1 /* SPDX-License-Identifier: ISC 2 * 3 * Copyright (C) 2015-2021 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright (C) 2019-2021 Matt Dunwoodie <ncon@noconroy.net> 5 * Copyright (c) 2019-2020 Rubicon Communications, LLC (Netgate) 6 * Copyright (c) 2021 Kyle Evans <kevans@FreeBSD.org> 7 * Copyright (c) 2022 The FreeBSD Foundation 8 */ 9 10 #include "opt_inet.h" 11 #include "opt_inet6.h" 12 13 #include <sys/param.h> 14 #include <sys/systm.h> 15 #include <sys/counter.h> 16 #include <sys/gtaskqueue.h> 17 #include <sys/jail.h> 18 #include <sys/kernel.h> 19 #include <sys/lock.h> 20 #include <sys/mbuf.h> 21 #include <sys/module.h> 22 #include <sys/nv.h> 23 #include <sys/priv.h> 24 #include <sys/protosw.h> 25 #include <sys/rmlock.h> 26 #include <sys/rwlock.h> 27 #include <sys/smp.h> 28 #include <sys/socket.h> 29 #include <sys/socketvar.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/sx.h> 33 #include <machine/_inttypes.h> 34 #include <net/bpf.h> 35 #include <net/ethernet.h> 36 #include <net/if.h> 37 #include <net/if_clone.h> 38 #include <net/if_types.h> 39 #include <net/if_var.h> 40 #include <net/netisr.h> 41 #include <net/radix.h> 42 #include <netinet/in.h> 43 #include <netinet6/in6_var.h> 44 #include <netinet/ip.h> 45 #include <netinet/ip6.h> 46 #include <netinet/ip_icmp.h> 47 #include <netinet/icmp6.h> 48 #include <netinet/udp_var.h> 49 #include <netinet6/nd6.h> 50 51 #include "wg_noise.h" 52 #include "wg_cookie.h" 53 #include "version.h" 54 #include "if_wg.h" 55 56 #define DEFAULT_MTU (ETHERMTU - 80) 57 #define MAX_MTU (IF_MAXMTU - 80) 58 59 #define MAX_STAGED_PKT 128 60 #define MAX_QUEUED_PKT 1024 61 #define MAX_QUEUED_PKT_MASK (MAX_QUEUED_PKT - 1) 62 63 #define MAX_QUEUED_HANDSHAKES 4096 64 65 #define REKEY_TIMEOUT_JITTER 334 /* 1/3 sec, round for arc4random_uniform */ 66 #define MAX_TIMER_HANDSHAKES (90 / REKEY_TIMEOUT) 67 #define NEW_HANDSHAKE_TIMEOUT (REKEY_TIMEOUT + KEEPALIVE_TIMEOUT) 68 #define UNDERLOAD_TIMEOUT 1 69 70 #define DPRINTF(sc, ...) if (if_getflags(sc->sc_ifp) & IFF_DEBUG) if_printf(sc->sc_ifp, ##__VA_ARGS__) 71 72 /* First byte indicating packet type on the wire */ 73 #define WG_PKT_INITIATION htole32(1) 74 #define WG_PKT_RESPONSE htole32(2) 75 #define WG_PKT_COOKIE htole32(3) 76 #define WG_PKT_DATA htole32(4) 77 78 #define WG_PKT_PADDING 16 79 #define WG_KEY_SIZE 32 80 81 struct wg_pkt_initiation { 82 uint32_t t; 83 uint32_t s_idx; 84 uint8_t ue[NOISE_PUBLIC_KEY_LEN]; 85 uint8_t es[NOISE_PUBLIC_KEY_LEN + NOISE_AUTHTAG_LEN]; 86 uint8_t ets[NOISE_TIMESTAMP_LEN + NOISE_AUTHTAG_LEN]; 87 struct cookie_macs m; 88 }; 89 90 struct wg_pkt_response { 91 uint32_t t; 92 uint32_t s_idx; 93 uint32_t r_idx; 94 uint8_t ue[NOISE_PUBLIC_KEY_LEN]; 95 uint8_t en[0 + NOISE_AUTHTAG_LEN]; 96 struct cookie_macs m; 97 }; 98 99 struct wg_pkt_cookie { 100 uint32_t t; 101 uint32_t r_idx; 102 uint8_t nonce[COOKIE_NONCE_SIZE]; 103 uint8_t ec[COOKIE_ENCRYPTED_SIZE]; 104 }; 105 106 struct wg_pkt_data { 107 uint32_t t; 108 uint32_t r_idx; 109 uint64_t nonce; 110 uint8_t buf[]; 111 }; 112 113 struct wg_endpoint { 114 union { 115 struct sockaddr r_sa; 116 struct sockaddr_in r_sin; 117 #ifdef INET6 118 struct sockaddr_in6 r_sin6; 119 #endif 120 } e_remote; 121 union { 122 struct in_addr l_in; 123 #ifdef INET6 124 struct in6_pktinfo l_pktinfo6; 125 #define l_in6 l_pktinfo6.ipi6_addr 126 #endif 127 } e_local; 128 }; 129 130 struct aip_addr { 131 uint8_t length; 132 union { 133 uint8_t bytes[16]; 134 uint32_t ip; 135 uint32_t ip6[4]; 136 struct in_addr in; 137 struct in6_addr in6; 138 }; 139 }; 140 141 struct wg_aip { 142 struct radix_node a_nodes[2]; 143 LIST_ENTRY(wg_aip) a_entry; 144 struct aip_addr a_addr; 145 struct aip_addr a_mask; 146 struct wg_peer *a_peer; 147 sa_family_t a_af; 148 }; 149 150 struct wg_packet { 151 STAILQ_ENTRY(wg_packet) p_serial; 152 STAILQ_ENTRY(wg_packet) p_parallel; 153 struct wg_endpoint p_endpoint; 154 struct noise_keypair *p_keypair; 155 uint64_t p_nonce; 156 struct mbuf *p_mbuf; 157 int p_mtu; 158 sa_family_t p_af; 159 enum wg_ring_state { 160 WG_PACKET_UNCRYPTED, 161 WG_PACKET_CRYPTED, 162 WG_PACKET_DEAD, 163 } p_state; 164 }; 165 166 STAILQ_HEAD(wg_packet_list, wg_packet); 167 168 struct wg_queue { 169 struct mtx q_mtx; 170 struct wg_packet_list q_queue; 171 size_t q_len; 172 }; 173 174 struct wg_peer { 175 TAILQ_ENTRY(wg_peer) p_entry; 176 uint64_t p_id; 177 struct wg_softc *p_sc; 178 179 struct noise_remote *p_remote; 180 struct cookie_maker p_cookie; 181 182 struct rwlock p_endpoint_lock; 183 struct wg_endpoint p_endpoint; 184 185 struct wg_queue p_stage_queue; 186 struct wg_queue p_encrypt_serial; 187 struct wg_queue p_decrypt_serial; 188 189 bool p_enabled; 190 bool p_need_another_keepalive; 191 uint16_t p_persistent_keepalive_interval; 192 struct callout p_new_handshake; 193 struct callout p_send_keepalive; 194 struct callout p_retry_handshake; 195 struct callout p_zero_key_material; 196 struct callout p_persistent_keepalive; 197 198 struct mtx p_handshake_mtx; 199 struct timespec p_handshake_complete; /* nanotime */ 200 int p_handshake_retries; 201 202 struct grouptask p_send; 203 struct grouptask p_recv; 204 205 counter_u64_t p_tx_bytes; 206 counter_u64_t p_rx_bytes; 207 208 LIST_HEAD(, wg_aip) p_aips; 209 size_t p_aips_num; 210 }; 211 212 struct wg_socket { 213 struct socket *so_so4; 214 struct socket *so_so6; 215 uint32_t so_user_cookie; 216 int so_fibnum; 217 in_port_t so_port; 218 }; 219 220 struct wg_softc { 221 LIST_ENTRY(wg_softc) sc_entry; 222 if_t sc_ifp; 223 int sc_flags; 224 225 struct ucred *sc_ucred; 226 struct wg_socket sc_socket; 227 228 TAILQ_HEAD(,wg_peer) sc_peers; 229 size_t sc_peers_num; 230 231 struct noise_local *sc_local; 232 struct cookie_checker sc_cookie; 233 234 struct radix_node_head *sc_aip4; 235 struct radix_node_head *sc_aip6; 236 237 struct grouptask sc_handshake; 238 struct wg_queue sc_handshake_queue; 239 240 struct grouptask *sc_encrypt; 241 struct grouptask *sc_decrypt; 242 struct wg_queue sc_encrypt_parallel; 243 struct wg_queue sc_decrypt_parallel; 244 u_int sc_encrypt_last_cpu; 245 u_int sc_decrypt_last_cpu; 246 247 struct sx sc_lock; 248 }; 249 250 #define WGF_DYING 0x0001 251 252 #define MAX_LOOPS 8 253 #define MTAG_WGLOOP 0x77676c70 /* wglp */ 254 #ifndef ENOKEY 255 #define ENOKEY ENOTCAPABLE 256 #endif 257 258 #define GROUPTASK_DRAIN(gtask) \ 259 gtaskqueue_drain((gtask)->gt_taskqueue, &(gtask)->gt_task) 260 261 #define BPF_MTAP2_AF(ifp, m, af) do { \ 262 uint32_t __bpf_tap_af = (af); \ 263 BPF_MTAP2(ifp, &__bpf_tap_af, sizeof(__bpf_tap_af), m); \ 264 } while (0) 265 266 static int clone_count; 267 static uma_zone_t wg_packet_zone; 268 static volatile unsigned long peer_counter = 0; 269 static const char wgname[] = "wg"; 270 static unsigned wg_osd_jail_slot; 271 272 static struct sx wg_sx; 273 SX_SYSINIT(wg_sx, &wg_sx, "wg_sx"); 274 275 static LIST_HEAD(, wg_softc) wg_list = LIST_HEAD_INITIALIZER(wg_list); 276 277 static TASKQGROUP_DEFINE(wg_tqg, mp_ncpus, 1); 278 279 MALLOC_DEFINE(M_WG, "WG", "wireguard"); 280 281 VNET_DEFINE_STATIC(struct if_clone *, wg_cloner); 282 283 #define V_wg_cloner VNET(wg_cloner) 284 #define WG_CAPS IFCAP_LINKSTATE 285 286 struct wg_timespec64 { 287 uint64_t tv_sec; 288 uint64_t tv_nsec; 289 }; 290 291 static int wg_socket_init(struct wg_softc *, in_port_t); 292 static int wg_socket_bind(struct socket **, struct socket **, in_port_t *); 293 static void wg_socket_set(struct wg_softc *, struct socket *, struct socket *); 294 static void wg_socket_uninit(struct wg_softc *); 295 static int wg_socket_set_sockopt(struct socket *, struct socket *, int, void *, size_t); 296 static int wg_socket_set_cookie(struct wg_softc *, uint32_t); 297 static int wg_socket_set_fibnum(struct wg_softc *, int); 298 static int wg_send(struct wg_softc *, struct wg_endpoint *, struct mbuf *); 299 static void wg_timers_enable(struct wg_peer *); 300 static void wg_timers_disable(struct wg_peer *); 301 static void wg_timers_set_persistent_keepalive(struct wg_peer *, uint16_t); 302 static void wg_timers_get_last_handshake(struct wg_peer *, struct wg_timespec64 *); 303 static void wg_timers_event_data_sent(struct wg_peer *); 304 static void wg_timers_event_data_received(struct wg_peer *); 305 static void wg_timers_event_any_authenticated_packet_sent(struct wg_peer *); 306 static void wg_timers_event_any_authenticated_packet_received(struct wg_peer *); 307 static void wg_timers_event_any_authenticated_packet_traversal(struct wg_peer *); 308 static void wg_timers_event_handshake_initiated(struct wg_peer *); 309 static void wg_timers_event_handshake_complete(struct wg_peer *); 310 static void wg_timers_event_session_derived(struct wg_peer *); 311 static void wg_timers_event_want_initiation(struct wg_peer *); 312 static void wg_timers_run_send_initiation(struct wg_peer *, bool); 313 static void wg_timers_run_retry_handshake(void *); 314 static void wg_timers_run_send_keepalive(void *); 315 static void wg_timers_run_new_handshake(void *); 316 static void wg_timers_run_zero_key_material(void *); 317 static void wg_timers_run_persistent_keepalive(void *); 318 static int wg_aip_add(struct wg_softc *, struct wg_peer *, sa_family_t, const void *, uint8_t); 319 static struct wg_peer *wg_aip_lookup(struct wg_softc *, sa_family_t, void *); 320 static void wg_aip_remove_all(struct wg_softc *, struct wg_peer *); 321 static struct wg_peer *wg_peer_alloc(struct wg_softc *, const uint8_t [WG_KEY_SIZE]); 322 static void wg_peer_free_deferred(struct noise_remote *); 323 static void wg_peer_destroy(struct wg_peer *); 324 static void wg_peer_destroy_all(struct wg_softc *); 325 static void wg_peer_send_buf(struct wg_peer *, uint8_t *, size_t); 326 static void wg_send_initiation(struct wg_peer *); 327 static void wg_send_response(struct wg_peer *); 328 static void wg_send_cookie(struct wg_softc *, struct cookie_macs *, uint32_t, struct wg_endpoint *); 329 static void wg_peer_set_endpoint(struct wg_peer *, struct wg_endpoint *); 330 static void wg_peer_clear_src(struct wg_peer *); 331 static void wg_peer_get_endpoint(struct wg_peer *, struct wg_endpoint *); 332 static void wg_send_buf(struct wg_softc *, struct wg_endpoint *, uint8_t *, size_t); 333 static void wg_send_keepalive(struct wg_peer *); 334 static void wg_handshake(struct wg_softc *, struct wg_packet *); 335 static void wg_encrypt(struct wg_softc *, struct wg_packet *); 336 static void wg_decrypt(struct wg_softc *, struct wg_packet *); 337 static void wg_softc_handshake_receive(struct wg_softc *); 338 static void wg_softc_decrypt(struct wg_softc *); 339 static void wg_softc_encrypt(struct wg_softc *); 340 static void wg_encrypt_dispatch(struct wg_softc *); 341 static void wg_decrypt_dispatch(struct wg_softc *); 342 static void wg_deliver_out(struct wg_peer *); 343 static void wg_deliver_in(struct wg_peer *); 344 static struct wg_packet *wg_packet_alloc(struct mbuf *); 345 static void wg_packet_free(struct wg_packet *); 346 static void wg_queue_init(struct wg_queue *, const char *); 347 static void wg_queue_deinit(struct wg_queue *); 348 static size_t wg_queue_len(struct wg_queue *); 349 static int wg_queue_enqueue_handshake(struct wg_queue *, struct wg_packet *); 350 static struct wg_packet *wg_queue_dequeue_handshake(struct wg_queue *); 351 static void wg_queue_push_staged(struct wg_queue *, struct wg_packet *); 352 static void wg_queue_enlist_staged(struct wg_queue *, struct wg_packet_list *); 353 static void