1 /* SPDX-License-Identifier: ISC 2 * 3 * Copyright (C) 2015-2021 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright (C) 2019-2021 Matt Dunwoodie <ncon@noconroy.net> 5 * Copyright (c) 2019-2020 Rubicon Communications, LLC (Netgate) 6 * Copyright (c) 2021 Kyle Evans <kevans@FreeBSD.org> 7 * Copyright (c) 2022 The FreeBSD Foundation 8 */ 9 10 #include "opt_inet.h" 11 #include "opt_inet6.h" 12 13 #include <sys/param.h> 14 #include <sys/systm.h> 15 #include <sys/counter.h> 16 #include <sys/gtaskqueue.h> 17 #include <sys/jail.h> 18 #include <sys/kernel.h> 19 #include <sys/lock.h> 20 #include <sys/mbuf.h> 21 #include <sys/module.h> 22 #include <sys/nv.h> 23 #include <sys/priv.h> 24 #include <sys/protosw.h> 25 #include <sys/rmlock.h> 26 #include <sys/rwlock.h> 27 #include <sys/smp.h> 28 #include <sys/socket.h> 29 #include <sys/socketvar.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/sx.h> 33 #include <machine/_inttypes.h> 34 #include <net/bpf.h> 35 #include <net/ethernet.h> 36 #include <net/if.h> 37 #include <net/if_clone.h> 38 #include <net/if_types.h> 39 #include <net/if_var.h> 40 #include <net/netisr.h> 41 #include <net/radix.h> 42 #include <netinet/in.h> 43 #include <netinet6/in6_var.h> 44 #include <netinet/ip.h> 45 #include <netinet/ip6.h> 46 #include <netinet/ip_icmp.h> 47 #include <netinet/icmp6.h> 48 #include <netinet/udp_var.h> 49 #include <netinet6/nd6.h> 50 51 #include "wg_noise.h" 52 #include "wg_cookie.h" 53 #include "version.h" 54 #include "if_wg.h" 55 56 #define DEFAULT_MTU (ETHERMTU - 80) 57 #define MAX_MTU (IF_MAXMTU - 80) 58 59 #define MAX_STAGED_PKT 128 60 #define MAX_QUEUED_PKT 1024 61 #define MAX_QUEUED_PKT_MASK (MAX_QUEUED_PKT - 1) 62 63 #define MAX_QUEUED_HANDSHAKES 4096 64 65 #define REKEY_TIMEOUT_JITTER 334 /* 1/3 sec, round for arc4random_uniform */ 66 #define MAX_TIMER_HANDSHAKES (90 / REKEY_TIMEOUT) 67 #define NEW_HANDSHAKE_TIMEOUT (REKEY_TIMEOUT + KEEPALIVE_TIMEOUT) 68 #define UNDERLOAD_TIMEOUT 1 69 70 #define DPRINTF(sc, ...) if (if_getflags(sc->sc_ifp) & IFF_DEBUG) if_printf(sc->sc_ifp, ##__VA_ARGS__) 71 72 /* First byte indicating packet type on the wire */ 73 #define WG_PKT_INITIATION htole32(1) 74 #define WG_PKT_RESPONSE htole32(2) 75 #define WG_PKT_COOKIE htole32(3) 76 #define WG_PKT_DATA htole32(4) 77 78 #define WG_PKT_PADDING 16 79 #define WG_KEY_SIZE 32 80 81 struct wg_pkt_initiation { 82 uint32_t t; 83 uint32_t s_idx; 84 uint8_t ue[NOISE_PUBLIC_KEY_LEN]; 85 uint8_t es[NOISE_PUBLIC_KEY_LEN + NOISE_AUTHTAG_LEN]; 86 uint8_t ets[NOISE_TIMESTAMP_LEN + NOISE_AUTHTAG_LEN]; 87 struct cookie_macs m; 88 }; 89 90 struct wg_pkt_response { 91 uint32_t t; 92 uint32_t s_idx; 93 uint32_t r_idx; 94 uint8_t ue[NOISE_PUBLIC_KEY_LEN]; 95 uint8_t en[0 + NOISE_AUTHTAG_LEN]; 96 struct cookie_macs m; 97 }; 98 99 struct wg_pkt_cookie { 100 uint32_t t; 101 uint32_t r_idx; 102 uint8_t nonce[COOKIE_NONCE_SIZE]; 103 uint8_t ec[COOKIE_ENCRYPTED_SIZE]; 104 }; 105 106 struct wg_pkt_data { 107 uint32_t t; 108 uint32_t r_idx; 109 uint64_t nonce; 110 uint8_t buf[]; 111 }; 112 113 struct wg_endpoint { 114 union { 115 struct sockaddr r_sa; 116 struct sockaddr_in r_sin; 117 #ifdef INET6 118 struct sockaddr_in6 r_sin6; 119 #endif 120 } e_remote; 121 union { 122 struct in_addr l_in; 123 #ifdef INET6 124 struct in6_pktinfo l_pktinfo6; 125 #define l_in6 l_pktinfo6.ipi6_addr 126 #endif 127 } e_local; 128 }; 129 130 struct aip_addr { 131 uint8_t length; 132 union { 133 uint8_t bytes[16]; 134 uint32_t ip; 135 uint32_t ip6[4]; 136 struct in_addr in; 137 struct in6_addr in6; 138 }; 139 }; 140 141 struct wg_aip { 142 struct radix_node a_nodes[2]; 143 LIST_ENTRY(wg_aip) a_entry; 144 struct aip_addr a_addr; 145 struct aip_addr a_mask; 146 struct wg_peer *a_peer; 147 sa_family_t a_af; 148 }; 149 150 struct wg_packet { 151 STAILQ_ENTRY(wg_packet) p_serial; 152 STAILQ_ENTRY(wg_packet) p_parallel; 153 struct wg_endpoint p_endpoint; 154 struct noise_keypair *p_keypair; 155 uint64_t p_nonce; 156 struct mbuf *p_mbuf; 157 int p_mtu; 158 sa_family_t p_af; 159 enum wg_ring_state { 160 WG_PACKET_UNCRYPTED, 161 WG_PACKET_CRYPTED, 162 WG_PACKET_DEAD, 163 } p_state; 164 }; 165 166 STAILQ_HEAD(wg_packet_list, wg_packet); 167 168 struct wg_queue { 169 struct mtx q_mtx; 170 struct wg_packet_list q_queue; 171 size_t q_len; 172 }; 173 174 struct wg_peer { 175 TAILQ_ENTRY(wg_peer) p_entry; 176 uint64_t p_id; 177 struct wg_softc *p_sc; 178 179 struct noise_remote *p_remote; 180 struct cookie_maker p_cookie; 181 182 struct rwlock p_endpoint_lock; 183 struct wg_endpoint p_endpoint; 184 185 struct wg_queue p_stage_queue; 186 struct wg_queue p_encrypt_serial; 187 struct wg_queue p_decrypt_serial; 188 189 bool p_enabled; 190 bool p_need_another_keepalive; 191 uint16_t p_persistent_keepalive_interval; 192 struct callout p_new_handshake; 193 struct callout p_send_keepalive; 194 struct callout p_retry_handshake; 195 struct callout p_zero_key_material; 196 struct callout p_persistent_keepalive; 197 198 struct mtx p_handshake_mtx; 199 struct timespec p_handshake_complete; /* nanotime */ 200 int p_handshake_retries; 201 202 struct grouptask p_send; 203 struct grouptask p_recv; 204 205 counter_u64_t p_tx_bytes; 206 counter_u64_t p_rx_bytes; 207 208 LIST_HEAD(, wg_aip) p_aips; 209 size_t p_aips_num; 210 }; 211 212 struct wg_socket { 213 struct socket *so_so4; 214 struct socket *so_so6; 215 uint32_t so_user_cookie; 216 int so_fibnum; 217 in_port_t so_port; 218 }; 219 220 struct wg_softc { 221 LIST_ENTRY(wg_softc) sc_entry; 222 if_t sc_ifp; 223 int sc_flags; 224 225 struct ucred *sc_ucred; 226 struct wg_socket sc_socket; 227 228 TAILQ_HEAD(,wg_peer) sc_peers; 229 size_t sc_peers_num; 230 231 struct noise_local *sc_local; 232 struct cookie_checker sc_cookie; 233 234 struct radix_node_head *sc_aip4; 235 struct radix_node_head *sc_aip6; 236 237 struct grouptask sc_handshake; 238 struct wg_queue sc_handshake_queue; 239 240 struct grouptask *sc_encrypt; 241 struct grouptask *sc_decrypt; 242 struct wg_queue sc_encrypt_parallel; 243 struct wg_queue sc_decrypt_parallel; 244 u_int sc_encrypt_last_cpu; 245 u_int sc_decrypt_last_cpu; 246 247 struct sx sc_lock; 248 }; 249 250 #define WGF_DYING 0x0001 251 252 #define MAX_LOOPS 8 253 #define MTAG_WGLOOP 0x77676c70 /* wglp */ 254 #ifndef ENOKEY 255 #define ENOKEY ENOTCAPABLE 256 #endif 257 258 #define GROUPTASK_DRAIN(gtask) \ 259 gtaskqueue_drain((gtask)->gt_taskqueue, &(gtask)->gt_task) 260 261 #define BPF_MTAP2_AF(ifp, m, af) do { \ 262 uint32_t __bpf_tap_af = (af); \ 263 BPF_MTAP2(ifp, &__bpf_tap_af, sizeof(__bpf_tap_af), m); \ 264 } while (0) 265 266 static int clone_count; 267 static uma_zone_t wg_packet_zone; 268 static volatile unsigned long peer_counter = 0; 269 static const char wgname[] = "wg"; 270 static unsigned wg_osd_jail_slot; 271 272 static struct sx wg_sx; 273 SX_SYSINIT(wg_sx, &wg_sx, "wg_sx"); 274 275 static LIST_HEAD(, wg_softc) wg_list = LIST_HEAD_INITIALIZER(wg_list); 276 277 static TASKQGROUP_DEFINE(wg_tqg, mp_ncpus, 1); 278 279 MALLOC_DEFINE(M_WG, "WG", "wireguard"); 280 281 VNET_DEFINE_STATIC(struct if_clone *, wg_cloner); 282 283 #define V_wg_cloner VNET(wg_cloner) 284 #define WG_CAPS IFCAP_LINKSTATE 285 286 struct wg_timespec64 { 287 uint64_t tv_sec; 288 uint64_t tv_nsec; 289 }; 290 291 static int wg_socket_init(struct wg_softc *, in_port_t); 292 static int wg_socket_bind(struct socket **, struct socket **, in_port_t *); 293 static void wg_socket_set(struct wg_softc *, struct socket *, struct socket *); 294 static void wg_socket_uninit(struct wg_softc *); 295 static int wg_socket_set_sockopt(struct socket *, struct socket *, int, void *, size_t); 296 static int wg_socket_set_cookie(struct wg_softc *, uint32_t); 297 static int wg_socket_set_fibnum(struct wg_softc *, int); 298 static int wg_send(struct wg_softc *, struct wg_endpoint *, struct mbuf *); 299 static void wg_timers_enable(struct wg_peer *); 300 static void wg_timers_disable(struct wg_peer *); 301 static void wg_timers_set_persistent_keepalive(struct wg_peer *, uint16_t); 302 static void wg_timers_get_last_handshake(struct wg_peer *, struct wg_timespec64 *); 303 static void wg_timers_event_data_sent(struct wg_peer *); 304 static void wg_timers_event_data_received(struct wg_peer *); 305 static void wg_timers_event_any_authenticated_packet_sent(struct wg_peer *); 306 static void wg_timers_event_any_authenticated_packet_received(struct wg_peer *); 307 static void wg_timers_event_any_authenticated_packet_traversal(struct wg_peer *); 308 static void wg_timers_event_handshake_initiated(struct wg_peer *); 309 static void wg_timers_event_handshake_complete(struct wg_peer *); 310 static void wg_timers_event_session_derived(struct wg_peer *); 311 static void wg_timers_event_want_initiation(struct wg_peer *); 312 static void wg_timers_run_send_initiation(struct wg_peer *, bool); 313 static void wg_timers_run_retry_handshake(void *); 314 static void wg_timers_run_send_keepalive(void *); 315 static void wg_timers_run_new_handshake(void *); 316 static void wg_timers_run_zero_key_material(void *); 317 static void wg_timers_run_persistent_keepalive(void *); 318 static int wg_aip_add(struct wg_softc *, struct wg_peer *, sa_family_t, const void *, uint8_t); 319 static struct wg_peer *wg_aip_lookup(struct wg_softc *, sa_family_t, void *); 320 static void wg_aip_remove_all(struct wg_softc *, struct wg_peer *); 321 static struct wg_peer *wg_peer_alloc(struct wg_softc *, const uint8_t [WG_KEY_SIZE]); 322 static void wg_peer_free_deferred(struct noise_remote *); 323 static void wg_peer_destroy(struct wg_peer *); 324 static void wg_peer_destroy_all(struct wg_softc *); 325 static void wg_peer_send_buf(struct wg_peer *, uint8_t *, size_t); 326 static void wg_send_initiation(struct wg_peer *); 327 static void wg_send_response(struct wg_peer *); 328 static void wg_send_cookie(struct wg_softc *, struct cookie_macs *, uint32_t, struct wg_endpoint *); 329 static void wg_peer_set_endpoint(struct wg_peer *, struct wg_endpoint *); 330 static void wg_peer_clear_src(struct wg_peer *); 331 static void wg_peer_get_endpoint(struct wg_peer *, struct wg_endpoint *); 332 static void wg_send_buf(struct wg_softc *, struct wg_endpoint *, uint8_t *, size_t); 333 static void wg_send_keepalive(struct wg_peer *); 334 static void wg_handshake(struct wg_softc *, struct wg_packet *); 335 static void wg_encrypt(struct wg_softc *, struct wg_packet *); 336 static void wg_decrypt(struct wg_softc *, struct wg_packet *); 337 static void wg_softc_handshake_receive(struct wg_softc *); 338 static void wg_softc_decrypt(struct wg_softc *); 339 static void wg_softc_encrypt(struct wg_softc *); 340 static void wg_encrypt_dispatch(struct wg_softc *); 341 static void wg_decrypt_dispatch(struct wg_softc *); 342 static void wg_deliver_out(struct wg_peer *); 343 static void wg_deliver_in(struct wg_peer *); 344 static struct wg_packet *wg_packet_alloc(struct mbuf *); 345 static void wg_packet_free(struct wg_packet *); 346 static void wg_queue_init(struct wg_queue *, const char *); 347 static void wg_queue_deinit(struct wg_queue *); 348 static size_t wg_queue_len(struct wg_queue *); 349 static int wg_queue_enqueue_handshake(struct wg_queue *, struct wg_packet *); 350 static struct wg_packet *wg_queue_dequeue_handshake(struct wg_queue *); 351 static void wg_queue_push_staged(struct wg_queue *, struct wg_packet *); 352 static void wg_queue_enlist_staged(struct wg_queue *, struct wg_packet_list *); 353 static void wg_queue_delist_staged(struct