xref: /freebsd/sys/dev/vte/if_vte.c (revision b077aed33b7b6aefca7b17ddb250cf521f938613)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/rman.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 #include <net/if_vlan_var.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 
70 #include <machine/bus.h>
71 
72 #include <dev/vte/if_vtereg.h>
73 #include <dev/vte/if_vtevar.h>
74 
75 /* "device miibus" required.  See GENERIC if you get errors here. */
76 #include "miibus_if.h"
77 
78 MODULE_DEPEND(vte, pci, 1, 1, 1);
79 MODULE_DEPEND(vte, ether, 1, 1, 1);
80 MODULE_DEPEND(vte, miibus, 1, 1, 1);
81 
82 /* Tunables. */
83 static int tx_deep_copy = 1;
84 TUNABLE_INT("hw.vte.tx_deep_copy", &tx_deep_copy);
85 
86 /*
87  * Devices supported by this driver.
88  */
89 static const struct vte_ident vte_ident_table[] = {
90 	{ VENDORID_RDC, DEVICEID_RDC_R6040, "RDC R6040 FastEthernet"},
91 	{ 0, 0, NULL}
92 };
93 
94 static int	vte_attach(device_t);
95 static int	vte_detach(device_t);
96 static int	vte_dma_alloc(struct vte_softc *);
97 static void	vte_dma_free(struct vte_softc *);
98 static void	vte_dmamap_cb(void *, bus_dma_segment_t *, int, int);
99 static struct vte_txdesc *
100 		vte_encap(struct vte_softc *, struct mbuf **);
101 static const struct vte_ident *
102 		vte_find_ident(device_t);
103 #ifndef __NO_STRICT_ALIGNMENT
104 static struct mbuf *
105 		vte_fixup_rx(if_t, struct mbuf *);
106 #endif
107 static void	vte_get_macaddr(struct vte_softc *);
108 static void	vte_init(void *);
109 static void	vte_init_locked(struct vte_softc *);
110 static int	vte_init_rx_ring(struct vte_softc *);
111 static int	vte_init_tx_ring(struct vte_softc *);
112 static void	vte_intr(void *);
113 static int	vte_ioctl(if_t, u_long, caddr_t);
114 static uint64_t	vte_get_counter(if_t, ift_counter);
115 static void	vte_mac_config(struct vte_softc *);
116 static int	vte_miibus_readreg(device_t, int, int);
117 static void	vte_miibus_statchg(device_t);
118 static int	vte_miibus_writereg(device_t, int, int, int);
119 static int	vte_mediachange(if_t);
120 static int	vte_mediachange_locked(if_t);
121 static void	vte_mediastatus(if_t, struct ifmediareq *);
122 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
123 static int	vte_probe(device_t);
124 static void	vte_reset(struct vte_softc *);
125 static int	vte_resume(device_t);
126 static void	vte_rxeof(struct vte_softc *);
127 static void	vte_rxfilter(struct vte_softc *);
128 static int	vte_shutdown(device_t);
129 static void	vte_start(if_t);
130 static void	vte_start_locked(struct vte_softc *);
131 static void	vte_start_mac(struct vte_softc *);
132 static void	vte_stats_clear(struct vte_softc *);
133 static void	vte_stats_update(struct vte_softc *);
134 static void	vte_stop(struct vte_softc *);
135 static void	vte_stop_mac(struct vte_softc *);
136 static int	vte_suspend(device_t);
137 static void	vte_sysctl_node(struct vte_softc *);
138 static void	vte_tick(void *);
139 static void	vte_txeof(struct vte_softc *);
140 static void	vte_watchdog(struct vte_softc *);
141 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
142 static int	sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS);
143 
144 static device_method_t vte_methods[] = {
145 	/* Device interface. */
146 	DEVMETHOD(device_probe,		vte_probe),
147 	DEVMETHOD(device_attach,	vte_attach),
148 	DEVMETHOD(device_detach,	vte_detach),
149 	DEVMETHOD(device_shutdown,	vte_shutdown),
150 	DEVMETHOD(device_suspend,	vte_suspend),
151 	DEVMETHOD(device_resume,	vte_resume),
152 
153 	/* MII interface. */
154 	DEVMETHOD(miibus_readreg,	vte_miibus_readreg),
155 	DEVMETHOD(miibus_writereg,	vte_miibus_writereg),
156 	DEVMETHOD(miibus_statchg,	vte_miibus_statchg),
157 
158 	DEVMETHOD_END
159 };
160 
161 static driver_t vte_driver = {
162 	"vte",
163 	vte_methods,
164 	sizeof(struct vte_softc)
165 };
166 
167 DRIVER_MODULE(vte, pci, vte_driver, 0, 0);
168 DRIVER_MODULE(miibus, vte, miibus_driver, 0, 0);
169 
170 static int
171 vte_miibus_readreg(device_t dev, int phy, int reg)
172 {
173 	struct vte_softc *sc;
174 	int i;
175 
176 	sc = device_get_softc(dev);
177 
178 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
179 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
180 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
181 		DELAY(5);
182 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
183 			break;
184 	}
185 
186 	if (i == 0) {
187 		device_printf(sc->vte_dev, "phy read timeout : %d\n", reg);
188 		return (0);
189 	}
190 
191 	return (CSR_READ_2(sc, VTE_MMRD));
192 }
193 
194 static int
195 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
196 {
197 	struct vte_softc *sc;
198 	int i;
199 
200 	sc = device_get_softc(dev);
201 
202 	CSR_WRITE_2(sc, VTE_MMWD, val);
203 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
204 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
205 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
206 		DELAY(5);
207 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
208 			break;
209 	}
210 
211 	if (i == 0)
212 		device_printf(sc->vte_dev, "phy write timeout : %d\n", reg);
213 
214 	return (0);
215 }
216 
217 static void
218 vte_miibus_statchg(device_t dev)
219 {
220 	struct vte_softc *sc;
221 	struct mii_data *mii;
222 	if_t ifp;
223 	uint16_t val;
224 
225 	sc = device_get_softc(dev);
226 
227 	mii = device_get_softc(sc->vte_miibus);
228 	ifp = sc->vte_ifp;
229 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
230 		return;
231 
232 	sc->vte_flags &= ~VTE_FLAG_LINK;
233 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
234 	    (IFM_ACTIVE | IFM_AVALID)) {
235 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
236 		case IFM_10_T:
237 		case IFM_100_TX:
238 			sc->vte_flags |= VTE_FLAG_LINK;
239 			break;
240 		default:
241 			break;
242 		}
243 	}
244 
245 	/* Stop RX/TX MACs. */
246 	vte_stop_mac(sc);
247 	/* Program MACs with resolved duplex and flow control. */
248 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
249 		/*
250 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
251 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
252 		 */
253 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
254 			val = 18 << VTE_IM_TIMER_SHIFT;
255 		else
256 			val = 1 << VTE_IM_TIMER_SHIFT;
257 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
258 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
259 		CSR_WRITE_2(sc, VTE_MRICR, val);
260 
261 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
262 			val = 18 << VTE_IM_TIMER_SHIFT;
263 		else
264 			val = 1 << VTE_IM_TIMER_SHIFT;
265 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
266 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
267 		CSR_WRITE_2(sc, VTE_MTICR, val);
268 
269 		vte_mac_config(sc);
270 		vte_start_mac(sc);
271 	}
272 }
273 
274 static void
275 vte_mediastatus(if_t ifp, struct ifmediareq *ifmr)
276 {
277 	struct vte_softc *sc;
278 	struct mii_data *mii;
279 
280 	sc = if_getsoftc(ifp);
281 	VTE_LOCK(sc);
282 	if ((if_getflags(ifp) & IFF_UP) == 0) {
283 		VTE_UNLOCK(sc);
284 		return;
285 	}
286 	mii = device_get_softc(sc->vte_miibus);
287 
288 	mii_pollstat(mii);
289 	ifmr->ifm_status = mii->mii_media_status;
290 	ifmr->ifm_active = mii->mii_media_active;
291 	VTE_UNLOCK(sc);
292 }
293 
294 static int
295 vte_mediachange(if_t ifp)
296 {
297 	struct vte_softc *sc;
298 	int error;
299 
300 	sc = if_getsoftc(ifp);
301 	VTE_LOCK(sc);
302 	error = vte_mediachange_locked(ifp);
303 	VTE_UNLOCK(sc);
304 	return (error);
305 }
306 
307 static int
308 vte_mediachange_locked(if_t ifp)
309 {
310 	struct vte_softc *sc;
311 	struct mii_data *mii;
312 	struct mii_softc *miisc;
313 	int error;
314 
315 	sc = if_getsoftc(ifp);
316 	mii = device_get_softc(sc->vte_miibus);
317 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
318 		PHY_RESET(miisc);
319 	error = mii_mediachg(mii);
320 
321 	return (error);
322 }
323 
324 static const struct vte_ident *
325 vte_find_ident(device_t dev)
326 {
327 	const struct vte_ident *ident;
328 	uint16_t vendor, devid;
329 
330 	vendor = pci_get_vendor(dev);
331 	devid = pci_get_device(dev);
332 	for (ident = vte_ident_table; ident->name != NULL; ident++) {
333 		if (vendor == ident->vendorid && devid == ident->deviceid)
334 			return (ident);
335 	}
336 
337 	return (NULL);
338 }
339 
340 static int
341 vte_probe(device_t dev)
342 {
343 	const struct vte_ident *ident;
344 
345 	ident = vte_find_ident(dev);
346 	if (ident != NULL) {
347 		device_set_desc(dev, ident->name);
348 		return (BUS_PROBE_DEFAULT);
349 	}
350 
351 	return (ENXIO);
352 }
353 
354 static void
355 vte_get_macaddr(struct vte_softc *sc)
356 {
357 	uint16_t mid;
358 
359 	/*
360 	 * It seems there is no way to reload station address and
361 	 * it is supposed to be set by BIOS.
