1 /*- 2 * Copyright (c) 2005 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Copyright (c) 2009 The FreeBSD Foundation 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Ed Schouten 9 * under sponsorship from the FreeBSD Foundation. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include "opt_acpi.h" 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/kernel.h> 40 #include <sys/systm.h> 41 #include <sys/bus.h> 42 #include <sys/module.h> 43 #include <sys/rman.h> 44 45 #include <dev/vt/vt.h> 46 #include <dev/vt/colors/vt_termcolors.h> 47 #include <dev/vt/hw/vga/vt_vga_reg.h> 48 #include <dev/pci/pcivar.h> 49 50 #include <machine/bus.h> 51 #if defined(__amd64__) || defined(__i386__) 52 #include <contrib/dev/acpica/include/acpi.h> 53 #include <machine/md_var.h> 54 #endif 55 56 struct vga_softc { 57 bus_space_tag_t vga_fb_tag; 58 bus_space_handle_t vga_fb_handle; 59 bus_space_tag_t vga_reg_tag; 60 bus_space_handle_t vga_reg_handle; 61 int vga_wmode; 62 term_color_t vga_curfg, vga_curbg; 63 boolean_t vga_enabled; 64 }; 65 66 /* Convenience macros. */ 67 #define MEM_READ1(sc, ofs) \ 68 bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs) 69 #define MEM_WRITE1(sc, ofs, val) \ 70 bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val) 71 #define MEM_WRITE2(sc, ofs, val) \ 72 bus_space_write_2(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val) 73 #define REG_READ1(sc, reg) \ 74 bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg) 75 #define REG_WRITE1(sc, reg, val) \ 76 bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val) 77 78 #define VT_VGA_WIDTH 640 79 #define VT_VGA_HEIGHT 480 80 #define VT_VGA_MEMSIZE (VT_VGA_WIDTH * VT_VGA_HEIGHT / 8) 81 82 /* 83 * VGA is designed to handle 8 pixels at a time (8 pixels in one byte of 84 * memory). 85 */ 86 #define VT_VGA_PIXELS_BLOCK 8 87 88 /* 89 * We use an off-screen addresses to: 90 * o store the background color; 91 * o store pixels pattern. 92 * Those addresses are then loaded in the latches once. 93 */ 94 #define VT_VGA_BGCOLOR_OFFSET VT_VGA_MEMSIZE 95 96 static vd_probe_t vga_probe; 97 static vd_init_t vga_init; 98 static vd_blank_t vga_blank; 99 static vd_bitblt_text_t vga_bitblt_text; 100 static vd_invalidate_text_t vga_invalidate_text; 101 static vd_bitblt_bmp_t vga_bitblt_bitmap; 102 static vd_drawrect_t vga_drawrect; 103 static vd_setpixel_t vga_setpixel; 104 static vd_postswitch_t vga_postswitch; 105 106 static const struct vt_driver vt_vga_driver = { 107 .vd_name = "vga", 108 .vd_probe = vga_probe, 109 .vd_init = vga_init, 110 .vd_blank = vga_blank, 111 .vd_bitblt_text = vga_bitblt_text, 112 .vd_invalidate_text = vga_invalidate_text, 113 .vd_bitblt_bmp = vga_bitblt_bitmap, 114 .vd_drawrect = vga_drawrect, 115 .vd_setpixel = vga_setpixel, 116 .vd_postswitch = vga_postswitch, 117 .vd_priority = VD_PRIORITY_GENERIC, 118 }; 119 120 /* 121 * Driver supports both text mode and graphics mode. Make sure the 122 * buffer is always big enough to support both. 123 */ 124 static struct vga_softc vga_conssoftc; 125 VT_DRIVER_DECLARE(vt_vga, vt_vga_driver); 126 127 static inline void 128 vga_setwmode(struct vt_device *vd, int wmode) 129 { 130 struct vga_softc *sc = vd->vd_softc; 131 132 if (sc->vga_wmode == wmode) 133 return; 134 135 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE); 136 REG_WRITE1(sc, VGA_GC_DATA, wmode); 137 sc->vga_wmode = wmode; 138 139 switch (wmode) { 140 case 3: 141 /* Re-enable all plans. */ 142 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK); 143 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 | 144 VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0); 145 break; 146 } 147 } 148 149 static inline void 150 vga_setfg(struct vt_device *vd, term_color_t color) 151 { 152 struct vga_softc *sc = vd->vd_softc; 153 154 vga_setwmode(vd, 3); 155 156 if (sc->vga_curfg == color) 157 return; 158 159 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET); 160 REG_WRITE1(sc, VGA_GC_DATA, cons_to_vga_colors[color]); 161 sc->vga_curfg = color; 162 } 163 164 static inline void 165 vga_setbg(struct vt_device *vd, term_color_t color) 166 { 167 struct vga_softc *sc = vd->vd_softc; 168 169 vga_setwmode(vd, 3); 170 171 if (sc->vga_curbg == color) 172 return; 173 174 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET); 175 REG_WRITE1(sc, VGA_GC_DATA, cons_to_vga_colors[color]); 176 177 /* 178 * Write 8 pixels using the background color to an off-screen 179 * byte in the video memory. 180 */ 181 MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff); 182 183 /* 184 * Read those 8 pixels back to load the background color in the 185 * latches register. 186 */ 187 MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET); 188 189 sc->vga_curbg = color; 190 191 /* 192 * The Set/Reset register doesn't contain the fg color anymore, 193 * store an invalid color. 194 */ 195 sc->vga_curfg = 0xff; 196 } 197 198 /* 199 * Binary searchable table for Unicode to CP437 conversion. 