xref: /freebsd/sys/dev/vte/if_vte.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/rman.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 
61 #include <dev/mii/mii.h>
62 #include <dev/mii/miivar.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <machine/bus.h>
68 
69 #include <dev/vte/if_vtereg.h>
70 #include <dev/vte/if_vtevar.h>
71 
72 /* "device miibus" required.  See GENERIC if you get errors here. */
73 #include "miibus_if.h"
74 
75 MODULE_DEPEND(vte, pci, 1, 1, 1);
76 MODULE_DEPEND(vte, ether, 1, 1, 1);
77 MODULE_DEPEND(vte, miibus, 1, 1, 1);
78 
79 /* Tunables. */
80 static int tx_deep_copy = 1;
81 TUNABLE_INT("hw.vte.tx_deep_copy", &tx_deep_copy);
82 
83 /*
84  * Devices supported by this driver.
85  */
86 static const struct vte_ident vte_ident_table[] = {
87 	{ VENDORID_RDC, DEVICEID_RDC_R6040, "RDC R6040 FastEthernet"},
88 	{ 0, 0, NULL}
89 };
90 
91 static int	vte_attach(device_t);
92 static int	vte_detach(device_t);
93 static int	vte_dma_alloc(struct vte_softc *);
94 static void	vte_dma_free(struct vte_softc *);
95 static void	vte_dmamap_cb(void *, bus_dma_segment_t *, int, int);
96 static struct vte_txdesc *
97 		vte_encap(struct vte_softc *, struct mbuf **);
98 static const struct vte_ident *
99 		vte_find_ident(device_t);
100 #ifndef __NO_STRICT_ALIGNMENT
101 static struct mbuf *
102 		vte_fixup_rx(if_t, struct mbuf *);
103 #endif
104 static void	vte_get_macaddr(struct vte_softc *);
105 static void	vte_init(void *);
106 static void	vte_init_locked(struct vte_softc *);
107 static int	vte_init_rx_ring(struct vte_softc *);
108 static int	vte_init_tx_ring(struct vte_softc *);
109 static void	vte_intr(void *);
110 static int	vte_ioctl(if_t, u_long, caddr_t);
111 static uint64_t	vte_get_counter(if_t, ift_counter);
112 static void	vte_mac_config(struct vte_softc *);
113 static int	vte_miibus_readreg(device_t, int, int);
114 static void	vte_miibus_statchg(device_t);
115 static int	vte_miibus_writereg(device_t, int, int, int);
116 static int	vte_mediachange(if_t);
117 static int	vte_mediachange_locked(if_t);
118 static void	vte_mediastatus(if_t, struct ifmediareq *);
119 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
120 static int	vte_probe(device_t);
121 static void	vte_reset(struct vte_softc *);
122 static int	vte_resume(device_t);
123 static void	vte_rxeof(struct vte_softc *);
124 static void	vte_rxfilter(struct vte_softc *);
125 static int	vte_shutdown(device_t);
126 static void	vte_start(if_t);
127 static void	vte_start_locked(struct vte_softc *);
128 static void	vte_start_mac(struct vte_softc *);
129 static void	vte_stats_clear(struct vte_softc *);
130 static void	vte_stats_update(struct vte_softc *);
131 static void	vte_stop(struct vte_softc *);
132 static void	vte_stop_mac(struct vte_softc *);
133 static int	vte_suspend(device_t);
134 static void	vte_sysctl_node(struct vte_softc *);
135 static void	vte_tick(void *);
136 static void	vte_txeof(struct vte_softc *);
137 static void	vte_watchdog(struct vte_softc *);
138 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
139 static int	sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS);
140 
141 static device_method_t vte_methods[] = {
142 	/* Device interface. */
143 	DEVMETHOD(device_probe,		vte_probe),
144 	DEVMETHOD(device_attach,	vte_attach),
145 	DEVMETHOD(device_detach,	vte_detach),
146 	DEVMETHOD(device_shutdown,	vte_shutdown),
147 	DEVMETHOD(device_suspend,	vte_suspend),
148 	DEVMETHOD(device_resume,	vte_resume),
149 
150 	/* MII interface. */
151 	DEVMETHOD(miibus_readreg,	vte_miibus_readreg),
152 	DEVMETHOD(miibus_writereg,	vte_miibus_writereg),
153 	DEVMETHOD(miibus_statchg,	vte_miibus_statchg),
154 
155 	DEVMETHOD_END
156 };
157 
158 static driver_t vte_driver = {
159 	"vte",
160 	vte_methods,
161 	sizeof(struct vte_softc)
162 };
163 
164 DRIVER_MODULE(vte, pci, vte_driver, 0, 0);
165 DRIVER_MODULE(miibus, vte, miibus_driver, 0, 0);
166 
167 static int
168 vte_miibus_readreg(device_t dev, int phy, int reg)
169 {
170 	struct vte_softc *sc;
171 	int i;
172 
173 	sc = device_get_softc(dev);
174 
175 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
176 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
177 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
178 		DELAY(5);
179 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
180 			break;
181 	}
182 
183 	if (i == 0) {
184 		device_printf(sc->vte_dev, "phy read timeout : %d\n", reg);
185 		return (0);
186 	}
187 
188 	return (CSR_READ_2(sc, VTE_MMRD));
189 }
190 
191 static int
192 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
193 {
194 	struct vte_softc *sc;
195 	int i;
196 
197 	sc = device_get_softc(dev);
198 
199 	CSR_WRITE_2(sc, VTE_MMWD, val);
200 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
201 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
202 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
203 		DELAY(5);
204 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
205 			break;
206 	}
207 
208 	if (i == 0)
209 		device_printf(sc->vte_dev, "phy write timeout : %d\n", reg);
210 
211 	return (0);
212 }
213 
214 static void
215 vte_miibus_statchg(device_t dev)
216 {
217 	struct vte_softc *sc;
218 	struct mii_data *mii;
219 	if_t ifp;
220 	uint16_t val;
221 
222 	sc = device_get_softc(dev);
223 
224 	mii = device_get_softc(sc->vte_miibus);
225 	ifp = sc->vte_ifp;
226 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
227 		return;
228 
229 	sc->vte_flags &= ~VTE_FLAG_LINK;
230 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
231 	    (IFM_ACTIVE | IFM_AVALID)) {
232 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
233 		case IFM_10_T:
234 		case IFM_100_TX:
235 			sc->vte_flags |= VTE_FLAG_LINK;
236 			break;
237 		default:
238 			break;
239 		}
240 	}
241 
242 	/* Stop RX/TX MACs. */
243 	vte_stop_mac(sc);
244 	/* Program MACs with resolved duplex and flow control. */
245 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
246 		/*
247 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
248 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
249 		 */
250 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
251 			val = 18 << VTE_IM_TIMER_SHIFT;
252 		else
253 			val = 1 << VTE_IM_TIMER_SHIFT;
254 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
255 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
256 		CSR_WRITE_2(sc, VTE_MRICR, val);
257 
258 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
259 			val = 18 << VTE_IM_TIMER_SHIFT;
260 		else
261 			val = 1 << VTE_IM_TIMER_SHIFT;
262 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
263 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
264 		CSR_WRITE_2(sc, VTE_MTICR, val);
265 
266 		vte_mac_config(sc);
267 		vte_start_mac(sc);
268 	}
269 }
270 
271 static void
272 vte_mediastatus(if_t ifp, struct ifmediareq *ifmr)
273 {
274 	struct vte_softc *sc;
275 	struct mii_data *mii;
276 
277 	sc = if_getsoftc(ifp);
278 	VTE_LOCK(sc);
279 	if ((if_getflags(ifp) & IFF_UP) == 0) {
280 		VTE_UNLOCK(sc);
281 		return;
282 	}
283 	mii = device_get_softc(sc->vte_miibus);
284 
285 	mii_pollstat(mii);
286 	ifmr->ifm_status = mii->mii_media_status;
287 	ifmr->ifm_active = mii->mii_media_active;
288 	VTE_UNLOCK(sc);
289 }
290 
291 static int
292 vte_mediachange(if_t ifp)
293 {
294 	struct vte_softc *sc;
295 	int error;
296 
297 	sc = if_getsoftc(ifp);
298 	VTE_LOCK(sc);
299 	error = vte_mediachange_locked(ifp);
300 	VTE_UNLOCK(sc);
301 	return (error);
302 }
303 
304 static int
305 vte_mediachange_locked(if_t ifp)
306 {
307 	struct vte_softc *sc;
308 	struct mii_data *mii;
309 	struct mii_softc *miisc;
310 	int error;
311 
312 	sc = if_getsoftc(ifp);
313 	mii = device_get_softc(sc->vte_miibus);
314 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
315 		PHY_RESET(miisc);
316 	error = mii_mediachg(mii);
317 
318 	return (error);
319 }
320 
321 static const struct vte_ident *
322 vte_find_ident(device_t dev)
323 {
324 	const struct vte_ident *ident;
325 	uint16_t vendor, devid;
326 
327 	vendor = pci_get_vendor(dev);
328 	devid = pci_get_device(dev);
329 	for (ident = vte_ident_table; ident->name != NULL; ident++) {
330 		if (vendor == ident->vendorid && devid == ident->deviceid)
331 			return (ident);
332 	}
333 
334 	return (NULL);
335 }
336 
337 static int
338 vte_probe(device_t dev)
339 {
340 	const struct vte_ident *ident;
341 
342 	ident = vte_find_ident(dev);
343 	if (ident != NULL) {
344 		device_set_desc(dev, ident->name);
345 		return (BUS_PROBE_DEFAULT);
346 	}
347 
348 	return (ENXIO);
349 }
350 
351 static void
352 vte_get_macaddr(struct vte_softc *sc)
353 {
354 	uint16_t mid;
355 
356 	/*
357 	 * It seems there is no way to reload station address and
358 	 * it is supposed to be set by BIOS.
