xref: /freebsd/sys/dev/vte/if_vte.c (revision c203bd70b5957f85616424b6fa374479372d06e3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/rman.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 #include <net/if_vlan_var.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 
70 #include <machine/bus.h>
71 
72 #include <dev/vte/if_vtereg.h>
73 #include <dev/vte/if_vtevar.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 MODULE_DEPEND(vte, pci, 1, 1, 1);
79 MODULE_DEPEND(vte, ether, 1, 1, 1);
80 MODULE_DEPEND(vte, miibus, 1, 1, 1);
81 
82 /* Tunables. */
83 static int tx_deep_copy = 1;
84 TUNABLE_INT("hw.vte.tx_deep_copy", &tx_deep_copy);
85 
86 /*
87  * Devices supported by this driver.
88  */
89 static const struct vte_ident vte_ident_table[] = {
90 	{ VENDORID_RDC, DEVICEID_RDC_R6040, "RDC R6040 FastEthernet"},
91 	{ 0, 0, NULL}
92 };
93 
94 static int	vte_attach(device_t);
95 static int	vte_detach(device_t);
96 static int	vte_dma_alloc(struct vte_softc *);
97 static void	vte_dma_free(struct vte_softc *);
98 static void	vte_dmamap_cb(void *, bus_dma_segment_t *, int, int);
99 static struct vte_txdesc *
100 		vte_encap(struct vte_softc *, struct mbuf **);
101 static const struct vte_ident *
102 		vte_find_ident(device_t);
103 #ifndef __NO_STRICT_ALIGNMENT
104 static struct mbuf *
105 		vte_fixup_rx(struct ifnet *, struct mbuf *);
106 #endif
107 static void	vte_get_macaddr(struct vte_softc *);
108 static void	vte_init(void *);
109 static void	vte_init_locked(struct vte_softc *);
110 static int	vte_init_rx_ring(struct vte_softc *);
111 static int	vte_init_tx_ring(struct vte_softc *);
112 static void	vte_intr(void *);
113 static int	vte_ioctl(struct ifnet *, u_long, caddr_t);
114 static uint64_t	vte_get_counter(struct ifnet *, ift_counter);
115 static void	vte_mac_config(struct vte_softc *);
116 static int	vte_miibus_readreg(device_t, int, int);
117 static void	vte_miibus_statchg(device_t);
118 static int	vte_miibus_writereg(device_t, int, int, int);
119 static int	vte_mediachange(struct ifnet *);
120 static int	vte_mediachange_locked(struct ifnet *);
121 static void	vte_mediastatus(struct ifnet *, struct ifmediareq *);
122 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
123 static int	vte_probe(device_t);
124 static void	vte_reset(struct vte_softc *);
125 static int	vte_resume(device_t);
126 static void	vte_rxeof(struct vte_softc *);
127 static void	vte_rxfilter(struct vte_softc *);
128 static int	vte_shutdown(device_t);
129 static void	vte_start(struct ifnet *);
130 static void	vte_start_locked(struct vte_softc *);
131 static void	vte_start_mac(struct vte_softc *);
132 static void	vte_stats_clear(struct vte_softc *);
133 static void	vte_stats_update(struct vte_softc *);
134 static void	vte_stop(struct vte_softc *);
135 static void	vte_stop_mac(struct vte_softc *);
136 static int	vte_suspend(device_t);
137 static void	vte_sysctl_node(struct vte_softc *);
138 static void	vte_tick(void *);
139 static void	vte_txeof(struct vte_softc *);
140 static void	vte_watchdog(struct vte_softc *);
141 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
142 static int	sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS);
143 
144 static device_method_t vte_methods[] = {
145 	/* Device interface. */
146 	DEVMETHOD(device_probe,		vte_probe),
147 	DEVMETHOD(device_attach,	vte_attach),
148 	DEVMETHOD(device_detach,	vte_detach),
149 	DEVMETHOD(device_shutdown,	vte_shutdown),
150 	DEVMETHOD(device_suspend,	vte_suspend),
151 	DEVMETHOD(device_resume,	vte_resume),
152 
153 	/* MII interface. */
154 	DEVMETHOD(miibus_readreg,	vte_miibus_readreg),
155 	DEVMETHOD(miibus_writereg,	vte_miibus_writereg),
156 	DEVMETHOD(miibus_statchg,	vte_miibus_statchg),
157 
158 	DEVMETHOD_END
159 };
160 
161 static driver_t vte_driver = {
162 	"vte",
163 	vte_methods,
164 	sizeof(struct vte_softc)
165 };
166 
167 static devclass_t vte_devclass;
168 
169 DRIVER_MODULE(vte, pci, vte_driver, vte_devclass, 0, 0);
170 DRIVER_MODULE(miibus, vte, miibus_driver, miibus_devclass, 0, 0);
171 
172 static int
173 vte_miibus_readreg(device_t dev, int phy, int reg)
174 {
175 	struct vte_softc *sc;
176 	int i;
177 
178 	sc = device_get_softc(dev);
179 
180 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
181 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
182 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
183 		DELAY(5);
184 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
185 			break;
186 	}
187 
188 	if (i == 0) {
189 		device_printf(sc->vte_dev, "phy read timeout : %d\n", reg);
190 		return (0);
191 	}
192 
193 	return (CSR_READ_2(sc, VTE_MMRD));
194 }
195 
196 static int
197 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
198 {
199 	struct vte_softc *sc;
200 	int i;
201 
202 	sc = device_get_softc(dev);
203 
204 	CSR_WRITE_2(sc, VTE_MMWD, val);
205 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
206 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
207 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
208 		DELAY(5);
209 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
210 			break;
211 	}
212 
213 	if (i == 0)
214 		device_printf(sc->vte_dev, "phy write timeout : %d\n", reg);
215 
216 	return (0);
217 }
218 
219 static void
220 vte_miibus_statchg(device_t dev)
221 {
222 	struct vte_softc *sc;
223 	struct mii_data *mii;
224 	struct ifnet *ifp;
225 	uint16_t val;
226 
227 	sc = device_get_softc(dev);
228 
229 	mii = device_get_softc(sc->vte_miibus);
230 	ifp = sc->vte_ifp;
231 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
232 		return;
233 
234 	sc->vte_flags &= ~VTE_FLAG_LINK;
235 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
236 	    (IFM_ACTIVE | IFM_AVALID)) {
237 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
238 		case IFM_10_T:
239 		case IFM_100_TX:
240 			sc->vte_flags |= VTE_FLAG_LINK;
241 			break;
242 		default:
243 			break;
244 		}
245 	}
246 
247 	/* Stop RX/TX MACs. */
248 	vte_stop_mac(sc);
249 	/* Program MACs with resolved duplex and flow control. */
250 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
251 		/*
252 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
253 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
254 		 */
255 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
256 			val = 18 << VTE_IM_TIMER_SHIFT;
257 		else
258 			val = 1 << VTE_IM_TIMER_SHIFT;
259 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
260 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
261 		CSR_WRITE_2(sc, VTE_MRICR, val);
262 
263 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
264 			val = 18 << VTE_IM_TIMER_SHIFT;
265 		else
266 			val = 1 << VTE_IM_TIMER_SHIFT;
267 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
268 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
269 		CSR_WRITE_2(sc, VTE_MTICR, val);
270 
271 		vte_mac_config(sc);
272 		vte_start_mac(sc);
273 	}
274 }
275 
276 static void
277 vte_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
278 {
279 	struct vte_softc *sc;
280 	struct mii_data *mii;
281 
282 	sc = ifp->if_softc;
283 	VTE_LOCK(sc);
284 	if ((ifp->if_flags & IFF_UP) == 0) {
285 		VTE_UNLOCK(sc);
286 		return;
287 	}
288 	mii = device_get_softc(sc->vte_miibus);
289 
290 	mii_pollstat(mii);
291 	ifmr->ifm_status = mii->mii_media_status;
292 	ifmr->ifm_active = mii->mii_media_active;
293 	VTE_UNLOCK(sc);
294 }
295 
296 static int
297 vte_mediachange(struct ifnet *ifp)
298 {
299 	struct vte_softc *sc;
300 	int error;
301 
302 	sc = ifp->if_softc;
303 	VTE_LOCK(sc);
304 	error = vte_mediachange_locked(ifp);
305 	VTE_UNLOCK(sc);
306 	return (error);
307 }
308 
309 static int
310 vte_mediachange_locked(struct ifnet *ifp)
311 {
312 	struct vte_softc *sc;
313 	struct mii_data *mii;
314 	struct mii_softc *miisc;
315 	int error;
316 
317 	sc = ifp->if_softc;
318 	mii = device_get_softc(sc->vte_miibus);
319 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
320 		PHY_RESET(miisc);
321 	error = mii_mediachg(mii);
322 
323 	return (error);
324 }
325 
326 static const struct vte_ident *
327 vte_find_ident(device_t dev)
328 {
329 	const struct vte_ident *ident;
330 	uint16_t vendor, devid;
331 
332 	vendor = pci_get_vendor(dev);
333 	devid = pci_get_device(dev);
334 	for (ident = vte_ident_table; ident->name != NULL; ident++) {
335 		if (vendor == ident->vendorid && devid == ident->deviceid)
336 			return (ident);
337 	}
338 
339 	return (NULL);
340 }
341 
342 static int
343 vte_probe(device_t dev)
344 {
345 	const struct vte_ident *ident;
346 
347 	ident = vte_find_ident(dev);
348 	if (ident != NULL) {
349 		device_set_desc(dev, ident->name);
350 		return (BUS_PROBE_DEFAULT);
351 	}
352 
353 	return (ENXIO);
354 }
355 
356 static void
357 vte_get_macaddr(struct vte_softc *sc)
358 {
359 	uint16_t mid;
360 
361 	/*
362 	 * It seems there is no way to reload station address and
363 	 * it is supposed to be set by BIOS.