200 */ 201 202 struct unicp437 { 203 uint16_t unicode_base; 204 uint8_t cp437_base; 205 uint8_t length; 206 }; 207 208 static const struct unicp437 cp437table[] = { 209 { 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 }, 210 { 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 }, 211 { 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 }, 212 { 0x00a6, 0x7c, 0x00 }, 213 { 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 }, 214 { 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 }, 215 { 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 }, 216 { 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 }, 217 { 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 }, 218 { 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 }, 219 { 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 }, 220 { 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 }, 221 { 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 }, 222 { 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 }, 223 { 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 }, 224 { 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 }, 225 { 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 }, 226 { 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 }, 227 { 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 }, 228 { 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 }, 229 { 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 }, 230 { 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 }, 231 { 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 }, 232 { 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 }, 233 { 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 }, 234 { 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 }, 235 { 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 }, 236 { 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 }, 237 { 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 }, 238 { 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 }, 239 { 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 }, 240 { 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 }, 241 { 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 }, 242 { 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 }, 243 { 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 }, 244 { 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 }, 245 { 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 }, 246 { 0x2013, 0x2d, 0x00 }, 247 { 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 }, 248 { 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 }, 249 { 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 }, 250 { 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 }, 251 { 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 }, 252 { 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 }, 253 { 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 }, 254 { 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 }, 255 { 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 }, 256 { 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 }, 257 { 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 }, 258 { 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 }, 259 { 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 }, 260 { 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 }, 261 { 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 }, 262 { 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 }, 263 { 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 }, 264 { 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 }, 265 { 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 }, 266 { 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 }, 267 { 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 }, 268 { 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 }, 269 { 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 }, 270 { 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 }, 271 { 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 }, 272 { 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 }, 273 { 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 }, 274 { 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 }, 275 { 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 }, 276 { 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 }, 277 { 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 }, 278 { 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 }, 279 { 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 }, 280 { 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 }, 281 { 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 }, 282 { 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 }, 283 { 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 }, 284 { 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 }, 285 { 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 }, 286 { 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 }, 287 { 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 }, 288 { 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 }, 289 { 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 }, 290 { 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 }, 291 { 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 }, 292 { 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 }, 293 { 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 }, 294 { 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 }, 295 { 0x266c, 0x0e, 0x00 }, { 0x2713, 0xfb, 0x00 }, 296 { 0x27e8, 0x3c, 0x00 }, { 0x27e9, 0x3e, 0x00 }, 297 }; 298 299 static uint8_t 300 vga_get_cp437(term_char_t c) 301 { 302 int min, mid, max; 303 304 min = 0; 305 max = nitems(cp437table) - 1; 306 307 if (c < cp437table[0].unicode_base || 308 c > cp437table[max].unicode_base + cp437table[max].length) 309 return '?'; 310 311 while (max >= min) { 312 mid = (min + max) / 2; 313 if (c < cp437table[mid].unicode_base) 314 max = mid - 1; 315 else if (c > cp437table[mid].unicode_base + 316 cp437table[mid].length) 317 min = mid + 1; 318 else 319 return (c - cp437table[mid].unicode_base + 320 cp437table[mid].cp437_base); 321 } 322 323 return '?'; 324 } 325 326 static void 327 vga_blank(struct vt_device *vd, term_color_t color) 328 { 329 struct vga_softc *sc = vd->vd_softc; 330 u_int ofs; 331 332 vga_setfg(vd, color); 333 for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) 334 MEM_WRITE1(sc, ofs, 0xff); 335 } 336 337 static inline void 338 vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color, 339 uint8_t v) 340 { 341 struct vga_softc *sc = vd->vd_softc; 342 343 /* Skip empty writes, in order to avoid palette changes. */ 344 if (v != 0x00) { 345 vga_setfg(vd, color); 346 /* 347 * When this MEM_READ1() gets disabled, all sorts of 348 * artifacts occur. This is because this read loads the 349 * set of 8 pixels that are about to be changed. There 350 * is one scenario where we can avoid the read, namely 351 * if all pixels are about to be overwritten anyway. 