xref: /freebsd/sys/dev/vt/hw/vga/vt_vga.c (revision eb9da1ada8b6b2c74378a5c17029ec5a7fb199e6)
1 /*-
2  * Copyright (c) 2005 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Copyright (c) 2009 The FreeBSD Foundation
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Ed Schouten
9  * under sponsorship from the FreeBSD Foundation.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/module.h>
41 #include <sys/rman.h>
42 
43 #include <dev/vt/vt.h>
44 #include <dev/vt/hw/vga/vt_vga_reg.h>
45 #include <dev/pci/pcivar.h>
46 
47 #include <machine/bus.h>
48 
49 struct vga_softc {
50 	bus_space_tag_t		 vga_fb_tag;
51 	bus_space_handle_t	 vga_fb_handle;
52 	bus_space_tag_t		 vga_reg_tag;
53 	bus_space_handle_t	 vga_reg_handle;
54 	int			 vga_wmode;
55 	term_color_t		 vga_curfg, vga_curbg;
56 	boolean_t		 vga_enabled;
57 };
58 
59 /* Convenience macros. */
60 #define	MEM_READ1(sc, ofs) \
61 	bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs)
62 #define	MEM_WRITE1(sc, ofs, val) \
63 	bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
64 #define	REG_READ1(sc, reg) \
65 	bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg)
66 #define	REG_WRITE1(sc, reg, val) \
67 	bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val)
68 
69 #define	VT_VGA_WIDTH	640
70 #define	VT_VGA_HEIGHT	480
71 #define	VT_VGA_MEMSIZE	(VT_VGA_WIDTH * VT_VGA_HEIGHT / 8)
72 
73 /*
74  * VGA is designed to handle 8 pixels at a time (8 pixels in one byte of
75  * memory).
76  */
77 #define	VT_VGA_PIXELS_BLOCK	8
78 
79 /*
80  * We use an off-screen addresses to:
81  *     o  store the background color;
82  *     o  store pixels pattern.
83  * Those addresses are then loaded in the latches once.
84  */
85 #define	VT_VGA_BGCOLOR_OFFSET	VT_VGA_MEMSIZE
86 
87 static vd_probe_t	vga_probe;
88 static vd_init_t	vga_init;
89 static vd_blank_t	vga_blank;
90 static vd_bitblt_text_t	vga_bitblt_text;
91 static vd_bitblt_bmp_t	vga_bitblt_bitmap;
92 static vd_drawrect_t	vga_drawrect;
93 static vd_setpixel_t	vga_setpixel;
94 static vd_postswitch_t	vga_postswitch;
95 
96 static const struct vt_driver vt_vga_driver = {
97 	.vd_name	= "vga",
98 	.vd_probe	= vga_probe,
99 	.vd_init	= vga_init,
100 	.vd_blank	= vga_blank,
101 	.vd_bitblt_text	= vga_bitblt_text,
102 	.vd_bitblt_bmp	= vga_bitblt_bitmap,
103 	.vd_drawrect	= vga_drawrect,
104 	.vd_setpixel	= vga_setpixel,
105 	.vd_postswitch	= vga_postswitch,
106 	.vd_priority	= VD_PRIORITY_GENERIC,
107 };
108 
109 /*
110  * Driver supports both text mode and graphics mode.  Make sure the
111  * buffer is always big enough to support both.
112  */
113 static struct vga_softc vga_conssoftc;
114 VT_DRIVER_DECLARE(vt_vga, vt_vga_driver);
115 
116 static inline void
117 vga_setwmode(struct vt_device *vd, int wmode)
118 {
119 	struct vga_softc *sc = vd->vd_softc;
120 
121 	if (sc->vga_wmode == wmode)
122 		return;
123 
124 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
125 	REG_WRITE1(sc, VGA_GC_DATA, wmode);
126 	sc->vga_wmode = wmode;
127 
128 	switch (wmode) {
129 	case 3:
130 		/* Re-enable all plans. */
131 		REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
132 		REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
133 		    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
134 		break;
135 	}
136 }
137 
138 static inline void
139 vga_setfg(struct vt_device *vd, term_color_t color)
140 {
141 	struct vga_softc *sc = vd->vd_softc;
142 
143 	vga_setwmode(vd, 3);
144 
145 	if (sc->vga_curfg == color)
146 		return;
147 
148 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
149 	REG_WRITE1(sc, VGA_GC_DATA, color);
150 	sc->vga_curfg = color;
151 }
152 
153 static inline void
154 vga_setbg(struct vt_device *vd, term_color_t color)
155 {
156 	struct vga_softc *sc = vd->vd_softc;
157 
158 	vga_setwmode(vd, 3);
159 
160 	if (sc->vga_curbg == color)
161 		return;
162 
163 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
164 	REG_WRITE1(sc, VGA_GC_DATA, color);
165 
166 	/*
167 	 * Write 8 pixels using the background color to an off-screen
168 	 * byte in the video memory.
169 	 */
170 	MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff);
171 
172 	/*
173 	 * Read those 8 pixels back to load the background color in the
174 	 * latches register.
175 	 */
176 	MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET);
177 
178 	sc->vga_curbg = color;
179 
180 	/*
181          * The Set/Reset register doesn't contain the fg color anymore,
182          * store an invalid color.