364 	 */
365 	mid = CSR_READ_2(sc, VTE_MID0L);
366 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
367 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
368 	mid = CSR_READ_2(sc, VTE_MID0M);
369 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
370 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
371 	mid = CSR_READ_2(sc, VTE_MID0H);
372 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
373 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
374 }
375 
376 static int
377 vte_attach(device_t dev)
378 {
379 	struct vte_softc *sc;
380 	struct ifnet *ifp;
381 	uint16_t macid;
382 	int error, rid;
383 
384 	error = 0;
385 	sc = device_get_softc(dev);
386 	sc->vte_dev = dev;
387 
388 	mtx_init(&sc->vte_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
389 	    MTX_DEF);
390 	callout_init_mtx(&sc->vte_tick_ch, &sc->vte_mtx, 0);
391 	sc->vte_ident = vte_find_ident(dev);
392 
393 	/* Map the device. */
394 	pci_enable_busmaster(dev);
395 	sc->vte_res_id = PCIR_BAR(1);
396 	sc->vte_res_type = SYS_RES_MEMORY;
397 	sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
398 	    &sc->vte_res_id, RF_ACTIVE);
399 	if (sc->vte_res == NULL) {
400 		sc->vte_res_id = PCIR_BAR(0);
401 		sc->vte_res_type = SYS_RES_IOPORT;
402 		sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
403 		    &sc->vte_res_id, RF_ACTIVE);
404 		if (sc->vte_res == NULL) {
405 			device_printf(dev, "cannot map memory/ports.\n");
406 			mtx_destroy(&sc->vte_mtx);
407 			return (ENXIO);
408 		}
409 	}
410 	if (bootverbose) {
411 		device_printf(dev, "using %s space register mapping\n",
412 		    sc->vte_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
413 		device_printf(dev, "MAC Identifier : 0x%04x\n",
414 		    CSR_READ_2(sc, VTE_MACID));
415 		macid = CSR_READ_2(sc, VTE_MACID_REV);
416 		device_printf(dev, "MAC Id. 0x%02x, Rev. 0x%02x\n",
417 		    (macid & VTE_MACID_MASK) >> VTE_MACID_SHIFT,
418 		    (macid & VTE_MACID_REV_MASK) >> VTE_MACID_REV_SHIFT);
419 	}
420 
421 	rid = 0;
422 	sc->vte_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
423 	    RF_SHAREABLE | RF_ACTIVE);
424 	if (sc->vte_irq == NULL) {
425 		device_printf(dev, "cannot allocate IRQ resources.\n");
426 		error = ENXIO;
427 		goto fail;
428 	}
429 
430 	/* Reset the ethernet controller. */
431 	vte_reset(sc);
432 
433 	if ((error = vte_dma_alloc(sc)) != 0)
434 		goto fail;
435 
436 	/* Create device sysctl node. */
437 	vte_sysctl_node(sc);
438 
439 	/* Load station address. */
440 	vte_get_macaddr(sc);
441 
442 	ifp = sc->vte_ifp = if_alloc(IFT_ETHER);
443 	if (ifp == NULL) {
444 		device_printf(dev, "cannot allocate ifnet structure.\n");
445 		error = ENXIO;
446 		goto fail;
447 	}
448 
449 	ifp->if_softc = sc;
450 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
451 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
452 	ifp->if_ioctl = vte_ioctl;
453 	ifp->if_start = vte_start;
454 	ifp->if_init = vte_init;
455 	ifp->if_get_counter = vte_get_counter;
456 	ifp->if_snd.ifq_drv_maxlen = VTE_TX_RING_CNT - 1;
457 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
458 	IFQ_SET_READY(&ifp->if_snd);
459 
460 	/*
461 	 * Set up MII bus.
462 	 * BIOS would have initialized VTE_MPSCCR to catch PHY
463 	 * status changes so driver may be able to extract
464 	 * configured PHY address.  Since it's common to see BIOS
465 	 * fails to initialize the register(including the sample
466 	 * board I have), let mii(4) probe it.  This is more
467 	 * reliable than relying on BIOS's initialization.
468 	 *
469 	 * Advertising flow control capability to mii(4) was
470 	 * intentionally disabled due to severe problems in TX
471 	 * pause frame generation.  See vte_rxeof() for more
472 	 * details.
473 	 */
474 	error = mii_attach(dev, &sc->vte_miibus, ifp, vte_mediachange,
475 	    vte_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
476 	if (error != 0) {
477 		device_printf(dev, "attaching PHYs failed\n");
478 		goto fail;
479 	}
480 
481 	ether_ifattach(ifp, sc->vte_eaddr);
482 
483 	/* VLAN capability setup. */
484 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
485 	ifp->if_capenable = ifp->if_capabilities;
486 	/* Tell the upper layer we support VLAN over-sized frames. */
487 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
488 
489 	error = bus_setup_intr(dev, sc->vte_irq, INTR_TYPE_NET | INTR_MPSAFE,
490 	    NULL, vte_intr, sc, &sc->vte_intrhand);
491 	if (error != 0) {
492 		device_printf(dev, "could not set up interrupt handler.\n");
493 		ether_ifdetach(ifp);
494 		goto fail;
495 	}
496 
497 fail:
498 	if (error != 0)
499 		vte_detach(dev);
500 
501 	return (error);
502 }
503 
504 static int
505 vte_detach(device_t dev)
506 {
507 	struct vte_softc *sc;
508 	struct ifnet *ifp;
509 
510 	sc = device_get_softc(dev);
511 
512 	ifp = sc->vte_ifp;
513 	if (device_is_attached(dev)) {
514 		VTE_LOCK(sc);
515 		vte_stop(sc);
516 		VTE_UNLOCK(sc);
517 		callout_drain(&sc->vte_tick_ch);
518 		ether_ifdetach(ifp);
519 	}
520 
521 	if (sc->vte_miibus != NULL) {
522 		device_delete_child(dev, sc->vte_miibus);
523 		sc->vte_miibus = NULL;
524 	}
525 	bus_generic_detach(dev);
526 
527 	if (sc->vte_intrhand != NULL) {
528 		bus_teardown_intr(dev, sc->vte_irq, sc->vte_intrhand);
529 		sc->vte_intrhand = NULL;
530 	}
531 	if (sc->vte_irq != NULL) {
532 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vte_irq);
533 		sc->vte_irq = NULL;
534 	}
535 	if (sc->vte_res != NULL) {
536 		bus_release_resource(dev, sc->vte_res_type, sc->vte_res_id,
537 		    sc->vte_res);
538 		sc->vte_res = NULL;
539 	}
540 	if (ifp != NULL) {
541 		if_free(ifp);
542 		sc->vte_ifp = NULL;
543 	}
544 	vte_dma_free(sc);
545 	mtx_destroy(&sc->vte_mtx);
546 
547 	return (0);
548 }
549 
550 #define	VTE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
551 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
552 
553 static void
554 vte_sysctl_node(struct vte_softc *sc)
555 {
556 	struct sysctl_ctx_list *ctx;
557 	struct sysctl_oid_list *child, *parent;
558 	struct sysctl_oid *tree;
559 	struct vte_hw_stats *stats;
560 	int error;
561 
562 	stats = &sc->vte_stats;
563 	ctx = device_get_sysctl_ctx(sc->vte_dev);
564 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vte_dev));
565 
566 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
567 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
568 	    &sc->vte_int_rx_mod, 0, sysctl_hw_vte_int_mod, "I",
569 	    "vte RX interrupt moderation");
570 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
571 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
572 	    &sc->vte_int_tx_mod, 0, sysctl_hw_vte_int_mod, "I",
573 	    "vte TX interrupt moderation");
574 	/* Pull in device tunables. */
575 	sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
576 	error = resource_int_value(device_get_name(sc->vte_dev),
577 	    device_get_unit(sc->vte_dev), "int_rx_mod", &sc->vte_int_rx_mod);
578 	if (error == 0) {
579 		if (sc->vte_int_rx_mod < VTE_IM_BUNDLE_MIN ||
580 		    sc->vte_int_rx_mod > VTE_IM_BUNDLE_MAX) {
581 			device_printf(sc->vte_dev, "int_rx_mod value out of "
582 			    "range; using default: %d\n",
583 			    VTE_IM_RX_BUNDLE_DEFAULT);
584 			sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
585 		}
586 	}
587 
588 	sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
589 	error = resource_int_value(device_get_name(sc->vte_dev),