362 	 */
363 	mid = CSR_READ_2(sc, VTE_MID0L);
364 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
365 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
366 	mid = CSR_READ_2(sc, VTE_MID0M);
367 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
368 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
369 	mid = CSR_READ_2(sc, VTE_MID0H);
370 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
371 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
372 }
373 
374 static int
375 vte_attach(device_t dev)
376 {
377 	struct vte_softc *sc;
378 	if_t ifp;
379 	uint16_t macid;
380 	int error, rid;
381 
382 	error = 0;
383 	sc = device_get_softc(dev);
384 	sc->vte_dev = dev;
385 
386 	mtx_init(&sc->vte_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
387 	    MTX_DEF);
388 	callout_init_mtx(&sc->vte_tick_ch, &sc->vte_mtx, 0);
389 	sc->vte_ident = vte_find_ident(dev);
390 
391 	/* Map the device. */
392 	pci_enable_busmaster(dev);
393 	sc->vte_res_id = PCIR_BAR(1);
394 	sc->vte_res_type = SYS_RES_MEMORY;
395 	sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
396 	    &sc->vte_res_id, RF_ACTIVE);
397 	if (sc->vte_res == NULL) {
398 		sc->vte_res_id = PCIR_BAR(0);
399 		sc->vte_res_type = SYS_RES_IOPORT;
400 		sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
401 		    &sc->vte_res_id, RF_ACTIVE);
402 		if (sc->vte_res == NULL) {
403 			device_printf(dev, "cannot map memory/ports.\n");
404 			mtx_destroy(&sc->vte_mtx);
405 			return (ENXIO);
406 		}
407 	}
408 	if (bootverbose) {
409 		device_printf(dev, "using %s space register mapping\n",
410 		    sc->vte_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
411 		device_printf(dev, "MAC Identifier : 0x%04x\n",
412 		    CSR_READ_2(sc, VTE_MACID));
413 		macid = CSR_READ_2(sc, VTE_MACID_REV);
414 		device_printf(dev, "MAC Id. 0x%02x, Rev. 0x%02x\n",
415 		    (macid & VTE_MACID_MASK) >> VTE_MACID_SHIFT,
416 		    (macid & VTE_MACID_REV_MASK) >> VTE_MACID_REV_SHIFT);
417 	}
418 
419 	rid = 0;
420 	sc->vte_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
421 	    RF_SHAREABLE | RF_ACTIVE);
422 	if (sc->vte_irq == NULL) {
423 		device_printf(dev, "cannot allocate IRQ resources.\n");
424 		error = ENXIO;
425 		goto fail;
426 	}
427 
428 	/* Reset the ethernet controller. */
429 	vte_reset(sc);
430 
431 	if ((error = vte_dma_alloc(sc)) != 0)
432 		goto fail;
433 
434 	/* Create device sysctl node. */
435 	vte_sysctl_node(sc);
436 
437 	/* Load station address. */
438 	vte_get_macaddr(sc);
439 
440 	ifp = sc->vte_ifp = if_alloc(IFT_ETHER);
441 	if (ifp == NULL) {
442 		device_printf(dev, "cannot allocate ifnet structure.\n");
443 		error = ENXIO;
444 		goto fail;
445 	}
446 
447 	if_setsoftc(ifp, sc);
448 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
449 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
450 	if_setioctlfn(ifp, vte_ioctl);
451 	if_setstartfn(ifp, vte_start);
452 	if_setinitfn(ifp, vte_init);
453 	if_setgetcounterfn(ifp, vte_get_counter);
454 	if_setsendqlen(ifp, VTE_TX_RING_CNT - 1);
455 	if_setsendqready(ifp);
456 
457 	/*
458 	 * Set up MII bus.
459 	 * BIOS would have initialized VTE_MPSCCR to catch PHY
460 	 * status changes so driver may be able to extract
461 	 * configured PHY address.  Since it's common to see BIOS
462 	 * fails to initialize the register(including the sample
463 	 * board I have), let mii(4) probe it.  This is more
464 	 * reliable than relying on BIOS's initialization.
465 	 *
466 	 * Advertising flow control capability to mii(4) was
467 	 * intentionally disabled due to severe problems in TX
468 	 * pause frame generation.  See vte_rxeof() for more
469 	 * details.
470 	 */
471 	error = mii_attach(dev, &sc->vte_miibus, ifp, vte_mediachange,
472 	    vte_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
473 	if (error != 0) {
474 		device_printf(dev, "attaching PHYs failed\n");
475 		goto fail;
476 	}
477 
478 	ether_ifattach(ifp, sc->vte_eaddr);
479 
480 	/* VLAN capability setup. */
481 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
482 	if_setcapenable(ifp, if_getcapabilities(ifp));
483 	/* Tell the upper layer we support VLAN over-sized frames. */
484 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
485 
486 	error = bus_setup_intr(dev, sc->vte_irq, INTR_TYPE_NET | INTR_MPSAFE,
487 	    NULL, vte_intr, sc, &sc->vte_intrhand);
488 	if (error != 0) {
489 		device_printf(dev, "could not set up interrupt handler.\n");
490 		ether_ifdetach(ifp);
491 		goto fail;
492 	}
493 
494 fail:
495 	if (error != 0)
496 		vte_detach(dev);
497 
498 	return (error);
499 }
500 
501 static int
502 vte_detach(device_t dev)
503 {
504 	struct vte_softc *sc;
505 	if_t ifp;
506 
507 	sc = device_get_softc(dev);
508 
509 	ifp = sc->vte_ifp;
510 	if (device_is_attached(dev)) {
511 		VTE_LOCK(sc);
512 		vte_stop(sc);
513 		VTE_UNLOCK(sc);
514 		callout_drain(&sc->vte_tick_ch);
515 		ether_ifdetach(ifp);
516 	}
517 
518 	if (sc->vte_miibus != NULL) {
519 		device_delete_child(dev, sc->vte_miibus);
520 		sc->vte_miibus = NULL;
521 	}
522 	bus_generic_detach(dev);
523 
524 	if (sc->vte_intrhand != NULL) {
525 		bus_teardown_intr(dev, sc->vte_irq, sc->vte_intrhand);
526 		sc->vte_intrhand = NULL;
527 	}
528 	if (sc->vte_irq != NULL) {
529 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vte_irq);
530 		sc->vte_irq = NULL;
531 	}
532 	if (sc->vte_res != NULL) {
533 		bus_release_resource(dev, sc->vte_res_type, sc->vte_res_id,
534 		    sc->vte_res);
535 		sc->vte_res = NULL;
536 	}
537 	if (ifp != NULL) {
538 		if_free(ifp);
539 		sc->vte_ifp = NULL;
540 	}
541 	vte_dma_free(sc);
542 	mtx_destroy(&sc->vte_mtx);
543 
544 	return (0);
545 }
546 
547 #define	VTE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
548 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
549 
550 static void
551 vte_sysctl_node(struct vte_softc *sc)
552 {
553 	struct sysctl_ctx_list *ctx;
554 	struct sysctl_oid_list *child, *parent;
555 	struct sysctl_oid *tree;
556 	struct vte_hw_stats *stats;
557 	int error;
558 
559 	stats = &sc->vte_stats;
560 	ctx = device_get_sysctl_ctx(sc->vte_dev);
561 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vte_dev));
562 
563 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
564 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
565 	    &sc->vte_int_rx_mod, 0, sysctl_hw_vte_int_mod, "I",
566 	    "vte RX interrupt moderation");
567 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
568 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
569 	    &sc->vte_int_tx_mod, 0, sysctl_hw_vte_int_mod, "I",
570 	    "vte TX interrupt moderation");
571 	/* Pull in device tunables. */
572 	sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
573 	error = resource_int_value(device_get_name(sc->vte_dev),
574 	    device_get_unit(sc->vte_dev), "int_rx_mod", &sc->vte_int_rx_mod);
575 	if (error == 0) {
576 		if (sc->vte_int_rx_mod < VTE_IM_BUNDLE_MIN ||
577 		    sc->vte_int_rx_mod > VTE_IM_BUNDLE_MAX) {
578 			device_printf(sc->vte_dev, "int_rx_mod value out of "
579 			    "range; using default: %d\n",
580 			    VTE_IM_RX_BUNDLE_DEFAULT);
581 			sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
582 		}
583 	}
584 
585 	sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
586 	error = resource_int_value(device_get_name(sc->vte_dev),