359 	 */
360 	mid = CSR_READ_2(sc, VTE_MID0L);
361 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
362 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
363 	mid = CSR_READ_2(sc, VTE_MID0M);
364 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
365 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
366 	mid = CSR_READ_2(sc, VTE_MID0H);
367 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
368 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
369 }
370 
371 static int
372 vte_attach(device_t dev)
373 {
374 	struct vte_softc *sc;
375 	if_t ifp;
376 	uint16_t macid;
377 	int error, rid;
378 
379 	error = 0;
380 	sc = device_get_softc(dev);
381 	sc->vte_dev = dev;
382 
383 	mtx_init(&sc->vte_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
384 	    MTX_DEF);
385 	callout_init_mtx(&sc->vte_tick_ch, &sc->vte_mtx, 0);
386 	sc->vte_ident = vte_find_ident(dev);
387 
388 	/* Map the device. */
389 	pci_enable_busmaster(dev);
390 	sc->vte_res_id = PCIR_BAR(1);
391 	sc->vte_res_type = SYS_RES_MEMORY;
392 	sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
393 	    &sc->vte_res_id, RF_ACTIVE);
394 	if (sc->vte_res == NULL) {
395 		sc->vte_res_id = PCIR_BAR(0);
396 		sc->vte_res_type = SYS_RES_IOPORT;
397 		sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
398 		    &sc->vte_res_id, RF_ACTIVE);
399 		if (sc->vte_res == NULL) {
400 			device_printf(dev, "cannot map memory/ports.\n");
401 			mtx_destroy(&sc->vte_mtx);
402 			return (ENXIO);
403 		}
404 	}
405 	if (bootverbose) {
406 		device_printf(dev, "using %s space register mapping\n",
407 		    sc->vte_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
408 		device_printf(dev, "MAC Identifier : 0x%04x\n",
409 		    CSR_READ_2(sc, VTE_MACID));
410 		macid = CSR_READ_2(sc, VTE_MACID_REV);
411 		device_printf(dev, "MAC Id. 0x%02x, Rev. 0x%02x\n",
412 		    (macid & VTE_MACID_MASK) >> VTE_MACID_SHIFT,
413 		    (macid & VTE_MACID_REV_MASK) >> VTE_MACID_REV_SHIFT);
414 	}
415 
416 	rid = 0;
417 	sc->vte_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
418 	    RF_SHAREABLE | RF_ACTIVE);
419 	if (sc->vte_irq == NULL) {
420 		device_printf(dev, "cannot allocate IRQ resources.\n");
421 		error = ENXIO;
422 		goto fail;
423 	}
424 
425 	/* Reset the ethernet controller. */
426 	vte_reset(sc);
427 
428 	if ((error = vte_dma_alloc(sc)) != 0)
429 		goto fail;
430 
431 	/* Create device sysctl node. */
432 	vte_sysctl_node(sc);
433 
434 	/* Load station address. */
435 	vte_get_macaddr(sc);
436 
437 	ifp = sc->vte_ifp = if_alloc(IFT_ETHER);
438 	if_setsoftc(ifp, sc);
439 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
440 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
441 	if_setioctlfn(ifp, vte_ioctl);
442 	if_setstartfn(ifp, vte_start);
443 	if_setinitfn(ifp, vte_init);
444 	if_setgetcounterfn(ifp, vte_get_counter);
445 	if_setsendqlen(ifp, VTE_TX_RING_CNT - 1);
446 	if_setsendqready(ifp);
447 
448 	/*
449 	 * Set up MII bus.
450 	 * BIOS would have initialized VTE_MPSCCR to catch PHY
451 	 * status changes so driver may be able to extract
452 	 * configured PHY address.  Since it's common to see BIOS
453 	 * fails to initialize the register(including the sample
454 	 * board I have), let mii(4) probe it.  This is more
455 	 * reliable than relying on BIOS's initialization.
456 	 *
457 	 * Advertising flow control capability to mii(4) was
458 	 * intentionally disabled due to severe problems in TX
459 	 * pause frame generation.  See vte_rxeof() for more
460 	 * details.
461 	 */
462 	error = mii_attach(dev, &sc->vte_miibus, ifp, vte_mediachange,
463 	    vte_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
464 	if (error != 0) {
465 		device_printf(dev, "attaching PHYs failed\n");
466 		goto fail;
467 	}
468 
469 	ether_ifattach(ifp, sc->vte_eaddr);
470 
471 	/* VLAN capability setup. */
472 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
473 	if_setcapenable(ifp, if_getcapabilities(ifp));
474 	/* Tell the upper layer we support VLAN over-sized frames. */
475 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
476 
477 	error = bus_setup_intr(dev, sc->vte_irq, INTR_TYPE_NET | INTR_MPSAFE,
478 	    NULL, vte_intr, sc, &sc->vte_intrhand);
479 	if (error != 0) {
480 		device_printf(dev, "could not set up interrupt handler.\n");
481 		ether_ifdetach(ifp);
482 		goto fail;
483 	}
484 
485 fail:
486 	if (error != 0)
487 		vte_detach(dev);
488 
489 	return (error);
490 }
491 
492 static int
493 vte_detach(device_t dev)
494 {
495 	struct vte_softc *sc;
496 	if_t ifp;
497 
498 	sc = device_get_softc(dev);
499 
500 	ifp = sc->vte_ifp;
501 	if (device_is_attached(dev)) {
502 		VTE_LOCK(sc);
503 		vte_stop(sc);
504 		VTE_UNLOCK(sc);
505 		callout_drain(&sc->vte_tick_ch);
506 		ether_ifdetach(ifp);
507 	}
508 
509 	if (sc->vte_miibus != NULL) {
510 		device_delete_child(dev, sc->vte_miibus);
511 		sc->vte_miibus = NULL;
512 	}
513 	bus_generic_detach(dev);
514 
515 	if (sc->vte_intrhand != NULL) {
516 		bus_teardown_intr(dev, sc->vte_irq, sc->vte_intrhand);
517 		sc->vte_intrhand = NULL;
518 	}
519 	if (sc->vte_irq != NULL) {
520 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vte_irq);
521 		sc->vte_irq = NULL;
522 	}
523 	if (sc->vte_res != NULL) {
524 		bus_release_resource(dev, sc->vte_res_type, sc->vte_res_id,
525 		    sc->vte_res);
526 		sc->vte_res = NULL;
527 	}
528 	if (ifp != NULL) {
529 		if_free(ifp);
530 		sc->vte_ifp = NULL;
531 	}
532 	vte_dma_free(sc);
533 	mtx_destroy(&sc->vte_mtx);
534 
535 	return (0);
536 }
537 
538 #define	VTE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
539 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
540 
541 static void
542 vte_sysctl_node(struct vte_softc *sc)
543 {
544 	struct sysctl_ctx_list *ctx;
545 	struct sysctl_oid_list *child, *parent;
546 	struct sysctl_oid *tree;
547 	struct vte_hw_stats *stats;
548 	int error;
549 
550 	stats = &sc->vte_stats;
551 	ctx = device_get_sysctl_ctx(sc->vte_dev);
552 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vte_dev));
553 
554 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
555 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
556 	    &sc->vte_int_rx_mod, 0, sysctl_hw_vte_int_mod, "I",
557 	    "vte RX interrupt moderation");
558 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
559 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
560 	    &sc->vte_int_tx_mod, 0, sysctl_hw_vte_int_mod, "I",
561 	    "vte TX interrupt moderation");
562 	/* Pull in device tunables. */
563 	sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
564 	error = resource_int_value(device_get_name(sc->vte_dev),
565 	    device_get_unit(sc->vte_dev), "int_rx_mod", &sc->vte_int_rx_mod);
566 	if (error == 0) {
567 		if (sc->vte_int_rx_mod < VTE_IM_BUNDLE_MIN ||
568 		    sc->vte_int_rx_mod > VTE_IM_BUNDLE_MAX) {
569 			device_printf(sc->vte_dev, "int_rx_mod value out of "
570 			    "range; using default: %d\n",
571 			    VTE_IM_RX_BUNDLE_DEFAULT);
572 			sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
573 		}
574 	}
575 
576 	sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
577 	error = resource_int_value(device_get_name(sc->vte_dev),
578 	    device_get_unit(sc->vte_dev), "int_tx_mod", &sc->vte_int_tx_mod);
579 	if (error == 0) {