590 	    device_get_unit(sc->vte_dev), "int_tx_mod", &sc->vte_int_tx_mod);
591 	if (error == 0) {
592 		if (sc->vte_int_tx_mod < VTE_IM_BUNDLE_MIN ||
593 		    sc->vte_int_tx_mod > VTE_IM_BUNDLE_MAX) {
594 			device_printf(sc->vte_dev, "int_tx_mod value out of "
595 			    "range; using default: %d\n",
596 			    VTE_IM_TX_BUNDLE_DEFAULT);
597 			sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
598 		}
599 	}
600 
601 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
602 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VTE statistics");
603 	parent = SYSCTL_CHILDREN(tree);
604 
605 	/* RX statistics. */
606 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
607 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
608 	child = SYSCTL_CHILDREN(tree);
609 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
610 	    &stats->rx_frames, "Good frames");
611 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
612 	    &stats->rx_bcast_frames, "Good broadcast frames");
613 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
614 	    &stats->rx_mcast_frames, "Good multicast frames");
615 	VTE_SYSCTL_STAT_ADD32(ctx, child, "runt",
616 	    &stats->rx_runts, "Too short frames");
617 	VTE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
618 	    &stats->rx_crcerrs, "CRC errors");
619 	VTE_SYSCTL_STAT_ADD32(ctx, child, "long_frames",
620 	    &stats->rx_long_frames,
621 	    "Frames that have longer length than maximum packet length");
622 	VTE_SYSCTL_STAT_ADD32(ctx, child, "fifo_full",
623 	    &stats->rx_fifo_full, "FIFO full");
624 	VTE_SYSCTL_STAT_ADD32(ctx, child, "desc_unavail",
625 	    &stats->rx_desc_unavail, "Descriptor unavailable frames");
626 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
627 	    &stats->rx_pause_frames, "Pause control frames");
628 
629 	/* TX statistics. */
630 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
631 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
632 	child = SYSCTL_CHILDREN(tree);
633 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
634 	    &stats->tx_frames, "Good frames");
635 	VTE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
636 	    &stats->tx_underruns, "FIFO underruns");
637 	VTE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
638 	    &stats->tx_late_colls, "Late collisions");
639 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
640 	    &stats->tx_pause_frames, "Pause control frames");
641 }
642 
643 #undef VTE_SYSCTL_STAT_ADD32
644 
645 struct vte_dmamap_arg {
646 	bus_addr_t	vte_busaddr;
647 };
648 
649 static void
650 vte_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
651 {
652 	struct vte_dmamap_arg *ctx;
653 
654 	if (error != 0)
655 		return;
656 
657 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
658 
659 	ctx = (struct vte_dmamap_arg *)arg;
660 	ctx->vte_busaddr = segs[0].ds_addr;
661 }
662 
663 static int
664 vte_dma_alloc(struct vte_softc *sc)
665 {
666 	struct vte_txdesc *txd;
667 	struct vte_rxdesc *rxd;
668 	struct vte_dmamap_arg ctx;
669 	int error, i;
670 
671 	/* Create parent DMA tag. */
672 	error = bus_dma_tag_create(
673 	    bus_get_dma_tag(sc->vte_dev), /* parent */
674 	    1, 0,			/* alignment, boundary */
675 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
676 	    BUS_SPACE_MAXADDR,		/* highaddr */
677 	    NULL, NULL,			/* filter, filterarg */
678 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
679 	    0,				/* nsegments */
680 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
681 	    0,				/* flags */
682 	    NULL, NULL,			/* lockfunc, lockarg */
683 	    &sc->vte_cdata.vte_parent_tag);
684 	if (error != 0) {
685 		device_printf(sc->vte_dev,
686 		    "could not create parent DMA tag.\n");
687 		goto fail;
688 	}
689 
690 	/* Create DMA tag for TX descriptor ring. */
691 	error = bus_dma_tag_create(
692 	    sc->vte_cdata.vte_parent_tag, /* parent */
693 	    VTE_TX_RING_ALIGN, 0,	/* alignment, boundary */
694 	    BUS_SPACE_MAXADDR,		/* lowaddr */
695 	    BUS_SPACE_MAXADDR,		/* highaddr */
696 	    NULL, NULL,			/* filter, filterarg */
697 	    VTE_TX_RING_SZ,		/* maxsize */
698 	    1,				/* nsegments */
699 	    VTE_TX_RING_SZ,		/* maxsegsize */
700 	    0,				/* flags */
701 	    NULL, NULL,			/* lockfunc, lockarg */
702 	    &sc->vte_cdata.vte_tx_ring_tag);
703 	if (error != 0) {
704 		device_printf(sc->vte_dev,
705 		    "could not create TX ring DMA tag.\n");
706 		goto fail;
707 	}
708 
709 	/* Create DMA tag for RX free descriptor ring. */
710 	error = bus_dma_tag_create(
711 	    sc->vte_cdata.vte_parent_tag, /* parent */
712 	    VTE_RX_RING_ALIGN, 0,	/* alignment, boundary */
713 	    BUS_SPACE_MAXADDR,		/* lowaddr */
714 	    BUS_SPACE_MAXADDR,		/* highaddr */
715 	    NULL, NULL,			/* filter, filterarg */
716 	    VTE_RX_RING_SZ,		/* maxsize */
717 	    1,				/* nsegments */
718 	    VTE_RX_RING_SZ,		/* maxsegsize */
719 	    0,				/* flags */
720 	    NULL, NULL,			/* lockfunc, lockarg */
721 	    &sc->vte_cdata.vte_rx_ring_tag);
722 	if (error != 0) {
723 		device_printf(sc->vte_dev,
724 		    "could not create RX ring DMA tag.\n");
725 		goto fail;
726 	}
727 
728 	/* Allocate DMA'able memory and load the DMA map for TX ring. */
729 	error = bus_dmamem_alloc(sc->vte_cdata.vte_tx_ring_tag,
730 	    (void **)&sc->vte_cdata.vte_tx_ring,
731 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
732 	    &sc->vte_cdata.vte_tx_ring_map);
733 	if (error != 0) {
734 		device_printf(sc->vte_dev,
735 		    "could not allocate DMA'able memory for TX ring.\n");
736 		goto fail;
737 	}
738 	ctx.vte_busaddr = 0;
739 	error = bus_dmamap_load(sc->vte_cdata.vte_tx_ring_tag,
740 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
741 	    VTE_TX_RING_SZ, vte_dmamap_cb, &ctx, 0);
742 	if (error != 0 || ctx.vte_busaddr == 0) {
743 		device_printf(sc->vte_dev,
744 		    "could not load DMA'able memory for TX ring.\n");
745 		goto fail;
746 	}
747 	sc->vte_cdata.vte_tx_ring_paddr = ctx.vte_busaddr;
748 
749 	/* Allocate DMA'able memory and load the DMA map for RX ring. */
750 	error = bus_dmamem_alloc(sc->vte_cdata.vte_rx_ring_tag,
751 	    (void **)&sc->vte_cdata.vte_rx_ring,
752 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
753 	    &sc->vte_cdata.vte_rx_ring_map);
754 	if (error != 0) {
755 		device_printf(sc->vte_dev,
756 		    "could not allocate DMA'able memory for RX ring.\n");
757 		goto fail;
758 	}
759 	ctx.vte_busaddr = 0;
760 	error = bus_dmamap_load(sc->vte_cdata.vte_rx_ring_tag,
761 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
762 	    VTE_RX_RING_SZ, vte_dmamap_cb, &ctx, 0);
763 	if (error != 0 || ctx.vte_busaddr == 0) {
764 		device_printf(sc->vte_dev,
765 		    "could not load DMA'able memory for RX ring.\n");
766 		goto fail;
767 	}
768 	sc->vte_cdata.vte_rx_ring_paddr = ctx.vte_busaddr;
769 
770 	/* Create TX buffer parent tag. */
771 	error = bus_dma_tag_create(
772 	    bus_get_dma_tag(sc->vte_dev), /* parent */
773 	    1, 0,			/* alignment, boundary */
774 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
775 	    BUS_SPACE_MAXADDR,		/* highaddr */
776 	    NULL, NULL,			/* filter, filterarg */
777 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
778 	    0,				/* nsegments */
779 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
780 	    0,				/* flags */
781 	    NULL, NULL,			/* lockfunc, lockarg */