352 */ 353 if (v != 0xff) { 354 MEM_READ1(sc, dst); 355 356 /* The bg color was trashed by the reads. */ 357 sc->vga_curbg = 0xff; 358 } 359 MEM_WRITE1(sc, dst, v); 360 } 361 } 362 363 static void 364 vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color) 365 { 366 367 if (vd->vd_flags & VDF_TEXTMODE) 368 return; 369 370 vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color, 371 0x80 >> (x % 8)); 372 } 373 374 static void 375 vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill, 376 term_color_t color) 377 { 378 int x, y; 379 380 if (vd->vd_flags & VDF_TEXTMODE) 381 return; 382 383 for (y = y1; y <= y2; y++) { 384 if (fill || (y == y1) || (y == y2)) { 385 for (x = x1; x <= x2; x++) 386 vga_setpixel(vd, x, y, color); 387 } else { 388 vga_setpixel(vd, x1, y, color); 389 vga_setpixel(vd, x2, y, color); 390 } 391 } 392 } 393 394 static void 395 vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes, 396 unsigned int src_x, unsigned int x_count, unsigned int dst_x, 397 uint8_t *pattern, uint8_t *mask) 398 { 399 unsigned int n; 400 401 n = src_x / 8; 402 403 /* 404 * This mask has bits set, where a pixel (ether 0 or 1) 405 * comes from the source bitmap. 406 */ 407 if (mask != NULL) { 408 *mask = (0xff 409 >> (8 - x_count)) 410 << (8 - x_count - dst_x); 411 } 412 413 if (n == (src_x + x_count - 1) / 8) { 414 /* All the pixels we want are in the same byte. */ 415 *pattern = src[n]; 416 if (dst_x >= src_x) 417 *pattern >>= (dst_x - src_x % 8); 418 else 419 *pattern <<= (src_x % 8 - dst_x); 420 } else { 421 /* The pixels we want are split into two bytes. */ 422 if (dst_x >= src_x % 8) { 423 *pattern = 424 src[n] << (8 - dst_x - src_x % 8) | 425 src[n + 1] >> (dst_x - src_x % 8); 426 } else { 427 *pattern = 428 src[n] << (src_x % 8 - dst_x) | 429 src[n + 1] >> (8 - src_x % 8 - dst_x); 430 } 431 } 432 } 433 434 static void 435 vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors, 436 const uint8_t *src, const uint8_t *src_mask, unsigned int src_width, 437 unsigned int src_x, unsigned int dst_x, unsigned int x_count, 438 unsigned int src_y, unsigned int dst_y, unsigned int y_count, 439 term_color_t fg, term_color_t bg, int overwrite) 440 { 441 unsigned int i, bytes; 442 uint8_t pattern, relevant_bits, mask; 443 444 bytes = (src_width + 7) / 8; 445 446 for (i = 0; i < y_count; ++i) { 447 vga_compute_shifted_pattern(src + (src_y + i) * bytes, 448 bytes, src_x, x_count, dst_x, &pattern, &relevant_bits); 449 450 if (src_mask == NULL) { 451 /* 452 * No src mask. Consider that all wanted bits 453 * from the source are "authoritative". 454 */ 455 mask = relevant_bits; 456 } else { 457 /* 458 * There's an src mask. We shift it the same way 459 * we shifted the source pattern. 460 */ 461 vga_compute_shifted_pattern( 462 src_mask + (src_y + i) * bytes, 463 bytes, src_x, x_count, dst_x, 464 &mask, NULL); 465 466 /* Now, only keep the wanted bits among them. */ 467 mask &= relevant_bits; 468 } 469 470 /* 471 * Clear bits from the pattern which must be 472 * transparent, according to the source mask. 473 */ 474 pattern &= mask; 475 476 /* Set the bits in the 2-colors array. */ 477 if (overwrite) 478 pattern_2colors[dst_y + i] &= ~mask; 479 pattern_2colors[dst_y + i] |= pattern; 480 481 if (pattern_ncolors == NULL) 482 continue; 483 484 /* 485 * Set the same bits in the n-colors array. This one 486 * supports transparency, when a given bit is cleared in 487 * all colors. 488 */ 489 if (overwrite) { 490 /* 491 * Ensure that the pixels used by this bitmap are 492 * cleared in other colors. 493 */ 494 for (int j = 0; j < 16; ++j) 495 pattern_ncolors[(dst_y + i) * 16 + j] &= 496 ~mask; 497 } 498 pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern; 499 pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask); 500 } 501 } 502 503 static void 504 vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks, 505 term_color_t fg, term_color_t bg, 506 unsigned int x, unsigned int y, unsigned int height) 507 { 508 unsigned int i, offset; 509 struct vga_softc *sc; 510 511 /* 512 * The great advantage of Write Mode 3 is that we just need 513 * to load the foreground in the Set/Reset register, load the 514 * background color in the latches register (this is done 515 * through a write in offscreen memory followed by a read of 516 * that data), then write the pattern to video memory. This 517 * pattern indicates if the pixel should use the foreground 518 * color (bit set) or the background color (bit cleared). 519 */ 520 521 vga_setbg(vd, bg); 522 vga_setfg(vd, fg); 523 524 sc = vd->vd_softc; 525 offset = (VT_VGA_WIDTH * y + x) / 8; 526 527 for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) { 528 MEM_WRITE1(sc, offset, masks[i]); 529 } 530 } 531 532 static void 533 vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks, 534 unsigned int x, unsigned int y, unsigned int height) 535 { 536 unsigned int i, j, plan, color, offset; 537 struct vga_softc *sc; 538 uint8_t mask, plans[height * 4]; 539 540 sc = vd->vd_softc; 541 542 memset(plans, 0, sizeof(plans)); 543 544 /* 545 * To write a group of pixels using 3 or more colors, we select 546 * Write Mode 0 and write one byte to each plan separately. 