xref: /freebsd/sys/dev/vte/if_vte.c (revision aa24f48b361effe51163877d84f1b70d32b77e04)
1 /*-
2  * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/rman.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_dl.h>
54 #include <net/if_llc.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_vlan_var.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 
70 #include <dev/vte/if_vtereg.h>
71 #include <dev/vte/if_vtevar.h>
72 
73 /* "device miibus" required.  See GENERIC if you get errors here. */
74 #include "miibus_if.h"
75 
76 MODULE_DEPEND(vte, pci, 1, 1, 1);
77 MODULE_DEPEND(vte, ether, 1, 1, 1);
78 MODULE_DEPEND(vte, miibus, 1, 1, 1);
79 
80 /* Tunables. */
81 static int tx_deep_copy = 1;
82 TUNABLE_INT("hw.vte.tx_deep_copy", &tx_deep_copy);
83 
84 /*
85  * Devices supported by this driver.
86  */
87 static const struct vte_ident vte_ident_table[] = {
88 	{ VENDORID_RDC, DEVICEID_RDC_R6040, "RDC R6040 FastEthernet"},
89 	{ 0, 0, NULL}
90 };
91 
92 static int	vte_attach(device_t);
93 static int	vte_detach(device_t);
94 static int	vte_dma_alloc(struct vte_softc *);
95 static void	vte_dma_free(struct vte_softc *);
96 static void	vte_dmamap_cb(void *, bus_dma_segment_t *, int, int);
97 static struct vte_txdesc *
98 		vte_encap(struct vte_softc *, struct mbuf **);
99 static const struct vte_ident *
100 		vte_find_ident(device_t);
101 #ifndef __NO_STRICT_ALIGNMENT
102 static struct mbuf *
103 		vte_fixup_rx(struct ifnet *, struct mbuf *);
104 #endif
105 static void	vte_get_macaddr(struct vte_softc *);
106 static void	vte_init(void *);
107 static void	vte_init_locked(struct vte_softc *);
108 static int	vte_init_rx_ring(struct vte_softc *);
109 static int	vte_init_tx_ring(struct vte_softc *);
110 static void	vte_intr(void *);
111 static int	vte_ioctl(struct ifnet *, u_long, caddr_t);
112 static uint64_t	vte_get_counter(struct ifnet *, ift_counter);
113 static void	vte_mac_config(struct vte_softc *);
114 static int	vte_miibus_readreg(device_t, int, int);
115 static void	vte_miibus_statchg(device_t);
116 static int	vte_miibus_writereg(device_t, int, int, int);
117 static int	vte_mediachange(struct ifnet *);
118 static int	vte_mediachange_locked(struct ifnet *);
119 static void	vte_mediastatus(struct ifnet *, struct ifmediareq *);
120 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
121 static int	vte_probe(device_t);
122 static void	vte_reset(struct vte_softc *);
123 static int	vte_resume(device_t);
124 static void	vte_rxeof(struct vte_softc *);
125 static void	vte_rxfilter(struct vte_softc *);
126 static int	vte_shutdown(device_t);
127 static void	vte_start(struct ifnet *);
128 static void	vte_start_locked(struct vte_softc *);
129 static void	vte_start_mac(struct vte_softc *);
130 static void	vte_stats_clear(struct vte_softc *);
131 static void	vte_stats_update(struct vte_softc *);
132 static void	vte_stop(struct vte_softc *);
133 static void	vte_stop_mac(struct vte_softc *);
134 static int	vte_suspend(device_t);
135 static void	vte_sysctl_node(struct vte_softc *);
136 static void	vte_tick(void *);
137 static void	vte_txeof(struct vte_softc *);
138 static void	vte_watchdog(struct vte_softc *);
139 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
140 static int	sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS);
141 
142 static device_method_t vte_methods[] = {
143 	/* Device interface. */
144 	DEVMETHOD(device_probe,		vte_probe),
145 	DEVMETHOD(device_attach,	vte_attach),
146 	DEVMETHOD(device_detach,	vte_detach),
147 	DEVMETHOD(device_shutdown,	vte_shutdown),
148 	DEVMETHOD(device_suspend,	vte_suspend),
149 	DEVMETHOD(device_resume,	vte_resume),
150 
151 	/* MII interface. */
152 	DEVMETHOD(miibus_readreg,	vte_miibus_readreg),
153 	DEVMETHOD(miibus_writereg,	vte_miibus_writereg),
154 	DEVMETHOD(miibus_statchg,	vte_miibus_statchg),
155 
156 	DEVMETHOD_END
157 };
158 
159 static driver_t vte_driver = {
160 	"vte",
161 	vte_methods,
162 	sizeof(struct vte_softc)
163 };
164 
165 static devclass_t vte_devclass;
166 
167 DRIVER_MODULE(vte, pci, vte_driver, vte_devclass, 0, 0);
168 DRIVER_MODULE(miibus, vte, miibus_driver, miibus_devclass, 0, 0);
169 
170 static int
171 vte_miibus_readreg(device_t dev, int phy, int reg)
172 {
173 	struct vte_softc *sc;
174 	int i;
175 
176 	sc = device_get_softc(dev);
177 
178 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
179 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
180 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
181 		DELAY(5);
182 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
183 			break;
184 	}
185 
186 	if (i == 0) {
187 		device_printf(sc->vte_dev, "phy read timeout : %d\n", reg);
188 		return (0);
189 	}
190 
191 	return (CSR_READ_2(sc, VTE_MMRD));
192 }
193 
194 static int
195 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
196 {
197 	struct vte_softc *sc;
198 	int i;
199 
200 	sc = device_get_softc(dev);
201 
202 	CSR_WRITE_2(sc, VTE_MMWD, val);
203 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
204 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
205 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
206 		DELAY(5);
207 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
208 			break;
209 	}
210 
211 	if (i == 0)
212 		device_printf(sc->vte_dev, "phy write timeout : %d\n", reg);
213 
214 	return (0);
215 }
216 
217 static void
218 vte_miibus_statchg(device_t dev)
219 {
220 	struct vte_softc *sc;
221 	struct mii_data *mii;
222 	struct ifnet *ifp;
223 	uint16_t val;
224 
225 	sc = device_get_softc(dev);
226 
227 	mii = device_get_softc(sc->vte_miibus);
228 	ifp = sc->vte_ifp;
229 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
230 		return;
231 
232 	sc->vte_flags &= ~VTE_FLAG_LINK;
233 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
234 	    (IFM_ACTIVE | IFM_AVALID)) {
235 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
236 		case IFM_10_T:
237 		case IFM_100_TX:
238 			sc->vte_flags |= VTE_FLAG_LINK;
239 			break;
240 		default:
241 			break;
242 		}
243 	}
244 
245 	/* Stop RX/TX MACs. */
246 	vte_stop_mac(sc);
247 	/* Program MACs with resolved duplex and flow control. */
248 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
249 		/*
250 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
251 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
252 		 */
253 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
254 			val = 18 << VTE_IM_TIMER_SHIFT;
255 		else
256 			val = 1 << VTE_IM_TIMER_SHIFT;
257 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
258 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
259 		CSR_WRITE_2(sc, VTE_MRICR, val);
260 
261 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
262 			val = 18 << VTE_IM_TIMER_SHIFT;
263 		else
264 			val = 1 << VTE_IM_TIMER_SHIFT;
265 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
266 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
267 		CSR_WRITE_2(sc, VTE_MTICR, val);
268 
269 		vte_mac_config(sc);
270 		vte_start_mac(sc);
271 	}
272 }
273 
274 static void
275 vte_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
276 {
277 	struct vte_softc *sc;
278 	struct mii_data *mii;
279 
280 	sc = ifp->if_softc;
281 	VTE_LOCK(sc);
282 	if ((ifp->if_flags & IFF_UP) == 0) {
283 		VTE_UNLOCK(sc);
284 		return;
285 	}
286 	mii = device_get_softc(sc->vte_miibus);
287 
288 	mii_pollstat(mii);
289 	ifmr->ifm_status = mii->mii_media_status;
290 	ifmr->ifm_active = mii->mii_media_active;
291 	VTE_UNLOCK(sc);
292 }
293 
294 static int
295 vte_mediachange(struct ifnet *ifp)
296 {
297 	struct vte_softc *sc;
298 	int error;
299 
300 	sc = ifp->if_softc;
301 	VTE_LOCK(sc);
302 	error = vte_mediachange_locked(ifp);
303 	VTE_UNLOCK(sc);
304 	return (error);
305 }
306 
307 static int
308 vte_mediachange_locked(struct ifnet *ifp)
309 {
310 	struct vte_softc *sc;
311 	struct mii_data *mii;
312 	struct mii_softc *miisc;
313 	int error;
314 
315 	sc = ifp->if_softc;
316 	mii = device_get_softc(sc->vte_miibus);
317 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
318 		PHY_RESET(miisc);
319 	error = mii_mediachg(mii);
320 
321 	return (error);
322 }
323 
324 static const struct vte_ident *
325 vte_find_ident(device_t dev)
326 {
327 	const struct vte_ident *ident;
328 	uint16_t vendor, devid;
329 
330 	vendor = pci_get_vendor(dev);
331 	devid = pci_get_device(dev);
332 	for (ident = vte_ident_table; ident->name != NULL; ident++) {
333 		if (vendor == ident->vendorid && devid == ident->deviceid)
334 			return (ident);
335 	}
336 
337 	return (NULL);
338 }
339 
340 static int
341 vte_probe(device_t dev)
342 {
343 	const struct vte_ident *ident;
344 
345 	ident = vte_find_ident(dev);
346 	if (ident != NULL) {
347 		device_set_desc(dev, ident->name);
348 		return (BUS_PROBE_DEFAULT);
349 	}
350 
351 	return (ENXIO);
352 }
353 
354 static void
355 vte_get_macaddr(struct vte_softc *sc)
356 {
357 	uint16_t mid;
358 
359 	/*
360 	 * It seems there is no way to reload station address and
361 	 * it is supposed to be set by BIOS.