wg_queue_delist_staged(struct wg_queue *, struct wg_packet_list *); 354 static void wg_queue_purge(struct wg_queue *); 355 static int wg_queue_both(struct wg_queue *, struct wg_queue *, struct wg_packet *); 356 static struct wg_packet *wg_queue_dequeue_serial(struct wg_queue *); 357 static struct wg_packet *wg_queue_dequeue_parallel(struct wg_queue *); 358 static bool wg_input(struct mbuf *, int, struct inpcb *, const struct sockaddr *, void *); 359 static void wg_peer_send_staged(struct wg_peer *); 360 static int wg_clone_create(struct if_clone *ifc, char *name, size_t len, 361 struct ifc_data *ifd, if_t *ifpp); 362 static void wg_qflush(if_t); 363 static inline int determine_af_and_pullup(struct mbuf **m, sa_family_t *af); 364 static int wg_xmit(if_t, struct mbuf *, sa_family_t, uint32_t); 365 static int wg_transmit(if_t, struct mbuf *); 366 static int wg_output(if_t, struct mbuf *, const struct sockaddr *, struct route *); 367 static int wg_clone_destroy(struct if_clone *ifc, if_t ifp, 368 uint32_t flags); 369 static bool wgc_privileged(struct wg_softc *); 370 static int wgc_get(struct wg_softc *, struct wg_data_io *); 371 static int wgc_set(struct wg_softc *, struct wg_data_io *); 372 static int wg_up(struct wg_softc *); 373 static void wg_down(struct wg_softc *); 374 static void wg_reassign(if_t, struct vnet *, char *unused); 375 static void wg_init(void *); 376 static int wg_ioctl(if_t, u_long, caddr_t); 377 static void vnet_wg_init(const void *); 378 static void vnet_wg_uninit(const void *); 379 static int wg_module_init(void); 380 static void wg_module_deinit(void); 381 382 /* TODO Peer */ 383 static struct wg_peer * 384 wg_peer_alloc(struct wg_softc *sc, const uint8_t pub_key[WG_KEY_SIZE]) 385 { 386 struct wg_peer *peer; 387 388 sx_assert(&sc->sc_lock, SX_XLOCKED); 389 390 peer = malloc(sizeof(*peer), M_WG, M_WAITOK | M_ZERO); 391 peer->p_remote = noise_remote_alloc(sc->sc_local, peer, pub_key); 392 peer->p_tx_bytes = counter_u64_alloc(M_WAITOK); 393 peer->p_rx_bytes = counter_u64_alloc(M_WAITOK); 394 peer->p_id = peer_counter++; 395 peer->p_sc = sc; 396 397 cookie_maker_init(&peer->p_cookie, pub_key); 398 399 rw_init(&peer->p_endpoint_lock, "wg_peer_endpoint"); 400 401 wg_queue_init(&peer->p_stage_queue, "stageq"); 402 wg_queue_init(&peer->p_encrypt_serial, "txq"); 403 wg_queue_init(&peer->p_decrypt_serial, "rxq"); 404 405 peer->p_enabled = false; 406 peer->p_need_another_keepalive = false; 407 peer->p_persistent_keepalive_interval = 0; 408 callout_init(&peer->p_new_handshake, true); 409 callout_init(&peer->p_send_keepalive, true); 410 callout_init(&peer->p_retry_handshake, true); 411 callout_init(&peer->p_persistent_keepalive, true); 412 callout_init(&peer->p_zero_key_material, true); 413 414 mtx_init(&peer->p_handshake_mtx, "peer handshake", NULL, MTX_DEF); 415 bzero(&peer->p_handshake_complete, sizeof(peer->p_handshake_complete)); 416 peer->p_handshake_retries = 0; 417 418 GROUPTASK_INIT(&peer->p_send, 0, (gtask_fn_t *)wg_deliver_out, peer); 419 taskqgroup_attach(qgroup_wg_tqg, &peer->p_send, peer, NULL, NULL, "wg send"); 420 GROUPTASK_INIT(&peer->p_recv, 0, (gtask_fn_t *)wg_deliver_in, peer); 421 taskqgroup_attach(qgroup_wg_tqg, &peer->p_recv, peer, NULL, NULL, "wg recv"); 422 423 LIST_INIT(&peer->p_aips); 424 peer->p_aips_num = 0; 425 426 return (peer); 427 } 428 429 static void 430 wg_peer_free_deferred(struct noise_remote *r) 431 { 432 struct wg_peer *peer = noise_remote_arg(r); 433 434 /* While there are no references remaining, we may still have 435 * p_{send,recv} executing (think empty queue, but wg_deliver_{in,out} 436 * needs to check the queue. We should wait for them and then free. */ 437 GROUPTASK_DRAIN(&peer->p_recv); 438 GROUPTASK_DRAIN(&peer->p_send); 439 taskqgroup_detach(qgroup_wg_tqg, &peer->p_recv); 440 taskqgroup_detach(qgroup_wg_tqg, &peer->p_send); 441 442 wg_queue_deinit(&peer->p_decrypt_serial); 443 wg_queue_deinit(&peer->p_encrypt_serial); 444 wg_queue_deinit(&peer->p_stage_queue); 445 446 counter_u64_free(peer->p_tx_bytes); 447 counter_u64_free(peer->p_rx_bytes); 448 rw_destroy(&peer->p_endpoint_lock); 449 mtx_destroy(&peer->p_handshake_mtx); 450 451 cookie_maker_free(&peer->p_cookie); 452 453 free(peer, M_WG); 454 } 455 456 static void 457 wg_peer_destroy(struct wg_peer *peer) 458 { 459 struct wg_softc *sc = peer->p_sc; 460 sx_assert(&sc->sc_lock, SX_XLOCKED); 461 462 /* Disable remote and timers. This will prevent any new handshakes 463 * occuring. */ 464 noise_remote_disable(peer->p_remote); 465 wg_timers_disable(peer); 466 467 /* Now we can remove all allowed IPs so no more packets will be routed 468 * to the peer. */ 469 wg_aip_remove_all(sc, peer); 470 471 /* Remove peer from the interface, then free. Some references may still 472 * exist to p_remote, so noise_remote_free will wait until they're all 473 * put to call wg_peer_free_deferred. */ 474 sc->sc_peers_num--; 475 TAILQ_REMOVE(&sc->sc_peers, peer, p_entry); 476 DPRINTF(sc, "Peer %" PRIu64 " destroyed\n", peer->p_id); 477 noise_remote_free(peer->p_remote, wg_peer_free_deferred); 478 } 479 480 static void 481 wg_peer_destroy_all(struct wg_softc *sc) 482 { 483 struct wg_peer *peer, *tpeer; 484 TAILQ_FOREACH_SAFE(peer, &sc->sc_peers, p_entry, tpeer) 485 wg_peer_destroy(peer); 486 } 487 488 static void 489 wg_peer_set_endpoint(struct wg_peer *peer, struct wg_endpoint *e) 490 { 491 MPASS(e->e_remote.r_sa.sa_family != 0); 492 if (memcmp(e, &peer->p_endpoint, sizeof(*e)) == 0) 493 return; 494 495 rw_wlock(&peer->p_endpoint_lock); 496 peer->p_endpoint = *e; 497 rw_wunlock(&peer->p_endpoint_lock); 498 } 499 500 static void 501 wg_peer_clear_src(struct wg_peer *peer) 502 { 503 rw_wlock(&peer->p_endpoint_lock); 504 bzero(&peer->p_endpoint.e_local, sizeof(peer->p_endpoint.e_local)); 505 rw_wunlock(&peer->p_endpoint_lock); 506 } 507 508 static void 509 wg_peer_get_endpoint(struct wg_peer *peer, struct wg_endpoint *e) 510 { 511 rw_rlock(&peer->p_endpoint_lock); 512 *e = peer->p_endpoint; 513 rw_runlock(&peer->p_endpoint_lock); 514 } 515 516 /* Allowed IP */ 517 static int 518 wg_aip_add(struct wg_softc *sc, struct wg_peer *peer, sa_family_t af, const void *addr, uint8_t cidr) 519 { 520 struct radix_node_head *root; 521 struct radix_node *node; 522 struct wg_aip *aip; 523 int ret = 0; 524 525 aip = malloc(sizeof(*aip), M_WG, M_WAITOK | M_ZERO); 526 aip->a_peer = peer; 527 aip->a_af = af; 528 529 switch (af) { 530 #ifdef INET 531 case AF_INET: 532 if (cidr > 32) cidr = 32; 533 root = sc->sc_aip4; 534 aip->a_addr.in = *(const struct in_addr *)addr; 535 aip->a_mask.ip = htonl(~((1LL << (32 - cidr)) - 1) & 0xffffffff); 536 aip->a_addr.ip &= aip->a_mask.ip; 537 aip->a_addr.length = aip->a_mask.length = offsetof(struct aip_addr, in) + sizeof(struct in_addr); 538 break; 539 #endif 540 #ifdef INET6 541 case AF_INET6: 542 if (cidr > 128) cidr = 128; 543 root = sc->sc_aip6; 544 aip->a_addr.in6 = *(const struct in6_addr *)addr; 545 in6_prefixlen2mask(&aip->a_mask.in6, cidr); 546 for (int i = 0; i < 4; i++) 547 aip->a_addr.ip6[i] &= aip->a_mask.ip6[i]; 548 aip->a_addr.length = aip->a_mask.length = offsetof(struct aip_addr, in6) + sizeof(struct in6_addr); 549 break; 550 #endif 551 default: 552 free(aip, M_WG); 553 return (EAFNOSUPPORT); 554 } 555 556 RADIX_NODE_HEAD_LOCK(root); 557 node = root->rnh_addaddr(&aip->a_addr, &aip->a_mask, &root->rh, aip->a_nodes); 558 if (node == aip->a_nodes) { 559 LIST_INSERT_HEAD(&peer->p_aips, aip, a_entry); 560 peer->p_aips_num++; 561 } else if (!node) 562 node = root->rnh_lookup(&aip->a_addr, &aip->a_mask, &root->rh); 563 if (!node) { 564 free(aip, M_WG); 565 ret = ENOMEM; 566 } else if (node != aip->a_nodes) { 567 free(aip, M_WG); 568 aip = (struct wg_aip *)node; 569 if (aip->a_peer != peer) { 570 LIST_REMOVE(aip, a_entry); 571 aip->a_peer->p_aips_num--; 572 aip->a_peer = peer; 573 LIST_INSERT_HEAD(&peer->p_aips, aip, a_entry); 574 aip->a_peer->p_aips_num++; 575 } 576 } 577 RADIX_NODE_HEAD_UNLOCK(root); 578 return (ret); 579 } 580 581 static struct wg_peer * 582 wg_aip_lookup(struct wg_softc *sc, sa_family_t af, void *a) 583 { 584 struct radix_node_head *root; 585 struct radix_node *node; 586 struct wg_peer *peer; 587 struct aip_addr addr; 588 RADIX_NODE_HEAD_RLOCK_TRACKER; 589 590 switch (af) { 591 case AF_INET: 592 root = sc->sc_aip4; 593 memcpy(&addr.in, a, sizeof(addr.in)); 594 addr.length = offsetof(struct aip_addr, in) + sizeof(struct in_addr); 595 break; 596 case AF_INET6: 597 root = sc->sc_aip6; 598 memcpy(&addr.in6, a, sizeof(addr.in6)); 599 addr.length = offsetof(struct aip_addr, in6) + sizeof(struct in6_addr); 600 break; 601 default: 602 return NULL; 603 } 604 605 RADIX_NODE_HEAD_RLOCK(root); 606 node = root->rnh_matchaddr(&addr, &root->rh); 607 if (node != NULL) { 608 peer = ((struct wg_aip *)node)->a_peer; 609 noise_remote_ref(peer->p_remote); 610 } else { 611 peer = NULL; 612 } 613 RADIX_NODE_HEAD_RUNLOCK(root); 614 615 return (peer); 616 } 617 618 static void 619 wg_aip_remove_all(struct wg_softc *sc, struct wg_peer *peer) 620 { 621 struct wg_aip *aip, *taip; 622 623 RADIX_NODE_HEAD_LOCK(sc->sc_aip4); 624 LIST_FOREACH_SAFE(aip, &peer->p_aips, a_entry, taip) { 625 if (aip->a_af == AF_INET) { 626 if (sc->sc_aip4->rnh_deladdr(&aip->a_addr, &aip->a_mask, &sc->sc_aip4->rh) == NULL) 627 panic("failed to delete aip %p", aip); 628 LIST_REMOVE(aip, a_entry); 629 peer->p_aips_num--; 630 free(aip, M_WG); 631 } 632 } 633 RADIX_NODE_HEAD_UNLOCK(sc->sc_aip4); 634 635 RADIX_NODE_HEAD_LOCK(sc->sc_aip6); 636 LIST_FOREACH_SAFE(aip, &peer->p_aips, a_entry, taip) { 637 if (aip->a_af == AF_INET6) { 638 if (sc->sc_aip6->rnh_deladdr(&aip->a_addr, &aip->a_mask, &sc->sc_aip6->rh) == NULL) 639 panic("failed to delete aip %p", aip); 640 LIST_REMOVE(aip, a_entry); 641 peer->p_aips_num--; 642 free(aip, M_WG); 643 } 644 } 645 RADIX_NODE_HEAD_UNLOCK(sc->sc_aip6); 646 647 if (!LIST_EMPTY(&peer->p_aips) || peer->p_aips_num != 0) 648 panic("wg_aip_remove_all could not delete all %p", peer); 649 } 650 651 static int 652 wg_socket_init(struct wg_softc *sc, in_port_t port) 653 { 654 struct ucred *cred = sc->sc_ucred; 655 struct socket *so4 = NULL, *so6 = NULL; 656 int rc; 657 658 sx_assert(&sc->sc_lock, SX_XLOCKED); 659 660 if (!cred) 661 return (EBUSY); 662 663 /* 664 * For socket creation, we use the creds of the thread that created the 665 * tunnel rather than the current thread to maintain the semantics that 666 * WireGuard has on Linux with network namespaces -- that the sockets 667 * are created in their home vnet so that they can be configured and 668 * functionally attached to a foreign vnet as the jail's only interface 669 * to the network. 670 */ 671 #ifdef INET 672 rc = socreate(AF_INET, &so4, SOCK_DGRAM, IPPROTO_UDP, cred, curthread); 673 if (rc) 674 goto out; 675 676 rc = udp_set_kernel_tunneling(so4, wg_input, NULL, sc); 677 /* 678 * udp_set_kernel_tunneling can only fail if there is already a tunneling function set. 679 * This should never happen with a new socket. 