ether_ioctl(ifp, cmd, data);
2138 		break;
2139 	default:
2140 		error = EINVAL;
2141 		break;
2142 	}
2143 	return error;
2144 }
2145 
2146 /*
2147  * Extract various information from EEPROM.
2148  */
2149 static void
2150 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2151 {
2152 	int i;
2153 
2154 	/* read the hardware capabilities, revision and SKU type */
2155 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2156 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2157 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2158 
2159 	/* read the regulatory domain */
2160 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2161 
2162 	/* read in the hw MAC address */
2163 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2164 
2165 	/* read the list of authorized channels */
2166 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2167 		wpi_read_eeprom_channels(sc,i);
2168 
2169 	/* read the power level calibration info for each group */
2170 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2171 		wpi_read_eeprom_group(sc,i);
2172 }
2173 
2174 /*
2175  * Send a command to the firmware.
2176  */
2177 static int
2178 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2179 {
2180 	struct wpi_tx_ring *ring = &sc->cmdq;
2181 	struct wpi_tx_desc *desc;
2182 	struct wpi_tx_cmd *cmd;
2183 
2184 #ifdef WPI_DEBUG
2185 	if (!async) {
2186 		WPI_LOCK_ASSERT(sc);
2187 	}
2188 #endif
2189 
2190 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2191 		    async));
2192 
2193 	if (sc->flags & WPI_FLAG_BUSY) {
2194 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2195 		    __func__, code);
2196 		return EAGAIN;
2197 	}
2198 	sc->flags|= WPI_FLAG_BUSY;
2199 
2200 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2201 	    code, size));
2202 
2203 	desc = &ring->desc[ring->cur];
2204 	cmd = &ring->cmd[ring->cur];
2205 
2206 	cmd->code = code;
2207 	cmd->flags = 0;
2208 	cmd->qid = ring->qid;
2209 	cmd->idx = ring->cur;
2210 	memcpy(cmd->data, buf, size);
2211 
2212 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2213 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2214 		ring->cur * sizeof (struct wpi_tx_cmd));
2215 	desc->segs[0].len  = htole32(4 + size);
2216 
2217 	/* kick cmd ring */
2218 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2219 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2220 
2221 	if (async) {
2222 		sc->flags &= ~ WPI_FLAG_BUSY;
2223 		return 0;
2224 	}
2225 
2226 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2227 }
2228 
2229 static int
2230 wpi_wme_update(struct ieee80211com *ic)
2231 {
2232 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2233 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2234 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2235 	const struct wmeParams *wmep;
2236 	struct wpi_wme_setup wme;
2237 	int ac;
2238 
2239 	/* don't override default WME values if WME is not actually enabled */
2240 	if (!(ic->ic_flags & IEEE80211_F_WME))
2241 		return 0;
2242 
2243 	wme.flags = 0;
2244 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2245 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2246 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2247 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2248 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2249 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2250 
2251 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2252 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2253 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2254 	}
2255 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2256 #undef WPI_USEC
2257 #undef WPI_EXP2
2258 }
2259 
2260 /*
2261  * Configure h/w multi-rate retries.
2262  */
2263 static int
2264 wpi_mrr_setup(struct wpi_softc *sc)
2265 {
2266 	struct ifnet *ifp = sc->sc_ifp;
2267 	struct ieee80211com *ic = ifp->if_l2com;
2268 	struct wpi_mrr_setup mrr;
2269 	int i, error;
2270 
2271 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2272 
2273 	/* CCK rates (not used with 802.11a) */
2274 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2275 		mrr.rates[i].flags = 0;
2276 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2277 		/* fallback to the immediate lower CCK rate (if any) */
2278 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2279 		/* try one time at this rate before falling back to "next" */
2280 		mrr.rates[i].ntries = 1;
2281 	}
2282 
2283 	/* OFDM rates (not used with 802.11b) */
2284 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2285 		mrr.rates[i].flags = 0;
2286 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2287 		/* fallback to the immediate lower OFDM rate (if any) */
2288 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2289 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2290 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2291 			WPI_OFDM6 : WPI_CCK2) :
2292 		    i - 1;
2293 		/* try one time at this rate before falling back to "next" */
2294 		mrr.rates[i].ntries = 1;
2295 	}
2296 
2297 	/* setup MRR for control frames */
2298 	mrr.which = WPI_MRR_CTL;
2299 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2300 	if (error != 0) {
2301 		device_printf(sc->sc_dev,
2302 		    "could not setup MRR for control frames\n");
2303 		return error;
2304 	}
2305 
2306 	/* setup MRR for data frames */
2307 	mrr.which = WPI_MRR_DATA;
2308 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2309 	if (error != 0) {
2310 		device_printf(sc->sc_dev,
2311 		    "could not setup MRR for data frames\n");
2312 		return error;
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 static void
2319 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2320 {
2321 	struct wpi_cmd_led led;
2322 
2323 	led.which = which;
2324 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2325 	led.off = off;
2326 	led.on = on;
2327 
2328 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2329 }
2330 
2331 static void
2332 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2333 {
2334 	struct wpi_cmd_tsf tsf;
2335 	uint64_t val, mod;
2336 
2337 	memset(&tsf, 0, sizeof tsf);
2338 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2339 	tsf.bintval = htole16(ni->ni_intval);
2340 	tsf.lintval = htole16(10);
2341 
2342 	/* compute remaining time until next beacon */
2343 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2344 	mod = le64toh(tsf.tstamp) % val;
2345 	tsf.binitval = htole32((uint32_t)(val - mod));
2346 
2347 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2348 		device_printf(sc->sc_dev, "could not enable TSF\n");
2349 }
2350 
2351 #if 0
2352 /*
2353  * Build a beacon frame that the firmware will broadcast periodically in
2354  * IBSS or HostAP modes.