183 	 */
184 	sc->vga_curfg = 0xff;
185 }
186 
187 /*
188  * Binary searchable table for Unicode to CP437 conversion.
189  */
190 
191 struct unicp437 {
192 	uint16_t	unicode_base;
193 	uint8_t		cp437_base;
194 	uint8_t		length;
195 };
196 
197 static const struct unicp437 cp437table[] = {
198 	{ 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 },
199 	{ 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 },
200 	{ 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 },
201 	{ 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 },
202 	{ 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 },
203 	{ 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 },
204 	{ 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 },
205 	{ 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 },
206 	{ 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 },
207 	{ 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 },
208 	{ 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 },
209 	{ 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 },
210 	{ 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 },
211 	{ 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 },
212 	{ 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 },
213 	{ 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 },
214 	{ 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 },
215 	{ 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 },
216 	{ 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 },
217 	{ 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 },
218 	{ 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 },
219 	{ 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 },
220 	{ 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 },
221 	{ 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 },
222 	{ 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 },
223 	{ 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 },
224 	{ 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 },
225 	{ 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 },
226 	{ 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 },
227 	{ 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 },
228 	{ 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 },
229 	{ 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 },
230 	{ 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 },
231 	{ 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 },
232 	{ 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 },
233 	{ 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 },
234 	{ 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 },
235 	{ 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 },
236 	{ 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 },
237 	{ 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 },
238 	{ 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 },
239 	{ 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 },
240 	{ 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 },
241 	{ 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 },
242 	{ 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 },
243 	{ 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 },
244 	{ 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 },
245 	{ 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 },
246 	{ 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 },
247 	{ 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 },
248 	{ 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 },
249 	{ 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 },
250 	{ 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 },
251 	{ 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 },
252 	{ 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 },
253 	{ 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 },
254 	{ 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 },
255 	{ 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 },
256 	{ 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 },
257 	{ 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 },
258 	{ 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 },
259 	{ 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 },
260 	{ 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 },
261 	{ 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 },
262 	{ 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 },
263 	{ 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 },
264 	{ 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 },
265 	{ 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 },
266 	{ 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 },
267 	{ 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 },
268 	{ 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 },
269 	{ 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 },
270 	{ 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 },
271 	{ 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 },
272 	{ 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 },
273 	{ 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 },
274 	{ 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 },
275 	{ 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 },
276 	{ 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 },
277 	{ 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 },
278 	{ 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 },
279 	{ 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 },
280 	{ 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 },
281 	{ 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 },
282 	{ 0x266c, 0x0e, 0x00 },
283 };
284 
285 static uint8_t
286 vga_get_cp437(term_char_t c)
287 {
288 	int min, mid, max;
289 
290 	min = 0;
291 	max = (sizeof(cp437table) / sizeof(struct unicp437)) - 1;
292 
293 	if (c < cp437table[0].unicode_base ||
294 	    c > cp437table[max].unicode_base + cp437table[max].length)
295 		return '?';
296 
297 	while (max >= min) {
298 		mid = (min + max) / 2;
299 		if (c < cp437table[mid].unicode_base)
300 			max = mid - 1;
301 		else if (c > cp437table[mid].unicode_base +
302 		    cp437table[mid].length)
303 			min = mid + 1;
304 		else
305 			return (c - cp437table[mid].unicode_base +
306 			    cp437table[mid].cp437_base);
307 	}
308 
309 	return '?';
310 }
311 
312 static void
313 vga_blank(struct vt_device *vd, term_color_t color)
314 {
315 	struct vga_softc *sc = vd->vd_softc;
316 	u_int ofs;
317 
318 	vga_setfg(vd, color);
319 	for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++)
320 		MEM_WRITE1(sc, ofs, 0xff);
321 }
322 
323 static inline void
324 vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color,
325     uint8_t v)
326 {
327 	struct vga_softc *sc = vd->vd_softc;
328 
329 	/* Skip empty writes, in order to avoid palette changes. */
330 	if (v != 0x00) {
331 		vga_setfg(vd, color);
332 		/*
333 		 * When this MEM_READ1() gets disabled, all sorts of
334 		 * artifacts occur.  This is because this read loads the
335 		 * set of 8 pixels that are about to be changed.  There
336 		 * is one scenario where we can avoid the read, namely
337 		 * if all pixels are about to be overwritten anyway.
338 		 */
339 		if (v != 0xff) {
340 			MEM_READ1(sc, dst);
341 
342 			/* The bg color was trashed by the reads. */
343 			sc->vga_curbg = 0xff;
344 		}
345 		MEM_WRITE1(sc, dst, v);
346 	}
347 }
348 
349 static void
350 vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color)
351 {
352 
353 	if (vd->vd_flags & VDF_TEXTMODE)
354 		return;
355 
356 	vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color,
357 	    0x80 >> (x % 8));
358 }
359 
360 static void
361 vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill,
362     term_color_t color)
363 {
364 	int x, y;
365 
366 	if (vd->vd_flags & VDF_TEXTMODE)
367 		return;
368 
369 	for (y = y1; y <= y2; y++) {
370 		if (fill || (y == y1) || (y == y2)) {
371 			for (x = x1; x <= x2; x++)
372 				vga_setpixel(vd, x, y, color);
373 		} else {
374 			vga_setpixel(vd, x1, y, color);
375 			vga_setpixel(vd, x2, y, color);
376 		}
377 	}
378 }
379 
380 static void
381 vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes,
382     unsigned int src_x, unsigned int x_count, unsigned int dst_x,
383     uint8_t *pattern, uint8_t *mask)
384 {
385 	unsigned int n;
386 
387 	n = src_x / 8;
388 
389 	/*
390 	 * This mask has bits set, where a pixel (ether 0 or 1)
391 	 * comes from the source bitmap.
