xref: /freebsd/sys/dev/vte/if_vte.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/mutex.h>
43 #include <sys/rman.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 
61 #include <dev/mii/mii.h>
62 #include <dev/mii/miivar.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <machine/bus.h>
68 
69 #include <dev/vte/if_vtereg.h>
70 #include <dev/vte/if_vtevar.h>
71 
72 /* "device miibus" required.  See GENERIC if you get errors here. */
73 #include "miibus_if.h"
74 
75 MODULE_DEPEND(vte, pci, 1, 1, 1);
76 MODULE_DEPEND(vte, ether, 1, 1, 1);
77 MODULE_DEPEND(vte, miibus, 1, 1, 1);
78 
79 /* Tunables. */
80 static int tx_deep_copy = 1;
81 TUNABLE_INT("hw.vte.tx_deep_copy", &tx_deep_copy);
82 
83 /*
84  * Devices supported by this driver.
85  */
86 static const struct vte_ident vte_ident_table[] = {
87 	{ VENDORID_RDC, DEVICEID_RDC_R6040, "RDC R6040 FastEthernet"},
88 	{ 0, 0, NULL}
89 };
90 
91 static int	vte_attach(device_t);
92 static int	vte_detach(device_t);
93 static int	vte_dma_alloc(struct vte_softc *);
94 static void	vte_dma_free(struct vte_softc *);
95 static void	vte_dmamap_cb(void *, bus_dma_segment_t *, int, int);
96 static struct vte_txdesc *
97 		vte_encap(struct vte_softc *, struct mbuf **);
98 static const struct vte_ident *
99 		vte_find_ident(device_t);
100 #ifndef __NO_STRICT_ALIGNMENT
101 static struct mbuf *
102 		vte_fixup_rx(struct ifnet *, struct mbuf *);
103 #endif
104 static void	vte_get_macaddr(struct vte_softc *);
105 static void	vte_init(void *);
106 static void	vte_init_locked(struct vte_softc *);
107 static int	vte_init_rx_ring(struct vte_softc *);
108 static int	vte_init_tx_ring(struct vte_softc *);
109 static void	vte_intr(void *);
110 static int	vte_ioctl(struct ifnet *, u_long, caddr_t);
111 static void	vte_mac_config(struct vte_softc *);
112 static int	vte_miibus_readreg(device_t, int, int);
113 static void	vte_miibus_statchg(device_t);
114 static int	vte_miibus_writereg(device_t, int, int, int);
115 static int	vte_mediachange(struct ifnet *);
116 static int	vte_mediachange_locked(struct ifnet *);
117 static void	vte_mediastatus(struct ifnet *, struct ifmediareq *);
118 static int	vte_newbuf(struct vte_softc *, struct vte_rxdesc *);
119 static int	vte_probe(device_t);
120 static void	vte_reset(struct vte_softc *);
121 static int	vte_resume(device_t);
122 static void	vte_rxeof(struct vte_softc *);
123 static void	vte_rxfilter(struct vte_softc *);
124 static int	vte_shutdown(device_t);
125 static void	vte_start(struct ifnet *);
126 static void	vte_start_locked(struct vte_softc *);
127 static void	vte_start_mac(struct vte_softc *);
128 static void	vte_stats_clear(struct vte_softc *);
129 static void	vte_stats_update(struct vte_softc *);
130 static void	vte_stop(struct vte_softc *);
131 static void	vte_stop_mac(struct vte_softc *);
132 static int	vte_suspend(device_t);
133 static void	vte_sysctl_node(struct vte_softc *);
134 static void	vte_tick(void *);
135 static void	vte_txeof(struct vte_softc *);
136 static void	vte_watchdog(struct vte_softc *);
137 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
138 static int	sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS);
139 
140 static device_method_t vte_methods[] = {
141 	/* Device interface. */
142 	DEVMETHOD(device_probe,		vte_probe),
143 	DEVMETHOD(device_attach,	vte_attach),
144 	DEVMETHOD(device_detach,	vte_detach),
145 	DEVMETHOD(device_shutdown,	vte_shutdown),
146 	DEVMETHOD(device_suspend,	vte_suspend),
147 	DEVMETHOD(device_resume,	vte_resume),
148 
149 	/* MII interface. */
150 	DEVMETHOD(miibus_readreg,	vte_miibus_readreg),
151 	DEVMETHOD(miibus_writereg,	vte_miibus_writereg),
152 	DEVMETHOD(miibus_statchg,	vte_miibus_statchg),
153 
154 	KOBJMETHOD_END
155 };
156 
157 static driver_t vte_driver = {
158 	"vte",
159 	vte_methods,
160 	sizeof(struct vte_softc)
161 };
162 
163 static devclass_t vte_devclass;
164 
165 DRIVER_MODULE(vte, pci, vte_driver, vte_devclass, 0, 0);
166 DRIVER_MODULE(miibus, vte, miibus_driver, miibus_devclass, 0, 0);
167 
168 static int
169 vte_miibus_readreg(device_t dev, int phy, int reg)
170 {
171 	struct vte_softc *sc;
172 	int i;
173 
174 	sc = device_get_softc(dev);
175 
176 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ |
177 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
178 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
179 		DELAY(5);
180 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0)
181 			break;
182 	}
183 
184 	if (i == 0) {
185 		device_printf(sc->vte_dev, "phy read timeout : %d\n", reg);
186 		return (0);
187 	}
188 
189 	return (CSR_READ_2(sc, VTE_MMRD));
190 }
191 
192 static int
193 vte_miibus_writereg(device_t dev, int phy, int reg, int val)
194 {
195 	struct vte_softc *sc;
196 	int i;
197 
198 	sc = device_get_softc(dev);
199 
200 	CSR_WRITE_2(sc, VTE_MMWD, val);
201 	CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE |
202 	    (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT));
203 	for (i = VTE_PHY_TIMEOUT; i > 0; i--) {
204 		DELAY(5);
205 		if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0)
206 			break;
207 	}
208 
209 	if (i == 0)
210 		device_printf(sc->vte_dev, "phy write timeout : %d\n", reg);
211 
212 	return (0);
213 }
214 
215 static void
216 vte_miibus_statchg(device_t dev)
217 {
218 	struct vte_softc *sc;
219 	struct mii_data *mii;
220 	struct ifnet *ifp;
221 	uint16_t val;
222 
223 	sc = device_get_softc(dev);
224 
225 	mii = device_get_softc(sc->vte_miibus);
226 	ifp = sc->vte_ifp;
227 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
228 		return;
229 
230 	sc->vte_flags &= ~VTE_FLAG_LINK;
231 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
232 	    (IFM_ACTIVE | IFM_AVALID)) {
233 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
234 		case IFM_10_T:
235 		case IFM_100_TX:
236 			sc->vte_flags |= VTE_FLAG_LINK;
237 			break;
238 		default:
239 			break;
240 		}
241 	}
242 
243 	/* Stop RX/TX MACs. */
244 	vte_stop_mac(sc);
245 	/* Program MACs with resolved duplex and flow control. */
246 	if ((sc->vte_flags & VTE_FLAG_LINK) != 0) {
247 		/*
248 		 * Timer waiting time : (63 + TIMER * 64) MII clock.
249 		 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps).
250 		 */
251 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
252 			val = 18 << VTE_IM_TIMER_SHIFT;
253 		else
254 			val = 1 << VTE_IM_TIMER_SHIFT;
255 		val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT;
256 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
257 		CSR_WRITE_2(sc, VTE_MRICR, val);
258 
259 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
260 			val = 18 << VTE_IM_TIMER_SHIFT;
261 		else
262 			val = 1 << VTE_IM_TIMER_SHIFT;
263 		val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT;
264 		/* 48.6us for 100Mbps, 50.8us for 10Mbps */
265 		CSR_WRITE_2(sc, VTE_MTICR, val);
266 
267 		vte_mac_config(sc);
268 		vte_start_mac(sc);
269 	}
270 }
271 
272 static void
273 vte_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
274 {
275 	struct vte_softc *sc;
276 	struct mii_data *mii;
277 
278 	sc = ifp->if_softc;
279 	VTE_LOCK(sc);
280 	if ((ifp->if_flags & IFF_UP) == 0) {
281 		VTE_UNLOCK(sc);
282 		return;
283 	}
284 	mii = device_get_softc(sc->vte_miibus);
285 
286 	mii_pollstat(mii);
287 	VTE_UNLOCK(sc);
288 	ifmr->ifm_status = mii->mii_media_status;
289 	ifmr->ifm_active = mii->mii_media_active;
290 }
291 
292 static int
293 vte_mediachange(struct ifnet *ifp)
294 {
295 	struct vte_softc *sc;
296 	int error;
297 
298 	sc = ifp->if_softc;
299 	VTE_LOCK(sc);
300 	error = vte_mediachange_locked(ifp);
301 	VTE_UNLOCK(sc);
302 	return (error);
303 }
304 
305 static int
306 vte_mediachange_locked(struct ifnet *ifp)
307 {
308 	struct vte_softc *sc;
309 	struct mii_data *mii;
310 	struct mii_softc *miisc;
311 	int error;
312 
313 	sc = ifp->if_softc;
314 	mii = device_get_softc(sc->vte_miibus);
315 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
316 		PHY_RESET(miisc);
317 	error = mii_mediachg(mii);
318 
319 	return (error);
320 }
321 
322 static const struct vte_ident *
323 vte_find_ident(device_t dev)
324 {
325 	const struct vte_ident *ident;
326 	uint16_t vendor, devid;
327 
328 	vendor = pci_get_vendor(dev);
329 	devid = pci_get_device(dev);
330 	for (ident = vte_ident_table; ident->name != NULL; ident++) {
331 		if (vendor == ident->vendorid && devid == ident->deviceid)
332 			return (ident);
333 	}
334 
335 	return (NULL);
336 }
337 
338 static int
339 vte_probe(device_t dev)
340 {
341 	const struct vte_ident *ident;
342 
343 	ident = vte_find_ident(dev);
344 	if (ident != NULL) {
345 		device_set_desc(dev, ident->name);
346 		return (BUS_PROBE_DEFAULT);
347 	}
348 
349 	return (ENXIO);
350 }
351 
352 static void
353 vte_get_macaddr(struct vte_softc *sc)
354 {
355 	uint16_t mid;
356 
357 	/*
358 	 * It seems there is no way to reload station address and
359 	 * it is supposed to be set by BIOS.