2355  */
2356 static int
2357 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2358 {
2359 	struct ifnet *ifp = sc->sc_ifp;
2360 	struct ieee80211com *ic = ifp->if_l2com;
2361 	struct wpi_tx_ring *ring = &sc->cmdq;
2362 	struct wpi_tx_desc *desc;
2363 	struct wpi_tx_data *data;
2364 	struct wpi_tx_cmd *cmd;
2365 	struct wpi_cmd_beacon *bcn;
2366 	struct ieee80211_beacon_offsets bo;
2367 	struct mbuf *m0;
2368 	bus_addr_t physaddr;
2369 	int error;
2370 
2371 	desc = &ring->desc[ring->cur];
2372 	data = &ring->data[ring->cur];
2373 
2374 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2375 	if (m0 == NULL) {
2376 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2377 		return ENOMEM;
2378 	}
2379 
2380 	cmd = &ring->cmd[ring->cur];
2381 	cmd->code = WPI_CMD_SET_BEACON;
2382 	cmd->flags = 0;
2383 	cmd->qid = ring->qid;
2384 	cmd->idx = ring->cur;
2385 
2386 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2387 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2388 	bcn->id = WPI_ID_BROADCAST;
2389 	bcn->ofdm_mask = 0xff;
2390 	bcn->cck_mask = 0x0f;
2391 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2392 	bcn->len = htole16(m0->m_pkthdr.len);
2393 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2394 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2395 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2396 
2397 	/* save and trim IEEE802.11 header */
2398 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2399 	m_adj(m0, sizeof (struct ieee80211_frame));
2400 
2401 	/* assume beacon frame is contiguous */
2402 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2403 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2404 	if (error != 0) {
2405 		device_printf(sc->sc_dev, "could not map beacon\n");
2406 		m_freem(m0);
2407 		return error;
2408 	}
2409 
2410 	data->m = m0;
2411 
2412 	/* first scatter/gather segment is used by the beacon command */
2413 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2414 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2415 		ring->cur * sizeof (struct wpi_tx_cmd));
2416 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2417 	desc->segs[1].addr = htole32(physaddr);
2418 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2419 
2420 	/* kick cmd ring */
2421 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2422 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2423 
2424 	return 0;
2425 }
2426 #endif
2427 
2428 static int
2429 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2430 {
2431 	struct ieee80211com *ic = vap->iv_ic;
2432 	struct ieee80211_node *ni = vap->iv_bss;
2433 	struct wpi_node_info node;
2434 	int error;
2435 
2436 
2437 	/* update adapter's configuration */
2438 	sc->config.associd = 0;
2439 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2440 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2441 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2442 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2443 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2444 		    WPI_CONFIG_24GHZ);
2445 	} else {
2446 		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2447 		    WPI_CONFIG_24GHZ);
2448 	}
2449 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2450 		sc->config.cck_mask  = 0;
2451 		sc->config.ofdm_mask = 0x15;
2452 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2453 		sc->config.cck_mask  = 0x03;
2454 		sc->config.ofdm_mask = 0;
2455 	} else {
2456 		/* XXX assume 802.11b/g */
2457 		sc->config.cck_mask  = 0x0f;
2458 		sc->config.ofdm_mask = 0x15;
2459 	}
2460 
2461 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2462 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2463 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2464 		sizeof (struct wpi_config), 1);
2465 	if (error != 0) {
2466 		device_printf(sc->sc_dev, "could not configure\n");
2467 		return error;
2468 	}
2469 
2470 	/* configuration has changed, set Tx power accordingly */
2471 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2472 		device_printf(sc->sc_dev, "could not set Tx power\n");
2473 		return error;
2474 	}
2475 
2476 	/* add default node */
2477 	memset(&node, 0, sizeof node);
2478 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2479 	node.id = WPI_ID_BSS;
2480 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2481 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2482 	node.action = htole32(WPI_ACTION_SET_RATE);
2483 	node.antenna = WPI_ANTENNA_BOTH;
2484 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2485 	if (error != 0)
2486 		device_printf(sc->sc_dev, "could not add BSS node\n");
2487 
2488 	return (error);
2489 }
2490 
2491 static int
2492 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2493 {
2494 	struct ieee80211com *ic = vap->iv_ic;
2495 	struct ieee80211_node *ni = vap->iv_bss;
2496 	int error;
2497 
2498 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2499 		/* link LED blinks while monitoring */
2500 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2501 		return 0;
2502 	}
2503 
2504 	wpi_enable_tsf(sc, ni);
2505 
2506 	/* update adapter's configuration */
2507 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2508 	/* short preamble/slot time are negotiated when associating */
2509 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2510 	    WPI_CONFIG_SHSLOT);
2511 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2512 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2513 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2514 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2515 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2516 
2517 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2518 
2519 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2520 		    sc->config.flags));
2521 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2522 		    wpi_config), 1);
2523 	if (error != 0) {
2524 		device_printf(sc->sc_dev, "could not update configuration\n");
2525 		return error;
2526 	}
2527 
2528 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2529 	if (error != 0) {
2530 		device_printf(sc->sc_dev, "could set txpower\n");
2531 		return error;
2532 	}
2533 
2534 	/* link LED always on while associated */
2535 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2536 
2537 	/* start automatic rate control timer */
2538 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2539 
2540 	return (error);
2541 }
2542 
2543 /*
2544  * Send a scan request to the firmware.  Since this command is huge, we map it
2545  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2546  * much of this code is similar to that in wpi_cmd but because we must manually
2547  * construct the probe & channels, we duplicate what's needed here. XXX In the
2548  * future, this function should be modified to use wpi_cmd to help cleanup the
2549  * code base.