wg_queue *, struct wg_packet_list *); 354 static void wg_queue_purge(struct wg_queue *); 355 static int wg_queue_both(struct wg_queue *, struct wg_queue *, struct wg_packet *); 356 static struct wg_packet *wg_queue_dequeue_serial(struct wg_queue *); 357 static struct wg_packet *wg_queue_dequeue_parallel(struct wg_queue *); 358 static bool wg_input(struct mbuf *, int, struct inpcb *, const struct sockaddr *, void *); 359 static void wg_peer_send_staged(struct wg_peer *); 360 static int wg_clone_create(struct if_clone *ifc, char *name, size_t len, 361 struct ifc_data *ifd, if_t *ifpp); 362 static void wg_qflush(if_t); 363 static inline int determine_af_and_pullup(struct mbuf **m, sa_family_t *af); 364 static int wg_xmit(if_t, struct mbuf *, sa_family_t, uint32_t); 365 static int wg_transmit(if_t, struct mbuf *); 366 static int wg_output(if_t, struct mbuf *, const struct sockaddr *, struct route *); 367 static int wg_clone_destroy(struct if_clone *ifc, if_t ifp, 368 uint32_t flags); 369 static bool wgc_privileged(struct wg_softc *); 370 static int wgc_get(struct wg_softc *, struct wg_data_io *); 371 static int wgc_set(struct wg_softc *, struct wg_data_io *); 372 static int wg_up(struct wg_softc *); 373 static void wg_down(struct wg_softc *); 374 static void wg_reassign(if_t, struct vnet *, char *unused); 375 static void wg_init(void *); 376 static int wg_ioctl(if_t, u_long, caddr_t); 377 static void vnet_wg_init(const void *); 378 static void vnet_wg_uninit(const void *); 379 static int wg_module_init(void); 380 static void wg_module_deinit(void); 381 382 /* TODO Peer */ 383 static struct wg_peer * 384 wg_peer_alloc(struct wg_softc *sc, const uint8_t pub_key[WG_KEY_SIZE]) 385 { 386 struct wg_peer *peer; 387 388 sx_assert(&sc->sc_lock, SX_XLOCKED); 389 390 peer = malloc(sizeof(*peer), M_WG, M_WAITOK | M_ZERO); 391 peer->p_remote = noise_remote_alloc(sc->sc_local, peer, pub_key); 392 peer->p_tx_bytes = counter_u64_alloc(M_WAITOK); 393 peer->p_rx_bytes = counter_u64_alloc(M_WAITOK); 394 peer->p_id = peer_counter++; 395 peer->p_sc = sc; 396 397 cookie_maker_init(&peer->p_cookie, pub_key); 398 399 rw_init(&peer->p_endpoint_lock, "wg_peer_endpoint"); 400 401 wg_queue_init(&peer->p_stage_queue, "stageq"); 402 wg_queue_init(&peer->p_encrypt_serial, "txq"); 403 wg_queue_init(&peer->p_decrypt_serial, "rxq"); 404 405 peer->p_enabled = false; 406 peer->p_need_another_keepalive = false; 407 peer->p_persistent_keepalive_interval = 0; 408 callout_init(&peer->p_new_handshake, true); 409 callout_init(&peer->p_send_keepalive, true); 410 callout_init(&peer->p_retry_handshake, true); 411 callout_init(&peer->p_persistent_keepalive, true); 412 callout_init(&peer->p_zero_key_material, true); 413 414 mtx_init(&peer->p_handshake_mtx, "peer handshake", NULL, MTX_DEF); 415 bzero(&peer->p_handshake_complete, sizeof(peer->p_handshake_complete)); 416 peer->p_handshake_retries = 0; 417 418 GROUPTASK_INIT(&peer->p_send, 0, (gtask_fn_t *)wg_deliver_out, peer); 419 taskqgroup_attach(qgroup_wg_tqg, &peer->p_send, peer, NULL, NULL, "wg send"); 420 GROUPTASK_INIT(&peer->p_recv, 0, (gtask_fn_t *)wg_deliver_in, peer); 421 taskqgroup_attach(qgroup_wg_tqg, &peer->p_recv, peer, NULL, NULL, "wg recv"); 422 423 LIST_INIT(&peer->p_aips); 424 peer->p_aips_num = 0; 425 426 return (peer); 427 } 428 429 static void 430 wg_peer_free_deferred(struct noise_remote *r) 431 { 432 struct wg_peer *peer = noise_remote_arg(r); 433 434 /* While there are no references remaining, we may still have 435 * p_{send,recv} executing (think empty queue, but wg_deliver_{in,out} 436 * needs to check the queue. We should wait for them and then free. */ 437 GROUPTASK_DRAIN(&peer->p_recv); 438 GROUPTASK_DRAIN(&peer->p_send); 439 taskqgroup_detach(qgroup_wg_tqg, &peer->p_recv); 440 taskqgroup_detach(qgroup_wg_tqg, &peer->p_send); 441 442 wg_queue_deinit(&peer->p_decrypt_serial); 443 wg_queue_deinit(&peer->p_encrypt_serial); 444 wg_queue_deinit(&peer->p_stage_queue); 445 446 counter_u64_free(peer->p_tx_bytes); 447 counter_u64_free(peer->p_rx_bytes); 448 rw_destroy(&peer->p_endpoint_lock); 449 mtx_destroy(&peer->p_handshake_mtx); 450 451 cookie_maker_free(&peer->p_cookie); 452 453 free(peer, M_WG); 454 } 455 456 static void 457 wg_peer_destroy(struct wg_peer *peer) 458 { 459 struct wg_softc *sc = peer->p_sc; 460 sx_assert(&sc->sc_lock, SX_XLOCKED); 461 462 /* Disable remote and timers. This will prevent any new handshakes 463 * occuring. */ 464 noise_remote_disable(peer->p_remote); 465 wg_timers_disable(peer); 466 467 /* Now we can remove all allowed IPs so no more packets will be routed 468 * to the peer. */ 469 wg_aip_remove_all(sc, peer); 470 471 /* Remove peer from the interface, then free. Some references may still 472 * exist to p_remote, so noise_remote_free will wait until they're all 473 * put to call wg_peer_free_deferred. */ 474 sc->sc_peers_num--; 475 TAILQ_REMOVE(&sc->sc_peers, peer, p_entry); 476 DPRINTF(sc, "Peer %" PRIu64 " destroyed\n", peer->p_id); 477 noise_remote_free(peer->p_remote, wg_peer_free_deferred); 478 } 479 480 static void 481 wg_peer_destroy_all(struct wg_softc *sc) 482 { 483 struct wg_peer *peer, *tpeer; 484 TAILQ_FOREACH_SAFE(peer, &sc->sc_peers, p_entry, tpeer) 485 wg_peer_destroy(peer); 486 } 487 488 static void 489 wg_peer_set_endpoint(struct wg_peer *peer, struct wg_endpoint *e) 490 { 491 MPASS(e->e_remote.r_sa.sa_family != 0); 492 if (memcmp(e, &peer->p_endpoint, sizeof(*e)) == 0) 493 return; 494 495 rw_wlock(&peer->p_endpoint_lock); 496 peer->p_endpoint = *e; 497 rw_wunlock(&peer->p_endpoint_lock); 498 } 499 500 static void 501 wg_peer_clear_src(struct wg_peer *peer) 502 { 503 rw_wlock(&peer->p_endpoint_lock); 504 bzero(&peer->p_endpoint.e_local, sizeof(peer->p_endpoint.e_local)); 505 rw_wunlock(&peer->p_endpoint_lock); 506 } 507 508 static void 509 wg_peer_get_endpoint(struct wg_peer *peer, struct wg_endpoint *e) 510 { 511 rw_rlock(&peer->p_endpoint_lock); 512 *e = peer->p_endpoint; 513 rw_runlock(&peer->p_endpoint_lock); 514 } 515 516 /* Allowed IP */ 517 static int 518 wg_aip_add(struct wg_softc *sc, struct wg_peer *peer, sa_family_t af, const void *addr, uint8_t cidr) 519 { 520 struct radix_node_head *root; 521 struct radix_node *node; 522 struct wg_aip *aip; 523 int ret = 0; 524 525 aip = malloc(sizeof(*aip), M_WG, M_WAITOK | M_ZERO); 526 aip->a_peer = peer; 527 aip->a_af = af; 528 529 switch (af) { 530 #ifdef INET 531 case AF_INET: 532 if (cidr > 32) cidr = 32; 533 root = sc->sc_aip4; 534 aip->a_addr.in = *(const struct in_addr *)addr; 535 aip->a_mask.ip = htonl(~((1LL << (32 - cidr)) - 1) & 0xffffffff); 536 aip->a_addr.ip &= aip->a_mask.ip; 537 aip->a_addr.length = aip->a_mask.length = offsetof(struct aip_addr, in) + sizeof(struct in_addr); 538 break; 539 #endif 540 #ifdef INET6 541 case AF_INET6: 542 if (cidr > 128) cidr = 128; 543 root = sc->sc_aip6; 544 aip->a_addr.in6 = *(const struct in6_addr *)addr; 545 in6_prefixlen2mask(&aip->a_mask.in6, cidr); 546 for (int i = 0; i < 4; i++) 547 aip->a_addr.ip6[i] &= aip->a_mask.ip6[i]; 548 aip->a_addr.length = aip->a_mask.length = offsetof(struct aip_addr, in6) + sizeof(struct in6_addr); 549 break; 550 #endif 551 default: 552 free(aip, M_WG); 553 return (EAFNOSUPPORT); 554 } 555 556 RADIX_NODE_HEAD_LOCK(root); 557 node = root->rnh_addaddr(&aip->a_addr, &aip->a_mask, &root->rh, aip->a_nodes); 558 if (node == aip->a_nodes) { 559 LIST_INSERT_HEAD(&peer->p_aips, aip, a_entry); 560 peer->p_aips_num++; 561 } else if (!node) 562 node = root->rnh_lookup(&aip->a_addr, &aip->a_mask, &root->rh); 563 if (!node) { 564 free(aip, M_WG); 565 ret = ENOMEM; 566 } else if (node != aip->a_nodes) { 567 free(aip, M_WG); 568 aip = (struct wg_aip *)node; 569 if (aip->a_peer != peer) { 570 LIST_REMOVE(aip, a_entry); 571 aip->a_peer->p_aips_num--; 572 aip->a_peer = peer; 573 LIST_INSERT_HEAD(&peer->p_aips, aip, a_entry); 574 aip->a_peer->p_aips_num++; 575 } 576 } 577 RADIX_NODE_HEAD_UNLOCK(root); 578 return (ret); 579 } 580 581 static struct wg_peer * 582 wg_aip_lookup(struct wg_softc *sc, sa_family_t af, void *a) 583 { 584 struct radix_node_head *root; 585 struct radix_node *node; 586 struct wg_peer *peer; 587 struct aip_addr addr; 588 RADIX_NODE_HEAD_RLOCK_TRACKER; 589 590 switch (af) { 591 case AF_INET: 592 root = sc->sc_aip4; 593 memcpy(&addr.in, a, sizeof(addr.in)); 594 addr.length = offsetof(struct aip_addr, in) + sizeof(struct in_addr); 595 break; 596 case AF_INET6: 597 root = sc->sc_aip6; 598 memcpy(&addr.in6, a, sizeof(addr.in6)); 599 addr.length = offsetof(struct aip_addr, in6) + sizeof(struct in6_addr); 600 break; 601 default: 602 return NULL; 603 } 604 605 RADIX_NODE_HEAD_RLOCK(root); 606 node = root->rnh_matchaddr(&addr, &root->rh); 607 if (node != NULL) { 608 peer = ((struct wg_aip *)node)->a_peer; 609 noise_remote_ref(peer->p_remote); 610 } else { 611 peer = NULL; 612 } 613 RADIX_NODE_HEAD_RUNLOCK(root); 614 615 return (peer); 616 } 617 618 static void 619 wg_aip_remove_all(struct wg_softc *sc, struct wg_peer *peer) 620 { 621 struct wg_aip *aip, *taip; 622 623 RADIX_NODE_HEAD_LOCK(sc->sc_aip4); 624 LIST_FOREACH_SAFE(aip, &peer->p_aips, a_entry, taip) { 625 if (aip->a_af == AF_INET) { 626 if (sc->sc_aip4->rnh_deladdr(&aip->a_addr, &aip->a_mask, &sc->sc_aip4->rh) == NULL) 627 panic("failed to delete aip %p", aip); 628 LIST_REMOVE(aip, a_entry); 629 peer->p_aips_num--; 630 free(aip, M_WG); 631 } 632 } 633 RADIX_NODE_HEAD_UNLOCK(sc->sc_aip4); 634 635 RADIX_NODE_HEAD_LOCK(sc->sc_aip6); 636 LIST_FOREACH_SAFE(aip, &peer->p_aips, a_entry, taip) { 637 if (aip->a_af == AF_INET6) { 638 if (sc->sc_aip6->rnh_deladdr(&aip->a_addr, &aip->a_mask, &sc->sc_aip6->rh) == NULL) 639 panic("failed to delete aip %p", aip); 640 LIST_REMOVE(aip, a_entry); 641 peer->p_aips_num--; 642 free(aip, M_WG); 643 } 644 } 645 RADIX_NODE_HEAD_UNLOCK(sc->sc_aip6); 646 647 if (!LIST_EMPTY(&peer->p_aips) || peer->p_aips_num != 0) 648 panic("wg_aip_remove_all could not delete all %p", peer); 649 } 650 651 static int 652 wg_socket_init(struct wg_softc *sc, in_port_t port) 653 { 654 struct ucred *cred = sc->sc_ucred; 655 struct socket *so4 = NULL, *so6 = NULL; 656 int rc; 657 658 sx_assert(&sc->sc_lock, SX_XLOCKED); 659 660 if (!cred) 661 return (EBUSY); 662 663 /* 664 * For socket creation, we use the creds of the thread that created the 665 * tunnel rather than the current thread to maintain the semantics that 666 * WireGuard has on Linux with network namespaces -- that the sockets 667 * are created in their home vnet so that they can be configured and 668 * functionally attached to a foreign vnet as the jail's only interface 669 * to the network. 670 */ 671 #ifdef INET 672 rc = socreate(AF_INET, &so4, SOCK_DGRAM, IPPROTO_UDP, cred, curthread); 673 if (rc) 674 goto out; 675 676 rc = udp_set_kernel_tunneling(so4, wg_input, NULL, sc); 677 /* 678 * udp_set_kernel_tunneling can only fail if there is already a tunneling function set. 679 * This should never happen with a new socket. 