362 	 */
363 	mid = CSR_READ_2(sc, VTE_MID0L);
364 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
365 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
366 	mid = CSR_READ_2(sc, VTE_MID0M);
367 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
368 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
369 	mid = CSR_READ_2(sc, VTE_MID0H);
370 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
371 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
372 }
373 
374 static int
375 vte_attach(device_t dev)
376 {
377 	struct vte_softc *sc;
378 	struct ifnet *ifp;
379 	uint16_t macid;
380 	int error, rid;
381 
382 	error = 0;
383 	sc = device_get_softc(dev);
384 	sc->vte_dev = dev;
385 
386 	mtx_init(&sc->vte_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
387 	    MTX_DEF);
388 	callout_init_mtx(&sc->vte_tick_ch, &sc->vte_mtx, 0);
389 	sc->vte_ident = vte_find_ident(dev);
390 
391 	/* Map the device. */
392 	pci_enable_busmaster(dev);
393 	sc->vte_res_id = PCIR_BAR(1);
394 	sc->vte_res_type = SYS_RES_MEMORY;
395 	sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
396 	    &sc->vte_res_id, RF_ACTIVE);
397 	if (sc->vte_res == NULL) {
398 		sc->vte_res_id = PCIR_BAR(0);
399 		sc->vte_res_type = SYS_RES_IOPORT;
400 		sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
401 		    &sc->vte_res_id, RF_ACTIVE);
402 		if (sc->vte_res == NULL) {
403 			device_printf(dev, "cannot map memory/ports.\n");
404 			mtx_destroy(&sc->vte_mtx);
405 			return (ENXIO);
406 		}
407 	}
408 	if (bootverbose) {
409 		device_printf(dev, "using %s space register mapping\n",
410 		    sc->vte_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
411 		device_printf(dev, "MAC Identifier : 0x%04x\n",
412 		    CSR_READ_2(sc, VTE_MACID));
413 		macid = CSR_READ_2(sc, VTE_MACID_REV);
414 		device_printf(dev, "MAC Id. 0x%02x, Rev. 0x%02x\n",
415 		    (macid & VTE_MACID_MASK) >> VTE_MACID_SHIFT,
416 		    (macid & VTE_MACID_REV_MASK) >> VTE_MACID_REV_SHIFT);
417 	}
418 
419 	rid = 0;
420 	sc->vte_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
421 	    RF_SHAREABLE | RF_ACTIVE);
422 	if (sc->vte_irq == NULL) {
423 		device_printf(dev, "cannot allocate IRQ resources.\n");
424 		error = ENXIO;
425 		goto fail;
426 	}
427 
428 	/* Reset the ethernet controller. */
429 	vte_reset(sc);
430 
431 	if ((error = vte_dma_alloc(sc)) != 0)
432 		goto fail;
433 
434 	/* Create device sysctl node. */
435 	vte_sysctl_node(sc);
436 
437 	/* Load station address. */
438 	vte_get_macaddr(sc);
439 
440 	ifp = sc->vte_ifp = if_alloc(IFT_ETHER);
441 	if (ifp == NULL) {
442 		device_printf(dev, "cannot allocate ifnet structure.\n");
443 		error = ENXIO;
444 		goto fail;
445 	}
446 
447 	ifp->if_softc = sc;
448 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
449 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
450 	ifp->if_ioctl = vte_ioctl;
451 	ifp->if_start = vte_start;
452 	ifp->if_init = vte_init;
453 	ifp->if_get_counter = vte_get_counter;
454 	ifp->if_snd.ifq_drv_maxlen = VTE_TX_RING_CNT - 1;
455 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
456 	IFQ_SET_READY(&ifp->if_snd);
457 
458 	/*
459 	 * Set up MII bus.
460 	 * BIOS would have initialized VTE_MPSCCR to catch PHY
461 	 * status changes so driver may be able to extract
462 	 * configured PHY address.  Since it's common to see BIOS
463 	 * fails to initialize the register(including the sample
464 	 * board I have), let mii(4) probe it.  This is more
465 	 * reliable than relying on BIOS's initialization.
466 	 *
467 	 * Advertising flow control capability to mii(4) was
468 	 * intentionally disabled due to severe problems in TX
469 	 * pause frame generation.  See vte_rxeof() for more
470 	 * details.
471 	 */
472 	error = mii_attach(dev, &sc->vte_miibus, ifp, vte_mediachange,
473 	    vte_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
474 	if (error != 0) {
475 		device_printf(dev, "attaching PHYs failed\n");
476 		goto fail;
477 	}
478 
479 	ether_ifattach(ifp, sc->vte_eaddr);
480 
481 	/* VLAN capability setup. */
482 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
483 	ifp->if_capenable = ifp->if_capabilities;
484 	/* Tell the upper layer we support VLAN over-sized frames. */
485 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
486 
487 	error = bus_setup_intr(dev, sc->vte_irq, INTR_TYPE_NET | INTR_MPSAFE,
488 	    NULL, vte_intr, sc, &sc->vte_intrhand);
489 	if (error != 0) {
490 		device_printf(dev, "could not set up interrupt handler.\n");
491 		ether_ifdetach(ifp);
492 		goto fail;
493 	}
494 
495 fail:
496 	if (error != 0)
497 		vte_detach(dev);
498 
499 	return (error);
500 }
501 
502 static int
503 vte_detach(device_t dev)
504 {
505 	struct vte_softc *sc;
506 	struct ifnet *ifp;
507 
508 	sc = device_get_softc(dev);
509 
510 	ifp = sc->vte_ifp;
511 	if (device_is_attached(dev)) {
512 		VTE_LOCK(sc);
513 		vte_stop(sc);
514 		VTE_UNLOCK(sc);
515 		callout_drain(&sc->vte_tick_ch);
516 		ether_ifdetach(ifp);
517 	}
518 
519 	if (sc->vte_miibus != NULL) {
520 		device_delete_child(dev, sc->vte_miibus);
521 		sc->vte_miibus = NULL;
522 	}
523 	bus_generic_detach(dev);
524 
525 	if (sc->vte_intrhand != NULL) {
526 		bus_teardown_intr(dev, sc->vte_irq, sc->vte_intrhand);
527 		sc->vte_intrhand = NULL;
528 	}
529 	if (sc->vte_irq != NULL) {
530 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vte_irq);
531 		sc->vte_irq = NULL;
532 	}
533 	if (sc->vte_res != NULL) {
534 		bus_release_resource(dev, sc->vte_res_type, sc->vte_res_id,
535 		    sc->vte_res);
536 		sc->vte_res = NULL;
537 	}
538 	if (ifp != NULL) {
539 		if_free(ifp);
540 		sc->vte_ifp = NULL;
541 	}
542 	vte_dma_free(sc);
543 	mtx_destroy(&sc->vte_mtx);
544 
545 	return (0);
546 }
547 
548 #define	VTE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
549 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
550 
551 static void
552 vte_sysctl_node(struct vte_softc *sc)
553 {
554 	struct sysctl_ctx_list *ctx;
555 	struct sysctl_oid_list *child, *parent;
556 	struct sysctl_oid *tree;
557 	struct vte_hw_stats *stats;
558 	int error;
559 
560 	stats = &sc->vte_stats;
561 	ctx = device_get_sysctl_ctx(sc->vte_dev);
562 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vte_dev));
563 
564 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
565 	    CTLTYPE_INT | CTLFLAG_RW, &sc->vte_int_rx_mod, 0,
566 	    sysctl_hw_vte_int_mod, "I", "vte RX interrupt moderation");
567 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
568 	    CTLTYPE_INT | CTLFLAG_RW, &sc->vte_int_tx_mod, 0,
569 	    sysctl_hw_vte_int_mod, "I", "vte TX interrupt moderation");
570 	/* Pull in device tunables. */
571 	sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
572 	error = resource_int_value(device_get_name(sc->vte_dev),
573 	    device_get_unit(sc->vte_dev), "int_rx_mod", &sc->vte_int_rx_mod);
574 	if (error == 0) {
575 		if (sc->vte_int_rx_mod < VTE_IM_BUNDLE_MIN ||
576 		    sc->vte_int_rx_mod > VTE_IM_BUNDLE_MAX) {
577 			device_printf(sc->vte_dev, "int_rx_mod value out of "
578 			    "range; using default: %d\n",