2550  */
2551 static int
2552 wpi_scan(struct wpi_softc *sc)
2553 {
2554 	struct ifnet *ifp = sc->sc_ifp;
2555 	struct ieee80211com *ic = ifp->if_l2com;
2556 	struct ieee80211_scan_state *ss = ic->ic_scan;
2557 	struct wpi_tx_ring *ring = &sc->cmdq;
2558 	struct wpi_tx_desc *desc;
2559 	struct wpi_tx_data *data;
2560 	struct wpi_tx_cmd *cmd;
2561 	struct wpi_scan_hdr *hdr;
2562 	struct wpi_scan_chan *chan;
2563 	struct ieee80211_frame *wh;
2564 	struct ieee80211_rateset *rs;
2565 	struct ieee80211_channel *c;
2566 	enum ieee80211_phymode mode;
2567 	uint8_t *frm;
2568 	int nrates, pktlen, error, i, nssid;
2569 	bus_addr_t physaddr;
2570 
2571 	desc = &ring->desc[ring->cur];
2572 	data = &ring->data[ring->cur];
2573 
2574 	data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2575 	if (data->m == NULL) {
2576 		device_printf(sc->sc_dev,
2577 		    "could not allocate mbuf for scan command\n");
2578 		return ENOMEM;
2579 	}
2580 
2581 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2582 	cmd->code = WPI_CMD_SCAN;
2583 	cmd->flags = 0;
2584 	cmd->qid = ring->qid;
2585 	cmd->idx = ring->cur;
2586 
2587 	hdr = (struct wpi_scan_hdr *)cmd->data;
2588 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2589 
2590 	/*
2591 	 * Move to the next channel if no packets are received within 5 msecs
2592 	 * after sending the probe request (this helps to reduce the duration
2593 	 * of active scans).
2594 	 */
2595 	hdr->quiet = htole16(5);
2596 	hdr->threshold = htole16(1);
2597 
2598 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2599 		/* send probe requests at 6Mbps */
2600 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2601 
2602 		/* Enable crc checking */
2603 		hdr->promotion = htole16(1);
2604 	} else {
2605 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2606 		/* send probe requests at 1Mbps */
2607 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2608 	}
2609 	hdr->tx.id = WPI_ID_BROADCAST;
2610 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2611 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2612 
2613 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2614 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2615 	for (i = 0; i < nssid; i++) {
2616 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2617 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2618 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2619 		    hdr->scan_essids[i].esslen);
2620 #ifdef WPI_DEBUG
2621 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2622 			printf("Scanning Essid: ");
2623 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2624 			    hdr->scan_essids[i].esslen);
2625 			printf("\n");
2626 		}
2627 #endif
2628 	}
2629 
2630 	/*
2631 	 * Build a probe request frame.  Most of the following code is a
2632 	 * copy & paste of what is done in net80211.
2633 	 */
2634 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2635 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2636 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2637 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2638 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2639 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2640 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2641 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2642 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2643 
2644 	frm = (uint8_t *)(wh + 1);
2645 
2646 	/* add essid IE, the hardware will fill this in for us */
2647 	*frm++ = IEEE80211_ELEMID_SSID;
2648 	*frm++ = 0;
2649 
2650 	mode = ieee80211_chan2mode(ic->ic_curchan);
2651 	rs = &ic->ic_sup_rates[mode];
2652 
2653 	/* add supported rates IE */
2654 	*frm++ = IEEE80211_ELEMID_RATES;
2655 	nrates = rs->rs_nrates;
2656 	if (nrates > IEEE80211_RATE_SIZE)
2657 		nrates = IEEE80211_RATE_SIZE;
2658 	*frm++ = nrates;
2659 	memcpy(frm, rs->rs_rates, nrates);
2660 	frm += nrates;
2661 
2662 	/* add supported xrates IE */
2663 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2664 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2665 		*frm++ = IEEE80211_ELEMID_XRATES;
2666 		*frm++ = nrates;
2667 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2668 		frm += nrates;
2669 	}
2670 
2671 	/* setup length of probe request */
2672 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2673 
2674 	/*
2675 	 * Construct information about the channel that we
2676 	 * want to scan. The firmware expects this to be directly
2677 	 * after the scan probe request
2678 	 */
2679 	c = ic->ic_curchan;
2680 	chan = (struct wpi_scan_chan *)frm;
2681 	chan->chan = ieee80211_chan2ieee(ic, c);
2682 	chan->flags = 0;
2683 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2684 		chan->flags |= WPI_CHAN_ACTIVE;
2685 		if (nssid != 0)
2686 			chan->flags |= WPI_CHAN_DIRECT;
2687 	}
2688 	chan->gain_dsp = 0x6e; /* Default level */
2689 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2690 		chan->active = htole16(10);
2691 		chan->passive = htole16(ss->ss_maxdwell);
2692 		chan->gain_radio = 0x3b;
2693 	} else {
2694 		chan->active = htole16(20);
2695 		chan->passive = htole16(ss->ss_maxdwell);
2696 		chan->gain_radio = 0x28;
2697 	}
2698 
2699 	DPRINTFN(WPI_DEBUG_SCANNING,
2700 	    ("Scanning %u Passive: %d\n",
2701 	     chan->chan,
2702 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2703 
2704 	hdr->nchan++;
2705 	chan++;
2706 
2707 	frm += sizeof (struct wpi_scan_chan);
2708 #if 0
2709 	// XXX All Channels....