360 	 */
361 	mid = CSR_READ_2(sc, VTE_MID0L);
362 	sc->vte_eaddr[0] = (mid >> 0) & 0xFF;
363 	sc->vte_eaddr[1] = (mid >> 8) & 0xFF;
364 	mid = CSR_READ_2(sc, VTE_MID0M);
365 	sc->vte_eaddr[2] = (mid >> 0) & 0xFF;
366 	sc->vte_eaddr[3] = (mid >> 8) & 0xFF;
367 	mid = CSR_READ_2(sc, VTE_MID0H);
368 	sc->vte_eaddr[4] = (mid >> 0) & 0xFF;
369 	sc->vte_eaddr[5] = (mid >> 8) & 0xFF;
370 }
371 
372 static int
373 vte_attach(device_t dev)
374 {
375 	struct vte_softc *sc;
376 	struct ifnet *ifp;
377 	uint16_t macid;
378 	int error, rid;
379 
380 	error = 0;
381 	sc = device_get_softc(dev);
382 	sc->vte_dev = dev;
383 
384 	mtx_init(&sc->vte_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
385 	    MTX_DEF);
386 	callout_init_mtx(&sc->vte_tick_ch, &sc->vte_mtx, 0);
387 	sc->vte_ident = vte_find_ident(dev);
388 
389 	/* Map the device. */
390 	pci_enable_busmaster(dev);
391 	sc->vte_res_id = PCIR_BAR(1);
392 	sc->vte_res_type = SYS_RES_MEMORY;
393 	sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
394 	    &sc->vte_res_id, RF_ACTIVE);
395 	if (sc->vte_res == NULL) {
396 		sc->vte_res_id = PCIR_BAR(0);
397 		sc->vte_res_type = SYS_RES_IOPORT;
398 		sc->vte_res = bus_alloc_resource_any(dev, sc->vte_res_type,
399 		    &sc->vte_res_id, RF_ACTIVE);
400 		if (sc->vte_res == NULL) {
401 			device_printf(dev, "cannot map memory/ports.\n");
402 			mtx_destroy(&sc->vte_mtx);
403 			return (ENXIO);
404 		}
405 	}
406 	if (bootverbose) {
407 		device_printf(dev, "using %s space register mapping\n",
408 		    sc->vte_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
409 		device_printf(dev, "MAC Identifier : 0x%04x\n",
410 		    CSR_READ_2(sc, VTE_MACID));
411 		macid = CSR_READ_2(sc, VTE_MACID_REV);
412 		device_printf(dev, "MAC Id. 0x%02x, Rev. 0x%02x\n",
413 		    (macid & VTE_MACID_MASK) >> VTE_MACID_SHIFT,
414 		    (macid & VTE_MACID_REV_MASK) >> VTE_MACID_REV_SHIFT);
415 	}
416 
417 	rid = 0;
418 	sc->vte_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
419 	    RF_SHAREABLE | RF_ACTIVE);
420 	if (sc->vte_irq == NULL) {
421 		device_printf(dev, "cannot allocate IRQ resources.\n");
422 		error = ENXIO;
423 		goto fail;
424 	}
425 
426 	/* Reset the ethernet controller. */
427 	vte_reset(sc);
428 
429 	if ((error = vte_dma_alloc(sc) != 0))
430 		goto fail;
431 
432 	/* Create device sysctl node. */
433 	vte_sysctl_node(sc);
434 
435 	/* Load station address. */
436 	vte_get_macaddr(sc);
437 
438 	ifp = sc->vte_ifp = if_alloc(IFT_ETHER);
439 	if (ifp == NULL) {
440 		device_printf(dev, "cannot allocate ifnet structure.\n");
441 		error = ENXIO;
442 		goto fail;
443 	}
444 
445 	ifp->if_softc = sc;
446 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
447 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
448 	ifp->if_ioctl = vte_ioctl;
449 	ifp->if_start = vte_start;
450 	ifp->if_init = vte_init;
451 	ifp->if_snd.ifq_drv_maxlen = VTE_TX_RING_CNT - 1;
452 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
453 	IFQ_SET_READY(&ifp->if_snd);
454 
455 	/*
456 	 * Set up MII bus.
457 	 * BIOS would have initialized VTE_MPSCCR to catch PHY
458 	 * status changes so driver may be able to extract
459 	 * configured PHY address.  Since it's common to see BIOS
460 	 * fails to initialize the register(including the sample
461 	 * board I have), let mii(4) probe it.  This is more
462 	 * reliable than relying on BIOS's initialization.
463 	 *
464 	 * Advertising flow control capability to mii(4) was
465 	 * intentionally disabled due to severe problems in TX
466 	 * pause frame generation.  See vte_rxeof() for more
467 	 * details.
468 	 */
469 	error = mii_attach(dev, &sc->vte_miibus, ifp, vte_mediachange,
470 	    vte_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
471 	if (error != 0) {
472 		device_printf(dev, "attaching PHYs failed\n");
473 		goto fail;
474 	}
475 
476 	ether_ifattach(ifp, sc->vte_eaddr);
477 
478 	/* VLAN capability setup. */
479 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
480 	ifp->if_capenable = ifp->if_capabilities;
481 	/* Tell the upper layer we support VLAN over-sized frames. */
482 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
483 
484 	error = bus_setup_intr(dev, sc->vte_irq, INTR_TYPE_NET | INTR_MPSAFE,
485 	    NULL, vte_intr, sc, &sc->vte_intrhand);
486 	if (error != 0) {
487 		device_printf(dev, "could not set up interrupt handler.\n");
488 		ether_ifdetach(ifp);
489 		goto fail;
490 	}
491 
492 fail:
493 	if (error != 0)
494 		vte_detach(dev);
495 
496 	return (error);
497 }
498 
499 static int
500 vte_detach(device_t dev)
501 {
502 	struct vte_softc *sc;
503 	struct ifnet *ifp;
504 
505 	sc = device_get_softc(dev);
506 
507 	ifp = sc->vte_ifp;
508 	if (device_is_attached(dev)) {
509 		VTE_LOCK(sc);
510 		vte_stop(sc);
511 		VTE_UNLOCK(sc);
512 		callout_drain(&sc->vte_tick_ch);
513 		ether_ifdetach(ifp);
514 	}
515 
516 	if (sc->vte_miibus != NULL) {
517 		device_delete_child(dev, sc->vte_miibus);
518 		sc->vte_miibus = NULL;
519 	}
520 	bus_generic_detach(dev);
521 
522 	if (sc->vte_intrhand != NULL) {
523 		bus_teardown_intr(dev, sc->vte_irq, sc->vte_intrhand);
524 		sc->vte_intrhand = NULL;
525 	}
526 	if (sc->vte_irq != NULL) {
527 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vte_irq);
528 		sc->vte_irq = NULL;
529 	}
530 	if (sc->vte_res != NULL) {
531 		bus_release_resource(dev, sc->vte_res_type, sc->vte_res_id,
532 		    sc->vte_res);
533 		sc->vte_res = NULL;
534 	}
535 	if (ifp != NULL) {
536 		if_free(ifp);
537 		sc->vte_ifp = NULL;
538 	}
539 	vte_dma_free(sc);
540 	mtx_destroy(&sc->vte_mtx);
541 
542 	return (0);
543 }
544 
545 #define	VTE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
546 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
547 
548 static void
549 vte_sysctl_node(struct vte_softc *sc)
550 {
551 	struct sysctl_ctx_list *ctx;
552 	struct sysctl_oid_list *child, *parent;
553 	struct sysctl_oid *tree;
554 	struct vte_hw_stats *stats;
555 	int error;
556 
557 	stats = &sc->vte_stats;
558 	ctx = device_get_sysctl_ctx(sc->vte_dev);
559 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vte_dev));
560 
561 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
562 	    CTLTYPE_INT | CTLFLAG_RW, &sc->vte_int_rx_mod, 0,
563 	    sysctl_hw_vte_int_mod, "I", "vte RX interrupt moderation");
564 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
565 	    CTLTYPE_INT | CTLFLAG_RW, &sc->vte_int_tx_mod, 0,
566 	    sysctl_hw_vte_int_mod, "I", "vte TX interrupt moderation");
567 	/* Pull in device tunables. */
568 	sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
569 	error = resource_int_value(device_get_name(sc->vte_dev),
570 	    device_get_unit(sc->vte_dev), "int_rx_mod", &sc->vte_int_rx_mod);
571 	if (error == 0) {
572 		if (sc->vte_int_rx_mod < VTE_IM_BUNDLE_MIN ||
573 		    sc->vte_int_rx_mod > VTE_IM_BUNDLE_MAX) {
574 			device_printf(sc->vte_dev, "int_rx_mod value out of "
575 			    "range; using default: %d\n",
576 			    VTE_IM_RX_BUNDLE_DEFAULT);
577 			sc->vte_int_rx_mod = VTE_IM_RX_BUNDLE_DEFAULT;
578 		}
579 	}
580 
581 	sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
582 	error = resource_int_value(device_get_name(sc->vte_dev),
583 	    device_get_unit(sc->vte_dev), "int_tx_mod", &sc->vte_int_tx_mod);
584 	if (error == 0) {
585 		if (sc->vte_int_tx_mod < VTE_IM_BUNDLE_MIN ||