587 	    device_get_unit(sc->vte_dev), "int_tx_mod", &sc->vte_int_tx_mod);
588 	if (error == 0) {
589 		if (sc->vte_int_tx_mod < VTE_IM_BUNDLE_MIN ||
590 		    sc->vte_int_tx_mod > VTE_IM_BUNDLE_MAX) {
591 			device_printf(sc->vte_dev, "int_tx_mod value out of "
592 			    "range; using default: %d\n",
593 			    VTE_IM_TX_BUNDLE_DEFAULT);
594 			sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
595 		}
596 	}
597 
598 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
599 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VTE statistics");
600 	parent = SYSCTL_CHILDREN(tree);
601 
602 	/* RX statistics. */
603 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
604 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
605 	child = SYSCTL_CHILDREN(tree);
606 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
607 	    &stats->rx_frames, "Good frames");
608 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
609 	    &stats->rx_bcast_frames, "Good broadcast frames");
610 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
611 	    &stats->rx_mcast_frames, "Good multicast frames");
612 	VTE_SYSCTL_STAT_ADD32(ctx, child, "runt",
613 	    &stats->rx_runts, "Too short frames");
614 	VTE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
615 	    &stats->rx_crcerrs, "CRC errors");
616 	VTE_SYSCTL_STAT_ADD32(ctx, child, "long_frames",
617 	    &stats->rx_long_frames,
618 	    "Frames that have longer length than maximum packet length");
619 	VTE_SYSCTL_STAT_ADD32(ctx, child, "fifo_full",
620 	    &stats->rx_fifo_full, "FIFO full");
621 	VTE_SYSCTL_STAT_ADD32(ctx, child, "desc_unavail",
622 	    &stats->rx_desc_unavail, "Descriptor unavailable frames");
623 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
624 	    &stats->rx_pause_frames, "Pause control frames");
625 
626 	/* TX statistics. */
627 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
628 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
629 	child = SYSCTL_CHILDREN(tree);
630 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
631 	    &stats->tx_frames, "Good frames");
632 	VTE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
633 	    &stats->tx_underruns, "FIFO underruns");
634 	VTE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
635 	    &stats->tx_late_colls, "Late collisions");
636 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
637 	    &stats->tx_pause_frames, "Pause control frames");
638 }
639 
640 #undef VTE_SYSCTL_STAT_ADD32
641 
642 struct vte_dmamap_arg {
643 	bus_addr_t	vte_busaddr;
644 };
645 
646 static void
647 vte_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
648 {
649 	struct vte_dmamap_arg *ctx;
650 
651 	if (error != 0)
652 		return;
653 
654 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
655 
656 	ctx = (struct vte_dmamap_arg *)arg;
657 	ctx->vte_busaddr = segs[0].ds_addr;
658 }
659 
660 static int
661 vte_dma_alloc(struct vte_softc *sc)
662 {
663 	struct vte_txdesc *txd;
664 	struct vte_rxdesc *rxd;
665 	struct vte_dmamap_arg ctx;
666 	int error, i;
667 
668 	/* Create parent DMA tag. */
669 	error = bus_dma_tag_create(
670 	    bus_get_dma_tag(sc->vte_dev), /* parent */
671 	    1, 0,			/* alignment, boundary */
672 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
673 	    BUS_SPACE_MAXADDR,		/* highaddr */
674 	    NULL, NULL,			/* filter, filterarg */
675 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
676 	    0,				/* nsegments */
677 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
678 	    0,				/* flags */
679 	    NULL, NULL,			/* lockfunc, lockarg */
680 	    &sc->vte_cdata.vte_parent_tag);
681 	if (error != 0) {
682 		device_printf(sc->vte_dev,
683 		    "could not create parent DMA tag.\n");
684 		goto fail;
685 	}
686 
687 	/* Create DMA tag for TX descriptor ring. */
688 	error = bus_dma_tag_create(
689 	    sc->vte_cdata.vte_parent_tag, /* parent */
690 	    VTE_TX_RING_ALIGN, 0,	/* alignment, boundary */
691 	    BUS_SPACE_MAXADDR,		/* lowaddr */
692 	    BUS_SPACE_MAXADDR,		/* highaddr */
693 	    NULL, NULL,			/* filter, filterarg */
694 	    VTE_TX_RING_SZ,		/* maxsize */
695 	    1,				/* nsegments */
696 	    VTE_TX_RING_SZ,		/* maxsegsize */
697 	    0,				/* flags */
698 	    NULL, NULL,			/* lockfunc, lockarg */
699 	    &sc->vte_cdata.vte_tx_ring_tag);
700 	if (error != 0) {
701 		device_printf(sc->vte_dev,
702 		    "could not create TX ring DMA tag.\n");
703 		goto fail;
704 	}
705 
706 	/* Create DMA tag for RX free descriptor ring. */
707 	error = bus_dma_tag_create(
708 	    sc->vte_cdata.vte_parent_tag, /* parent */
709 	    VTE_RX_RING_ALIGN, 0,	/* alignment, boundary */
710 	    BUS_SPACE_MAXADDR,		/* lowaddr */
711 	    BUS_SPACE_MAXADDR,		/* highaddr */
712 	    NULL, NULL,			/* filter, filterarg */
713 	    VTE_RX_RING_SZ,		/* maxsize */
714 	    1,				/* nsegments */
715 	    VTE_RX_RING_SZ,		/* maxsegsize */
716 	    0,				/* flags */
717 	    NULL, NULL,			/* lockfunc, lockarg */
718 	    &sc->vte_cdata.vte_rx_ring_tag);
719 	if (error != 0) {
720 		device_printf(sc->vte_dev,
721 		    "could not create RX ring DMA tag.\n");
722 		goto fail;
723 	}
724 
725 	/* Allocate DMA'able memory and load the DMA map for TX ring. */
726 	error = bus_dmamem_alloc(sc->vte_cdata.vte_tx_ring_tag,
727 	    (void **)&sc->vte_cdata.vte_tx_ring,
728 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
729 	    &sc->vte_cdata.vte_tx_ring_map);
730 	if (error != 0) {
731 		device_printf(sc->vte_dev,
732 		    "could not allocate DMA'able memory for TX ring.\n");
733 		goto fail;
734 	}
735 	ctx.vte_busaddr = 0;
736 	error = bus_dmamap_load(sc->vte_cdata.vte_tx_ring_tag,
737 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
738 	    VTE_TX_RING_SZ, vte_dmamap_cb, &ctx, 0);
739 	if (error != 0 || ctx.vte_busaddr == 0) {
740 		device_printf(sc->vte_dev,
741 		    "could not load DMA'able memory for TX ring.\n");
742 		goto fail;
743 	}
744 	sc->vte_cdata.vte_tx_ring_paddr = ctx.vte_busaddr;
745 
746 	/* Allocate DMA'able memory and load the DMA map for RX ring. */
747 	error = bus_dmamem_alloc(sc->vte_cdata.vte_rx_ring_tag,
748 	    (void **)&sc->vte_cdata.vte_rx_ring,
749 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
750 	    &sc->vte_cdata.vte_rx_ring_map);
751 	if (error != 0) {
752 		device_printf(sc->vte_dev,
753 		    "could not allocate DMA'able memory for RX ring.\n");
754 		goto fail;
755 	}
756 	ctx.vte_busaddr = 0;
757 	error = bus_dmamap_load(sc->vte_cdata.vte_rx_ring_tag,
758 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
759 	    VTE_RX_RING_SZ, vte_dmamap_cb, &ctx, 0);
760 	if (error != 0 || ctx.vte_busaddr == 0) {
761 		device_printf(sc->vte_dev,
762 		    "could not load DMA'able memory for RX ring.\n");
763 		goto fail;
764 	}
765 	sc->vte_cdata.vte_rx_ring_paddr = ctx.vte_busaddr;
766 
767 	/* Create TX buffer parent tag. */
768 	error = bus_dma_tag_create(
769 	    bus_get_dma_tag(sc->vte_dev), /* parent */
770 	    1, 0,			/* alignment, boundary */
771 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
772 	    BUS_SPACE_MAXADDR,		/* highaddr */
773 	    NULL, NULL,			/* filter, filterarg */
774 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
775 	    0,				/* nsegments */
776 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
777 	    0,				/* flags */
778 	    NULL, NULL,			/* lockfunc, lockarg */
779 	    &sc->vte_cdata.vte_buffer_tag);