680 */ 681 MPASS(rc == 0); 682 #endif 683 684 #ifdef INET6 685 rc = socreate(AF_INET6, &so6, SOCK_DGRAM, IPPROTO_UDP, cred, curthread); 686 if (rc) 687 goto out; 688 rc = udp_set_kernel_tunneling(so6, wg_input, NULL, sc); 689 MPASS(rc == 0); 690 #endif 691 692 if (sc->sc_socket.so_user_cookie) { 693 rc = wg_socket_set_sockopt(so4, so6, SO_USER_COOKIE, &sc->sc_socket.so_user_cookie, sizeof(sc->sc_socket.so_user_cookie)); 694 if (rc) 695 goto out; 696 } 697 rc = wg_socket_set_sockopt(so4, so6, SO_SETFIB, &sc->sc_socket.so_fibnum, sizeof(sc->sc_socket.so_fibnum)); 698 if (rc) 699 goto out; 700 701 rc = wg_socket_bind(&so4, &so6, &port); 702 if (!rc) { 703 sc->sc_socket.so_port = port; 704 wg_socket_set(sc, so4, so6); 705 } 706 out: 707 if (rc) { 708 if (so4 != NULL) 709 soclose(so4); 710 if (so6 != NULL) 711 soclose(so6); 712 } 713 return (rc); 714 } 715 716 static int wg_socket_set_sockopt(struct socket *so4, struct socket *so6, int name, void *val, size_t len) 717 { 718 int ret4 = 0, ret6 = 0; 719 struct sockopt sopt = { 720 .sopt_dir = SOPT_SET, 721 .sopt_level = SOL_SOCKET, 722 .sopt_name = name, 723 .sopt_val = val, 724 .sopt_valsize = len 725 }; 726 727 if (so4) 728 ret4 = sosetopt(so4, &sopt); 729 if (so6) 730 ret6 = sosetopt(so6, &sopt); 731 return (ret4 ?: ret6); 732 } 733 734 static int wg_socket_set_cookie(struct wg_softc *sc, uint32_t user_cookie) 735 { 736 struct wg_socket *so = &sc->sc_socket; 737 int ret; 738 739 sx_assert(&sc->sc_lock, SX_XLOCKED); 740 ret = wg_socket_set_sockopt(so->so_so4, so->so_so6, SO_USER_COOKIE, &user_cookie, sizeof(user_cookie)); 741 if (!ret) 742 so->so_user_cookie = user_cookie; 743 return (ret); 744 } 745 746 static int wg_socket_set_fibnum(struct wg_softc *sc, int fibnum) 747 { 748 struct wg_socket *so = &sc->sc_socket; 749 int ret; 750 751 sx_assert(&sc->sc_lock, SX_XLOCKED); 752 753 ret = wg_socket_set_sockopt(so->so_so4, so->so_so6, SO_SETFIB, &fibnum, sizeof(fibnum)); 754 if (!ret) 755 so->so_fibnum = fibnum; 756 return (ret); 757 } 758 759 static void 760 wg_socket_uninit(struct wg_softc *sc) 761 { 762 wg_socket_set(sc, NULL, NULL); 763 } 764 765 static void 766 wg_socket_set(struct wg_softc *sc, struct socket *new_so4, struct socket *new_so6) 767 { 768 struct wg_socket *so = &sc->sc_socket; 769 struct socket *so4, *so6; 770 771 sx_assert(&sc->sc_lock, SX_XLOCKED); 772 773 so4 = atomic_load_ptr(&so->so_so4); 774 so6 = atomic_load_ptr(&so->so_so6); 775 atomic_store_ptr(&so->so_so4, new_so4); 776 atomic_store_ptr(&so->so_so6, new_so6); 777 778 if (!so4 && !so6) 779 return; 780 NET_EPOCH_WAIT(); 781 if (so4) 782 soclose(so4); 783 if (so6) 784 soclose(so6); 785 } 786 787 static int 788 wg_socket_bind(struct socket **in_so4, struct socket **in_so6, in_port_t *requested_port) 789 { 790 struct socket *so4 = *in_so4, *so6 = *in_so6; 791 int ret4 = 0, ret6 = 0; 792 in_port_t port = *requested_port; 793 struct sockaddr_in sin = { 794 .sin_len = sizeof(struct sockaddr_in), 795 .sin_family = AF_INET, 796 .sin_port = htons(port) 797 }; 798 struct sockaddr_in6 sin6 = { 799 .sin6_len = sizeof(struct sockaddr_in6), 800 .sin6_family = AF_INET6, 801 .sin6_port = htons(port) 802 }; 803 804 if (so4) { 805 ret4 = sobind(so4, (struct sockaddr *)&sin, curthread); 806 if (ret4 && ret4 != EADDRNOTAVAIL) 807 return (ret4); 808 if (!ret4 && !sin.sin_port) { 809 struct sockaddr_in *bound_sin; 810 int ret = so4->so_proto->pr_sockaddr(so4, 811 (struct sockaddr **)&bound_sin); 812 if (ret) 813 return (ret); 814 port = ntohs(bound_sin->sin_port); 815 sin6.sin6_port = bound_sin->sin_port; 816 free(bound_sin, M_SONAME); 817 } 818 } 819 820 if (so6) { 821 ret6 = sobind(so6, (struct sockaddr *)&sin6, curthread); 822 if (ret6 && ret6 != EADDRNOTAVAIL) 823 return (ret6); 824 if (!ret6 && !sin6.sin6_port) { 825 struct sockaddr_in6 *bound_sin6; 826 int ret = so6->so_proto->pr_sockaddr(so6, 827 (struct sockaddr **)&bound_sin6); 828 if (ret) 829 return (ret); 830 port = ntohs(bound_sin6->sin6_port); 831 free(bound_sin6, M_SONAME); 832 } 833 } 834 835 if (ret4 && ret6) 836 return (ret4); 837 *requested_port = port; 838 if (ret4 && !ret6 && so4) { 839 soclose(so4); 840 *in_so4 = NULL; 841 } else if (ret6 && !ret4 && so6) { 842 soclose(so6); 843 *in_so6 = NULL; 844 } 845 return (0); 846 } 847 848 static int 849 wg_send(struct wg_softc *sc, struct wg_endpoint *e, struct mbuf *m) 850 { 851 struct epoch_tracker et; 852 struct sockaddr *sa; 853 struct wg_socket *so = &sc->sc_socket; 854 struct socket *so4, *so6; 855 struct mbuf *control = NULL; 856 int ret = 0; 857 size_t len = m->m_pkthdr.len; 858 859 /* Get local control address before locking */ 860 if (e->e_remote.r_sa.sa_family == AF_INET) { 861 if (e->e_local.l_in.s_addr != INADDR_ANY) 862 control = sbcreatecontrol((caddr_t)&e->e_local.l_in, 863 sizeof(struct in_addr), IP_SENDSRCADDR, 864 IPPROTO_IP, M_NOWAIT); 865 #ifdef INET6 866 } else if (e->e_remote.r_sa.sa_family == AF_INET6) { 867 if (!IN6_IS_ADDR_UNSPECIFIED(&e->e_local.l_in6)) 868 control = sbcreatecontrol((caddr_t)&e->e_local.l_pktinfo6, 869 sizeof(struct in6_pktinfo), IPV6_PKTINFO, 870 IPPROTO_IPV6, M_NOWAIT); 871 #endif 872 } else { 873 m_freem(m); 874 return (EAFNOSUPPORT); 875 } 876 877 /* Get remote address */ 878 sa = &e->e_remote.r_sa; 879 880 NET_EPOCH_ENTER(et); 881 so4 = atomic_load_ptr(&so->so_so4); 882 so6 = atomic_load_ptr(&so->so_so6); 883 if (e->e_remote.r_sa.sa_family == AF_INET && so4 != NULL) 884 ret = sosend(so4, sa, NULL, m, control, 0, curthread); 885 else if (e->e_remote.r_sa.sa_family == AF_INET6 && so6 != NULL) 886 ret = sosend(so6, sa, NULL, m, control, 0, curthread); 887 else { 888 ret = ENOTCONN; 889 m_freem(control); 890 m_freem(m); 891 } 892 NET_EPOCH_EXIT(et); 893 if (ret == 0) { 894 if_inc_counter(sc->sc_ifp, IFCOUNTER_OPACKETS, 1); 895 if_inc_counter(sc->sc_ifp, IFCOUNTER_OBYTES, len); 896 } 897 return (ret); 898 } 899 900 static void 901 wg_send_buf(struct wg_softc *sc, struct wg_endpoint *e, uint8_t *buf, size_t len) 902 { 903 struct mbuf *m; 904 int ret = 0; 905 bool retried = false; 906 907 retry: 908 m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR); 909 if (!m) { 910 ret = ENOMEM; 911 goto out; 912 } 913 m_copyback(m, 0, len, buf); 914 915 if (ret == 0) { 916 ret = wg_send(sc, e, m); 917 /* Retry if we couldn't bind to e->e_local */ 918 if (ret == EADDRNOTAVAIL && !retried) { 919 bzero(&e->e_local, sizeof(e->e_local)); 920 retried = true; 921 goto retry; 922 } 923 } else { 924 ret = wg_send(sc, e, m); 925 } 926 out: 927 if (ret) 928 DPRINTF(sc, "Unable to send packet: %d\n", ret); 929 } 930 931 /* Timers */ 932 static void 933 wg_timers_enable(struct wg_peer *peer) 934 { 935 atomic_store_bool(&peer->p_enabled, true); 936 wg_timers_run_persistent_keepalive(peer); 937 } 938 939 static void 940 wg_timers_disable(struct wg_peer *peer) 941 { 942 /* By setting p_enabled = false, then calling NET_EPOCH_WAIT, we can be 943 * sure no new handshakes are created after the wait. This is because 944 * all callout_resets (scheduling the callout) are guarded by 945 * p_enabled. We can be sure all sections that read p_enabled and then 946 * optionally call callout_reset are finished as they are surrounded by 947 * NET_EPOCH_{ENTER,EXIT}. 948 * 949 * However, as new callouts may be scheduled during NET_EPOCH_WAIT (but 950 * not after), we stop all callouts leaving no callouts active. 951 * 952 * We should also pull NET_EPOCH_WAIT out of the FOREACH(peer) loops, but the 953 * performance impact is acceptable for the time being. */ 954 atomic_store_bool(&peer->p_enabled, false); 955 NET_EPOCH_WAIT(); 956 atomic_store_bool(&peer->p_need_another_keepalive, false); 957 958 callout_stop(&peer->p_new_handshake); 959 callout_stop(&peer->p_send_keepalive); 960 callout_stop(&peer->p_retry_handshake); 961 callout_stop(&peer->p_persistent_keepalive); 962 callout_stop(&peer->p_zero_key_material); 963 } 964 965 static void 966 wg_timers_set_persistent_keepalive(struct wg_peer *peer, uint16_t interval) 967 { 968 struct epoch_tracker et; 969 if (interval != peer->p_persistent_keepalive_interval) { 970 atomic_store_16(&peer->p_persistent_keepalive_interval, interval); 971 NET_EPOCH_ENTER(et); 972 if (atomic_load_bool(&peer->p_enabled)) 973 wg_timers_run_persistent_keepalive(peer); 974 NET_EPOCH_EXIT(et); 975 } 976 } 977 978 static void 979 wg_timers_get_last_handshake(struct wg_peer *peer, struct wg_timespec64 *time) 980 { 981 mtx_lock(&peer->p_handshake_mtx); 982 time->tv_sec = peer->p_handshake_complete.tv_sec; 983 time->tv_nsec = peer->p_handshake_complete.tv_nsec; 984 mtx_unlock(&peer->p_handshake_mtx); 985 } 986 987 static void 988 wg_timers_event_data_sent(struct wg_peer *peer) 989 { 990 struct epoch_tracker et; 991 NET_EPOCH_ENTER(et); 992 if (atomic_load_bool(&peer->p_enabled) && 993 !callout_pending(&peer->p_new_handshake)) 994 callout_reset(&peer->p_new_handshake, MSEC_2_TICKS( 995 NEW_HANDSHAKE_TIMEOUT * 1000 + 996 arc4random_uniform(REKEY_TIMEOUT_JITTER)), 997 wg_timers_run_new_handshake, peer); 998 NET_EPOCH_EXIT(et); 999 } 1000 1001 static void 1002 wg_timers_event_data_received(struct wg_peer *peer) 1003 { 1004 struct epoch_tracker et; 1005 NET_EPOCH_ENTER(et); 1006 if (atomic_load_bool(&peer->p_enabled)) { 1007 if (!callout_pending(&peer->p_send_keepalive)) 1008 callout_reset(&peer->p_send_keepalive, 1009 MSEC_2_TICKS(KEEPALIVE_TIMEOUT * 1000), 1010 wg_timers_run_send_keepalive, peer); 1011 else 1012 atomic_store_bool(&peer->p_need_another_keepalive, 1013 true); 1014 } 1015 NET_EPOCH_EXIT(et); 1016 } 1017 1018 static void 1019 wg_timers_event_any_authenticated_packet_sent(struct wg_peer *peer) 1020 { 1021 callout_stop(&peer->p_send_keepalive); 1022 } 1023 1024 static void 1025 wg_timers_event_any_authenticated_packet_received(struct wg_peer *peer) 1026 { 1027 callout_stop(&peer->p_new_handshake); 1028 } 1029 1030 static void 1031 wg_timers_event_any_authenticated_packet_traversal(struct wg_peer *peer) 1032 { 1033 struct epoch_tracker et; 1034 uint16_t interval; 1035 NET_EPOCH_ENTER(et); 1036 interval = atomic_load_16(&peer->p_persistent_keepalive_interval); 1037 if (atomic_load_bool(&peer->p_enabled) && interval > 0) 1038 callout_reset(&peer->p_persistent_keepalive, 1039 MSEC_2_TICKS(interval * 1000), 1040 wg_timers_run_persistent_keepalive, peer); 1041 NET_EPOCH_EXIT(et); 1042 } 1043 1044 static void 1045 wg_timers_event_handshake_initiated(struct wg_peer *peer) 1046 { 1047 struct epoch_tracker et; 1048 NET_EPOCH_ENTER(et); 1049 if (atomic_load_bool(&peer->p_enabled)) 1050 callout_reset(&peer->p_retry_handshake, MSEC_2_TICKS( 1051 REKEY_TIMEOUT * 1000 + 1052 arc4random_uniform(REKEY_TIMEOUT_JITTER)), 1053 wg_timers_run_retry_handshake, peer); 1054 NET_EPOCH_EXIT(et); 1055 } 1056 1057 static void 1058 wg_timers_event_handshake_complete(struct wg_peer *peer) 1059 { 1060 struct epoch_tracker et; 1061 NET_EPOCH_ENTER(et); 1062 if (atomic_load_bool(&peer->p_enabled)) { 1063 mtx_lock(&peer->p_handshake_mtx); 1064 callout_stop(&peer->p_retry_handshake); 1065 peer->p_handshake_retries = 0; 1066 getnanotime(&peer->p_handshake_complete); 1067 mtx_unlock(&peer->p_handshake_mtx); 1068 wg_timers_run_send_keepalive(peer); 1069 } 1070 NET_EPOCH_EXIT(et); 1071 } 1072 1073 static void 1074 wg_timers_event_session_derived(struct wg_peer *peer) 1075 { 1076 struct epoch_tracker et; 1077 NET_EPOCH_ENTER(et); 1078 if (atomic_load_bool(&peer->p_enabled)) 1079 callout_reset(&peer->p_zero_key_material, 1080 MSEC_2_TICKS(REJECT_AFTER_TIME * 3 * 1000), 1081 wg_timers_run_zero_key_material, peer); 1082 NET_EPOCH_EXIT(et); 1083 } 1084 1085 static void 1086 wg_timers_event_want_initiation(struct wg_peer *peer) 1087 { 1088 struct epoch_tracker et; 1089 NET_EPOCH_ENTER(et); 1090 if (atomic_load_bool(&peer->p_enabled)) 1091 wg_timers_run_send_initiation(peer, false); 1092 NET_EPOCH_EXIT(et); 1093 } 1094 1095 static void 1096 wg_timers_run_send_initiation(struct wg_peer *peer, bool is_retry) 1097 { 1098 if (!is_retry) 1099 peer->p_handshake_retries = 0; 1100 if (noise_remote_initiation_expired(peer->p_remote) == ETIMEDOUT) 1101 wg_send_initiation(peer); 1102 } 1103 1104 static void 1105 wg_timers_run_retry_handshake(void *_peer) 1106 { 1107 struct epoch_tracker et; 1108 struct wg_peer *peer = _peer; 1109 1110 mtx_lock(&peer->p_handshake_mtx); 1111 if (peer->p_handshake_retries <= MAX_TIMER_HANDSHAKES) { 1112 peer->p_handshake_retries++; 1113 mtx_unlock(&peer->p_handshake_mtx); 1114 1115 DPRINTF(peer->p_sc, "Handshake for peer %" PRIu64 " did not complete " 1116 "after %d seconds, retrying (try %d)\n", peer->p_id, 1117 REKEY_TIMEOUT, peer->p_handshake_retries + 1); 1118 wg_peer_clear_src(peer); 1119 wg_timers_run_send_initiation(peer, true); 1120 } else { 1121 mtx_unlock(&peer->p_handshake_mtx); 1122 1123 DPRINTF(peer->p_sc, "Handshake for peer %" PRIu64 " did not complete " 1124 "after %d retries, giving up\n", peer->p_id, 1125 MAX_TIMER_HANDSHAKES + 2); 1126 1127 callout_stop(&peer->p_send_keepalive); 1128 wg_queue_purge(&peer->p_stage_queue); 1129 NET_EPOCH_ENTER(et); 1130 if (atomic_load_bool(&peer->p_enabled) && 1131 !callout_pending(&peer->p_zero_key_material)) 1132 callout_reset(&peer->p_zero_key_material, 1133 MSEC_2_TICKS(REJECT_AFTER_TIME * 3 * 1000), 1134 wg_timers_run_zero_key_material, peer); 1135 NET_EPOCH_EXIT(et); 1136 } 1137 } 1138 1139 static void 1140 wg_timers_run_send_keepalive(void *_peer) 1141 { 1142 struct epoch_tracker et; 1143 struct wg_peer *peer = _peer; 1144 1145 wg_send_keepalive(peer); 1146 NET_EPOCH_ENTER(et); 1147 if (atomic_load_bool(&peer->p_enabled) && 1148 atomic_load_bool(&peer->p_need_another_keepalive)) { 1149 atomic_store_bool(&peer->p_need_another_keepalive, false); 1150 callout_reset(&peer->p_send_keepalive, 1151 MSEC_2_TICKS(KEEPALIVE_TIMEOUT * 1000), 1152 wg_timers_run_send_keepalive, peer); 1153 } 1154 NET_EPOCH_EXIT(et); 1155 } 1156 1157 static void 1158 wg_timers_run_new_handshake(void *_peer) 1159 { 1160 struct wg_peer *peer = _peer; 1161 1162 DPRINTF(peer->p_sc, "Retrying handshake with peer %" PRIu64 " because we " 1163 "stopped hearing back after %d seconds\n", 1164 peer->p_id, NEW_HANDSHAKE_TIMEOUT); 1165 1166 wg_peer_clear_src(peer); 1167 wg_timers_run_send_initiation(peer, false); 1168 } 1169 1170 static void 1171 wg_timers_run_zero_key_material(void *_peer) 1172 { 1173 struct wg_peer *peer = _peer; 1174 1175 DPRINTF(peer->p_sc, "Zeroing out keys for peer %" PRIu64 ", since we " 1176 "haven't received a new one in %d seconds\n", 1177 peer->p_id, REJECT_AFTER_TIME * 3); 1178 noise_remote_keypairs_clear(peer->p_remote); 1179 } 1180 1181 static void 1182 wg_timers_run_persistent_keepalive(void *_peer) 1183 { 1184 struct wg_peer *peer = _peer; 1185 1186 if (atomic_load_16(&peer->p_persistent_keepalive_interval) > 0) 1187 wg_send_keepalive(peer); 1188 } 1189 1190 /* TODO Handshake */ 1191 static void 1192 wg_peer_send_buf(struct wg_peer *peer, uint8_t *buf, size_t len) 1193 { 1194 struct wg_endpoint endpoint; 1195 1196 counter_u64_add(peer->p_tx_bytes, len); 1197 wg_timers_event_any_authenticated_packet_traversal(peer); 1198 wg_timers_event_any_authenticated_packet_sent(peer); 1199 wg_peer_get_endpoint(peer, &endpoint); 1200 wg_send_buf(peer->p_sc, &endpoint, buf, len); 1201 } 1202 1203 static void 1204 wg_send_initiation(struct wg_peer *peer) 1205 { 1206 struct wg_pkt_initiation pkt; 1207 1208 if (noise_create_initiation(peer->p_remote, &pkt.s_idx, pkt.ue, 1209 pkt.es, pkt.ets) != 0) 1210 return; 1211 1212 DPRINTF(peer->p_sc, "Sending handshake initiation to peer %" PRIu64 "\n", peer->p_id); 1213 1214 pkt.t = WG_PKT_INITIATION; 1215 cookie_maker_mac(&peer->p_cookie, &pkt.m, &pkt, 1216 sizeof(pkt) - sizeof(pkt.m)); 1217 wg_peer_send_buf(peer, (uint8_t *)&pkt, sizeof(pkt)); 1218 wg_timers_event_handshake_initiated(peer); 1219 } 1220 1221 static void 1222 wg_send_response(struct wg_peer *peer) 1223 { 1224 struct wg_pkt_response pkt; 1225 1226 if (noise_create_response(peer->p_remote, &pkt.s_idx, &pkt.r_idx, 1227 pkt.ue, pkt.en) != 0) 1228 return; 1229 1230 DPRINTF(peer->p_sc, "Sending handshake response to peer %" PRIu64 "\n", peer->p_id); 1231 1232 wg_timers_event_session_derived(peer); 1233 pkt.t = WG_PKT_RESPONSE; 1234 cookie_maker_mac(&peer->p_cookie, &pkt.m, &pkt, 1235 sizeof(pkt)-sizeof(pkt.m)); 1236 wg_peer_send_buf(peer, (uint8_t*)&pkt, sizeof(pkt)); 1237 } 1238 1239 static void 1240 wg_send_cookie(struct wg_softc *sc, struct cookie_macs *cm, uint32_t idx, 1241 struct wg_endpoint *e) 1242 { 1243 struct wg_pkt_cookie pkt; 1244 1245 DPRINTF(sc, "Sending cookie response for denied handshake message\n"); 1246 1247 pkt.t = WG_PKT_COOKIE; 1248 pkt.r_idx = idx; 1249 1250 cookie_checker_create_payload(&sc->sc_cookie, cm, pkt.nonce, 1251 pkt.ec, &e->e_remote.r_sa); 1252 wg_send_buf(sc, e, (uint8_t *)&pkt, sizeof(pkt)); 1253 } 1254 1255 static void 1256 wg_send_keepalive(struct wg_peer *peer) 1257 { 1258 struct wg_packet *pkt; 1259 struct mbuf *m; 1260 1261 if (wg_queue_len(&peer->p_stage_queue) > 0) 1262 goto send; 1263 if ((m = m_gethdr(M_NOWAIT, MT_DATA)) == NULL) 1264 return; 1265 if ((pkt = wg_packet_alloc(m)) == NULL) { 1266 m_freem(m); 1267 return; 1268 } 1269 wg_queue_push_staged(&peer->p_stage_queue, pkt); 1270 DPRINTF(peer->p_sc, "Sending keepalive packet to peer %" PRIu64 "\n", peer->p_id); 1271 send: 1272 wg_peer_send_staged(peer); 1273 } 1274 1275 static void 1276 wg_handshake(struct wg_softc *sc, struct wg_packet *pkt) 1277 { 1278 struct wg_pkt_initiation *init; 1279 struct wg_pkt_response *resp; 1280 struct wg_pkt_cookie *cook; 1281 struct wg_endpoint *e; 1282 struct wg_peer *peer; 1283 struct mbuf *m; 1284 struct noise_remote *remote = NULL; 1285 int res; 1286 bool underload = false; 1287 static sbintime_t wg_last_underload; /* sbinuptime */ 1288 1289 underload = wg_queue_len(&sc->sc_handshake_queue) >= MAX_QUEUED_HANDSHAKES / 8; 1290 if (underload) { 1291 wg_last_underload = getsbinuptime(); 1292 } else if (wg_last_underload) { 1293 underload = wg_last_underload + UNDERLOAD_TIMEOUT * SBT_1S > getsbinuptime(); 1294 if (!underload) 1295 wg_last_underload = 0; 1296 } 1297 1298 m = pkt->p_mbuf; 1299 e = &pkt->p_endpoint; 1300 1301 if ((pkt->p_mbuf = m = m_pullup(m, m->m_pkthdr.len)) == NULL) 1302 goto error; 1303 1304 switch (*mtod(m, uint32_t *)) { 1305 case WG_PKT_INITIATION: 1306 init = mtod(m, struct wg_pkt_initiation *); 1307 1308 res = cookie_checker_validate_macs(&sc->sc_cookie, &init->m, 1309 init, sizeof(*init) - sizeof(init->m), 1310 underload, &e->e_remote.r_sa, 1311 if_getvnet(sc->sc_ifp)); 1312 1313 if (res == EINVAL) { 1314 DPRINTF(sc, "Invalid initiation MAC\n"); 1315 goto error; 1316 } else if (res == ECONNREFUSED) { 1317 DPRINTF(sc, "Handshake ratelimited\n"); 1318 goto error; 1319 } else if (res == EAGAIN) { 1320 wg_send_cookie(sc, &init->m, init->s_idx, e); 1321 goto error; 1322 } else if (res != 0) { 1323 panic("unexpected response: %d\n", res); 1324 } 1325 1326 if (noise_consume_initiation(sc->sc_local, &remote, 1327 init->s_idx, init->ue, init->es, init->ets) != 0) { 1328 DPRINTF(sc, "Invalid handshake initiation\n"); 1329 goto error; 1330 } 1331 1332 peer = noise_remote_arg(remote); 1333 1334 DPRINTF(sc, "Receiving handshake initiation from peer %" PRIu64 "\n", peer->p_id); 1335 1336 wg_peer_set_endpoint(peer, e); 1337 wg_send_response(peer); 1338 break; 1339 case WG_PKT_RESPONSE: 1340 resp = mtod(m, struct wg_pkt_response *); 1341 1342 res = cookie_checker_validate_macs(&sc->sc_cookie, &resp->m, 1343 resp, sizeof(*resp) - sizeof(resp->m), 1344 underload, &e->e_remote.r_sa, 1345 if_getvnet(sc->sc_ifp)); 1346 1347 if (res == EINVAL) { 1348 DPRINTF(sc, "Invalid response MAC\n"); 1349 goto error; 1350 } else if (res == ECONNREFUSED) { 1351 DPRINTF(sc, "Handshake ratelimited\n"); 1352 goto error; 1353 } else if (res == EAGAIN) { 1354 wg_send_cookie(sc, &resp->m, resp->s_idx, e); 1355 goto error; 1356 } else if (res != 0) { 1357 panic("unexpected response: %d\n", res); 1358 } 1359 1360 if (noise_consume_response(sc->sc_local, &remote, 1361 resp->s_idx, resp->r_idx, resp->ue, resp->en) != 0) { 1362 DPRINTF(sc, "Invalid handshake response\n"); 1363 goto error; 1364 } 1365 1366 peer = noise_remote_arg(remote); 1367 DPRINTF(sc, "Receiving handshake response from peer %" PRIu64 "\n", peer->p_id); 1368 1369 wg_peer_set_endpoint(peer, e); 1370 wg_timers_event_session_derived(peer); 1371 wg_timers_event_handshake_complete(peer); 1372 break; 1373 case WG_PKT_COOKIE: 1374 cook = mtod(m, struct wg_pkt_cookie *); 1375 1376 if ((remote = noise_remote_index(sc->sc_local, cook->r_idx)) == NULL) { 1377 DPRINTF(sc, "Unknown cookie index\n"); 1378 goto error; 1379 } 1380 1381 peer = noise_remote_arg(remote); 1382 1383 if (cookie_maker_consume_payload(&peer->p_cookie, 1384 cook->nonce, cook->ec) == 0) { 1385 DPRINTF(sc, "Receiving cookie response\n"); 1386 } else { 1387 DPRINTF(sc, "Could not decrypt cookie response\n"); 1388 goto error; 1389 } 1390 1391 goto not_authenticated; 1392 default: 1393 panic("invalid packet in handshake queue"); 1394 } 1395 1396 wg_timers_event_any_authenticated_packet_received(peer); 1397 wg_timers_event_any_authenticated_packet_traversal(peer); 1398 1399 not_authenticated: 1400 counter_u64_add(peer->p_rx_bytes, m->m_pkthdr.len); 1401 if_inc_counter(sc->sc_ifp, IFCOUNTER_IPACKETS, 1); 1402 if_inc_counter(sc->sc_ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 1403 error: 1404 if (remote != NULL) 1405 noise_remote_put(remote); 1406 wg_packet_free(pkt); 1407 } 1408 1409 static void 1410 wg_softc_handshake_receive(struct wg_softc *sc) 1411 { 1412 struct wg_packet *pkt; 1413 while ((pkt = wg_queue_dequeue_handshake(&sc->sc_handshake_queue)) != NULL) 1414 wg_handshake(sc, pkt); 1415 } 1416 1417 static void 1418 wg_mbuf_reset(struct mbuf *m) 1419 { 1420 1421 struct m_tag *t, *tmp; 1422 1423 /* 1424 * We want to reset the mbuf to a newly allocated state, containing 1425 * just the packet contents. Unfortunately FreeBSD doesn't seem to 1426 * offer this anywhere, so we have to make it up as we go. If we can 1427 * get this in kern/kern_mbuf.c, that would be best. 1428 * 1429 * Notice: this may break things unexpectedly but it is better to fail 1430 * closed in the extreme case than leak informtion in every 1431 * case. 1432 * 1433 * With that said, all this attempts to do is remove any extraneous 1434 * information that could be present. 