782 	    &sc->vte_cdata.vte_buffer_tag);
783 	if (error != 0) {
784 		device_printf(sc->vte_dev,
785 		    "could not create parent buffer DMA tag.\n");
786 		goto fail;
787 	}
788 
789 	/* Create DMA tag for TX buffers. */
790 	error = bus_dma_tag_create(
791 	    sc->vte_cdata.vte_buffer_tag, /* parent */
792 	    1, 0,			/* alignment, boundary */
793 	    BUS_SPACE_MAXADDR,		/* lowaddr */
794 	    BUS_SPACE_MAXADDR,		/* highaddr */
795 	    NULL, NULL,			/* filter, filterarg */
796 	    MCLBYTES,			/* maxsize */
797 	    1,				/* nsegments */
798 	    MCLBYTES,			/* maxsegsize */
799 	    0,				/* flags */
800 	    NULL, NULL,			/* lockfunc, lockarg */
801 	    &sc->vte_cdata.vte_tx_tag);
802 	if (error != 0) {
803 		device_printf(sc->vte_dev, "could not create TX DMA tag.\n");
804 		goto fail;
805 	}
806 
807 	/* Create DMA tag for RX buffers. */
808 	error = bus_dma_tag_create(
809 	    sc->vte_cdata.vte_buffer_tag, /* parent */
810 	    VTE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
811 	    BUS_SPACE_MAXADDR,		/* lowaddr */
812 	    BUS_SPACE_MAXADDR,		/* highaddr */
813 	    NULL, NULL,			/* filter, filterarg */
814 	    MCLBYTES,			/* maxsize */
815 	    1,				/* nsegments */
816 	    MCLBYTES,			/* maxsegsize */
817 	    0,				/* flags */
818 	    NULL, NULL,			/* lockfunc, lockarg */
819 	    &sc->vte_cdata.vte_rx_tag);
820 	if (error != 0) {
821 		device_printf(sc->vte_dev, "could not create RX DMA tag.\n");
822 		goto fail;
823 	}
824 	/* Create DMA maps for TX buffers. */
825 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
826 		txd = &sc->vte_cdata.vte_txdesc[i];
827 		txd->tx_m = NULL;
828 		txd->tx_dmamap = NULL;
829 		error = bus_dmamap_create(sc->vte_cdata.vte_tx_tag, 0,
830 		    &txd->tx_dmamap);
831 		if (error != 0) {
832 			device_printf(sc->vte_dev,
833 			    "could not create TX dmamap.\n");
834 			goto fail;
835 		}
836 	}
837 	/* Create DMA maps for RX buffers. */
838 	if ((error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
839 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
840 		device_printf(sc->vte_dev,
841 		    "could not create spare RX dmamap.\n");
842 		goto fail;
843 	}
844 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
845 		rxd = &sc->vte_cdata.vte_rxdesc[i];
846 		rxd->rx_m = NULL;
847 		rxd->rx_dmamap = NULL;
848 		error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
849 		    &rxd->rx_dmamap);
850 		if (error != 0) {
851 			device_printf(sc->vte_dev,
852 			    "could not create RX dmamap.\n");
853 			goto fail;
854 		}
855 	}
856 
857 fail:
858 	return (error);
859 }
860 
861 static void
862 vte_dma_free(struct vte_softc *sc)
863 {
864 	struct vte_txdesc *txd;
865 	struct vte_rxdesc *rxd;
866 	int i;
867 
868 	/* TX buffers. */
869 	if (sc->vte_cdata.vte_tx_tag != NULL) {
870 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
871 			txd = &sc->vte_cdata.vte_txdesc[i];
872 			if (txd->tx_dmamap != NULL) {
873 				bus_dmamap_destroy(sc->vte_cdata.vte_tx_tag,
874 				    txd->tx_dmamap);
875 				txd->tx_dmamap = NULL;
876 			}
877 		}
878 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_tag);
879 		sc->vte_cdata.vte_tx_tag = NULL;
880 	}
881 	/* RX buffers */
882 	if (sc->vte_cdata.vte_rx_tag != NULL) {
883 		for (i = 0; i < VTE_RX_RING_CNT; i++) {
884 			rxd = &sc->vte_cdata.vte_rxdesc[i];
885 			if (rxd->rx_dmamap != NULL) {
886 				bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
887 				    rxd->rx_dmamap);
888 				rxd->rx_dmamap = NULL;
889 			}
890 		}
891 		if (sc->vte_cdata.vte_rx_sparemap != NULL) {
892 			bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
893 			    sc->vte_cdata.vte_rx_sparemap);
894 			sc->vte_cdata.vte_rx_sparemap = NULL;
895 		}
896 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_tag);
897 		sc->vte_cdata.vte_rx_tag = NULL;
898 	}
899 	/* TX descriptor ring. */
900 	if (sc->vte_cdata.vte_tx_ring_tag != NULL) {
901 		if (sc->vte_cdata.vte_tx_ring_paddr != 0)
902 			bus_dmamap_unload(sc->vte_cdata.vte_tx_ring_tag,
903 			    sc->vte_cdata.vte_tx_ring_map);
904 		if (sc->vte_cdata.vte_tx_ring != NULL)
905 			bus_dmamem_free(sc->vte_cdata.vte_tx_ring_tag,
906 			    sc->vte_cdata.vte_tx_ring,
907 			    sc->vte_cdata.vte_tx_ring_map);
908 		sc->vte_cdata.vte_tx_ring = NULL;
909 		sc->vte_cdata.vte_tx_ring_paddr = 0;
910 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_ring_tag);
911 		sc->vte_cdata.vte_tx_ring_tag = NULL;
912 	}
913 	/* RX ring. */
914 	if (sc->vte_cdata.vte_rx_ring_tag != NULL) {
915 		if (sc->vte_cdata.vte_rx_ring_paddr != 0)
916 			bus_dmamap_unload(sc->vte_cdata.vte_rx_ring_tag,
917 			    sc->vte_cdata.vte_rx_ring_map);
918 		if (sc->vte_cdata.vte_rx_ring != NULL)
919 			bus_dmamem_free(sc->vte_cdata.vte_rx_ring_tag,
920 			    sc->vte_cdata.vte_rx_ring,
921 			    sc->vte_cdata.vte_rx_ring_map);
922 		sc->vte_cdata.vte_rx_ring = NULL;
923 		sc->vte_cdata.vte_rx_ring_paddr = 0;
924 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_ring_tag);
925 		sc->vte_cdata.vte_rx_ring_tag = NULL;
926 	}
927 	if (sc->vte_cdata.vte_buffer_tag != NULL) {
928 		bus_dma_tag_destroy(sc->vte_cdata.vte_buffer_tag);
929 		sc->vte_cdata.vte_buffer_tag = NULL;
930 	}
931 	if (sc->vte_cdata.vte_parent_tag != NULL) {
932 		bus_dma_tag_destroy(sc->vte_cdata.vte_parent_tag);
933 		sc->vte_cdata.vte_parent_tag = NULL;
934 	}
935 }
936 
937 static int
938 vte_shutdown(device_t dev)
939 {
940 
941 	return (vte_suspend(dev));
942 }
943 
944 static int
945 vte_suspend(device_t dev)
946 {
947 	struct vte_softc *sc;
948 	struct ifnet *ifp;
949 
950 	sc = device_get_softc(dev);
951 
952 	VTE_LOCK(sc);
953 	ifp = sc->vte_ifp;
954 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
955 		vte_stop(sc);
956 	VTE_UNLOCK(sc);
957 
958 	return (0);
959 }
960 
961 static int
962 vte_resume(device_t dev)
963 {
964 	struct vte_softc *sc;
965 	struct ifnet *ifp;
966 
967 	sc = device_get_softc(dev);
968 
969 	VTE_LOCK(sc);
970 	ifp = sc->vte_ifp;
971 	if ((ifp->if_flags & IFF_UP) != 0) {
972 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
973 		vte_init_locked(sc);
974 	}
975 	VTE_UNLOCK(sc);
976 
977 	return (0);
978 }
979 
980 static struct vte_txdesc *
981 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
982 {
983 	struct vte_txdesc *txd;
984 	struct mbuf *m, *n;
985 	bus_dma_segment_t txsegs[1];
986 	int copy, error, nsegs, padlen;
987 
988 	VTE_LOCK_ASSERT(sc);
989 
990 	M_ASSERTPKTHDR((*m_head));
991 
992 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
993 	m = *m_head;
994 	/*
995 	 * Controller doesn't auto-pad, so we have to make sure pad
996 	 * short frames out to the minimum frame length.
997 	 */
998 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
999 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
1000 	else
1001 		padlen = 0;
1002 
1003 	/*
1004 	 * Controller does not support multi-fragmented TX buffers.
1005 	 * Controller spends most of its TX processing time in
1006 	 * de-fragmenting TX buffers.  Either faster CPU or more
1007 	 * advanced controller DMA engine is required to speed up
1008 	 * TX path processing.
1009 	 * To mitigate the de-fragmenting issue, perform deep copy
1010 	 * from fragmented mbuf chains to a pre-allocated mbuf
1011 	 * cluster with extra cost of kernel memory.  For frames
1012 	 * that is composed of single TX buffer, the deep copy is
1013 	 * bypassed.