547 */ 548 549 /* 550 * We first compute each byte: each plan contains one bit of the 551 * color code for each of the 8 pixels. 552 * 553 * For example, if the 8 pixels are like this: 554 * GBBBBBBY 555 * where: 556 * G (gray) = 0b0111 557 * B (black) = 0b0000 558 * Y (yellow) = 0b0011 559 * 560 * The corresponding for bytes are: 561 * GBBBBBBY 562 * Plan 0: 10000001 = 0x81 563 * Plan 1: 10000001 = 0x81 564 * Plan 2: 10000000 = 0x80 565 * Plan 3: 00000000 = 0x00 566 * | | | 567 * | | +-> 0b0011 (Y) 568 * | +-----> 0b0000 (B) 569 * +--------> 0b0111 (G) 570 */ 571 572 for (i = 0; i < height; ++i) { 573 for (color = 0; color < 16; ++color) { 574 mask = masks[i * 16 + color]; 575 if (mask == 0x00) 576 continue; 577 578 for (j = 0; j < 8; ++j) { 579 if (!((mask >> (7 - j)) & 0x1)) 580 continue; 581 582 /* The pixel "j" uses color "color". */ 583 for (plan = 0; plan < 4; ++plan) 584 plans[i * 4 + plan] |= 585 ((color >> plan) & 0x1) << (7 - j); 586 } 587 } 588 } 589 590 /* 591 * The bytes are ready: we now switch to Write Mode 0 and write 592 * all bytes, one plan at a time. 593 */ 594 vga_setwmode(vd, 0); 595 596 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK); 597 for (plan = 0; plan < 4; ++plan) { 598 /* Select plan. */ 599 REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plan); 600 601 /* Write all bytes for this plan, from Y to Y+height. */ 602 for (i = 0; i < height; ++i) { 603 offset = (VT_VGA_WIDTH * (y + i) + x) / 8; 604 MEM_WRITE1(sc, offset, plans[i * 4 + plan]); 605 } 606 } 607 } 608 609 static void 610 vga_bitblt_one_text_pixels_block(struct vt_device *vd, 611 const struct vt_window *vw, unsigned int x, unsigned int y) 612 { 613 const struct vt_buf *vb; 614 const struct vt_font *vf; 615 unsigned int i, col, row, src_x, x_count; 616 unsigned int used_colors_list[16], used_colors; 617 uint8_t pattern_2colors[vw->vw_font->vf_height]; 618 uint8_t pattern_ncolors[vw->vw_font->vf_height * 16]; 619 term_char_t c; 620 term_color_t fg, bg; 621 const uint8_t *src; 622 623 vb = &vw->vw_buf; 624 vf = vw->vw_font; 625 626 /* 627 * The current pixels block. 628 * 629 * We fill it with portions of characters, because both "grids" 630 * may not match. 631 * 632 * i is the index in this pixels block. 633 */ 634 635 i = x; 636 used_colors = 0; 637 memset(used_colors_list, 0, sizeof(used_colors_list)); 638 memset(pattern_2colors, 0, sizeof(pattern_2colors)); 639 memset(pattern_ncolors, 0, sizeof(pattern_ncolors)); 640 641 if (i < vw->vw_draw_area.tr_begin.tp_col) { 642 /* 643 * i is in the margin used to center the text area on 644 * the screen. 645 */ 646 647 i = vw->vw_draw_area.tr_begin.tp_col; 648 } 649 650 while (i < x + VT_VGA_PIXELS_BLOCK && 651 i < vw->vw_draw_area.tr_end.tp_col) { 652 /* 653 * Find which character is drawn on this pixel in the 654 * pixels block. 655 * 656 * While here, record what colors it uses. 657 */ 658 659 col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width; 660 row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height; 661 662 c = VTBUF_GET_FIELD(vb, row, col); 663 src = vtfont_lookup(vf, c); 664 665 vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg); 666 if ((used_colors_list[fg] & 0x1) != 0x1) 667 used_colors++; 668 if ((used_colors_list[bg] & 0x2) != 0x2) 669 used_colors++; 670 used_colors_list[fg] |= 0x1; 671 used_colors_list[bg] |= 0x2; 672 673 /* 674 * Compute the portion of the character we want to draw, 675 * because the pixels block may start in the middle of a 676 * character. 677 * 678 * The first pixel to draw in the character is 679 * the current position - 680 * the start position of the character 681 * 682 * The last pixel to draw is either 683 * - the last pixel of the character, or 684 * - the pixel of the character matching the end of 685 * the pixels block 686 * whichever comes first. This position is then 687 * changed to be relative to the start position of the 688 * character. 689 */ 690 691 src_x = i - 692 (col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col); 693 x_count = min(min( 694 (col + 1) * vf->vf_width + 695 vw->vw_draw_area.tr_begin.tp_col, 696 x + VT_VGA_PIXELS_BLOCK), 697 vw->vw_draw_area.tr_end.tp_col); 698 x_count -= col * vf->vf_width + 699 vw->vw_draw_area.tr_begin.tp_col; 700 x_count -= src_x; 701 702 /* Copy a portion of the character. */ 703 vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors, 704 src, NULL, vf->vf_width, 705 src_x, i % VT_VGA_PIXELS_BLOCK, x_count, 706 0, 0, vf->vf_height, fg, bg, 0); 707 708 /* We move to the next portion. */ 709 i += x_count; 710 } 711 712 #ifndef SC_NO_CUTPASTE 713 /* 714 * Copy the mouse pointer bitmap if it's over the current pixels 715 * block. 716 * 717 * We use the saved cursor position (saved in vt_flush()), because 718 * the current position could be different than the one used 719 * to mark the area dirty. 720 */ 721 term_rect_t drawn_area; 722 723 drawn_area.tr_begin.tp_col = x; 724 drawn_area.tr_begin.tp_row = y; 725 drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK; 726 drawn_area.tr_end.tp_row = y + vf->vf_height; 727 if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) { 728 struct vt_mouse_cursor *cursor; 729 unsigned int mx, my; 730 unsigned int dst_x, src_y, dst_y, y_count; 731 732 cursor = vd->vd_mcursor; 733 mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col; 734 my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row; 735 736 /* Compute the portion of the cursor we want to copy. */ 737 src_x = x > mx ? x - mx : 0; 738 dst_x = mx > x ? mx - x : 0; 739 x_count = min(min(min( 740 cursor->width - src_x, 741 x + VT_VGA_PIXELS_BLOCK - mx), 742 vw->vw_draw_area.tr_end.tp_col - mx), 743 VT_VGA_PIXELS_BLOCK); 744 745 /* 746 * The cursor isn't aligned on the Y-axis with 747 * characters, so we need to compute the vertical 748 * start/count. 