680 */ 681 MPASS(rc == 0); 682 #endif 683 684 #ifdef INET6 685 rc = socreate(AF_INET6, &so6, SOCK_DGRAM, IPPROTO_UDP, cred, curthread); 686 if (rc) 687 goto out; 688 rc = udp_set_kernel_tunneling(so6, wg_input, NULL, sc); 689 MPASS(rc == 0); 690 #endif 691 692 if (sc->sc_socket.so_user_cookie) { 693 rc = wg_socket_set_sockopt(so4, so6, SO_USER_COOKIE, &sc->sc_socket.so_user_cookie, sizeof(sc->sc_socket.so_user_cookie)); 694 if (rc) 695 goto out; 696 } 697 rc = wg_socket_set_sockopt(so4, so6, SO_SETFIB, &sc->sc_socket.so_fibnum, sizeof(sc->sc_socket.so_fibnum)); 698 if (rc) 699 goto out; 700 701 rc = wg_socket_bind(&so4, &so6, &port); 702 if (!rc) { 703 sc->sc_socket.so_port = port; 704 wg_socket_set(sc, so4, so6); 705 } 706 out: 707 if (rc) { 708 if (so4 != NULL) 709 soclose(so4); 710 if (so6 != NULL) 711 soclose(so6); 712 } 713 return (rc); 714 } 715 716 static int wg_socket_set_sockopt(struct socket *so4, struct socket *so6, int name, void *val, size_t len) 717 { 718 int ret4 = 0, ret6 = 0; 719 struct sockopt sopt = { 720 .sopt_dir = SOPT_SET, 721 .sopt_level = SOL_SOCKET, 722 .sopt_name = name, 723 .sopt_val = val, 724 .sopt_valsize = len 725 }; 726 727 if (so4) 728 ret4 = sosetopt(so4, &sopt); 729 if (so6) 730 ret6 = sosetopt(so6, &sopt); 731 return (ret4 ?: ret6); 732 } 733 734 static int wg_socket_set_cookie(struct wg_softc *sc, uint32_t user_cookie) 735 { 736 struct wg_socket *so = &sc->sc_socket; 737 int ret; 738 739 sx_assert(&sc->sc_lock, SX_XLOCKED); 740 ret = wg_socket_set_sockopt(so->so_so4, so->so_so6, SO_USER_COOKIE, &user_cookie, sizeof(user_cookie)); 741 if (!ret) 742 so->so_user_cookie = user_cookie; 743 return (ret); 744 } 745 746 static int wg_socket_set_fibnum(struct wg_softc *sc, int fibnum) 747 { 748 struct wg_socket *so = &sc->sc_socket; 749 int ret; 750 751 sx_assert(&sc->sc_lock, SX_XLOCKED); 752 753 ret = wg_socket_set_sockopt(so->so_so4, so->so_so6, SO_SETFIB, &fibnum, sizeof(fibnum)); 754 if (!ret) 755 so->so_fibnum = fibnum; 756 return (ret); 757 } 758 759 static void 760 wg_socket_uninit(struct wg_softc *sc) 761 { 762 wg_socket_set(sc, NULL, NULL); 763 } 764 765 static void 766 wg_socket_set(struct wg_softc *sc, struct socket *new_so4, struct socket *new_so6) 767 { 768 struct wg_socket *so = &sc->sc_socket; 769 struct socket *so4, *so6; 770 771 sx_assert(&sc->sc_lock, SX_XLOCKED); 772 773 so4 = atomic_load_ptr(&so->so_so4); 774 so6 = atomic_load_ptr(&so->so_so6); 775 atomic_store_ptr(&so->so_so4, new_so4); 776 atomic_store_ptr(&so->so_so6, new_so6); 777 778 if (!so4 && !so6) 779 return; 780 NET_EPOCH_WAIT(); 781 if (so4) 782 soclose(so4); 783 if (so6) 784 soclose(so6); 785 } 786 787 static int 788 wg_socket_bind(struct socket **in_so4, struct socket **in_so6, in_port_t *requested_port) 789 { 790 struct socket *so4 = *in_so4, *so6 = *in_so6; 791 int ret4 = 0, ret6 = 0; 792 in_port_t port = *requested_port; 793 struct sockaddr_in sin = { 794 .sin_len = sizeof(struct sockaddr_in), 795 .sin_family = AF_INET, 796 .sin_port = htons(port) 797 }; 798 struct sockaddr_in6 sin6 = { 799 .sin6_len = sizeof(struct sockaddr_in6), 800 .sin6_family = AF_INET6, 801 .sin6_port = htons(port) 802 }; 803 804 if (so4) { 805 ret4 = sobind(so4, (struct sockaddr *)&sin, curthread); 806 if (ret4 && ret4 != EADDRNOTAVAIL) 807 return (ret4); 808 if (!ret4 && !sin.sin_port) { 809 struct sockaddr_in bound_sin = 810 { .sin_len = sizeof(bound_sin) }; 811 int ret; 812 813 ret = sosockaddr(so4, (struct sockaddr *)&bound_sin); 814 if (ret) 815 return (ret); 816 port = ntohs(bound_sin.sin_port); 817 sin6.sin6_port = bound_sin.sin_port; 818 } 819 } 820 821 if (so6) { 822 ret6 = sobind(so6, (struct sockaddr *)&sin6, curthread); 823 if (ret6 && ret6 != EADDRNOTAVAIL) 824 return (ret6); 825 if (!ret6 && !sin6.sin6_port) { 826 struct sockaddr_in6 bound_sin6 = 827 { .sin6_len = sizeof(bound_sin6) }; 828 int ret; 829 830 ret = sosockaddr(so6, (struct sockaddr *)&bound_sin6); 831 if (ret) 832 return (ret); 833 port = ntohs(bound_sin6.sin6_port); 834 } 835 } 836 837 if (ret4 && ret6) 838 return (ret4); 839 *requested_port = port; 840 if (ret4 && !ret6 && so4) { 841 soclose(so4); 842 *in_so4 = NULL; 843 } else if (ret6 && !ret4 && so6) { 844 soclose(so6); 845 *in_so6 = NULL; 846 } 847 return (0); 848 } 849 850 static int 851 wg_send(struct wg_softc *sc, struct wg_endpoint *e, struct mbuf *m) 852 { 853 struct epoch_tracker et; 854 struct sockaddr *sa; 855 struct wg_socket *so = &sc->sc_socket; 856 struct socket *so4, *so6; 857 struct mbuf *control = NULL; 858 int ret = 0; 859 size_t len = m->m_pkthdr.len; 860 861 /* Get local control address before locking */ 862 if (e->e_remote.r_sa.sa_family == AF_INET) { 863 if (e->e_local.l_in.s_addr != INADDR_ANY) 864 control = sbcreatecontrol((caddr_t)&e->e_local.l_in, 865 sizeof(struct in_addr), IP_SENDSRCADDR, 866 IPPROTO_IP, M_NOWAIT); 867 #ifdef INET6 868 } else if (e->e_remote.r_sa.sa_family == AF_INET6) { 869 if (!IN6_IS_ADDR_UNSPECIFIED(&e->e_local.l_in6)) 870 control = sbcreatecontrol((caddr_t)&e->e_local.l_pktinfo6, 871 sizeof(struct in6_pktinfo), IPV6_PKTINFO, 872 IPPROTO_IPV6, M_NOWAIT); 873 #endif 874 } else { 875 m_freem(m); 876 return (EAFNOSUPPORT); 877 } 878 879 /* Get remote address */ 880 sa = &e->e_remote.r_sa; 881 882 NET_EPOCH_ENTER(et); 883 so4 = atomic_load_ptr(&so->so_so4); 884 so6 = atomic_load_ptr(&so->so_so6); 885 if (e->e_remote.r_sa.sa_family == AF_INET && so4 != NULL) 886 ret = sosend(so4, sa, NULL, m, control, 0, curthread); 887 else if (e->e_remote.r_sa.sa_family == AF_INET6 && so6 != NULL) 888 ret = sosend(so6, sa, NULL, m, control, 0, curthread); 889 else { 890 ret = ENOTCONN; 891 m_freem(control); 892 m_freem(m); 893 } 894 NET_EPOCH_EXIT(et); 895 if (ret == 0) { 896 if_inc_counter(sc->sc_ifp, IFCOUNTER_OPACKETS, 1); 897 if_inc_counter(sc->sc_ifp, IFCOUNTER_OBYTES, len); 898 } 899 return (ret); 900 } 901 902 static void 903 wg_send_buf(struct wg_softc *sc, struct wg_endpoint *e, uint8_t *buf, size_t len) 904 { 905 struct mbuf *m; 906 int ret = 0; 907 bool retried = false; 908 909 retry: 910 m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR); 911 if (!m) { 912 ret = ENOMEM; 913 goto out; 914 } 915 m_copyback(m, 0, len, buf); 916 917 if (ret == 0) { 918 ret = wg_send(sc, e, m); 919 /* Retry if we couldn't bind to e->e_local */ 920 if (ret == EADDRNOTAVAIL && !retried) { 921 bzero(&e->e_local, sizeof(e->e_local)); 922 retried = true; 923 goto retry; 924 } 925 } else { 926 ret = wg_send(sc, e, m); 927 } 928 out: 929 if (ret) 930 DPRINTF(sc, "Unable to send packet: %d\n", ret); 931 } 932 933 /* Timers */ 934 static void 935 wg_timers_enable(struct wg_peer *peer) 936 { 937 atomic_store_bool(&peer->p_enabled, true); 938 wg_timers_run_persistent_keepalive(peer); 939 } 940 941 static void 942 wg_timers_disable(struct wg_peer *peer) 943 { 944 /* By setting p_enabled = false, then calling NET_EPOCH_WAIT, we can be 945 * sure no new handshakes are created after the wait. This is because 946 * all callout_resets (scheduling the callout) are guarded by 947 * p_enabled. We can be sure all sections that read p_enabled and then 948 * optionally call callout_reset are finished as they are surrounded by 949 * NET_EPOCH_{ENTER,EXIT}. 950 * 951 * However, as new callouts may be scheduled during NET_EPOCH_WAIT (but 952 * not after), we stop all callouts leaving no callouts active. 953 * 954 * We should also pull NET_EPOCH_WAIT out of the FOREACH(peer) loops, but the 955 * performance impact is acceptable for the time being. */ 956 atomic_store_bool(&peer->p_enabled, false); 957 NET_EPOCH_WAIT(); 958 atomic_store_bool(&peer->p_need_another_keepalive, false); 959 960 callout_stop(&peer->p_new_handshake); 961 callout_stop(&peer->p_send_keepalive); 962 callout_stop(&peer->p_retry_handshake); 963 callout_stop(&peer->p_persistent_keepalive); 964 callout_stop(&peer->p_zero_key_material); 965 } 966 967 static void 968 wg_timers_set_persistent_keepalive(struct wg_peer *peer, uint16_t interval) 969 { 970 struct epoch_tracker et; 971 if (interval != peer->p_persistent_keepalive_interval) { 972 atomic_store_16(&peer->p_persistent_keepalive_interval, interval); 973 NET_EPOCH_ENTER(et); 974 if (atomic_load_bool(&peer->p_enabled)) 975 wg_timers_run_persistent_keepalive(peer); 976 NET_EPOCH_EXIT(et); 977 } 978 } 979 980 static void 981 wg_timers_get_last_handshake(struct wg_peer *peer, struct wg_timespec64 *time) 982 { 983 mtx_lock(&peer->p_handshake_mtx); 984 time->tv_sec = peer->p_handshake_complete.tv_sec; 985 time->tv_nsec = peer->p_handshake_complete.tv_nsec; 986 mtx_unlock(&peer->p_handshake_mtx); 987 } 988 989 static void 990 wg_timers_event_data_sent(struct wg_peer *peer) 991 { 992 struct epoch_tracker et; 993 NET_EPOCH_ENTER(et); 994 if (atomic_load_bool(&peer->p_enabled) && 995 !callout_pending(&peer->p_new_handshake)) 996 callout_reset(&peer->p_new_handshake, MSEC_2_TICKS( 997 NEW_HANDSHAKE_TIMEOUT * 1000 + 998 arc4random_uniform(REKEY_TIMEOUT_JITTER)), 999 wg_timers_run_new_handshake, peer); 1000 NET_EPOCH_EXIT(et); 1001 } 1002 1003 static void 1004 wg_timers_event_data_received(struct wg_peer *peer) 1005 { 1006 struct epoch_tracker et; 1007 NET_EPOCH_ENTER(et); 1008 if (atomic_load_bool(&peer->p_enabled)) { 1009 if (!callout_pending(&peer->p_send_keepalive)) 1010 callout_reset(&peer->p_send_keepalive, 1011 MSEC_2_TICKS(KEEPALIVE_TIMEOUT * 1000), 1012 wg_timers_run_send_keepalive, peer); 1013 else 1014 atomic_store_bool(&peer->p_need_another_keepalive, 1015 true); 1016 } 1017 NET_EPOCH_EXIT(et); 1018 } 1019 1020 static void 1021 wg_timers_event_any_authenticated_packet_sent(struct wg_peer *peer) 1022 { 1023 callout_stop(&peer->p_send_keepalive); 1024 } 1025 1026 static void 1027 wg_timers_event_any_authenticated_packet_received(struct wg_peer *peer) 1028 { 1029 callout_stop(&peer->p_new_handshake); 1030 } 1031 1032 static void 1033 wg_timers_event_any_authenticated_packet_traversal(struct wg_peer *peer) 1034 { 1035 struct epoch_tracker et; 1036 uint16_t interval; 1037 NET_EPOCH_ENTER(et); 1038 interval = atomic_load_16(&peer->p_persistent_keepalive_interval); 1039 if (atomic_load_bool(&peer->p_enabled) && interval > 0) 1040 callout_reset(&peer->p_persistent_keepalive, 1041 MSEC_2_TICKS(interval * 1000), 1042 wg_timers_run_persistent_keepalive, peer); 1043 NET_EPOCH_EXIT(et); 1044 } 1045 1046 static void 1047 wg_timers_event_handshake_initiated(struct wg_peer *peer) 1048 { 1049 struct epoch_tracker et; 1050 NET_EPOCH_ENTER(et); 1051 if (atomic_load_bool(&peer->p_enabled)) 1052 callout_reset(&peer->p_retry_handshake, MSEC_2_TICKS( 1053 REKEY_TIMEOUT * 1000 + 1054 arc4random_uniform(REKEY_TIMEOUT_JITTER)), 1055 wg_timers_run_retry_handshake, peer); 1056 NET_EPOCH_EXIT(et); 1057 } 1058 1059 static void 1060 wg_timers_event_handshake_complete(struct wg_peer *peer) 1061 { 1062 struct epoch_tracker et; 1063 NET_EPOCH_ENTER(et); 1064 if (atomic_load_bool(&peer->p_enabled)) { 1065 mtx_lock(&peer->p_handshake_mtx); 1066 callout_stop(&peer->p_retry_handshake); 1067 peer->p_handshake_retries = 0; 1068 getnanotime(&peer->p_handshake_complete); 1069 mtx_unlock(&peer->p_handshake_mtx); 1070 wg_timers_run_send_keepalive(peer); 1071 } 1072 NET_EPOCH_EXIT(et); 1073 } 1074 1075 static void 1076 wg_timers_event_session_derived(struct wg_peer *peer) 1077 { 1078 struct epoch_tracker et; 1079 NET_EPOCH_ENTER(et); 1080 if (atomic_load_bool(&peer->p_enabled)) 1081 callout_reset(&peer->p_zero_key_material, 1082 MSEC_2_TICKS(REJECT_AFTER_TIME * 3 * 1000), 1083 wg_timers_run_zero_key_material, peer); 1084 NET_EPOCH_EXIT(et); 1085 } 1086 1087 static void 1088 wg_timers_event_want_initiation(struct wg_peer *peer) 1089 { 1090 struct epoch_tracker et; 1091 NET_EPOCH_ENTER(et); 1092 if (atomic_load_bool(&peer->p_enabled)) 1093 wg_timers_run_send_initiation(peer, false); 1094 NET_EPOCH_EXIT(et); 1095 } 1096 1097 static void 1098 wg_timers_run_send_initiation(struct wg_peer *peer, bool is_retry) 1099 { 1100 if (!is_retry) 1101 peer->p_handshake_retries = 0; 1102 if (noise_remote_initiation_expired(peer->p_remote) == ETIMEDOUT) 1103 wg_send_initiation(peer); 1104 } 1105 1106 static void 1107 wg_timers_run_retry_handshake(void *_peer) 1108 { 1109 struct epoch_tracker et; 1110 struct wg_peer *peer = _peer; 1111 1112 mtx_lock(&peer->p_handshake_mtx); 1113 if (peer->p_handshake_retries <= MAX_TIMER_HANDSHAKES) { 1114 peer->p_handshake_retries++; 1115 mtx_unlock(&peer->p_handshake_mtx); 1116 1117 DPRINTF(peer->p_sc, "Handshake for peer %" PRIu64 " did not complete " 1118 "after %d seconds, retrying (try %d)\n", peer->p_id, 1119 REKEY_TIMEOUT, peer->p_handshake_retries + 1); 1120 wg_peer_clear_src(peer); 1121 wg_timers_run_send_initiation(peer, true); 1122 } else { 1123 mtx_unlock(&peer->p_handshake_mtx); 1124 1125 DPRINTF(peer->p_sc, "Handshake for peer %" PRIu64 " did not complete " 1126 "after %d retries, giving up\n", peer->p_id, 1127 MAX_TIMER_HANDSHAKES + 2); 1128 1129 callout_stop(&peer->p_send_keepalive); 1130 wg_queue_purge(&peer->p_stage_queue); 1131 NET_EPOCH_ENTER(et); 1132 if (atomic_load_bool(&peer->p_enabled) && 1133 !callout_pending(&peer->p_zero_key_material)) 1134 callout_reset(&peer->p_zero_key_material, 1135 MSEC_2_TICKS(REJECT_AFTER_TIME * 3 * 1000), 1136 wg_timers_run_zero_key_material, peer); 1137 NET_EPOCH_EXIT(et); 1138 } 1139 } 1140 1141 static void 1142 wg_timers_run_send_keepalive(void *_peer) 1143 { 1144 struct epoch_tracker et; 1145 struct wg_peer *peer = _peer; 1146 1147 wg_send_keepalive(peer); 1148 NET_EPOCH_ENTER(et); 1149 if (atomic_load_bool(&peer->p_enabled) && 1150 atomic_load_bool(&peer->p_need_another_keepalive)) { 1151 atomic_store_bool(&peer->p_need_another_keepalive, false); 1152 callout_reset(&peer->p_send_keepalive, 1153 MSEC_2_TICKS(KEEPALIVE_TIMEOUT * 1000), 1154 wg_timers_run_send_keepalive, peer); 1155 } 1156 NET_EPOCH_EXIT(et); 1157 } 1158 1159 static void 1160 wg_timers_run_new_handshake(void *_peer) 1161 { 1162 struct wg_peer *peer = _peer; 1163 1164 DPRINTF(peer->p_sc, "Retrying handshake with peer %" PRIu64 " because we " 1165 "stopped hearing back after %d seconds\n", 1166 peer->p_id, NEW_HANDSHAKE_TIMEOUT); 1167 1168 wg_peer_clear_src(peer); 1169 wg_timers_run_send_initiation(peer, false); 1170 } 1171 1172 static void 1173 wg_timers_run_zero_key_material(void *_peer) 1174 { 1175 struct wg_peer *peer = _peer; 1176 1177 DPRINTF(peer->p_sc, "Zeroing out keys for peer %" PRIu64 ", since we " 1178 "haven't received a new one in %d seconds\n", 1179 peer->p_id, REJECT_AFTER_TIME * 3); 1180 noise_remote_keypairs_clear(peer->p_remote); 1181 } 1182 1183 static void 1184 wg_timers_run_persistent_keepalive(void *_peer) 1185 { 1186 struct wg_peer *peer = _peer; 1187 1188 if (atomic_load_16(&peer->p_persistent_keepalive_interval) > 0) 1189 wg_send_keepalive(peer); 1190 } 1191 1192 /* TODO Handshake */ 1193 static void 1194 wg_peer_send_buf(struct wg_peer *peer, uint8_t *buf, size_t len) 1195 { 1196 struct wg_endpoint endpoint; 1197 1198 counter_u64_add(peer->p_tx_bytes, len); 1199 wg_timers_event_any_authenticated_packet_traversal(peer); 1200 wg_timers_event_any_authenticated_packet_sent(peer); 1201 wg_peer_get_endpoint(peer, &endpoint); 1202 wg_send_buf(peer->p_sc, &endpoint, buf, len); 1203 } 1204 1205 static void 1206 wg_send_initiation(struct wg_peer *peer) 1207 { 1208 struct wg_pkt_initiation pkt; 1209 1210 if (noise_create_initiation(peer->p_remote, &pkt.s_idx, pkt.ue, 1211 pkt.es, pkt.ets) != 0) 1212 return; 1213 1214 DPRINTF(peer->p_sc, "Sending handshake initiation to peer %" PRIu64 "\n", peer->p_id); 1215 1216 pkt.t = WG_PKT_INITIATION; 1217 cookie_maker_mac(&peer->p_cookie, &pkt.m, &pkt, 1218 sizeof(pkt) - sizeof(pkt.m)); 1219 wg_peer_send_buf(peer, (uint8_t *)&pkt, sizeof(pkt)); 1220 wg_timers_event_handshake_initiated(peer); 1221 } 1222 1223 static void 1224 wg_send_response(struct wg_peer *peer) 1225 { 1226 struct wg_pkt_response pkt; 1227 1228 if (noise_create_response(peer->p_remote, &pkt.s_idx, &pkt.r_idx, 1229 pkt.ue, pkt.en) != 0) 1230 return; 1231 1232 DPRINTF(peer->p_sc, "Sending handshake response to peer %" PRIu64 "\n", peer->p_id); 1233 1234 wg_timers_event_session_derived(peer); 1235 pkt.t = WG_PKT_RESPONSE; 1236 cookie_maker_mac(&peer->p_cookie, &pkt.m, &pkt, 1237 sizeof(pkt)-sizeof(pkt.m)); 1238 wg_peer_send_buf(peer, (uint8_t*)&pkt, sizeof(pkt)); 1239 } 1240 1241 static void 1242 wg_send_cookie(struct wg_softc *sc, struct cookie_macs *cm, uint32_t idx, 1243 struct wg_endpoint *e) 1244 { 1245 struct wg_pkt_cookie pkt; 1246 1247 DPRINTF(sc, "Sending cookie response for denied handshake message\n"); 1248 1249 pkt.t = WG_PKT_COOKIE; 1250 pkt.r_idx = idx; 1251 1252 cookie_checker_create_payload(&sc->sc_cookie, cm, pkt.nonce, 1253 pkt.ec, &e->e_remote.r_sa); 1254 wg_send_buf(sc, e, (uint8_t *)&pkt, sizeof(pkt)); 1255 } 1256 1257 static void 1258 wg_send_keepalive(struct wg_peer *peer) 1259 { 1260 struct wg_packet *pkt; 1261 struct mbuf *m; 1262 1263 if (wg_queue_len(&peer->p_stage_queue) > 0) 1264 goto send; 1265 if ((m = m_gethdr(M_NOWAIT, MT_DATA)) == NULL) 1266 return; 1267 if ((pkt = wg_packet_alloc(m)) == NULL) { 1268 m_freem(m); 1269 return; 1270 } 1271 wg_queue_push_staged(&peer->p_stage_queue, pkt); 1272 DPRINTF(peer->p_sc, "Sending keepalive packet to peer %" PRIu64 "\n", peer->p_id); 1273 send: 1274 wg_peer_send_staged(peer); 1275 } 1276 1277 static void 1278 wg_handshake(struct wg_softc *sc, struct wg_packet *pkt) 1279 { 1280 struct wg_pkt_initiation *init; 1281 struct wg_pkt_response *resp; 1282 struct wg_pkt_cookie *cook; 1283 struct wg_endpoint *e; 1284 struct wg_peer *peer; 1285 struct mbuf *m; 1286 struct noise_remote *remote = NULL; 1287 int res; 1288 bool underload = false; 1289 static sbintime_t wg_last_underload; /* sbinuptime */ 1290 1291 underload = wg_queue_len(&sc->sc_handshake_queue) >= MAX_QUEUED_HANDSHAKES / 8; 1292 if (underload) { 1293 wg_last_underload = getsbinuptime(); 1294 } else if (wg_last_underload) { 1295 underload = wg_last_underload + UNDERLOAD_TIMEOUT * SBT_1S > getsbinuptime(); 1296 if (!underload) 1297 wg_last_underload = 0; 1298 } 1299 1300 m = pkt->p_mbuf; 1301 e = &pkt->p_endpoint; 1302 1303 if ((pkt->p_mbuf = m = m_pullup(m, m->m_pkthdr.len)) == NULL) 1304 goto error; 1305 1306 switch (*mtod(m, uint32_t *)) { 1307 case WG_PKT_INITIATION: 1308 init = mtod(m, struct wg_pkt_initiation *); 1309 1310 res = cookie_checker_validate_macs(&sc->sc_cookie, &init->m, 1311 init, sizeof(*init) - sizeof(init->m), 1312 underload, &e->e_remote.r_sa, 1313 if_getvnet(sc->sc_ifp)); 1314 1315 if (res == EINVAL) { 1316 DPRINTF(sc, "Invalid initiation MAC\n"); 1317 goto error; 1318 } else if (res == ECONNREFUSED) { 1319 DPRINTF(sc, "Handshake ratelimited\n"); 1320 goto error; 1321 } else if (res == EAGAIN) { 1322 wg_send_cookie(sc, &init->m, init->s_idx, e); 1323 goto error; 1324 } else if (res != 0) { 1325 panic("unexpected response: %d\n", res); 1326 } 1327 1328 if (noise_consume_initiation(sc->sc_local, &remote, 1329 init->s_idx, init->ue, init->es, init->ets) != 0) { 1330 DPRINTF(sc, "Invalid handshake initiation\n"); 1331 goto error; 1332 } 1333 1334 peer = noise_remote_arg(remote); 1335 1336 DPRINTF(sc, "Receiving handshake initiation from peer %" PRIu64 "\n", peer->p_id); 1337 1338 wg_peer_set_endpoint(peer, e); 1339 wg_send_response(peer); 1340 break; 1341 case WG_PKT_RESPONSE: 1342 resp = mtod(m, struct wg_pkt_response *); 1343 1344 res = cookie_checker_validate_macs(&sc->sc_cookie, &resp->m, 1345 resp, sizeof(*resp) - sizeof(resp->m), 1346 underload, &e->e_remote.r_sa, 1347 if_getvnet(sc->sc_ifp)); 1348 1349 if (res == EINVAL) { 1350 DPRINTF(sc, "Invalid response MAC\n"); 1351 goto error; 1352 } else if (res == ECONNREFUSED) { 1353 DPRINTF(sc, "Handshake ratelimited\n"); 1354 goto error; 1355 } else if (res == EAGAIN) { 1356 wg_send_cookie(sc, &resp->m, resp->s_idx, e); 1357 goto error; 1358 } else if (res != 0) { 1359 panic("unexpected response: %d\n", res); 1360 } 1361 1362 if (noise_consume_response(sc->sc_local, &remote, 1363 resp->s_idx, resp->r_idx, resp->ue, resp->en) != 0) { 1364 DPRINTF(sc, "Invalid handshake response\n"); 1365 goto error; 1366 } 1367 1368 peer = noise_remote_arg(remote); 1369 DPRINTF(sc, "Receiving handshake response from peer %" PRIu64 "\n", peer->p_id); 1370 1371 wg_peer_set_endpoint(peer, e); 1372 wg_timers_event_session_derived(peer); 1373 wg_timers_event_handshake_complete(peer); 1374 break; 1375 case WG_PKT_COOKIE: 1376 cook = mtod(m, struct wg_pkt_cookie *); 1377 1378 if ((remote = noise_remote_index(sc->sc_local, cook->r_idx)) == NULL) { 1379 DPRINTF(sc, "Unknown cookie index\n"); 1380 goto error; 1381 } 1382 1383 peer = noise_remote_arg(remote); 1384 1385 if (cookie_maker_consume_payload(&peer->p_cookie, 1386 cook->nonce, cook->ec) == 0) { 1387 DPRINTF(sc, "Receiving cookie response\n"); 1388 } else { 1389 DPRINTF(sc, "Could not decrypt cookie response\n"); 1390 goto error; 1391 } 1392 1393 goto not_authenticated; 1394 default: 1395 panic("invalid packet in handshake queue"); 1396 } 1397 1398 wg_timers_event_any_authenticated_packet_received(peer); 1399 wg_timers_event_any_authenticated_packet_traversal(peer); 1400 1401 not_authenticated: 1402 counter_u64_add(peer->p_rx_bytes, m->m_pkthdr.len); 1403 if_inc_counter(sc->sc_ifp, IFCOUNTER_IPACKETS, 1); 1404 if_inc_counter(sc->sc_ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); 1405 error: 1406 if (remote != NULL) 1407 noise_remote_put(remote); 1408 wg_packet_free(pkt); 1409 } 1410 1411 static void 1412 wg_softc_handshake_receive(struct wg_softc *sc) 1413 { 1414 struct wg_packet *pkt; 1415 while ((pkt = wg_queue_dequeue_handshake(&sc->sc_handshake_queue)) != NULL) 1416 wg_handshake(sc, pkt); 1417 } 1418 1419 static void 1420 wg_mbuf_reset(struct mbuf *m) 1421 { 1422 1423 struct m_tag *t, *tmp; 1424 1425 /* 1426 * We want to reset the mbuf to a newly allocated state, containing 1427 * just the packet contents. Unfortunately FreeBSD doesn't seem to 1428 * offer this anywhere, so we have to make it up as we go. If we can 1429 * get this in kern/kern_mbuf.c, that would be best. 1430 * 1431 * Notice: this may break things unexpectedly but it is better to fail 1432 * closed in the extreme case than leak informtion in every 1433 * case. 1434 * 1435 * With that said, all this attempts to do is remove any extraneous 1436 * information that could be present. 