392 	 */
393 	if (mask != NULL) {
394 		*mask = (0xff
395 		    >> (8 - x_count))
396 		    << (8 - x_count - dst_x);
397 	}
398 
399 	if (n == (src_x + x_count - 1) / 8) {
400 		/* All the pixels we want are in the same byte. */
401 		*pattern = src[n];
402 		if (dst_x >= src_x)
403 			*pattern >>= (dst_x - src_x % 8);
404 		else
405 			*pattern <<= (src_x % 8 - dst_x);
406 	} else {
407 		/* The pixels we want are split into two bytes. */
408 		if (dst_x >= src_x % 8) {
409 			*pattern =
410 			    src[n] << (8 - dst_x - src_x % 8) |
411 			    src[n + 1] >> (dst_x - src_x % 8);
412 		} else {
413 			*pattern =
414 			    src[n] << (src_x % 8 - dst_x) |
415 			    src[n + 1] >> (8 - src_x % 8 - dst_x);
416 		}
417 	}
418 }
419 
420 static void
421 vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors,
422     const uint8_t *src, const uint8_t *src_mask, unsigned int src_width,
423     unsigned int src_x, unsigned int dst_x, unsigned int x_count,
424     unsigned int src_y, unsigned int dst_y, unsigned int y_count,
425     term_color_t fg, term_color_t bg, int overwrite)
426 {
427 	unsigned int i, bytes;
428 	uint8_t pattern, relevant_bits, mask;
429 
430 	bytes = (src_width + 7) / 8;
431 
432 	for (i = 0; i < y_count; ++i) {
433 		vga_compute_shifted_pattern(src + (src_y + i) * bytes,
434 		    bytes, src_x, x_count, dst_x, &pattern, &relevant_bits);
435 
436 		if (src_mask == NULL) {
437 			/*
438 			 * No src mask. Consider that all wanted bits
439 			 * from the source are "authoritative".
440 			 */
441 			mask = relevant_bits;
442 		} else {
443 			/*
444 			 * There's an src mask. We shift it the same way
445 			 * we shifted the source pattern.
446 			 */
447 			vga_compute_shifted_pattern(
448 			    src_mask + (src_y + i) * bytes,
449 			    bytes, src_x, x_count, dst_x,
450 			    &mask, NULL);
451 
452 			/* Now, only keep the wanted bits among them. */
453 			mask &= relevant_bits;
454 		}
455 
456 		/*
457 		 * Clear bits from the pattern which must be
458 		 * transparent, according to the source mask.
459 		 */
460 		pattern &= mask;
461 
462 		/* Set the bits in the 2-colors array. */
463 		if (overwrite)
464 			pattern_2colors[dst_y + i] &= ~mask;
465 		pattern_2colors[dst_y + i] |= pattern;
466 
467 		if (pattern_ncolors == NULL)
468 			continue;
469 
470 		/*
471 		 * Set the same bits in the n-colors array. This one
472 		 * supports transparency, when a given bit is cleared in
473 		 * all colors.
474 		 */
475 		if (overwrite) {
476 			/*
477 			 * Ensure that the pixels used by this bitmap are
478 			 * cleared in other colors.
479 			 */
480 			for (int j = 0; j < 16; ++j)
481 				pattern_ncolors[(dst_y + i) * 16 + j] &=
482 				    ~mask;
483 		}
484 		pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern;
485 		pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask);
486 	}
487 }
488 
489 static void
490 vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks,
491     term_color_t fg, term_color_t bg,
492     unsigned int x, unsigned int y, unsigned int height)
493 {
494 	unsigned int i, offset;
495 	struct vga_softc *sc;
496 
497 	/*
498 	 * The great advantage of Write Mode 3 is that we just need
499 	 * to load the foreground in the Set/Reset register, load the
500 	 * background color in the latches register (this is done
501 	 * through a write in offscreen memory followed by a read of
502 	 * that data), then write the pattern to video memory. This
503 	 * pattern indicates if the pixel should use the foreground
504 	 * color (bit set) or the background color (bit cleared).
505 	 */
506 
507 	vga_setbg(vd, bg);
508 	vga_setfg(vd, fg);
509 
510 	sc = vd->vd_softc;
511 	offset = (VT_VGA_WIDTH * y + x) / 8;
512 
513 	for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) {
514 		MEM_WRITE1(sc, offset, masks[i]);
515 	}
516 }
517 
518 static void
519 vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks,
520     unsigned int x, unsigned int y, unsigned int height)
521 {
522 	unsigned int i, j, plan, color, offset;
523 	struct vga_softc *sc;
524 	uint8_t mask, plans[height * 4];
525 
526 	sc = vd->vd_softc;
527 
528 	memset(plans, 0, sizeof(plans));
529 
530 	/*
531          * To write a group of pixels using 3 or more colors, we select
532          * Write Mode 0 and write one byte to each plan separately.