2710 	for (c  = &ic->ic_channels[1];
2711 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2712 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2713 			continue;
2714 
2715 		chan->chan = ieee80211_chan2ieee(ic, c);
2716 		chan->flags = 0;
2717 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2718 		    chan->flags |= WPI_CHAN_ACTIVE;
2719 		    if (ic->ic_des_ssid[0].len != 0)
2720 			chan->flags |= WPI_CHAN_DIRECT;
2721 		}
2722 		chan->gain_dsp = 0x6e; /* Default level */
2723 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2724 			chan->active = htole16(10);
2725 			chan->passive = htole16(110);
2726 			chan->gain_radio = 0x3b;
2727 		} else {
2728 			chan->active = htole16(20);
2729 			chan->passive = htole16(120);
2730 			chan->gain_radio = 0x28;
2731 		}
2732 
2733 		DPRINTFN(WPI_DEBUG_SCANNING,
2734 			 ("Scanning %u Passive: %d\n",
2735 			  chan->chan,
2736 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2737 
2738 		hdr->nchan++;
2739 		chan++;
2740 
2741 		frm += sizeof (struct wpi_scan_chan);
2742 	}
2743 #endif
2744 
2745 	hdr->len = htole16(frm - (uint8_t *)hdr);
2746 	pktlen = frm - (uint8_t *)cmd;
2747 
2748 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2749 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2750 	if (error != 0) {
2751 		device_printf(sc->sc_dev, "could not map scan command\n");
2752 		m_freem(data->m);
2753 		data->m = NULL;
2754 		return error;
2755 	}
2756 
2757 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2758 	desc->segs[0].addr = htole32(physaddr);
2759 	desc->segs[0].len  = htole32(pktlen);
2760 
2761 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2762 	    BUS_DMASYNC_PREWRITE);
2763 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2764 
2765 	/* kick cmd ring */
2766 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2767 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2768 
2769 	sc->sc_scan_timer = 5;
2770 	return 0;	/* will be notified async. of failure/success */
2771 }
2772 
2773 /**
2774  * Configure the card to listen to a particular channel, this transisions the
2775  * card in to being able to receive frames from remote devices.
2776  */
2777 static int
2778 wpi_config(struct wpi_softc *sc)
2779 {
2780 	struct ifnet *ifp = sc->sc_ifp;
2781 	struct ieee80211com *ic = ifp->if_l2com;
2782 	struct wpi_power power;
2783 	struct wpi_bluetooth bluetooth;
2784 	struct wpi_node_info node;
2785 	int error;
2786 
2787 	/* set power mode */
2788 	memset(&power, 0, sizeof power);
2789 	power.flags = htole32(WPI_POWER_CAM|0x8);
2790 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2791 	if (error != 0) {
2792 		device_printf(sc->sc_dev, "could not set power mode\n");
2793 		return error;
2794 	}
2795 
2796 	/* configure bluetooth coexistence */
2797 	memset(&bluetooth, 0, sizeof bluetooth);
2798 	bluetooth.flags = 3;
2799 	bluetooth.lead = 0xaa;
2800 	bluetooth.kill = 1;
2801 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2802 	    0);
2803 	if (error != 0) {
2804 		device_printf(sc->sc_dev,
2805 		    "could not configure bluetooth coexistence\n");
2806 		return error;
2807 	}
2808 
2809 	/* configure adapter */
2810 	memset(&sc->config, 0, sizeof (struct wpi_config));
2811 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2812 	/*set default channel*/
2813 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2814 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2815 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2816 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2817 		    WPI_CONFIG_24GHZ);
2818 	}
2819 	sc->config.filter = 0;
2820 	switch (ic->ic_opmode) {
2821 	case IEEE80211_M_STA:
2822 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2823 		sc->config.mode = WPI_MODE_STA;
2824 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2825 		break;
2826 	case IEEE80211_M_IBSS:
2827 	case IEEE80211_M_AHDEMO:
2828 		sc->config.mode = WPI_MODE_IBSS;
2829 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2830 					     WPI_FILTER_MULTICAST);
2831 		break;
2832 	case IEEE80211_M_HOSTAP:
2833 		sc->config.mode = WPI_MODE_HOSTAP;
2834 		break;
2835 	case IEEE80211_M_MONITOR:
2836 		sc->config.mode = WPI_MODE_MONITOR;
2837 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2838 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2839 		break;
2840 	default:
2841 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2842 		return EINVAL;
2843 	}
2844 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2845 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2846 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2847 		sizeof (struct wpi_config), 0);
2848 	if (error != 0) {
2849 		device_printf(sc->sc_dev, "configure command failed\n");
2850 		return error;
2851 	}
2852 
2853 	/* configuration has changed, set Tx power accordingly */
2854 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2855 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2856 	    return error;
2857 	}
2858 
2859 	/* add broadcast node */
2860 	memset(&node, 0, sizeof node);
2861 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2862 	node.id = WPI_ID_BROADCAST;
2863 	node.rate = wpi_plcp_signal(2);
2864 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2865 	if (error != 0) {
2866 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2867 		return error;
2868 	}
2869 
2870 	/* Setup rate scalling */
2871 	error = wpi_mrr_setup(sc);
2872 	if (error != 0) {
2873 		device_printf(sc->sc_dev, "could not setup MRR\n");
2874 		return error;
2875 	}
2876 
2877 	return 0;
2878 }
2879 
2880 static void
2881 wpi_stop_master(struct wpi_softc *sc)
2882 {
2883 	uint32_t tmp;
2884 	int ntries;
2885 
2886 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2887 
2888 	tmp = WPI_READ(sc, WPI_RESET);
2889 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2890 
2891 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2892 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2893 		return;	/* already asleep */
2894 
2895 	for (ntries = 0; ntries < 100; ntries++) {
2896 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2897 			break;
2898 		DELAY(10);
2899 	}
2900 	if (ntries == 100) {
2901 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2902 	}
2903 }
2904 
2905 static int
2906 wpi_power_up(struct wpi_softc *sc)
2907 {
2908 	uint32_t tmp;
2909 	int ntries;
2910 
2911 	wpi_mem_lock(sc);
2912 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2913 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2914 	wpi_mem_unlock(sc);
2915 
2916 	for (ntries = 0; ntries < 5000; ntries++) {