1435 */ 1436 1437 M_ASSERTPKTHDR(m); 1438 1439 m->m_flags &= ~(M_BCAST|M_MCAST|M_VLANTAG|M_PROMISC|M_PROTOFLAGS); 1440 1441 M_HASHTYPE_CLEAR(m); 1442 #ifdef NUMA 1443 m->m_pkthdr.numa_domain = M_NODOM; 1444 #endif 1445 SLIST_FOREACH_SAFE(t, &m->m_pkthdr.tags, m_tag_link, tmp) { 1446 if ((t->m_tag_id != 0 || t->m_tag_cookie != MTAG_WGLOOP) && 1447 t->m_tag_id != PACKET_TAG_MACLABEL) 1448 m_tag_delete(m, t); 1449 } 1450 1451 KASSERT((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0, 1452 ("%s: mbuf %p has a send tag", __func__, m)); 1453 1454 m->m_pkthdr.csum_flags = 0; 1455 m->m_pkthdr.PH_per.sixtyfour[0] = 0; 1456 m->m_pkthdr.PH_loc.sixtyfour[0] = 0; 1457 } 1458 1459 static inline unsigned int 1460 calculate_padding(struct wg_packet *pkt) 1461 { 1462 unsigned int padded_size, last_unit = pkt->p_mbuf->m_pkthdr.len; 1463 1464 if (__predict_false(!pkt->p_mtu)) 1465 return (last_unit + (WG_PKT_PADDING - 1)) & ~(WG_PKT_PADDING - 1); 1466 1467 if (__predict_false(last_unit > pkt->p_mtu)) 1468 last_unit %= pkt->p_mtu; 1469 1470 padded_size = (last_unit + (WG_PKT_PADDING - 1)) & ~(WG_PKT_PADDING - 1); 1471 if (pkt->p_mtu < padded_size) 1472 padded_size = pkt->p_mtu; 1473 return padded_size - last_unit; 1474 } 1475 1476 static void 1477 wg_encrypt(struct wg_softc *sc, struct wg_packet *pkt) 1478 { 1479 static const uint8_t padding[WG_PKT_PADDING] = { 0 }; 1480 struct wg_pkt_data *data; 1481 struct wg_peer *peer; 1482 struct noise_remote *remote; 1483 struct mbuf *m; 1484 uint32_t idx; 1485 unsigned int padlen; 1486 enum wg_ring_state state = WG_PACKET_DEAD; 1487 1488 remote = noise_keypair_remote(pkt->p_keypair); 1489 peer = noise_remote_arg(remote); 1490 m = pkt->p_mbuf; 1491 1492 /* Pad the packet */ 1493 padlen = calculate_padding(pkt); 1494 if (padlen != 0 && !m_append(m, padlen, padding)) 1495 goto out; 1496 1497 /* Do encryption */ 1498 if (noise_keypair_encrypt(pkt->p_keypair, &idx, pkt->p_nonce, m) != 0) 1499 goto out; 1500 1501 /* Put header into packet */ 1502 M_PREPEND(m, sizeof(struct wg_pkt_data), M_NOWAIT); 1503 if (m == NULL) 1504 goto out; 1505 data = mtod(m, struct wg_pkt_data *); 1506 data->t = WG_PKT_DATA; 1507 data->r_idx = idx; 1508 data->nonce = htole64(pkt->p_nonce); 1509 1510 wg_mbuf_reset(m); 1511 state = WG_PACKET_CRYPTED; 1512 out: 1513 pkt->p_mbuf = m; 1514 wmb(); 1515 pkt->p_state = state; 1516 GROUPTASK_ENQUEUE(&peer->p_send); 1517 noise_remote_put(remote); 1518 } 1519 1520 static void 1521 wg_decrypt(struct wg_softc *sc, struct wg_packet *pkt) 1522 { 1523 struct wg_peer *peer, *allowed_peer; 1524 struct noise_remote *remote; 1525 struct mbuf *m; 1526 int len; 1527 enum wg_ring_state state = WG_PACKET_DEAD; 1528 1529 remote = noise_keypair_remote(pkt->p_keypair); 1530 peer = noise_remote_arg(remote); 1531 m = pkt->p_mbuf; 1532 1533 /* Read nonce and then adjust to remove the header. */ 1534 pkt->p_nonce = le64toh(mtod(m, struct wg_pkt_data *)->nonce); 1535 m_adj(m, sizeof(struct wg_pkt_data)); 1536 1537 if (noise_keypair_decrypt(pkt->p_keypair, pkt->p_nonce, m) != 0) 1538 goto out; 1539 1540 /* A packet with length 0 is a keepalive packet */ 1541 if (__predict_false(m->m_pkthdr.len == 0)) { 1542 DPRINTF(sc, "Receiving keepalive packet from peer " 1543 "%" PRIu64 "\n", peer->p_id); 1544 state = WG_PACKET_CRYPTED; 1545 goto out; 1546 } 1547 1548 /* 1549 * We can let the network stack handle the intricate validation of the 1550 * IP header, we just worry about the sizeof and the version, so we can 1551 * read the source address in wg_aip_lookup. 1552 */ 1553 1554 if (determine_af_and_pullup(&m, &pkt->p_af) == 0) { 1555 if (pkt->p_af == AF_INET) { 1556 struct ip *ip = mtod(m, struct ip *); 1557 allowed_peer = wg_aip_lookup(sc, AF_INET, &ip->ip_src); 1558 len = ntohs(ip->ip_len); 1559 if (len >= sizeof(struct ip) && len < m->m_pkthdr.len) 1560 m_adj(m, len - m->m_pkthdr.len); 1561 } else if (pkt->p_af == AF_INET6) { 1562 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); 1563 allowed_peer = wg_aip_lookup(sc, AF_INET6, &ip6->ip6_src); 1564 len = ntohs(ip6->ip6_plen) + sizeof(struct ip6_hdr); 1565 if (len < m->m_pkthdr.len) 1566 m_adj(m, len - m->m_pkthdr.len); 1567 } else 1568 panic("determine_af_and_pullup returned unexpected value"); 1569 } else { 1570 DPRINTF(sc, "Packet is neither ipv4 nor ipv6 from peer %" PRIu64 "\n", peer->p_id); 1571 goto out; 1572 } 1573 1574 /* We only want to compare the address, not dereference, so drop the ref. */ 1575 if (allowed_peer != NULL) 1576 noise_remote_put(allowed_peer->p_remote); 1577 1578 if (__predict_false(peer != allowed_peer)) { 1579 DPRINTF(sc, "Packet has unallowed src IP from peer %" PRIu64 "\n", peer->p_id); 1580 goto out; 1581 } 1582 1583 wg_mbuf_reset(m); 1584 state = WG_PACKET_CRYPTED; 1585 out: 1586 pkt->p_mbuf = m; 1587 wmb(); 1588 pkt->p_state = state; 1589 GROUPTASK_ENQUEUE(&peer->p_recv); 1590 noise_remote_put(remote); 1591 } 1592 1593 static void 1594 wg_softc_decrypt(struct wg_softc *sc) 1595 { 1596 struct wg_packet *pkt; 1597 1598 while ((pkt = wg_queue_dequeue_parallel(&sc->sc_decrypt_parallel)) != NULL) 1599 wg_decrypt(sc, pkt); 1600 } 1601 1602 static void 1603 wg_softc_encrypt(struct wg_softc *sc) 1604 { 1605 struct wg_packet *pkt; 1606 1607 while ((pkt = wg_queue_dequeue_parallel(&sc->sc_encrypt_parallel)) != NULL) 1608 wg_encrypt(sc, pkt); 1609 } 1610 1611 static void 1612 wg_encrypt_dispatch(struct wg_softc *sc) 1613 { 1614 /* 1615 * The update to encrypt_last_cpu is racey such that we may 1616 * reschedule the task for the same CPU multiple times, but 1617 * the race doesn't really matter. 1618 */ 1619 u_int cpu = (sc->sc_encrypt_last_cpu + 1) % mp_ncpus; 1620 sc->sc_encrypt_last_cpu = cpu; 1621 GROUPTASK_ENQUEUE(&sc->sc_encrypt[cpu]); 1622 } 1623 1624 static void 1625 wg_decrypt_dispatch(struct wg_softc *sc) 1626 { 1627 u_int cpu = (sc->sc_decrypt_last_cpu + 1) % mp_ncpus; 1628 sc->sc_decrypt_last_cpu = cpu; 1629 GROUPTASK_ENQUEUE(&sc->sc_decrypt[cpu]); 1630 } 1631 1632 static void 1633 wg_deliver_out(struct wg_peer *peer) 1634 { 1635 struct wg_endpoint endpoint; 1636 struct wg_softc *sc = peer->p_sc; 1637 struct wg_packet *pkt; 1638 struct mbuf *m; 1639 int rc, len; 1640 1641 wg_peer_get_endpoint(peer, &endpoint); 1642 1643 while ((pkt = wg_queue_dequeue_serial(&peer->p_encrypt_serial)) != NULL) { 1644 if (pkt->p_state != WG_PACKET_CRYPTED) 1645 goto error; 1646 1647 m = pkt->p_mbuf; 1648 pkt->p_mbuf = NULL; 1649 1650 len = m->m_pkthdr.len; 1651 1652 wg_timers_event_any_authenticated_packet_traversal(peer); 1653 wg_timers_event_any_authenticated_packet_sent(peer); 1654 rc = wg_send(sc, &endpoint, m); 1655 if (rc == 0) { 1656 if (len > (sizeof(struct wg_pkt_data) + NOISE_AUTHTAG_LEN)) 1657 wg_timers_event_data_sent(peer); 1658 counter_u64_add(peer->p_tx_bytes, len); 1659 } else if (rc == EADDRNOTAVAIL) { 1660 wg_peer_clear_src(peer); 1661 wg_peer_get_endpoint(peer, &endpoint); 1662 goto error; 1663 } else { 1664 goto error; 1665 } 1666 wg_packet_free(pkt); 1667 if (noise_keep_key_fresh_send(peer->p_remote)) 1668 wg_timers_event_want_initiation(peer); 1669 continue; 1670 error: 1671 if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); 1672 wg_packet_free(pkt); 1673 } 1674 } 1675 1676 static void 1677 wg_deliver_in(struct wg_peer *peer) 1678 { 1679 struct wg_softc *sc = peer->p_sc; 1680 if_t ifp = sc->sc_ifp; 1681 struct wg_packet *pkt; 1682 struct mbuf *m; 1683 struct epoch_tracker et; 1684 1685 while ((pkt = wg_queue_dequeue_serial(&peer->p_decrypt_serial)) != NULL) { 1686 if (pkt->p_state != WG_PACKET_CRYPTED) 1687 goto error; 1688 1689 m = pkt->p_mbuf; 1690 if (noise_keypair_nonce_check(pkt->p_keypair, pkt->p_nonce) != 0) 1691 goto error; 1692 1693 if (noise_keypair_received_with(pkt->p_keypair) == ECONNRESET) 1694 wg_timers_event_handshake_complete(peer); 1695 1696 wg_timers_event_any_authenticated_packet_received(peer); 1697 wg_timers_event_any_authenticated_packet_traversal(peer); 1698 wg_peer_set_endpoint(peer, &pkt->p_endpoint); 1699 1700 counter_u64_add(peer->p_rx_bytes, m->m_pkthdr.len + 1701 sizeof(struct wg_pkt_data) + NOISE_AUTHTAG_LEN); 1702 if_inc_counter(sc->sc_ifp, IFCOUNTER_IPACKETS, 1); 1703 if_inc_counter(sc->sc_ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len + 1704 sizeof(struct wg_pkt_data) + NOISE_AUTHTAG_LEN); 1705 1706 if (m->m_pkthdr.len == 0) 1707 goto done; 1708 1709 MPASS(pkt->p_af == AF_INET || pkt->p_af == AF_INET6); 1710 pkt->p_mbuf = NULL; 1711 1712 m->m_pkthdr.rcvif = ifp; 1713 1714 NET_EPOCH_ENTER(et); 1715 BPF_MTAP2_AF(ifp, m, pkt->p_af); 1716 1717 CURVNET_SET(if_getvnet(ifp)); 1718 M_SETFIB(m, if_getfib(ifp)); 1719 if (pkt->p_af == AF_INET) 1720 netisr_dispatch(NETISR_IP, m); 1721 if (pkt->p_af == AF_INET6) 1722 netisr_dispatch(NETISR_IPV6, m); 1723 CURVNET_RESTORE(); 1724 NET_EPOCH_EXIT(et); 1725 1726 wg_timers_event_data_received(peer); 1727 1728 done: 1729 if (noise_keep_key_fresh_recv(peer->p_remote)) 1730 wg_timers_event_want_initiation(peer); 1731 wg_packet_free(pkt); 1732 continue; 1733 error: 1734 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1735 wg_packet_free(pkt); 1736 } 1737 } 1738 1739 static struct wg_packet * 1740 wg_packet_alloc(struct mbuf *m) 1741 { 1742 struct wg_packet *pkt; 1743 1744 if ((pkt = uma_zalloc(wg_packet_zone, M_NOWAIT | M_ZERO)) == NULL) 1745 return (NULL); 1746 pkt->p_mbuf = m; 1747 return (pkt); 1748 } 1749 1750 static void 1751 wg_packet_free(struct wg_packet *pkt) 1752 { 1753 if (pkt->p_keypair != NULL) 1754 noise_keypair_put(pkt->p_keypair); 1755 if (pkt->p_mbuf != NULL) 1756 m_freem(pkt->p_mbuf); 1757 uma_zfree(wg_packet_zone, pkt); 1758 } 1759 1760 static void 1761 wg_queue_init(struct wg_queue *queue, const char *name) 1762 { 1763 mtx_init(&queue->q_mtx, name, NULL, MTX_DEF); 1764 STAILQ_INIT(&queue->q_queue); 1765 queue->q_len = 0; 1766 } 1767 1768 static void 1769 wg_queue_deinit(struct wg_queue *queue) 1770 { 1771 wg_queue_purge(queue); 1772 mtx_destroy(&queue->q_mtx); 1773 } 1774 1775 static size_t 1776 wg_queue_len(struct wg_queue *queue) 1777 { 1778 return (queue->q_len); 1779 } 1780 1781 static int 1782 wg_queue_enqueue_handshake(struct wg_queue *hs, struct wg_packet *pkt) 1783 { 1784 int ret = 0; 1785 mtx_lock(&hs->q_mtx); 1786 if (hs->q_len < MAX_QUEUED_HANDSHAKES) { 1787 STAILQ_INSERT_TAIL(&hs->q_queue, pkt, p_parallel); 1788 hs->q_len++; 1789 } else { 1790 ret = ENOBUFS; 1791 } 1792 mtx_unlock(&hs->q_mtx); 1793 if (ret != 0) 1794 wg_packet_free(pkt); 1795 return (ret); 1796 } 1797 1798 static struct wg_packet * 1799 wg_queue_dequeue_handshake(struct wg_queue *hs) 1800 { 1801 struct wg_packet *pkt; 1802 mtx_lock(&hs->q_mtx); 1803 if ((pkt = STAILQ_FIRST(&hs->q_queue)) != NULL) { 1804 STAILQ_REMOVE_HEAD(&hs->q_queue, p_parallel); 1805 hs->q_len--; 1806 } 1807 mtx_unlock(&hs->q_mtx); 1808 return (pkt); 1809 } 1810 1811 static void 1812 wg_queue_push_staged(struct wg_queue *staged, struct wg_packet *pkt) 1813 { 1814 struct wg_packet *old = NULL; 1815 1816 mtx_lock(&staged->q_mtx); 1817 if (staged->q_len >= MAX_STAGED_PKT) { 1818 old = STAILQ_FIRST(&staged->q_queue); 1819 STAILQ_REMOVE_HEAD(&staged->q_queue, p_parallel); 1820 staged->q_len--; 1821 } 1822 STAILQ_INSERT_TAIL(&staged->q_queue, pkt, p_parallel); 1823 staged->q_len++; 1824 mtx_unlock(&staged->q_mtx); 1825 1826 if (old != NULL) 1827 wg_packet_free(old); 1828 } 1829 1830 static void 1831 wg_queue_enlist_staged(struct wg_queue *staged, struct wg_packet_list *list) 1832 { 1833 struct wg_packet *pkt, *tpkt; 1834 STAILQ_FOREACH_SAFE(pkt, list, p_parallel, tpkt) 1835 wg_queue_push_staged(staged, pkt); 1836 } 1837 1838 static void 1839 wg_queue_delist_staged(struct wg_queue *staged, struct wg_packet_list *list) 1840 { 1841 STAILQ_INIT(list); 1842 mtx_lock(&staged->q_mtx); 1843 STAILQ_CONCAT(list, &staged->q_queue); 1844 staged->q_len = 0; 1845 mtx_unlock(&staged->q_mtx); 1846 } 1847 1848 static void 1849 wg_queue_purge(struct wg_queue *staged) 1850 { 1851 struct wg_packet_list list; 1852 struct wg_packet *pkt, *tpkt; 1853 wg_queue_delist_staged(staged, &list); 1854 STAILQ_FOREACH_SAFE(pkt, &list, p_parallel, tpkt) 1855 wg_packet_free(pkt); 1856 } 1857 1858 static int 1859 wg_queue_both(struct wg_queue *parallel, struct wg_queue *serial, struct wg_packet *pkt) 1860 { 1861 pkt->p_state = WG_PACKET_UNCRYPTED; 1862 1863 mtx_lock(&serial->q_mtx); 1864 if (serial->q_len < MAX_QUEUED_PKT) { 1865 serial->q_len++; 1866 STAILQ_INSERT_TAIL(&serial->q_queue, pkt, p_serial); 