749 */ 750 src_y = y > my ? y - my : 0; 751 dst_y = my > y ? my - y : 0; 752 y_count = min( 753 min(cursor->height - src_y, y + vf->vf_height - my), 754 vf->vf_height); 755 756 /* Copy the cursor portion. */ 757 vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors, 758 cursor->map, cursor->mask, cursor->width, 759 src_x, dst_x, x_count, src_y, dst_y, y_count, 760 vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1); 761 762 if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1) 763 used_colors++; 764 if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2) 765 used_colors++; 766 } 767 #endif 768 769 /* 770 * The pixels block is completed, we can now draw it on the 771 * screen. 772 */ 773 if (used_colors == 2) 774 vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg, 775 x, y, vf->vf_height); 776 else 777 vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors, 778 x, y, vf->vf_height); 779 } 780 781 static void 782 vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw, 783 const term_rect_t *area) 784 { 785 const struct vt_font *vf; 786 unsigned int col, row; 787 unsigned int x1, y1, x2, y2, x, y; 788 789 vf = vw->vw_font; 790 791 /* 792 * Compute the top-left pixel position aligned with the video 793 * adapter pixels block size. 794 * 795 * This is calculated from the top-left column of te dirty area: 796 * 797 * 1. Compute the top-left pixel of the character: 798 * col * font width + x offset 799 * 800 * NOTE: x offset is used to center the text area on the 801 * screen. It's expressed in pixels, not in characters 802 * col/row! 803 * 804 * 2. Find the pixel further on the left marking the start of 805 * an aligned pixels block (eg. chunk of 8 pixels): 806 * character's x / blocksize * blocksize 807 * 808 * The division, being made on integers, achieves the 809 * alignment. 810 * 811 * For the Y-axis, we need to compute the character's y 812 * coordinate, but we don't need to align it. 813 */ 814 815 col = area->tr_begin.tp_col; 816 row = area->tr_begin.tp_row; 817 x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col) 818 / VT_VGA_PIXELS_BLOCK) 819 * VT_VGA_PIXELS_BLOCK; 820 y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row; 821 822 /* 823 * Compute the bottom right pixel position, again, aligned with 824 * the pixels block size. 825 * 826 * The same rules apply, we just add 1 to base the computation 827 * on the "right border" of the dirty area. 828 */ 829 830 col = area->tr_end.tp_col; 831 row = area->tr_end.tp_row; 832 x2 = (int)howmany(col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col, 833 VT_VGA_PIXELS_BLOCK) 834 * VT_VGA_PIXELS_BLOCK; 835 y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row; 836 837 /* Clip the area to the screen size. */ 838 x2 = min(x2, vw->vw_draw_area.tr_end.tp_col); 839 y2 = min(y2, vw->vw_draw_area.tr_end.tp_row); 840 841 /* 842 * Now, we take care of N pixels line at a time (the first for 843 * loop, N = font height), and for these lines, draw one pixels 844 * block at a time (the second for loop), not a character at a 845 * time. 846 * 847 * Therefore, on the X-axis, characters my be drawn partially if 848 * they are not aligned on 8-pixels boundary. 849 * 850 * However, the operation is repeated for the full height of the 851 * font before moving to the next character, because it allows 852 * to keep the color settings and write mode, before perhaps 853 * changing them with the next one. 854 */ 855 856 for (y = y1; y < y2; y += vf->vf_height) { 857 for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) { 858 vga_bitblt_one_text_pixels_block(vd, vw, x, y); 859 } 860 } 861 } 862 863 static void 864 vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw, 865 const term_rect_t *area) 866 { 867 struct vga_softc *sc; 868 const struct vt_buf *vb; 869 unsigned int col, row; 870 term_char_t c; 871 term_color_t fg, bg; 872 uint8_t ch, attr; 873 size_t z; 874 875 sc = vd->vd_softc; 876 vb = &vw->vw_buf; 877 878 for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) { 879 for (col = area->tr_begin.tp_col; 880 col < area->tr_end.tp_col; 881 ++col) { 882 /* 883 * Get next character and its associated fg/bg 884 * colors. 885 */ 886 c = VTBUF_GET_FIELD(vb, row, col); 887 vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), 888 &fg, &bg); 889 890 z = row * PIXEL_WIDTH(VT_FB_MAX_WIDTH) + col; 891 if (vd->vd_drawn && (vd->vd_drawn[z] == c) && 892 vd->vd_drawnfg && (vd->vd_drawnfg[z] == fg) && 893 vd->vd_drawnbg && (vd->vd_drawnbg[z] == bg)) 894 continue; 895 896 /* 897 * Convert character to CP437, which is the 898 * character set used by the VGA hardware by 899 * default. 900 */ 901 ch = vga_get_cp437(TCHAR_CHARACTER(c)); 902 903 /* Convert colors to VGA attributes. */ 904 attr = 905 cons_to_vga_colors[bg] << 4 | 906 cons_to_vga_colors[fg]; 907 908 MEM_WRITE2(sc, (row * 80 + col) * 2 + 0, 909 ch + ((uint16_t)(attr) << 8)); 910 911 if (vd->vd_drawn) 912 vd->vd_drawn[z] = c; 913 if (vd->vd_drawnfg) 914 vd->vd_drawnfg[z] = fg; 915 if (vd->vd_drawnbg) 916 vd->vd_drawnbg[z] = bg; 917 } 918 } 919 } 920 921 static void 922 vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw, 923 const term_rect_t *area) 924 { 925 926 if (!