780 	if (error != 0) {
781 		device_printf(sc->vte_dev,
782 		    "could not create parent buffer DMA tag.\n");
783 		goto fail;
784 	}
785 
786 	/* Create DMA tag for TX buffers. */
787 	error = bus_dma_tag_create(
788 	    sc->vte_cdata.vte_buffer_tag, /* parent */
789 	    1, 0,			/* alignment, boundary */
790 	    BUS_SPACE_MAXADDR,		/* lowaddr */
791 	    BUS_SPACE_MAXADDR,		/* highaddr */
792 	    NULL, NULL,			/* filter, filterarg */
793 	    MCLBYTES,			/* maxsize */
794 	    1,				/* nsegments */
795 	    MCLBYTES,			/* maxsegsize */
796 	    0,				/* flags */
797 	    NULL, NULL,			/* lockfunc, lockarg */
798 	    &sc->vte_cdata.vte_tx_tag);
799 	if (error != 0) {
800 		device_printf(sc->vte_dev, "could not create TX DMA tag.\n");
801 		goto fail;
802 	}
803 
804 	/* Create DMA tag for RX buffers. */
805 	error = bus_dma_tag_create(
806 	    sc->vte_cdata.vte_buffer_tag, /* parent */
807 	    VTE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
808 	    BUS_SPACE_MAXADDR,		/* lowaddr */
809 	    BUS_SPACE_MAXADDR,		/* highaddr */
810 	    NULL, NULL,			/* filter, filterarg */
811 	    MCLBYTES,			/* maxsize */
812 	    1,				/* nsegments */
813 	    MCLBYTES,			/* maxsegsize */
814 	    0,				/* flags */
815 	    NULL, NULL,			/* lockfunc, lockarg */
816 	    &sc->vte_cdata.vte_rx_tag);
817 	if (error != 0) {
818 		device_printf(sc->vte_dev, "could not create RX DMA tag.\n");
819 		goto fail;
820 	}
821 	/* Create DMA maps for TX buffers. */
822 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
823 		txd = &sc->vte_cdata.vte_txdesc[i];
824 		txd->tx_m = NULL;
825 		txd->tx_dmamap = NULL;
826 		error = bus_dmamap_create(sc->vte_cdata.vte_tx_tag, 0,
827 		    &txd->tx_dmamap);
828 		if (error != 0) {
829 			device_printf(sc->vte_dev,
830 			    "could not create TX dmamap.\n");
831 			goto fail;
832 		}
833 	}
834 	/* Create DMA maps for RX buffers. */
835 	if ((error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
836 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
837 		device_printf(sc->vte_dev,
838 		    "could not create spare RX dmamap.\n");
839 		goto fail;
840 	}
841 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
842 		rxd = &sc->vte_cdata.vte_rxdesc[i];
843 		rxd->rx_m = NULL;
844 		rxd->rx_dmamap = NULL;
845 		error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
846 		    &rxd->rx_dmamap);
847 		if (error != 0) {
848 			device_printf(sc->vte_dev,
849 			    "could not create RX dmamap.\n");
850 			goto fail;
851 		}
852 	}
853 
854 fail:
855 	return (error);
856 }
857 
858 static void
859 vte_dma_free(struct vte_softc *sc)
860 {
861 	struct vte_txdesc *txd;
862 	struct vte_rxdesc *rxd;
863 	int i;
864 
865 	/* TX buffers. */
866 	if (sc->vte_cdata.vte_tx_tag != NULL) {
867 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
868 			txd = &sc->vte_cdata.vte_txdesc[i];
869 			if (txd->tx_dmamap != NULL) {
870 				bus_dmamap_destroy(sc->vte_cdata.vte_tx_tag,
871 				    txd->tx_dmamap);
872 				txd->tx_dmamap = NULL;
873 			}
874 		}
875 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_tag);
876 		sc->vte_cdata.vte_tx_tag = NULL;
877 	}
878 	/* RX buffers */
879 	if (sc->vte_cdata.vte_rx_tag != NULL) {
880 		for (i = 0; i < VTE_RX_RING_CNT; i++) {
881 			rxd = &sc->vte_cdata.vte_rxdesc[i];
882 			if (rxd->rx_dmamap != NULL) {
883 				bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
884 				    rxd->rx_dmamap);
885 				rxd->rx_dmamap = NULL;
886 			}
887 		}
888 		if (sc->vte_cdata.vte_rx_sparemap != NULL) {
889 			bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
890 			    sc->vte_cdata.vte_rx_sparemap);
891 			sc->vte_cdata.vte_rx_sparemap = NULL;
892 		}
893 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_tag);
894 		sc->vte_cdata.vte_rx_tag = NULL;
895 	}
896 	/* TX descriptor ring. */
897 	if (sc->vte_cdata.vte_tx_ring_tag != NULL) {
898 		if (sc->vte_cdata.vte_tx_ring_paddr != 0)
899 			bus_dmamap_unload(sc->vte_cdata.vte_tx_ring_tag,
900 			    sc->vte_cdata.vte_tx_ring_map);
901 		if (sc->vte_cdata.vte_tx_ring != NULL)
902 			bus_dmamem_free(sc->vte_cdata.vte_tx_ring_tag,
903 			    sc->vte_cdata.vte_tx_ring,
904 			    sc->vte_cdata.vte_tx_ring_map);
905 		sc->vte_cdata.vte_tx_ring = NULL;
906 		sc->vte_cdata.vte_tx_ring_paddr = 0;
907 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_ring_tag);
908 		sc->vte_cdata.vte_tx_ring_tag = NULL;
909 	}
910 	/* RX ring. */
911 	if (sc->vte_cdata.vte_rx_ring_tag != NULL) {
912 		if (sc->vte_cdata.vte_rx_ring_paddr != 0)
913 			bus_dmamap_unload(sc->vte_cdata.vte_rx_ring_tag,
914 			    sc->vte_cdata.vte_rx_ring_map);
915 		if (sc->vte_cdata.vte_rx_ring != NULL)
916 			bus_dmamem_free(sc->vte_cdata.vte_rx_ring_tag,
917 			    sc->vte_cdata.vte_rx_ring,
918 			    sc->vte_cdata.vte_rx_ring_map);
919 		sc->vte_cdata.vte_rx_ring = NULL;
920 		sc->vte_cdata.vte_rx_ring_paddr = 0;
921 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_ring_tag);
922 		sc->vte_cdata.vte_rx_ring_tag = NULL;
923 	}
924 	if (sc->vte_cdata.vte_buffer_tag != NULL) {
925 		bus_dma_tag_destroy(sc->vte_cdata.vte_buffer_tag);
926 		sc->vte_cdata.vte_buffer_tag = NULL;
927 	}
928 	if (sc->vte_cdata.vte_parent_tag != NULL) {
929 		bus_dma_tag_destroy(sc->vte_cdata.vte_parent_tag);
930 		sc->vte_cdata.vte_parent_tag = NULL;
931 	}
932 }
933 
934 static int
935 vte_shutdown(device_t dev)
936 {
937 
938 	return (vte_suspend(dev));
939 }
940 
941 static int
942 vte_suspend(device_t dev)
943 {
944 	struct vte_softc *sc;
945 	if_t ifp;
946 
947 	sc = device_get_softc(dev);
948 
949 	VTE_LOCK(sc);
950 	ifp = sc->vte_ifp;
951 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
952 		vte_stop(sc);
953 	VTE_UNLOCK(sc);
954 
955 	return (0);
956 }
957 
958 static int
959 vte_resume(device_t dev)
960 {
961 	struct vte_softc *sc;
962 	if_t ifp;
963 
964 	sc = device_get_softc(dev);
965 
966 	VTE_LOCK(sc);
967 	ifp = sc->vte_ifp;
968 	if ((if_getflags(ifp) & IFF_UP) != 0) {
969 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
970 		vte_init_locked(sc);
971 	}
972 	VTE_UNLOCK(sc);
973 
974 	return (0);
975 }
976 
977 static struct vte_txdesc *
978 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
979 {
980 	struct vte_txdesc *txd;
981 	struct mbuf *m, *n;
982 	bus_dma_segment_t txsegs[1];
983 	int copy, error, nsegs, padlen;
984 
985 	VTE_LOCK_ASSERT(sc);
986 
987 	M_ASSERTPKTHDR((*m_head));
988 
989 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
990 	m = *m_head;
991 	/*
992 	 * Controller doesn't auto-pad, so we have to make sure pad
993 	 * short frames out to the minimum frame length.
994 	 */
995 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
996 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
997 	else
998 		padlen = 0;
999 
1000 	/*
1001 	 * Controller does not support multi-fragmented TX buffers.
1002 	 * Controller spends most of its TX processing time in
1003 	 * de-fragmenting TX buffers.  Either faster CPU or more
1004 	 * advanced controller DMA engine is required to speed up
1005 	 * TX path processing.
1006 	 * To mitigate the de-fragmenting issue, perform deep copy
1007 	 * from fragmented mbuf chains to a pre-allocated mbuf
1008 	 * cluster with extra cost of kernel memory.  For frames
1009 	 * that is composed of single TX buffer, the deep copy is
1010 	 * bypassed.