579 			    VTE_IM_RX_BUNDLE_DEFAULT);
580 			sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
581 		}
582 	}
583 
584 	sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
585 	error = resource_int_value(device_get_name(sc->vte_dev),
586 	    device_get_unit(sc->vte_dev), "int_tx_mod", &sc->vte_int_tx_mod);
587 	if (error == 0) {
588 		if (sc->vte_int_tx_mod < VTE_IM_BUNDLE_MIN ||
589 		    sc->vte_int_tx_mod > VTE_IM_BUNDLE_MAX) {
590 			device_printf(sc->vte_dev, "int_tx_mod value out of "
591 			    "range; using default: %d\n",
592 			    VTE_IM_TX_BUNDLE_DEFAULT);
593 			sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
594 		}
595 	}
596 
597 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
598 	    NULL, "VTE statistics");
599 	parent = SYSCTL_CHILDREN(tree);
600 
601 	/* RX statistics. */
602 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
603 	    NULL, "RX MAC statistics");
604 	child = SYSCTL_CHILDREN(tree);
605 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
606 	    &stats->rx_frames, "Good frames");
607 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
608 	    &stats->rx_bcast_frames, "Good broadcast frames");
609 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
610 	    &stats->rx_mcast_frames, "Good multicast frames");
611 	VTE_SYSCTL_STAT_ADD32(ctx, child, "runt",
612 	    &stats->rx_runts, "Too short frames");
613 	VTE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
614 	    &stats->rx_crcerrs, "CRC errors");
615 	VTE_SYSCTL_STAT_ADD32(ctx, child, "long_frames",
616 	    &stats->rx_long_frames,
617 	    "Frames that have longer length than maximum packet length");
618 	VTE_SYSCTL_STAT_ADD32(ctx, child, "fifo_full",
619 	    &stats->rx_fifo_full, "FIFO full");
620 	VTE_SYSCTL_STAT_ADD32(ctx, child, "desc_unavail",
621 	    &stats->rx_desc_unavail, "Descriptor unavailable frames");
622 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
623 	    &stats->rx_pause_frames, "Pause control frames");
624 
625 	/* TX statistics. */
626 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
627 	    NULL, "TX MAC statistics");
628 	child = SYSCTL_CHILDREN(tree);
629 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
630 	    &stats->tx_frames, "Good frames");
631 	VTE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
632 	    &stats->tx_underruns, "FIFO underruns");
633 	VTE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
634 	    &stats->tx_late_colls, "Late collisions");
635 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
636 	    &stats->tx_pause_frames, "Pause control frames");
637 }
638 
639 #undef VTE_SYSCTL_STAT_ADD32
640 
641 struct vte_dmamap_arg {
642 	bus_addr_t	vte_busaddr;
643 };
644 
645 static void
646 vte_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
647 {
648 	struct vte_dmamap_arg *ctx;
649 
650 	if (error != 0)
651 		return;
652 
653 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
654 
655 	ctx = (struct vte_dmamap_arg *)arg;
656 	ctx->vte_busaddr = segs[0].ds_addr;
657 }
658 
659 static int
660 vte_dma_alloc(struct vte_softc *sc)
661 {
662 	struct vte_txdesc *txd;
663 	struct vte_rxdesc *rxd;
664 	struct vte_dmamap_arg ctx;
665 	int error, i;
666 
667 	/* Create parent DMA tag. */
668 	error = bus_dma_tag_create(
669 	    bus_get_dma_tag(sc->vte_dev), /* parent */
670 	    1, 0,			/* alignment, boundary */
671 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
672 	    BUS_SPACE_MAXADDR,		/* highaddr */
673 	    NULL, NULL,			/* filter, filterarg */
674 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
675 	    0,				/* nsegments */
676 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
677 	    0,				/* flags */
678 	    NULL, NULL,			/* lockfunc, lockarg */
679 	    &sc->vte_cdata.vte_parent_tag);
680 	if (error != 0) {
681 		device_printf(sc->vte_dev,
682 		    "could not create parent DMA tag.\n");
683 		goto fail;
684 	}
685 
686 	/* Create DMA tag for TX descriptor ring. */
687 	error = bus_dma_tag_create(
688 	    sc->vte_cdata.vte_parent_tag, /* parent */
689 	    VTE_TX_RING_ALIGN, 0,	/* alignment, boundary */
690 	    BUS_SPACE_MAXADDR,		/* lowaddr */
691 	    BUS_SPACE_MAXADDR,		/* highaddr */
692 	    NULL, NULL,			/* filter, filterarg */
693 	    VTE_TX_RING_SZ,		/* maxsize */
694 	    1,				/* nsegments */
695 	    VTE_TX_RING_SZ,		/* maxsegsize */
696 	    0,				/* flags */
697 	    NULL, NULL,			/* lockfunc, lockarg */
698 	    &sc->vte_cdata.vte_tx_ring_tag);
699 	if (error != 0) {
700 		device_printf(sc->vte_dev,
701 		    "could not create TX ring DMA tag.\n");
702 		goto fail;
703 	}
704 
705 	/* Create DMA tag for RX free descriptor ring. */
706 	error = bus_dma_tag_create(
707 	    sc->vte_cdata.vte_parent_tag, /* parent */
708 	    VTE_RX_RING_ALIGN, 0,	/* alignment, boundary */
709 	    BUS_SPACE_MAXADDR,		/* lowaddr */
710 	    BUS_SPACE_MAXADDR,		/* highaddr */
711 	    NULL, NULL,			/* filter, filterarg */
712 	    VTE_RX_RING_SZ,		/* maxsize */
713 	    1,				/* nsegments */
714 	    VTE_RX_RING_SZ,		/* maxsegsize */
715 	    0,				/* flags */
716 	    NULL, NULL,			/* lockfunc, lockarg */
717 	    &sc->vte_cdata.vte_rx_ring_tag);
718 	if (error != 0) {
719 		device_printf(sc->vte_dev,
720 		    "could not create RX ring DMA tag.\n");
721 		goto fail;
722 	}
723 
724 	/* Allocate DMA'able memory and load the DMA map for TX ring. */
725 	error = bus_dmamem_alloc(sc->vte_cdata.vte_tx_ring_tag,
726 	    (void **)&sc->vte_cdata.vte_tx_ring,
727 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
728 	    &sc->vte_cdata.vte_tx_ring_map);
729 	if (error != 0) {
730 		device_printf(sc->vte_dev,
731 		    "could not allocate DMA'able memory for TX ring.\n");
732 		goto fail;
733 	}
734 	ctx.vte_busaddr = 0;
735 	error = bus_dmamap_load(sc->vte_cdata.vte_tx_ring_tag,
736 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
737 	    VTE_TX_RING_SZ, vte_dmamap_cb, &ctx, 0);
738 	if (error != 0 || ctx.vte_busaddr == 0) {
739 		device_printf(sc->vte_dev,
740 		    "could not load DMA'able memory for TX ring.\n");
741 		goto fail;
742 	}
743 	sc->vte_cdata.vte_tx_ring_paddr = ctx.vte_busaddr;
744 
745 	/* Allocate DMA'able memory and load the DMA map for RX ring. */
746 	error = bus_dmamem_alloc(sc->vte_cdata.vte_rx_ring_tag,
747 	    (void **)&sc->vte_cdata.vte_rx_ring,
748 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
749 	    &sc->vte_cdata.vte_rx_ring_map);
750 	if (error != 0) {
751 		device_printf(sc->vte_dev,
752 		    "could not allocate DMA'able memory for RX ring.\n");
753 		goto fail;
754 	}
755 	ctx.vte_busaddr = 0;
756 	error = bus_dmamap_load(sc->vte_cdata.vte_rx_ring_tag,
757 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
758 	    VTE_RX_RING_SZ, vte_dmamap_cb, &ctx, 0);
759 	if (error != 0 || ctx.vte_busaddr == 0) {
760 		device_printf(sc->vte_dev,
761 		    "could not load DMA'able memory for RX ring.\n");
762 		goto fail;
763 	}
764 	sc->vte_cdata.vte_rx_ring_paddr = ctx.vte_busaddr;
765 
766 	/* Create TX buffer parent tag. */
767 	error = bus_dma_tag_create(
768 	    bus_get_dma_tag(sc->vte_dev), /* parent */