1437 */ 1438 1439 M_ASSERTPKTHDR(m); 1440 1441 m->m_flags &= ~(M_BCAST|M_MCAST|M_VLANTAG|M_PROMISC|M_PROTOFLAGS); 1442 1443 M_HASHTYPE_CLEAR(m); 1444 #ifdef NUMA 1445 m->m_pkthdr.numa_domain = M_NODOM; 1446 #endif 1447 SLIST_FOREACH_SAFE(t, &m->m_pkthdr.tags, m_tag_link, tmp) { 1448 if ((t->m_tag_id != 0 || t->m_tag_cookie != MTAG_WGLOOP) && 1449 t->m_tag_id != PACKET_TAG_MACLABEL) 1450 m_tag_delete(m, t); 1451 } 1452 1453 KASSERT((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0, 1454 ("%s: mbuf %p has a send tag", __func__, m)); 1455 1456 m->m_pkthdr.csum_flags = 0; 1457 m->m_pkthdr.PH_per.sixtyfour[0] = 0; 1458 m->m_pkthdr.PH_loc.sixtyfour[0] = 0; 1459 } 1460 1461 static inline unsigned int 1462 calculate_padding(struct wg_packet *pkt) 1463 { 1464 unsigned int padded_size, last_unit = pkt->p_mbuf->m_pkthdr.len; 1465 1466 /* Keepalive packets don't set p_mtu, but also have a length of zero. */ 1467 if (__predict_false(pkt->p_mtu == 0)) { 1468 padded_size = (last_unit + (WG_PKT_PADDING - 1)) & 1469 ~(WG_PKT_PADDING - 1); 1470 return (padded_size - last_unit); 1471 } 1472 1473 if (__predict_false(last_unit > pkt->p_mtu)) 1474 last_unit %= pkt->p_mtu; 1475 1476 padded_size = (last_unit + (WG_PKT_PADDING - 1)) & ~(WG_PKT_PADDING - 1); 1477 if (pkt->p_mtu < padded_size) 1478 padded_size = pkt->p_mtu; 1479 return (padded_size - last_unit); 1480 } 1481 1482 static void 1483 wg_encrypt(struct wg_softc *sc, struct wg_packet *pkt) 1484 { 1485 static const uint8_t padding[WG_PKT_PADDING] = { 0 }; 1486 struct wg_pkt_data *data; 1487 struct wg_peer *peer; 1488 struct noise_remote *remote; 1489 struct mbuf *m; 1490 uint32_t idx; 1491 unsigned int padlen; 1492 enum wg_ring_state state = WG_PACKET_DEAD; 1493 1494 remote = noise_keypair_remote(pkt->p_keypair); 1495 peer = noise_remote_arg(remote); 1496 m = pkt->p_mbuf; 1497 1498 /* Pad the packet */ 1499 padlen = calculate_padding(pkt); 1500 if (padlen != 0 && !m_append(m, padlen, padding)) 1501 goto out; 1502 1503 /* Do encryption */ 1504 if (noise_keypair_encrypt(pkt->p_keypair, &idx, pkt->p_nonce, m) != 0) 1505 goto out; 1506 1507 /* Put header into packet */ 1508 M_PREPEND(m, sizeof(struct wg_pkt_data), M_NOWAIT); 1509 if (m == NULL) 1510 goto out; 1511 data = mtod(m, struct wg_pkt_data *); 1512 data->t = WG_PKT_DATA; 1513 data->r_idx = idx; 1514 data->nonce = htole64(pkt->p_nonce); 1515 1516 wg_mbuf_reset(m); 1517 state = WG_PACKET_CRYPTED; 1518 out: 1519 pkt->p_mbuf = m; 1520 wmb(); 1521 pkt->p_state = state; 1522 GROUPTASK_ENQUEUE(&peer->p_send); 1523 noise_remote_put(remote); 1524 } 1525 1526 static void 1527 wg_decrypt(struct wg_softc *sc, struct wg_packet *pkt) 1528 { 1529 struct wg_peer *peer, *allowed_peer; 1530 struct noise_remote *remote; 1531 struct mbuf *m; 1532 int len; 1533 enum wg_ring_state state = WG_PACKET_DEAD; 1534 1535 remote = noise_keypair_remote(pkt->p_keypair); 1536 peer = noise_remote_arg(remote); 1537 m = pkt->p_mbuf; 1538 1539 /* Read nonce and then adjust to remove the header. */ 1540 pkt->p_nonce = le64toh(mtod(m, struct wg_pkt_data *)->nonce); 1541 m_adj(m, sizeof(struct wg_pkt_data)); 1542 1543 if (noise_keypair_decrypt(pkt->p_keypair, pkt->p_nonce, m) != 0) 1544 goto out; 1545 1546 /* A packet with length 0 is a keepalive packet */ 1547 if (__predict_false(m->m_pkthdr.len == 0)) { 1548 DPRINTF(sc, "Receiving keepalive packet from peer " 1549 "%" PRIu64 "\n", peer->p_id); 1550 state = WG_PACKET_CRYPTED; 1551 goto out; 1552 } 1553 1554 /* 1555 * We can let the network stack handle the intricate validation of the 1556 * IP header, we just worry about the sizeof and the version, so we can 1557 * read the source address in wg_aip_lookup. 1558 */ 1559 1560 if (determine_af_and_pullup(&m, &pkt->p_af) == 0) { 1561 if (pkt->p_af == AF_INET) { 1562 struct ip *ip = mtod(m, struct ip *); 1563 allowed_peer = wg_aip_lookup(sc, AF_INET, &ip->ip_src); 1564 len = ntohs(ip->ip_len); 1565 if (len >= sizeof(struct ip) && len < m->m_pkthdr.len) 1566 m_adj(m, len - m->m_pkthdr.len); 1567 } else if (pkt->p_af == AF_INET6) { 1568 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); 1569 allowed_peer = wg_aip_lookup(sc, AF_INET6, &ip6->ip6_src); 1570 len = ntohs(ip6->ip6_plen) + sizeof(struct ip6_hdr); 1571 if (len < m->m_pkthdr.len) 1572 m_adj(m, len - m->m_pkthdr.len); 1573 } else 1574 panic("determine_af_and_pullup returned unexpected value"); 1575 } else { 1576 DPRINTF(sc, "Packet is neither ipv4 nor ipv6 from peer %" PRIu64 "\n", peer->p_id); 1577 goto out; 1578 } 1579 1580 /* We only want to compare the address, not dereference, so drop the ref. */ 1581 if (allowed_peer != NULL) 1582 noise_remote_put(allowed_peer->p_remote); 1583 1584 if (__predict_false(peer != allowed_peer)) { 1585 DPRINTF(sc, "Packet has unallowed src IP from peer %" PRIu64 "\n", peer->p_id); 1586 goto out; 1587 } 1588 1589 wg_mbuf_reset(m); 1590 state = WG_PACKET_CRYPTED; 1591 out: 1592 pkt->p_mbuf = m; 1593 wmb(); 1594 pkt->p_state = state; 1595 GROUPTASK_ENQUEUE(&peer->p_recv); 1596 noise_remote_put(remote); 1597 } 1598 1599 static void 1600 wg_softc_decrypt(struct wg_softc *sc) 1601 { 1602 struct wg_packet *pkt; 1603 1604 while ((pkt = wg_queue_dequeue_parallel(&sc->sc_decrypt_parallel)) != NULL) 1605 wg_decrypt(sc, pkt); 1606 } 1607 1608 static void 1609 wg_softc_encrypt(struct wg_softc *sc) 1610 { 1611 struct wg_packet *pkt; 1612 1613 while ((pkt = wg_queue_dequeue_parallel(&sc->sc_encrypt_parallel)) != NULL) 1614 wg_encrypt(sc, pkt); 1615 } 1616 1617 static void 1618 wg_encrypt_dispatch(struct wg_softc *sc) 1619 { 1620 /* 1621 * The update to encrypt_last_cpu is racey such that we may 1622 * reschedule the task for the same CPU multiple times, but 1623 * the race doesn't really matter. 1624 */ 1625 u_int cpu = (sc->sc_encrypt_last_cpu + 1) % mp_ncpus; 1626 sc->sc_encrypt_last_cpu = cpu; 1627 GROUPTASK_ENQUEUE(&sc->sc_encrypt[cpu]); 1628 } 1629 1630 static void 1631 wg_decrypt_dispatch(struct wg_softc *sc) 1632 { 1633 u_int cpu = (sc->sc_decrypt_last_cpu + 1) % mp_ncpus; 1634 sc->sc_decrypt_last_cpu = cpu; 1635 GROUPTASK_ENQUEUE(&sc->sc_decrypt[cpu]); 1636 } 1637 1638 static void 1639 wg_deliver_out(struct wg_peer *peer) 1640 { 1641 struct wg_endpoint endpoint; 1642 struct wg_softc *sc = peer->p_sc; 1643 struct wg_packet *pkt; 1644 struct mbuf *m; 1645 int rc, len; 1646 1647 wg_peer_get_endpoint(peer, &endpoint); 1648 1649 while ((pkt = wg_queue_dequeue_serial(&peer->p_encrypt_serial)) != NULL) { 1650 if (pkt->p_state != WG_PACKET_CRYPTED) 1651 goto error; 1652 1653 m = pkt->p_mbuf; 1654 pkt->p_mbuf = NULL; 1655 1656 len = m->m_pkthdr.len; 1657 1658 wg_timers_event_any_authenticated_packet_traversal(peer); 1659 wg_timers_event_any_authenticated_packet_sent(peer); 1660 rc = wg_send(sc, &endpoint, m); 1661 if (rc == 0) { 1662 if (len > (sizeof(struct wg_pkt_data) + NOISE_AUTHTAG_LEN)) 1663 wg_timers_event_data_sent(peer); 1664 counter_u64_add(peer->p_tx_bytes, len); 1665 } else if (rc == EADDRNOTAVAIL) { 1666 wg_peer_clear_src(peer); 1667 wg_peer_get_endpoint(peer, &endpoint); 1668 goto error; 1669 } else { 1670 goto error; 1671 } 1672 wg_packet_free(pkt); 1673 if (noise_keep_key_fresh_send(peer->p_remote)) 1674 wg_timers_event_want_initiation(peer); 1675 continue; 1676 error: 1677 if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); 1678 wg_packet_free(pkt); 1679 } 1680 } 1681 1682 static void 1683 wg_deliver_in(struct wg_peer *peer) 1684 { 1685 struct wg_softc *sc = peer->p_sc; 1686 if_t ifp = sc->sc_ifp; 1687 struct wg_packet *pkt; 1688 struct mbuf *m; 1689 struct epoch_tracker et; 1690 1691 while ((pkt = wg_queue_dequeue_serial(&peer->p_decrypt_serial)) != NULL) { 1692 if (pkt->p_state != WG_PACKET_CRYPTED) 1693 goto error; 1694 1695 m = pkt->p_mbuf; 1696 if (noise_keypair_nonce_check(pkt->p_keypair, pkt->p_nonce) != 0) 1697 goto error; 1698 1699 if (noise_keypair_received_with(pkt->p_keypair) == ECONNRESET) 1700 wg_timers_event_handshake_complete(peer); 1701 1702 wg_timers_event_any_authenticated_packet_received(peer); 1703 wg_timers_event_any_authenticated_packet_traversal(peer); 1704 wg_peer_set_endpoint(peer, &pkt->p_endpoint); 1705 1706 counter_u64_add(peer->p_rx_bytes, m->m_pkthdr.len + 1707 sizeof(struct wg_pkt_data) + NOISE_AUTHTAG_LEN); 1708 if_inc_counter(sc->sc_ifp, IFCOUNTER_IPACKETS, 1); 1709 if_inc_counter(sc->sc_ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len + 1710 sizeof(struct wg_pkt_data) + NOISE_AUTHTAG_LEN); 1711 1712 if (m->m_pkthdr.len == 0) 1713 goto done; 1714 1715 MPASS(pkt->p_af == AF_INET || pkt->p_af == AF_INET6); 1716 pkt->p_mbuf = NULL; 1717 1718 m->m_pkthdr.rcvif = ifp; 1719 1720 NET_EPOCH_ENTER(et); 1721 BPF_MTAP2_AF(ifp, m, pkt->p_af); 1722 1723 CURVNET_SET(if_getvnet(ifp)); 1724 M_SETFIB(m, if_getfib(ifp)); 1725 if (pkt->p_af == AF_INET) 1726 netisr_dispatch(NETISR_IP, m); 1727 if (pkt->p_af == AF_INET6) 1728 netisr_dispatch(NETISR_IPV6, m); 1729 CURVNET_RESTORE(); 1730 NET_EPOCH_EXIT(et); 1731 1732 wg_timers_event_data_received(peer); 1733 1734 done: 1735 if (noise_keep_key_fresh_recv(peer->p_remote)) 1736 wg_timers_event_want_initiation(peer); 1737 wg_packet_free(pkt); 1738 continue; 1739 error: 1740 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1741 wg_packet_free(pkt); 1742 } 1743 } 1744 1745 static struct wg_packet * 1746 wg_packet_alloc(struct mbuf *m) 1747 { 1748 struct wg_packet *pkt; 1749 1750 if ((pkt = uma_zalloc(wg_packet_zone, M_NOWAIT | M_ZERO)) == NULL) 1751 return (NULL); 1752 pkt->p_mbuf = m; 1753 return (pkt); 1754 } 1755 1756 static void 1757 wg_packet_free(struct wg_packet *pkt) 1758 { 1759 if (pkt->p_keypair != NULL) 1760 noise_keypair_put(pkt->p_keypair); 1761 if (pkt->p_mbuf != NULL) 1762 m_freem(pkt->p_mbuf); 1763 uma_zfree(wg_packet_zone, pkt); 1764 } 1765 1766 static void 1767 wg_queue_init(struct wg_queue *queue, const char *name) 1768 { 1769 mtx_init(&queue->q_mtx, name, NULL, MTX_DEF); 1770 STAILQ_INIT(&queue->q_queue); 1771 queue->q_len = 0; 1772 } 1773 1774 static void 1775 wg_queue_deinit(struct wg_queue *queue) 1776 { 1777 wg_queue_purge(queue); 1778 mtx_destroy(&queue->q_mtx); 1779 } 1780 1781 static size_t 1782 wg_queue_len(struct wg_queue *queue) 1783 { 1784 return (queue->q_len); 1785 } 1786 1787 static int 1788 wg_queue_enqueue_handshake(struct wg_queue *hs, struct wg_packet *pkt) 1789 { 1790 int ret = 0; 1791 mtx_lock(&hs->q_mtx); 1792 if (hs->q_len < MAX_QUEUED_HANDSHAKES) { 1793 STAILQ_INSERT_TAIL(&hs->q_queue, pkt, p_parallel); 1794 hs->q_len++; 1795 } else { 1796 ret = ENOBUFS; 1797 } 1798 mtx_unlock(&hs->q_mtx); 1799 if (ret != 0) 1800 wg_packet_free(pkt); 1801 return (ret); 1802 } 1803 1804 static struct wg_packet * 1805 wg_queue_dequeue_handshake(struct wg_queue *hs) 1806 { 1807 struct wg_packet *pkt; 1808 mtx_lock(&hs->q_mtx); 1809 if ((pkt = STAILQ_FIRST(&hs->q_queue)) != NULL) { 1810 STAILQ_REMOVE_HEAD(&hs->q_queue, p_parallel); 1811 hs->q_len--; 1812 } 1813 mtx_unlock(&hs->q_mtx); 1814 return (pkt); 1815 } 1816 1817 static void 1818 wg_queue_push_staged(struct wg_queue *staged, struct wg_packet *pkt) 1819 { 1820 struct wg_packet *old = NULL; 1821 1822 mtx_lock(&staged->q_mtx); 1823 if (staged->q_len >= MAX_STAGED_PKT) { 1824 old = STAILQ_FIRST(&staged->q_queue); 1825 STAILQ_REMOVE_HEAD(&staged->q_queue, p_parallel); 1826 staged->q_len--; 1827 } 1828 STAILQ_INSERT_TAIL(&staged->q_queue, pkt, p_parallel); 1829 staged->q_len++; 1830 mtx_unlock(&staged->q_mtx); 1831 1832 if (old != NULL) 1833 wg_packet_free(old); 1834 } 1835 1836 static void 1837 wg_queue_enlist_staged(struct wg_queue *staged, struct wg_packet_list *list) 1838 { 1839 struct wg_packet *pkt, *tpkt; 1840 STAILQ_FOREACH_SAFE(pkt, list, p_parallel, tpkt) 1841 wg_queue_push_staged(staged, pkt); 1842 } 1843 1844 static void 1845 wg_queue_delist_staged(struct wg_queue *staged, struct wg_packet_list *list) 1846 { 1847 STAILQ_INIT(list); 1848 mtx_lock(&staged->q_mtx); 1849 STAILQ_CONCAT(list, &staged->q_queue); 1850 staged->q_len = 0; 1851 mtx_unlock(&staged->q_mtx); 1852 } 1853 1854 static void 1855 wg_queue_purge(struct wg_queue *staged) 1856 { 1857 struct wg_packet_list list; 1858 struct wg_packet *pkt, *tpkt; 1859 wg_queue_delist_staged(staged, &list); 1860 STAILQ_FOREACH_SAFE(pkt, &list, p_parallel, tpkt) 1861 wg_packet_free(pkt); 1862 } 1863 1864 static int 1865 wg_queue_both(struct wg_queue *parallel, struct wg_queue *serial, struct wg_packet *pkt) 1866 { 1867 pkt->p_state = WG_PACKET_UNCRYPTED; 1868 1869 mtx_lock(&serial->q_mtx); 1870 if (serial->q_len < MAX_QUEUED_PKT) { 1871 serial->q_len++; 