586 		    sc->vte_int_tx_mod > VTE_IM_BUNDLE_MAX) {
587 			device_printf(sc->vte_dev, "int_tx_mod value out of "
588 			    "range; using default: %d\n",
589 			    VTE_IM_TX_BUNDLE_DEFAULT);
590 			sc->vte_int_tx_mod = VTE_IM_TX_BUNDLE_DEFAULT;
591 		}
592 	}
593 
594 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
595 	    NULL, "VTE statistics");
596 	parent = SYSCTL_CHILDREN(tree);
597 
598 	/* RX statistics. */
599 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
600 	    NULL, "RX MAC statistics");
601 	child = SYSCTL_CHILDREN(tree);
602 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
603 	    &stats->rx_frames, "Good frames");
604 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
605 	    &stats->rx_bcast_frames, "Good broadcast frames");
606 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
607 	    &stats->rx_mcast_frames, "Good multicast frames");
608 	VTE_SYSCTL_STAT_ADD32(ctx, child, "runt",
609 	    &stats->rx_runts, "Too short frames");
610 	VTE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
611 	    &stats->rx_crcerrs, "CRC errors");
612 	VTE_SYSCTL_STAT_ADD32(ctx, child, "long_frames",
613 	    &stats->rx_long_frames,
614 	    "Frames that have longer length than maximum packet length");
615 	VTE_SYSCTL_STAT_ADD32(ctx, child, "fifo_full",
616 	    &stats->rx_fifo_full, "FIFO full");
617 	VTE_SYSCTL_STAT_ADD32(ctx, child, "desc_unavail",
618 	    &stats->rx_desc_unavail, "Descriptor unavailable frames");
619 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
620 	    &stats->rx_pause_frames, "Pause control frames");
621 
622 	/* TX statistics. */
623 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
624 	    NULL, "TX MAC statistics");
625 	child = SYSCTL_CHILDREN(tree);
626 	VTE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
627 	    &stats->tx_frames, "Good frames");
628 	VTE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
629 	    &stats->tx_underruns, "FIFO underruns");
630 	VTE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
631 	    &stats->tx_late_colls, "Late collisions");
632 	VTE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
633 	    &stats->tx_pause_frames, "Pause control frames");
634 }
635 
636 #undef VTE_SYSCTL_STAT_ADD32
637 
638 struct vte_dmamap_arg {
639 	bus_addr_t	vte_busaddr;
640 };
641 
642 static void
643 vte_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
644 {
645 	struct vte_dmamap_arg *ctx;
646 
647 	if (error != 0)
648 		return;
649 
650 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
651 
652 	ctx = (struct vte_dmamap_arg *)arg;
653 	ctx->vte_busaddr = segs[0].ds_addr;
654 }
655 
656 static int
657 vte_dma_alloc(struct vte_softc *sc)
658 {
659 	struct vte_txdesc *txd;
660 	struct vte_rxdesc *rxd;
661 	struct vte_dmamap_arg ctx;
662 	int error, i;
663 
664 	/* Create parent DMA tag. */
665 	error = bus_dma_tag_create(
666 	    bus_get_dma_tag(sc->vte_dev), /* parent */
667 	    1, 0,			/* alignment, boundary */
668 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
669 	    BUS_SPACE_MAXADDR,		/* highaddr */
670 	    NULL, NULL,			/* filter, filterarg */
671 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
672 	    0,				/* nsegments */
673 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
674 	    0,				/* flags */
675 	    NULL, NULL,			/* lockfunc, lockarg */
676 	    &sc->vte_cdata.vte_parent_tag);
677 	if (error != 0) {
678 		device_printf(sc->vte_dev,
679 		    "could not create parent DMA tag.\n");
680 		goto fail;
681 	}
682 
683 	/* Create DMA tag for TX descriptor ring. */
684 	error = bus_dma_tag_create(
685 	    sc->vte_cdata.vte_parent_tag, /* parent */
686 	    VTE_TX_RING_ALIGN, 0,	/* alignment, boundary */
687 	    BUS_SPACE_MAXADDR,		/* lowaddr */
688 	    BUS_SPACE_MAXADDR,		/* highaddr */
689 	    NULL, NULL,			/* filter, filterarg */
690 	    VTE_TX_RING_SZ,		/* maxsize */
691 	    1,				/* nsegments */
692 	    VTE_TX_RING_SZ,		/* maxsegsize */
693 	    0,				/* flags */
694 	    NULL, NULL,			/* lockfunc, lockarg */
695 	    &sc->vte_cdata.vte_tx_ring_tag);
696 	if (error != 0) {
697 		device_printf(sc->vte_dev,
698 		    "could not create TX ring DMA tag.\n");
699 		goto fail;
700 	}
701 
702 	/* Create DMA tag for RX free descriptor ring. */
703 	error = bus_dma_tag_create(
704 	    sc->vte_cdata.vte_parent_tag, /* parent */
705 	    VTE_RX_RING_ALIGN, 0,	/* alignment, boundary */
706 	    BUS_SPACE_MAXADDR,		/* lowaddr */
707 	    BUS_SPACE_MAXADDR,		/* highaddr */
708 	    NULL, NULL,			/* filter, filterarg */
709 	    VTE_RX_RING_SZ,		/* maxsize */
710 	    1,				/* nsegments */
711 	    VTE_RX_RING_SZ,		/* maxsegsize */
712 	    0,				/* flags */
713 	    NULL, NULL,			/* lockfunc, lockarg */
714 	    &sc->vte_cdata.vte_rx_ring_tag);
715 	if (error != 0) {
716 		device_printf(sc->vte_dev,
717 		    "could not create RX ring DMA tag.\n");
718 		goto fail;
719 	}
720 
721 	/* Allocate DMA'able memory and load the DMA map for TX ring. */
722 	error = bus_dmamem_alloc(sc->vte_cdata.vte_tx_ring_tag,
723 	    (void **)&sc->vte_cdata.vte_tx_ring,
724 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
725 	    &sc->vte_cdata.vte_tx_ring_map);
726 	if (error != 0) {
727 		device_printf(sc->vte_dev,
728 		    "could not allocate DMA'able memory for TX ring.\n");
729 		goto fail;
730 	}
731 	ctx.vte_busaddr = 0;
732 	error = bus_dmamap_load(sc->vte_cdata.vte_tx_ring_tag,
733 	    sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring,
734 	    VTE_TX_RING_SZ, vte_dmamap_cb, &ctx, 0);
735 	if (error != 0 || ctx.vte_busaddr == 0) {
736 		device_printf(sc->vte_dev,
737 		    "could not load DMA'able memory for TX ring.\n");
738 		goto fail;
739 	}
740 	sc->vte_cdata.vte_tx_ring_paddr = ctx.vte_busaddr;
741 
742 	/* Allocate DMA'able memory and load the DMA map for RX ring. */
743 	error = bus_dmamem_alloc(sc->vte_cdata.vte_rx_ring_tag,
744 	    (void **)&sc->vte_cdata.vte_rx_ring,
745 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
746 	    &sc->vte_cdata.vte_rx_ring_map);
747 	if (error != 0) {
748 		device_printf(sc->vte_dev,
749 		    "could not allocate DMA'able memory for RX ring.\n");
750 		goto fail;
751 	}
752 	ctx.vte_busaddr = 0;
753 	error = bus_dmamap_load(sc->vte_cdata.vte_rx_ring_tag,
754 	    sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring,
755 	    VTE_RX_RING_SZ, vte_dmamap_cb, &ctx, 0);
756 	if (error != 0 || ctx.vte_busaddr == 0) {
757 		device_printf(sc->vte_dev,
758 		    "could not load DMA'able memory for RX ring.\n");
759 		goto fail;
760 	}
761 	sc->vte_cdata.vte_rx_ring_paddr = ctx.vte_busaddr;
762 
763 	/* Create TX buffer parent tag. */
764 	error = bus_dma_tag_create(
765 	    bus_get_dma_tag(sc->vte_dev), /* parent */
766 	    1, 0,			/* alignment, boundary */
767 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
768 	    BUS_SPACE_MAXADDR,		/* highaddr */
769 	    NULL, NULL,			/* filter, filterarg */
770 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
771 	    0,				/* nsegments */
772 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
773 	    0,				/* flags */
774 	    NULL, NULL,			/* lockfunc, lockarg */
775 	    &sc->vte_cdata.vte_buffer_tag);
776 	if (error != 0) {
777 		device_printf(sc->vte_dev,
778 		    "could not create parent buffer DMA tag.\n");