769 	    1, 0,			/* alignment, boundary */
770 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
771 	    BUS_SPACE_MAXADDR,		/* highaddr */
772 	    NULL, NULL,			/* filter, filterarg */
773 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
774 	    0,				/* nsegments */
775 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
776 	    0,				/* flags */
777 	    NULL, NULL,			/* lockfunc, lockarg */
778 	    &sc->vte_cdata.vte_buffer_tag);
779 	if (error != 0) {
780 		device_printf(sc->vte_dev,
781 		    "could not create parent buffer DMA tag.\n");
782 		goto fail;
783 	}
784 
785 	/* Create DMA tag for TX buffers. */
786 	error = bus_dma_tag_create(
787 	    sc->vte_cdata.vte_buffer_tag, /* parent */
788 	    1, 0,			/* alignment, boundary */
789 	    BUS_SPACE_MAXADDR,		/* lowaddr */
790 	    BUS_SPACE_MAXADDR,		/* highaddr */
791 	    NULL, NULL,			/* filter, filterarg */
792 	    MCLBYTES,			/* maxsize */
793 	    1,				/* nsegments */
794 	    MCLBYTES,			/* maxsegsize */
795 	    0,				/* flags */
796 	    NULL, NULL,			/* lockfunc, lockarg */
797 	    &sc->vte_cdata.vte_tx_tag);
798 	if (error != 0) {
799 		device_printf(sc->vte_dev, "could not create TX DMA tag.\n");
800 		goto fail;
801 	}
802 
803 	/* Create DMA tag for RX buffers. */
804 	error = bus_dma_tag_create(
805 	    sc->vte_cdata.vte_buffer_tag, /* parent */
806 	    VTE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
807 	    BUS_SPACE_MAXADDR,		/* lowaddr */
808 	    BUS_SPACE_MAXADDR,		/* highaddr */
809 	    NULL, NULL,			/* filter, filterarg */
810 	    MCLBYTES,			/* maxsize */
811 	    1,				/* nsegments */
812 	    MCLBYTES,			/* maxsegsize */
813 	    0,				/* flags */
814 	    NULL, NULL,			/* lockfunc, lockarg */
815 	    &sc->vte_cdata.vte_rx_tag);
816 	if (error != 0) {
817 		device_printf(sc->vte_dev, "could not create RX DMA tag.\n");
818 		goto fail;
819 	}
820 	/* Create DMA maps for TX buffers. */
821 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
822 		txd = &sc->vte_cdata.vte_txdesc[i];
823 		txd->tx_m = NULL;
824 		txd->tx_dmamap = NULL;
825 		error = bus_dmamap_create(sc->vte_cdata.vte_tx_tag, 0,
826 		    &txd->tx_dmamap);
827 		if (error != 0) {
828 			device_printf(sc->vte_dev,
829 			    "could not create TX dmamap.\n");
830 			goto fail;
831 		}
832 	}
833 	/* Create DMA maps for RX buffers. */
834 	if ((error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
835 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
836 		device_printf(sc->vte_dev,
837 		    "could not create spare RX dmamap.\n");
838 		goto fail;
839 	}
840 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
841 		rxd = &sc->vte_cdata.vte_rxdesc[i];
842 		rxd->rx_m = NULL;
843 		rxd->rx_dmamap = NULL;
844 		error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
845 		    &rxd->rx_dmamap);
846 		if (error != 0) {
847 			device_printf(sc->vte_dev,
848 			    "could not create RX dmamap.\n");
849 			goto fail;
850 		}
851 	}
852 
853 fail:
854 	return (error);
855 }
856 
857 static void
858 vte_dma_free(struct vte_softc *sc)
859 {
860 	struct vte_txdesc *txd;
861 	struct vte_rxdesc *rxd;
862 	int i;
863 
864 	/* TX buffers. */
865 	if (sc->vte_cdata.vte_tx_tag != NULL) {
866 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
867 			txd = &sc->vte_cdata.vte_txdesc[i];
868 			if (txd->tx_dmamap != NULL) {
869 				bus_dmamap_destroy(sc->vte_cdata.vte_tx_tag,
870 				    txd->tx_dmamap);
871 				txd->tx_dmamap = NULL;
872 			}
873 		}
874 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_tag);
875 		sc->vte_cdata.vte_tx_tag = NULL;
876 	}
877 	/* RX buffers */
878 	if (sc->vte_cdata.vte_rx_tag != NULL) {
879 		for (i = 0; i < VTE_RX_RING_CNT; i++) {
880 			rxd = &sc->vte_cdata.vte_rxdesc[i];
881 			if (rxd->rx_dmamap != NULL) {
882 				bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
883 				    rxd->rx_dmamap);
884 				rxd->rx_dmamap = NULL;
885 			}
886 		}
887 		if (sc->vte_cdata.vte_rx_sparemap != NULL) {
888 			bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
889 			    sc->vte_cdata.vte_rx_sparemap);
890 			sc->vte_cdata.vte_rx_sparemap = NULL;
891 		}
892 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_tag);
893 		sc->vte_cdata.vte_rx_tag = NULL;
894 	}
895 	/* TX descriptor ring. */
896 	if (sc->vte_cdata.vte_tx_ring_tag != NULL) {
897 		if (sc->vte_cdata.vte_tx_ring_paddr != 0)
898 			bus_dmamap_unload(sc->vte_cdata.vte_tx_ring_tag,
899 			    sc->vte_cdata.vte_tx_ring_map);
900 		if (sc->vte_cdata.vte_tx_ring != NULL)
901 			bus_dmamem_free(sc->vte_cdata.vte_tx_ring_tag,
902 			    sc->vte_cdata.vte_tx_ring,
903 			    sc->vte_cdata.vte_tx_ring_map);
904 		sc->vte_cdata.vte_tx_ring = NULL;
905 		sc->vte_cdata.vte_tx_ring_paddr = 0;
906 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_ring_tag);
907 		sc->vte_cdata.vte_tx_ring_tag = NULL;
908 	}
909 	/* RX ring. */
910 	if (sc->vte_cdata.vte_rx_ring_tag != NULL) {
911 		if (sc->vte_cdata.vte_rx_ring_paddr != 0)
912 			bus_dmamap_unload(sc->vte_cdata.vte_rx_ring_tag,
913 			    sc->vte_cdata.vte_rx_ring_map);
914 		if (sc->vte_cdata.vte_rx_ring != NULL)
915 			bus_dmamem_free(sc->vte_cdata.vte_rx_ring_tag,
916 			    sc->vte_cdata.vte_rx_ring,
917 			    sc->vte_cdata.vte_rx_ring_map);
918 		sc->vte_cdata.vte_rx_ring = NULL;
919 		sc->vte_cdata.vte_rx_ring_paddr = 0;
920 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_ring_tag);
921 		sc->vte_cdata.vte_rx_ring_tag = NULL;
922 	}
923 	if (sc->vte_cdata.vte_buffer_tag != NULL) {
924 		bus_dma_tag_destroy(sc->vte_cdata.vte_buffer_tag);
925 		sc->vte_cdata.vte_buffer_tag = NULL;
926 	}
927 	if (sc->vte_cdata.vte_parent_tag != NULL) {
928 		bus_dma_tag_destroy(sc->vte_cdata.vte_parent_tag);
929 		sc->vte_cdata.vte_parent_tag = NULL;
930 	}
931 }
932 
933 static int
934 vte_shutdown(device_t dev)
935 {
936 
937 	return (vte_suspend(dev));
938 }
939 
940 static int
941 vte_suspend(device_t dev)
942 {
943 	struct vte_softc *sc;
944 	struct ifnet *ifp;
945 
946 	sc = device_get_softc(dev);
947 
948 	VTE_LOCK(sc);
949 	ifp = sc->vte_ifp;
950 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
951 		vte_stop(sc);
952 	VTE_UNLOCK(sc);
953 
954 	return (0);
955 }
956 
957 static int
958 vte_resume(device_t dev)
959 {
960 	struct vte_softc *sc;
961 	struct ifnet *ifp;
962 
963 	sc = device_get_softc(dev);
964 
965 	VTE_LOCK(sc);
966 	ifp = sc->vte_ifp;
967 	if ((ifp->if_flags & IFF_UP) != 0) {
968 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
969 		vte_init_locked(sc);
970 	}
971 	VTE_UNLOCK(sc);
972 
973 	return (0);
974 }
975 
976 static struct vte_txdesc *
977 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
978 {
979 	struct vte_txdesc *txd;
980 	struct mbuf *m, *n;
981 	bus_dma_segment_t txsegs[1];
982 	int copy, error, nsegs, padlen;
983 
984 	VTE_LOCK_ASSERT(sc);
985 
986 	M_ASSERTPKTHDR((*m_head));
987 
988 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
989 	m = *m_head;
990 	/*
991 	 * Controller doesn't auto-pad, so we have to make sure pad
992 	 * short frames out to the minimum frame length.