1011 	 */
1012 	if (tx_deep_copy != 0) {
1013 		copy = 0;
1014 		if (m->m_next != NULL)
1015 			copy++;
1016 		if (padlen > 0 && (M_WRITABLE(m) == 0 ||
1017 		    padlen > M_TRAILINGSPACE(m)))
1018 			copy++;
1019 		if (copy != 0) {
1020 			/* Avoid expensive m_defrag(9) and do deep copy. */
1021 			n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
1022 			m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
1023 			n->m_pkthdr.len = m->m_pkthdr.len;
1024 			n->m_len = m->m_pkthdr.len;
1025 			m = n;
1026 			txd->tx_flags |= VTE_TXMBUF;
1027 		}
1028 
1029 		if (padlen > 0) {
1030 			/* Zero out the bytes in the pad area. */
1031 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1032 			m->m_pkthdr.len += padlen;
1033 			m->m_len = m->m_pkthdr.len;
1034 		}
1035 	} else {
1036 		if (M_WRITABLE(m) == 0) {
1037 			if (m->m_next != NULL || padlen > 0) {
1038 				/* Get a writable copy. */
1039 				m = m_dup(*m_head, M_NOWAIT);
1040 				/* Release original mbuf chains. */
1041 				m_freem(*m_head);
1042 				if (m == NULL) {
1043 					*m_head = NULL;
1044 					return (NULL);
1045 				}
1046 				*m_head = m;
1047 			}
1048 		}
1049 
1050 		if (m->m_next != NULL) {
1051 			m = m_defrag(*m_head, M_NOWAIT);
1052 			if (m == NULL) {
1053 				m_freem(*m_head);
1054 				*m_head = NULL;
1055 				return (NULL);
1056 			}
1057 			*m_head = m;
1058 		}
1059 
1060 		if (padlen > 0) {
1061 			if (M_TRAILINGSPACE(m) < padlen) {
1062 				m = m_defrag(*m_head, M_NOWAIT);
1063 				if (m == NULL) {
1064 					m_freem(*m_head);
1065 					*m_head = NULL;
1066 					return (NULL);
1067 				}
1068 				*m_head = m;
1069 			}
1070 			/* Zero out the bytes in the pad area. */
1071 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1072 			m->m_pkthdr.len += padlen;
1073 			m->m_len = m->m_pkthdr.len;
1074 		}
1075 	}
1076 
1077 	error = bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_tx_tag,
1078 	    txd->tx_dmamap, m, txsegs, &nsegs, 0);
1079 	if (error != 0) {
1080 		txd->tx_flags &= ~VTE_TXMBUF;
1081 		return (NULL);
1082 	}
1083 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1084 	bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1085 	    BUS_DMASYNC_PREWRITE);
1086 
1087 	txd->tx_desc->dtlen = htole16(VTE_TX_LEN(txsegs[0].ds_len));
1088 	txd->tx_desc->dtbp = htole32(txsegs[0].ds_addr);
1089 	sc->vte_cdata.vte_tx_cnt++;
1090 	/* Update producer index. */
1091 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
1092 
1093 	/* Finally hand over ownership to controller. */
1094 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
1095 	txd->tx_m = m;
1096 
1097 	return (txd);
1098 }
1099 
1100 static void
1101 vte_start(if_t ifp)
1102 {
1103 	struct vte_softc *sc;
1104 
1105 	sc = if_getsoftc(ifp);
1106 	VTE_LOCK(sc);
1107 	vte_start_locked(sc);
1108 	VTE_UNLOCK(sc);
1109 }
1110 
1111 static void
1112 vte_start_locked(struct vte_softc *sc)
1113 {
1114 	if_t ifp;
1115 	struct vte_txdesc *txd;
1116 	struct mbuf *m_head;
1117 	int enq;
1118 
1119 	ifp = sc->vte_ifp;
1120 
1121 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1122 	    IFF_DRV_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
1123 		return;
1124 
1125 	for (enq = 0; !if_sendq_empty(ifp); ) {
1126 		/* Reserve one free TX descriptor. */
1127 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
1128 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1129 			break;
1130 		}
1131 		m_head = if_dequeue(ifp);
1132 		if (m_head == NULL)
1133 			break;
1134 		/*
1135 		 * Pack the data into the transmit ring. If we
1136 		 * don't have room, set the OACTIVE flag and wait
1137 		 * for the NIC to drain the ring.
1138 		 */
1139 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
1140 			if (m_head != NULL)
1141 				if_sendq_prepend(ifp, m_head);
1142 			break;
1143 		}
1144 
1145 		enq++;
1146 		/*
1147 		 * If there's a BPF listener, bounce a copy of this frame
1148 		 * to him.
1149 		 */
1150 		ETHER_BPF_MTAP(ifp, m_head);
1151 		/* Free consumed TX frame. */
1152 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
1153 			m_freem(m_head);
1154 	}
1155 
1156 	if (enq > 0) {
1157 		bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1158 		    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1159 		    BUS_DMASYNC_PREWRITE);
1160 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
1161 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
1162 	}
1163 }
1164 
1165 static void
1166 vte_watchdog(struct vte_softc *sc)
1167 {
1168 	if_t ifp;
1169 
1170 	VTE_LOCK_ASSERT(sc);
1171 
1172 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
1173 		return;
1174 
1175 	ifp = sc->vte_ifp;
1176 	if_printf(sc->vte_ifp, "watchdog timeout -- resetting\n");
1177 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1178 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1179 	vte_init_locked(sc);
1180 	if (!if_sendq_empty(ifp))
1181 		vte_start_locked(sc);
1182 }
1183 
1184 static int
1185 vte_ioctl(if_t ifp, u_long cmd, caddr_t data)
1186 {
1187 	struct vte_softc *sc;
1188 	struct ifreq *ifr;
1189 	struct mii_data *mii;
1190 	int error;
1191 
1192 	sc = if_getsoftc(ifp);
1193 	ifr = (struct ifreq *)data;
1194 	error = 0;
1195 	switch (cmd) {
1196 	case SIOCSIFFLAGS:
1197 		VTE_LOCK(sc);
1198 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1199 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
1200 			    ((if_getflags(ifp) ^ sc->vte_if_flags) &
1201 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1202 				vte_rxfilter(sc);
1203 			else
1204 				vte_init_locked(sc);
1205 		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1206 			vte_stop(sc);
1207 		sc->vte_if_flags = if_getflags(ifp);
1208 		VTE_UNLOCK(sc);
1209 		break;
1210 	case SIOCADDMULTI:
1211 	case SIOCDELMULTI:
1212 		VTE_LOCK(sc);
1213 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1214 			vte_rxfilter(sc);
1215 		VTE_UNLOCK(sc);
1216 		break;
1217 	case SIOCSIFMEDIA:
1218 	case SIOCGIFMEDIA:
1219 		mii = device_get_softc(sc->vte_miibus);
1220 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1221 		break;
1222 	default:
1223 		error = ether_ioctl(ifp, cmd, data);
1224 		break;
1225 	}
1226 
1227 	return (error);
1228 }
1229 
1230 static void
1231 vte_mac_config(struct vte_softc *sc)
1232 {
1233 	struct mii_data *mii;
1234 	uint16_t mcr;
1235 
1236 	VTE_LOCK_ASSERT(sc);
1237 
1238 	mii = device_get_softc(sc->vte_miibus);
1239 	mcr = CSR_READ_2(sc, VTE_MCR0);
1240 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
1241 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1242 		mcr |= MCR0_FULL_DUPLEX;
1243 #ifdef notyet
1244 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1245 			mcr |= MCR0_FC_ENB;
1246 		/*
1247 		 * The data sheet is not clear whether the controller
1248 		 * honors received pause frames or not.  The is no
1249 		 * separate control bit for RX pause frame so just
1250 		 * enable MCR0_FC_ENB bit.