533 	 */
534 
535 	/*
536 	 * We first compute each byte: each plan contains one bit of the
537 	 * color code for each of the 8 pixels.
538 	 *
539 	 * For example, if the 8 pixels are like this:
540 	 *     GBBBBBBY
541 	 * where:
542 	 *     G (gray)   = 0b0111
543 	 *     B (black)  = 0b0000
544 	 *     Y (yellow) = 0b0011
545 	 *
546 	 * The corresponding for bytes are:
547 	 *             GBBBBBBY
548 	 *     Plan 0: 10000001 = 0x81
549 	 *     Plan 1: 10000001 = 0x81
550 	 *     Plan 2: 10000000 = 0x80
551 	 *     Plan 3: 00000000 = 0x00
552 	 *             |  |   |
553 	 *             |  |   +-> 0b0011 (Y)
554 	 *             |  +-----> 0b0000 (B)
555 	 *             +--------> 0b0111 (G)
556 	 */
557 
558 	for (i = 0; i < height; ++i) {
559 		for (color = 0; color < 16; ++color) {
560 			mask = masks[i * 16 + color];
561 			if (mask == 0x00)
562 				continue;
563 
564 			for (j = 0; j < 8; ++j) {
565 				if (!((mask >> (7 - j)) & 0x1))
566 					continue;
567 
568 				/* The pixel "j" uses color "color". */
569 				for (plan = 0; plan < 4; ++plan)
570 					plans[i * 4 + plan] |=
571 					    ((color >> plan) & 0x1) << (7 - j);
572 			}
573 		}
574 	}
575 
576 	/*
577 	 * The bytes are ready: we now switch to Write Mode 0 and write
578 	 * all bytes, one plan at a time.
579 	 */
580 	vga_setwmode(vd, 0);
581 
582 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
583 	for (plan = 0; plan < 4; ++plan) {
584 		/* Select plan. */
585 		REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plan);
586 
587 		/* Write all bytes for this plan, from Y to Y+height. */
588 		for (i = 0; i < height; ++i) {
589 			offset = (VT_VGA_WIDTH * (y + i) + x) / 8;
590 			MEM_WRITE1(sc, offset, plans[i * 4 + plan]);
591 		}
592 	}
593 }
594 
595 static void
596 vga_bitblt_one_text_pixels_block(struct vt_device *vd,
597     const struct vt_window *vw, unsigned int x, unsigned int y)
598 {
599 	const struct vt_buf *vb;
600 	const struct vt_font *vf;
601 	unsigned int i, col, row, src_x, x_count;
602 	unsigned int used_colors_list[16], used_colors;
603 	uint8_t pattern_2colors[vw->vw_font->vf_height];
604 	uint8_t pattern_ncolors[vw->vw_font->vf_height * 16];
605 	term_char_t c;
606 	term_color_t fg, bg;
607 	const uint8_t *src;
608 
609 	vb = &vw->vw_buf;
610 	vf = vw->vw_font;
611 
612 	/*
613 	 * The current pixels block.
614 	 *
615 	 * We fill it with portions of characters, because both "grids"
616 	 * may not match.
617 	 *
618 	 * i is the index in this pixels block.
619 	 */
620 
621 	i = x;
622 	used_colors = 0;
623 	memset(used_colors_list, 0, sizeof(used_colors_list));
624 	memset(pattern_2colors, 0, sizeof(pattern_2colors));
625 	memset(pattern_ncolors, 0, sizeof(pattern_ncolors));
626 
627 	if (i < vw->vw_draw_area.tr_begin.tp_col) {
628 		/*
629 		 * i is in the margin used to center the text area on
630 		 * the screen.
631 		 */
632 
633 		i = vw->vw_draw_area.tr_begin.tp_col;
634 	}
635 
636 	while (i < x + VT_VGA_PIXELS_BLOCK &&
637 	    i < vw->vw_draw_area.tr_end.tp_col) {
638 		/*
639 		 * Find which character is drawn on this pixel in the
640 		 * pixels block.
641 		 *
642 		 * While here, record what colors it uses.
643 		 */
644 
645 		col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width;
646 		row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height;
647 
648 		c = VTBUF_GET_FIELD(vb, row, col);
649 		src = vtfont_lookup(vf, c);
650 
651 		vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg);
652 		if ((used_colors_list[fg] & 0x1) != 0x1)
653 			used_colors++;
654 		if ((used_colors_list[bg] & 0x2) != 0x2)
655 			used_colors++;
656 		used_colors_list[fg] |= 0x1;
657 		used_colors_list[bg] |= 0x2;
658 
659 		/*
660 		 * Compute the portion of the character we want to draw,
661 		 * because the pixels block may start in the middle of a
662 		 * character.
663 		 *
664 		 * The first pixel to draw in the character is
665 		 *     the current position -
666 		 *     the start position of the character
667 		 *
668 		 * The last pixel to draw is either
669 		 *     - the last pixel of the character, or
670 		 *     - the pixel of the character matching the end of
671 		 *       the pixels block
672 		 * whichever comes first. This position is then
673 		 * changed to be relative to the start position of the
674 		 * character.