580 		if (sc->vte_int_tx_mod < VTE_IM_BUNDLE_MIN ||
581 		    sc->vte_int_tx_mod > VTE_IM_BUNDLE_MAX) {
582 			device_printf(sc->vte_dev, "int_tx_mod value out of "
583 			    "range; using default: %d\n",
584 			    VTE_IM_TX_BUNDLE_DEFAULT);
585 			sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
586 		}
587 	}
588 
589 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
590 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VTE statistics");
591 	parent = SYSCTL_CHILDREN(tree);
592 
593 	/* RX statistics. */
594 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
595 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
596 	child = SYSCTL_CHILDREN(tree);
597 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
598 	    &stats->rx_frames, "Good frames");
599 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
600 	    &stats->rx_bcast_frames, "Good broadcast frames");
601 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
602 	    &stats->rx_mcast_frames, "Good multicast frames");
603 	VTE_SYSCTL_STAT_ADD32(ctx, child, "runt",
604 	    &stats->rx_runts, "Too short frames");
605 	VTE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
606 	    &stats->rx_crcerrs, "CRC errors");
607 	VTE_SYSCTL_STAT_ADD32(ctx, child, "long_frames",
608 	    &stats->rx_long_frames,
609 	    "Frames that have longer length than maximum packet length");
610 	VTE_SYSCTL_STAT_ADD32(ctx, child, "fifo_full",
611 	    &stats->rx_fifo_full, "FIFO full");
612 	VTE_SYSCTL_STAT_ADD32(ctx, child, "desc_unavail",
613 	    &stats->rx_desc_unavail, "Descriptor unavailable frames");
614 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
615 	    &stats->rx_pause_frames, "Pause control frames");
616 
617 	/* TX statistics. */
618 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
619 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
620 	child = SYSCTL_CHILDREN(tree);
621 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
622 	    &stats->tx_frames, "Good frames");
623 	VTE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
624 	    &stats->tx_underruns, "FIFO underruns");
625 	VTE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
626 	    &stats->tx_late_colls, "Late collisions");
627 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
628 	    &stats->tx_pause_frames, "Pause control frames");
629 }
630 
631 #undef VTE_SYSCTL_STAT_ADD32
632 
633 struct vte_dmamap_arg {
634 	bus_addr_t	vte_busaddr;
635 };
636 
637 static void
638 vte_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
639 {
640 	struct vte_dmamap_arg *ctx;
641 
642 	if (error != 0)
643 		return;
644 
645 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
646 
647 	ctx = (struct vte_dmamap_arg *)arg;
648 	ctx->vte_busaddr = segs[0].ds_addr;
649 }
650 
651 static int
652 vte_dma_alloc(struct vte_softc *sc)
653 {
654 	struct vte_txdesc *txd;
655 	struct vte_rxdesc *rxd;
656 	struct vte_dmamap_arg ctx;
657 	int error, i;
658 
659 	/* Create parent DMA tag. */
660 	error = bus_dma_tag_create(
661 	    bus_get_dma_tag(sc->vte_dev), /* parent */
662 	    1, 0,			/* alignment, boundary */
663 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
664 	    BUS_SPACE_MAXADDR,		/* highaddr */
665 	    NULL, NULL,			/* filter, filterarg */
666 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
667 	    0,				/* nsegments */
668 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
669 	    0,				/* flags */
670 	    NULL, NULL,			/* lockfunc, lockarg */
671 	    &sc->vte_cdata.vte_parent_tag);
672 	if (error != 0) {
673 		device_printf(sc->vte_dev,
674 		    "could not create parent DMA tag.\n");
675 		goto fail;
676 	}
677 
678 	/* Create DMA tag for TX descriptor ring. */
679 	error = bus_dma_tag_create(
680 	    sc->vte_cdata.vte_parent_tag, /* parent */
681 	    VTE_TX_RING_ALIGN, 0,	/* alignment, boundary */
682 	    BUS_SPACE_MAXADDR,		/* lowaddr */
683 	    BUS_SPACE_MAXADDR,		/* highaddr */
684 	    NULL, NULL,			/* filter, filterarg */
685 	    VTE_TX_RING_SZ,		/* maxsize */
686 	    1,				/* nsegments */
687 	    VTE_TX_RING_SZ,		/* maxsegsize */
688 	    0,				/* flags */
689 	    NULL, NULL,			/* lockfunc, lockarg */
690 	    &sc->vte_cdata.vte_tx_ring_tag);
691 	if (error != 0) {
692 		device_printf(sc->vte_dev,
693 		    "could not create TX ring DMA tag.\n");
694 		goto fail;
695 	}
696 
697 	/* Create DMA tag for RX free descriptor ring. */
698 	error = bus_dma_tag_create(
699 	    sc->vte_cdata.vte_parent_tag, /* parent */
700 	    VTE_RX_RING_ALIGN, 0,	/* alignment, boundary */
701 	    BUS_SPACE_MAXADDR,		/* lowaddr */
702 	    BUS_SPACE_MAXADDR,		/* highaddr */
703 	    NULL, NULL,			/* filter, filterarg */
704 	    VTE_RX_RING_SZ,		/* maxsize */
705 	    1,				/* nsegments */
706 	    VTE_RX_RING_SZ,		/* maxsegsize */
707 	    0,				/* flags */
708 	    NULL, NULL,			/* lockfunc, lockarg */
709 	    &sc->vte_cdata.vte_rx_ring_tag);
710 	if (error != 0) {
711 		device_printf(sc->vte_dev,
712 		    "could not create RX ring DMA tag.\n");
713 		goto fail;
714 	}
715 
716 	/* Allocate DMA'able memory and load the DMA map for TX ring. */
717 	error = bus_dmamem_alloc(sc->vte_cdata.vte_tx_ring_tag,
718 	    (void **)&sc->vte_cdata.vte_tx_ring,
719 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
720 	    &sc->vte_cdata.vte_tx_ring_map);
721 	if (error != 0) {
722 		device_printf(sc->vte_dev,
723 		    "could not allocate DMA'able memory for TX ring.\n");
724 		goto fail;
725 	}
726 	ctx.vte_busaddr = 0;
727 	error = bus_dmamap_load(sc->vte_cdata.vte_tx_ring_tag,
728 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
729 	    VTE_TX_RING_SZ, vte_dmamap_cb, &ctx, 0);
730 	if (error != 0 || ctx.vte_busaddr == 0) {
731 		device_printf(sc->vte_dev,
732 		    "could not load DMA'able memory for TX ring.\n");
733 		goto fail;
734 	}
735 	sc->vte_cdata.vte_tx_ring_paddr = ctx.vte_busaddr;
736 
737 	/* Allocate DMA'able memory and load the DMA map for RX ring. */
738 	error = bus_dmamem_alloc(sc->vte_cdata.vte_rx_ring_tag,
739 	    (void **)&sc->vte_cdata.vte_rx_ring,
740 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
741 	    &sc->vte_cdata.vte_rx_ring_map);
742 	if (error != 0) {
743 		device_printf(sc->vte_dev,
744 		    "could not allocate DMA'able memory for RX ring.\n");
745 		goto fail;
746 	}
747 	ctx.vte_busaddr = 0;
748 	error = bus_dmamap_load(sc->vte_cdata.vte_rx_ring_tag,
749 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
750 	    VTE_RX_RING_SZ, vte_dmamap_cb, &ctx, 0);
751 	if (error != 0 || ctx.vte_busaddr == 0) {
752 		device_printf(sc->vte_dev,
753 		    "could not load DMA'able memory for RX ring.\n");
754 		goto fail;
755 	}
756 	sc->vte_cdata.vte_rx_ring_paddr = ctx.vte_busaddr;
757 
758 	/* Create TX buffer parent tag. */
759 	error = bus_dma_tag_create(
760 	    bus_get_dma_tag(sc->vte_dev), /* parent */
761 	    1, 0,			/* alignment, boundary */
762 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
763 	    BUS_SPACE_MAXADDR,		/* highaddr */
764 	    NULL, NULL,			/* filter, filterarg */
765 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
766 	    0,				/* nsegments */
767 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
768 	    0,				/* flags */
769 	    NULL, NULL,			/* lockfunc, lockarg */
770 	    &sc->vte_cdata.vte_buffer_tag);
771 	if (error != 0) {