993 	 */
994 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
995 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
996 	else
997 		padlen = 0;
998 
999 	/*
1000 	 * Controller does not support multi-fragmented TX buffers.
1001 	 * Controller spends most of its TX processing time in
1002 	 * de-fragmenting TX buffers.  Either faster CPU or more
1003 	 * advanced controller DMA engine is required to speed up
1004 	 * TX path processing.
1005 	 * To mitigate the de-fragmenting issue, perform deep copy
1006 	 * from fragmented mbuf chains to a pre-allocated mbuf
1007 	 * cluster with extra cost of kernel memory.  For frames
1008 	 * that is composed of single TX buffer, the deep copy is
1009 	 * bypassed.
1010 	 */
1011 	if (tx_deep_copy != 0) {
1012 		copy = 0;
1013 		if (m->m_next != NULL)
1014 			copy++;
1015 		if (padlen > 0 && (M_WRITABLE(m) == 0 ||
1016 		    padlen > M_TRAILINGSPACE(m)))
1017 			copy++;
1018 		if (copy != 0) {
1019 			/* Avoid expensive m_defrag(9) and do deep copy. */
1020 			n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
1021 			m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
1022 			n->m_pkthdr.len = m->m_pkthdr.len;
1023 			n->m_len = m->m_pkthdr.len;
1024 			m = n;
1025 			txd->tx_flags |= VTE_TXMBUF;
1026 		}
1027 
1028 		if (padlen > 0) {
1029 			/* Zero out the bytes in the pad area. */
1030 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1031 			m->m_pkthdr.len += padlen;
1032 			m->m_len = m->m_pkthdr.len;
1033 		}
1034 	} else {
1035 		if (M_WRITABLE(m) == 0) {
1036 			if (m->m_next != NULL || padlen > 0) {
1037 				/* Get a writable copy. */
1038 				m = m_dup(*m_head, M_NOWAIT);
1039 				/* Release original mbuf chains. */
1040 				m_freem(*m_head);
1041 				if (m == NULL) {
1042 					*m_head = NULL;
1043 					return (NULL);
1044 				}
1045 				*m_head = m;
1046 			}
1047 		}
1048 
1049 		if (m->m_next != NULL) {
1050 			m = m_defrag(*m_head, M_NOWAIT);
1051 			if (m == NULL) {
1052 				m_freem(*m_head);
1053 				*m_head = NULL;
1054 				return (NULL);
1055 			}
1056 			*m_head = m;
1057 		}
1058 
1059 		if (padlen > 0) {
1060 			if (M_TRAILINGSPACE(m) < padlen) {
1061 				m = m_defrag(*m_head, M_NOWAIT);
1062 				if (m == NULL) {
1063 					m_freem(*m_head);
1064 					*m_head = NULL;
1065 					return (NULL);
1066 				}
1067 				*m_head = m;
1068 			}
1069 			/* Zero out the bytes in the pad area. */
1070 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1071 			m->m_pkthdr.len += padlen;
1072 			m->m_len = m->m_pkthdr.len;
1073 		}
1074 	}
1075 
1076 	error = bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_tx_tag,
1077 	    txd->tx_dmamap, m, txsegs, &nsegs, 0);
1078 	if (error != 0) {
1079 		txd->tx_flags &= ~VTE_TXMBUF;
1080 		return (NULL);
1081 	}
1082 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1083 	bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1084 	    BUS_DMASYNC_PREWRITE);
1085 
1086 	txd->tx_desc->dtlen = htole16(VTE_TX_LEN(txsegs[0].ds_len));
1087 	txd->tx_desc->dtbp = htole32(txsegs[0].ds_addr);
1088 	sc->vte_cdata.vte_tx_cnt++;
1089 	/* Update producer index. */
1090 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
1091 
1092 	/* Finally hand over ownership to controller. */
1093 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
1094 	txd->tx_m = m;
1095 
1096 	return (txd);
1097 }
1098 
1099 static void
1100 vte_start(struct ifnet *ifp)
1101 {
1102 	struct vte_softc *sc;
1103 
1104 	sc = ifp->if_softc;
1105 	VTE_LOCK(sc);
1106 	vte_start_locked(sc);
1107 	VTE_UNLOCK(sc);
1108 }
1109 
1110 static void
1111 vte_start_locked(struct vte_softc *sc)
1112 {
1113 	struct ifnet *ifp;
1114 	struct vte_txdesc *txd;
1115 	struct mbuf *m_head;
1116 	int enq;
1117 
1118 	ifp = sc->vte_ifp;
1119 
1120 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1121 	    IFF_DRV_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
1122 		return;
1123 
1124 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1125 		/* Reserve one free TX descriptor. */
1126 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
1127 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1128 			break;
1129 		}
1130 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1131 		if (m_head == NULL)
1132 			break;
1133 		/*
1134 		 * Pack the data into the transmit ring. If we
1135 		 * don't have room, set the OACTIVE flag and wait
1136 		 * for the NIC to drain the ring.
1137 		 */
1138 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
1139 			if (m_head != NULL)
1140 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1141 			break;
1142 		}
1143 
1144 		enq++;
1145 		/*
1146 		 * If there's a BPF listener, bounce a copy of this frame
1147 		 * to him.
1148 		 */
1149 		ETHER_BPF_MTAP(ifp, m_head);
1150 		/* Free consumed TX frame. */
1151 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
1152 			m_freem(m_head);
1153 	}
1154 
1155 	if (enq > 0) {
1156 		bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1157 		    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1158 		    BUS_DMASYNC_PREWRITE);
1159 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
1160 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
1161 	}
1162 }
1163 
1164 static void
1165 vte_watchdog(struct vte_softc *sc)
1166 {
1167 	struct ifnet *ifp;
1168 
1169 	VTE_LOCK_ASSERT(sc);
1170 
1171 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
1172 		return;
1173 
1174 	ifp = sc->vte_ifp;
1175 	if_printf(sc->vte_ifp, "watchdog timeout -- resetting\n");
1176 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1177 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1178 	vte_init_locked(sc);
1179 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1180 		vte_start_locked(sc);
1181 }
1182 
1183 static int
1184 vte_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1185 {
1186 	struct vte_softc *sc;
1187 	struct ifreq *ifr;
1188 	struct mii_data *mii;
1189 	int error;
1190 
1191 	sc = ifp->if_softc;
1192 	ifr = (struct ifreq *)data;
1193 	error = 0;
1194 	switch (cmd) {
1195 	case SIOCSIFFLAGS:
1196 		VTE_LOCK(sc);
1197 		if ((ifp->if_flags & IFF_UP) != 0) {
1198 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1199 			    ((ifp->if_flags ^ sc->vte_if_flags) &
1200 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1201 				vte_rxfilter(sc);
1202 			else
1203 				vte_init_locked(sc);
1204 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1205 			vte_stop(sc);
1206 		sc->vte_if_flags = ifp->if_flags;
1207 		VTE_UNLOCK(sc);
1208 		break;
1209 	case SIOCADDMULTI:
1210 	case SIOCDELMULTI:
1211 		VTE_LOCK(sc);
1212 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1213 			vte_rxfilter(sc);
1214 		VTE_UNLOCK(sc);
1215 		break;
1216 	case SIOCSIFMEDIA:
1217 	case SIOCGIFMEDIA:
1218 		mii = device_get_softc(sc->vte_miibus);
1219 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1220 		break;
1221 	default:
1222 		error = ether_ioctl(ifp, cmd, data);
1223 		break;
1224 	}
1225 
1226 	return (error);
1227 }
1228 
1229 static void
1230 vte_mac_config(struct vte_softc *sc)
1231 {
1232 	struct mii_data *mii;
1233 	uint16_t mcr;
1234 
1235 	VTE_LOCK_ASSERT(sc);
1236 
1237 	mii = device_get_softc(sc->vte_miibus);
1238 	mcr = CSR_READ_2(sc, VTE_MCR0);
1239 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
1240 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1241 		mcr |= MCR0_FULL_DUPLEX;
1242 #ifdef notyet
1243 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1244 			mcr |= MCR0_FC_ENB;
1245 		/*
1246 		 * The data sheet is not clear whether the controller
1247 		 * honors received pause frames or not.  The is no
1248 		 * separate control bit for RX pause frame so just
1249 		 * enable MCR0_FC_ENB bit.