675 		 */
676 
677 		src_x = i -
678 		    (col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col);
679 		x_count = min(min(
680 		    (col + 1) * vf->vf_width +
681 		    vw->vw_draw_area.tr_begin.tp_col,
682 		    x + VT_VGA_PIXELS_BLOCK),
683 		    vw->vw_draw_area.tr_end.tp_col);
684 		x_count -= col * vf->vf_width +
685 		    vw->vw_draw_area.tr_begin.tp_col;
686 		x_count -= src_x;
687 
688 		/* Copy a portion of the character. */
689 		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
690 		    src, NULL, vf->vf_width,
691 		    src_x, i % VT_VGA_PIXELS_BLOCK, x_count,
692 		    0, 0, vf->vf_height, fg, bg, 0);
693 
694 		/* We move to the next portion. */
695 		i += x_count;
696 	}
697 
698 #ifndef SC_NO_CUTPASTE
699 	/*
700 	 * Copy the mouse pointer bitmap if it's over the current pixels
701 	 * block.
702 	 *
703 	 * We use the saved cursor position (saved in vt_flush()), because
704 	 * the current position could be different than the one used
705 	 * to mark the area dirty.
706 	 */
707 	term_rect_t drawn_area;
708 
709 	drawn_area.tr_begin.tp_col = x;
710 	drawn_area.tr_begin.tp_row = y;
711 	drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK;
712 	drawn_area.tr_end.tp_row = y + vf->vf_height;
713 	if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) {
714 		struct vt_mouse_cursor *cursor;
715 		unsigned int mx, my;
716 		unsigned int dst_x, src_y, dst_y, y_count;
717 
718 		cursor = vd->vd_mcursor;
719 		mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col;
720 		my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row;
721 
722 		/* Compute the portion of the cursor we want to copy. */
723 		src_x = x > mx ? x - mx : 0;
724 		dst_x = mx > x ? mx - x : 0;
725 		x_count = min(min(min(
726 		    cursor->width - src_x,
727 		    x + VT_VGA_PIXELS_BLOCK - mx),
728 		    vw->vw_draw_area.tr_end.tp_col - mx),
729 		    VT_VGA_PIXELS_BLOCK);
730 
731 		/*
732 		 * The cursor isn't aligned on the Y-axis with
733 		 * characters, so we need to compute the vertical
734 		 * start/count.
735 		 */
736 		src_y = y > my ? y - my : 0;
737 		dst_y = my > y ? my - y : 0;
738 		y_count = min(
739 		    min(cursor->height - src_y, y + vf->vf_height - my),
740 		    vf->vf_height);
741 
742 		/* Copy the cursor portion. */
743 		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
744 		    cursor->map, cursor->mask, cursor->width,
745 		    src_x, dst_x, x_count, src_y, dst_y, y_count,
746 		    vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1);
747 
748 		if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1)
749 			used_colors++;
750 		if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2)
751 			used_colors++;
752 	}
753 #endif
754 
755 	/*
756 	 * The pixels block is completed, we can now draw it on the
757 	 * screen.
758 	 */
759 	if (used_colors == 2)
760 		vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg,
761 		    x, y, vf->vf_height);
762 	else
763 		vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors,
764 		    x, y, vf->vf_height);
765 }
766 
767 static void
768 vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw,
769     const term_rect_t *area)
770 {
771 	const struct vt_font *vf;
772 	unsigned int col, row;
773 	unsigned int x1, y1, x2, y2, x, y;
774 
775 	vf = vw->vw_font;
776 
777 	/*
778 	 * Compute the top-left pixel position aligned with the video
779 	 * adapter pixels block size.
780 	 *
781 	 * This is calculated from the top-left column of te dirty area:
782 	 *
783 	 *     1. Compute the top-left pixel of the character:
784 	 *        col * font width + x offset
785 	 *
786 	 *        NOTE: x offset is used to center the text area on the
787 	 *        screen. It's expressed in pixels, not in characters
788 	 *        col/row!
789 	 *
790 	 *     2. Find the pixel further on the left marking the start of
791 	 *        an aligned pixels block (eg. chunk of 8 pixels):
792 	 *        character's x / blocksize * blocksize
793 	 *
794 	 *        The division, being made on integers, achieves the
795 	 *        alignment.
796 	 *
797 	 * For the Y-axis, we need to compute the character's y
798 	 * coordinate, but we don't need to align it.
799 	 */
800 
801 	col = area->tr_begin.tp_col;
802 	row = area->tr_begin.tp_row;
803 	x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col)
804 	     / VT_VGA_PIXELS_BLOCK)
805 	    * VT_VGA_PIXELS_BLOCK;
806 	y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
807 
808 	/*
809 	 * Compute the bottom right pixel position, again, aligned with
810 	 * the pixels block size.
811 	 *
812 	 * The same rules apply, we just add 1 to base the computation
813 	 * on the "right border" of the dirty area.