772 		device_printf(sc->vte_dev,
773 		    "could not create parent buffer DMA tag.\n");
774 		goto fail;
775 	}
776 
777 	/* Create DMA tag for TX buffers. */
778 	error = bus_dma_tag_create(
779 	    sc->vte_cdata.vte_buffer_tag, /* parent */
780 	    1, 0,			/* alignment, boundary */
781 	    BUS_SPACE_MAXADDR,		/* lowaddr */
782 	    BUS_SPACE_MAXADDR,		/* highaddr */
783 	    NULL, NULL,			/* filter, filterarg */
784 	    MCLBYTES,			/* maxsize */
785 	    1,				/* nsegments */
786 	    MCLBYTES,			/* maxsegsize */
787 	    0,				/* flags */
788 	    NULL, NULL,			/* lockfunc, lockarg */
789 	    &sc->vte_cdata.vte_tx_tag);
790 	if (error != 0) {
791 		device_printf(sc->vte_dev, "could not create TX DMA tag.\n");
792 		goto fail;
793 	}
794 
795 	/* Create DMA tag for RX buffers. */
796 	error = bus_dma_tag_create(
797 	    sc->vte_cdata.vte_buffer_tag, /* parent */
798 	    VTE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
799 	    BUS_SPACE_MAXADDR,		/* lowaddr */
800 	    BUS_SPACE_MAXADDR,		/* highaddr */
801 	    NULL, NULL,			/* filter, filterarg */
802 	    MCLBYTES,			/* maxsize */
803 	    1,				/* nsegments */
804 	    MCLBYTES,			/* maxsegsize */
805 	    0,				/* flags */
806 	    NULL, NULL,			/* lockfunc, lockarg */
807 	    &sc->vte_cdata.vte_rx_tag);
808 	if (error != 0) {
809 		device_printf(sc->vte_dev, "could not create RX DMA tag.\n");
810 		goto fail;
811 	}
812 	/* Create DMA maps for TX buffers. */
813 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
814 		txd = &sc->vte_cdata.vte_txdesc[i];
815 		txd->tx_m = NULL;
816 		txd->tx_dmamap = NULL;
817 		error = bus_dmamap_create(sc->vte_cdata.vte_tx_tag, 0,
818 		    &txd->tx_dmamap);
819 		if (error != 0) {
820 			device_printf(sc->vte_dev,
821 			    "could not create TX dmamap.\n");
822 			goto fail;
823 		}
824 	}
825 	/* Create DMA maps for RX buffers. */
826 	if ((error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
827 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
828 		device_printf(sc->vte_dev,
829 		    "could not create spare RX dmamap.\n");
830 		goto fail;
831 	}
832 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
833 		rxd = &sc->vte_cdata.vte_rxdesc[i];
834 		rxd->rx_m = NULL;
835 		rxd->rx_dmamap = NULL;
836 		error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
837 		    &rxd->rx_dmamap);
838 		if (error != 0) {
839 			device_printf(sc->vte_dev,
840 			    "could not create RX dmamap.\n");
841 			goto fail;
842 		}
843 	}
844 
845 fail:
846 	return (error);
847 }
848 
849 static void
850 vte_dma_free(struct vte_softc *sc)
851 {
852 	struct vte_txdesc *txd;
853 	struct vte_rxdesc *rxd;
854 	int i;
855 
856 	/* TX buffers. */
857 	if (sc->vte_cdata.vte_tx_tag != NULL) {
858 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
859 			txd = &sc->vte_cdata.vte_txdesc[i];
860 			if (txd->tx_dmamap != NULL) {
861 				bus_dmamap_destroy(sc->vte_cdata.vte_tx_tag,
862 				    txd->tx_dmamap);
863 				txd->tx_dmamap = NULL;
864 			}
865 		}
866 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_tag);
867 		sc->vte_cdata.vte_tx_tag = NULL;
868 	}
869 	/* RX buffers */
870 	if (sc->vte_cdata.vte_rx_tag != NULL) {
871 		for (i = 0; i < VTE_RX_RING_CNT; i++) {
872 			rxd = &sc->vte_cdata.vte_rxdesc[i];
873 			if (rxd->rx_dmamap != NULL) {
874 				bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
875 				    rxd->rx_dmamap);
876 				rxd->rx_dmamap = NULL;
877 			}
878 		}
879 		if (sc->vte_cdata.vte_rx_sparemap != NULL) {
880 			bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
881 			    sc->vte_cdata.vte_rx_sparemap);
882 			sc->vte_cdata.vte_rx_sparemap = NULL;
883 		}
884 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_tag);
885 		sc->vte_cdata.vte_rx_tag = NULL;
886 	}
887 	/* TX descriptor ring. */
888 	if (sc->vte_cdata.vte_tx_ring_tag != NULL) {
889 		if (sc->vte_cdata.vte_tx_ring_paddr != 0)
890 			bus_dmamap_unload(sc->vte_cdata.vte_tx_ring_tag,
891 			    sc->vte_cdata.vte_tx_ring_map);
892 		if (sc->vte_cdata.vte_tx_ring != NULL)
893 			bus_dmamem_free(sc->vte_cdata.vte_tx_ring_tag,
894 			    sc->vte_cdata.vte_tx_ring,
895 			    sc->vte_cdata.vte_tx_ring_map);
896 		sc->vte_cdata.vte_tx_ring = NULL;
897 		sc->vte_cdata.vte_tx_ring_paddr = 0;
898 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_ring_tag);
899 		sc->vte_cdata.vte_tx_ring_tag = NULL;
900 	}
901 	/* RX ring. */
902 	if (sc->vte_cdata.vte_rx_ring_tag != NULL) {
903 		if (sc->vte_cdata.vte_rx_ring_paddr != 0)
904 			bus_dmamap_unload(sc->vte_cdata.vte_rx_ring_tag,
905 			    sc->vte_cdata.vte_rx_ring_map);
906 		if (sc->vte_cdata.vte_rx_ring != NULL)
907 			bus_dmamem_free(sc->vte_cdata.vte_rx_ring_tag,
908 			    sc->vte_cdata.vte_rx_ring,
909 			    sc->vte_cdata.vte_rx_ring_map);
910 		sc->vte_cdata.vte_rx_ring = NULL;
911 		sc->vte_cdata.vte_rx_ring_paddr = 0;
912 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_ring_tag);
913 		sc->vte_cdata.vte_rx_ring_tag = NULL;
914 	}
915 	if (sc->vte_cdata.vte_buffer_tag != NULL) {
916 		bus_dma_tag_destroy(sc->vte_cdata.vte_buffer_tag);
917 		sc->vte_cdata.vte_buffer_tag = NULL;
918 	}
919 	if (sc->vte_cdata.vte_parent_tag != NULL) {
920 		bus_dma_tag_destroy(sc->vte_cdata.vte_parent_tag);
921 		sc->vte_cdata.vte_parent_tag = NULL;
922 	}
923 }
924 
925 static int
926 vte_shutdown(device_t dev)
927 {
928 
929 	return (vte_suspend(dev));
930 }
931 
932 static int
933 vte_suspend(device_t dev)
934 {
935 	struct vte_softc *sc;
936 	if_t ifp;
937 
938 	sc = device_get_softc(dev);
939 
940 	VTE_LOCK(sc);
941 	ifp = sc->vte_ifp;
942 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
943 		vte_stop(sc);
944 	VTE_UNLOCK(sc);
945 
946 	return (0);
947 }
948 
949 static int
950 vte_resume(device_t dev)
951 {
952 	struct vte_softc *sc;
953 	if_t ifp;
954 
955 	sc = device_get_softc(dev);
956 
957 	VTE_LOCK(sc);
958 	ifp = sc->vte_ifp;
959 	if ((if_getflags(ifp) & IFF_UP) != 0) {
960 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
961 		vte_init_locked(sc);
962 	}
963 	VTE_UNLOCK(sc);
964 
965 	return (0);
966 }
967 
968 static struct vte_txdesc *
969 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
970 {
971 	struct vte_txdesc *txd;
972 	struct mbuf *m, *n;
973 	bus_dma_segment_t txsegs[1];
974 	int copy, error, nsegs, padlen;
975 
976 	VTE_LOCK_ASSERT(sc);
977 
978 	M_ASSERTPKTHDR((*m_head));
979 
980 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
981 	m = *m_head;
982 	/*
983 	 * Controller doesn't auto-pad, so we have to make sure pad
984 	 * short frames out to the minimum frame length.
985 	 */
986 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
987 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
988 	else
989 		padlen = 0;
990 
991 	/*
992 	 * Controller does not support multi-fragmented TX buffers.
993 	 * Controller spends most of its TX processing time in
994 	 * de-fragmenting TX buffers.  Either faster CPU or more
995 	 * advanced controller DMA engine is required to speed up
996 	 * TX path processing.
997 	 * To mitigate the de-fragmenting issue, perform deep copy
998 	 * from fragmented mbuf chains to a pre-allocated mbuf
999 	 * cluster with extra cost of kernel memory.  For frames
1000 	 * that is composed of single TX buffer, the deep copy is
1001 	 * bypassed.