1867 } else { 1868 mtx_unlock(&serial->q_mtx); 1869 wg_packet_free(pkt); 1870 return (ENOBUFS); 1871 } 1872 mtx_unlock(&serial->q_mtx); 1873 1874 mtx_lock(¶llel->q_mtx); 1875 if (parallel->q_len < MAX_QUEUED_PKT) { 1876 parallel->q_len++; 1877 STAILQ_INSERT_TAIL(¶llel->q_queue, pkt, p_parallel); 1878 } else { 1879 mtx_unlock(¶llel->q_mtx); 1880 pkt->p_state = WG_PACKET_DEAD; 1881 return (ENOBUFS); 1882 } 1883 mtx_unlock(¶llel->q_mtx); 1884 1885 return (0); 1886 } 1887 1888 static struct wg_packet * 1889 wg_queue_dequeue_serial(struct wg_queue *serial) 1890 { 1891 struct wg_packet *pkt = NULL; 1892 mtx_lock(&serial->q_mtx); 1893 if (serial->q_len > 0 && STAILQ_FIRST(&serial->q_queue)->p_state != WG_PACKET_UNCRYPTED) { 1894 serial->q_len--; 1895 pkt = STAILQ_FIRST(&serial->q_queue); 1896 STAILQ_REMOVE_HEAD(&serial->q_queue, p_serial); 1897 } 1898 mtx_unlock(&serial->q_mtx); 1899 return (pkt); 1900 } 1901 1902 static struct wg_packet * 1903 wg_queue_dequeue_parallel(struct wg_queue *parallel) 1904 { 1905 struct wg_packet *pkt = NULL; 1906 mtx_lock(¶llel->q_mtx); 1907 if (parallel->q_len > 0) { 1908 parallel->q_len--; 1909 pkt = STAILQ_FIRST(¶llel->q_queue); 1910 STAILQ_REMOVE_HEAD(¶llel->q_queue, p_parallel); 1911 } 1912 mtx_unlock(¶llel->q_mtx); 1913 return (pkt); 1914 } 1915 1916 static bool 1917 wg_input(struct mbuf *m, int offset, struct inpcb *inpcb, 1918 const struct sockaddr *sa, void *_sc) 1919 { 1920 #ifdef INET 1921 const struct sockaddr_in *sin; 1922 #endif 1923 #ifdef INET6 1924 const struct sockaddr_in6 *sin6; 1925 #endif 1926 struct noise_remote *remote; 1927 struct wg_pkt_data *data; 1928 struct wg_packet *pkt; 1929 struct wg_peer *peer; 1930 struct wg_softc *sc = _sc; 1931 struct mbuf *defragged; 1932 1933 defragged = m_defrag(m, M_NOWAIT); 1934 if (defragged) 1935 m = defragged; 1936 m = m_unshare(m, M_NOWAIT); 1937 if (!m) { 1938 if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1); 1939 return true; 1940 } 1941 1942 /* Caller provided us with `sa`, no need for this header. */ 1943 m_adj(m, offset + sizeof(struct udphdr)); 1944 1945 /* Pullup enough to read packet type */ 1946 if ((m = m_pullup(m, sizeof(uint32_t))) == NULL) { 1947 if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1); 1948 return true; 1949 } 1950 1951 if ((pkt = wg_packet_alloc(m)) == NULL) { 1952 if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1); 1953 m_freem(m); 1954 return true; 1955 } 1956 1957 /* Save send/recv address and port for later. */ 1958 switch (sa->sa_family) { 1959 #ifdef INET 1960 case AF_INET: 1961 sin = (const struct sockaddr_in *)sa; 1962 pkt->p_endpoint.e_remote.r_sin = sin[0]; 1963 pkt->p_endpoint.e_local.l_in = sin[1].sin_addr; 1964 break; 1965 #endif 1966 #ifdef INET6 1967 case AF_INET6: 1968 sin6 = (const struct sockaddr_in6 *)sa; 1969 pkt->p_endpoint.e_remote.r_sin6 = sin6[0]; 1970 pkt->p_endpoint.e_local.l_in6 = sin6[1].sin6_addr; 1971 break; 1972 #endif 1973 default: 1974 goto error; 1975 } 1976 1977 if ((m->m_pkthdr.len == sizeof(struct wg_pkt_initiation) && 1978 *mtod(m, uint32_t *) == WG_PKT_INITIATION) || 1979 (m->m_pkthdr.len == sizeof(struct wg_pkt_response) && 1980 *mtod(m, uint32_t *) == WG_PKT_RESPONSE) || 1981 (m->m_pkthdr.len == sizeof(struct wg_pkt_cookie) && 1982 *mtod(m, uint32_t *) == WG_PKT_COOKIE)) { 1983 1984 if (wg_queue_enqueue_handshake(&sc->sc_handshake_queue, pkt) != 0) { 1985 if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1); 1986 DPRINTF(sc, "Dropping handshake packet\n"); 1987 } 1988 GROUPTASK_ENQUEUE(&sc->sc_handshake); 1989 } else if (m->m_pkthdr.len >= sizeof(struct wg_pkt_data) + 1990 NOISE_AUTHTAG_LEN && *mtod(m, uint32_t *) == WG_PKT_DATA) { 1991 1992 /* Pullup whole header to read r_idx below. */ 1993 if ((pkt->p_mbuf = m_pullup(m, sizeof(struct wg_pkt_data))) == NULL) 1994 goto error; 1995 1996 data = mtod(pkt->p_mbuf, struct wg_pkt_data *); 1997 if ((pkt->p_keypair = noise_keypair_lookup(sc->sc_local, data->r_idx)) == NULL) 1998 goto error; 1999 2000 remote = noise_keypair_remote(pkt->p_keypair); 2001 peer = noise_remote_arg(remote); 2002 if (wg_queue_both(&sc->sc_decrypt_parallel, &peer->p_decrypt_serial, pkt) != 0) 2003 if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1); 2004 wg_decrypt_dispatch(sc); 2005 noise_remote_put(remote); 2006 } else { 2007 goto error; 2008 } 2009 return true; 2010 error: 2011 if_inc_counter(sc->sc_ifp, IFCOUNTER_IERRORS, 1); 2012 wg_packet_free(pkt); 2013 return true; 2014 } 2015 2016 static void 2017 wg_peer_send_staged(struct wg_peer *peer) 2018 { 2019 struct wg_packet_list list; 2020 struct noise_keypair *keypair; 2021 struct wg_packet *pkt, *tpkt; 2022 struct wg_softc *sc = peer->p_sc; 2023 2024 wg_queue_delist_staged(&peer->p_stage_queue, &list); 2025 2026 if (STAILQ_EMPTY(&list)) 2027 return; 2028 2029 if ((keypair = noise_keypair_current(peer->p_remote)) == NULL) 2030 goto error; 2031 2032 STAILQ_FOREACH(pkt, &list, p_parallel) { 2033 if (noise_keypair_nonce_next(keypair, &pkt->p_nonce) != 0) 2034 goto error_keypair; 2035 } 2036 STAILQ_FOREACH_SAFE(pkt, &list, p_parallel, tpkt) { 2037 pkt->p_keypair = noise_keypair_ref(keypair); 2038 if (wg_queue_both(&sc->sc_encrypt_parallel, &peer->p_encrypt_serial, pkt) != 0) 2039 if_inc_counter(sc->sc_ifp, IFCOUNTER_OQDROPS, 1); 2040 } 2041 wg_encrypt_dispatch(sc); 2042 noise_keypair_put(keypair); 2043 return; 2044 2045 error_keypair: 2046 noise_keypair_put(keypair); 2047 error: 2048 wg_queue_enlist_staged(&peer->p_stage_queue, &list); 2049 wg_timers_event_want_initiation(peer); 2050 } 2051 2052 static inline void 2053 xmit_err(if_t ifp, struct mbuf *m, struct wg_packet *pkt, sa_family_t af) 2054 { 2055 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2056 switch (af) { 2057 #ifdef INET 2058 case AF_INET: 2059 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0); 2060 if (pkt) 2061 pkt->p_mbuf = NULL; 2062 m = NULL; 2063 break; 2064 #endif 2065 #ifdef INET6 2066 case AF_INET6: 2067 icmp6_error(m, ICMP6_DST_UNREACH, 0, 0); 2068 if (pkt) 2069 pkt->p_mbuf = NULL; 2070 m = NULL; 2071 break; 2072 #endif 2073 } 2074 if (pkt) 2075 wg_packet_free(pkt); 2076 else if (m) 2077 m_freem(m); 2078 } 2079 2080 static int 2081 wg_xmit(if_t ifp, struct mbuf *m, sa_family_t af, uint32_t mtu) 2082 { 2083 struct wg_packet *pkt = NULL; 2084 struct wg_softc *sc = if_getsoftc(ifp); 2085 struct wg_peer *peer; 2086 int rc = 0; 2087 sa_family_t peer_af; 2088 2089 /* Work around lifetime issue in the ipv6 mld code. */ 2090 if (__predict_false((if_getflags(ifp) & IFF_DYING) || !sc)) { 2091 rc = ENXIO; 2092 goto err_xmit; 2093 } 2094 2095 if ((pkt = wg_packet_alloc(m)) == NULL) { 2096 rc = ENOBUFS; 2097 goto err_xmit; 2098 } 2099 pkt->p_mtu = mtu; 2100 pkt->p_af = af; 2101 2102 if (af == AF_INET) { 2103 peer = wg_aip_lookup(sc, AF_INET, &mtod(m, struct ip *)->ip_dst); 2104 } else if (af == AF_INET6) { 2105 peer = wg_aip_lookup(sc, AF_INET6, &mtod(m, struct ip6_hdr *)->ip6_dst); 2106 } else { 2107 rc = EAFNOSUPPORT; 2108 goto err_xmit; 2109 } 2110 2111 BPF_MTAP2_AF(ifp, m, pkt->p_af); 2112 2113 if (__predict_false(peer == NULL)) { 2114 rc = ENOKEY; 2115 goto err_xmit; 2116 } 2117 2118 if (__predict_false(if_tunnel_check_nesting(ifp, m, MTAG_WGLOOP, MAX_LOOPS))) { 2119 DPRINTF(sc, "Packet looped"); 2120 rc = ELOOP; 2121 goto err_peer; 2122 } 2123 2124 peer_af = peer->p_endpoint.e_remote.r_sa.sa_family; 2125 if (__predict_false(peer_af != AF_INET && peer_af != AF_INET6)) { 2126 DPRINTF(sc, "No valid endpoint has been configured or " 2127 "discovered for peer %" PRIu64 "\n", peer->p_id); 2128 rc = EHOSTUNREACH; 2129 goto err_peer; 2130 } 2131 2132 wg_queue_push_staged(&peer->p_stage_queue, pkt); 2133 wg_peer_send_staged(peer); 2134 noise_remote_put(peer->p_remote); 2135 return (0); 2136 2137 err_peer: 2138 noise_remote_put(peer->p_remote); 2139 err_xmit: 2140 xmit_err(ifp, m, pkt, af); 2141 return (rc); 2142 } 2143 2144 static inline int 2145 determine_af_and_pullup(struct mbuf **m, sa_family_t *af) 2146 { 2147 u_char ipv; 2148 if ((*m)->m_pkthdr.len >= sizeof(struct ip6_hdr)) 2149 *m = m_pullup(*m, sizeof(struct ip6_hdr)); 2150 else if ((*m)->m_pkthdr.len >= sizeof(struct ip)) 2151 *m = m_pullup(*m, sizeof(struct ip)); 2152 else 2153 return (EAFNOSUPPORT); 2154 if (*m == NULL) 2155 return (ENOBUFS); 2156 ipv = mtod(*m, struct ip *)->ip_v; 2157 if (ipv == 4) 2158 *af = AF_INET; 2159 else if (ipv == 6 && (*m)->m_pkthdr.len >= sizeof(struct ip6_hdr)) 2160 *af = AF_INET6; 2161 else 2162 return (EAFNOSUPPORT); 2163 return (0); 2164 } 2165 2166 static int 2167 wg_transmit(if_t ifp, struct mbuf *m) 2168 { 2169 sa_family_t af; 2170 int ret; 2171 struct mbuf *defragged; 2172 2173 defragged = m_defrag(m, M_NOWAIT); 2174 if (defragged) 2175 m = defragged; 2176 m = m_unshare(m, M_NOWAIT); 2177 if (!m) { 2178 xmit_err(ifp, m, NULL, AF_UNSPEC); 2179 return (ENOBUFS); 2180 } 2181 2182 ret = determine_af_and_pullup(&m, &af); 2183 if (ret) { 2184 xmit_err(ifp, m, NULL, AF_UNSPEC); 2185 return (ret); 2186 } 2187 return (wg_xmit(ifp, m, af, if_getmtu(ifp))); 2188 } 2189 2190 static int 2191 wg_output(if_t ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) 2192 { 2193 sa_family_t parsed_af; 2194 uint32_t af, mtu; 2195 int ret; 2196 struct mbuf *defragged; 2197 2198 if (dst->sa_family == AF_UNSPEC) 2199 memcpy(&af, dst->sa_data, sizeof(af)); 2200 else 2201 af = dst->sa_family; 2202 if (af == AF_UNSPEC) { 2203 xmit_err(ifp, m, NULL, af); 2204 return (EAFNOSUPPORT); 2205 } 2206 2207 defragged = m_defrag(m, M_NOWAIT); 2208 if (defragged) 2209 m = defragged; 2210 m = m_unshare(m, M_NOWAIT); 2211 if (!m) { 2212 xmit_err(ifp, m, NULL, AF_UNSPEC); 2213 return (ENOBUFS); 2214 } 2215 2216 ret = determine_af_and_pullup(&m, &parsed_af); 2217 if (ret) { 2218 xmit_err(ifp, m, NULL, AF_UNSPEC); 2219 return (ret); 2220 } 2221 if (parsed_af != af) { 2222 xmit_err(ifp, m, NULL, AF_UNSPEC); 2223 return (EAFNOSUPPORT); 2224 } 2225 mtu = (ro != NULL && ro->ro_mtu > 0) ? ro->ro_mtu : if_getmtu(ifp); 2226 return (wg_xmit(ifp, m, parsed_af, mtu)); 2227 } 2228 2229 static int 2230 wg_peer_add(struct wg_softc *sc, const nvlist_t *nvl) 2231 { 2232 uint8_t public[WG_KEY_SIZE]; 2233 const void *pub_key, *preshared_key = NULL; 2234 const struct sockaddr *endpoint; 2235 int err; 2236 size_t size; 2237 struct noise_remote *remote; 2238 struct wg_peer *peer = NULL; 2239 bool need_insert = false; 2240 2241 sx_assert(&sc->sc_lock, SX_XLOCKED); 2242 2243 if (!nvlist_exists_binary(nvl, "public-key")) { 2244 return (EINVAL); 2245 } 2246 pub_key = nvlist_get_binary(nvl, "public-key", &size); 2247 if (size != WG_KEY_SIZE) { 2248 return (EINVAL); 2249 } 2250 if (noise_local_keys(sc->sc_local, public, NULL) == 0 && 2251 bcmp(public, pub_key, WG_KEY_SIZE) == 0) { 2252 return (0); // Silently ignored; not actually a failure. 