814 	 */
815 
816 	col = area->tr_end.tp_col;
817 	row = area->tr_end.tp_row;
818 	x2 = (int)howmany(col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col,
819 	    VT_VGA_PIXELS_BLOCK)
820 	    * VT_VGA_PIXELS_BLOCK;
821 	y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
822 
823 	/* Clip the area to the screen size. */
824 	x2 = min(x2, vw->vw_draw_area.tr_end.tp_col);
825 	y2 = min(y2, vw->vw_draw_area.tr_end.tp_row);
826 
827 	/*
828 	 * Now, we take care of N pixels line at a time (the first for
829 	 * loop, N = font height), and for these lines, draw one pixels
830 	 * block at a time (the second for loop), not a character at a
831 	 * time.
832 	 *
833 	 * Therefore, on the X-axis, characters my be drawn partially if
834 	 * they are not aligned on 8-pixels boundary.
835 	 *
836 	 * However, the operation is repeated for the full height of the
837 	 * font before moving to the next character, because it allows
838 	 * to keep the color settings and write mode, before perhaps
839 	 * changing them with the next one.
840 	 */
841 
842 	for (y = y1; y < y2; y += vf->vf_height) {
843 		for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) {
844 			vga_bitblt_one_text_pixels_block(vd, vw, x, y);
845 		}
846 	}
847 }
848 
849 static void
850 vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw,
851     const term_rect_t *area)
852 {
853 	struct vga_softc *sc;
854 	const struct vt_buf *vb;
855 	unsigned int col, row;
856 	term_char_t c;
857 	term_color_t fg, bg;
858 	uint8_t ch, attr;
859 
860 	sc = vd->vd_softc;
861 	vb = &vw->vw_buf;
862 
863 	for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
864 		for (col = area->tr_begin.tp_col;
865 		    col < area->tr_end.tp_col;
866 		    ++col) {
867 			/*
868 			 * Get next character and its associated fg/bg
869 			 * colors.
870 			 */
871 			c = VTBUF_GET_FIELD(vb, row, col);
872 			vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col),
873 			    &fg, &bg);
874 
875 			/*
876 			 * Convert character to CP437, which is the
877 			 * character set used by the VGA hardware by
878 			 * default.
879 			 */
880 			ch = vga_get_cp437(TCHAR_CHARACTER(c));
881 
882 			/* Convert colors to VGA attributes. */
883 			attr = bg << 4 | fg;
884 
885 			MEM_WRITE1(sc, (row * 80 + col) * 2 + 0,
886 			    ch);
887 			MEM_WRITE1(sc, (row * 80 + col) * 2 + 1,
888 			    attr);
889 		}
890 	}
891 }
892 
893 static void
894 vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw,
895     const term_rect_t *area)
896 {
897 
898 	if (!(vd->vd_flags & VDF_TEXTMODE)) {
899 		vga_bitblt_text_gfxmode(vd, vw, area);
900 	} else {
901 		vga_bitblt_text_txtmode(vd, vw, area);
902 	}
903 }
904 
905 static void
906 vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw,
907     const uint8_t *pattern, const uint8_t *mask,
908     unsigned int width, unsigned int height,
909     unsigned int x, unsigned int y, term_color_t fg, term_color_t bg)
910 {
911 	unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count;
912 	uint8_t pattern_2colors;
913 
914 	/* Align coordinates with the 8-pxels grid. */
915 	x1 = rounddown(x, VT_VGA_PIXELS_BLOCK);
916 	y1 = y;
917 
918 	x2 = roundup(x + width, VT_VGA_PIXELS_BLOCK);
919 	y2 = y + height;
920 	x2 = min(x2, vd->vd_width - 1);
921 	y2 = min(y2, vd->vd_height - 1);
922 
923 	for (j = y1; j < y2; ++j) {
924 		src_x = 0;
925 		dst_x = x - x1;
926 		x_count = VT_VGA_PIXELS_BLOCK - dst_x;
927 
928 		for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) {
929 			pattern_2colors = 0;
930 
931 			vga_copy_bitmap_portion(
932 			    &pattern_2colors, NULL,
933 			    pattern, mask, width,
934 			    src_x, dst_x, x_count,
935 			    j - y1, 0, 1, fg, bg, 0);
936 
937 			vga_bitblt_pixels_block_2colors(vd,
938 			    &pattern_2colors, fg, bg,
939 			    i, j, 1);
940 
941 			src_x += x_count;
942 			dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK;
943 			x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK);
944 		}
945 	}
946 }
947 
948 static void
949 vga_initialize_graphics(struct vt_device *vd)
950 {
951 	struct vga_softc *sc = vd->vd_softc;
952 
953 	/* Clock select. */
954 	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP |
955 	    VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA);
956 	/* Set sequencer clocking and memory mode. */
957 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE);
958 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89);
959 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE);
960 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM);
961 
962 	/* Set the graphics controller in graphics mode. */
963 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS);
964 	REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA);
965 	/* Program the CRT controller. */
966 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL);
967 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f);			/* 760 */
968 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END);
969 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f);			/* 640 - 8 */
970 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK);
971 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x50);			/* 640 */
972 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK);
973 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2);
974 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE);
975 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x54);			/* 672 */
976 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE);
977 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0);
978 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL);
979 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b);			/* 523 */
980 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW);
981 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 |
982 	    VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8);
983 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE);
984 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9);
985 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START);
986 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xea);			/* 480 + 10 */
987 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
988 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c);
989 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END);
990 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf);			/* 480 - 1*/
991 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET);
992 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x28);
993 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK);
994 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7);			/* 480 + 7 */
995 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK);
996 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x04);
997 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
998 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW |
999 	    VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS);
1000 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE);
1001 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xff);			/* 480 + 31 */
1002 
1003 	REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0);
1004 
1005 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
1006 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
1007 	    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
1008 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT);
1009 	REG_WRITE1(sc, VGA_SEQ_DATA, 0);
1010 
1011 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
1012 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1013 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1014 	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1015 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE);
1016 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1017 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE);
1018 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1019 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT);
1020 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1021 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1022 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1023 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE);
1024 	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1025 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK);
1026 	REG_WRITE1(sc, VGA_GC_DATA, 0xff);
1027 }
1028 
1029 static int
1030 vga_initialize(struct vt_device *vd, int textmode)
1031 {
1032 	struct vga_softc *sc = vd->vd_softc;
1033 	uint8_t x;
1034 	int timeout;
1035 
1036 	/* Make sure the VGA adapter is not in monochrome emulation mode. */
1037 	x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R);
1038 	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA);
1039 
1040 	/* Unprotect CRTC registers 0-7. */
1041 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
1042 	x = REG_READ1(sc, VGA_CRTC_DATA);
1043 	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR);
1044 
1045 	/*
1046 	 * Wait for the vertical retrace.