1251 		 */
1252 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1253 			mcr |= MCR0_FC_ENB;
1254 #endif
1255 	}
1256 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1257 }
1258 
1259 static void
1260 vte_stats_clear(struct vte_softc *sc)
1261 {
1262 
1263 	/* Reading counter registers clears its contents. */
1264 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
1265 	CSR_READ_2(sc, VTE_CNT_MECNT0);
1266 	CSR_READ_2(sc, VTE_CNT_MECNT1);
1267 	CSR_READ_2(sc, VTE_CNT_MECNT2);
1268 	CSR_READ_2(sc, VTE_CNT_MECNT3);
1269 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
1270 	CSR_READ_2(sc, VTE_CNT_MECNT4);
1271 	CSR_READ_2(sc, VTE_CNT_PAUSE);
1272 }
1273 
1274 static void
1275 vte_stats_update(struct vte_softc *sc)
1276 {
1277 	struct vte_hw_stats *stat;
1278 	uint16_t value;
1279 
1280 	VTE_LOCK_ASSERT(sc);
1281 
1282 	stat = &sc->vte_stats;
1283 
1284 	CSR_READ_2(sc, VTE_MECISR);
1285 	/* RX stats. */
1286 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
1287 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
1288 	stat->rx_bcast_frames += (value >> 8);
1289 	stat->rx_mcast_frames += (value & 0xFF);
1290 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
1291 	stat->rx_runts += (value >> 8);
1292 	stat->rx_crcerrs += (value & 0xFF);
1293 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
1294 	stat->rx_long_frames += (value & 0xFF);
1295 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
1296 	stat->rx_fifo_full += (value >> 8);
1297 	stat->rx_desc_unavail += (value & 0xFF);
1298 
1299 	/* TX stats. */
1300 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
1301 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
1302 	stat->tx_underruns += (value >> 8);
1303 	stat->tx_late_colls += (value & 0xFF);
1304 
1305 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
1306 	stat->tx_pause_frames += (value >> 8);
1307 	stat->rx_pause_frames += (value & 0xFF);
1308 }
1309 
1310 static uint64_t
1311 vte_get_counter(if_t ifp, ift_counter cnt)
1312 {
1313 	struct vte_softc *sc;
1314 	struct vte_hw_stats *stat;
1315 
1316 	sc = if_getsoftc(ifp);
1317 	stat = &sc->vte_stats;
1318 
1319 	switch (cnt) {
1320 	case IFCOUNTER_OPACKETS:
1321 		return (stat->tx_frames);
1322 	case IFCOUNTER_COLLISIONS:
1323 		return (stat->tx_late_colls);
1324 	case IFCOUNTER_OERRORS:
1325 		return (stat->tx_late_colls + stat->tx_underruns);
1326 	case IFCOUNTER_IPACKETS:
1327 		return (stat->rx_frames);
1328 	case IFCOUNTER_IERRORS:
1329 		return (stat->rx_crcerrs + stat->rx_runts +
1330 		    stat->rx_long_frames + stat->rx_fifo_full);
1331 	default:
1332 		return (if_get_counter_default(ifp, cnt));
1333 	}
1334 }
1335 
1336 static void
1337 vte_intr(void *arg)
1338 {
1339 	struct vte_softc *sc;
1340 	if_t ifp;
1341 	uint16_t status;
1342 	int n;
1343 
1344 	sc = (struct vte_softc *)arg;
1345 	VTE_LOCK(sc);
1346 
1347 	ifp = sc->vte_ifp;
1348 	/* Reading VTE_MISR acknowledges interrupts. */
1349 	status = CSR_READ_2(sc, VTE_MISR);
1350 	if ((status & VTE_INTRS) == 0) {
1351 		/* Not ours. */
1352 		VTE_UNLOCK(sc);
1353 		return;
1354 	}
1355 
1356 	/* Disable interrupts. */
1357 	CSR_WRITE_2(sc, VTE_MIER, 0);
1358 	for (n = 8; (status & VTE_INTRS) != 0;) {
1359 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1360 			break;
1361 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
1362 		    MISR_RX_FIFO_FULL)) != 0)
1363 			vte_rxeof(sc);
1364 		if ((status & MISR_TX_DONE) != 0)
1365 			vte_txeof(sc);
1366 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
1367 			vte_stats_update(sc);
1368 		if (!if_sendq_empty(ifp))
1369 			vte_start_locked(sc);
1370 		if (--n > 0)
1371 			status = CSR_READ_2(sc, VTE_MISR);
1372 		else
1373 			break;
1374 	}
1375 
1376 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1377 		/* Re-enable interrupts. */
1378 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1379 	}
1380 	VTE_UNLOCK(sc);
1381 }
1382 
1383 static void
1384 vte_txeof(struct vte_softc *sc)
1385 {
1386 	if_t ifp;
1387 	struct vte_txdesc *txd;
1388 	uint16_t status;
1389 	int cons, prog;
1390 
1391 	VTE_LOCK_ASSERT(sc);
1392 
1393 	ifp = sc->vte_ifp;
1394 
1395 	if (sc->vte_cdata.vte_tx_cnt == 0)
1396 		return;
1397 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1398 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_POSTREAD |
1399 	    BUS_DMASYNC_POSTWRITE);
1400 	cons = sc->vte_cdata.vte_tx_cons;
1401 	/*
1402 	 * Go through our TX list and free mbufs for those
1403 	 * frames which have been transmitted.
1404 	 */
1405 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1406 		txd = &sc->vte_cdata.vte_txdesc[cons];
1407 		status = le16toh(txd->tx_desc->dtst);
1408 		if ((status & VTE_DTST_TX_OWN) != 0)
1409 			break;
1410 		sc->vte_cdata.vte_tx_cnt--;
1411 		/* Reclaim transmitted mbufs. */
1412 		bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1413 		    BUS_DMASYNC_POSTWRITE);
1414 		bus_dmamap_unload(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap);
1415 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1416 			m_freem(txd->tx_m);
1417 		txd->tx_flags &= ~VTE_TXMBUF;
1418 		txd->tx_m = NULL;
1419 		prog++;
1420 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1421 	}
1422 
1423 	if (prog > 0) {
1424 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1425 		sc->vte_cdata.vte_tx_cons = cons;
1426 		/*
1427 		 * Unarm watchdog timer only when there is no pending
1428 		 * frames in TX queue.
1429 		 */
1430 		if (sc->vte_cdata.vte_tx_cnt == 0)
1431 			sc->vte_watchdog_timer = 0;
1432 	}
1433 }
1434 
1435 static int
1436 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1437 {
1438 	struct mbuf *m;
1439 	bus_dma_segment_t segs[1];
1440 	bus_dmamap_t map;
1441 	int nsegs;
1442 
1443 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1444 	if (m == NULL)
1445 		return (ENOBUFS);
1446 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1447 	m_adj(m, sizeof(uint32_t));
1448 
1449 	if (bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_rx_tag,
1450 	    sc->vte_cdata.vte_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1451 		m_freem(m);
1452 		return (ENOBUFS);
1453 	}
1454 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1455 
1456 	if (rxd->rx_m != NULL) {
1457 		bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1458 		    BUS_DMASYNC_POSTREAD);
1459 		bus_dmamap_unload(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap);
1460 	}
1461 	map = rxd->rx_dmamap;
1462 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1463 	sc->vte_cdata.vte_rx_sparemap = map;
1464 	bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1465 	    BUS_DMASYNC_PREREAD);
1466 	rxd->rx_m = m;
1467 	rxd->rx_desc->drbp = htole32(segs[0].ds_addr);
1468 	rxd->rx_desc->drlen = htole16(VTE_RX_LEN(segs[0].ds_len));
1469 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1470 
1471 	return (0);
1472 }
1473 
1474 /*
1475  * It's not supposed to see this controller on strict-alignment
1476  * architectures but make it work for completeness.
1477  */
1478 #ifndef __NO_STRICT_ALIGNMENT
1479 static struct mbuf *
1480 vte_fixup_rx(if_t ifp, struct mbuf *m)
1481 {
1482         uint16_t *src, *dst;
1483         int i;
1484 
1485 	src = mtod(m, uint16_t *);
1486 	dst = src - 1;
1487 
1488 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1489 		*dst++ = *src++;
1490 	m->m_data -= ETHER_ALIGN;
1491 	return (m);
1492 }
1493 #endif
1494 
1495 static void
1496 vte_rxeof(struct vte_softc *sc)
1497 {
1498 	if_t ifp;
1499 	struct vte_rxdesc *rxd;
1500 	struct mbuf *m;
1501 	uint16_t status, total_len;
1502 	int cons, prog;
1503 
1504 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1505 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_POSTREAD |
1506 	    BUS_DMASYNC_POSTWRITE);
1507 	cons = sc->vte_cdata.vte_rx_cons;
1508 	ifp = sc->vte_ifp;
1509 	for (prog = 0; (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0; prog++,
1510 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1511 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1512 		status = le16toh(rxd->rx_desc->drst);
1513 		if ((status & VTE_DRST_RX_OWN) != 0)
1514 			break;
1515 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1516 		m = rxd->rx_m;
1517 		if ((status & VTE_DRST_RX_OK) == 0) {
1518 			/* Discard errored frame. */
1519 			rxd->rx_desc->drlen =
1520 			    htole16(MCLBYTES - sizeof(uint32_t));
1521 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1522 			continue;
1523 		}
1524 		if (vte_newbuf(sc, rxd) != 0) {
1525 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1526 			rxd->rx_desc->drlen =
1527 			    htole16(MCLBYTES - sizeof(uint32_t));
1528 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1529 			continue;
1530 		}
1531 
1532 		/*
1533 		 * It seems there is no way to strip FCS bytes.
1534 		 */
1535 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1536 		m->m_pkthdr.rcvif = ifp;
1537 #ifndef __NO_STRICT_ALIGNMENT
1538 		vte_fixup_rx(ifp, m);
1539 #endif
1540 		VTE_UNLOCK(sc);
1541 		if_input(ifp, m);
1542 		VTE_LOCK(sc);
1543 	}
1544 
1545 	if (prog > 0) {
1546 		/* Update the consumer index. */
1547 		sc->vte_cdata.vte_rx_cons = cons;
1548 		/*
1549 		 * Sync updated RX descriptors such that controller see
1550 		 * modified RX buffer addresses.