779 		goto fail;
780 	}
781 
782 	/* Create DMA tag for TX buffers. */
783 	error = bus_dma_tag_create(
784 	    sc->vte_cdata.vte_buffer_tag, /* parent */
785 	    1, 0,			/* alignment, boundary */
786 	    BUS_SPACE_MAXADDR,		/* lowaddr */
787 	    BUS_SPACE_MAXADDR,		/* highaddr */
788 	    NULL, NULL,			/* filter, filterarg */
789 	    MCLBYTES,			/* maxsize */
790 	    1,				/* nsegments */
791 	    MCLBYTES,			/* maxsegsize */
792 	    0,				/* flags */
793 	    NULL, NULL,			/* lockfunc, lockarg */
794 	    &sc->vte_cdata.vte_tx_tag);
795 	if (error != 0) {
796 		device_printf(sc->vte_dev, "could not create TX DMA tag.\n");
797 		goto fail;
798 	}
799 
800 	/* Create DMA tag for RX buffers. */
801 	error = bus_dma_tag_create(
802 	    sc->vte_cdata.vte_buffer_tag, /* parent */
803 	    VTE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
804 	    BUS_SPACE_MAXADDR,		/* lowaddr */
805 	    BUS_SPACE_MAXADDR,		/* highaddr */
806 	    NULL, NULL,			/* filter, filterarg */
807 	    MCLBYTES,			/* maxsize */
808 	    1,				/* nsegments */
809 	    MCLBYTES,			/* maxsegsize */
810 	    0,				/* flags */
811 	    NULL, NULL,			/* lockfunc, lockarg */
812 	    &sc->vte_cdata.vte_rx_tag);
813 	if (error != 0) {
814 		device_printf(sc->vte_dev, "could not create RX DMA tag.\n");
815 		goto fail;
816 	}
817 	/* Create DMA maps for TX buffers. */
818 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
819 		txd = &sc->vte_cdata.vte_txdesc[i];
820 		txd->tx_m = NULL;
821 		txd->tx_dmamap = NULL;
822 		error = bus_dmamap_create(sc->vte_cdata.vte_tx_tag, 0,
823 		    &txd->tx_dmamap);
824 		if (error != 0) {
825 			device_printf(sc->vte_dev,
826 			    "could not create TX dmamap.\n");
827 			goto fail;
828 		}
829 	}
830 	/* Create DMA maps for RX buffers. */
831 	if ((error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
832 	    &sc->vte_cdata.vte_rx_sparemap)) != 0) {
833 		device_printf(sc->vte_dev,
834 		    "could not create spare RX dmamap.\n");
835 		goto fail;
836 	}
837 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
838 		rxd = &sc->vte_cdata.vte_rxdesc[i];
839 		rxd->rx_m = NULL;
840 		rxd->rx_dmamap = NULL;
841 		error = bus_dmamap_create(sc->vte_cdata.vte_rx_tag, 0,
842 		    &rxd->rx_dmamap);
843 		if (error != 0) {
844 			device_printf(sc->vte_dev,
845 			    "could not create RX dmamap.\n");
846 			goto fail;
847 		}
848 	}
849 
850 fail:
851 	return (error);
852 }
853 
854 static void
855 vte_dma_free(struct vte_softc *sc)
856 {
857 	struct vte_txdesc *txd;
858 	struct vte_rxdesc *rxd;
859 	int i;
860 
861 	/* TX buffers. */
862 	if (sc->vte_cdata.vte_tx_tag != NULL) {
863 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
864 			txd = &sc->vte_cdata.vte_txdesc[i];
865 			if (txd->tx_dmamap != NULL) {
866 				bus_dmamap_destroy(sc->vte_cdata.vte_tx_tag,
867 				    txd->tx_dmamap);
868 				txd->tx_dmamap = NULL;
869 			}
870 		}
871 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_tag);
872 		sc->vte_cdata.vte_tx_tag = NULL;
873 	}
874 	/* RX buffers */
875 	if (sc->vte_cdata.vte_rx_tag != NULL) {
876 		for (i = 0; i < VTE_RX_RING_CNT; i++) {
877 			rxd = &sc->vte_cdata.vte_rxdesc[i];
878 			if (rxd->rx_dmamap != NULL) {
879 				bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
880 				    rxd->rx_dmamap);
881 				rxd->rx_dmamap = NULL;
882 			}
883 		}
884 		if (sc->vte_cdata.vte_rx_sparemap != NULL) {
885 			bus_dmamap_destroy(sc->vte_cdata.vte_rx_tag,
886 			    sc->vte_cdata.vte_rx_sparemap);
887 			sc->vte_cdata.vte_rx_sparemap = NULL;
888 		}
889 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_tag);
890 		sc->vte_cdata.vte_rx_tag = NULL;
891 	}
892 	/* TX descriptor ring. */
893 	if (sc->vte_cdata.vte_tx_ring_tag != NULL) {
894 		if (sc->vte_cdata.vte_tx_ring_map != NULL)
895 			bus_dmamap_unload(sc->vte_cdata.vte_tx_ring_tag,
896 			    sc->vte_cdata.vte_tx_ring_map);
897 		if (sc->vte_cdata.vte_tx_ring_map != NULL &&
898 		    sc->vte_cdata.vte_tx_ring != NULL)
899 			bus_dmamem_free(sc->vte_cdata.vte_tx_ring_tag,
900 			    sc->vte_cdata.vte_tx_ring,
901 			    sc->vte_cdata.vte_tx_ring_map);
902 		sc->vte_cdata.vte_tx_ring = NULL;
903 		sc->vte_cdata.vte_tx_ring_map = NULL;
904 		bus_dma_tag_destroy(sc->vte_cdata.vte_tx_ring_tag);
905 		sc->vte_cdata.vte_tx_ring_tag = NULL;
906 	}
907 	/* RX ring. */
908 	if (sc->vte_cdata.vte_rx_ring_tag != NULL) {
909 		if (sc->vte_cdata.vte_rx_ring_map != NULL)
910 			bus_dmamap_unload(sc->vte_cdata.vte_rx_ring_tag,
911 			    sc->vte_cdata.vte_rx_ring_map);
912 		if (sc->vte_cdata.vte_rx_ring_map != NULL &&
913 		    sc->vte_cdata.vte_rx_ring != NULL)
914 			bus_dmamem_free(sc->vte_cdata.vte_rx_ring_tag,
915 			    sc->vte_cdata.vte_rx_ring,
916 			    sc->vte_cdata.vte_rx_ring_map);
917 		sc->vte_cdata.vte_rx_ring = NULL;
918 		sc->vte_cdata.vte_rx_ring_map = NULL;
919 		bus_dma_tag_destroy(sc->vte_cdata.vte_rx_ring_tag);
920 		sc->vte_cdata.vte_rx_ring_tag = NULL;
921 	}
922 	if (sc->vte_cdata.vte_buffer_tag != NULL) {
923 		bus_dma_tag_destroy(sc->vte_cdata.vte_buffer_tag);
924 		sc->vte_cdata.vte_buffer_tag = NULL;
925 	}
926 	if (sc->vte_cdata.vte_parent_tag != NULL) {
927 		bus_dma_tag_destroy(sc->vte_cdata.vte_parent_tag);
928 		sc->vte_cdata.vte_parent_tag = NULL;
929 	}
930 }
931 
932 static int
933 vte_shutdown(device_t dev)
934 {
935 
936 	return (vte_suspend(dev));
937 }
938 
939 static int
940 vte_suspend(device_t dev)
941 {
942 	struct vte_softc *sc;
943 	struct ifnet *ifp;
944 
945 	sc = device_get_softc(dev);
946 
947 	VTE_LOCK(sc);
948 	ifp = sc->vte_ifp;
949 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
950 		vte_stop(sc);
951 	VTE_UNLOCK(sc);
952 
953 	return (0);
954 }
955 
956 static int
957 vte_resume(device_t dev)
958 {
959 	struct vte_softc *sc;
960 	struct ifnet *ifp;
961 
962 	sc = device_get_softc(dev);
963 
964 	VTE_LOCK(sc);
965 	ifp = sc->vte_ifp;
966 	if ((ifp->if_flags & IFF_UP) != 0) {
967 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
968 		vte_init_locked(sc);
969 	}
970 	VTE_UNLOCK(sc);
971 
972 	return (0);
973 }
974 
975 static struct vte_txdesc *
976 vte_encap(struct vte_softc *sc, struct mbuf **m_head)
977 {
978 	struct vte_txdesc *txd;
979 	struct mbuf *m, *n;
980 	bus_dma_segment_t txsegs[1];
981 	int copy, error, nsegs, padlen;
982 
983 	VTE_LOCK_ASSERT(sc);
984 
985 	M_ASSERTPKTHDR((*m_head));
986 
987 	txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod];
988 	m = *m_head;
989 	/*
990 	 * Controller doesn't auto-pad, so we have to make sure pad
991 	 * short frames out to the minimum frame length.
992 	 */
993 	if (m->m_pkthdr.len < VTE_MIN_FRAMELEN)
994 		padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len;
995 	else
996 		padlen = 0;
997 
998 	/*
999 	 * Controller does not support multi-fragmented TX buffers.
1000 	 * Controller spends most of its TX processing time in
1001 	 * de-fragmenting TX buffers.  Either faster CPU or more
1002 	 * advanced controller DMA engine is required to speed up
1003 	 * TX path processing.
1004 	 * To mitigate the de-fragmenting issue, perform deep copy
1005 	 * from fragmented mbuf chains to a pre-allocated mbuf
1006 	 * cluster with extra cost of kernel memory.  For frames
1007 	 * that is composed of single TX buffer, the deep copy is
1008 	 * bypassed.