1014 	 */
1015 	if (tx_deep_copy != 0) {
1016 		copy = 0;
1017 		if (m->m_next != NULL)
1018 			copy++;
1019 		if (padlen > 0 && (M_WRITABLE(m) == 0 ||
1020 		    padlen > M_TRAILINGSPACE(m)))
1021 			copy++;
1022 		if (copy != 0) {
1023 			/* Avoid expensive m_defrag(9) and do deep copy. */
1024 			n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
1025 			m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
1026 			n->m_pkthdr.len = m->m_pkthdr.len;
1027 			n->m_len = m->m_pkthdr.len;
1028 			m = n;
1029 			txd->tx_flags |= VTE_TXMBUF;
1030 		}
1031 
1032 		if (padlen > 0) {
1033 			/* Zero out the bytes in the pad area. */
1034 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1035 			m->m_pkthdr.len += padlen;
1036 			m->m_len = m->m_pkthdr.len;
1037 		}
1038 	} else {
1039 		if (M_WRITABLE(m) == 0) {
1040 			if (m->m_next != NULL || padlen > 0) {
1041 				/* Get a writable copy. */
1042 				m = m_dup(*m_head, M_NOWAIT);
1043 				/* Release original mbuf chains. */
1044 				m_freem(*m_head);
1045 				if (m == NULL) {
1046 					*m_head = NULL;
1047 					return (NULL);
1048 				}
1049 				*m_head = m;
1050 			}
1051 		}
1052 
1053 		if (m->m_next != NULL) {
1054 			m = m_defrag(*m_head, M_NOWAIT);
1055 			if (m == NULL) {
1056 				m_freem(*m_head);
1057 				*m_head = NULL;
1058 				return (NULL);
1059 			}
1060 			*m_head = m;
1061 		}
1062 
1063 		if (padlen > 0) {
1064 			if (M_TRAILINGSPACE(m) < padlen) {
1065 				m = m_defrag(*m_head, M_NOWAIT);
1066 				if (m == NULL) {
1067 					m_freem(*m_head);
1068 					*m_head = NULL;
1069 					return (NULL);
1070 				}
1071 				*m_head = m;
1072 			}
1073 			/* Zero out the bytes in the pad area. */
1074 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1075 			m->m_pkthdr.len += padlen;
1076 			m->m_len = m->m_pkthdr.len;
1077 		}
1078 	}
1079 
1080 	error = bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_tx_tag,
1081 	    txd->tx_dmamap, m, txsegs, &nsegs, 0);
1082 	if (error != 0) {
1083 		txd->tx_flags &= ~VTE_TXMBUF;
1084 		return (NULL);
1085 	}
1086 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1087 	bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1088 	    BUS_DMASYNC_PREWRITE);
1089 
1090 	txd->tx_desc->dtlen = htole16(VTE_TX_LEN(txsegs[0].ds_len));
1091 	txd->tx_desc->dtbp = htole32(txsegs[0].ds_addr);
1092 	sc->vte_cdata.vte_tx_cnt++;
1093 	/* Update producer index. */
1094 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
1095 
1096 	/* Finally hand over ownership to controller. */
1097 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
1098 	txd->tx_m = m;
1099 
1100 	return (txd);
1101 }
1102 
1103 static void
1104 vte_start(struct ifnet *ifp)
1105 {
1106 	struct vte_softc *sc;
1107 
1108 	sc = ifp->if_softc;
1109 	VTE_LOCK(sc);
1110 	vte_start_locked(sc);
1111 	VTE_UNLOCK(sc);
1112 }
1113 
1114 static void
1115 vte_start_locked(struct vte_softc *sc)
1116 {
1117 	struct ifnet *ifp;
1118 	struct vte_txdesc *txd;
1119 	struct mbuf *m_head;
1120 	int enq;
1121 
1122 	ifp = sc->vte_ifp;
1123 
1124 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1125 	    IFF_DRV_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
1126 		return;
1127 
1128 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1129 		/* Reserve one free TX descriptor. */
1130 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
1131 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1132 			break;
1133 		}
1134 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1135 		if (m_head == NULL)
1136 			break;
1137 		/*
1138 		 * Pack the data into the transmit ring. If we
1139 		 * don't have room, set the OACTIVE flag and wait
1140 		 * for the NIC to drain the ring.
1141 		 */
1142 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
1143 			if (m_head != NULL)
1144 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1145 			break;
1146 		}
1147 
1148 		enq++;
1149 		/*
1150 		 * If there's a BPF listener, bounce a copy of this frame
1151 		 * to him.
1152 		 */
1153 		ETHER_BPF_MTAP(ifp, m_head);
1154 		/* Free consumed TX frame. */
1155 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
1156 			m_freem(m_head);
1157 	}
1158 
1159 	if (enq > 0) {
1160 		bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1161 		    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1162 		    BUS_DMASYNC_PREWRITE);
1163 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
1164 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
1165 	}
1166 }
1167 
1168 static void
1169 vte_watchdog(struct vte_softc *sc)
1170 {
1171 	struct ifnet *ifp;
1172 
1173 	VTE_LOCK_ASSERT(sc);
1174 
1175 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
1176 		return;
1177 
1178 	ifp = sc->vte_ifp;
1179 	if_printf(sc->vte_ifp, "watchdog timeout -- resetting\n");
1180 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1181 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1182 	vte_init_locked(sc);
1183 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1184 		vte_start_locked(sc);
1185 }
1186 
1187 static int
1188 vte_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1189 {
1190 	struct vte_softc *sc;
1191 	struct ifreq *ifr;
1192 	struct mii_data *mii;
1193 	int error;
1194 
1195 	sc = ifp->if_softc;
1196 	ifr = (struct ifreq *)data;
1197 	error = 0;
1198 	switch (cmd) {
1199 	case SIOCSIFFLAGS:
1200 		VTE_LOCK(sc);
1201 		if ((ifp->if_flags & IFF_UP) != 0) {
1202 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1203 			    ((ifp->if_flags ^ sc->vte_if_flags) &
1204 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1205 				vte_rxfilter(sc);
1206 			else
1207 				vte_init_locked(sc);
1208 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1209 			vte_stop(sc);
1210 		sc->vte_if_flags = ifp->if_flags;
1211 		VTE_UNLOCK(sc);
1212 		break;
1213 	case SIOCADDMULTI:
1214 	case SIOCDELMULTI:
1215 		VTE_LOCK(sc);
1216 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1217 			vte_rxfilter(sc);
1218 		VTE_UNLOCK(sc);
1219 		break;
1220 	case SIOCSIFMEDIA:
1221 	case SIOCGIFMEDIA:
1222 		mii = device_get_softc(sc->vte_miibus);
1223 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1224 		break;
1225 	default:
1226 		error = ether_ioctl(ifp, cmd, data);
1227 		break;
1228 	}
1229 
1230 	return (error);
1231 }
1232 
1233 static void
1234 vte_mac_config(struct vte_softc *sc)
1235 {
1236 	struct mii_data *mii;
1237 	uint16_t mcr;
1238 
1239 	VTE_LOCK_ASSERT(sc);
1240 
1241 	mii = device_get_softc(sc->vte_miibus);
1242 	mcr = CSR_READ_2(sc, VTE_MCR0);
1243 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
1244 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1245 		mcr |= MCR0_FULL_DUPLEX;
1246 #ifdef notyet
1247 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1248 			mcr |= MCR0_FC_ENB;
1249 		/*
1250 		 * The data sheet is not clear whether the controller
1251 		 * honors received pause frames or not.  The is no
1252 		 * separate control bit for RX pause frame so just
1253 		 * enable MCR0_FC_ENB bit.