1002 	 */
1003 	if (tx_deep_copy != 0) {
1004 		copy = 0;
1005 		if (m->m_next != NULL)
1006 			copy++;
1007 		if (padlen > 0 && (M_WRITABLE(m) == 0 ||
1008 		    padlen > M_TRAILINGSPACE(m)))
1009 			copy++;
1010 		if (copy != 0) {
1011 			/* Avoid expensive m_defrag(9) and do deep copy. */
1012 			n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
1013 			m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
1014 			n->m_pkthdr.len = m->m_pkthdr.len;
1015 			n->m_len = m->m_pkthdr.len;
1016 			m = n;
1017 			txd->tx_flags |= VTE_TXMBUF;
1018 		}
1019 
1020 		if (padlen > 0) {
1021 			/* Zero out the bytes in the pad area. */
1022 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1023 			m->m_pkthdr.len += padlen;
1024 			m->m_len = m->m_pkthdr.len;
1025 		}
1026 	} else {
1027 		if (M_WRITABLE(m) == 0) {
1028 			if (m->m_next != NULL || padlen > 0) {
1029 				/* Get a writable copy. */
1030 				m = m_dup(*m_head, M_NOWAIT);
1031 				/* Release original mbuf chains. */
1032 				m_freem(*m_head);
1033 				if (m == NULL) {
1034 					*m_head = NULL;
1035 					return (NULL);
1036 				}
1037 				*m_head = m;
1038 			}
1039 		}
1040 
1041 		if (m->m_next != NULL) {
1042 			m = m_defrag(*m_head, M_NOWAIT);
1043 			if (m == NULL) {
1044 				m_freem(*m_head);
1045 				*m_head = NULL;
1046 				return (NULL);
1047 			}
1048 			*m_head = m;
1049 		}
1050 
1051 		if (padlen > 0) {
1052 			if (M_TRAILINGSPACE(m) < padlen) {
1053 				m = m_defrag(*m_head, M_NOWAIT);
1054 				if (m == NULL) {
1055 					m_freem(*m_head);
1056 					*m_head = NULL;
1057 					return (NULL);
1058 				}
1059 				*m_head = m;
1060 			}
1061 			/* Zero out the bytes in the pad area. */
1062 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1063 			m->m_pkthdr.len += padlen;
1064 			m->m_len = m->m_pkthdr.len;
1065 		}
1066 	}
1067 
1068 	error = bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_tx_tag,
1069 	    txd->tx_dmamap, m, txsegs, &nsegs, 0);
1070 	if (error != 0) {
1071 		txd->tx_flags &= ~VTE_TXMBUF;
1072 		return (NULL);
1073 	}
1074 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1075 	bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1076 	    BUS_DMASYNC_PREWRITE);
1077 
1078 	txd->tx_desc->dtlen = htole16(VTE_TX_LEN(txsegs[0].ds_len));
1079 	txd->tx_desc->dtbp = htole32(txsegs[0].ds_addr);
1080 	sc->vte_cdata.vte_tx_cnt++;
1081 	/* Update producer index. */
1082 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
1083 
1084 	/* Finally hand over ownership to controller. */
1085 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
1086 	txd->tx_m = m;
1087 
1088 	return (txd);
1089 }
1090 
1091 static void
1092 vte_start(if_t ifp)
1093 {
1094 	struct vte_softc *sc;
1095 
1096 	sc = if_getsoftc(ifp);
1097 	VTE_LOCK(sc);
1098 	vte_start_locked(sc);
1099 	VTE_UNLOCK(sc);
1100 }
1101 
1102 static void
1103 vte_start_locked(struct vte_softc *sc)
1104 {
1105 	if_t ifp;
1106 	struct vte_txdesc *txd;
1107 	struct mbuf *m_head;
1108 	int enq;
1109 
1110 	ifp = sc->vte_ifp;
1111 
1112 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1113 	    IFF_DRV_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
1114 		return;
1115 
1116 	for (enq = 0; !if_sendq_empty(ifp); ) {
1117 		/* Reserve one free TX descriptor. */
1118 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
1119 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1120 			break;
1121 		}
1122 		m_head = if_dequeue(ifp);
1123 		if (m_head == NULL)
1124 			break;
1125 		/*
1126 		 * Pack the data into the transmit ring. If we
1127 		 * don't have room, set the OACTIVE flag and wait
1128 		 * for the NIC to drain the ring.
1129 		 */
1130 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
1131 			if (m_head != NULL)
1132 				if_sendq_prepend(ifp, m_head);
1133 			break;
1134 		}
1135 
1136 		enq++;
1137 		/*
1138 		 * If there's a BPF listener, bounce a copy of this frame
1139 		 * to him.
1140 		 */
1141 		ETHER_BPF_MTAP(ifp, m_head);
1142 		/* Free consumed TX frame. */
1143 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
1144 			m_freem(m_head);
1145 	}
1146 
1147 	if (enq > 0) {
1148 		bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1149 		    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1150 		    BUS_DMASYNC_PREWRITE);
1151 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
1152 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
1153 	}
1154 }
1155 
1156 static void
1157 vte_watchdog(struct vte_softc *sc)
1158 {
1159 	if_t ifp;
1160 
1161 	VTE_LOCK_ASSERT(sc);
1162 
1163 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
1164 		return;
1165 
1166 	ifp = sc->vte_ifp;
1167 	if_printf(sc->vte_ifp, "watchdog timeout -- resetting\n");
1168 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1169 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1170 	vte_init_locked(sc);
1171 	if (!if_sendq_empty(ifp))
1172 		vte_start_locked(sc);
1173 }
1174 
1175 static int
1176 vte_ioctl(if_t ifp, u_long cmd, caddr_t data)
1177 {
1178 	struct vte_softc *sc;
1179 	struct ifreq *ifr;
1180 	struct mii_data *mii;
1181 	int error;
1182 
1183 	sc = if_getsoftc(ifp);
1184 	ifr = (struct ifreq *)data;
1185 	error = 0;
1186 	switch (cmd) {
1187 	case SIOCSIFFLAGS:
1188 		VTE_LOCK(sc);
1189 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1190 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
1191 			    ((if_getflags(ifp) ^ sc->vte_if_flags) &
1192 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1193 				vte_rxfilter(sc);
1194 			else
1195 				vte_init_locked(sc);
1196 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1197 			vte_stop(sc);
1198 		sc->vte_if_flags = if_getflags(ifp);
1199 		VTE_UNLOCK(sc);
1200 		break;
1201 	case SIOCADDMULTI:
1202 	case SIOCDELMULTI:
1203 		VTE_LOCK(sc);
1204 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1205 			vte_rxfilter(sc);
1206 		VTE_UNLOCK(sc);
1207 		break;
1208 	case SIOCSIFMEDIA:
1209 	case SIOCGIFMEDIA:
1210 		mii = device_get_softc(sc->vte_miibus);
1211 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1212 		break;
1213 	default:
1214 		error = ether_ioctl(ifp, cmd, data);
1215 		break;
1216 	}
1217 
1218 	return (error);
1219 }
1220 
1221 static void
1222 vte_mac_config(struct vte_softc *sc)
1223 {
1224 	struct mii_data *mii;
1225 	uint16_t mcr;
1226 
1227 	VTE_LOCK_ASSERT(sc);
1228 
1229 	mii = device_get_softc(sc->vte_miibus);
1230 	mcr = CSR_READ_2(sc, VTE_MCR0);
1231 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
1232 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1233 		mcr |= MCR0_FULL_DUPLEX;
1234 #ifdef notyet
1235 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1236 			mcr |= MCR0_FC_ENB;
1237 		/*
1238 		 * The data sheet is not clear whether the controller
1239 		 * honors received pause frames or not.  The is no
1240 		 * separate control bit for RX pause frame so just
1241 		 * enable MCR0_FC_ENB bit.