1872 STAILQ_INSERT_TAIL(&serial->q_queue, pkt, p_serial); 1873 } else { 1874 mtx_unlock(&serial->q_mtx); 1875 wg_packet_free(pkt); 1876 return (ENOBUFS); 1877 } 1878 mtx_unlock(&serial->q_mtx); 1879 1880 mtx_lock(¶llel->q_mtx); 1881 if (parallel->q_len < MAX_QUEUED_PKT) { 1882 parallel->q_len++; 1883 STAILQ_INSERT_TAIL(¶llel->q_queue, pkt, p_parallel); 1884 } else { 1885 mtx_unlock(¶llel->q_mtx); 1886 pkt->p_state = WG_PACKET_DEAD; 1887 return (ENOBUFS); 1888 } 1889 mtx_unlock(¶llel->q_mtx); 1890 1891 return (0); 1892 } 1893 1894 static struct wg_packet * 1895 wg_queue_dequeue_serial(struct wg_queue *serial) 1896 { 1897 struct wg_packet *pkt = NULL; 1898 mtx_lock(&serial->q_mtx); 1899 if (serial->q_len > 0 && STAILQ_FIRST(&serial->q_queue)->p_state != WG_PACKET_UNCRYPTED) { 1900 serial->q_len--; 1901 pkt = STAILQ_FIRST(&serial->q_queue); 1902 STAILQ_REMOVE_HEAD(&serial->q_queue, p_serial); 1903 } 1904 mtx_unlock(&serial->q_mtx); 1905 return (pkt); 1906 } 1907 1908 static struct wg_packet * 1909 wg_queue_dequeue_parallel(struct wg_queue *parallel) 1910 { 1911 struct wg_packet *pkt = NULL; 1912 mtx_lock(¶llel->q_mtx); 1913 if (parallel->q_len > 0) { 1914 parallel->q_len--; 1915 pkt = STAILQ_FIRST(¶llel->q_queue); 1916 STAILQ_REMOVE_HEAD(¶llel->q_queue, p_parallel); 1917 } 1918 mtx_unlock(¶llel->q_mtx); 1919 return (pkt); 1920 } 1921 1922 static bool 1923 wg_input(struct mbuf *m, int offset, struct inpcb *inpcb, 1924 const struct sockaddr *sa, void *_sc) 1925 { 1926 #ifdef INET 1927 const struct sockaddr_in *sin; 1928 #endif 1929 #ifdef INET6 1930 const struct sockaddr_in6 *sin6; 1931 #endif 1932 struct noise_remote *remote; 1933 struct wg_pkt_data *data; 1934 struct wg_packet *pkt; 1935 struct wg_peer *peer; 1936 struct wg_softc *sc = _sc; 1937 struct mbuf *defragged; 1938 1939 defragged = m_defrag(m, M_NOWAIT); 1940 if (defragged) 1941 m = defragged; 1942 m = m_unshare(m, M_NOWAIT); 1943 if (!m) { 1944 if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1); 1945 return true; 1946 } 1947 1948 /* Caller provided us with `sa`, no need for this header. */ 1949 m_adj(m, offset + sizeof(struct udphdr)); 1950 1951 /* Pullup enough to read packet type */ 1952 if ((m = m_pullup(m, sizeof(uint32_t))) == NULL) { 1953 if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1); 1954 return true; 1955 } 1956 1957 if ((pkt = wg_packet_alloc(m)) == NULL) { 1958 if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1); 1959 m_freem(m); 1960 return true; 1961 } 1962 1963 /* Save send/recv address and port for later. */ 1964 switch (sa->sa_family) { 1965 #ifdef INET 1966 case AF_INET: 1967 sin = (const struct sockaddr_in *)sa; 1968 pkt->p_endpoint.e_remote.r_sin = sin[0]; 1969 pkt->p_endpoint.e_local.l_in = sin[1].sin_addr; 1970 break; 1971 #endif 1972 #ifdef INET6 1973 case AF_INET6: 1974 sin6 = (const struct sockaddr_in6 *)sa; 1975 pkt->p_endpoint.e_remote.r_sin6 = sin6[0]; 1976 pkt->p_endpoint.e_local.l_in6 = sin6[1].sin6_addr; 1977 break; 1978 #endif 1979 default: 1980 goto error; 1981 } 1982 1983 if ((m->m_pkthdr.len == sizeof(struct wg_pkt_initiation) && 1984 *mtod(m, uint32_t *) == WG_PKT_INITIATION) || 1985 (m->m_pkthdr.len == sizeof(struct wg_pkt_response) && 1986 *mtod(m, uint32_t *) == WG_PKT_RESPONSE) || 1987 (m->m_pkthdr.len == sizeof(struct wg_pkt_cookie) && 1988 *mtod(m, uint32_t *) == WG_PKT_COOKIE)) { 1989 1990 if (wg_queue_enqueue_handshake(&sc->sc_handshake_queue, pkt) != 0) { 1991 if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1); 1992 DPRINTF(sc, "Dropping handshake packet\n"); 1993 } 1994 GROUPTASK_ENQUEUE(&sc->sc_handshake); 1995 } else if (m->m_pkthdr.len >= sizeof(struct wg_pkt_data) + 1996 NOISE_AUTHTAG_LEN && *mtod(m, uint32_t *) == WG_PKT_DATA) { 1997 1998 /* Pullup whole header to read r_idx below. */ 1999 if ((pkt->p_mbuf = m_pullup(m, sizeof(struct wg_pkt_data))) == NULL) 2000 goto error; 2001 2002 data = mtod(pkt->p_mbuf, struct wg_pkt_data *); 2003 if ((pkt->p_keypair = noise_keypair_lookup(sc->sc_local, data->r_idx)) == NULL) 2004 goto error; 2005 2006 remote = noise_keypair_remote(pkt->p_keypair); 2007 peer = noise_remote_arg(remote); 2008 if (wg_queue_both(&sc->sc_decrypt_parallel, &peer->p_decrypt_serial, pkt) != 0) 2009 if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1); 2010 wg_decrypt_dispatch(sc); 2011 noise_remote_put(remote); 2012 } else { 2013 goto error; 2014 } 2015 return true; 2016 error: 2017 if_inc_counter(sc->sc_ifp, IFCOUNTER_IERRORS, 1); 2018 wg_packet_free(pkt); 2019 return true; 2020 } 2021 2022 static void 2023 wg_peer_send_staged(struct wg_peer *peer) 2024 { 2025 struct wg_packet_list list; 2026 struct noise_keypair *keypair; 2027 struct wg_packet *pkt, *tpkt; 2028 struct wg_softc *sc = peer->p_sc; 2029 2030 wg_queue_delist_staged(&peer->p_stage_queue, &list); 2031 2032 if (STAILQ_EMPTY(&list)) 2033 return; 2034 2035 if ((keypair = noise_keypair_current(peer->p_remote)) == NULL) 2036 goto error; 2037 2038 STAILQ_FOREACH(pkt, &list, p_parallel) { 2039 if (noise_keypair_nonce_next(keypair, &pkt->p_nonce) != 0) 2040 goto error_keypair; 2041 } 2042 STAILQ_FOREACH_SAFE(pkt, &list, p_parallel, tpkt) { 2043 pkt->p_keypair = noise_keypair_ref(keypair); 2044 if (wg_queue_both(&sc->sc_encrypt_parallel, &peer->p_encrypt_serial, pkt) != 0) 2045 if_inc_counter(sc->sc_ifp, IFCOUNTER_OQDROPS, 1); 2046 } 2047 wg_encrypt_dispatch(sc); 2048 noise_keypair_put(keypair); 2049 return; 2050 2051 error_keypair: 2052 noise_keypair_put(keypair); 2053 error: 2054 wg_queue_enlist_staged(&peer->p_stage_queue, &list); 2055 wg_timers_event_want_initiation(peer); 2056 } 2057 2058 static inline void 2059 xmit_err(if_t ifp, struct mbuf *m, struct wg_packet *pkt, sa_family_t af) 2060 { 2061 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2062 switch (af) { 2063 #ifdef INET 2064 case AF_INET: 2065 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0); 2066 if (pkt) 2067 pkt->p_mbuf = NULL; 2068 m = NULL; 2069 break; 2070 #endif 2071 #ifdef INET6 2072 case AF_INET6: 2073 icmp6_error(m, ICMP6_DST_UNREACH, 0, 0); 2074 if (pkt) 2075 pkt->p_mbuf = NULL; 2076 m = NULL; 2077 break; 2078 #endif 2079 } 2080 if (pkt) 2081 wg_packet_free(pkt); 2082 else if (m) 2083 m_freem(m); 2084 } 2085 2086 static int 2087 wg_xmit(if_t ifp, struct mbuf *m, sa_family_t af, uint32_t mtu) 2088 { 2089 struct wg_packet *pkt = NULL; 2090 struct wg_softc *sc = if_getsoftc(ifp); 2091 struct wg_peer *peer; 2092 int rc = 0; 2093 sa_family_t peer_af; 2094 2095 /* Work around lifetime issue in the ipv6 mld code. */ 2096 if (__predict_false((if_getflags(ifp) & IFF_DYING) || !sc)) { 2097 rc = ENXIO; 2098 goto err_xmit; 2099 } 2100 2101 if ((pkt = wg_packet_alloc(m)) == NULL) { 2102 rc = ENOBUFS; 2103 goto err_xmit; 2104 } 2105 pkt->p_mtu = mtu; 2106 pkt->p_af = af; 2107 2108 if (af == AF_INET) { 2109 peer = wg_aip_lookup(sc, AF_INET, &mtod(m, struct ip *)->ip_dst); 2110 } else if (af == AF_INET6) { 2111 peer = wg_aip_lookup(sc, AF_INET6, &mtod(m, struct ip6_hdr *)->ip6_dst); 2112 } else { 2113 rc = EAFNOSUPPORT; 2114 goto err_xmit; 2115 } 2116 2117 BPF_MTAP2_AF(ifp, m, pkt->p_af); 2118 2119 if (__predict_false(peer == NULL)) { 2120 rc = ENOKEY; 2121 goto err_xmit; 2122 } 2123 2124 if (__predict_false(if_tunnel_check_nesting(ifp, m, MTAG_WGLOOP, MAX_LOOPS))) { 2125 DPRINTF(sc, "Packet looped"); 2126 rc = ELOOP; 2127 goto err_peer; 2128 } 2129 2130 peer_af = peer->p_endpoint.e_remote.r_sa.sa_family; 2131 if (__predict_false(peer_af != AF_INET && peer_af != AF_INET6)) { 2132 DPRINTF(sc, "No valid endpoint has been configured or " 2133 "discovered for peer %" PRIu64 "\n", peer->p_id); 2134 rc = EHOSTUNREACH; 2135 goto err_peer; 2136 } 2137 2138 wg_queue_push_staged(&peer->p_stage_queue, pkt); 2139 wg_peer_send_staged(peer); 2140 noise_remote_put(peer->p_remote); 2141 return (0); 2142 2143 err_peer: 2144 noise_remote_put(peer->p_remote); 2145 err_xmit: 2146 xmit_err(ifp, m, pkt, af); 2147 return (rc); 2148 } 2149 2150 static inline int 2151 determine_af_and_pullup(struct mbuf **m, sa_family_t *af) 2152 { 2153 u_char ipv; 2154 if ((*m)->m_pkthdr.len >= sizeof(struct ip6_hdr)) 2155 *m = m_pullup(*m, sizeof(struct ip6_hdr)); 2156 else if ((*m)->m_pkthdr.len >= sizeof(struct ip)) 2157 *m = m_pullup(*m, sizeof(struct ip)); 2158 else 2159 return (EAFNOSUPPORT); 2160 if (*m == NULL) 2161 return (ENOBUFS); 2162 ipv = mtod(*m, struct ip *)->ip_v; 2163 if (ipv == 4) 2164 *af = AF_INET; 2165 else if (ipv == 6 && (*m)->m_pkthdr.len >= sizeof(struct ip6_hdr)) 2166 *af = AF_INET6; 2167 else 2168 return (EAFNOSUPPORT); 2169 return (0); 2170 } 2171 2172 static int 2173 wg_transmit(if_t ifp, struct mbuf *m) 2174 { 2175 sa_family_t af; 2176 int ret; 2177 struct mbuf *defragged; 2178 2179 defragged = m_defrag(m, M_NOWAIT); 2180 if (defragged) 2181 m = defragged; 2182 m = m_unshare(m, M_NOWAIT); 2183 if (!m) { 2184 xmit_err(ifp, m, NULL, AF_UNSPEC); 2185 return (ENOBUFS); 2186 } 2187 2188 ret = determine_af_and_pullup(&m, &af); 2189 if (ret) { 2190 xmit_err(ifp, m, NULL, AF_UNSPEC); 2191 return (ret); 2192 } 2193 return (wg_xmit(ifp, m, af, if_getmtu(ifp))); 2194 } 2195 2196 static int 2197 wg_output(if_t ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) 2198 { 2199 sa_family_t parsed_af; 2200 uint32_t af, mtu; 2201 int ret; 2202 struct mbuf *defragged; 2203 2204 if (dst->sa_family == AF_UNSPEC) 2205 memcpy(&af, dst->sa_data, sizeof(af)); 2206 else 2207 af = dst->sa_family; 2208 if (af == AF_UNSPEC) { 2209 xmit_err(ifp, m, NULL, af); 2210 return (EAFNOSUPPORT); 2211 } 2212 2213 defragged = m_defrag(m, M_NOWAIT); 2214 if (defragged) 2215 m = defragged; 2216 m = m_unshare(m, M_NOWAIT); 2217 if (!m) { 2218 xmit_err(ifp, m, NULL, AF_UNSPEC); 2219 return (ENOBUFS); 2220 } 2221 2222 ret = determine_af_and_pullup(&m, &parsed_af); 2223 if (ret) { 2224 xmit_err(ifp, m, NULL, AF_UNSPEC); 2225 return (ret); 2226 } 2227 if (parsed_af != af) { 2228 xmit_err(ifp, m, NULL, AF_UNSPEC); 2229 return (EAFNOSUPPORT); 2230 } 2231 mtu = (ro != NULL && ro->ro_mtu > 0) ? ro->ro_mtu : if_getmtu(ifp); 2232 return (wg_xmit(ifp, m, parsed_af, mtu)); 2233 } 2234 2235 static int 2236 wg_peer_add(struct wg_softc *sc, const nvlist_t *nvl) 2237 { 2238 uint8_t public[WG_KEY_SIZE]; 2239 const void *pub_key, *preshared_key = NULL; 2240 const struct sockaddr *endpoint; 2241 int err; 2242 size_t size; 2243 struct noise_remote *remote; 2244 struct wg_peer *peer = NULL; 2245 bool need_insert = false; 2246 2247 sx_assert(&sc->sc_lock, SX_XLOCKED); 2248 2249 if (!nvlist_exists_binary(nvl, "public-key")) { 2250 return (EINVAL); 2251 } 2252 pub_key = nvlist_get_binary(nvl, "public-key", &size); 2253 if (size != WG_KEY_SIZE) { 2254 return (EINVAL); 2255 } 2256 if (noise_local_keys(sc->sc_local, public, NULL) == 0 && 2257 bcmp(public, pub_key, WG_KEY_SIZE) == 0) { 2258 return (0); // Silently ignored; not actually a failure. 