(vd->vd_flags & VDF_TEXTMODE)) { 927 vga_bitblt_text_gfxmode(vd, vw, area); 928 } else { 929 vga_bitblt_text_txtmode(vd, vw, area); 930 } 931 } 932 933 void 934 vga_invalidate_text(struct vt_device *vd, const term_rect_t *area) 935 { 936 unsigned int col, row; 937 size_t z; 938 939 for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) { 940 for (col = area->tr_begin.tp_col; 941 col < area->tr_end.tp_col; 942 ++col) { 943 z = row * PIXEL_WIDTH(VT_FB_MAX_WIDTH) + col; 944 if (vd->vd_drawn) 945 vd->vd_drawn[z] = 0; 946 if (vd->vd_drawnfg) 947 vd->vd_drawnfg[z] = 0; 948 if (vd->vd_drawnbg) 949 vd->vd_drawnbg[z] = 0; 950 } 951 } 952 } 953 954 static void 955 vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw, 956 const uint8_t *pattern, const uint8_t *mask, 957 unsigned int width, unsigned int height, 958 unsigned int x, unsigned int y, term_color_t fg, term_color_t bg) 959 { 960 unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count; 961 uint8_t pattern_2colors; 962 963 /* Align coordinates with the 8-pxels grid. */ 964 x1 = rounddown(x, VT_VGA_PIXELS_BLOCK); 965 y1 = y; 966 967 x2 = roundup(x + width, VT_VGA_PIXELS_BLOCK); 968 y2 = y + height; 969 x2 = min(x2, vd->vd_width - 1); 970 y2 = min(y2, vd->vd_height - 1); 971 972 for (j = y1; j < y2; ++j) { 973 src_x = 0; 974 dst_x = x - x1; 975 x_count = VT_VGA_PIXELS_BLOCK - dst_x; 976 977 for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) { 978 pattern_2colors = 0; 979 980 vga_copy_bitmap_portion( 981 &pattern_2colors, NULL, 982 pattern, mask, width, 983 src_x, dst_x, x_count, 984 j - y1, 0, 1, fg, bg, 0); 985 986 vga_bitblt_pixels_block_2colors(vd, 987 &pattern_2colors, fg, bg, 988 i, j, 1); 989 990 src_x += x_count; 991 dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK; 992 x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK); 993 } 994 } 995 } 996 997 static void 998 vga_initialize_graphics(struct vt_device *vd) 999 { 1000 struct vga_softc *sc = vd->vd_softc; 1001 1002 /* Clock select. */ 1003 REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP | 1004 VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA); 1005 /* Set sequencer clocking and memory mode. */ 1006 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE); 1007 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89); 1008 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE); 1009 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM); 1010 1011 /* Set the graphics controller in graphics mode. */ 1012 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS); 1013 REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA); 1014 /* Program the CRT controller. */ 1015 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL); 1016 REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f); /* 760 */ 1017 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END); 1018 REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f); /* 640 - 8 */ 1019 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK); 1020 REG_WRITE1(sc, VGA_CRTC_DATA, 0x50); /* 640 */ 1021 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK); 1022 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2); 1023 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE); 1024 REG_WRITE1(sc, VGA_CRTC_DATA, 0x54); /* 672 */ 1025 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE); 1026 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0); 1027 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL); 1028 REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b); /* 523 */ 1029 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW); 1030 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 | 1031 VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8); 1032 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE); 1033 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9); 1034 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START); 1035 REG_WRITE1(sc, VGA_CRTC_DATA, 0xea); /* 480 + 10 */ 1036 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END); 1037 REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c); 1038 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END); 1039 REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf); /* 480 - 1*/ 1040 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET); 1041 REG_WRITE1(sc, VGA_CRTC_DATA, 0x28); 1042 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK); 1043 REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7); /* 480 + 7 */ 1044 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK); 1045 REG_WRITE1(sc, VGA_CRTC_DATA, 0x04); 1046 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL); 1047 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW | 1048 VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS); 1049 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE); 1050 REG_WRITE1(sc, VGA_CRTC_DATA, 0xff); /* 480 + 31 */ 1051 1052 REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0); 1053 1054 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK); 1055 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 | 1056 VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0); 1057 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT); 1058 REG_WRITE1(sc, VGA_SEQ_DATA, 0); 1059 1060 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET); 1061 REG_WRITE1(sc, VGA_GC_DATA, 0); 1062 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET); 1063 REG_WRITE1(sc, VGA_GC_DATA, 0x0f); 1064 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE); 1065 REG_WRITE1(sc, VGA_GC_DATA, 0); 1066 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE); 1067 REG_WRITE1(sc, VGA_GC_DATA, 0); 1068 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT); 1069 REG_WRITE1(sc, VGA_GC_DATA, 0); 1070 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE); 1071 REG_WRITE1(sc, VGA_GC_DATA, 0); 1072 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE); 1073 REG_WRITE1(sc, VGA_GC_DATA, 0x0f); 1074 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK); 1075 REG_WRITE1(sc, VGA_GC_DATA, 0xff); 1076 } 1077 1078 static int 1079 vga_initialize(struct vt_device *vd, int textmode) 1080 { 1081 struct vga_softc *sc = vd->vd_softc; 1082 uint8_t x; 1083 int timeout; 1084 1085 /* Make sure the VGA adapter is not in monochrome emulation mode. */ 1086 x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R); 1087 REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA); 1088 1089 /* Unprotect CRTC registers 0-7. */ 1090 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END); 1091 x = REG_READ1(sc, VGA_CRTC_DATA); 1092 REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR); 1093 1094 /* 1095 * Wait for the vertical retrace. 