1047 	 * NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has
1048 	 * the side-effect of clearing the internal flip-flip of the attribute
1049 	 * controller's write register. This means that because this code is
1050 	 * here, we know for sure that the first write to the attribute
1051 	 * controller will be a write to the address register. Removing this
1052 	 * code therefore also removes that guarantee and appropriate measures
1053 	 * need to be taken.
1054 	 */
1055 	timeout = 10000;
1056 	do {
1057 		DELAY(10);
1058 		x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1);
1059 		x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE;
1060 	} while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE) && --timeout != 0);
1061 	if (timeout == 0) {
1062 		printf("Timeout initializing vt_vga\n");
1063 		return (ENXIO);
1064 	}
1065 
1066 	/* Now, disable the sync. signals. */
1067 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1068 	x = REG_READ1(sc, VGA_CRTC_DATA);
1069 	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR);
1070 
1071 	/* Asynchronous sequencer reset. */
1072 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1073 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR);
1074 
1075 	if (!textmode)
1076 		vga_initialize_graphics(vd);
1077 
1078 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN);
1079 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1080 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START);
1081 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO);
1082 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END);
1083 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1084 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH);
1085 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1086 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW);
1087 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1088 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH);
1089 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1090 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW);
1091 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x59);
1092 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC);
1093 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL);
1094 
1095 	if (textmode) {
1096 		/* Set the attribute controller to blink disable. */
1097 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1098 		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1099 	} else {
1100 		/* Set the attribute controller in graphics mode. */
1101 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1102 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA);
1103 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING);
1104 		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1105 	}
1106 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0));
1107 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1108 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1));
1109 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R);
1110 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2));
1111 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G);
1112 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3));
1113 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R);
1114 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4));
1115 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B);
1116 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5));
1117 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B);
1118 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6));
1119 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B);
1120 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7));
1121 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1122 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8));
1123 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1124 	    VGA_AC_PAL_SB);
1125 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9));
1126 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1127 	    VGA_AC_PAL_SB | VGA_AC_PAL_R);
1128 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10));
1129 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1130 	    VGA_AC_PAL_SB | VGA_AC_PAL_G);
1131 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11));
1132 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1133 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G);
1134 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12));
1135 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1136 	    VGA_AC_PAL_SB | VGA_AC_PAL_B);
1137 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13));
1138 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1139 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B);
1140 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14));
1141 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1142 	    VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B);
1143 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15));
1144 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1145 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1146 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR);
1147 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1148 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE);
1149 	REG_WRITE1(sc, VGA_AC_WRITE, 0x0f);
1150 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT);
1151 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1152 
1153 	if (!textmode) {
1154 		u_int ofs;
1155 
1156 		/*
1157 		 * Done.  Clear the frame buffer.  All bit planes are
1158 		 * enabled, so a single-paged loop should clear all
1159 		 * planes.
1160 		 */
1161 		for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) {
1162 			MEM_WRITE1(sc, ofs, 0);
1163 		}
1164 	}
1165 
1166 	/* Re-enable the sequencer. */
1167 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1168 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR);
1169 	/* Re-enable the sync signals. */
1170 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1171 	x = REG_READ1(sc, VGA_CRTC_DATA);
1172 	REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR);
1173 
1174 	if (!textmode) {
1175 		/* Switch to write mode 3, because we'll mainly do bitblt. */
1176 		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1177 		REG_WRITE1(sc, VGA_GC_DATA, 3);
1178 		sc->vga_wmode = 3;
1179 
1180 		/*
1181 		 * In Write Mode 3, Enable Set/Reset is ignored, but we
1182 		 * use Write Mode 0 to write a group of 8 pixels using
1183 		 * 3 or more colors. In this case, we want to disable
1184 		 * Set/Reset: set Enable Set/Reset to 0.