1254 		 */
1255 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1256 			mcr |= MCR0_FC_ENB;
1257 #endif
1258 	}
1259 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1260 }
1261 
1262 static void
1263 vte_stats_clear(struct vte_softc *sc)
1264 {
1265 
1266 	/* Reading counter registers clears its contents. */
1267 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
1268 	CSR_READ_2(sc, VTE_CNT_MECNT0);
1269 	CSR_READ_2(sc, VTE_CNT_MECNT1);
1270 	CSR_READ_2(sc, VTE_CNT_MECNT2);
1271 	CSR_READ_2(sc, VTE_CNT_MECNT3);
1272 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
1273 	CSR_READ_2(sc, VTE_CNT_MECNT4);
1274 	CSR_READ_2(sc, VTE_CNT_PAUSE);
1275 }
1276 
1277 static void
1278 vte_stats_update(struct vte_softc *sc)
1279 {
1280 	struct vte_hw_stats *stat;
1281 	uint16_t value;
1282 
1283 	VTE_LOCK_ASSERT(sc);
1284 
1285 	stat = &sc->vte_stats;
1286 
1287 	CSR_READ_2(sc, VTE_MECISR);
1288 	/* RX stats. */
1289 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
1290 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
1291 	stat->rx_bcast_frames += (value >> 8);
1292 	stat->rx_mcast_frames += (value & 0xFF);
1293 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
1294 	stat->rx_runts += (value >> 8);
1295 	stat->rx_crcerrs += (value & 0xFF);
1296 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
1297 	stat->rx_long_frames += (value & 0xFF);
1298 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
1299 	stat->rx_fifo_full += (value >> 8);
1300 	stat->rx_desc_unavail += (value & 0xFF);
1301 
1302 	/* TX stats. */
1303 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
1304 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
1305 	stat->tx_underruns += (value >> 8);
1306 	stat->tx_late_colls += (value & 0xFF);
1307 
1308 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
1309 	stat->tx_pause_frames += (value >> 8);
1310 	stat->rx_pause_frames += (value & 0xFF);
1311 }
1312 
1313 static uint64_t
1314 vte_get_counter(struct ifnet *ifp, ift_counter cnt)
1315 {
1316 	struct vte_softc *sc;
1317 	struct vte_hw_stats *stat;
1318 
1319 	sc = if_getsoftc(ifp);
1320 	stat = &sc->vte_stats;
1321 
1322 	switch (cnt) {
1323 	case IFCOUNTER_OPACKETS:
1324 		return (stat->tx_frames);
1325 	case IFCOUNTER_COLLISIONS:
1326 		return (stat->tx_late_colls);
1327 	case IFCOUNTER_OERRORS:
1328 		return (stat->tx_late_colls + stat->tx_underruns);
1329 	case IFCOUNTER_IPACKETS:
1330 		return (stat->rx_frames);
1331 	case IFCOUNTER_IERRORS:
1332 		return (stat->rx_crcerrs + stat->rx_runts +
1333 		    stat->rx_long_frames + stat->rx_fifo_full);
1334 	default:
1335 		return (if_get_counter_default(ifp, cnt));
1336 	}
1337 }
1338 
1339 static void
1340 vte_intr(void *arg)
1341 {
1342 	struct vte_softc *sc;
1343 	struct ifnet *ifp;
1344 	uint16_t status;
1345 	int n;
1346 
1347 	sc = (struct vte_softc *)arg;
1348 	VTE_LOCK(sc);
1349 
1350 	ifp = sc->vte_ifp;
1351 	/* Reading VTE_MISR acknowledges interrupts. */
1352 	status = CSR_READ_2(sc, VTE_MISR);
1353 	if ((status & VTE_INTRS) == 0) {
1354 		/* Not ours. */
1355 		VTE_UNLOCK(sc);
1356 		return;
1357 	}
1358 
1359 	/* Disable interrupts. */
1360 	CSR_WRITE_2(sc, VTE_MIER, 0);
1361 	for (n = 8; (status & VTE_INTRS) != 0;) {
1362 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1363 			break;
1364 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
1365 		    MISR_RX_FIFO_FULL)) != 0)
1366 			vte_rxeof(sc);
1367 		if ((status & MISR_TX_DONE) != 0)
1368 			vte_txeof(sc);
1369 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
1370 			vte_stats_update(sc);
1371 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1372 			vte_start_locked(sc);
1373 		if (--n > 0)
1374 			status = CSR_READ_2(sc, VTE_MISR);
1375 		else
1376 			break;
1377 	}
1378 
1379 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1380 		/* Re-enable interrupts. */
1381 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1382 	}
1383 	VTE_UNLOCK(sc);
1384 }
1385 
1386 static void
1387 vte_txeof(struct vte_softc *sc)
1388 {
1389 	struct ifnet *ifp;
1390 	struct vte_txdesc *txd;
1391 	uint16_t status;
1392 	int cons, prog;
1393 
1394 	VTE_LOCK_ASSERT(sc);
1395 
1396 	ifp = sc->vte_ifp;
1397 
1398 	if (sc->vte_cdata.vte_tx_cnt == 0)
1399 		return;
1400 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1401 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_POSTREAD |
1402 	    BUS_DMASYNC_POSTWRITE);
1403 	cons = sc->vte_cdata.vte_tx_cons;
1404 	/*
1405 	 * Go through our TX list and free mbufs for those
1406 	 * frames which have been transmitted.
1407 	 */
1408 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1409 		txd = &sc->vte_cdata.vte_txdesc[cons];
1410 		status = le16toh(txd->tx_desc->dtst);
1411 		if ((status & VTE_DTST_TX_OWN) != 0)
1412 			break;
1413 		sc->vte_cdata.vte_tx_cnt--;
1414 		/* Reclaim transmitted mbufs. */
1415 		bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1416 		    BUS_DMASYNC_POSTWRITE);
1417 		bus_dmamap_unload(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap);
1418 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1419 			m_freem(txd->tx_m);
1420 		txd->tx_flags &= ~VTE_TXMBUF;
1421 		txd->tx_m = NULL;
1422 		prog++;
1423 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1424 	}
1425 
1426 	if (prog > 0) {
1427 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1428 		sc->vte_cdata.vte_tx_cons = cons;
1429 		/*
1430 		 * Unarm watchdog timer only when there is no pending
1431 		 * frames in TX queue.
1432 		 */
1433 		if (sc->vte_cdata.vte_tx_cnt == 0)
1434 			sc->vte_watchdog_timer = 0;
1435 	}
1436 }
1437 
1438 static int
1439 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1440 {
1441 	struct mbuf *m;
1442 	bus_dma_segment_t segs[1];
1443 	bus_dmamap_t map;
1444 	int nsegs;
1445 
1446 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1447 	if (m == NULL)
1448 		return (ENOBUFS);
1449 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1450 	m_adj(m, sizeof(uint32_t));
1451 
1452 	if (bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_rx_tag,
1453 	    sc->vte_cdata.vte_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1454 		m_freem(m);
1455 		return (ENOBUFS);
1456 	}
1457 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1458 
1459 	if (rxd->rx_m != NULL) {
1460 		bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1461 		    BUS_DMASYNC_POSTREAD);
1462 		bus_dmamap_unload(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap);
1463 	}
1464 	map = rxd->rx_dmamap;
1465 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1466 	sc->vte_cdata.vte_rx_sparemap = map;
1467 	bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1468 	    BUS_DMASYNC_PREREAD);
1469 	rxd->rx_m = m;
1470 	rxd->rx_desc->drbp = htole32(segs[0].ds_addr);
1471 	rxd->rx_desc->drlen = htole16(VTE_RX_LEN(segs[0].ds_len));
1472 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1473 
1474 	return (0);
1475 }
1476 
1477 /*
1478  * It's not supposed to see this controller on strict-alignment
1479  * architectures but make it work for completeness.
1480  */
1481 #ifndef __NO_STRICT_ALIGNMENT
1482 static struct mbuf *
1483 vte_fixup_rx(struct ifnet *ifp, struct mbuf *m)
1484 {
1485         uint16_t *src, *dst;
1486         int i;
1487 
1488 	src = mtod(m, uint16_t *);
1489 	dst = src - 1;
1490 
1491 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1492 		*dst++ = *src++;
1493 	m->m_data -= ETHER_ALIGN;
1494 	return (m);
1495 }
1496 #endif
1497 
1498 static void
1499 vte_rxeof(struct vte_softc *sc)
1500 {
1501 	struct ifnet *ifp;
1502 	struct vte_rxdesc *rxd;
1503 	struct mbuf *m;
1504 	uint16_t status, total_len;
1505 	int cons, prog;
1506 
1507 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1508 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_POSTREAD |
1509 	    BUS_DMASYNC_POSTWRITE);
1510 	cons = sc->vte_cdata.vte_rx_cons;
1511 	ifp = sc->vte_ifp;
1512 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; prog++,
1513 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1514 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1515 		status = le16toh(rxd->rx_desc->drst);
1516 		if ((status & VTE_DRST_RX_OWN) != 0)
1517 			break;
1518 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1519 		m = rxd->rx_m;
1520 		if ((status & VTE_DRST_RX_OK) == 0) {
1521 			/* Discard errored frame. */
1522 			rxd->rx_desc->drlen =
1523 			    htole16(MCLBYTES - sizeof(uint32_t));
1524 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1525 			continue;
1526 		}
1527 		if (vte_newbuf(sc, rxd) != 0) {
1528 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1529 			rxd->rx_desc->drlen =
1530 			    htole16(MCLBYTES - sizeof(uint32_t));
1531 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1532 			continue;
1533 		}
1534 
1535 		/*
1536 		 * It seems there is no way to strip FCS bytes.
1537 		 */
1538 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1539 		m->m_pkthdr.rcvif = ifp;
1540 #ifndef __NO_STRICT_ALIGNMENT
1541 		vte_fixup_rx(ifp, m);
1542 #endif
1543 		VTE_UNLOCK(sc);
1544 		(*ifp->if_input)(ifp, m);
1545 		VTE_LOCK(sc);
1546 	}
1547 
1548 	if (prog > 0) {
1549 		/* Update the consumer index. */
1550 		sc->vte_cdata.vte_rx_cons = cons;
1551 		/*
1552 		 * Sync updated RX descriptors such that controller see
1553 		 * modified RX buffer addresses.