2259 } 2260 if ((remote = noise_remote_lookup(sc->sc_local, pub_key)) != NULL) 2261 peer = noise_remote_arg(remote); 2262 if (nvlist_exists_bool(nvl, "remove") && 2263 nvlist_get_bool(nvl, "remove")) { 2264 if (remote != NULL) { 2265 wg_peer_destroy(peer); 2266 noise_remote_put(remote); 2267 } 2268 return (0); 2269 } 2270 if (nvlist_exists_bool(nvl, "replace-allowedips") && 2271 nvlist_get_bool(nvl, "replace-allowedips") && 2272 peer != NULL) { 2273 2274 wg_aip_remove_all(sc, peer); 2275 } 2276 if (peer == NULL) { 2277 peer = wg_peer_alloc(sc, pub_key); 2278 need_insert = true; 2279 } 2280 if (nvlist_exists_binary(nvl, "endpoint")) { 2281 endpoint = nvlist_get_binary(nvl, "endpoint", &size); 2282 if (size > sizeof(peer->p_endpoint.e_remote)) { 2283 err = EINVAL; 2284 goto out; 2285 } 2286 memcpy(&peer->p_endpoint.e_remote, endpoint, size); 2287 } 2288 if (nvlist_exists_binary(nvl, "preshared-key")) { 2289 preshared_key = nvlist_get_binary(nvl, "preshared-key", &size); 2290 if (size != WG_KEY_SIZE) { 2291 err = EINVAL; 2292 goto out; 2293 } 2294 noise_remote_set_psk(peer->p_remote, preshared_key); 2295 } 2296 if (nvlist_exists_number(nvl, "persistent-keepalive-interval")) { 2297 uint64_t pki = nvlist_get_number(nvl, "persistent-keepalive-interval"); 2298 if (pki > UINT16_MAX) { 2299 err = EINVAL; 2300 goto out; 2301 } 2302 wg_timers_set_persistent_keepalive(peer, pki); 2303 } 2304 if (nvlist_exists_nvlist_array(nvl, "allowed-ips")) { 2305 const void *addr; 2306 uint64_t cidr; 2307 const nvlist_t * const * aipl; 2308 size_t allowedip_count; 2309 2310 aipl = nvlist_get_nvlist_array(nvl, "allowed-ips", &allowedip_count); 2311 for (size_t idx = 0; idx < allowedip_count; idx++) { 2312 if (!nvlist_exists_number(aipl[idx], "cidr")) 2313 continue; 2314 cidr = nvlist_get_number(aipl[idx], "cidr"); 2315 if (nvlist_exists_binary(aipl[idx], "ipv4")) { 2316 addr = nvlist_get_binary(aipl[idx], "ipv4", &size); 2317 if (addr == NULL || cidr > 32 || size != sizeof(struct in_addr)) { 2318 err = EINVAL; 2319 goto out; 2320 } 2321 if ((err = wg_aip_add(sc, peer, AF_INET, addr, cidr)) != 0) 2322 goto out; 2323 } else if (nvlist_exists_binary(aipl[idx], "ipv6")) { 2324 addr = nvlist_get_binary(aipl[idx], "ipv6", &size); 2325 if (addr == NULL || cidr > 128 || size != sizeof(struct in6_addr)) { 2326 err = EINVAL; 2327 goto out; 2328 } 2329 if ((err = wg_aip_add(sc, peer, AF_INET6, addr, cidr)) != 0) 2330 goto out; 2331 } else { 2332 continue; 2333 } 2334 } 2335 } 2336 if (need_insert) { 2337 if ((err = noise_remote_enable(peer->p_remote)) != 0) 2338 goto out; 2339 TAILQ_INSERT_TAIL(&sc->sc_peers, peer, p_entry); 2340 sc->sc_peers_num++; 2341 if (if_getlinkstate(sc->sc_ifp) == LINK_STATE_UP) 2342 wg_timers_enable(peer); 2343 } 2344 if (remote != NULL) 2345 noise_remote_put(remote); 2346 return (0); 2347 out: 2348 if (need_insert) /* If we fail, only destroy if it was new. */ 2349 wg_peer_destroy(peer); 2350 if (remote != NULL) 2351 noise_remote_put(remote); 2352 return (err); 2353 } 2354 2355 static int 2356 wgc_set(struct wg_softc *sc, struct wg_data_io *wgd) 2357 { 2358 uint8_t public[WG_KEY_SIZE], private[WG_KEY_SIZE]; 2359 if_t ifp; 2360 void *nvlpacked; 2361 nvlist_t *nvl; 2362 ssize_t size; 2363 int err; 2364 2365 ifp = sc->sc_ifp; 2366 if (wgd->wgd_size == 0 || wgd->wgd_data == NULL) 2367 return (EFAULT); 2368 2369 /* Can nvlists be streamed in? It's not nice to impose arbitrary limits like that but 2370 * there needs to be _some_ limitation. */ 2371 if (wgd->wgd_size >= UINT32_MAX / 2) 2372 return (E2BIG); 2373 2374 nvlpacked = malloc(wgd->wgd_size, M_TEMP, M_WAITOK | M_ZERO); 2375 2376 err = copyin(wgd->wgd_data, nvlpacked, wgd->wgd_size); 2377 if (err) 2378 goto out; 2379 nvl = nvlist_unpack(nvlpacked, wgd->wgd_size, 0); 2380 if (nvl == NULL) { 2381 err = EBADMSG; 2382 goto out; 2383 } 2384 sx_xlock(&sc->sc_lock); 2385 if (nvlist_exists_bool(nvl, "replace-peers") && 2386 nvlist_get_bool(nvl, "replace-peers")) 2387 wg_peer_destroy_all(sc); 2388 if (nvlist_exists_number(nvl, "listen-port")) { 2389 uint64_t new_port = nvlist_get_number(nvl, "listen-port"); 2390 if (new_port > UINT16_MAX) { 2391 err = EINVAL; 2392 goto out_locked; 2393 } 2394 if (new_port != sc->sc_socket.so_port) { 2395 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2396 if ((err = wg_socket_init(sc, new_port)) != 0) 2397 goto out_locked; 2398 } else 2399 sc->sc_socket.so_port = new_port; 2400 } 2401 } 2402 if (nvlist_exists_binary(nvl, "private-key")) { 2403 const void *key = nvlist_get_binary(nvl, "private-key", &size); 2404 if (size != WG_KEY_SIZE) { 2405 err = EINVAL; 2406 goto out_locked; 2407 } 2408 2409 if (noise_local_keys(sc->sc_local, NULL, private) != 0 || 2410 timingsafe_bcmp(private, key, WG_KEY_SIZE) != 0) { 2411 struct wg_peer *peer; 2412 2413 if (curve25519_generate_public(public, key)) { 2414 /* Peer conflict: remove conflicting peer. */ 2415 struct noise_remote *remote; 2416 if ((remote = noise_remote_lookup(sc->sc_local, 2417 public)) != NULL) { 2418 peer = noise_remote_arg(remote); 2419 wg_peer_destroy(peer); 2420 noise_remote_put(remote); 2421 } 2422 } 2423 2424 /* 2425 * Set the private key and invalidate all existing 2426 * handshakes. 2427 */ 2428 /* Note: we might be removing the private key. */ 2429 noise_local_private(sc->sc_local, key); 2430 if (noise_local_keys(sc->sc_local, NULL, NULL) == 0) 2431 cookie_checker_update(&sc->sc_cookie, public); 2432 else 2433 cookie_checker_update(&sc->sc_cookie, NULL); 2434 } 2435 } 2436 if (nvlist_exists_number(nvl, "user-cookie")) { 2437 uint64_t user_cookie = nvlist_get_number(nvl, "user-cookie"); 2438 if (user_cookie > UINT32_MAX) { 2439 err = EINVAL; 2440 goto out_locked; 2441 } 2442 err = wg_socket_set_cookie(sc, user_cookie); 2443 if (err) 2444 goto out_locked; 2445 } 2446 if (nvlist_exists_nvlist_array(nvl, "peers")) { 2447 size_t peercount; 2448 const nvlist_t * const*nvl_peers; 2449 2450 nvl_peers = nvlist_get_nvlist_array(nvl, "peers", &peercount); 2451 for (int i = 0; i < peercount; i++) { 2452 err = wg_peer_add(sc, nvl_peers[i]); 2453 if (err != 0) 2454 goto out_locked; 2455 } 2456 } 2457 2458 out_locked: 2459 sx_xunlock(&sc->sc_lock); 2460 nvlist_destroy(nvl); 2461 out: 2462 zfree(nvlpacked, M_TEMP); 2463 return (err); 2464 } 2465 2466 static int 2467 wgc_get(struct wg_softc *sc, struct wg_data_io *wgd) 2468 { 2469 uint8_t public_key[WG_KEY_SIZE] = { 0 }; 2470 uint8_t private_key[WG_KEY_SIZE] = { 0 }; 2471 uint8_t preshared_key[NOISE_SYMMETRIC_KEY_LEN] = { 0 }; 2472 nvlist_t *nvl, *nvl_peer, *nvl_aip, **nvl_peers, **nvl_aips; 2473 size_t size, peer_count, aip_count, i, j; 2474 struct wg_timespec64 ts64; 2475 struct wg_peer *peer; 2476 struct wg_aip *aip; 2477 void *packed; 2478 int err = 0; 2479 2480 nvl = nvlist_create(0); 2481 if (!nvl) 2482 return (ENOMEM); 2483 2484 sx_slock(&sc->sc_lock); 2485 2486 if (sc->sc_socket.so_port != 0) 2487 nvlist_add_number(nvl, "listen-port", sc->sc_socket.so_port); 2488 if (sc->sc_socket.so_user_cookie != 0) 2489 nvlist_add_number(nvl, "user-cookie", sc->sc_socket.so_user_cookie); 2490 if (noise_local_keys(sc->sc_local, public_key, private_key) == 0) { 2491 nvlist_add_binary(nvl, "public-key", public_key, WG_KEY_SIZE); 2492 if (wgc_privileged(sc)) 2493 nvlist_add_binary(nvl, "private-key", private_key, WG_KEY_SIZE); 2494 explicit_bzero(private_key, sizeof(private_key)); 2495 } 2496 peer_count = sc->sc_peers_num; 2497 if (peer_count) { 2498 nvl_peers = mallocarray(peer_count, sizeof(void *), M_NVLIST, M_WAITOK | M_ZERO); 2499 i = 0; 2500 TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) { 2501 if (i >= peer_count) 2502 panic("peers changed from under us"); 2503 2504 nvl_peers[i++] = nvl_peer = nvlist_create(0); 2505 if (!nvl_peer) { 2506 err = ENOMEM; 2507 goto err_peer; 2508 } 2509 2510 (void)noise_remote_keys(peer->p_remote, public_key, preshared_key); 2511 nvlist_add_binary(nvl_peer, "public-key", public_key, sizeof(public_key)); 2512 if (wgc_privileged(sc)) 2513 nvlist_add_binary(nvl_peer, "preshared-key", preshared_key, sizeof(preshared_key)); 2514 explicit_bzero(preshared_key, sizeof(preshared_key)); 2515 if (peer->p_endpoint.e_remote.r_sa.sa_family == AF_INET) 2516 nvlist_add_binary(nvl_peer, "endpoint", &peer->p_endpoint.e_remote, sizeof(struct sockaddr_in)); 2517 else if (peer->p_endpoint.e_remote.r_sa.sa_family == AF_INET6) 2518 nvlist_add_binary(nvl_peer, "endpoint", &peer->p_endpoint.e_remote, sizeof(struct sockaddr_in6)); 2519 wg_timers_get_last_handshake(peer, &ts64); 2520 nvlist_add_binary(nvl_peer, "last-handshake-time", &ts64, sizeof(ts64)); 2521 nvlist_add_number(nvl_peer, "persistent-keepalive-interval", peer->p_persistent_keepalive_interval); 2522 nvlist_add_number(nvl_peer, "rx-bytes", counter_u64_fetch(peer->p_rx_bytes)); 2523 nvlist_add_number(nvl_peer, "tx-bytes", counter_u64_fetch(peer->p_tx_bytes)); 2524 2525 aip_count = peer->p_aips_num; 2526 if (aip_count) { 2527 nvl_aips = mallocarray(aip_count, sizeof(void *), M_NVLIST, M_WAITOK | M_ZERO); 2528 j = 0; 2529 LIST_FOREACH(aip, &peer->p_aips, a_entry) { 2530 if (j >= aip_count) 2531 panic("aips changed from under us"); 2532 2533 nvl_aips[j++] = nvl_aip = nvlist_create(0); 2534 if (!nvl_aip) { 2535 err = ENOMEM; 2536 goto err_aip; 2537 } 2538 if (aip->a_af == AF_INET) { 2539 nvlist_add_binary(nvl_aip, "ipv4", &aip->a_addr.in, sizeof(aip->a_addr.in)); 2540 nvlist_add_number(nvl_aip, "cidr", bitcount32(aip->a_mask.ip)); 2541 } 2542 #ifdef INET6 2543 else if (aip->a_af == AF_INET6) { 2544 nvlist_add_binary(nvl_aip, "ipv6", &aip->a_addr.in6, sizeof(aip->a_addr.in6)); 2545 nvlist_add_number(nvl_aip, "cidr", in6_mask2len(&aip->a_mask.in6, NULL)); 2546 } 2547 #endif 2548 } 2549 nvlist_add_nvlist_array(nvl_peer, "allowed-ips", (const nvlist_t *const *)nvl_aips, aip_count); 2550 err_aip: 2551 for (j = 0; j < aip_count; ++j) 2552 nvlist_destroy(nvl_aips[j]); 2553 free(nvl_aips, M_NVLIST); 2554 if (err) 2555 goto err_peer; 2556 } 2557 } 2558 nvlist_add_nvlist_array(nvl, "peers", (const nvlist_t * const *)nvl_peers, peer_count); 2559 err_peer: 2560 for (i = 0; i < peer_count; ++i) 2561 nvlist_destroy(nvl_peers[i]); 2562 free(nvl_peers, M_NVLIST); 2563 if (err) { 2564 sx_sunlock(&sc->sc_lock); 2565 goto err; 2566 } 2567 } 2568 sx_sunlock(&sc->sc_lock); 2569 packed = nvlist_pack(nvl, &size); 2570 if (!packed) { 2571 err = ENOMEM; 2572 goto err; 2573 } 2574 if (!wgd->wgd_size) { 2575 wgd->wgd_size = size; 2576 goto out; 2577 } 2578 if (wgd->wgd_size < size) { 2579 err = ENOSPC; 2580 goto out; 2581 } 2582 err = copyout(packed, wgd->wgd_data, size); 2583 wgd->wgd_size = size; 2584 2585 out: 2586 zfree(packed, M_NVLIST); 2587 err: 2588 nvlist_destroy(nvl); 2589 return (err); 2590 } 2591 2592 static int 2593 wg_ioctl(if_t ifp, u_long cmd, caddr_t data) 2594 { 2595 struct wg_data_io *wgd = (struct wg_data_io *)data; 2596 struct ifreq *ifr = (struct ifreq *)data; 2597 struct wg_softc *sc; 2598 int ret = 0; 2599 2600 sx_slock(&wg_sx); 2601 sc = if_getsoftc(ifp); 2602 if (!sc) { 2603 ret = ENXIO; 2604 goto out; 2605 } 2606 2607 switch (cmd) { 2608 case SIOCSWG: 2609 ret = priv_check(curthread, PRIV_NET_WG); 2610 if (ret == 0) 2611 ret = wgc_set(sc, wgd); 2612 break; 2613 case SIOCGWG: 2614 ret = wgc_get(sc, wgd); 2615 break; 2616 /* Interface IOCTLs */ 2617 case SIOCSIFADDR: 2618 /* 2619 * This differs from *BSD norms, but is more uniform with how 2620 * WireGuard behaves elsewhere. 