1096 * NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has 1097 * the side-effect of clearing the internal flip-flip of the attribute 1098 * controller's write register. This means that because this code is 1099 * here, we know for sure that the first write to the attribute 1100 * controller will be a write to the address register. Removing this 1101 * code therefore also removes that guarantee and appropriate measures 1102 * need to be taken. 1103 */ 1104 timeout = 10000; 1105 do { 1106 DELAY(10); 1107 x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1); 1108 x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE; 1109 } while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE) && --timeout != 0); 1110 if (timeout == 0) { 1111 printf("Timeout initializing vt_vga\n"); 1112 return (ENXIO); 1113 } 1114 1115 /* Now, disable the sync. signals. */ 1116 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL); 1117 x = REG_READ1(sc, VGA_CRTC_DATA); 1118 REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR); 1119 1120 /* Asynchronous sequencer reset. */ 1121 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET); 1122 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR); 1123 1124 if (!textmode) 1125 vga_initialize_graphics(vd); 1126 1127 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN); 1128 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1129 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START); 1130 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO); 1131 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END); 1132 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1133 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH); 1134 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1135 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW); 1136 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1137 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH); 1138 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1139 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW); 1140 REG_WRITE1(sc, VGA_CRTC_DATA, 0x59); 1141 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC); 1142 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL); 1143 1144 if (textmode) { 1145 /* Set the attribute controller to blink disable. */ 1146 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL); 1147 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1148 } else { 1149 /* Set the attribute controller in graphics mode. */ 1150 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL); 1151 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA); 1152 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING); 1153 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1154 } 1155 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0)); 1156 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1157 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1)); 1158 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B); 1159 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2)); 1160 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G); 1161 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3)); 1162 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B); 1163 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4)); 1164 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R); 1165 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5)); 1166 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B); 1167 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6)); 1168 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R); 1169 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7)); 1170 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B); 1171 1172 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8)); 1173 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1174 VGA_AC_PAL_SB); 1175 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9)); 1176 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1177 VGA_AC_PAL_SB | VGA_AC_PAL_B); 1178 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10)); 1179 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1180 VGA_AC_PAL_SB | VGA_AC_PAL_G); 1181 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11)); 1182 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1183 VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B); 1184 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12)); 1185 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1186 VGA_AC_PAL_SB | VGA_AC_PAL_R); 1187 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13)); 1188 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1189 VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B); 1190 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14)); 1191 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1192 VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G); 1193 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15)); 1194 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1195 VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B); 1196 1197 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR); 1198 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1199 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE); 1200 REG_WRITE1(sc, VGA_AC_WRITE, 0x0f); 1201 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT); 1202 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1203 1204 if (!textmode) { 1205 u_int ofs; 1206 1207 /* 1208 * Done. Clear the frame buffer. All bit planes are 1209 * enabled, so a single-paged loop should clear all 1210 * planes. 