1250 		 */
1251 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1252 			mcr |= MCR0_FC_ENB;
1253 #endif
1254 	}
1255 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1256 }
1257 
1258 static void
1259 vte_stats_clear(struct vte_softc *sc)
1260 {
1261 
1262 	/* Reading counter registers clears its contents. */
1263 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
1264 	CSR_READ_2(sc, VTE_CNT_MECNT0);
1265 	CSR_READ_2(sc, VTE_CNT_MECNT1);
1266 	CSR_READ_2(sc, VTE_CNT_MECNT2);
1267 	CSR_READ_2(sc, VTE_CNT_MECNT3);
1268 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
1269 	CSR_READ_2(sc, VTE_CNT_MECNT4);
1270 	CSR_READ_2(sc, VTE_CNT_PAUSE);
1271 }
1272 
1273 static void
1274 vte_stats_update(struct vte_softc *sc)
1275 {
1276 	struct vte_hw_stats *stat;
1277 	uint16_t value;
1278 
1279 	VTE_LOCK_ASSERT(sc);
1280 
1281 	stat = &sc->vte_stats;
1282 
1283 	CSR_READ_2(sc, VTE_MECISR);
1284 	/* RX stats. */
1285 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
1286 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
1287 	stat->rx_bcast_frames += (value >> 8);
1288 	stat->rx_mcast_frames += (value & 0xFF);
1289 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
1290 	stat->rx_runts += (value >> 8);
1291 	stat->rx_crcerrs += (value & 0xFF);
1292 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
1293 	stat->rx_long_frames += (value & 0xFF);
1294 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
1295 	stat->rx_fifo_full += (value >> 8);
1296 	stat->rx_desc_unavail += (value & 0xFF);
1297 
1298 	/* TX stats. */
1299 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
1300 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
1301 	stat->tx_underruns += (value >> 8);
1302 	stat->tx_late_colls += (value & 0xFF);
1303 
1304 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
1305 	stat->tx_pause_frames += (value >> 8);
1306 	stat->rx_pause_frames += (value & 0xFF);
1307 }
1308 
1309 static uint64_t
1310 vte_get_counter(struct ifnet *ifp, ift_counter cnt)
1311 {
1312 	struct vte_softc *sc;
1313 	struct vte_hw_stats *stat;
1314 
1315 	sc = if_getsoftc(ifp);
1316 	stat = &sc->vte_stats;
1317 
1318 	switch (cnt) {
1319 	case IFCOUNTER_OPACKETS:
1320 		return (stat->tx_frames);
1321 	case IFCOUNTER_COLLISIONS:
1322 		return (stat->tx_late_colls);
1323 	case IFCOUNTER_OERRORS:
1324 		return (stat->tx_late_colls + stat->tx_underruns);
1325 	case IFCOUNTER_IPACKETS:
1326 		return (stat->rx_frames);
1327 	case IFCOUNTER_IERRORS:
1328 		return (stat->rx_crcerrs + stat->rx_runts +
1329 		    stat->rx_long_frames + stat->rx_fifo_full);
1330 	default:
1331 		return (if_get_counter_default(ifp, cnt));
1332 	}
1333 }
1334 
1335 static void
1336 vte_intr(void *arg)
1337 {
1338 	struct vte_softc *sc;
1339 	struct ifnet *ifp;
1340 	uint16_t status;
1341 	int n;
1342 
1343 	sc = (struct vte_softc *)arg;
1344 	VTE_LOCK(sc);
1345 
1346 	ifp = sc->vte_ifp;
1347 	/* Reading VTE_MISR acknowledges interrupts. */
1348 	status = CSR_READ_2(sc, VTE_MISR);
1349 	if ((status & VTE_INTRS) == 0) {
1350 		/* Not ours. */
1351 		VTE_UNLOCK(sc);
1352 		return;
1353 	}
1354 
1355 	/* Disable interrupts. */
1356 	CSR_WRITE_2(sc, VTE_MIER, 0);
1357 	for (n = 8; (status & VTE_INTRS) != 0;) {
1358 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1359 			break;
1360 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
1361 		    MISR_RX_FIFO_FULL)) != 0)
1362 			vte_rxeof(sc);
1363 		if ((status & MISR_TX_DONE) != 0)
1364 			vte_txeof(sc);
1365 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
1366 			vte_stats_update(sc);
1367 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1368 			vte_start_locked(sc);
1369 		if (--n > 0)
1370 			status = CSR_READ_2(sc, VTE_MISR);
1371 		else
1372 			break;
1373 	}
1374 
1375 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1376 		/* Re-enable interrupts. */
1377 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1378 	}
1379 	VTE_UNLOCK(sc);
1380 }
1381 
1382 static void
1383 vte_txeof(struct vte_softc *sc)
1384 {
1385 	struct ifnet *ifp;
1386 	struct vte_txdesc *txd;
1387 	uint16_t status;
1388 	int cons, prog;
1389 
1390 	VTE_LOCK_ASSERT(sc);
1391 
1392 	ifp = sc->vte_ifp;
1393 
1394 	if (sc->vte_cdata.vte_tx_cnt == 0)
1395 		return;
1396 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1397 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_POSTREAD |
1398 	    BUS_DMASYNC_POSTWRITE);
1399 	cons = sc->vte_cdata.vte_tx_cons;
1400 	/*
1401 	 * Go through our TX list and free mbufs for those
1402 	 * frames which have been transmitted.
1403 	 */
1404 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1405 		txd = &sc->vte_cdata.vte_txdesc[cons];
1406 		status = le16toh(txd->tx_desc->dtst);
1407 		if ((status & VTE_DTST_TX_OWN) != 0)
1408 			break;
1409 		sc->vte_cdata.vte_tx_cnt--;
1410 		/* Reclaim transmitted mbufs. */
1411 		bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1412 		    BUS_DMASYNC_POSTWRITE);
1413 		bus_dmamap_unload(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap);
1414 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1415 			m_freem(txd->tx_m);
1416 		txd->tx_flags &= ~VTE_TXMBUF;
1417 		txd->tx_m = NULL;
1418 		prog++;
1419 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1420 	}
1421 
1422 	if (prog > 0) {
1423 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1424 		sc->vte_cdata.vte_tx_cons = cons;
1425 		/*
1426 		 * Unarm watchdog timer only when there is no pending
1427 		 * frames in TX queue.
1428 		 */
1429 		if (sc->vte_cdata.vte_tx_cnt == 0)
1430 			sc->vte_watchdog_timer = 0;
1431 	}
1432 }
1433 
1434 static int
1435 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1436 {
1437 	struct mbuf *m;
1438 	bus_dma_segment_t segs[1];
1439 	bus_dmamap_t map;
1440 	int nsegs;
1441 
1442 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1443 	if (m == NULL)
1444 		return (ENOBUFS);
1445 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1446 	m_adj(m, sizeof(uint32_t));
1447 
1448 	if (bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_rx_tag,
1449 	    sc->vte_cdata.vte_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1450 		m_freem(m);
1451 		return (ENOBUFS);
1452 	}
1453 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1454 
1455 	if (rxd->rx_m != NULL) {
1456 		bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1457 		    BUS_DMASYNC_POSTREAD);
1458 		bus_dmamap_unload(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap);
1459 	}
1460 	map = rxd->rx_dmamap;
1461 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1462 	sc->vte_cdata.vte_rx_sparemap = map;
1463 	bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1464 	    BUS_DMASYNC_PREREAD);
1465 	rxd->rx_m = m;
1466 	rxd->rx_desc->drbp = htole32(segs[0].ds_addr);
1467 	rxd->rx_desc->drlen = htole16(VTE_RX_LEN(segs[0].ds_len));
1468 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1469 
1470 	return (0);
1471 }
1472 
1473 /*
1474  * It's not supposed to see this controller on strict-alignment
1475  * architectures but make it work for completeness.
1476  */
1477 #ifndef __NO_STRICT_ALIGNMENT
1478 static struct mbuf *
1479 vte_fixup_rx(struct ifnet *ifp, struct mbuf *m)
1480 {
1481         uint16_t *src, *dst;
1482         int i;
1483 
1484 	src = mtod(m, uint16_t *);
1485 	dst = src - 1;
1486 
1487 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1488 		*dst++ = *src++;
1489 	m->m_data -= ETHER_ALIGN;
1490 	return (m);
1491 }
1492 #endif
1493 
1494 static void
1495 vte_rxeof(struct vte_softc *sc)
1496 {
1497 	struct ifnet *ifp;
1498 	struct vte_rxdesc *rxd;
1499 	struct mbuf *m;
1500 	uint16_t status, total_len;
1501 	int cons, prog;
1502 
1503 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1504 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_POSTREAD |
1505 	    BUS_DMASYNC_POSTWRITE);
1506 	cons = sc->vte_cdata.vte_rx_cons;
1507 	ifp = sc->vte_ifp;
1508 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; prog++,
1509 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1510 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1511 		status = le16toh(rxd->rx_desc->drst);
1512 		if ((status & VTE_DRST_RX_OWN) != 0)
1513 			break;
1514 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1515 		m = rxd->rx_m;
1516 		if ((status & VTE_DRST_RX_OK) == 0) {
1517 			/* Discard errored frame. */
1518 			rxd->rx_desc->drlen =
1519 			    htole16(MCLBYTES - sizeof(uint32_t));
1520 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1521 			continue;
1522 		}
1523 		if (vte_newbuf(sc, rxd) != 0) {
1524 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1525 			rxd->rx_desc->drlen =
1526 			    htole16(MCLBYTES - sizeof(uint32_t));
1527 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1528 			continue;
1529 		}
1530 
1531 		/*
1532 		 * It seems there is no way to strip FCS bytes.