2621 */ 2622 break; 2623 case SIOCSIFFLAGS: 2624 if (if_getflags(ifp) & IFF_UP) 2625 ret = wg_up(sc); 2626 else 2627 wg_down(sc); 2628 break; 2629 case SIOCSIFMTU: 2630 if (ifr->ifr_mtu <= 0 || ifr->ifr_mtu > MAX_MTU) 2631 ret = EINVAL; 2632 else 2633 if_setmtu(ifp, ifr->ifr_mtu); 2634 break; 2635 case SIOCADDMULTI: 2636 case SIOCDELMULTI: 2637 break; 2638 case SIOCGTUNFIB: 2639 ifr->ifr_fib = sc->sc_socket.so_fibnum; 2640 break; 2641 case SIOCSTUNFIB: 2642 ret = priv_check(curthread, PRIV_NET_WG); 2643 if (ret) 2644 break; 2645 ret = priv_check(curthread, PRIV_NET_SETIFFIB); 2646 if (ret) 2647 break; 2648 sx_xlock(&sc->sc_lock); 2649 ret = wg_socket_set_fibnum(sc, ifr->ifr_fib); 2650 sx_xunlock(&sc->sc_lock); 2651 break; 2652 default: 2653 ret = ENOTTY; 2654 } 2655 2656 out: 2657 sx_sunlock(&wg_sx); 2658 return (ret); 2659 } 2660 2661 static int 2662 wg_up(struct wg_softc *sc) 2663 { 2664 if_t ifp = sc->sc_ifp; 2665 struct wg_peer *peer; 2666 int rc = EBUSY; 2667 2668 sx_xlock(&sc->sc_lock); 2669 /* Jail's being removed, no more wg_up(). */ 2670 if ((sc->sc_flags & WGF_DYING) != 0) 2671 goto out; 2672 2673 /* Silent success if we're already running. */ 2674 rc = 0; 2675 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2676 goto out; 2677 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 2678 2679 rc = wg_socket_init(sc, sc->sc_socket.so_port); 2680 if (rc == 0) { 2681 TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) 2682 wg_timers_enable(peer); 2683 if_link_state_change(sc->sc_ifp, LINK_STATE_UP); 2684 } else { 2685 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2686 DPRINTF(sc, "Unable to initialize sockets: %d\n", rc); 2687 } 2688 out: 2689 sx_xunlock(&sc->sc_lock); 2690 return (rc); 2691 } 2692 2693 static void 2694 wg_down(struct wg_softc *sc) 2695 { 2696 if_t ifp = sc->sc_ifp; 2697 struct wg_peer *peer; 2698 2699 sx_xlock(&sc->sc_lock); 2700 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 2701 sx_xunlock(&sc->sc_lock); 2702 return; 2703 } 2704 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2705 2706 TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) { 2707 wg_queue_purge(&peer->p_stage_queue); 2708 wg_timers_disable(peer); 2709 } 2710 2711 wg_queue_purge(&sc->sc_handshake_queue); 2712 2713 TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) { 2714 noise_remote_handshake_clear(peer->p_remote); 2715 noise_remote_keypairs_clear(peer->p_remote); 2716 } 2717 2718 if_link_state_change(sc->sc_ifp, LINK_STATE_DOWN); 2719 wg_socket_uninit(sc); 2720 2721 sx_xunlock(&sc->sc_lock); 2722 } 2723 2724 static int 2725 wg_clone_create(struct if_clone *ifc, char *name, size_t len, 2726 struct ifc_data *ifd, struct ifnet **ifpp) 2727 { 2728 struct wg_softc *sc; 2729 if_t ifp; 2730 2731 sc = malloc(sizeof(*sc), M_WG, M_WAITOK | M_ZERO); 2732 2733 sc->sc_local = noise_local_alloc(sc); 2734 2735 sc->sc_encrypt = mallocarray(sizeof(struct grouptask), mp_ncpus, M_WG, M_WAITOK | M_ZERO); 2736 2737 sc->sc_decrypt = mallocarray(sizeof(struct grouptask), mp_ncpus, M_WG, M_WAITOK | M_ZERO); 2738 2739 if (!rn_inithead((void **)&sc->sc_aip4, offsetof(struct aip_addr, in) * NBBY)) 2740 goto free_decrypt; 2741 2742 if (!rn_inithead((void **)&sc->sc_aip6, offsetof(struct aip_addr, in6) * NBBY)) 2743 goto free_aip4; 2744 2745 atomic_add_int(&clone_count, 1); 2746 ifp = sc->sc_ifp = if_alloc(IFT_WIREGUARD); 2747 2748 sc->sc_ucred = crhold(curthread->td_ucred); 2749 sc->sc_socket.so_fibnum = curthread->td_proc->p_fibnum; 2750 sc->sc_socket.so_port = 0; 2751 2752 TAILQ_INIT(&sc->sc_peers); 2753 sc->sc_peers_num = 0; 2754 2755 cookie_checker_init(&sc->sc_cookie); 2756 2757 RADIX_NODE_HEAD_LOCK_INIT(sc->sc_aip4); 2758 RADIX_NODE_HEAD_LOCK_INIT(sc->sc_aip6); 2759 2760 GROUPTASK_INIT(&sc->sc_handshake, 0, (gtask_fn_t *)wg_softc_handshake_receive, sc); 2761 taskqgroup_attach(qgroup_wg_tqg, &sc->sc_handshake, sc, NULL, NULL, "wg tx initiation"); 2762 wg_queue_init(&sc->sc_handshake_queue, "hsq"); 2763 2764 for (int i = 0; i < mp_ncpus; i++) { 2765 GROUPTASK_INIT(&sc->sc_encrypt[i], 0, 2766 (gtask_fn_t *)wg_softc_encrypt, sc); 2767 taskqgroup_attach_cpu(qgroup_wg_tqg, &sc->sc_encrypt[i], sc, i, NULL, NULL, "wg encrypt"); 2768 GROUPTASK_INIT(&sc->sc_decrypt[i], 0, 2769 (gtask_fn_t *)wg_softc_decrypt, sc); 2770 taskqgroup_attach_cpu(qgroup_wg_tqg, &sc->sc_decrypt[i], sc, i, NULL, NULL, "wg decrypt"); 2771 } 2772 2773 wg_queue_init(&sc->sc_encrypt_parallel, "encp"); 2774 wg_queue_init(&sc->sc_decrypt_parallel, "decp"); 2775 2776 sx_init(&sc->sc_lock, "wg softc lock"); 2777 2778 if_setsoftc(ifp, sc); 2779 if_setcapabilities(ifp, WG_CAPS); 2780 if_setcapenable(ifp, WG_CAPS); 2781 if_initname(ifp, wgname, ifd->unit); 2782 2783 if_setmtu(ifp, DEFAULT_MTU); 2784 if_setflags(ifp, IFF_NOARP | IFF_MULTICAST); 2785 if_setinitfn(ifp, wg_init); 2786 if_setreassignfn(ifp, wg_reassign); 2787 if_setqflushfn(ifp, wg_qflush); 2788 if_settransmitfn(ifp, wg_transmit); 2789 if_setoutputfn(ifp, wg_output); 2790 if_setioctlfn(ifp, wg_ioctl); 2791 if_attach(ifp); 2792 bpfattach(ifp, DLT_NULL, sizeof(uint32_t)); 2793 #ifdef INET6 2794 ND_IFINFO(ifp)->flags &= ~ND6_IFF_AUTO_LINKLOCAL; 2795 ND_IFINFO(ifp)->flags |= ND6_IFF_NO_DAD; 2796 #endif 2797 sx_xlock(&wg_sx); 2798 LIST_INSERT_HEAD(&wg_list, sc, sc_entry); 2799 sx_xunlock(&wg_sx); 2800 *ifpp = ifp; 2801 return (0); 2802 free_aip4: 2803 RADIX_NODE_HEAD_DESTROY(sc->sc_aip4); 2804 free(sc->sc_aip4, M_RTABLE); 2805 free_decrypt: 2806 free(sc->sc_decrypt, M_WG); 2807 free(sc->sc_encrypt, M_WG); 2808 noise_local_free(sc->sc_local, NULL); 2809 free(sc, M_WG); 2810 return (ENOMEM); 2811 } 2812 2813 static void 2814 wg_clone_deferred_free(struct noise_local *l) 2815 { 2816 struct wg_softc *sc = noise_local_arg(l); 2817 2818 free(sc, M_WG); 2819 atomic_add_int(&clone_count, -1); 2820 } 2821 2822 static int 2823 wg_clone_destroy(struct if_clone *ifc, if_t ifp, uint32_t flags) 2824 { 2825 struct wg_softc *sc = if_getsoftc(ifp); 2826 struct ucred *cred; 2827 2828 sx_xlock(&wg_sx); 2829 if_setsoftc(ifp, NULL); 2830 sx_xlock(&sc->sc_lock); 2831 sc->sc_flags |= WGF_DYING; 2832 cred = sc->sc_ucred; 2833 sc->sc_ucred = NULL; 2834 sx_xunlock(&sc->sc_lock); 2835 LIST_REMOVE(sc, sc_entry); 2836 sx_xunlock(&wg_sx); 2837 2838 if_link_state_change(sc->sc_ifp, LINK_STATE_DOWN); 2839 CURVNET_SET(if_getvnet(sc->sc_ifp)); 2840 if_purgeaddrs(sc->sc_ifp); 2841 CURVNET_RESTORE(); 2842 2843 sx_xlock(&sc->sc_lock); 2844 wg_socket_uninit(sc); 2845 sx_xunlock(&sc->sc_lock); 2846 2847 /* 2848 * No guarantees that all traffic have passed until the epoch has 2849 * elapsed with the socket closed. 2850 */ 2851 NET_EPOCH_WAIT(); 2852 2853 taskqgroup_drain_all(qgroup_wg_tqg); 2854 sx_xlock(&sc->sc_lock); 2855 wg_peer_destroy_all(sc); 2856 NET_EPOCH_DRAIN_CALLBACKS(); 2857 sx_xunlock(&sc->sc_lock); 2858 sx_destroy(&sc->sc_lock); 2859 taskqgroup_detach(qgroup_wg_tqg, &sc->sc_handshake); 2860 for (int i = 0; i < mp_ncpus; i++) { 2861 taskqgroup_detach(qgroup_wg_tqg, &sc->sc_encrypt[i]); 2862 taskqgroup_detach(qgroup_wg_tqg, &sc->sc_decrypt[i]); 2863 } 2864 free(sc->sc_encrypt, M_WG); 2865 free(sc->sc_decrypt, M_WG); 2866 wg_queue_deinit(&sc->sc_handshake_queue); 2867 wg_queue_deinit(&sc->sc_encrypt_parallel); 2868 wg_queue_deinit(&sc->sc_decrypt_parallel); 2869 2870 RADIX_NODE_HEAD_DESTROY(sc->sc_aip4); 2871 RADIX_NODE_HEAD_DESTROY(sc->sc_aip6); 2872 rn_detachhead((void **)&sc->sc_aip4); 2873 rn_detachhead((void **)&sc->sc_aip6); 2874 2875 cookie_checker_free(&sc->sc_cookie); 2876 2877 if (cred != NULL) 2878 crfree(cred); 2879 bpfdetach(sc->sc_ifp); 2880 if_detach(sc->sc_ifp); 2881 if_free(sc->sc_ifp); 2882 2883 noise_local_free(sc->sc_local, wg_clone_deferred_free); 2884 2885 return (0); 2886 } 2887 2888 static void 2889 wg_qflush(if_t ifp __unused) 2890 { 2891 } 2892 2893 /* 2894 * Privileged information (private-key, preshared-key) are only exported for 2895 * root and jailed root by default. 2896 */ 2897 static bool 2898 wgc_privileged(struct wg_softc *sc) 2899 { 2900 struct thread *td; 2901 2902 td = curthread; 2903 return (priv_check(td, PRIV_NET_WG) == 0); 2904 } 2905 2906 static void 2907 wg_reassign(if_t ifp, struct vnet *new_vnet __unused, 2908 char *unused __unused) 2909 { 2910 struct wg_softc *sc; 2911 2912 sc = if_getsoftc(ifp); 2913 wg_down(sc); 2914 } 2915 2916 static void 2917 wg_init(void *xsc) 2918 { 2919 struct wg_softc *sc; 2920 2921 sc = xsc; 2922 wg_up(sc); 2923 } 2924 2925 static void 2926 vnet_wg_init(const void *unused __unused) 2927 { 2928 struct if_clone_addreq req = { 2929 .create_f = wg_clone_create, 2930 .destroy_f = wg_clone_destroy, 2931 .flags = IFC_F_AUTOUNIT, 2932 }; 2933 V_wg_cloner = ifc_attach_cloner(wgname, &req); 2934 } 2935 VNET_SYSINIT(vnet_wg_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 2936 vnet_wg_init, NULL); 2937 2938 static void 2939 vnet_wg_uninit(const void *unused __unused) 2940 { 2941 if (V_wg_cloner) 2942 ifc_detach_cloner(V_wg_cloner); 2943 } 2944 VNET_SYSUNINIT(vnet_wg_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 2945 vnet_wg_uninit, NULL); 2946 2947 static int 2948 wg_prison_remove(void *obj, void *data __unused) 2949 { 2950 const struct prison *pr = obj; 2951 struct wg_softc *sc; 2952 2953 /* 2954 * Do a pass through all if_wg interfaces and release creds on any from 2955 * the jail that are supposed to be going away. This will, in turn, let 2956 * the jail die so that we don't end up with Schrödinger's jail. 2957 */ 2958 sx_slock(&wg_sx); 2959 LIST_FOREACH(sc, &wg_list, sc_entry) { 2960 sx_xlock(&sc->sc_lock); 2961 if (!(sc->sc_flags & WGF_DYING) && sc->sc_ucred && sc->sc_ucred->cr_prison == pr) { 2962 struct ucred *cred = sc->sc_ucred; 2963 DPRINTF(sc, "Creating jail exiting\n"); 2964 if_link_state_change(sc->sc_ifp, LINK_STATE_DOWN); 2965 wg_socket_uninit(sc); 2966 sc->sc_ucred = NULL; 2967 crfree(cred); 2968 sc->sc_flags |= WGF_DYING; 2969 } 2970 sx_xunlock(&sc->sc_lock); 2971 } 2972 sx_sunlock(&wg_sx); 2973 2974 return (0); 2975 } 2976 2977 #ifdef SELFTESTS 2978 #include "selftest/allowedips.c" 2979 static bool wg_run_selftests(void) 2980 { 2981 bool ret = true; 2982 ret &= wg_allowedips_selftest(); 2983 ret &= noise_counter_selftest(); 2984 ret &= cookie_selftest(); 2985 return ret; 2986 } 2987 #else 2988 static inline bool wg_run_selftests(void) { return true; } 2989 #endif 2990 2991 static int 2992 wg_module_init(void) 2993 { 2994 int ret; 2995 osd_method_t methods[PR_MAXMETHOD] = { 2996 [PR_METHOD_REMOVE] = wg_prison_remove, 2997 }; 2998 2999 if ((wg_packet_zone = uma_zcreate("wg packet", sizeof(struct wg_packet), 3000 NULL, NULL, NULL, NULL, 0, 0)) == NULL) 3001 return (ENOMEM); 3002 ret = crypto_init(); 3003 if (ret != 0) 3004 return (ret); 3005 ret = cookie_init(); 3006 if (ret != 0) 3007 return (ret); 3008 3009 wg_osd_jail_slot = osd_jail_register(NULL, methods); 3010 3011 if (!wg_run_selftests()) 3012 return (ENOTRECOVERABLE); 3013 3014 return (0); 3015 } 3016 3017 static void 3018 wg_module_deinit(void) 3019 { 3020 VNET_ITERATOR_DECL(vnet_iter); 3021 VNET_LIST_RLOCK(); 3022 VNET_FOREACH(vnet_iter) { 3023 struct if_clone *clone = VNET_VNET(vnet_iter, wg_cloner); 3024 if (clone) { 3025 ifc_detach_cloner(clone); 3026 VNET_VNET(vnet_iter, wg_cloner) = NULL; 3027 } 3028 } 3029 VNET_LIST_RUNLOCK(); 3030 NET_EPOCH_WAIT(); 3031 MPASS(LIST_EMPTY(&wg_list)); 3032 if (wg_osd_jail_slot != 0) 3033 osd_jail_deregister(wg_osd_jail_slot); 3034 cookie_deinit(); 3035 crypto_deinit(); 3036 if (wg_packet_zone != NULL) 3037 uma_zdestroy(wg_packet_zone); 3038 } 3039 3040 static int 3041 wg_module_event_handler(module_t mod, int what, void *arg) 3042 { 3043 switch (what) { 3044 case MOD_LOAD: 3045 return wg_module_init(); 3046 case MOD_UNLOAD: 3047 wg_module_deinit(); 3048 break; 3049 default: 3050 return (EOPNOTSUPP); 3051 } 3052 return (0); 3053 } 3054 3055 static moduledata_t wg_moduledata = { 3056 "if_wg", 3057 wg_module_event_handler, 3058 NULL 3059 }; 3060 3061 DECLARE_MODULE(if_wg, wg_moduledata, SI_SUB_PSEUDO, SI_ORDER_ANY); 3062 MODULE_VERSION(if_wg, WIREGUARD_VERSION); 3063 MODULE_DEPEND(if_wg, crypto, 1, 1, 1); 3064