1211 */ 1212 for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) { 1213 MEM_WRITE1(sc, ofs, 0); 1214 } 1215 } 1216 1217 /* Re-enable the sequencer. */ 1218 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET); 1219 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR); 1220 /* Re-enable the sync signals. */ 1221 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL); 1222 x = REG_READ1(sc, VGA_CRTC_DATA); 1223 REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR); 1224 1225 if (!textmode) { 1226 /* Switch to write mode 3, because we'll mainly do bitblt. */ 1227 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE); 1228 REG_WRITE1(sc, VGA_GC_DATA, 3); 1229 sc->vga_wmode = 3; 1230 1231 /* 1232 * In Write Mode 3, Enable Set/Reset is ignored, but we 1233 * use Write Mode 0 to write a group of 8 pixels using 1234 * 3 or more colors. In this case, we want to disable 1235 * Set/Reset: set Enable Set/Reset to 0. 1236 */ 1237 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET); 1238 REG_WRITE1(sc, VGA_GC_DATA, 0x00); 1239 1240 /* 1241 * Clear the colors we think are loaded into Set/Reset or 1242 * the latches. 1243 */ 1244 sc->vga_curfg = sc->vga_curbg = 0xff; 1245 } 1246 1247 return (0); 1248 } 1249 1250 static bool 1251 vga_acpi_disabled(void) 1252 { 1253 #if defined(__amd64__) || defined(__i386__) 1254 uint16_t flags; 1255 int ignore; 1256 1257 ignore = 0; 1258 TUNABLE_INT_FETCH("hw.vga.acpi_ignore_no_vga", &ignore); 1259 if (ignore || !acpi_get_fadt_bootflags(&flags)) 1260 return (false); 1261 return ((flags & ACPI_FADT_NO_VGA) != 0); 1262 #else 1263 return (false); 1264 #endif 1265 } 1266 1267 static int 1268 vga_probe(struct vt_device *vd) 1269 { 1270 1271 return (vga_acpi_disabled() ? CN_DEAD : CN_INTERNAL); 1272 } 1273 1274 static int 1275 vga_init(struct vt_device *vd) 1276 { 1277 struct vga_softc *sc; 1278 int textmode; 1279 1280 if (vd->vd_softc == NULL) 1281 vd->vd_softc = (void *)&vga_conssoftc; 1282 sc = vd->vd_softc; 1283 1284 if (vd->vd_flags & VDF_DOWNGRADE && vd->vd_video_dev != NULL) 1285 vga_pci_repost(vd->vd_video_dev); 1286 1287 #if defined(__amd64__) || defined(__i386__) 1288 sc->vga_fb_tag = X86_BUS_SPACE_MEM; 1289 sc->vga_reg_tag = X86_BUS_SPACE_IO; 1290 #else 1291 # error "Architecture not yet supported!" 1292 #endif 1293 1294 bus_space_map(sc->vga_reg_tag, VGA_REG_BASE, VGA_REG_SIZE, 0, 1295 &sc->vga_reg_handle); 1296 1297 /* 1298 * If "hw.vga.textmode" is not set and we're running on hypervisor, 1299 * we use text mode by default, this is because when we're on 1300 * hypervisor, vt(4) is usually much slower in graphics mode than 1301 * in text mode, especially when we're on Hyper-V. 1302 */ 1303 textmode = vm_guest != VM_GUEST_NO; 1304 TUNABLE_INT_FETCH("hw.vga.textmode", &textmode); 1305 if (textmode) { 1306 vd->vd_flags |= VDF_TEXTMODE; 1307 vd->vd_width = 80; 1308 vd->vd_height = 25; 1309 bus_space_map(sc->vga_fb_tag, VGA_TXT_BASE, VGA_TXT_SIZE, 0, 1310 &sc->vga_fb_handle); 1311 } else { 1312 vd->vd_width = VT_VGA_WIDTH; 1313 vd->vd_height = VT_VGA_HEIGHT; 1314 bus_space_map(sc->vga_fb_tag, VGA_MEM_BASE, VGA_MEM_SIZE, 0, 1315 &sc->vga_fb_handle); 1316 } 1317 if (vga_initialize(vd, textmode) != 0) 1318 return (CN_DEAD); 1319 sc->vga_enabled = true; 1320 1321 return (CN_INTERNAL); 1322 } 1323 1324 static void 1325 vga_postswitch(struct vt_device *vd) 1326 { 1327 1328 /* Reinit VGA mode, to restore view after app which change mode. */ 1329 vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE)); 1330 /* Ask vt(9) to update chars on visible area. */ 1331 vd->vd_flags |= VDF_INVALID; 1332 } 1333 1334 /* Dummy NewBus functions to reserve the resources used by the vt_vga driver */ 1335 static void 1336 vtvga_identify(driver_t *driver, device_t parent) 1337 { 1338 1339 if (!vga_conssoftc.vga_enabled) 1340 return; 1341 1342 if (BUS_ADD_CHILD(parent, 0, driver->name, 0) == NULL) 1343 panic("Unable to attach vt_vga console"); 1344 } 1345 1346 static int 1347 vtvga_probe(device_t dev) 1348 { 1349 1350 device_set_desc(dev, "VT VGA driver"); 1351 1352 return (BUS_PROBE_NOWILDCARD); 1353 } 1354 1355 static int 1356 vtvga_attach(device_t dev) 1357 { 1358 struct resource *pseudo_phys_res; 1359 int res_id; 1360 1361 res_id = 0; 1362 pseudo_phys_res = bus_alloc_resource(dev, SYS_RES_MEMORY, 1363 &res_id, VGA_MEM_BASE, VGA_MEM_BASE + VGA_MEM_SIZE - 1, 1364 VGA_MEM_SIZE, RF_ACTIVE); 1365 if (pseudo_phys_res == NULL) 1366 panic("Unable to reserve vt_vga memory"); 1367 return (0); 1368 } 1369 1370 /*-------------------- Private Device Attachment Data -----------------------*/ 1371 static device_method_t vtvga_methods[] = { 1372 /* Device interface */ 1373 DEVMETHOD(device_identify, vtvga_identify), 1374 DEVMETHOD(device_probe, vtvga_probe), 1375 DEVMETHOD(device_attach, vtvga_attach), 1376 1377 DEVMETHOD_END 1378 }; 1379 1380 DEFINE_CLASS_0(vtvga, vtvga_driver, vtvga_methods, 0); 1381 devclass_t vtvga_devclass; 1382 1383 DRIVER_MODULE(vtvga, nexus, vtvga_driver, vtvga_devclass, NULL, NULL); 1384