2917 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2918 			break;
2919 		DELAY(10);
2920 	}
2921 	if (ntries == 5000) {
2922 		device_printf(sc->sc_dev,
2923 		    "timeout waiting for NIC to power up\n");
2924 		return ETIMEDOUT;
2925 	}
2926 	return 0;
2927 }
2928 
2929 static int
2930 wpi_reset(struct wpi_softc *sc)
2931 {
2932 	uint32_t tmp;
2933 	int ntries;
2934 
2935 	DPRINTFN(WPI_DEBUG_HW,
2936 	    ("Resetting the card - clearing any uploaded firmware\n"));
2937 
2938 	/* clear any pending interrupts */
2939 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2940 
2941 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2942 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2943 
2944 	tmp = WPI_READ(sc, WPI_CHICKEN);
2945 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2946 
2947 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2948 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2949 
2950 	/* wait for clock stabilization */
2951 	for (ntries = 0; ntries < 25000; ntries++) {
2952 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2953 			break;
2954 		DELAY(10);
2955 	}
2956 	if (ntries == 25000) {
2957 		device_printf(sc->sc_dev,
2958 		    "timeout waiting for clock stabilization\n");
2959 		return ETIMEDOUT;
2960 	}
2961 
2962 	/* initialize EEPROM */
2963 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2964 
2965 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2966 		device_printf(sc->sc_dev, "EEPROM not found\n");
2967 		return EIO;
2968 	}
2969 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2970 
2971 	return 0;
2972 }
2973 
2974 static void
2975 wpi_hw_config(struct wpi_softc *sc)
2976 {
2977 	uint32_t rev, hw;
2978 
2979 	/* voodoo from the Linux "driver".. */
2980 	hw = WPI_READ(sc, WPI_HWCONFIG);
2981 
2982 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2983 	if ((rev & 0xc0) == 0x40)
2984 		hw |= WPI_HW_ALM_MB;
2985 	else if (!(rev & 0x80))
2986 		hw |= WPI_HW_ALM_MM;
2987 
2988 	if (sc->cap == 0x80)
2989 		hw |= WPI_HW_SKU_MRC;
2990 
2991 	hw &= ~WPI_HW_REV_D;
2992 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2993 		hw |= WPI_HW_REV_D;
2994 
2995 	if (sc->type > 1)
2996 		hw |= WPI_HW_TYPE_B;
2997 
2998 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2999 }
3000 
3001 static void
3002 wpi_rfkill_resume(struct wpi_softc *sc)
3003 {
3004 	struct ifnet *ifp = sc->sc_ifp;
3005 	struct ieee80211com *ic = ifp->if_l2com;
3006 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3007 	int ntries;
3008 
3009 	/* enable firmware again */
3010 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3011 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3012 
3013 	/* wait for thermal sensors to calibrate */
3014 	for (ntries = 0; ntries < 1000; ntries++) {
3015 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3016 			break;
3017 		DELAY(10);
3018 	}
3019 
3020 	if (ntries == 1000) {
3021 		device_printf(sc->sc_dev,
3022 		    "timeout waiting for thermal calibration\n");
3023 		return;
3024 	}
3025 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3026 
3027 	if (wpi_config(sc) != 0) {
3028 		device_printf(sc->sc_dev, "device config failed\n");
3029 		return;
3030 	}
3031 
3032 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3033 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3034 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3035 
3036 	if (vap != NULL) {
3037 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3038 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3039 				ieee80211_beacon_miss(ic);
3040 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3041 			} else
3042 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3043 		} else {
3044 			ieee80211_scan_next(vap);
3045 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3046 		}
3047 	}
3048 
3049 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3050 }
3051 
3052 static void
3053 wpi_init_locked(struct wpi_softc *sc, int force)
3054 {
3055 	struct ifnet *ifp = sc->sc_ifp;
3056 	uint32_t tmp;
3057 	int ntries, qid;
3058 
3059 	wpi_stop_locked(sc);
3060 	(void)wpi_reset(sc);
3061 
3062 	wpi_mem_lock(sc);
3063 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3064 	DELAY(20);
3065 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3066 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3067 	wpi_mem_unlock(sc);
3068 
3069 	(void)wpi_power_up(sc);
3070 	wpi_hw_config(sc);
3071 
3072 	/* init Rx ring */
3073 	wpi_mem_lock(sc);
3074 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3075 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3076 	    offsetof(struct wpi_shared, next));
3077 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3078 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3079 	wpi_mem_unlock(sc);
3080 
3081 	/* init Tx rings */
3082 	wpi_mem_lock(sc);
3083 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3084 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3085 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3086 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3087 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3088 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3089 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3090 
3091 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3092 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3093 
3094 	for (qid = 0; qid < 6; qid++) {
3095 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3096 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3097 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3098 	}
3099 	wpi_mem_unlock(sc);
3100 
3101 	/* clear "radio off" and "disable command" bits (reversed logic) */
3102 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3103 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3104 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3105 
3106 	/* clear any pending interrupts */
3107 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3108 
3109 	/* enable interrupts */
3110 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3111 
3112 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3113 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3114 
3115 	if ((wpi_load_firmware(sc)) != 0) {
3116 	    device_printf(sc->sc_dev,
3117 		"A problem occurred loading the firmware to the driver\n");
3118 	    return;
3119 	}
3120 
3121 	/* At this point the firmware is up and running. If the hardware
3122 	 * RF switch is turned off thermal calibration will fail, though
3123 	 * the card is still happy to continue to accept commands, catch
3124 	 * this case and schedule a task to watch for it to be turned on.