1242 		 */
1243 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1244 			mcr |= MCR0_FC_ENB;
1245 #endif
1246 	}
1247 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1248 }
1249 
1250 static void
1251 vte_stats_clear(struct vte_softc *sc)
1252 {
1253 
1254 	/* Reading counter registers clears its contents. */
1255 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
1256 	CSR_READ_2(sc, VTE_CNT_MECNT0);
1257 	CSR_READ_2(sc, VTE_CNT_MECNT1);
1258 	CSR_READ_2(sc, VTE_CNT_MECNT2);
1259 	CSR_READ_2(sc, VTE_CNT_MECNT3);
1260 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
1261 	CSR_READ_2(sc, VTE_CNT_MECNT4);
1262 	CSR_READ_2(sc, VTE_CNT_PAUSE);
1263 }
1264 
1265 static void
1266 vte_stats_update(struct vte_softc *sc)
1267 {
1268 	struct vte_hw_stats *stat;
1269 	uint16_t value;
1270 
1271 	VTE_LOCK_ASSERT(sc);
1272 
1273 	stat = &sc->vte_stats;
1274 
1275 	CSR_READ_2(sc, VTE_MECISR);
1276 	/* RX stats. */
1277 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
1278 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
1279 	stat->rx_bcast_frames += (value >> 8);
1280 	stat->rx_mcast_frames += (value & 0xFF);
1281 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
1282 	stat->rx_runts += (value >> 8);
1283 	stat->rx_crcerrs += (value & 0xFF);
1284 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
1285 	stat->rx_long_frames += (value & 0xFF);
1286 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
1287 	stat->rx_fifo_full += (value >> 8);
1288 	stat->rx_desc_unavail += (value & 0xFF);
1289 
1290 	/* TX stats. */
1291 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
1292 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
1293 	stat->tx_underruns += (value >> 8);
1294 	stat->tx_late_colls += (value & 0xFF);
1295 
1296 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
1297 	stat->tx_pause_frames += (value >> 8);
1298 	stat->rx_pause_frames += (value & 0xFF);
1299 }
1300 
1301 static uint64_t
1302 vte_get_counter(if_t ifp, ift_counter cnt)
1303 {
1304 	struct vte_softc *sc;
1305 	struct vte_hw_stats *stat;
1306 
1307 	sc = if_getsoftc(ifp);
1308 	stat = &sc->vte_stats;
1309 
1310 	switch (cnt) {
1311 	case IFCOUNTER_OPACKETS:
1312 		return (stat->tx_frames);
1313 	case IFCOUNTER_COLLISIONS:
1314 		return (stat->tx_late_colls);
1315 	case IFCOUNTER_OERRORS:
1316 		return (stat->tx_late_colls + stat->tx_underruns);
1317 	case IFCOUNTER_IPACKETS:
1318 		return (stat->rx_frames);
1319 	case IFCOUNTER_IERRORS:
1320 		return (stat->rx_crcerrs + stat->rx_runts +
1321 		    stat->rx_long_frames + stat->rx_fifo_full);
1322 	default:
1323 		return (if_get_counter_default(ifp, cnt));
1324 	}
1325 }
1326 
1327 static void
1328 vte_intr(void *arg)
1329 {
1330 	struct vte_softc *sc;
1331 	if_t ifp;
1332 	uint16_t status;
1333 	int n;
1334 
1335 	sc = (struct vte_softc *)arg;
1336 	VTE_LOCK(sc);
1337 
1338 	ifp = sc->vte_ifp;
1339 	/* Reading VTE_MISR acknowledges interrupts. */
1340 	status = CSR_READ_2(sc, VTE_MISR);
1341 	if ((status & VTE_INTRS) == 0) {
1342 		/* Not ours. */
1343 		VTE_UNLOCK(sc);
1344 		return;
1345 	}
1346 
1347 	/* Disable interrupts. */
1348 	CSR_WRITE_2(sc, VTE_MIER, 0);
1349 	for (n = 8; (status & VTE_INTRS) != 0;) {
1350 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1351 			break;
1352 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
1353 		    MISR_RX_FIFO_FULL)) != 0)
1354 			vte_rxeof(sc);
1355 		if ((status & MISR_TX_DONE) != 0)
1356 			vte_txeof(sc);
1357 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
1358 			vte_stats_update(sc);
1359 		if (!if_sendq_empty(ifp))
1360 			vte_start_locked(sc);
1361 		if (--n > 0)
1362 			status = CSR_READ_2(sc, VTE_MISR);
1363 		else
1364 			break;
1365 	}
1366 
1367 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1368 		/* Re-enable interrupts. */
1369 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1370 	}
1371 	VTE_UNLOCK(sc);
1372 }
1373 
1374 static void
1375 vte_txeof(struct vte_softc *sc)
1376 {
1377 	if_t ifp;
1378 	struct vte_txdesc *txd;
1379 	uint16_t status;
1380 	int cons, prog;
1381 
1382 	VTE_LOCK_ASSERT(sc);
1383 
1384 	ifp = sc->vte_ifp;
1385 
1386 	if (sc->vte_cdata.vte_tx_cnt == 0)
1387 		return;
1388 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1389 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_POSTREAD |
1390 	    BUS_DMASYNC_POSTWRITE);
1391 	cons = sc->vte_cdata.vte_tx_cons;
1392 	/*
1393 	 * Go through our TX list and free mbufs for those
1394 	 * frames which have been transmitted.
1395 	 */
1396 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1397 		txd = &sc->vte_cdata.vte_txdesc[cons];
1398 		status = le16toh(txd->tx_desc->dtst);
1399 		if ((status & VTE_DTST_TX_OWN) != 0)
1400 			break;
1401 		sc->vte_cdata.vte_tx_cnt--;
1402 		/* Reclaim transmitted mbufs. */
1403 		bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1404 		    BUS_DMASYNC_POSTWRITE);
1405 		bus_dmamap_unload(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap);
1406 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1407 			m_freem(txd->tx_m);
1408 		txd->tx_flags &= ~VTE_TXMBUF;
1409 		txd->tx_m = NULL;
1410 		prog++;
1411 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1412 	}
1413 
1414 	if (prog > 0) {
1415 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1416 		sc->vte_cdata.vte_tx_cons = cons;
1417 		/*
1418 		 * Unarm watchdog timer only when there is no pending
1419 		 * frames in TX queue.
1420 		 */
1421 		if (sc->vte_cdata.vte_tx_cnt == 0)
1422 			sc->vte_watchdog_timer = 0;
1423 	}
1424 }
1425 
1426 static int
1427 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1428 {
1429 	struct mbuf *m;
1430 	bus_dma_segment_t segs[1];
1431 	bus_dmamap_t map;
1432 	int nsegs;
1433 
1434 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1435 	if (m == NULL)
1436 		return (ENOBUFS);
1437 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1438 	m_adj(m, sizeof(uint32_t));
1439 
1440 	if (bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_rx_tag,
1441 	    sc->vte_cdata.vte_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1442 		m_freem(m);
1443 		return (ENOBUFS);
1444 	}
1445 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1446 
1447 	if (rxd->rx_m != NULL) {
1448 		bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1449 		    BUS_DMASYNC_POSTREAD);
1450 		bus_dmamap_unload(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap);
1451 	}
1452 	map = rxd->rx_dmamap;
1453 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1454 	sc->vte_cdata.vte_rx_sparemap = map;
1455 	bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1456 	    BUS_DMASYNC_PREREAD);
1457 	rxd->rx_m = m;
1458 	rxd->rx_desc->drbp = htole32(segs[0].ds_addr);
1459 	rxd->rx_desc->drlen = htole16(VTE_RX_LEN(segs[0].ds_len));
1460 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1461 
1462 	return (0);
1463 }
1464 
1465 /*
1466  * It's not supposed to see this controller on strict-alignment
1467  * architectures but make it work for completeness.
1468  */
1469 #ifndef __NO_STRICT_ALIGNMENT
1470 static struct mbuf *
1471 vte_fixup_rx(if_t ifp, struct mbuf *m)
1472 {
1473         uint16_t *src, *dst;
1474         int i;
1475 
1476 	src = mtod(m, uint16_t *);
1477 	dst = src - 1;
1478 
1479 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1480 		*dst++ = *src++;
1481 	m->m_data -= ETHER_ALIGN;
1482 	return (m);
1483 }
1484 #endif
1485 
1486 static void
1487 vte_rxeof(struct vte_softc *sc)
1488 {
1489 	if_t ifp;
1490 	struct vte_rxdesc *rxd;
1491 	struct mbuf *m;
1492 	uint16_t status, total_len;
1493 	int cons, prog;
1494 
1495 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1496 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_POSTREAD |
1497 	    BUS_DMASYNC_POSTWRITE);
1498 	cons = sc->vte_cdata.vte_rx_cons;
1499 	ifp = sc->vte_ifp;
1500 	for (prog = 0; (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0; prog++,
1501 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1502 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1503 		status = le16toh(rxd->rx_desc->drst);
1504 		if ((status & VTE_DRST_RX_OWN) != 0)
1505 			break;
1506 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1507 		m = rxd->rx_m;
1508 		if ((status & VTE_DRST_RX_OK) == 0) {
1509 			/* Discard errored frame. */
1510 			rxd->rx_desc->drlen =
1511 			    htole16(MCLBYTES - sizeof(uint32_t));
1512 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1513 			continue;
1514 		}
1515 		if (vte_newbuf(sc, rxd) != 0) {
1516 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1517 			rxd->rx_desc->drlen =
1518 			    htole16(MCLBYTES - sizeof(uint32_t));
1519 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1520 			continue;
1521 		}
1522 
1523 		/*
1524 		 * It seems there is no way to strip FCS bytes.
1525 		 */
1526 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1527 		m->m_pkthdr.rcvif = ifp;
1528 #ifndef __NO_STRICT_ALIGNMENT
1529 		vte_fixup_rx(ifp, m);
1530 #endif
1531 		VTE_UNLOCK(sc);
1532 		if_input(ifp, m);
1533 		VTE_LOCK(sc);
1534 	}
1535 
1536 	if (prog > 0) {
1537 		/* Update the consumer index. */
1538 		sc->vte_cdata.vte_rx_cons = cons;
1539 		/*
1540 		 * Sync updated RX descriptors such that controller see
1541 		 * modified RX buffer addresses.
1542 		 */
1543 		bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1544 		    sc->vte_cdata.vte_rx_ring_map,
1545 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1546 #ifdef notyet
1547 		/*
1548 		 * Update residue counter.  Controller does not
1549 		 * keep track of number of available RX descriptors
1550 		 * such that driver should have to update VTE_MRDCR
1551 		 * to make controller know how many free RX
1552 		 * descriptors were added to controller.  This is
1553 		 * a similar mechanism used in VIA velocity
1554 		 * controllers and it indicates controller just
1555 		 * polls OWN bit of current RX descriptor pointer.