1554 		 */
1555 		bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1556 		    sc->vte_cdata.vte_rx_ring_map,
1557 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1558 #ifdef notyet
1559 		/*
1560 		 * Update residue counter.  Controller does not
1561 		 * keep track of number of available RX descriptors
1562 		 * such that driver should have to update VTE_MRDCR
1563 		 * to make controller know how many free RX
1564 		 * descriptors were added to controller.  This is
1565 		 * a similar mechanism used in VIA velocity
1566 		 * controllers and it indicates controller just
1567 		 * polls OWN bit of current RX descriptor pointer.
1568 		 * A couple of severe issues were seen on sample
1569 		 * board where the controller continuously emits TX
1570 		 * pause frames once RX pause threshold crossed.
1571 		 * Once triggered it never recovered form that
1572 		 * state, I couldn't find a way to make it back to
1573 		 * work at least.  This issue effectively
1574 		 * disconnected the system from network.  Also, the
1575 		 * controller used 00:00:00:00:00:00 as source
1576 		 * station address of TX pause frame. Probably this
1577 		 * is one of reason why vendor recommends not to
1578 		 * enable flow control on R6040 controller.
1579 		 */
1580 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1581 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1582 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1583 #endif
1584 	}
1585 }
1586 
1587 static void
1588 vte_tick(void *arg)
1589 {
1590 	struct vte_softc *sc;
1591 	struct mii_data *mii;
1592 
1593 	sc = (struct vte_softc *)arg;
1594 
1595 	VTE_LOCK_ASSERT(sc);
1596 
1597 	mii = device_get_softc(sc->vte_miibus);
1598 	mii_tick(mii);
1599 	vte_stats_update(sc);
1600 	vte_txeof(sc);
1601 	vte_watchdog(sc);
1602 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1603 }
1604 
1605 static void
1606 vte_reset(struct vte_softc *sc)
1607 {
1608 	uint16_t mcr;
1609 	int i;
1610 
1611 	mcr = CSR_READ_2(sc, VTE_MCR1);
1612 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1613 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1614 		DELAY(10);
1615 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1616 			break;
1617 	}
1618 	if (i == 0)
1619 		device_printf(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1620 	/*
1621 	 * Follow the guide of vendor recommended way to reset MAC.
1622 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1623 	 * not reliable so manually reset internal state machine.
1624 	 */
1625 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1626 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1627 	DELAY(5000);
1628 }
1629 
1630 static void
1631 vte_init(void *xsc)
1632 {
1633 	struct vte_softc *sc;
1634 
1635 	sc = (struct vte_softc *)xsc;
1636 	VTE_LOCK(sc);
1637 	vte_init_locked(sc);
1638 	VTE_UNLOCK(sc);
1639 }
1640 
1641 static void
1642 vte_init_locked(struct vte_softc *sc)
1643 {
1644 	struct ifnet *ifp;
1645 	bus_addr_t paddr;
1646 	uint8_t *eaddr;
1647 
1648 	VTE_LOCK_ASSERT(sc);
1649 
1650 	ifp = sc->vte_ifp;
1651 
1652 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1653 		return;
1654 	/*
1655 	 * Cancel any pending I/O.
1656 	 */
1657 	vte_stop(sc);
1658 	/*
1659 	 * Reset the chip to a known state.
1660 	 */
1661 	vte_reset(sc);
1662 
1663 	/* Initialize RX descriptors. */
1664 	if (vte_init_rx_ring(sc) != 0) {
1665 		device_printf(sc->vte_dev, "no memory for RX buffers.\n");
1666 		vte_stop(sc);
1667 		return;
1668 	}
1669 	if (vte_init_tx_ring(sc) != 0) {
1670 		device_printf(sc->vte_dev, "no memory for TX buffers.\n");
1671 		vte_stop(sc);
1672 		return;
1673 	}
1674 
1675 	/*
1676 	 * Reprogram the station address.  Controller supports up
1677 	 * to 4 different station addresses so driver programs the
1678 	 * first station address as its own ethernet address and
1679 	 * configure the remaining three addresses as perfect
1680 	 * multicast addresses.
1681 	 */
1682 	eaddr = IF_LLADDR(sc->vte_ifp);
1683 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1684 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1685 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1686 
1687 	/* Set TX descriptor base addresses. */
1688 	paddr = sc->vte_cdata.vte_tx_ring_paddr;
1689 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1690 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1691 	/* Set RX descriptor base addresses. */
1692 	paddr = sc->vte_cdata.vte_rx_ring_paddr;
1693 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1694 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1695 	/*
1696 	 * Initialize RX descriptor residue counter and set RX
1697 	 * pause threshold to 20% of available RX descriptors.
1698 	 * See comments on vte_rxeof() for details on flow control
1699 	 * issues.
1700 	 */
1701 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1702 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1703 
1704 	/*
1705 	 * Always use maximum frame size that controller can
1706 	 * support.  Otherwise received frames that has longer
1707 	 * frame length than vte(4) MTU would be silently dropped
1708 	 * in controller.  This would break path-MTU discovery as
1709 	 * sender wouldn't get any responses from receiver. The
1710 	 * RX buffer size should be multiple of 4.
1711 	 * Note, jumbo frames are silently ignored by controller
1712 	 * and even MAC counters do not detect them.
1713 	 */
1714 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1715 
1716 	/* Configure FIFO. */
1717 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1718 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1719 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1720 
1721 	/*
1722 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1723 	 * control configuration is done after detecting a valid
1724 	 * link.  Note, we don't generate early interrupt here
1725 	 * as well since FreeBSD does not have interrupt latency
1726 	 * problems like Windows.
1727 	 */
1728 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1729 	/*
1730 	 * We manually keep track of PHY status changes to
1731 	 * configure resolved duplex and flow control since only
1732 	 * duplex configuration can be automatically reflected to
1733 	 * MCR0.
1734 	 */
1735 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1736 	    MCR1_EXCESS_COL_RETRY_16);
1737 
1738 	/* Initialize RX filter. */
1739 	vte_rxfilter(sc);
1740 
1741 	/* Disable TX/RX interrupt moderation control. */
1742 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1743 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1744 
1745 	/* Enable MAC event counter interrupts. */
1746 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1747 	/* Clear MAC statistics. */
1748 	vte_stats_clear(sc);
1749 
1750 	/* Acknowledge all pending interrupts and clear it. */
1751 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1752 	CSR_WRITE_2(sc, VTE_MISR, 0);
1753 
1754 	sc->vte_flags &= ~VTE_FLAG_LINK;
1755 	/* Switch to the current media. */
1756 	vte_mediachange_locked(ifp);
1757 
1758 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1759 
1760 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1761 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1762 }
1763 
1764 static void
1765 vte_stop(struct vte_softc *sc)
1766 {
1767 	struct ifnet *ifp;
1768 	struct vte_txdesc *txd;
1769 	struct vte_rxdesc *rxd;
1770 	int i;
1771 
1772 	VTE_LOCK_ASSERT(sc);
1773 	/*
1774 	 * Mark the interface down and cancel the watchdog timer.
1775 	 */
1776 	ifp = sc->vte_ifp;
1777 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1778 	sc->vte_flags &= ~VTE_FLAG_LINK;
1779 	callout_stop(&sc->vte_tick_ch);
1780 	sc->vte_watchdog_timer = 0;
1781 	vte_stats_update(sc);
1782 	/* Disable interrupts. */
1783 	CSR_WRITE_2(sc, VTE_MIER, 0);
1784 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1785 	/* Stop RX/TX MACs. */
1786 	vte_stop_mac(sc);
1787 	/* Clear interrupts. */
1788 	CSR_READ_2(sc, VTE_MISR);
1789 	/*
1790 	 * Free TX/RX mbufs still in the queues.