1185 		 */
1186 		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1187 		REG_WRITE1(sc, VGA_GC_DATA, 0x00);
1188 
1189 		/*
1190 		 * Clear the colors we think are loaded into Set/Reset or
1191 		 * the latches.
1192 		 */
1193 		sc->vga_curfg = sc->vga_curbg = 0xff;
1194 	}
1195 
1196 	return (0);
1197 }
1198 
1199 static int
1200 vga_probe(struct vt_device *vd)
1201 {
1202 
1203 	return (CN_INTERNAL);
1204 }
1205 
1206 static int
1207 vga_init(struct vt_device *vd)
1208 {
1209 	struct vga_softc *sc;
1210 	int textmode;
1211 
1212 	if (vd->vd_softc == NULL)
1213 		vd->vd_softc = (void *)&vga_conssoftc;
1214 	sc = vd->vd_softc;
1215 
1216 	if (vd->vd_flags & VDF_DOWNGRADE && vd->vd_video_dev != NULL)
1217 		vga_pci_repost(vd->vd_video_dev);
1218 
1219 #if defined(__amd64__) || defined(__i386__)
1220 	sc->vga_fb_tag = X86_BUS_SPACE_MEM;
1221 	sc->vga_reg_tag = X86_BUS_SPACE_IO;
1222 #else
1223 # error "Architecture not yet supported!"
1224 #endif
1225 
1226 	bus_space_map(sc->vga_reg_tag, VGA_REG_BASE, VGA_REG_SIZE, 0,
1227 	    &sc->vga_reg_handle);
1228 
1229 	/*
1230 	 * If "hw.vga.textmode" is not set and we're running on hypervisor,
1231 	 * we use text mode by default, this is because when we're on
1232 	 * hypervisor, vt(4) is usually much slower in graphics mode than
1233 	 * in text mode, especially when we're on Hyper-V.
1234 	 */
1235 	textmode = vm_guest != VM_GUEST_NO;
1236 	TUNABLE_INT_FETCH("hw.vga.textmode", &textmode);
1237 	if (textmode) {
1238 		vd->vd_flags |= VDF_TEXTMODE;
1239 		vd->vd_width = 80;
1240 		vd->vd_height = 25;
1241 		bus_space_map(sc->vga_fb_tag, VGA_TXT_BASE, VGA_TXT_SIZE, 0,
1242 		    &sc->vga_fb_handle);
1243 	} else {
1244 		vd->vd_width = VT_VGA_WIDTH;
1245 		vd->vd_height = VT_VGA_HEIGHT;
1246 		bus_space_map(sc->vga_fb_tag, VGA_MEM_BASE, VGA_MEM_SIZE, 0,
1247 		    &sc->vga_fb_handle);
1248 	}
1249 	if (vga_initialize(vd, textmode) != 0)
1250 		return (CN_DEAD);
1251 	sc->vga_enabled = true;
1252 
1253 	return (CN_INTERNAL);
1254 }
1255 
1256 static void
1257 vga_postswitch(struct vt_device *vd)
1258 {
1259 
1260 	/* Reinit VGA mode, to restore view after app which change mode. */
1261 	vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE));
1262 	/* Ask vt(9) to update chars on visible area. */
1263 	vd->vd_flags |= VDF_INVALID;
1264 }
1265 
1266 /* Dummy NewBus functions to reserve the resources used by the vt_vga driver */
1267 static void
1268 vtvga_identify(driver_t *driver, device_t parent)
1269 {
1270 
1271 	if (!vga_conssoftc.vga_enabled)
1272 		return;
1273 
1274 	if (BUS_ADD_CHILD(parent, 0, driver->name, 0) == NULL)
1275 		panic("Unable to attach vt_vga console");
1276 }
1277 
1278 static int
1279 vtvga_probe(device_t dev)
1280 {
1281 
1282 	device_set_desc(dev, "VT VGA driver");
1283 
1284 	return (BUS_PROBE_NOWILDCARD);
1285 }
1286 
1287 static int
1288 vtvga_attach(device_t dev)
1289 {
1290 	struct resource *pseudo_phys_res;
1291 	int res_id;
1292 
1293 	res_id = 0;
1294 	pseudo_phys_res = bus_alloc_resource(dev, SYS_RES_MEMORY,
1295 	    &res_id, VGA_MEM_BASE, VGA_MEM_BASE + VGA_MEM_SIZE - 1,
1296 	    VGA_MEM_SIZE, RF_ACTIVE);
1297 	if (pseudo_phys_res == NULL)
1298 		panic("Unable to reserve vt_vga memory");
1299 	return (0);
1300 }
1301 
1302 /*-------------------- Private Device Attachment Data  -----------------------*/
1303 static device_method_t vtvga_methods[] = {
1304 	/* Device interface */
1305 	DEVMETHOD(device_identify,	vtvga_identify),
1306 	DEVMETHOD(device_probe,         vtvga_probe),
1307 	DEVMETHOD(device_attach,        vtvga_attach),
1308 
1309 	DEVMETHOD_END
1310 };
1311 
1312 DEFINE_CLASS_0(vtvga, vtvga_driver, vtvga_methods, 0);
1313 devclass_t vtvga_devclass;
1314 
1315 DRIVER_MODULE(vtvga, nexus, vtvga_driver, vtvga_devclass, NULL, NULL);
1316