1556 		 * A couple of severe issues were seen on sample
1557 		 * board where the controller continuously emits TX
1558 		 * pause frames once RX pause threshold crossed.
1559 		 * Once triggered it never recovered form that
1560 		 * state, I couldn't find a way to make it back to
1561 		 * work at least.  This issue effectively
1562 		 * disconnected the system from network.  Also, the
1563 		 * controller used 00:00:00:00:00:00 as source
1564 		 * station address of TX pause frame. Probably this
1565 		 * is one of reason why vendor recommends not to
1566 		 * enable flow control on R6040 controller.
1567 		 */
1568 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1569 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1570 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1571 #endif
1572 	}
1573 }
1574 
1575 static void
1576 vte_tick(void *arg)
1577 {
1578 	struct vte_softc *sc;
1579 	struct mii_data *mii;
1580 
1581 	sc = (struct vte_softc *)arg;
1582 
1583 	VTE_LOCK_ASSERT(sc);
1584 
1585 	mii = device_get_softc(sc->vte_miibus);
1586 	mii_tick(mii);
1587 	vte_stats_update(sc);
1588 	vte_txeof(sc);
1589 	vte_watchdog(sc);
1590 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1591 }
1592 
1593 static void
1594 vte_reset(struct vte_softc *sc)
1595 {
1596 	uint16_t mcr, mdcsc;
1597 	int i;
1598 
1599 	mdcsc = CSR_READ_2(sc, VTE_MDCSC);
1600 	mcr = CSR_READ_2(sc, VTE_MCR1);
1601 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1602 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1603 		DELAY(10);
1604 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1605 			break;
1606 	}
1607 	if (i == 0)
1608 		device_printf(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1609 	/*
1610 	 * Follow the guide of vendor recommended way to reset MAC.
1611 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1612 	 * not reliable so manually reset internal state machine.
1613 	 */
1614 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1615 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1616 	DELAY(5000);
1617 
1618 	/*
1619 	 * On some SoCs (like Vortex86DX3) MDC speed control register value
1620 	 * needs to be restored to original value instead of default one,
1621 	 * otherwise some PHY registers may fail to be read.
1622 	 */
1623 	if (mdcsc != MDCSC_DEFAULT)
1624 		CSR_WRITE_2(sc, VTE_MDCSC, mdcsc);
1625 }
1626 
1627 static void
1628 vte_init(void *xsc)
1629 {
1630 	struct vte_softc *sc;
1631 
1632 	sc = (struct vte_softc *)xsc;
1633 	VTE_LOCK(sc);
1634 	vte_init_locked(sc);
1635 	VTE_UNLOCK(sc);
1636 }
1637 
1638 static void
1639 vte_init_locked(struct vte_softc *sc)
1640 {
1641 	if_t ifp;
1642 	bus_addr_t paddr;
1643 	uint8_t *eaddr;
1644 
1645 	VTE_LOCK_ASSERT(sc);
1646 
1647 	ifp = sc->vte_ifp;
1648 
1649 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1650 		return;
1651 	/*
1652 	 * Cancel any pending I/O.
1653 	 */
1654 	vte_stop(sc);
1655 	/*
1656 	 * Reset the chip to a known state.
1657 	 */
1658 	vte_reset(sc);
1659 
1660 	/* Initialize RX descriptors. */
1661 	if (vte_init_rx_ring(sc) != 0) {
1662 		device_printf(sc->vte_dev, "no memory for RX buffers.\n");
1663 		vte_stop(sc);
1664 		return;
1665 	}
1666 	if (vte_init_tx_ring(sc) != 0) {
1667 		device_printf(sc->vte_dev, "no memory for TX buffers.\n");
1668 		vte_stop(sc);
1669 		return;
1670 	}
1671 
1672 	/*
1673 	 * Reprogram the station address.  Controller supports up
1674 	 * to 4 different station addresses so driver programs the
1675 	 * first station address as its own ethernet address and
1676 	 * configure the remaining three addresses as perfect
1677 	 * multicast addresses.
1678 	 */
1679 	eaddr = if_getlladdr(sc->vte_ifp);
1680 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1681 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1682 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1683 
1684 	/* Set TX descriptor base addresses. */
1685 	paddr = sc->vte_cdata.vte_tx_ring_paddr;
1686 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1687 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1688 	/* Set RX descriptor base addresses. */
1689 	paddr = sc->vte_cdata.vte_rx_ring_paddr;
1690 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1691 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1692 	/*
1693 	 * Initialize RX descriptor residue counter and set RX
1694 	 * pause threshold to 20% of available RX descriptors.
1695 	 * See comments on vte_rxeof() for details on flow control
1696 	 * issues.
1697 	 */
1698 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1699 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1700 
1701 	/*
1702 	 * Always use maximum frame size that controller can
1703 	 * support.  Otherwise received frames that has longer
1704 	 * frame length than vte(4) MTU would be silently dropped
1705 	 * in controller.  This would break path-MTU discovery as
1706 	 * sender wouldn't get any responses from receiver. The
1707 	 * RX buffer size should be multiple of 4.
1708 	 * Note, jumbo frames are silently ignored by controller
1709 	 * and even MAC counters do not detect them.
1710 	 */
1711 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1712 
1713 	/* Configure FIFO. */
1714 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1715 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1716 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1717 
1718 	/*
1719 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1720 	 * control configuration is done after detecting a valid
1721 	 * link.  Note, we don't generate early interrupt here
1722 	 * as well since FreeBSD does not have interrupt latency
1723 	 * problems like Windows.
1724 	 */
1725 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1726 	/*
1727 	 * We manually keep track of PHY status changes to
1728 	 * configure resolved duplex and flow control since only
1729 	 * duplex configuration can be automatically reflected to
1730 	 * MCR0.
1731 	 */
1732 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1733 	    MCR1_EXCESS_COL_RETRY_16);
1734 
1735 	/* Initialize RX filter. */
1736 	vte_rxfilter(sc);
1737 
1738 	/* Disable TX/RX interrupt moderation control. */
1739 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1740 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1741 
1742 	/* Enable MAC event counter interrupts. */
1743 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1744 	/* Clear MAC statistics. */
1745 	vte_stats_clear(sc);
1746 
1747 	/* Acknowledge all pending interrupts and clear it. */
1748 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1749 	CSR_WRITE_2(sc, VTE_MISR, 0);
1750 
1751 	sc->vte_flags &= ~VTE_FLAG_LINK;
1752 	/* Switch to the current media. */
1753 	vte_mediachange_locked(ifp);
1754 
1755 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1756 
1757 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1758 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1759 }
1760 
1761 static void
1762 vte_stop(struct vte_softc *sc)
1763 {
1764 	if_t ifp;
1765 	struct vte_txdesc *txd;
1766 	struct vte_rxdesc *rxd;
1767 	int i;
1768 
1769 	VTE_LOCK_ASSERT(sc);
1770 	/*
1771 	 * Mark the interface down and cancel the watchdog timer.
1772 	 */
1773 	ifp = sc->vte_ifp;
1774 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1775 	sc->vte_flags &= ~VTE_FLAG_LINK;
1776 	callout_stop(&sc->vte_tick_ch);
1777 	sc->vte_watchdog_timer = 0;
1778 	vte_stats_update(sc);
1779 	/* Disable interrupts. */
1780 	CSR_WRITE_2(sc, VTE_MIER, 0);
1781 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1782 	/* Stop RX/TX MACs. */
1783 	vte_stop_mac(sc);
1784 	/* Clear interrupts. */
1785 	CSR_READ_2(sc, VTE_MISR);
1786 	/*
1787 	 * Free TX/RX mbufs still in the queues.