3125 	 */
3126 	wpi_mem_lock(sc);
3127 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3128 	wpi_mem_unlock(sc);
3129 
3130 	if (!(tmp & 0x1)) {
3131 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3132 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3133 		goto out;
3134 	}
3135 
3136 	/* wait for thermal sensors to calibrate */
3137 	for (ntries = 0; ntries < 1000; ntries++) {
3138 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3139 			break;
3140 		DELAY(10);
3141 	}
3142 
3143 	if (ntries == 1000) {
3144 		device_printf(sc->sc_dev,
3145 		    "timeout waiting for thermal sensors calibration\n");
3146 		return;
3147 	}
3148 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3149 
3150 	if (wpi_config(sc) != 0) {
3151 		device_printf(sc->sc_dev, "device config failed\n");
3152 		return;
3153 	}
3154 
3155 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3156 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3157 out:
3158 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3159 }
3160 
3161 static void
3162 wpi_init(void *arg)
3163 {
3164 	struct wpi_softc *sc = arg;
3165 	struct ifnet *ifp = sc->sc_ifp;
3166 	struct ieee80211com *ic = ifp->if_l2com;
3167 
3168 	WPI_LOCK(sc);
3169 	wpi_init_locked(sc, 0);
3170 	WPI_UNLOCK(sc);
3171 
3172 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3173 		ieee80211_start_all(ic);		/* start all vaps */
3174 }
3175 
3176 static void
3177 wpi_stop_locked(struct wpi_softc *sc)
3178 {
3179 	struct ifnet *ifp = sc->sc_ifp;
3180 	uint32_t tmp;
3181 	int ac;
3182 
3183 	sc->sc_tx_timer = 0;
3184 	sc->sc_scan_timer = 0;
3185 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3186 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3187 	callout_stop(&sc->watchdog_to);
3188 	callout_stop(&sc->calib_to);
3189 
3190 	/* disable interrupts */
3191 	WPI_WRITE(sc, WPI_MASK, 0);
3192 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3193 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3194 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3195 
3196 	wpi_mem_lock(sc);
3197 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3198 	wpi_mem_unlock(sc);
3199 
3200 	/* reset all Tx rings */
3201 	for (ac = 0; ac < 4; ac++)
3202 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3203 	wpi_reset_tx_ring(sc, &sc->cmdq);
3204 
3205 	/* reset Rx ring */
3206 	wpi_reset_rx_ring(sc, &sc->rxq);
3207 
3208 	wpi_mem_lock(sc);
3209 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3210 	wpi_mem_unlock(sc);
3211 
3212 	DELAY(5);
3213 
3214 	wpi_stop_master(sc);
3215 
3216 	tmp = WPI_READ(sc, WPI_RESET);
3217 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3218 	sc->flags &= ~WPI_FLAG_BUSY;
3219 }
3220 
3221 static void
3222 wpi_stop(struct wpi_softc *sc)
3223 {
3224 	WPI_LOCK(sc);
3225 	wpi_stop_locked(sc);
3226 	WPI_UNLOCK(sc);
3227 }
3228 
3229 static void
3230 wpi_calib_timeout(void *arg)
3231 {
3232 	struct wpi_softc *sc = arg;
3233 	struct ifnet *ifp = sc->sc_ifp;
3234 	struct ieee80211com *ic = ifp->if_l2com;
3235 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3236 	int temp;
3237 
3238 	if (vap->iv_state != IEEE80211_S_RUN)
3239 		return;
3240 
3241 	/* update sensor data */
3242 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3243 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3244 
3245 	wpi_power_calibration(sc, temp);
3246 
3247 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3248 }
3249 
3250 /*
3251  * This function is called periodically (every 60 seconds) to adjust output
3252  * power to temperature changes.
3253  */
3254 static void
3255 wpi_power_calibration(struct wpi_softc *sc, int temp)
3256 {
3257 	struct ifnet *ifp = sc->sc_ifp;
3258 	struct ieee80211com *ic = ifp->if_l2com;
3259 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3260 
3261 	/* sanity-check read value */
3262 	if (temp < -260 || temp > 25) {
3263 		/* this can't be correct, ignore */
3264 		DPRINTFN(WPI_DEBUG_TEMP,
3265 		    ("out-of-range temperature reported: %d\n", temp));
3266 		return;
3267 	}
3268 
3269 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3270 
3271 	/* adjust Tx power if need be */
3272 	if (abs(temp - sc->temp) <= 6)
3273 		return;
3274 
3275 	sc->temp = temp;
3276 
3277 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3278 		/* just warn, too bad for the automatic calibration... */
3279 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3280 	}
3281 }
3282 
3283 /**
3284  * Read the eeprom to find out what channels are valid for the given
3285  * band and update net80211 with what we find.
3286  */
3287 static void
3288 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3289 {
3290 	struct ifnet *ifp = sc->sc_ifp;
3291 	struct ieee80211com *ic = ifp->if_l2com;
3292 	const struct wpi_chan_band *band = &wpi_bands[n];
3293 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3294 	struct ieee80211_channel *c;
3295 	int chan, i, passive;
3296 
3297 	wpi_read_prom_data(sc, band->addr, channels,
3298 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3299 
3300 	for (i = 0; i < band->nchan; i++) {
3301 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3302 			DPRINTFN(WPI_DEBUG_HW,
3303 			    ("Channel Not Valid: %d, band %d\n",
3304 			     band->chan[i],n));
3305 			continue;
3306 		}
3307 
3308 		passive = 0;
3309 		chan = band->chan[i];
3310 		c = &ic->ic_channels[ic->ic_nchans++];
3311 
3312 		/* is active scan allowed on this channel? */
3313 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3314 			passive = IEEE80211_CHAN_PASSIVE;
3315 		}
3316 
3317 		if (n == 0) {	/* 2GHz band */
3318 			c->ic_ieee = chan;
3319 			c->ic_freq = ieee80211_ieee2mhz(chan,
3320 			    IEEE80211_CHAN_2GHZ);
3321 			c->ic_flags = IEEE80211_CHAN_B | passive;
3322 
3323 			c = &ic->ic_channels[ic->ic_nchans++];
3324 			c->ic_ieee = chan;
3325 			c->ic_freq = ieee80211_ieee2mhz(chan,
3326 			    IEEE80211_CHAN_2GHZ);
3327 			c->ic_flags = IEEE80211_CHAN_G | passive;
3328 
3329 		} else {	/* 5GHz band */
3330 			/*
3331 			 * Some 3945ABG adapters support channels 7, 8, 11
3332 			 * and 12 in the 2GHz *and* 5GHz bands.