1791 	 */
1792 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1793 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1794 		if (rxd->rx_m != NULL) {
1795 			bus_dmamap_sync(sc->vte_cdata.vte_rx_tag,
1796 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1797 			bus_dmamap_unload(sc->vte_cdata.vte_rx_tag,
1798 			    rxd->rx_dmamap);
1799 			m_freem(rxd->rx_m);
1800 			rxd->rx_m = NULL;
1801 		}
1802 	}
1803 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1804 		txd = &sc->vte_cdata.vte_txdesc[i];
1805 		if (txd->tx_m != NULL) {
1806 			bus_dmamap_sync(sc->vte_cdata.vte_tx_tag,
1807 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1808 			bus_dmamap_unload(sc->vte_cdata.vte_tx_tag,
1809 			    txd->tx_dmamap);
1810 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1811 				m_freem(txd->tx_m);
1812 			txd->tx_m = NULL;
1813 			txd->tx_flags &= ~VTE_TXMBUF;
1814 		}
1815 	}
1816 	/* Free TX mbuf pools used for deep copy. */
1817 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1818 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1819 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1820 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1821 		}
1822 	}
1823 }
1824 
1825 static void
1826 vte_start_mac(struct vte_softc *sc)
1827 {
1828 	uint16_t mcr;
1829 	int i;
1830 
1831 	VTE_LOCK_ASSERT(sc);
1832 
1833 	/* Enable RX/TX MACs. */
1834 	mcr = CSR_READ_2(sc, VTE_MCR0);
1835 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1836 	    (MCR0_RX_ENB | MCR0_TX_ENB)) {
1837 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1838 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1839 		for (i = VTE_TIMEOUT; i > 0; i--) {
1840 			mcr = CSR_READ_2(sc, VTE_MCR0);
1841 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1842 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1843 				break;
1844 			DELAY(10);
1845 		}
1846 		if (i == 0)
1847 			device_printf(sc->vte_dev,
1848 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1849 	}
1850 }
1851 
1852 static void
1853 vte_stop_mac(struct vte_softc *sc)
1854 {
1855 	uint16_t mcr;
1856 	int i;
1857 
1858 	VTE_LOCK_ASSERT(sc);
1859 
1860 	/* Disable RX/TX MACs. */
1861 	mcr = CSR_READ_2(sc, VTE_MCR0);
1862 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1863 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1864 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1865 		for (i = VTE_TIMEOUT; i > 0; i--) {
1866 			mcr = CSR_READ_2(sc, VTE_MCR0);
1867 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1868 				break;
1869 			DELAY(10);
1870 		}
1871 		if (i == 0)
1872 			device_printf(sc->vte_dev,
1873 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1874 	}
1875 }
1876 
1877 static int
1878 vte_init_tx_ring(struct vte_softc *sc)
1879 {
1880 	struct vte_tx_desc *desc;
1881 	struct vte_txdesc *txd;
1882 	bus_addr_t addr;
1883 	int i;
1884 
1885 	VTE_LOCK_ASSERT(sc);
1886 
1887 	sc->vte_cdata.vte_tx_prod = 0;
1888 	sc->vte_cdata.vte_tx_cons = 0;
1889 	sc->vte_cdata.vte_tx_cnt = 0;
1890 
1891 	/* Pre-allocate TX mbufs for deep copy. */
1892 	if (tx_deep_copy != 0) {
1893 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
1894 			sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_NOWAIT,
1895 			    MT_DATA, M_PKTHDR);
1896 			if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1897 				return (ENOBUFS);
1898 			sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1899 			sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1900 		}
1901 	}
1902 	desc = sc->vte_cdata.vte_tx_ring;
1903 	bzero(desc, VTE_TX_RING_SZ);
1904 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1905 		txd = &sc->vte_cdata.vte_txdesc[i];
1906 		txd->tx_m = NULL;
1907 		if (i != VTE_TX_RING_CNT - 1)
1908 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1909 			    sizeof(struct vte_tx_desc) * (i + 1);
1910 		else
1911 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1912 			    sizeof(struct vte_tx_desc) * 0;
1913 		desc = &sc->vte_cdata.vte_tx_ring[i];
1914 		desc->dtnp = htole32(addr);
1915 		txd->tx_desc = desc;
1916 	}
1917 
1918 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1919 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1920 	    BUS_DMASYNC_PREWRITE);
1921 	return (0);
1922 }
1923 
1924 static int
1925 vte_init_rx_ring(struct vte_softc *sc)
1926 {
1927 	struct vte_rx_desc *desc;
1928 	struct vte_rxdesc *rxd;
1929 	bus_addr_t addr;
1930 	int i;
1931 
1932 	VTE_LOCK_ASSERT(sc);
1933 
1934 	sc->vte_cdata.vte_rx_cons = 0;
1935 	desc = sc->vte_cdata.vte_rx_ring;
1936 	bzero(desc, VTE_RX_RING_SZ);
1937 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1938 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1939 		rxd->rx_m = NULL;
1940 		if (i != VTE_RX_RING_CNT - 1)
1941 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1942 			    sizeof(struct vte_rx_desc) * (i + 1);
1943 		else
1944 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1945 			    sizeof(struct vte_rx_desc) * 0;
1946 		desc = &sc->vte_cdata.vte_rx_ring[i];
1947 		desc->drnp = htole32(addr);
1948 		rxd->rx_desc = desc;
1949 		if (vte_newbuf(sc, rxd) != 0)
1950 			return (ENOBUFS);
1951 	}
1952 
1953 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1954 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_PREREAD |
1955 	    BUS_DMASYNC_PREWRITE);
1956 
1957 	return (0);
1958 }
1959 
1960 struct vte_maddr_ctx {
1961 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1962 	uint16_t mchash[4];
1963 	u_int nperf;
1964 };
1965 
1966 static u_int
1967 vte_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1968 {
1969 	struct vte_maddr_ctx *ctx = arg;
1970 	uint8_t *eaddr;
1971 	uint32_t crc;
1972 
1973 	/*
1974 	 * Program the first 3 multicast groups into the perfect filter.
1975 	 * For all others, use the hash table.
1976 	 */
1977 	if (ctx->nperf < VTE_RXFILT_PERFECT_CNT) {
1978 		eaddr = LLADDR(sdl);
1979 		ctx->rxfilt_perf[ctx->nperf][0] = eaddr[1] << 8 | eaddr[0];
1980 		ctx->rxfilt_perf[ctx->nperf][1] = eaddr[3] << 8 | eaddr[2];
1981 		ctx->rxfilt_perf[ctx->nperf][2] = eaddr[5] << 8 | eaddr[4];
1982 		ctx->nperf++;
1983 
1984 		return (1);
1985 	}
1986 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
1987 	ctx->mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1988 
1989 	return (1);
1990 }
1991 
1992 static void
1993 vte_rxfilter(struct vte_softc *sc)
1994 {
1995 	struct ifnet *ifp;
1996 	struct vte_maddr_ctx ctx;
1997 	uint16_t mcr;
1998 	int i;
1999 
2000 	VTE_LOCK_ASSERT(sc);
2001 
2002 	ifp = sc->vte_ifp;
2003 
2004 	bzero(ctx.mchash, sizeof(ctx.mchash));
2005 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2006 		ctx.rxfilt_perf[i][0] = 0xFFFF;
2007 		ctx.rxfilt_perf[i][1] = 0xFFFF;
2008 		ctx.rxfilt_perf[i][2] = 0xFFFF;
2009 	}
2010 	ctx.nperf = 0;
2011 
2012 	mcr = CSR_READ_2(sc, VTE_MCR0);
2013 	mcr &= ~(MCR0_PROMISC | MCR0_MULTICAST);
2014 	mcr |= MCR0_BROADCAST_DIS;
2015 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2016 		mcr &= ~MCR0_BROADCAST_DIS;
2017 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2018 		if ((ifp->if_flags & IFF_PROMISC) != 0)
2019 			mcr |= MCR0_PROMISC;
2020 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2021 			mcr |= MCR0_MULTICAST;
2022 		ctx.mchash[0] = 0xFFFF;
2023 		ctx.mchash[1] = 0xFFFF;
2024 		ctx.mchash[2] = 0xFFFF;
2025 		ctx.mchash[3] = 0xFFFF;
2026 		goto chipit;
2027 	}
2028 
2029 	if_foreach_llmaddr(ifp, vte_hash_maddr, &ctx);
2030 	if (ctx.mchash[0] != 0 || ctx.mchash[1] != 0 ||
2031 	    ctx.mchash[2] != 0 || ctx.mchash[3] != 0)
2032 		mcr |= MCR0_MULTICAST;
2033 
2034 chipit:
2035 	/* Program multicast hash table. */
2036 	CSR_WRITE_2(sc, VTE_MAR0, ctx.mchash[0]);
2037 	CSR_WRITE_2(sc, VTE_MAR1, ctx.mchash[1]);
2038 	CSR_WRITE_2(sc, VTE_MAR2, ctx.mchash[2]);
2039 	CSR_WRITE_2(sc, VTE_MAR3, ctx.mchash[3]);
2040 	/* Program perfect filter table. */
2041 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2042 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
2043 		    ctx.rxfilt_perf[i][0]);
2044 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
2045 		    ctx.rxfilt_perf[i][1]);
2046 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
2047 		    ctx.rxfilt_perf[i][2]);
2048 	}
2049 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
2050 	CSR_READ_2(sc, VTE_MCR0);
2051 }
2052 
2053 static int
2054 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2055 {
2056 	int error, value;
2057 
2058 	if (arg1 == NULL)
2059 		return (EINVAL);
2060 	value = *(int *)arg1;
2061 	error = sysctl_handle_int(oidp, &value, 0, req);
2062 	if (error || req->newptr == NULL)
2063 		return (error);
2064 	if (value < low || value > high)
2065 		return (EINVAL);
2066 	*(int *)arg1 = value;
2067 
2068 	return (0);
2069 }
2070 
2071 static int
2072 sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS)
2073 {
2074 
2075 	return (sysctl_int_range(oidp, arg1, arg2, req,
2076 	    VTE_IM_BUNDLE_MIN, VTE_IM_BUNDLE_MAX));
2077 }
2078