1009 	 */
1010 	if (tx_deep_copy != 0) {
1011 		copy = 0;
1012 		if (m->m_next != NULL)
1013 			copy++;
1014 		if (padlen > 0 && (M_WRITABLE(m) == 0 ||
1015 		    padlen > M_TRAILINGSPACE(m)))
1016 			copy++;
1017 		if (copy != 0) {
1018 			/* Avoid expensive m_defrag(9) and do deep copy. */
1019 			n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod];
1020 			m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *));
1021 			n->m_pkthdr.len = m->m_pkthdr.len;
1022 			n->m_len = m->m_pkthdr.len;
1023 			m = n;
1024 			txd->tx_flags |= VTE_TXMBUF;
1025 		}
1026 
1027 		if (padlen > 0) {
1028 			/* Zero out the bytes in the pad area. */
1029 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1030 			m->m_pkthdr.len += padlen;
1031 			m->m_len = m->m_pkthdr.len;
1032 		}
1033 	} else {
1034 		if (M_WRITABLE(m) == 0) {
1035 			if (m->m_next != NULL || padlen > 0) {
1036 				/* Get a writable copy. */
1037 				m = m_dup(*m_head, M_DONTWAIT);
1038 				/* Release original mbuf chains. */
1039 				m_freem(*m_head);
1040 				if (m == NULL) {
1041 					*m_head = NULL;
1042 					return (NULL);
1043 				}
1044 				*m_head = m;
1045 			}
1046 		}
1047 
1048 		if (m->m_next != NULL) {
1049 			m = m_defrag(*m_head, M_DONTWAIT);
1050 			if (m == NULL) {
1051 				m_freem(*m_head);
1052 				*m_head = NULL;
1053 				return (NULL);
1054 			}
1055 			*m_head = m;
1056 		}
1057 
1058 		if (padlen > 0) {
1059 			if (M_TRAILINGSPACE(m) < padlen) {
1060 				m = m_defrag(*m_head, M_DONTWAIT);
1061 				if (m == NULL) {
1062 					m_freem(*m_head);
1063 					*m_head = NULL;
1064 					return (NULL);
1065 				}
1066 				*m_head = m;
1067 			}
1068 			/* Zero out the bytes in the pad area. */
1069 			bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1070 			m->m_pkthdr.len += padlen;
1071 			m->m_len = m->m_pkthdr.len;
1072 		}
1073 	}
1074 
1075 	error = bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_tx_tag,
1076 	    txd->tx_dmamap, m, txsegs, &nsegs, 0);
1077 	if (error != 0) {
1078 		txd->tx_flags &= ~VTE_TXMBUF;
1079 		return (NULL);
1080 	}
1081 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1082 	bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1083 	    BUS_DMASYNC_PREWRITE);
1084 
1085 	txd->tx_desc->dtlen = htole16(VTE_TX_LEN(txsegs[0].ds_len));
1086 	txd->tx_desc->dtbp = htole32(txsegs[0].ds_addr);
1087 	sc->vte_cdata.vte_tx_cnt++;
1088 	/* Update producer index. */
1089 	VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT);
1090 
1091 	/* Finally hand over ownership to controller. */
1092 	txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN);
1093 	txd->tx_m = m;
1094 
1095 	return (txd);
1096 }
1097 
1098 static void
1099 vte_start(struct ifnet *ifp)
1100 {
1101 	struct vte_softc *sc;
1102 
1103 	sc = ifp->if_softc;
1104 	VTE_LOCK(sc);
1105 	vte_start_locked(sc);
1106 	VTE_UNLOCK(sc);
1107 }
1108 
1109 static void
1110 vte_start_locked(struct vte_softc *sc)
1111 {
1112 	struct ifnet *ifp;
1113 	struct vte_txdesc *txd;
1114 	struct mbuf *m_head;
1115 	int enq;
1116 
1117 	ifp = sc->vte_ifp;
1118 
1119 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1120 	    IFF_DRV_RUNNING || (sc->vte_flags & VTE_FLAG_LINK) == 0)
1121 		return;
1122 
1123 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1124 		/* Reserve one free TX descriptor. */
1125 		if (sc->vte_cdata.vte_tx_cnt >= VTE_TX_RING_CNT - 1) {
1126 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1127 			break;
1128 		}
1129 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1130 		if (m_head == NULL)
1131 			break;
1132 		/*
1133 		 * Pack the data into the transmit ring. If we
1134 		 * don't have room, set the OACTIVE flag and wait
1135 		 * for the NIC to drain the ring.
1136 		 */
1137 		if ((txd = vte_encap(sc, &m_head)) == NULL) {
1138 			if (m_head != NULL)
1139 				IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1140 			break;
1141 		}
1142 
1143 		enq++;
1144 		/*
1145 		 * If there's a BPF listener, bounce a copy of this frame
1146 		 * to him.
1147 		 */
1148 		ETHER_BPF_MTAP(ifp, m_head);
1149 		/* Free consumed TX frame. */
1150 		if ((txd->tx_flags & VTE_TXMBUF) != 0)
1151 			m_freem(m_head);
1152 	}
1153 
1154 	if (enq > 0) {
1155 		bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1156 		    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1157 		    BUS_DMASYNC_PREWRITE);
1158 		CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START);
1159 		sc->vte_watchdog_timer = VTE_TX_TIMEOUT;
1160 	}
1161 }
1162 
1163 static void
1164 vte_watchdog(struct vte_softc *sc)
1165 {
1166 	struct ifnet *ifp;
1167 
1168 	VTE_LOCK_ASSERT(sc);
1169 
1170 	if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer)
1171 		return;
1172 
1173 	ifp = sc->vte_ifp;
1174 	if_printf(sc->vte_ifp, "watchdog timeout -- resetting\n");
1175 	ifp->if_oerrors++;
1176 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1177 	vte_init_locked(sc);
1178 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1179 		vte_start_locked(sc);
1180 }
1181 
1182 static int
1183 vte_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1184 {
1185 	struct vte_softc *sc;
1186 	struct ifreq *ifr;
1187 	struct mii_data *mii;
1188 	int error;
1189 
1190 	sc = ifp->if_softc;
1191 	ifr = (struct ifreq *)data;
1192 	error = 0;
1193 	switch (cmd) {
1194 	case SIOCSIFFLAGS:
1195 		VTE_LOCK(sc);
1196 		if ((ifp->if_flags & IFF_UP) != 0) {
1197 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1198 			    ((ifp->if_flags ^ sc->vte_if_flags) &
1199 			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1200 				vte_rxfilter(sc);
1201 			else
1202 				vte_init_locked(sc);
1203 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1204 			vte_stop(sc);
1205 		sc->vte_if_flags = ifp->if_flags;
1206 		VTE_UNLOCK(sc);
1207 		break;
1208 	case SIOCADDMULTI:
1209 	case SIOCDELMULTI:
1210 		VTE_LOCK(sc);
1211 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1212 			vte_rxfilter(sc);
1213 		VTE_UNLOCK(sc);
1214 		break;
1215 	case SIOCSIFMEDIA:
1216 	case SIOCGIFMEDIA:
1217 		mii = device_get_softc(sc->vte_miibus);
1218 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1219 		break;
1220 	default:
1221 		error = ether_ioctl(ifp, cmd, data);
1222 		break;
1223 	}
1224 
1225 	return (error);
1226 }
1227 
1228 static void
1229 vte_mac_config(struct vte_softc *sc)
1230 {
1231 	struct mii_data *mii;
1232 	uint16_t mcr;
1233 
1234 	VTE_LOCK_ASSERT(sc);
1235 
1236 	mii = device_get_softc(sc->vte_miibus);
1237 	mcr = CSR_READ_2(sc, VTE_MCR0);
1238 	mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX);
1239 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1240 		mcr |= MCR0_FULL_DUPLEX;
1241 #ifdef notyet
1242 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1243 			mcr |= MCR0_FC_ENB;
1244 		/*
1245 		 * The data sheet is not clear whether the controller
1246 		 * honors received pause frames or not.  The is no
1247 		 * separate control bit for RX pause frame so just
1248 		 * enable MCR0_FC_ENB bit.