1533 		 */
1534 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1535 		m->m_pkthdr.rcvif = ifp;
1536 #ifndef __NO_STRICT_ALIGNMENT
1537 		vte_fixup_rx(ifp, m);
1538 #endif
1539 		VTE_UNLOCK(sc);
1540 		(*ifp->if_input)(ifp, m);
1541 		VTE_LOCK(sc);
1542 	}
1543 
1544 	if (prog > 0) {
1545 		/* Update the consumer index. */
1546 		sc->vte_cdata.vte_rx_cons = cons;
1547 		/*
1548 		 * Sync updated RX descriptors such that controller see
1549 		 * modified RX buffer addresses.
1550 		 */
1551 		bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1552 		    sc->vte_cdata.vte_rx_ring_map,
1553 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1554 #ifdef notyet
1555 		/*
1556 		 * Update residue counter.  Controller does not
1557 		 * keep track of number of available RX descriptors
1558 		 * such that driver should have to update VTE_MRDCR
1559 		 * to make controller know how many free RX
1560 		 * descriptors were added to controller.  This is
1561 		 * a similar mechanism used in VIA velocity
1562 		 * controllers and it indicates controller just
1563 		 * polls OWN bit of current RX descriptor pointer.
1564 		 * A couple of severe issues were seen on sample
1565 		 * board where the controller continuously emits TX
1566 		 * pause frames once RX pause threshold crossed.
1567 		 * Once triggered it never recovered form that
1568 		 * state, I couldn't find a way to make it back to
1569 		 * work at least.  This issue effectively
1570 		 * disconnected the system from network.  Also, the
1571 		 * controller used 00:00:00:00:00:00 as source
1572 		 * station address of TX pause frame. Probably this
1573 		 * is one of reason why vendor recommends not to
1574 		 * enable flow control on R6040 controller.
1575 		 */
1576 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1577 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1578 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1579 #endif
1580 	}
1581 }
1582 
1583 static void
1584 vte_tick(void *arg)
1585 {
1586 	struct vte_softc *sc;
1587 	struct mii_data *mii;
1588 
1589 	sc = (struct vte_softc *)arg;
1590 
1591 	VTE_LOCK_ASSERT(sc);
1592 
1593 	mii = device_get_softc(sc->vte_miibus);
1594 	mii_tick(mii);
1595 	vte_stats_update(sc);
1596 	vte_txeof(sc);
1597 	vte_watchdog(sc);
1598 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1599 }
1600 
1601 static void
1602 vte_reset(struct vte_softc *sc)
1603 {
1604 	uint16_t mcr;
1605 	int i;
1606 
1607 	mcr = CSR_READ_2(sc, VTE_MCR1);
1608 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1609 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1610 		DELAY(10);
1611 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1612 			break;
1613 	}
1614 	if (i == 0)
1615 		device_printf(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1616 	/*
1617 	 * Follow the guide of vendor recommended way to reset MAC.
1618 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1619 	 * not reliable so manually reset internal state machine.
1620 	 */
1621 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1622 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1623 	DELAY(5000);
1624 }
1625 
1626 static void
1627 vte_init(void *xsc)
1628 {
1629 	struct vte_softc *sc;
1630 
1631 	sc = (struct vte_softc *)xsc;
1632 	VTE_LOCK(sc);
1633 	vte_init_locked(sc);
1634 	VTE_UNLOCK(sc);
1635 }
1636 
1637 static void
1638 vte_init_locked(struct vte_softc *sc)
1639 {
1640 	struct ifnet *ifp;
1641 	bus_addr_t paddr;
1642 	uint8_t *eaddr;
1643 
1644 	VTE_LOCK_ASSERT(sc);
1645 
1646 	ifp = sc->vte_ifp;
1647 
1648 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1649 		return;
1650 	/*
1651 	 * Cancel any pending I/O.
1652 	 */
1653 	vte_stop(sc);
1654 	/*
1655 	 * Reset the chip to a known state.
1656 	 */
1657 	vte_reset(sc);
1658 
1659 	/* Initialize RX descriptors. */
1660 	if (vte_init_rx_ring(sc) != 0) {
1661 		device_printf(sc->vte_dev, "no memory for RX buffers.\n");
1662 		vte_stop(sc);
1663 		return;
1664 	}
1665 	if (vte_init_tx_ring(sc) != 0) {
1666 		device_printf(sc->vte_dev, "no memory for TX buffers.\n");
1667 		vte_stop(sc);
1668 		return;
1669 	}
1670 
1671 	/*
1672 	 * Reprogram the station address.  Controller supports up
1673 	 * to 4 different station addresses so driver programs the
1674 	 * first station address as its own ethernet address and
1675 	 * configure the remaining three addresses as perfect
1676 	 * multicast addresses.
1677 	 */
1678 	eaddr = IF_LLADDR(sc->vte_ifp);
1679 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1680 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1681 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1682 
1683 	/* Set TX descriptor base addresses. */
1684 	paddr = sc->vte_cdata.vte_tx_ring_paddr;
1685 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1686 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1687 	/* Set RX descriptor base addresses. */
1688 	paddr = sc->vte_cdata.vte_rx_ring_paddr;
1689 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1690 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1691 	/*
1692 	 * Initialize RX descriptor residue counter and set RX
1693 	 * pause threshold to 20% of available RX descriptors.
1694 	 * See comments on vte_rxeof() for details on flow control
1695 	 * issues.
1696 	 */
1697 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1698 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1699 
1700 	/*
1701 	 * Always use maximum frame size that controller can
1702 	 * support.  Otherwise received frames that has longer
1703 	 * frame length than vte(4) MTU would be silently dropped
1704 	 * in controller.  This would break path-MTU discovery as
1705 	 * sender wouldn't get any responses from receiver. The
1706 	 * RX buffer size should be multiple of 4.
1707 	 * Note, jumbo frames are silently ignored by controller
1708 	 * and even MAC counters do not detect them.
1709 	 */
1710 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1711 
1712 	/* Configure FIFO. */
1713 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1714 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1715 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1716 
1717 	/*
1718 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1719 	 * control configuration is done after detecting a valid
1720 	 * link.  Note, we don't generate early interrupt here
1721 	 * as well since FreeBSD does not have interrupt latency
1722 	 * problems like Windows.
1723 	 */
1724 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1725 	/*
1726 	 * We manually keep track of PHY status changes to
1727 	 * configure resolved duplex and flow control since only
1728 	 * duplex configuration can be automatically reflected to
1729 	 * MCR0.
1730 	 */
1731 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1732 	    MCR1_EXCESS_COL_RETRY_16);
1733 
1734 	/* Initialize RX filter. */
1735 	vte_rxfilter(sc);
1736 
1737 	/* Disable TX/RX interrupt moderation control. */
1738 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1739 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1740 
1741 	/* Enable MAC event counter interrupts. */
1742 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1743 	/* Clear MAC statistics. */
1744 	vte_stats_clear(sc);
1745 
1746 	/* Acknowledge all pending interrupts and clear it. */
1747 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1748 	CSR_WRITE_2(sc, VTE_MISR, 0);
1749 
1750 	sc->vte_flags &= ~VTE_FLAG_LINK;
1751 	/* Switch to the current media. */
1752 	vte_mediachange_locked(ifp);
1753 
1754 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1755 
1756 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1757 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1758 }
1759 
1760 static void
1761 vte_stop(struct vte_softc *sc)
1762 {
1763 	struct ifnet *ifp;
1764 	struct vte_txdesc *txd;
1765 	struct vte_rxdesc *rxd;
1766 	int i;
1767 
1768 	VTE_LOCK_ASSERT(sc);
1769 	/*
1770 	 * Mark the interface down and cancel the watchdog timer.
1771 	 */
1772 	ifp = sc->vte_ifp;
1773 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1774 	sc->vte_flags &= ~VTE_FLAG_LINK;
1775 	callout_stop(&sc->vte_tick_ch);
1776 	sc->vte_watchdog_timer = 0;
1777 	vte_stats_update(sc);
1778 	/* Disable interrupts. */
1779 	CSR_WRITE_2(sc, VTE_MIER, 0);
1780 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1781 	/* Stop RX/TX MACs. */
1782 	vte_stop_mac(sc);
1783 	/* Clear interrupts. */
1784 	CSR_READ_2(sc, VTE_MISR);
1785 	/*
1786 	 * Free TX/RX mbufs still in the queues.