3333 			 * Because of limitations in our net80211(9) stack,
3334 			 * we can't support these channels in 5GHz band.
3335 			 * XXX not true; just need to map to proper frequency
3336 			 */
3337 			if (chan <= 14)
3338 				continue;
3339 
3340 			c->ic_ieee = chan;
3341 			c->ic_freq = ieee80211_ieee2mhz(chan,
3342 			    IEEE80211_CHAN_5GHZ);
3343 			c->ic_flags = IEEE80211_CHAN_A | passive;
3344 		}
3345 
3346 		/* save maximum allowed power for this channel */
3347 		sc->maxpwr[chan] = channels[i].maxpwr;
3348 
3349 #if 0
3350 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3351 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3352 		//ic->ic_channels[chan].ic_minpower...
3353 		//ic->ic_channels[chan].ic_maxregtxpower...
3354 #endif
3355 
3356 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3357 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3358 		    channels[i].flags, sc->maxpwr[chan],
3359 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3360 		    ic->ic_nchans));
3361 	}
3362 }
3363 
3364 static void
3365 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3366 {
3367 	struct wpi_power_group *group = &sc->groups[n];
3368 	struct wpi_eeprom_group rgroup;
3369 	int i;
3370 
3371 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3372 	    sizeof rgroup);
3373 
3374 	/* save power group information */
3375 	group->chan   = rgroup.chan;
3376 	group->maxpwr = rgroup.maxpwr;
3377 	/* temperature at which the samples were taken */
3378 	group->temp   = (int16_t)le16toh(rgroup.temp);
3379 
3380 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3381 		    group->chan, group->maxpwr, group->temp));
3382 
3383 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3384 		group->samples[i].index = rgroup.samples[i].index;
3385 		group->samples[i].power = rgroup.samples[i].power;
3386 
3387 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3388 			    group->samples[i].index, group->samples[i].power));
3389 	}
3390 }
3391 
3392 /*
3393  * Update Tx power to match what is defined for channel `c'.
3394  */
3395 static int
3396 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3397 {
3398 	struct ifnet *ifp = sc->sc_ifp;
3399 	struct ieee80211com *ic = ifp->if_l2com;
3400 	struct wpi_power_group *group;
3401 	struct wpi_cmd_txpower txpower;
3402 	u_int chan;
3403 	int i;
3404 
3405 	/* get channel number */
3406 	chan = ieee80211_chan2ieee(ic, c);
3407 
3408 	/* find the power group to which this channel belongs */
3409 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3410 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3411 			if (chan <= group->chan)
3412 				break;
3413 	} else
3414 		group = &sc->groups[0];
3415 
3416 	memset(&txpower, 0, sizeof txpower);
3417 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3418 	txpower.channel = htole16(chan);
3419 
3420 	/* set Tx power for all OFDM and CCK rates */
3421 	for (i = 0; i <= 11 ; i++) {
3422 		/* retrieve Tx power for this channel/rate combination */
3423 		int idx = wpi_get_power_index(sc, group, c,
3424 		    wpi_ridx_to_rate[i]);
3425 
3426 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3427 
3428 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3429 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3430 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3431 		} else {
3432 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3433 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3434 		}
3435 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3436 			    chan, wpi_ridx_to_rate[i], idx));
3437 	}
3438 
3439 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3440 }
3441 
3442 /*
3443  * Determine Tx power index for a given channel/rate combination.
3444  * This takes into account the regulatory information from EEPROM and the
3445  * current temperature.
3446  */
3447 static int
3448 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3449     struct ieee80211_channel *c, int rate)
3450 {
3451 /* fixed-point arithmetic division using a n-bit fractional part */
3452 #define fdivround(a, b, n)      \
3453 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3454 
3455 /* linear interpolation */
3456 #define interpolate(x, x1, y1, x2, y2, n)       \
3457 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3458 
3459 	struct ifnet *ifp = sc->sc_ifp;
3460 	struct ieee80211com *ic = ifp->if_l2com;
3461 	struct wpi_power_sample *sample;
3462 	int pwr, idx;
3463 	u_int chan;
3464 
3465 	/* get channel number */
3466 	chan = ieee80211_chan2ieee(ic, c);
3467 
3468 	/* default power is group's maximum power - 3dB */
3469 	pwr = group->maxpwr / 2;
3470 
3471 	/* decrease power for highest OFDM rates to reduce distortion */
3472 	switch (rate) {
3473 		case 72:	/* 36Mb/s */
3474 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3475 			break;
3476 		case 96:	/* 48Mb/s */
3477 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3478 			break;
3479 		case 108:	/* 54Mb/s */
3480 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3481 			break;
3482 	}
3483 
3484 	/* never exceed channel's maximum allowed Tx power */
3485 	pwr = min(pwr, sc->maxpwr[chan]);
3486 
3487 	/* retrieve power index into gain tables from samples */
3488 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3489 		if (pwr > sample[1].power)
3490 			break;
3491 	/* fixed-point linear interpolation using a 19-bit fractional part */
3492 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3493 	    sample[1].power, sample[1].index, 19);
3494 
3495 	/*
3496 	 *  Adjust power index based on current temperature
3497 	 *	- if colder than factory-calibrated: decreate output power
3498 	 *	- if warmer than factory-calibrated: increase output power
3499 	 */
3500 	idx -= (sc->temp - group->temp) * 11 / 100;
3501 
3502 	/* decrease power for CCK rates (-5dB) */
3503 	if (!WPI_RATE_IS_OFDM(rate))
3504 		idx += 10;
3505 
3506 	/* keep power index in a valid range */
3507 	if (idx < 0)
3508 		return 0;
3509 	if (idx > WPI_MAX_PWR_INDEX)
3510 		return WPI_MAX_PWR_INDEX;
3511 	return idx;
3512 
3513 #undef interpolate
3514 #undef fdivround
3515 }
3516 
3517 /**
3518  * Called by net80211 framework to indicate that a scan
3519  * is starting. This function doesn't actually do the scan,
3520  * wpi_scan_curchan starts things off. This function is more
3521  * of an early warning from the framework we should get ready
3522  * for the scan.