2253 } 2254 if ((remote = noise_remote_lookup(sc->sc_local, pub_key)) != NULL) 2255 peer = noise_remote_arg(remote); 2256 if (nvlist_exists_bool(nvl, "remove") && 2257 nvlist_get_bool(nvl, "remove")) { 2258 if (remote != NULL) { 2259 wg_peer_destroy(peer); 2260 noise_remote_put(remote); 2261 } 2262 return (0); 2263 } 2264 if (nvlist_exists_bool(nvl, "replace-allowedips") && 2265 nvlist_get_bool(nvl, "replace-allowedips") && 2266 peer != NULL) { 2267 2268 wg_aip_remove_all(sc, peer); 2269 } 2270 if (peer == NULL) { 2271 peer = wg_peer_alloc(sc, pub_key); 2272 need_insert = true; 2273 } 2274 if (nvlist_exists_binary(nvl, "endpoint")) { 2275 endpoint = nvlist_get_binary(nvl, "endpoint", &size); 2276 if (size > sizeof(peer->p_endpoint.e_remote)) { 2277 err = EINVAL; 2278 goto out; 2279 } 2280 memcpy(&peer->p_endpoint.e_remote, endpoint, size); 2281 } 2282 if (nvlist_exists_binary(nvl, "preshared-key")) { 2283 preshared_key = nvlist_get_binary(nvl, "preshared-key", &size); 2284 if (size != WG_KEY_SIZE) { 2285 err = EINVAL; 2286 goto out; 2287 } 2288 noise_remote_set_psk(peer->p_remote, preshared_key); 2289 } 2290 if (nvlist_exists_number(nvl, "persistent-keepalive-interval")) { 2291 uint64_t pki = nvlist_get_number(nvl, "persistent-keepalive-interval"); 2292 if (pki > UINT16_MAX) { 2293 err = EINVAL; 2294 goto out; 2295 } 2296 wg_timers_set_persistent_keepalive(peer, pki); 2297 } 2298 if (nvlist_exists_nvlist_array(nvl, "allowed-ips")) { 2299 const void *addr; 2300 uint64_t cidr; 2301 const nvlist_t * const * aipl; 2302 size_t allowedip_count; 2303 2304 aipl = nvlist_get_nvlist_array(nvl, "allowed-ips", &allowedip_count); 2305 for (size_t idx = 0; idx < allowedip_count; idx++) { 2306 if (!nvlist_exists_number(aipl[idx], "cidr")) 2307 continue; 2308 cidr = nvlist_get_number(aipl[idx], "cidr"); 2309 if (nvlist_exists_binary(aipl[idx], "ipv4")) { 2310 addr = nvlist_get_binary(aipl[idx], "ipv4", &size); 2311 if (addr == NULL || cidr > 32 || size != sizeof(struct in_addr)) { 2312 err = EINVAL; 2313 goto out; 2314 } 2315 if ((err = wg_aip_add(sc, peer, AF_INET, addr, cidr)) != 0) 2316 goto out; 2317 } else if (nvlist_exists_binary(aipl[idx], "ipv6")) { 2318 addr = nvlist_get_binary(aipl[idx], "ipv6", &size); 2319 if (addr == NULL || cidr > 128 || size != sizeof(struct in6_addr)) { 2320 err = EINVAL; 2321 goto out; 2322 } 2323 if ((err = wg_aip_add(sc, peer, AF_INET6, addr, cidr)) != 0) 2324 goto out; 2325 } else { 2326 continue; 2327 } 2328 } 2329 } 2330 if (need_insert) { 2331 if ((err = noise_remote_enable(peer->p_remote)) != 0) 2332 goto out; 2333 TAILQ_INSERT_TAIL(&sc->sc_peers, peer, p_entry); 2334 sc->sc_peers_num++; 2335 if (if_getlinkstate(sc->sc_ifp) == LINK_STATE_UP) 2336 wg_timers_enable(peer); 2337 } 2338 if (remote != NULL) 2339 noise_remote_put(remote); 2340 return (0); 2341 out: 2342 if (need_insert) /* If we fail, only destroy if it was new. */ 2343 wg_peer_destroy(peer); 2344 if (remote != NULL) 2345 noise_remote_put(remote); 2346 return (err); 2347 } 2348 2349 static int 2350 wgc_set(struct wg_softc *sc, struct wg_data_io *wgd) 2351 { 2352 uint8_t public[WG_KEY_SIZE], private[WG_KEY_SIZE]; 2353 if_t ifp; 2354 void *nvlpacked; 2355 nvlist_t *nvl; 2356 ssize_t size; 2357 int err; 2358 2359 ifp = sc->sc_ifp; 2360 if (wgd->wgd_size == 0 || wgd->wgd_data == NULL) 2361 return (EFAULT); 2362 2363 /* Can nvlists be streamed in? It's not nice to impose arbitrary limits like that but 2364 * there needs to be _some_ limitation. */ 2365 if (wgd->wgd_size >= UINT32_MAX / 2) 2366 return (E2BIG); 2367 2368 nvlpacked = malloc(wgd->wgd_size, M_TEMP, M_WAITOK | M_ZERO); 2369 2370 err = copyin(wgd->wgd_data, nvlpacked, wgd->wgd_size); 2371 if (err) 2372 goto out; 2373 nvl = nvlist_unpack(nvlpacked, wgd->wgd_size, 0); 2374 if (nvl == NULL) { 2375 err = EBADMSG; 2376 goto out; 2377 } 2378 sx_xlock(&sc->sc_lock); 2379 if (nvlist_exists_bool(nvl, "replace-peers") && 2380 nvlist_get_bool(nvl, "replace-peers")) 2381 wg_peer_destroy_all(sc); 2382 if (nvlist_exists_number(nvl, "listen-port")) { 2383 uint64_t new_port = nvlist_get_number(nvl, "listen-port"); 2384 if (new_port > UINT16_MAX) { 2385 err = EINVAL; 2386 goto out_locked; 2387 } 2388 if (new_port != sc->sc_socket.so_port) { 2389 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2390 if ((err = wg_socket_init(sc, new_port)) != 0) 2391 goto out_locked; 2392 } else 2393 sc->sc_socket.so_port = new_port; 2394 } 2395 } 2396 if (nvlist_exists_binary(nvl, "private-key")) { 2397 const void *key = nvlist_get_binary(nvl, "private-key", &size); 2398 if (size != WG_KEY_SIZE) { 2399 err = EINVAL; 2400 goto out_locked; 2401 } 2402 2403 if (noise_local_keys(sc->sc_local, NULL, private) != 0 || 2404 timingsafe_bcmp(private, key, WG_KEY_SIZE) != 0) { 2405 struct wg_peer *peer; 2406 2407 if (curve25519_generate_public(public, key)) { 2408 /* Peer conflict: remove conflicting peer. */ 2409 struct noise_remote *remote; 2410 if ((remote = noise_remote_lookup(sc->sc_local, 2411 public)) != NULL) { 2412 peer = noise_remote_arg(remote); 2413 wg_peer_destroy(peer); 2414 noise_remote_put(remote); 2415 } 2416 } 2417 2418 /* 2419 * Set the private key and invalidate all existing 2420 * handshakes. 2421 */ 2422 /* Note: we might be removing the private key. */ 2423 noise_local_private(sc->sc_local, key); 2424 if (noise_local_keys(sc->sc_local, NULL, NULL) == 0) 2425 cookie_checker_update(&sc->sc_cookie, public); 2426 else 2427 cookie_checker_update(&sc->sc_cookie, NULL); 2428 } 2429 } 2430 if (nvlist_exists_number(nvl, "user-cookie")) { 2431 uint64_t user_cookie = nvlist_get_number(nvl, "user-cookie"); 2432 if (user_cookie > UINT32_MAX) { 2433 err = EINVAL; 2434 goto out_locked; 2435 } 2436 err = wg_socket_set_cookie(sc, user_cookie); 2437 if (err) 2438 goto out_locked; 2439 } 2440 if (nvlist_exists_nvlist_array(nvl, "peers")) { 2441 size_t peercount; 2442 const nvlist_t * const*nvl_peers; 2443 2444 nvl_peers = nvlist_get_nvlist_array(nvl, "peers", &peercount); 2445 for (int i = 0; i < peercount; i++) { 2446 err = wg_peer_add(sc, nvl_peers[i]); 2447 if (err != 0) 2448 goto out_locked; 2449 } 2450 } 2451 2452 out_locked: 2453 sx_xunlock(&sc->sc_lock); 2454 nvlist_destroy(nvl); 2455 out: 2456 zfree(nvlpacked, M_TEMP); 2457 return (err); 2458 } 2459 2460 static int 2461 wgc_get(struct wg_softc *sc, struct wg_data_io *wgd) 2462 { 2463 uint8_t public_key[WG_KEY_SIZE] = { 0 }; 2464 uint8_t private_key[WG_KEY_SIZE] = { 0 }; 2465 uint8_t preshared_key[NOISE_SYMMETRIC_KEY_LEN] = { 0 }; 2466 nvlist_t *nvl, *nvl_peer, *nvl_aip, **nvl_peers, **nvl_aips; 2467 size_t size, peer_count, aip_count, i, j; 2468 struct wg_timespec64 ts64; 2469 struct wg_peer *peer; 2470 struct wg_aip *aip; 2471 void *packed; 2472 int err = 0; 2473 2474 nvl = nvlist_create(0); 2475 if (!nvl) 2476 return (ENOMEM); 2477 2478 sx_slock(&sc->sc_lock); 2479 2480 if (sc->sc_socket.so_port != 0) 2481 nvlist_add_number(nvl, "listen-port", sc->sc_socket.so_port); 2482 if (sc->sc_socket.so_user_cookie != 0) 2483 nvlist_add_number(nvl, "user-cookie", sc->sc_socket.so_user_cookie); 2484 if (noise_local_keys(sc->sc_local, public_key, private_key) == 0) { 2485 nvlist_add_binary(nvl, "public-key", public_key, WG_KEY_SIZE); 2486 if (wgc_privileged(sc)) 2487 nvlist_add_binary(nvl, "private-key", private_key, WG_KEY_SIZE); 2488 explicit_bzero(private_key, sizeof(private_key)); 2489 } 2490 peer_count = sc->sc_peers_num; 2491 if (peer_count) { 2492 nvl_peers = mallocarray(peer_count, sizeof(void *), M_NVLIST, M_WAITOK | M_ZERO); 2493 i = 0; 2494 TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) { 2495 if (i >= peer_count) 2496 panic("peers changed from under us"); 2497 2498 nvl_peers[i++] = nvl_peer = nvlist_create(0); 2499 if (!nvl_peer) { 2500 err = ENOMEM; 2501 goto err_peer; 2502 } 2503 2504 (void)noise_remote_keys(peer->p_remote, public_key, preshared_key); 2505 nvlist_add_binary(nvl_peer, "public-key", public_key, sizeof(public_key)); 2506 if (wgc_privileged(sc)) 2507 nvlist_add_binary(nvl_peer, "preshared-key", preshared_key, sizeof(preshared_key)); 2508 explicit_bzero(preshared_key, sizeof(preshared_key)); 2509 if (peer->p_endpoint.e_remote.r_sa.sa_family == AF_INET) 2510 nvlist_add_binary(nvl_peer, "endpoint", &peer->p_endpoint.e_remote, sizeof(struct sockaddr_in)); 2511 else if (peer->p_endpoint.e_remote.r_sa.sa_family == AF_INET6) 2512 nvlist_add_binary(nvl_peer, "endpoint", &peer->p_endpoint.e_remote, sizeof(struct sockaddr_in6)); 2513 wg_timers_get_last_handshake(peer, &ts64); 2514 nvlist_add_binary(nvl_peer, "last-handshake-time", &ts64, sizeof(ts64)); 2515 nvlist_add_number(nvl_peer, "persistent-keepalive-interval", peer->p_persistent_keepalive_interval); 2516 nvlist_add_number(nvl_peer, "rx-bytes", counter_u64_fetch(peer->p_rx_bytes)); 2517 nvlist_add_number(nvl_peer, "tx-bytes", counter_u64_fetch(peer->p_tx_bytes)); 2518 2519 aip_count = peer->p_aips_num; 2520 if (aip_count) { 2521 nvl_aips = mallocarray(aip_count, sizeof(void *), M_NVLIST, M_WAITOK | M_ZERO); 2522 j = 0; 2523 LIST_FOREACH(aip, &peer->p_aips, a_entry) { 2524 if (j >= aip_count) 2525 panic("aips changed from under us"); 2526 2527 nvl_aips[j++] = nvl_aip = nvlist_create(0); 2528 if (!nvl_aip) { 2529 err = ENOMEM; 2530 goto err_aip; 2531 } 2532 if (aip->a_af == AF_INET) { 2533 nvlist_add_binary(nvl_aip, "ipv4", &aip->a_addr.in, sizeof(aip->a_addr.in)); 2534 nvlist_add_number(nvl_aip, "cidr", bitcount32(aip->a_mask.ip)); 2535 } 2536 #ifdef INET6 2537 else if (aip->a_af == AF_INET6) { 2538 nvlist_add_binary(nvl_aip, "ipv6", &aip->a_addr.in6, sizeof(aip->a_addr.in6)); 2539 nvlist_add_number(nvl_aip, "cidr", in6_mask2len(&aip->a_mask.in6, NULL)); 2540 } 2541 #endif 2542 } 2543 nvlist_add_nvlist_array(nvl_peer, "allowed-ips", (const nvlist_t *const *)nvl_aips, aip_count); 2544 err_aip: 2545 for (j = 0; j < aip_count; ++j) 2546 nvlist_destroy(nvl_aips[j]); 2547 free(nvl_aips, M_NVLIST); 2548 if (err) 2549 goto err_peer; 2550 } 2551 } 2552 nvlist_add_nvlist_array(nvl, "peers", (const nvlist_t * const *)nvl_peers, peer_count); 2553 err_peer: 2554 for (i = 0; i < peer_count; ++i) 2555 nvlist_destroy(nvl_peers[i]); 2556 free(nvl_peers, M_NVLIST); 2557 if (err) { 2558 sx_sunlock(&sc->sc_lock); 2559 goto err; 2560 } 2561 } 2562 sx_sunlock(&sc->sc_lock); 2563 packed = nvlist_pack(nvl, &size); 2564 if (!packed) { 2565 err = ENOMEM; 2566 goto err; 2567 } 2568 if (!wgd->wgd_size) { 2569 wgd->wgd_size = size; 2570 goto out; 2571 } 2572 if (wgd->wgd_size < size) { 2573 err = ENOSPC; 2574 goto out; 2575 } 2576 err = copyout(packed, wgd->wgd_data, size); 2577 wgd->wgd_size = size; 2578 2579 out: 2580 zfree(packed, M_NVLIST); 2581 err: 2582 nvlist_destroy(nvl); 2583 return (err); 2584 } 2585 2586 static int 2587 wg_ioctl(if_t ifp, u_long cmd, caddr_t data) 2588 { 2589 struct wg_data_io *wgd = (struct wg_data_io *)data; 2590 struct ifreq *ifr = (struct ifreq *)data; 2591 struct wg_softc *sc; 2592 int ret = 0; 2593 2594 sx_slock(&wg_sx); 2595 sc = if_getsoftc(ifp); 2596 if (!sc) { 2597 ret = ENXIO; 2598 goto out; 2599 } 2600 2601 switch (cmd) { 2602 case SIOCSWG: 2603 ret = priv_check(curthread, PRIV_NET_WG); 2604 if (ret == 0) 2605 ret = wgc_set(sc, wgd); 2606 break; 2607 case SIOCGWG: 2608 ret = wgc_get(sc, wgd); 2609 break; 2610 /* Interface IOCTLs */ 2611 case SIOCSIFADDR: 2612 /* 2613 * This differs from *BSD norms, but is more uniform with how 2614 * WireGuard behaves elsewhere. 