1249 		 */
1250 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1251 			mcr |= MCR0_FC_ENB;
1252 #endif
1253 	}
1254 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
1255 }
1256 
1257 static void
1258 vte_stats_clear(struct vte_softc *sc)
1259 {
1260 
1261 	/* Reading counter registers clears its contents. */
1262 	CSR_READ_2(sc, VTE_CNT_RX_DONE);
1263 	CSR_READ_2(sc, VTE_CNT_MECNT0);
1264 	CSR_READ_2(sc, VTE_CNT_MECNT1);
1265 	CSR_READ_2(sc, VTE_CNT_MECNT2);
1266 	CSR_READ_2(sc, VTE_CNT_MECNT3);
1267 	CSR_READ_2(sc, VTE_CNT_TX_DONE);
1268 	CSR_READ_2(sc, VTE_CNT_MECNT4);
1269 	CSR_READ_2(sc, VTE_CNT_PAUSE);
1270 }
1271 
1272 static void
1273 vte_stats_update(struct vte_softc *sc)
1274 {
1275 	struct vte_hw_stats *stat;
1276 	struct ifnet *ifp;
1277 	uint16_t value;
1278 
1279 	VTE_LOCK_ASSERT(sc);
1280 
1281 	ifp = sc->vte_ifp;
1282 	stat = &sc->vte_stats;
1283 
1284 	CSR_READ_2(sc, VTE_MECISR);
1285 	/* RX stats. */
1286 	stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE);
1287 	value = CSR_READ_2(sc, VTE_CNT_MECNT0);
1288 	stat->rx_bcast_frames += (value >> 8);
1289 	stat->rx_mcast_frames += (value & 0xFF);
1290 	value = CSR_READ_2(sc, VTE_CNT_MECNT1);
1291 	stat->rx_runts += (value >> 8);
1292 	stat->rx_crcerrs += (value & 0xFF);
1293 	value = CSR_READ_2(sc, VTE_CNT_MECNT2);
1294 	stat->rx_long_frames += (value & 0xFF);
1295 	value = CSR_READ_2(sc, VTE_CNT_MECNT3);
1296 	stat->rx_fifo_full += (value >> 8);
1297 	stat->rx_desc_unavail += (value & 0xFF);
1298 
1299 	/* TX stats. */
1300 	stat->tx_frames += CSR_READ_2(sc, VTE_CNT_TX_DONE);
1301 	value = CSR_READ_2(sc, VTE_CNT_MECNT4);
1302 	stat->tx_underruns += (value >> 8);
1303 	stat->tx_late_colls += (value & 0xFF);
1304 
1305 	value = CSR_READ_2(sc, VTE_CNT_PAUSE);
1306 	stat->tx_pause_frames += (value >> 8);
1307 	stat->rx_pause_frames += (value & 0xFF);
1308 
1309 	/* Update ifp counters. */
1310 	ifp->if_opackets = stat->tx_frames;
1311 	ifp->if_collisions = stat->tx_late_colls;
1312 	ifp->if_oerrors = stat->tx_late_colls + stat->tx_underruns;
1313 	ifp->if_ipackets = stat->rx_frames;
1314 	ifp->if_ierrors = stat->rx_crcerrs + stat->rx_runts +
1315 	    stat->rx_long_frames + stat->rx_fifo_full;
1316 }
1317 
1318 static void
1319 vte_intr(void *arg)
1320 {
1321 	struct vte_softc *sc;
1322 	struct ifnet *ifp;
1323 	uint16_t status;
1324 	int n;
1325 
1326 	sc = (struct vte_softc *)arg;
1327 	VTE_LOCK(sc);
1328 
1329 	ifp = sc->vte_ifp;
1330 	/* Reading VTE_MISR acknowledges interrupts. */
1331 	status = CSR_READ_2(sc, VTE_MISR);
1332 	if ((status & VTE_INTRS) == 0) {
1333 		/* Not ours. */
1334 		VTE_UNLOCK(sc);
1335 		return;
1336 	}
1337 
1338 	/* Disable interrupts. */
1339 	CSR_WRITE_2(sc, VTE_MIER, 0);
1340 	for (n = 8; (status & VTE_INTRS) != 0;) {
1341 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1342 			break;
1343 		if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL |
1344 		    MISR_RX_FIFO_FULL)) != 0)
1345 			vte_rxeof(sc);
1346 		if ((status & MISR_TX_DONE) != 0)
1347 			vte_txeof(sc);
1348 		if ((status & MISR_EVENT_CNT_OFLOW) != 0)
1349 			vte_stats_update(sc);
1350 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1351 			vte_start_locked(sc);
1352 		if (--n > 0)
1353 			status = CSR_READ_2(sc, VTE_MISR);
1354 		else
1355 			break;
1356 	}
1357 
1358 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1359 		/* Re-enable interrupts. */
1360 		CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1361 	}
1362 	VTE_UNLOCK(sc);
1363 }
1364 
1365 static void
1366 vte_txeof(struct vte_softc *sc)
1367 {
1368 	struct ifnet *ifp;
1369 	struct vte_txdesc *txd;
1370 	uint16_t status;
1371 	int cons, prog;
1372 
1373 	VTE_LOCK_ASSERT(sc);
1374 
1375 	ifp = sc->vte_ifp;
1376 
1377 	if (sc->vte_cdata.vte_tx_cnt == 0)
1378 		return;
1379 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1380 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_POSTREAD |
1381 	    BUS_DMASYNC_POSTWRITE);
1382 	cons = sc->vte_cdata.vte_tx_cons;
1383 	/*
1384 	 * Go through our TX list and free mbufs for those
1385 	 * frames which have been transmitted.
1386 	 */
1387 	for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) {
1388 		txd = &sc->vte_cdata.vte_txdesc[cons];
1389 		status = le16toh(txd->tx_desc->dtst);
1390 		if ((status & VTE_DTST_TX_OWN) != 0)
1391 			break;
1392 		sc->vte_cdata.vte_tx_cnt--;
1393 		/* Reclaim transmitted mbufs. */
1394 		bus_dmamap_sync(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap,
1395 		    BUS_DMASYNC_POSTWRITE);
1396 		bus_dmamap_unload(sc->vte_cdata.vte_tx_tag, txd->tx_dmamap);
1397 		if ((txd->tx_flags & VTE_TXMBUF) == 0)
1398 			m_freem(txd->tx_m);
1399 		txd->tx_flags &= ~VTE_TXMBUF;
1400 		txd->tx_m = NULL;
1401 		prog++;
1402 		VTE_DESC_INC(cons, VTE_TX_RING_CNT);
1403 	}
1404 
1405 	if (prog > 0) {
1406 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1407 		sc->vte_cdata.vte_tx_cons = cons;
1408 		/*
1409 		 * Unarm watchdog timer only when there is no pending
1410 		 * frames in TX queue.
1411 		 */
1412 		if (sc->vte_cdata.vte_tx_cnt == 0)
1413 			sc->vte_watchdog_timer = 0;
1414 	}
1415 }
1416 
1417 static int
1418 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd)
1419 {
1420 	struct mbuf *m;
1421 	bus_dma_segment_t segs[1];
1422 	bus_dmamap_t map;
1423 	int nsegs;
1424 
1425 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1426 	if (m == NULL)
1427 		return (ENOBUFS);
1428 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1429 	m_adj(m, sizeof(uint32_t));
1430 
1431 	if (bus_dmamap_load_mbuf_sg(sc->vte_cdata.vte_rx_tag,
1432 	    sc->vte_cdata.vte_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1433 		m_freem(m);
1434 		return (ENOBUFS);
1435 	}
1436 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1437 
1438 	if (rxd->rx_m != NULL) {
1439 		bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1440 		    BUS_DMASYNC_POSTREAD);
1441 		bus_dmamap_unload(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap);
1442 	}
1443 	map = rxd->rx_dmamap;
1444 	rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap;
1445 	sc->vte_cdata.vte_rx_sparemap = map;
1446 	bus_dmamap_sync(sc->vte_cdata.vte_rx_tag, rxd->rx_dmamap,
1447 	    BUS_DMASYNC_PREREAD);
1448 	rxd->rx_m = m;
1449 	rxd->rx_desc->drbp = htole32(segs[0].ds_addr);
1450 	rxd->rx_desc->drlen = htole16(VTE_RX_LEN(segs[0].ds_len));
1451 	rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1452 
1453 	return (0);
1454 }
1455 
1456 /*
1457  * It's not supposed to see this controller on strict-alignment
1458  * architectures but make it work for completeness.
1459  */
1460 #ifndef __NO_STRICT_ALIGNMENT
1461 static struct mbuf *
1462 vte_fixup_rx(struct ifnet *ifp, struct mbuf *m)
1463 {
1464         uint16_t *src, *dst;
1465         int i;
1466 
1467 	src = mtod(m, uint16_t *);
1468 	dst = src - 1;
1469 
1470 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1471 		*dst++ = *src++;
1472 	m->m_data -= ETHER_ALIGN;
1473 	return (m);
1474 }
1475 #endif
1476 
1477 static void
1478 vte_rxeof(struct vte_softc *sc)
1479 {
1480 	struct ifnet *ifp;
1481 	struct vte_rxdesc *rxd;
1482 	struct mbuf *m;
1483 	uint16_t status, total_len;
1484 	int cons, prog;
1485 
1486 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1487 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_POSTREAD |
1488 	    BUS_DMASYNC_POSTWRITE);
1489 	cons = sc->vte_cdata.vte_rx_cons;
1490 	ifp = sc->vte_ifp;
1491 	for (prog = 0; (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0; prog++,
1492 	    VTE_DESC_INC(cons, VTE_RX_RING_CNT)) {
1493 		rxd = &sc->vte_cdata.vte_rxdesc[cons];
1494 		status = le16toh(rxd->rx_desc->drst);
1495 		if ((status & VTE_DRST_RX_OWN) != 0)
1496 			break;
1497 		total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen));
1498 		m = rxd->rx_m;
1499 		if ((status & VTE_DRST_RX_OK) == 0) {
1500 			/* Discard errored frame. */
1501 			rxd->rx_desc->drlen =
1502 			    htole16(MCLBYTES - sizeof(uint32_t));
1503 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1504 			continue;
1505 		}
1506 		if (vte_newbuf(sc, rxd) != 0) {
1507 			ifp->if_iqdrops++;
1508 			rxd->rx_desc->drlen =
1509 			    htole16(MCLBYTES - sizeof(uint32_t));
1510 			rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN);
1511 			continue;
1512 		}
1513 
1514 		/*
1515 		 * It seems there is no way to strip FCS bytes.
1516 		 */
1517 		m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;
1518 		m->m_pkthdr.rcvif = ifp;
1519 #ifndef __NO_STRICT_ALIGNMENT
1520 		vte_fixup_rx(ifp, m);
1521 #endif
1522 		VTE_UNLOCK(sc);
1523 		(*ifp->if_input)(ifp, m);
1524 		VTE_LOCK(sc);
1525 	}
1526 
1527 	if (prog > 0) {
1528 		/* Update the consumer index. */
1529 		sc->vte_cdata.vte_rx_cons = cons;
1530 		/*
1531 		 * Sync updated RX descriptors such that controller see
1532 		 * modified RX buffer addresses.
1533 		 */
1534 		bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1535 		    sc->vte_cdata.vte_rx_ring_map,
1536 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1537 #ifdef notyet
1538 		/*
1539 		 * Update residue counter.  Controller does not
1540 		 * keep track of number of available RX descriptors
1541 		 * such that driver should have to update VTE_MRDCR
1542 		 * to make controller know how many free RX
1543 		 * descriptors were added to controller.  This is
1544 		 * a similar mechanism used in VIA velocity
1545 		 * controllers and it indicates controller just
1546 		 * polls OWN bit of current RX descriptor pointer.
1547 		 * A couple of severe issues were seen on sample
1548 		 * board where the controller continuously emits TX
1549 		 * pause frames once RX pause threshold crossed.