1551 		 */
1552 		bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1553 		    sc->vte_cdata.vte_rx_ring_map,
1554 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1555 #ifdef notyet
1556 		/*
1557 		 * Update residue counter.  Controller does not
1558 		 * keep track of number of available RX descriptors
1559 		 * such that driver should have to update VTE_MRDCR
1560 		 * to make controller know how many free RX
1561 		 * descriptors were added to controller.  This is
1562 		 * a similar mechanism used in VIA velocity
1563 		 * controllers and it indicates controller just
1564 		 * polls OWN bit of current RX descriptor pointer.
1565 		 * A couple of severe issues were seen on sample
1566 		 * board where the controller continuously emits TX
1567 		 * pause frames once RX pause threshold crossed.
1568 		 * Once triggered it never recovered form that
1569 		 * state, I couldn't find a way to make it back to
1570 		 * work at least.  This issue effectively
1571 		 * disconnected the system from network.  Also, the
1572 		 * controller used 00:00:00:00:00:00 as source
1573 		 * station address of TX pause frame. Probably this
1574 		 * is one of reason why vendor recommends not to
1575 		 * enable flow control on R6040 controller.
1576 		 */
1577 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1578 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1579 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1580 #endif
1581 	}
1582 }
1583 
1584 static void
1585 vte_tick(void *arg)
1586 {
1587 	struct vte_softc *sc;
1588 	struct mii_data *mii;
1589 
1590 	sc = (struct vte_softc *)arg;
1591 
1592 	VTE_LOCK_ASSERT(sc);
1593 
1594 	mii = device_get_softc(sc->vte_miibus);
1595 	mii_tick(mii);
1596 	vte_stats_update(sc);
1597 	vte_txeof(sc);
1598 	vte_watchdog(sc);
1599 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1600 }
1601 
1602 static void
1603 vte_reset(struct vte_softc *sc)
1604 {
1605 	uint16_t mcr, mdcsc;
1606 	int i;
1607 
1608 	mdcsc = CSR_READ_2(sc, VTE_MDCSC);
1609 	mcr = CSR_READ_2(sc, VTE_MCR1);
1610 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1611 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1612 		DELAY(10);
1613 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1614 			break;
1615 	}
1616 	if (i == 0)
1617 		device_printf(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1618 	/*
1619 	 * Follow the guide of vendor recommended way to reset MAC.
1620 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1621 	 * not reliable so manually reset internal state machine.
1622 	 */
1623 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1624 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1625 	DELAY(5000);
1626 
1627 	/*
1628 	 * On some SoCs (like Vortex86DX3) MDC speed control register value
1629 	 * needs to be restored to original value instead of default one,
1630 	 * otherwise some PHY registers may fail to be read.
1631 	 */
1632 	if (mdcsc != MDCSC_DEFAULT)
1633 		CSR_WRITE_2(sc, VTE_MDCSC, mdcsc);
1634 }
1635 
1636 static void
1637 vte_init(void *xsc)
1638 {
1639 	struct vte_softc *sc;
1640 
1641 	sc = (struct vte_softc *)xsc;
1642 	VTE_LOCK(sc);
1643 	vte_init_locked(sc);
1644 	VTE_UNLOCK(sc);
1645 }
1646 
1647 static void
1648 vte_init_locked(struct vte_softc *sc)
1649 {
1650 	if_t ifp;
1651 	bus_addr_t paddr;
1652 	uint8_t *eaddr;
1653 
1654 	VTE_LOCK_ASSERT(sc);
1655 
1656 	ifp = sc->vte_ifp;
1657 
1658 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1659 		return;
1660 	/*
1661 	 * Cancel any pending I/O.
1662 	 */
1663 	vte_stop(sc);
1664 	/*
1665 	 * Reset the chip to a known state.
1666 	 */
1667 	vte_reset(sc);
1668 
1669 	/* Initialize RX descriptors. */
1670 	if (vte_init_rx_ring(sc) != 0) {
1671 		device_printf(sc->vte_dev, "no memory for RX buffers.\n");
1672 		vte_stop(sc);
1673 		return;
1674 	}
1675 	if (vte_init_tx_ring(sc) != 0) {
1676 		device_printf(sc->vte_dev, "no memory for TX buffers.\n");
1677 		vte_stop(sc);
1678 		return;
1679 	}
1680 
1681 	/*
1682 	 * Reprogram the station address.  Controller supports up
1683 	 * to 4 different station addresses so driver programs the
1684 	 * first station address as its own ethernet address and
1685 	 * configure the remaining three addresses as perfect
1686 	 * multicast addresses.
1687 	 */
1688 	eaddr = if_getlladdr(sc->vte_ifp);
1689 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1690 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1691 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1692 
1693 	/* Set TX descriptor base addresses. */
1694 	paddr = sc->vte_cdata.vte_tx_ring_paddr;
1695 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1696 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1697 	/* Set RX descriptor base addresses. */
1698 	paddr = sc->vte_cdata.vte_rx_ring_paddr;
1699 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1700 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1701 	/*
1702 	 * Initialize RX descriptor residue counter and set RX
1703 	 * pause threshold to 20% of available RX descriptors.
1704 	 * See comments on vte_rxeof() for details on flow control
1705 	 * issues.
1706 	 */
1707 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1708 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1709 
1710 	/*
1711 	 * Always use maximum frame size that controller can
1712 	 * support.  Otherwise received frames that has longer
1713 	 * frame length than vte(4) MTU would be silently dropped
1714 	 * in controller.  This would break path-MTU discovery as
1715 	 * sender wouldn't get any responses from receiver. The
1716 	 * RX buffer size should be multiple of 4.
1717 	 * Note, jumbo frames are silently ignored by controller
1718 	 * and even MAC counters do not detect them.
1719 	 */
1720 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1721 
1722 	/* Configure FIFO. */
1723 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1724 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1725 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1726 
1727 	/*
1728 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1729 	 * control configuration is done after detecting a valid
1730 	 * link.  Note, we don't generate early interrupt here
1731 	 * as well since FreeBSD does not have interrupt latency
1732 	 * problems like Windows.
1733 	 */
1734 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1735 	/*
1736 	 * We manually keep track of PHY status changes to
1737 	 * configure resolved duplex and flow control since only
1738 	 * duplex configuration can be automatically reflected to
1739 	 * MCR0.
1740 	 */
1741 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1742 	    MCR1_EXCESS_COL_RETRY_16);
1743 
1744 	/* Initialize RX filter. */
1745 	vte_rxfilter(sc);
1746 
1747 	/* Disable TX/RX interrupt moderation control. */
1748 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1749 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1750 
1751 	/* Enable MAC event counter interrupts. */
1752 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1753 	/* Clear MAC statistics. */
1754 	vte_stats_clear(sc);
1755 
1756 	/* Acknowledge all pending interrupts and clear it. */
1757 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1758 	CSR_WRITE_2(sc, VTE_MISR, 0);
1759 
1760 	sc->vte_flags &= ~VTE_FLAG_LINK;
1761 	/* Switch to the current media. */
1762 	vte_mediachange_locked(ifp);
1763 
1764 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1765 
1766 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1767 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1768 }
1769 
1770 static void
1771 vte_stop(struct vte_softc *sc)
1772 {
1773 	if_t ifp;
1774 	struct vte_txdesc *txd;
1775 	struct vte_rxdesc *rxd;
1776 	int i;
1777 
1778 	VTE_LOCK_ASSERT(sc);
1779 	/*
1780 	 * Mark the interface down and cancel the watchdog timer.
1781 	 */
1782 	ifp = sc->vte_ifp;
1783 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
1784 	sc->vte_flags &= ~VTE_FLAG_LINK;
1785 	callout_stop(&sc->vte_tick_ch);
1786 	sc->vte_watchdog_timer = 0;
1787 	vte_stats_update(sc);
1788 	/* Disable interrupts. */
1789 	CSR_WRITE_2(sc, VTE_MIER, 0);
1790 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1791 	/* Stop RX/TX MACs. */
1792 	vte_stop_mac(sc);
1793 	/* Clear interrupts. */
1794 	CSR_READ_2(sc, VTE_MISR);
1795 	/*
1796 	 * Free TX/RX mbufs still in the queues.