3523  */
3524 static void
3525 wpi_scan_start(struct ieee80211com *ic)
3526 {
3527 	struct ifnet *ifp = ic->ic_ifp;
3528 	struct wpi_softc *sc = ifp->if_softc;
3529 
3530 	WPI_LOCK(sc);
3531 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3532 	WPI_UNLOCK(sc);
3533 }
3534 
3535 /**
3536  * Called by the net80211 framework, indicates that the
3537  * scan has ended. If there is a scan in progress on the card
3538  * then it should be aborted.
3539  */
3540 static void
3541 wpi_scan_end(struct ieee80211com *ic)
3542 {
3543 	/* XXX ignore */
3544 }
3545 
3546 /**
3547  * Called by the net80211 framework to indicate to the driver
3548  * that the channel should be changed
3549  */
3550 static void
3551 wpi_set_channel(struct ieee80211com *ic)
3552 {
3553 	struct ifnet *ifp = ic->ic_ifp;
3554 	struct wpi_softc *sc = ifp->if_softc;
3555 	int error;
3556 
3557 	/*
3558 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3559 	 * are already taken care of by their respective firmware commands.
3560 	 */
3561 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3562 		WPI_LOCK(sc);
3563 		error = wpi_config(sc);
3564 		WPI_UNLOCK(sc);
3565 		if (error != 0)
3566 			device_printf(sc->sc_dev,
3567 			    "error %d settting channel\n", error);
3568 	}
3569 }
3570 
3571 /**
3572  * Called by net80211 to indicate that we need to scan the current
3573  * channel. The channel is previously be set via the wpi_set_channel
3574  * callback.
3575  */
3576 static void
3577 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3578 {
3579 	struct ieee80211vap *vap = ss->ss_vap;
3580 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3581 	struct wpi_softc *sc = ifp->if_softc;
3582 
3583 	WPI_LOCK(sc);
3584 	if (wpi_scan(sc))
3585 		ieee80211_cancel_scan(vap);
3586 	WPI_UNLOCK(sc);
3587 }
3588 
3589 /**
3590  * Called by the net80211 framework to indicate
3591  * the minimum dwell time has been met, terminate the scan.
3592  * We don't actually terminate the scan as the firmware will notify
3593  * us when it's finished and we have no way to interrupt it.
3594  */
3595 static void
3596 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3597 {
3598 	/* NB: don't try to abort scan; wait for firmware to finish */
3599 }
3600 
3601 static void
3602 wpi_hwreset(void *arg, int pending)
3603 {
3604 	struct wpi_softc *sc = arg;
3605 
3606 	WPI_LOCK(sc);
3607 	wpi_init_locked(sc, 0);
3608 	WPI_UNLOCK(sc);
3609 }
3610 
3611 static void
3612 wpi_rfreset(void *arg, int pending)
3613 {
3614 	struct wpi_softc *sc = arg;
3615 
3616 	WPI_LOCK(sc);
3617 	wpi_rfkill_resume(sc);
3618 	WPI_UNLOCK(sc);
3619 }
3620 
3621 /*
3622  * Allocate DMA-safe memory for firmware transfer.
3623  */
3624 static int
3625 wpi_alloc_fwmem(struct wpi_softc *sc)
3626 {
3627 	/* allocate enough contiguous space to store text and data */
3628 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3629 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3630 	    BUS_DMA_NOWAIT);
3631 }
3632 
3633 static void
3634 wpi_free_fwmem(struct wpi_softc *sc)
3635 {
3636 	wpi_dma_contig_free(&sc->fw_dma);
3637 }
3638 
3639 /**
3640  * Called every second, wpi_watchdog used by the watch dog timer
3641  * to check that the card is still alive
3642  */
3643 static void
3644 wpi_watchdog(void *arg)
3645 {
3646 	struct wpi_softc *sc = arg;
3647 	struct ifnet *ifp = sc->sc_ifp;
3648 	struct ieee80211com *ic = ifp->if_l2com;
3649 	uint32_t tmp;
3650 
3651 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3652 
3653 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3654 		/* No need to lock firmware memory */
3655 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3656 
3657 		if ((tmp & 0x1) == 0) {
3658 			/* Radio kill switch is still off */
3659 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3660 			return;
3661 		}
3662 
3663 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3664 		ieee80211_runtask(ic, &sc->sc_radiotask);
3665 		return;
3666 	}
3667 
3668 	if (sc->sc_tx_timer > 0) {
3669 		if (--sc->sc_tx_timer == 0) {
3670 			device_printf(sc->sc_dev,"device timeout\n");
3671 			ifp->if_oerrors++;
3672 			ieee80211_runtask(ic, &sc->sc_restarttask);
3673 		}
3674 	}
3675 	if (sc->sc_scan_timer > 0) {
3676 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3677 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3678 			device_printf(sc->sc_dev,"scan timeout\n");
3679 			ieee80211_cancel_scan(vap);
3680 			ieee80211_runtask(ic, &sc->sc_restarttask);
3681 		}
3682 	}
3683 
3684 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3685 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3686 }
3687 
3688 #ifdef WPI_DEBUG
3689 static const char *wpi_cmd_str(int cmd)
3690 {
3691 	switch (cmd) {
3692 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3693 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3694 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3695 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3696 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3697 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3698 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3699 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3700 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3701 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3702 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3703 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3704 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3705 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3706 
3707 	default:
3708 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3709 		return "UNKNOWN CMD";	/* Make the compiler happy */
3710 	}
3711 }
3712 #endif
3713 
3714 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3715 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3716 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3717