1788 	 */
1789 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1790 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1791 		if (rxd->rx_m != NULL) {
1792 			bus_dmamap_sync(sc->vte_cdata.vte_rx_tag,
1793 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1794 			bus_dmamap_unload(sc->vte_cdata.vte_rx_tag,
1795 			    rxd->rx_dmamap);
1796 			m_freem(rxd->rx_m);
1797 			rxd->rx_m = NULL;
1798 		}
1799 	}
1800 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1801 		txd = &sc->vte_cdata.vte_txdesc[i];
1802 		if (txd->tx_m != NULL) {
1803 			bus_dmamap_sync(sc->vte_cdata.vte_tx_tag,
1804 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1805 			bus_dmamap_unload(sc->vte_cdata.vte_tx_tag,
1806 			    txd->tx_dmamap);
1807 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1808 				m_freem(txd->tx_m);
1809 			txd->tx_m = NULL;
1810 			txd->tx_flags &= ~VTE_TXMBUF;
1811 		}
1812 	}
1813 	/* Free TX mbuf pools used for deep copy. */
1814 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1815 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1816 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1817 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1818 		}
1819 	}
1820 }
1821 
1822 static void
1823 vte_start_mac(struct vte_softc *sc)
1824 {
1825 	uint16_t mcr;
1826 	int i;
1827 
1828 	VTE_LOCK_ASSERT(sc);
1829 
1830 	/* Enable RX/TX MACs. */
1831 	mcr = CSR_READ_2(sc, VTE_MCR0);
1832 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1833 	    (MCR0_RX_ENB | MCR0_TX_ENB)) {
1834 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1835 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1836 		for (i = VTE_TIMEOUT; i > 0; i--) {
1837 			mcr = CSR_READ_2(sc, VTE_MCR0);
1838 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1839 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1840 				break;
1841 			DELAY(10);
1842 		}
1843 		if (i == 0)
1844 			device_printf(sc->vte_dev,
1845 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1846 	}
1847 }
1848 
1849 static void
1850 vte_stop_mac(struct vte_softc *sc)
1851 {
1852 	uint16_t mcr;
1853 	int i;
1854 
1855 	VTE_LOCK_ASSERT(sc);
1856 
1857 	/* Disable RX/TX MACs. */
1858 	mcr = CSR_READ_2(sc, VTE_MCR0);
1859 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1860 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1861 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1862 		for (i = VTE_TIMEOUT; i > 0; i--) {
1863 			mcr = CSR_READ_2(sc, VTE_MCR0);
1864 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1865 				break;
1866 			DELAY(10);
1867 		}
1868 		if (i == 0)
1869 			device_printf(sc->vte_dev,
1870 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1871 	}
1872 }
1873 
1874 static int
1875 vte_init_tx_ring(struct vte_softc *sc)
1876 {
1877 	struct vte_tx_desc *desc;
1878 	struct vte_txdesc *txd;
1879 	bus_addr_t addr;
1880 	int i;
1881 
1882 	VTE_LOCK_ASSERT(sc);
1883 
1884 	sc->vte_cdata.vte_tx_prod = 0;
1885 	sc->vte_cdata.vte_tx_cons = 0;
1886 	sc->vte_cdata.vte_tx_cnt = 0;
1887 
1888 	/* Pre-allocate TX mbufs for deep copy. */
1889 	if (tx_deep_copy != 0) {
1890 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
1891 			sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_NOWAIT,
1892 			    MT_DATA, M_PKTHDR);
1893 			if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1894 				return (ENOBUFS);
1895 			sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1896 			sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1897 		}
1898 	}
1899 	desc = sc->vte_cdata.vte_tx_ring;
1900 	bzero(desc, VTE_TX_RING_SZ);
1901 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1902 		txd = &sc->vte_cdata.vte_txdesc[i];
1903 		txd->tx_m = NULL;
1904 		if (i != VTE_TX_RING_CNT - 1)
1905 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1906 			    sizeof(struct vte_tx_desc) * (i + 1);
1907 		else
1908 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1909 			    sizeof(struct vte_tx_desc) * 0;
1910 		desc = &sc->vte_cdata.vte_tx_ring[i];
1911 		desc->dtnp = htole32(addr);
1912 		txd->tx_desc = desc;
1913 	}
1914 
1915 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1916 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1917 	    BUS_DMASYNC_PREWRITE);
1918 	return (0);
1919 }
1920 
1921 static int
1922 vte_init_rx_ring(struct vte_softc *sc)
1923 {
1924 	struct vte_rx_desc *desc;
1925 	struct vte_rxdesc *rxd;
1926 	bus_addr_t addr;
1927 	int i;
1928 
1929 	VTE_LOCK_ASSERT(sc);
1930 
1931 	sc->vte_cdata.vte_rx_cons = 0;
1932 	desc = sc->vte_cdata.vte_rx_ring;
1933 	bzero(desc, VTE_RX_RING_SZ);
1934 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1935 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1936 		rxd->rx_m = NULL;
1937 		if (i != VTE_RX_RING_CNT - 1)
1938 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1939 			    sizeof(struct vte_rx_desc) * (i + 1);
1940 		else
1941 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1942 			    sizeof(struct vte_rx_desc) * 0;
1943 		desc = &sc->vte_cdata.vte_rx_ring[i];
1944 		desc->drnp = htole32(addr);
1945 		rxd->rx_desc = desc;
1946 		if (vte_newbuf(sc, rxd) != 0)
1947 			return (ENOBUFS);
1948 	}
1949 
1950 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1951 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_PREREAD |
1952 	    BUS_DMASYNC_PREWRITE);
1953 
1954 	return (0);
1955 }
1956 
1957 struct vte_maddr_ctx {
1958 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1959 	uint16_t mchash[4];
1960 	u_int nperf;
1961 };
1962 
1963 static u_int
1964 vte_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1965 {
1966 	struct vte_maddr_ctx *ctx = arg;
1967 	uint8_t *eaddr;
1968 	uint32_t crc;
1969 
1970 	/*
1971 	 * Program the first 3 multicast groups into the perfect filter.
1972 	 * For all others, use the hash table.
1973 	 */
1974 	if (ctx->nperf < VTE_RXFILT_PERFECT_CNT) {
1975 		eaddr = LLADDR(sdl);
1976 		ctx->rxfilt_perf[ctx->nperf][0] = eaddr[1] << 8 | eaddr[0];
1977 		ctx->rxfilt_perf[ctx->nperf][1] = eaddr[3] << 8 | eaddr[2];
1978 		ctx->rxfilt_perf[ctx->nperf][2] = eaddr[5] << 8 | eaddr[4];
1979 		ctx->nperf++;
1980 
1981 		return (1);
1982 	}
1983 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
1984 	ctx->mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1985 
1986 	return (1);
1987 }
1988 
1989 static void
1990 vte_rxfilter(struct vte_softc *sc)
1991 {
1992 	if_t ifp;
1993 	struct vte_maddr_ctx ctx;
1994 	uint16_t mcr;
1995 	int i;
1996 
1997 	VTE_LOCK_ASSERT(sc);
1998 
1999 	ifp = sc->vte_ifp;
2000 
2001 	bzero(ctx.mchash, sizeof(ctx.mchash));
2002 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2003 		ctx.rxfilt_perf[i][0] = 0xFFFF;
2004 		ctx.rxfilt_perf[i][1] = 0xFFFF;
2005 		ctx.rxfilt_perf[i][2] = 0xFFFF;
2006 	}
2007 	ctx.nperf = 0;
2008 
2009 	mcr = CSR_READ_2(sc, VTE_MCR0);
2010 	mcr &= ~(MCR0_PROMISC | MCR0_MULTICAST);
2011 	mcr |= MCR0_BROADCAST_DIS;
2012 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
2013 		mcr &= ~MCR0_BROADCAST_DIS;
2014 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2015 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2016 			mcr |= MCR0_PROMISC;
2017 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
2018 			mcr |= MCR0_MULTICAST;
2019 		ctx.mchash[0] = 0xFFFF;
2020 		ctx.mchash[1] = 0xFFFF;
2021 		ctx.mchash[2] = 0xFFFF;
2022 		ctx.mchash[3] = 0xFFFF;
2023 		goto chipit;
2024 	}
2025 
2026 	if_foreach_llmaddr(ifp, vte_hash_maddr, &ctx);
2027 	if (ctx.mchash[0] != 0 || ctx.mchash[1] != 0 ||
2028 	    ctx.mchash[2] != 0 || ctx.mchash[3] != 0)
2029 		mcr |= MCR0_MULTICAST;
2030 
2031 chipit:
2032 	/* Program multicast hash table. */
2033 	CSR_WRITE_2(sc, VTE_MAR0, ctx.mchash[0]);
2034 	CSR_WRITE_2(sc, VTE_MAR1, ctx.mchash[1]);
2035 	CSR_WRITE_2(sc, VTE_MAR2, ctx.mchash[2]);
2036 	CSR_WRITE_2(sc, VTE_MAR3, ctx.mchash[3]);
2037 	/* Program perfect filter table. */
2038 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2039 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
2040 		    ctx.rxfilt_perf[i][0]);
2041 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
2042 		    ctx.rxfilt_perf[i][1]);
2043 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
2044 		    ctx.rxfilt_perf[i][2]);
2045 	}
2046 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
2047 	CSR_READ_2(sc, VTE_MCR0);
2048 }
2049 
2050 static int
2051 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2052 {
2053 	int error, value;
2054 
2055 	if (arg1 == NULL)
2056 		return (EINVAL);
2057 	value = *(int *)arg1;
2058 	error = sysctl_handle_int(oidp, &value, 0, req);
2059 	if (error || req->newptr == NULL)
2060 		return (error);
2061 	if (value < low || value > high)
2062 		return (EINVAL);
2063 	*(int *)arg1 = value;
2064 
2065 	return (0);
2066 }
2067 
2068 static int
2069 sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS)
2070 {
2071 
2072 	return (sysctl_int_range(oidp, arg1, arg2, req,
2073 	    VTE_IM_BUNDLE_MIN, VTE_IM_BUNDLE_MAX));
2074 }
2075