1797 	 */
1798 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1799 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1800 		if (rxd->rx_m != NULL) {
1801 			bus_dmamap_sync(sc->vte_cdata.vte_rx_tag,
1802 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1803 			bus_dmamap_unload(sc->vte_cdata.vte_rx_tag,
1804 			    rxd->rx_dmamap);
1805 			m_freem(rxd->rx_m);
1806 			rxd->rx_m = NULL;
1807 		}
1808 	}
1809 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1810 		txd = &sc->vte_cdata.vte_txdesc[i];
1811 		if (txd->tx_m != NULL) {
1812 			bus_dmamap_sync(sc->vte_cdata.vte_tx_tag,
1813 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1814 			bus_dmamap_unload(sc->vte_cdata.vte_tx_tag,
1815 			    txd->tx_dmamap);
1816 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1817 				m_freem(txd->tx_m);
1818 			txd->tx_m = NULL;
1819 			txd->tx_flags &= ~VTE_TXMBUF;
1820 		}
1821 	}
1822 	/* Free TX mbuf pools used for deep copy. */
1823 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1824 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1825 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1826 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1827 		}
1828 	}
1829 }
1830 
1831 static void
1832 vte_start_mac(struct vte_softc *sc)
1833 {
1834 	uint16_t mcr;
1835 	int i;
1836 
1837 	VTE_LOCK_ASSERT(sc);
1838 
1839 	/* Enable RX/TX MACs. */
1840 	mcr = CSR_READ_2(sc, VTE_MCR0);
1841 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1842 	    (MCR0_RX_ENB | MCR0_TX_ENB)) {
1843 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1844 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1845 		for (i = VTE_TIMEOUT; i > 0; i--) {
1846 			mcr = CSR_READ_2(sc, VTE_MCR0);
1847 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1848 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1849 				break;
1850 			DELAY(10);
1851 		}
1852 		if (i == 0)
1853 			device_printf(sc->vte_dev,
1854 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1855 	}
1856 }
1857 
1858 static void
1859 vte_stop_mac(struct vte_softc *sc)
1860 {
1861 	uint16_t mcr;
1862 	int i;
1863 
1864 	VTE_LOCK_ASSERT(sc);
1865 
1866 	/* Disable RX/TX MACs. */
1867 	mcr = CSR_READ_2(sc, VTE_MCR0);
1868 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1869 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1870 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1871 		for (i = VTE_TIMEOUT; i > 0; i--) {
1872 			mcr = CSR_READ_2(sc, VTE_MCR0);
1873 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1874 				break;
1875 			DELAY(10);
1876 		}
1877 		if (i == 0)
1878 			device_printf(sc->vte_dev,
1879 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1880 	}
1881 }
1882 
1883 static int
1884 vte_init_tx_ring(struct vte_softc *sc)
1885 {
1886 	struct vte_tx_desc *desc;
1887 	struct vte_txdesc *txd;
1888 	bus_addr_t addr;
1889 	int i;
1890 
1891 	VTE_LOCK_ASSERT(sc);
1892 
1893 	sc->vte_cdata.vte_tx_prod = 0;
1894 	sc->vte_cdata.vte_tx_cons = 0;
1895 	sc->vte_cdata.vte_tx_cnt = 0;
1896 
1897 	/* Pre-allocate TX mbufs for deep copy. */
1898 	if (tx_deep_copy != 0) {
1899 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
1900 			sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_NOWAIT,
1901 			    MT_DATA, M_PKTHDR);
1902 			if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1903 				return (ENOBUFS);
1904 			sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1905 			sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1906 		}
1907 	}
1908 	desc = sc->vte_cdata.vte_tx_ring;
1909 	bzero(desc, VTE_TX_RING_SZ);
1910 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1911 		txd = &sc->vte_cdata.vte_txdesc[i];
1912 		txd->tx_m = NULL;
1913 		if (i != VTE_TX_RING_CNT - 1)
1914 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1915 			    sizeof(struct vte_tx_desc) * (i + 1);
1916 		else
1917 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1918 			    sizeof(struct vte_tx_desc) * 0;
1919 		desc = &sc->vte_cdata.vte_tx_ring[i];
1920 		desc->dtnp = htole32(addr);
1921 		txd->tx_desc = desc;
1922 	}
1923 
1924 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1925 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1926 	    BUS_DMASYNC_PREWRITE);
1927 	return (0);
1928 }
1929 
1930 static int
1931 vte_init_rx_ring(struct vte_softc *sc)
1932 {
1933 	struct vte_rx_desc *desc;
1934 	struct vte_rxdesc *rxd;
1935 	bus_addr_t addr;
1936 	int i;
1937 
1938 	VTE_LOCK_ASSERT(sc);
1939 
1940 	sc->vte_cdata.vte_rx_cons = 0;
1941 	desc = sc->vte_cdata.vte_rx_ring;
1942 	bzero(desc, VTE_RX_RING_SZ);
1943 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1944 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1945 		rxd->rx_m = NULL;
1946 		if (i != VTE_RX_RING_CNT - 1)
1947 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1948 			    sizeof(struct vte_rx_desc) * (i + 1);
1949 		else
1950 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1951 			    sizeof(struct vte_rx_desc) * 0;
1952 		desc = &sc->vte_cdata.vte_rx_ring[i];
1953 		desc->drnp = htole32(addr);
1954 		rxd->rx_desc = desc;
1955 		if (vte_newbuf(sc, rxd) != 0)
1956 			return (ENOBUFS);
1957 	}
1958 
1959 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1960 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_PREREAD |
1961 	    BUS_DMASYNC_PREWRITE);
1962 
1963 	return (0);
1964 }
1965 
1966 struct vte_maddr_ctx {
1967 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1968 	uint16_t mchash[4];
1969 	u_int nperf;
1970 };
1971 
1972 static u_int
1973 vte_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1974 {
1975 	struct vte_maddr_ctx *ctx = arg;
1976 	uint8_t *eaddr;
1977 	uint32_t crc;
1978 
1979 	/*
1980 	 * Program the first 3 multicast groups into the perfect filter.
1981 	 * For all others, use the hash table.
1982 	 */
1983 	if (ctx->nperf < VTE_RXFILT_PERFECT_CNT) {
1984 		eaddr = LLADDR(sdl);
1985 		ctx->rxfilt_perf[ctx->nperf][0] = eaddr[1] << 8 | eaddr[0];
1986 		ctx->rxfilt_perf[ctx->nperf][1] = eaddr[3] << 8 | eaddr[2];
1987 		ctx->rxfilt_perf[ctx->nperf][2] = eaddr[5] << 8 | eaddr[4];
1988 		ctx->nperf++;
1989 
1990 		return (1);
1991 	}
1992 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
1993 	ctx->mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
1994 
1995 	return (1);
1996 }
1997 
1998 static void
1999 vte_rxfilter(struct vte_softc *sc)
2000 {
2001 	if_t ifp;
2002 	struct vte_maddr_ctx ctx;
2003 	uint16_t mcr;
2004 	int i;
2005 
2006 	VTE_LOCK_ASSERT(sc);
2007 
2008 	ifp = sc->vte_ifp;
2009 
2010 	bzero(ctx.mchash, sizeof(ctx.mchash));
2011 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2012 		ctx.rxfilt_perf[i][0] = 0xFFFF;
2013 		ctx.rxfilt_perf[i][1] = 0xFFFF;
2014 		ctx.rxfilt_perf[i][2] = 0xFFFF;
2015 	}
2016 	ctx.nperf = 0;
2017 
2018 	mcr = CSR_READ_2(sc, VTE_MCR0);
2019 	mcr &= ~(MCR0_PROMISC | MCR0_MULTICAST);
2020 	mcr |= MCR0_BROADCAST_DIS;
2021 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
2022 		mcr &= ~MCR0_BROADCAST_DIS;
2023 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2024 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2025 			mcr |= MCR0_PROMISC;
2026 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
2027 			mcr |= MCR0_MULTICAST;
2028 		ctx.mchash[0] = 0xFFFF;
2029 		ctx.mchash[1] = 0xFFFF;
2030 		ctx.mchash[2] = 0xFFFF;
2031 		ctx.mchash[3] = 0xFFFF;
2032 		goto chipit;
2033 	}
2034 
2035 	if_foreach_llmaddr(ifp, vte_hash_maddr, &ctx);
2036 	if (ctx.mchash[0] != 0 || ctx.mchash[1] != 0 ||
2037 	    ctx.mchash[2] != 0 || ctx.mchash[3] != 0)
2038 		mcr |= MCR0_MULTICAST;
2039 
2040 chipit:
2041 	/* Program multicast hash table. */
2042 	CSR_WRITE_2(sc, VTE_MAR0, ctx.mchash[0]);
2043 	CSR_WRITE_2(sc, VTE_MAR1, ctx.mchash[1]);
2044 	CSR_WRITE_2(sc, VTE_MAR2, ctx.mchash[2]);
2045 	CSR_WRITE_2(sc, VTE_MAR3, ctx.mchash[3]);
2046 	/* Program perfect filter table. */
2047 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2048 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
2049 		    ctx.rxfilt_perf[i][0]);
2050 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
2051 		    ctx.rxfilt_perf[i][1]);
2052 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
2053 		    ctx.rxfilt_perf[i][2]);
2054 	}
2055 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
2056 	CSR_READ_2(sc, VTE_MCR0);
2057 }
2058 
2059 static int
2060 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2061 {
2062 	int error, value;
2063 
2064 	if (arg1 == NULL)
2065 		return (EINVAL);
2066 	value = *(int *)arg1;
2067 	error = sysctl_handle_int(oidp, &value, 0, req);
2068 	if (error || req->newptr == NULL)
2069 		return (error);
2070 	if (value < low || value > high)
2071 		return (EINVAL);
2072 	*(int *)arg1 = value;
2073 
2074 	return (0);
2075 }
2076 
2077 static int
2078 sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS)
2079 {
2080 
2081 	return (sysctl_int_range(oidp, arg1, arg2, req,
2082 	    VTE_IM_BUNDLE_MIN, VTE_IM_BUNDLE_MAX));
2083 }
2084