1550 		 * Once triggered it never recovered form that
1551 		 * state, I couldn't find a way to make it back to
1552 		 * work at least.  This issue effectively
1553 		 * disconnected the system from network.  Also, the
1554 		 * controller used 00:00:00:00:00:00 as source
1555 		 * station address of TX pause frame. Probably this
1556 		 * is one of reason why vendor recommends not to
1557 		 * enable flow control on R6040 controller.
1558 		 */
1559 		CSR_WRITE_2(sc, VTE_MRDCR, prog |
1560 		    (((VTE_RX_RING_CNT * 2) / 10) <<
1561 		    VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1562 #endif
1563 	}
1564 }
1565 
1566 static void
1567 vte_tick(void *arg)
1568 {
1569 	struct vte_softc *sc;
1570 	struct mii_data *mii;
1571 
1572 	sc = (struct vte_softc *)arg;
1573 
1574 	VTE_LOCK_ASSERT(sc);
1575 
1576 	mii = device_get_softc(sc->vte_miibus);
1577 	mii_tick(mii);
1578 	vte_stats_update(sc);
1579 	vte_txeof(sc);
1580 	vte_watchdog(sc);
1581 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1582 }
1583 
1584 static void
1585 vte_reset(struct vte_softc *sc)
1586 {
1587 	uint16_t mcr;
1588 	int i;
1589 
1590 	mcr = CSR_READ_2(sc, VTE_MCR1);
1591 	CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET);
1592 	for (i = VTE_RESET_TIMEOUT; i > 0; i--) {
1593 		DELAY(10);
1594 		if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0)
1595 			break;
1596 	}
1597 	if (i == 0)
1598 		device_printf(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr);
1599 	/*
1600 	 * Follow the guide of vendor recommended way to reset MAC.
1601 	 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is
1602 	 * not reliable so manually reset internal state machine.
1603 	 */
1604 	CSR_WRITE_2(sc, VTE_MACSM, 0x0002);
1605 	CSR_WRITE_2(sc, VTE_MACSM, 0);
1606 	DELAY(5000);
1607 }
1608 
1609 static void
1610 vte_init(void *xsc)
1611 {
1612 	struct vte_softc *sc;
1613 
1614 	sc = (struct vte_softc *)xsc;
1615 	VTE_LOCK(sc);
1616 	vte_init_locked(sc);
1617 	VTE_UNLOCK(sc);
1618 }
1619 
1620 static void
1621 vte_init_locked(struct vte_softc *sc)
1622 {
1623 	struct ifnet *ifp;
1624 	struct mii_data *mii;
1625 	bus_addr_t paddr;
1626 	uint8_t *eaddr;
1627 
1628 	VTE_LOCK_ASSERT(sc);
1629 
1630 	ifp = sc->vte_ifp;
1631 	mii = device_get_softc(sc->vte_miibus);
1632 
1633 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1634 		return;
1635 	/*
1636 	 * Cancel any pending I/O.
1637 	 */
1638 	vte_stop(sc);
1639 	/*
1640 	 * Reset the chip to a known state.
1641 	 */
1642 	vte_reset(sc);
1643 
1644 	/* Initialize RX descriptors. */
1645 	if (vte_init_rx_ring(sc) != 0) {
1646 		device_printf(sc->vte_dev, "no memory for RX buffers.\n");
1647 		vte_stop(sc);
1648 		return;
1649 	}
1650 	if (vte_init_tx_ring(sc) != 0) {
1651 		device_printf(sc->vte_dev, "no memory for TX buffers.\n");
1652 		vte_stop(sc);
1653 		return;
1654 	}
1655 
1656 	/*
1657 	 * Reprogram the station address.  Controller supports up
1658 	 * to 4 different station addresses so driver programs the
1659 	 * first station address as its own ethernet address and
1660 	 * configure the remaining three addresses as perfect
1661 	 * multicast addresses.
1662 	 */
1663 	eaddr = IF_LLADDR(sc->vte_ifp);
1664 	CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]);
1665 	CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]);
1666 	CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]);
1667 
1668 	/* Set TX descriptor base addresses. */
1669 	paddr = sc->vte_cdata.vte_tx_ring_paddr;
1670 	CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16);
1671 	CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF);
1672 	/* Set RX descriptor base addresses. */
1673 	paddr = sc->vte_cdata.vte_rx_ring_paddr;
1674 	CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16);
1675 	CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF);
1676 	/*
1677 	 * Initialize RX descriptor residue counter and set RX
1678 	 * pause threshold to 20% of available RX descriptors.
1679 	 * See comments on vte_rxeof() for details on flow control
1680 	 * issues.
1681 	 */
1682 	CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) |
1683 	    (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT));
1684 
1685 	/*
1686 	 * Always use maximum frame size that controller can
1687 	 * support.  Otherwise received frames that has longer
1688 	 * frame length than vte(4) MTU would be silently dropped
1689 	 * in controller.  This would break path-MTU discovery as
1690 	 * sender wouldn't get any responses from receiver. The
1691 	 * RX buffer size should be multiple of 4.
1692 	 * Note, jumbo frames are silently ignored by controller
1693 	 * and even MAC counters do not detect them.
1694 	 */
1695 	CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX);
1696 
1697 	/* Configure FIFO. */
1698 	CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 |
1699 	    MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 |
1700 	    MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT);
1701 
1702 	/*
1703 	 * Configure TX/RX MACs.  Actual resolved duplex and flow
1704 	 * control configuration is done after detecting a valid
1705 	 * link.  Note, we don't generate early interrupt here
1706 	 * as well since FreeBSD does not have interrupt latency
1707 	 * problems like Windows.
1708 	 */
1709 	CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT);
1710 	/*
1711 	 * We manually keep track of PHY status changes to
1712 	 * configure resolved duplex and flow control since only
1713 	 * duplex configuration can be automatically reflected to
1714 	 * MCR0.
1715 	 */
1716 	CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 |
1717 	    MCR1_EXCESS_COL_RETRY_16);
1718 
1719 	/* Initialize RX filter. */
1720 	vte_rxfilter(sc);
1721 
1722 	/* Disable TX/RX interrupt moderation control. */
1723 	CSR_WRITE_2(sc, VTE_MRICR, 0);
1724 	CSR_WRITE_2(sc, VTE_MTICR, 0);
1725 
1726 	/* Enable MAC event counter interrupts. */
1727 	CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS);
1728 	/* Clear MAC statistics. */
1729 	vte_stats_clear(sc);
1730 
1731 	/* Acknowledge all pending interrupts and clear it. */
1732 	CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS);
1733 	CSR_WRITE_2(sc, VTE_MISR, 0);
1734 
1735 	sc->vte_flags &= ~VTE_FLAG_LINK;
1736 	/* Switch to the current media. */
1737 	vte_mediachange_locked(ifp);
1738 
1739 	callout_reset(&sc->vte_tick_ch, hz, vte_tick, sc);
1740 
1741 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1742 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1743 }
1744 
1745 static void
1746 vte_stop(struct vte_softc *sc)
1747 {
1748 	struct ifnet *ifp;
1749 	struct vte_txdesc *txd;
1750 	struct vte_rxdesc *rxd;
1751 	int i;
1752 
1753 	VTE_LOCK_ASSERT(sc);
1754 	/*
1755 	 * Mark the interface down and cancel the watchdog timer.
1756 	 */
1757 	ifp = sc->vte_ifp;
1758 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1759 	sc->vte_flags &= ~VTE_FLAG_LINK;
1760 	callout_stop(&sc->vte_tick_ch);
1761 	sc->vte_watchdog_timer = 0;
1762 	vte_stats_update(sc);
1763 	/* Disable interrupts. */
1764 	CSR_WRITE_2(sc, VTE_MIER, 0);
1765 	CSR_WRITE_2(sc, VTE_MECIER, 0);
1766 	/* Stop RX/TX MACs. */
1767 	vte_stop_mac(sc);
1768 	/* Clear interrupts. */
1769 	CSR_READ_2(sc, VTE_MISR);
1770 	/*
1771 	 * Free TX/RX mbufs still in the queues.