1787 	 */
1788 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1789 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1790 		if (rxd->rx_m != NULL) {
1791 			bus_dmamap_sync(sc->vte_cdata.vte_rx_tag,
1792 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1793 			bus_dmamap_unload(sc->vte_cdata.vte_rx_tag,
1794 			    rxd->rx_dmamap);
1795 			m_freem(rxd->rx_m);
1796 			rxd->rx_m = NULL;
1797 		}
1798 	}
1799 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1800 		txd = &sc->vte_cdata.vte_txdesc[i];
1801 		if (txd->tx_m != NULL) {
1802 			bus_dmamap_sync(sc->vte_cdata.vte_tx_tag,
1803 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1804 			bus_dmamap_unload(sc->vte_cdata.vte_tx_tag,
1805 			    txd->tx_dmamap);
1806 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1807 				m_freem(txd->tx_m);
1808 			txd->tx_m = NULL;
1809 			txd->tx_flags &= ~VTE_TXMBUF;
1810 		}
1811 	}
1812 	/* Free TX mbuf pools used for deep copy. */
1813 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1814 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1815 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1816 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1817 		}
1818 	}
1819 }
1820 
1821 static void
1822 vte_start_mac(struct vte_softc *sc)
1823 {
1824 	uint16_t mcr;
1825 	int i;
1826 
1827 	VTE_LOCK_ASSERT(sc);
1828 
1829 	/* Enable RX/TX MACs. */
1830 	mcr = CSR_READ_2(sc, VTE_MCR0);
1831 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1832 	    (MCR0_RX_ENB | MCR0_TX_ENB)) {
1833 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1834 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1835 		for (i = VTE_TIMEOUT; i > 0; i--) {
1836 			mcr = CSR_READ_2(sc, VTE_MCR0);
1837 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1838 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1839 				break;
1840 			DELAY(10);
1841 		}
1842 		if (i == 0)
1843 			device_printf(sc->vte_dev,
1844 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1845 	}
1846 }
1847 
1848 static void
1849 vte_stop_mac(struct vte_softc *sc)
1850 {
1851 	uint16_t mcr;
1852 	int i;
1853 
1854 	VTE_LOCK_ASSERT(sc);
1855 
1856 	/* Disable RX/TX MACs. */
1857 	mcr = CSR_READ_2(sc, VTE_MCR0);
1858 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1859 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1860 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1861 		for (i = VTE_TIMEOUT; i > 0; i--) {
1862 			mcr = CSR_READ_2(sc, VTE_MCR0);
1863 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1864 				break;
1865 			DELAY(10);
1866 		}
1867 		if (i == 0)
1868 			device_printf(sc->vte_dev,
1869 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1870 	}
1871 }
1872 
1873 static int
1874 vte_init_tx_ring(struct vte_softc *sc)
1875 {
1876 	struct vte_tx_desc *desc;
1877 	struct vte_txdesc *txd;
1878 	bus_addr_t addr;
1879 	int i;
1880 
1881 	VTE_LOCK_ASSERT(sc);
1882 
1883 	sc->vte_cdata.vte_tx_prod = 0;
1884 	sc->vte_cdata.vte_tx_cons = 0;
1885 	sc->vte_cdata.vte_tx_cnt = 0;
1886 
1887 	/* Pre-allocate TX mbufs for deep copy. */
1888 	if (tx_deep_copy != 0) {
1889 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
1890 			sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_NOWAIT,
1891 			    MT_DATA, M_PKTHDR);
1892 			if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1893 				return (ENOBUFS);
1894 			sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1895 			sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1896 		}
1897 	}
1898 	desc = sc->vte_cdata.vte_tx_ring;
1899 	bzero(desc, VTE_TX_RING_SZ);
1900 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1901 		txd = &sc->vte_cdata.vte_txdesc[i];
1902 		txd->tx_m = NULL;
1903 		if (i != VTE_TX_RING_CNT - 1)
1904 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1905 			    sizeof(struct vte_tx_desc) * (i + 1);
1906 		else
1907 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1908 			    sizeof(struct vte_tx_desc) * 0;
1909 		desc = &sc->vte_cdata.vte_tx_ring[i];
1910 		desc->dtnp = htole32(addr);
1911 		txd->tx_desc = desc;
1912 	}
1913 
1914 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1915 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1916 	    BUS_DMASYNC_PREWRITE);
1917 	return (0);
1918 }
1919 
1920 static int
1921 vte_init_rx_ring(struct vte_softc *sc)
1922 {
1923 	struct vte_rx_desc *desc;
1924 	struct vte_rxdesc *rxd;
1925 	bus_addr_t addr;
1926 	int i;
1927 
1928 	VTE_LOCK_ASSERT(sc);
1929 
1930 	sc->vte_cdata.vte_rx_cons = 0;
1931 	desc = sc->vte_cdata.vte_rx_ring;
1932 	bzero(desc, VTE_RX_RING_SZ);
1933 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1934 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1935 		rxd->rx_m = NULL;
1936 		if (i != VTE_RX_RING_CNT - 1)
1937 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1938 			    sizeof(struct vte_rx_desc) * (i + 1);
1939 		else
1940 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1941 			    sizeof(struct vte_rx_desc) * 0;
1942 		desc = &sc->vte_cdata.vte_rx_ring[i];
1943 		desc->drnp = htole32(addr);
1944 		rxd->rx_desc = desc;
1945 		if (vte_newbuf(sc, rxd) != 0)
1946 			return (ENOBUFS);
1947 	}
1948 
1949 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1950 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_PREREAD |
1951 	    BUS_DMASYNC_PREWRITE);
1952 
1953 	return (0);
1954 }
1955 
1956 static void
1957 vte_rxfilter(struct vte_softc *sc)
1958 {
1959 	struct ifnet *ifp;
1960 	struct ifmultiaddr *ifma;
1961 	uint8_t *eaddr;
1962 	uint32_t crc;
1963 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1964 	uint16_t mchash[4], mcr;
1965 	int i, nperf;
1966 
1967 	VTE_LOCK_ASSERT(sc);
1968 
1969 	ifp = sc->vte_ifp;
1970 
1971 	bzero(mchash, sizeof(mchash));
1972 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1973 		rxfilt_perf[i][0] = 0xFFFF;
1974 		rxfilt_perf[i][1] = 0xFFFF;
1975 		rxfilt_perf[i][2] = 0xFFFF;
1976 	}
1977 
1978 	mcr = CSR_READ_2(sc, VTE_MCR0);
1979 	mcr &= ~(MCR0_PROMISC | MCR0_MULTICAST);
1980 	mcr |= MCR0_BROADCAST_DIS;
1981 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1982 		mcr &= ~MCR0_BROADCAST_DIS;
1983 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1984 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1985 			mcr |= MCR0_PROMISC;
1986 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1987 			mcr |= MCR0_MULTICAST;
1988 		mchash[0] = 0xFFFF;
1989 		mchash[1] = 0xFFFF;
1990 		mchash[2] = 0xFFFF;
1991 		mchash[3] = 0xFFFF;
1992 		goto chipit;
1993 	}
1994 
1995 	nperf = 0;
1996 	if_maddr_rlock(ifp);
1997 	TAILQ_FOREACH(ifma, &sc->vte_ifp->if_multiaddrs, ifma_link) {
1998 		if (ifma->ifma_addr->sa_family != AF_LINK)
1999 			continue;
2000 		/*
2001 		 * Program the first 3 multicast groups into
2002 		 * the perfect filter.  For all others, use the
2003 		 * hash table.
2004 		 */
2005 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
2006 			eaddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
2007 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
2008 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
2009 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
2010 			nperf++;
2011 			continue;
2012 		}
2013 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2014 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2015 		mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
2016 	}
2017 	if_maddr_runlock(ifp);
2018 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
2019 	    mchash[3] != 0)
2020 		mcr |= MCR0_MULTICAST;
2021 
2022 chipit:
2023 	/* Program multicast hash table. */
2024 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
2025 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
2026 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
2027 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
2028 	/* Program perfect filter table. */
2029 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2030 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
2031 		    rxfilt_perf[i][0]);
2032 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
2033 		    rxfilt_perf[i][1]);
2034 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
2035 		    rxfilt_perf[i][2]);
2036 	}
2037 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
2038 	CSR_READ_2(sc, VTE_MCR0);
2039 }
2040 
2041 static int
2042 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2043 {
2044 	int error, value;
2045 
2046 	if (arg1 == NULL)
2047 		return (EINVAL);
2048 	value = *(int *)arg1;
2049 	error = sysctl_handle_int(oidp, &value, 0, req);
2050 	if (error || req->newptr == NULL)
2051 		return (error);
2052 	if (value < low || value > high)
2053 		return (EINVAL);
2054 	*(int *)arg1 = value;
2055 
2056 	return (0);
2057 }
2058 
2059 static int
2060 sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS)
2061 {
2062 
2063 	return (sysctl_int_range(oidp, arg1, arg2, req,
2064 	    VTE_IM_BUNDLE_MIN, VTE_IM_BUNDLE_MAX));
2065 }
2066