2615 */ 2616 break; 2617 case SIOCSIFFLAGS: 2618 if (if_getflags(ifp) & IFF_UP) 2619 ret = wg_up(sc); 2620 else 2621 wg_down(sc); 2622 break; 2623 case SIOCSIFMTU: 2624 if (ifr->ifr_mtu <= 0 || ifr->ifr_mtu > MAX_MTU) 2625 ret = EINVAL; 2626 else 2627 if_setmtu(ifp, ifr->ifr_mtu); 2628 break; 2629 case SIOCADDMULTI: 2630 case SIOCDELMULTI: 2631 break; 2632 case SIOCGTUNFIB: 2633 ifr->ifr_fib = sc->sc_socket.so_fibnum; 2634 break; 2635 case SIOCSTUNFIB: 2636 ret = priv_check(curthread, PRIV_NET_WG); 2637 if (ret) 2638 break; 2639 ret = priv_check(curthread, PRIV_NET_SETIFFIB); 2640 if (ret) 2641 break; 2642 sx_xlock(&sc->sc_lock); 2643 ret = wg_socket_set_fibnum(sc, ifr->ifr_fib); 2644 sx_xunlock(&sc->sc_lock); 2645 break; 2646 default: 2647 ret = ENOTTY; 2648 } 2649 2650 out: 2651 sx_sunlock(&wg_sx); 2652 return (ret); 2653 } 2654 2655 static int 2656 wg_up(struct wg_softc *sc) 2657 { 2658 if_t ifp = sc->sc_ifp; 2659 struct wg_peer *peer; 2660 int rc = EBUSY; 2661 2662 sx_xlock(&sc->sc_lock); 2663 /* Jail's being removed, no more wg_up(). */ 2664 if ((sc->sc_flags & WGF_DYING) != 0) 2665 goto out; 2666 2667 /* Silent success if we're already running. */ 2668 rc = 0; 2669 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2670 goto out; 2671 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 2672 2673 rc = wg_socket_init(sc, sc->sc_socket.so_port); 2674 if (rc == 0) { 2675 TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) 2676 wg_timers_enable(peer); 2677 if_link_state_change(sc->sc_ifp, LINK_STATE_UP); 2678 } else { 2679 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2680 DPRINTF(sc, "Unable to initialize sockets: %d\n", rc); 2681 } 2682 out: 2683 sx_xunlock(&sc->sc_lock); 2684 return (rc); 2685 } 2686 2687 static void 2688 wg_down(struct wg_softc *sc) 2689 { 2690 if_t ifp = sc->sc_ifp; 2691 struct wg_peer *peer; 2692 2693 sx_xlock(&sc->sc_lock); 2694 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 2695 sx_xunlock(&sc->sc_lock); 2696 return; 2697 } 2698 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2699 2700 TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) { 2701 wg_queue_purge(&peer->p_stage_queue); 2702 wg_timers_disable(peer); 2703 } 2704 2705 wg_queue_purge(&sc->sc_handshake_queue); 2706 2707 TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) { 2708 noise_remote_handshake_clear(peer->p_remote); 2709 noise_remote_keypairs_clear(peer->p_remote); 2710 } 2711 2712 if_link_state_change(sc->sc_ifp, LINK_STATE_DOWN); 2713 wg_socket_uninit(sc); 2714 2715 sx_xunlock(&sc->sc_lock); 2716 } 2717 2718 static int 2719 wg_clone_create(struct if_clone *ifc, char *name, size_t len, 2720 struct ifc_data *ifd, struct ifnet **ifpp) 2721 { 2722 struct wg_softc *sc; 2723 if_t ifp; 2724 2725 sc = malloc(sizeof(*sc), M_WG, M_WAITOK | M_ZERO); 2726 2727 sc->sc_local = noise_local_alloc(sc); 2728 2729 sc->sc_encrypt = mallocarray(sizeof(struct grouptask), mp_ncpus, M_WG, M_WAITOK | M_ZERO); 2730 2731 sc->sc_decrypt = mallocarray(sizeof(struct grouptask), mp_ncpus, M_WG, M_WAITOK | M_ZERO); 2732 2733 if (!rn_inithead((void **)&sc->sc_aip4, offsetof(struct aip_addr, in) * NBBY)) 2734 goto free_decrypt; 2735 2736 if (!rn_inithead((void **)&sc->sc_aip6, offsetof(struct aip_addr, in6) * NBBY)) 2737 goto free_aip4; 2738 2739 atomic_add_int(&clone_count, 1); 2740 ifp = sc->sc_ifp = if_alloc(IFT_WIREGUARD); 2741 2742 sc->sc_ucred = crhold(curthread->td_ucred); 2743 sc->sc_socket.so_fibnum = curthread->td_proc->p_fibnum; 2744 sc->sc_socket.so_port = 0; 2745 2746 TAILQ_INIT(&sc->sc_peers); 2747 sc->sc_peers_num = 0; 2748 2749 cookie_checker_init(&sc->sc_cookie); 2750 2751 RADIX_NODE_HEAD_LOCK_INIT(sc->sc_aip4); 2752 RADIX_NODE_HEAD_LOCK_INIT(sc->sc_aip6); 2753 2754 GROUPTASK_INIT(&sc->sc_handshake, 0, (gtask_fn_t *)wg_softc_handshake_receive, sc); 2755 taskqgroup_attach(qgroup_wg_tqg, &sc->sc_handshake, sc, NULL, NULL, "wg tx initiation"); 2756 wg_queue_init(&sc->sc_handshake_queue, "hsq"); 2757 2758 for (int i = 0; i < mp_ncpus; i++) { 2759 GROUPTASK_INIT(&sc->sc_encrypt[i], 0, 2760 (gtask_fn_t *)wg_softc_encrypt, sc); 2761 taskqgroup_attach_cpu(qgroup_wg_tqg, &sc->sc_encrypt[i], sc, i, NULL, NULL, "wg encrypt"); 2762 GROUPTASK_INIT(&sc->sc_decrypt[i], 0, 2763 (gtask_fn_t *)wg_softc_decrypt, sc); 2764 taskqgroup_attach_cpu(qgroup_wg_tqg, &sc->sc_decrypt[i], sc, i, NULL, NULL, "wg decrypt"); 2765 } 2766 2767 wg_queue_init(&sc->sc_encrypt_parallel, "encp"); 2768 wg_queue_init(&sc->sc_decrypt_parallel, "decp"); 2769 2770 sx_init(&sc->sc_lock, "wg softc lock"); 2771 2772 if_setsoftc(ifp, sc); 2773 if_setcapabilities(ifp, WG_CAPS); 2774 if_setcapenable(ifp, WG_CAPS); 2775 if_initname(ifp, wgname, ifd->unit); 2776 2777 if_setmtu(ifp, DEFAULT_MTU); 2778 if_setflags(ifp, IFF_NOARP | IFF_MULTICAST); 2779 if_setinitfn(ifp, wg_init); 2780 if_setreassignfn(ifp, wg_reassign); 2781 if_setqflushfn(ifp, wg_qflush); 2782 if_settransmitfn(ifp, wg_transmit); 2783 if_setoutputfn(ifp, wg_output); 2784 if_setioctlfn(ifp, wg_ioctl); 2785 if_attach(ifp); 2786 bpfattach(ifp, DLT_NULL, sizeof(uint32_t)); 2787 #ifdef INET6 2788 ND_IFINFO(ifp)->flags &= ~ND6_IFF_AUTO_LINKLOCAL; 2789 ND_IFINFO(ifp)->flags |= ND6_IFF_NO_DAD; 2790 #endif 2791 sx_xlock(&wg_sx); 2792 LIST_INSERT_HEAD(&wg_list, sc, sc_entry); 2793 sx_xunlock(&wg_sx); 2794 *ifpp = ifp; 2795 return (0); 2796 free_aip4: 2797 RADIX_NODE_HEAD_DESTROY(sc->sc_aip4); 2798 free(sc->sc_aip4, M_RTABLE); 2799 free_decrypt: 2800 free(sc->sc_decrypt, M_WG); 2801 free(sc->sc_encrypt, M_WG); 2802 noise_local_free(sc->sc_local, NULL); 2803 free(sc, M_WG); 2804 return (ENOMEM); 2805 } 2806 2807 static void 2808 wg_clone_deferred_free(struct noise_local *l) 2809 { 2810 struct wg_softc *sc = noise_local_arg(l); 2811 2812 free(sc, M_WG); 2813 atomic_add_int(&clone_count, -1); 2814 } 2815 2816 static int 2817 wg_clone_destroy(struct if_clone *ifc, if_t ifp, uint32_t flags) 2818 { 2819 struct wg_softc *sc = if_getsoftc(ifp); 2820 struct ucred *cred; 2821 2822 sx_xlock(&wg_sx); 2823 if_setsoftc(ifp, NULL); 2824 sx_xlock(&sc->sc_lock); 2825 sc->sc_flags |= WGF_DYING; 2826 cred = sc->sc_ucred; 2827 sc->sc_ucred = NULL; 2828 sx_xunlock(&sc->sc_lock); 2829 LIST_REMOVE(sc, sc_entry); 2830 sx_xunlock(&wg_sx); 2831 2832 if_link_state_change(sc->sc_ifp, LINK_STATE_DOWN); 2833 CURVNET_SET(if_getvnet(sc->sc_ifp)); 2834 if_purgeaddrs(sc->sc_ifp); 2835 CURVNET_RESTORE(); 2836 2837 sx_xlock(&sc->sc_lock); 2838 wg_socket_uninit(sc); 2839 sx_xunlock(&sc->sc_lock); 2840 2841 /* 2842 * No guarantees that all traffic have passed until the epoch has 2843 * elapsed with the socket closed. 2844 */ 2845 NET_EPOCH_WAIT(); 2846 2847 taskqgroup_drain_all(qgroup_wg_tqg); 2848 sx_xlock(&sc->sc_lock); 2849 wg_peer_destroy_all(sc); 2850 NET_EPOCH_DRAIN_CALLBACKS(); 2851 sx_xunlock(&sc->sc_lock); 2852 sx_destroy(&sc->sc_lock); 2853 taskqgroup_detach(qgroup_wg_tqg, &sc->sc_handshake); 2854 for (int i = 0; i < mp_ncpus; i++) { 2855 taskqgroup_detach(qgroup_wg_tqg, &sc->sc_encrypt[i]); 2856 taskqgroup_detach(qgroup_wg_tqg, &sc->sc_decrypt[i]); 2857 } 2858 free(sc->sc_encrypt, M_WG); 2859 free(sc->sc_decrypt, M_WG); 2860 wg_queue_deinit(&sc->sc_handshake_queue); 2861 wg_queue_deinit(&sc->sc_encrypt_parallel); 2862 wg_queue_deinit(&sc->sc_decrypt_parallel); 2863 2864 RADIX_NODE_HEAD_DESTROY(sc->sc_aip4); 2865 RADIX_NODE_HEAD_DESTROY(sc->sc_aip6); 2866 rn_detachhead((void **)&sc->sc_aip4); 2867 rn_detachhead((void **)&sc->sc_aip6); 2868 2869 cookie_checker_free(&sc->sc_cookie); 2870 2871 if (cred != NULL) 2872 crfree(cred); 2873 if_detach(sc->sc_ifp); 2874 if_free(sc->sc_ifp); 2875 2876 noise_local_free(sc->sc_local, wg_clone_deferred_free); 2877 2878 return (0); 2879 } 2880 2881 static void 2882 wg_qflush(if_t ifp __unused) 2883 { 2884 } 2885 2886 /* 2887 * Privileged information (private-key, preshared-key) are only exported for 2888 * root and jailed root by default. 2889 */ 2890 static bool 2891 wgc_privileged(struct wg_softc *sc) 2892 { 2893 struct thread *td; 2894 2895 td = curthread; 2896 return (priv_check(td, PRIV_NET_WG) == 0); 2897 } 2898 2899 static void 2900 wg_reassign(if_t ifp, struct vnet *new_vnet __unused, 2901 char *unused __unused) 2902 { 2903 struct wg_softc *sc; 2904 2905 sc = if_getsoftc(ifp); 2906 wg_down(sc); 2907 } 2908 2909 static void 2910 wg_init(void *xsc) 2911 { 2912 struct wg_softc *sc; 2913 2914 sc = xsc; 2915 wg_up(sc); 2916 } 2917 2918 static void 2919 vnet_wg_init(const void *unused __unused) 2920 { 2921 struct if_clone_addreq req = { 2922 .create_f = wg_clone_create, 2923 .destroy_f = wg_clone_destroy, 2924 .flags = IFC_F_AUTOUNIT, 2925 }; 2926 V_wg_cloner = ifc_attach_cloner(wgname, &req); 2927 } 2928 VNET_SYSINIT(vnet_wg_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 2929 vnet_wg_init, NULL); 2930 2931 static void 2932 vnet_wg_uninit(const void *unused __unused) 2933 { 2934 if (V_wg_cloner) 2935 ifc_detach_cloner(V_wg_cloner); 2936 } 2937 VNET_SYSUNINIT(vnet_wg_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 2938 vnet_wg_uninit, NULL); 2939 2940 static int 2941 wg_prison_remove(void *obj, void *data __unused) 2942 { 2943 const struct prison *pr = obj; 2944 struct wg_softc *sc; 2945 2946 /* 2947 * Do a pass through all if_wg interfaces and release creds on any from 2948 * the jail that are supposed to be going away. This will, in turn, let 2949 * the jail die so that we don't end up with Schrödinger's jail. 2950 */ 2951 sx_slock(&wg_sx); 2952 LIST_FOREACH(sc, &wg_list, sc_entry) { 2953 sx_xlock(&sc->sc_lock); 2954 if (!(sc->sc_flags & WGF_DYING) && sc->sc_ucred && sc->sc_ucred->cr_prison == pr) { 2955 struct ucred *cred = sc->sc_ucred; 2956 DPRINTF(sc, "Creating jail exiting\n"); 2957 if_link_state_change(sc->sc_ifp, LINK_STATE_DOWN); 2958 wg_socket_uninit(sc); 2959 sc->sc_ucred = NULL; 2960 crfree(cred); 2961 sc->sc_flags |= WGF_DYING; 2962 } 2963 sx_xunlock(&sc->sc_lock); 2964 } 2965 sx_sunlock(&wg_sx); 2966 2967 return (0); 2968 } 2969 2970 #ifdef SELFTESTS 2971 #include "selftest/allowedips.c" 2972 static bool wg_run_selftests(void) 2973 { 2974 bool ret = true; 2975 ret &= wg_allowedips_selftest(); 2976 ret &= noise_counter_selftest(); 2977 ret &= cookie_selftest(); 2978 return ret; 2979 } 2980 #else 2981 static inline bool wg_run_selftests(void) { return true; } 2982 #endif 2983 2984 static int 2985 wg_module_init(void) 2986 { 2987 int ret; 2988 osd_method_t methods[PR_MAXMETHOD] = { 2989 [PR_METHOD_REMOVE] = wg_prison_remove, 2990 }; 2991 2992 if ((wg_packet_zone = uma_zcreate("wg packet", sizeof(struct wg_packet), 2993 NULL, NULL, NULL, NULL, 0, 0)) == NULL) 2994 return (ENOMEM); 2995 ret = crypto_init(); 2996 if (ret != 0) 2997 return (ret); 2998 ret = cookie_init(); 2999 if (ret != 0) 3000 return (ret); 3001 3002 wg_osd_jail_slot = osd_jail_register(NULL, methods); 3003 3004 if (!wg_run_selftests()) 3005 return (ENOTRECOVERABLE); 3006 3007 return (0); 3008 } 3009 3010 static void 3011 wg_module_deinit(void) 3012 { 3013 VNET_ITERATOR_DECL(vnet_iter); 3014 VNET_LIST_RLOCK(); 3015 VNET_FOREACH(vnet_iter) { 3016 struct if_clone *clone = VNET_VNET(vnet_iter, wg_cloner); 3017 if (clone) { 3018 ifc_detach_cloner(clone); 3019 VNET_VNET(vnet_iter, wg_cloner) = NULL; 3020 } 3021 } 3022 VNET_LIST_RUNLOCK(); 3023 NET_EPOCH_WAIT(); 3024 MPASS(LIST_EMPTY(&wg_list)); 3025 if (wg_osd_jail_slot != 0) 3026 osd_jail_deregister(wg_osd_jail_slot); 3027 cookie_deinit(); 3028 crypto_deinit(); 3029 if (wg_packet_zone != NULL) 3030 uma_zdestroy(wg_packet_zone); 3031 } 3032 3033 static int 3034 wg_module_event_handler(module_t mod, int what, void *arg) 3035 { 3036 switch (what) { 3037 case MOD_LOAD: 3038 return wg_module_init(); 3039 case MOD_UNLOAD: 3040 wg_module_deinit(); 3041 break; 3042 default: 3043 return (EOPNOTSUPP); 3044 } 3045 return (0); 3046 } 3047 3048 static moduledata_t wg_moduledata = { 3049 "if_wg", 3050 wg_module_event_handler, 3051 NULL 3052 }; 3053 3054 DECLARE_MODULE(if_wg, wg_moduledata, SI_SUB_PSEUDO, SI_ORDER_ANY); 3055 MODULE_VERSION(if_wg, WIREGUARD_VERSION); 3056 MODULE_DEPEND(if_wg, crypto, 1, 1, 1); 3057