1772 	 */
1773 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1774 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1775 		if (rxd->rx_m != NULL) {
1776 			bus_dmamap_sync(sc->vte_cdata.vte_rx_tag,
1777 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1778 			bus_dmamap_unload(sc->vte_cdata.vte_rx_tag,
1779 			    rxd->rx_dmamap);
1780 			m_freem(rxd->rx_m);
1781 			rxd->rx_m = NULL;
1782 		}
1783 	}
1784 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1785 		txd = &sc->vte_cdata.vte_txdesc[i];
1786 		if (txd->tx_m != NULL) {
1787 			bus_dmamap_sync(sc->vte_cdata.vte_tx_tag,
1788 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1789 			bus_dmamap_unload(sc->vte_cdata.vte_tx_tag,
1790 			    txd->tx_dmamap);
1791 			if ((txd->tx_flags & VTE_TXMBUF) == 0)
1792 				m_freem(txd->tx_m);
1793 			txd->tx_m = NULL;
1794 			txd->tx_flags &= ~VTE_TXMBUF;
1795 		}
1796 	}
1797 	/* Free TX mbuf pools used for deep copy. */
1798 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1799 		if (sc->vte_cdata.vte_txmbufs[i] != NULL) {
1800 			m_freem(sc->vte_cdata.vte_txmbufs[i]);
1801 			sc->vte_cdata.vte_txmbufs[i] = NULL;
1802 		}
1803 	}
1804 }
1805 
1806 static void
1807 vte_start_mac(struct vte_softc *sc)
1808 {
1809 	uint16_t mcr;
1810 	int i;
1811 
1812 	VTE_LOCK_ASSERT(sc);
1813 
1814 	/* Enable RX/TX MACs. */
1815 	mcr = CSR_READ_2(sc, VTE_MCR0);
1816 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) !=
1817 	    (MCR0_RX_ENB | MCR0_TX_ENB)) {
1818 		mcr |= MCR0_RX_ENB | MCR0_TX_ENB;
1819 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1820 		for (i = VTE_TIMEOUT; i > 0; i--) {
1821 			mcr = CSR_READ_2(sc, VTE_MCR0);
1822 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) ==
1823 			    (MCR0_RX_ENB | MCR0_TX_ENB))
1824 				break;
1825 			DELAY(10);
1826 		}
1827 		if (i == 0)
1828 			device_printf(sc->vte_dev,
1829 			    "could not enable RX/TX MAC(0x%04x)!\n", mcr);
1830 	}
1831 }
1832 
1833 static void
1834 vte_stop_mac(struct vte_softc *sc)
1835 {
1836 	uint16_t mcr;
1837 	int i;
1838 
1839 	VTE_LOCK_ASSERT(sc);
1840 
1841 	/* Disable RX/TX MACs. */
1842 	mcr = CSR_READ_2(sc, VTE_MCR0);
1843 	if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) {
1844 		mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB);
1845 		CSR_WRITE_2(sc, VTE_MCR0, mcr);
1846 		for (i = VTE_TIMEOUT; i > 0; i--) {
1847 			mcr = CSR_READ_2(sc, VTE_MCR0);
1848 			if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0)
1849 				break;
1850 			DELAY(10);
1851 		}
1852 		if (i == 0)
1853 			device_printf(sc->vte_dev,
1854 			    "could not disable RX/TX MAC(0x%04x)!\n", mcr);
1855 	}
1856 }
1857 
1858 static int
1859 vte_init_tx_ring(struct vte_softc *sc)
1860 {
1861 	struct vte_tx_desc *desc;
1862 	struct vte_txdesc *txd;
1863 	bus_addr_t addr;
1864 	int i;
1865 
1866 	VTE_LOCK_ASSERT(sc);
1867 
1868 	sc->vte_cdata.vte_tx_prod = 0;
1869 	sc->vte_cdata.vte_tx_cons = 0;
1870 	sc->vte_cdata.vte_tx_cnt = 0;
1871 
1872 	/* Pre-allocate TX mbufs for deep copy. */
1873 	if (tx_deep_copy != 0) {
1874 		for (i = 0; i < VTE_TX_RING_CNT; i++) {
1875 			sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT,
1876 			    MT_DATA, M_PKTHDR);
1877 			if (sc->vte_cdata.vte_txmbufs[i] == NULL)
1878 				return (ENOBUFS);
1879 			sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES;
1880 			sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES;
1881 		}
1882 	}
1883 	desc = sc->vte_cdata.vte_tx_ring;
1884 	bzero(desc, VTE_TX_RING_SZ);
1885 	for (i = 0; i < VTE_TX_RING_CNT; i++) {
1886 		txd = &sc->vte_cdata.vte_txdesc[i];
1887 		txd->tx_m = NULL;
1888 		if (i != VTE_TX_RING_CNT - 1)
1889 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1890 			    sizeof(struct vte_tx_desc) * (i + 1);
1891 		else
1892 			addr = sc->vte_cdata.vte_tx_ring_paddr +
1893 			    sizeof(struct vte_tx_desc) * 0;
1894 		desc = &sc->vte_cdata.vte_tx_ring[i];
1895 		desc->dtnp = htole32(addr);
1896 		txd->tx_desc = desc;
1897 	}
1898 
1899 	bus_dmamap_sync(sc->vte_cdata.vte_tx_ring_tag,
1900 	    sc->vte_cdata.vte_tx_ring_map, BUS_DMASYNC_PREREAD |
1901 	    BUS_DMASYNC_PREWRITE);
1902 	return (0);
1903 }
1904 
1905 static int
1906 vte_init_rx_ring(struct vte_softc *sc)
1907 {
1908 	struct vte_rx_desc *desc;
1909 	struct vte_rxdesc *rxd;
1910 	bus_addr_t addr;
1911 	int i;
1912 
1913 	VTE_LOCK_ASSERT(sc);
1914 
1915 	sc->vte_cdata.vte_rx_cons = 0;
1916 	desc = sc->vte_cdata.vte_rx_ring;
1917 	bzero(desc, VTE_RX_RING_SZ);
1918 	for (i = 0; i < VTE_RX_RING_CNT; i++) {
1919 		rxd = &sc->vte_cdata.vte_rxdesc[i];
1920 		rxd->rx_m = NULL;
1921 		if (i != VTE_RX_RING_CNT - 1)
1922 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1923 			    sizeof(struct vte_rx_desc) * (i + 1);
1924 		else
1925 			addr = sc->vte_cdata.vte_rx_ring_paddr +
1926 			    sizeof(struct vte_rx_desc) * 0;
1927 		desc = &sc->vte_cdata.vte_rx_ring[i];
1928 		desc->drnp = htole32(addr);
1929 		rxd->rx_desc = desc;
1930 		if (vte_newbuf(sc, rxd) != 0)
1931 			return (ENOBUFS);
1932 	}
1933 
1934 	bus_dmamap_sync(sc->vte_cdata.vte_rx_ring_tag,
1935 	    sc->vte_cdata.vte_rx_ring_map, BUS_DMASYNC_PREREAD |
1936 	    BUS_DMASYNC_PREWRITE);
1937 
1938 	return (0);
1939 }
1940 
1941 static void
1942 vte_rxfilter(struct vte_softc *sc)
1943 {
1944 	struct ifnet *ifp;
1945 	struct ifmultiaddr *ifma;
1946 	uint8_t *eaddr;
1947 	uint32_t crc;
1948 	uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3];
1949 	uint16_t mchash[4], mcr;
1950 	int i, nperf;
1951 
1952 	VTE_LOCK_ASSERT(sc);
1953 
1954 	ifp = sc->vte_ifp;
1955 
1956 	bzero(mchash, sizeof(mchash));
1957 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
1958 		rxfilt_perf[i][0] = 0xFFFF;
1959 		rxfilt_perf[i][1] = 0xFFFF;
1960 		rxfilt_perf[i][2] = 0xFFFF;
1961 	}
1962 
1963 	mcr = CSR_READ_2(sc, VTE_MCR0);
1964 	mcr &= ~(MCR0_PROMISC | MCR0_MULTICAST);
1965 	mcr |= MCR0_BROADCAST_DIS;
1966 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1967 		mcr &= ~MCR0_BROADCAST_DIS;
1968 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1969 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1970 			mcr |= MCR0_PROMISC;
1971 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1972 			mcr |= MCR0_MULTICAST;
1973 		mchash[0] = 0xFFFF;
1974 		mchash[1] = 0xFFFF;
1975 		mchash[2] = 0xFFFF;
1976 		mchash[3] = 0xFFFF;
1977 		goto chipit;
1978 	}
1979 
1980 	nperf = 0;
1981 	if_maddr_rlock(ifp);
1982 	TAILQ_FOREACH(ifma, &sc->vte_ifp->if_multiaddrs, ifma_link) {
1983 		if (ifma->ifma_addr->sa_family != AF_LINK)
1984 			continue;
1985 		/*
1986 		 * Program the first 3 multicast groups into
1987 		 * the perfect filter.  For all others, use the
1988 		 * hash table.
1989 		 */
1990 		if (nperf < VTE_RXFILT_PERFECT_CNT) {
1991 			eaddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
1992 			rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0];
1993 			rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2];
1994 			rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4];
1995 			nperf++;
1996 			continue;
1997 		}
1998 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
1999 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2000 		mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F);
2001 	}
2002 	if_maddr_runlock(ifp);
2003 	if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 ||
2004 	    mchash[3] != 0)
2005 		mcr |= MCR0_MULTICAST;
2006 
2007 chipit:
2008 	/* Program multicast hash table. */
2009 	CSR_WRITE_2(sc, VTE_MAR0, mchash[0]);
2010 	CSR_WRITE_2(sc, VTE_MAR1, mchash[1]);
2011 	CSR_WRITE_2(sc, VTE_MAR2, mchash[2]);
2012 	CSR_WRITE_2(sc, VTE_MAR3, mchash[3]);
2013 	/* Program perfect filter table. */
2014 	for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) {
2015 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0,
2016 		    rxfilt_perf[i][0]);
2017 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2,
2018 		    rxfilt_perf[i][1]);
2019 		CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4,
2020 		    rxfilt_perf[i][2]);
2021 	}
2022 	CSR_WRITE_2(sc, VTE_MCR0, mcr);
2023 	CSR_READ_2(sc, VTE_MCR0);
2024 }
2025 
2026 static int
2027 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2028 {
2029 	int error, value;
2030 
2031 	if (arg1 == NULL)
2032 		return (EINVAL);
2033 	value = *(int *)arg1;
2034 	error = sysctl_handle_int(oidp, &value, 0, req);
2035 	if (error || req->newptr == NULL)
2036 		return (error);
2037 	if (value < low || value > high)
2038 		return (EINVAL);
2039 	*(int *)arg1 = value;
2040 
2041 	return (0);
2042 }
2043 
2044 static int
2045 sysctl_hw_vte_int_mod(SYSCTL_HANDLER_ARGS)
2046 {
2047 
2048 	return (sysctl_int_range(oidp, arg1, arg2, req,
2049 	    VTE_IM_BUNDLE_MIN, VTE_IM_BUNDLE_MAX));
2050 }
2051