1 /*- 2 * Copyright (c) 2005 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Copyright (c) 2009 The FreeBSD Foundation 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Ed Schouten 9 * under sponsorship from the FreeBSD Foundation. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <sys/param.h> 37 #include <sys/kernel.h> 38 #include <sys/systm.h> 39 40 #include <dev/vt/vt.h> 41 #include <dev/vt/hw/vga/vt_vga_reg.h> 42 43 #include <machine/bus.h> 44 45 #if defined(__amd64__) || defined(__i386__) 46 #include <vm/vm.h> 47 #include <vm/pmap.h> 48 #include <machine/pmap.h> 49 #include <machine/vmparam.h> 50 #endif /* __amd64__ || __i386__ */ 51 52 struct vga_softc { 53 bus_space_tag_t vga_fb_tag; 54 bus_space_handle_t vga_fb_handle; 55 bus_space_tag_t vga_reg_tag; 56 bus_space_handle_t vga_reg_handle; 57 int vga_wmode; 58 term_color_t vga_curfg, vga_curbg; 59 }; 60 61 /* Convenience macros. */ 62 #define MEM_READ1(sc, ofs) \ 63 bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs) 64 #define MEM_WRITE1(sc, ofs, val) \ 65 bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val) 66 #define REG_READ1(sc, reg) \ 67 bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg) 68 #define REG_WRITE1(sc, reg, val) \ 69 bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val) 70 71 #define VT_VGA_WIDTH 640 72 #define VT_VGA_HEIGHT 480 73 #define VT_VGA_MEMSIZE (VT_VGA_WIDTH * VT_VGA_HEIGHT / 8) 74 75 /* 76 * VGA is designed to handle 8 pixels at a time (8 pixels in one byte of 77 * memory). 78 */ 79 #define VT_VGA_PIXELS_BLOCK 8 80 81 /* 82 * We use an off-screen addresses to: 83 * o store the background color; 84 * o store pixels pattern. 85 * Those addresses are then loaded in the latches once. 86 */ 87 #define VT_VGA_BGCOLOR_OFFSET VT_VGA_MEMSIZE 88 89 static vd_probe_t vga_probe; 90 static vd_init_t vga_init; 91 static vd_blank_t vga_blank; 92 static vd_bitblt_text_t vga_bitblt_text; 93 static vd_bitblt_bmp_t vga_bitblt_bitmap; 94 static vd_drawrect_t vga_drawrect; 95 static vd_setpixel_t vga_setpixel; 96 static vd_postswitch_t vga_postswitch; 97 98 static const struct vt_driver vt_vga_driver = { 99 .vd_name = "vga", 100 .vd_probe = vga_probe, 101 .vd_init = vga_init, 102 .vd_blank = vga_blank, 103 .vd_bitblt_text = vga_bitblt_text, 104 .vd_bitblt_bmp = vga_bitblt_bitmap, 105 .vd_drawrect = vga_drawrect, 106 .vd_setpixel = vga_setpixel, 107 .vd_postswitch = vga_postswitch, 108 .vd_priority = VD_PRIORITY_GENERIC, 109 }; 110 111 /* 112 * Driver supports both text mode and graphics mode. Make sure the 113 * buffer is always big enough to support both. 114 */ 115 static struct vga_softc vga_conssoftc; 116 VT_DRIVER_DECLARE(vt_vga, vt_vga_driver); 117 118 static inline void 119 vga_setwmode(struct vt_device *vd, int wmode) 120 { 121 struct vga_softc *sc = vd->vd_softc; 122 123 if (sc->vga_wmode == wmode) 124 return; 125 126 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE); 127 REG_WRITE1(sc, VGA_GC_DATA, wmode); 128 sc->vga_wmode = wmode; 129 130 switch (wmode) { 131 case 3: 132 /* Re-enable all plans. */ 133 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK); 134 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 | 135 VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0); 136 break; 137 } 138 } 139 140 static inline void 141 vga_setfg(struct vt_device *vd, term_color_t color) 142 { 143 struct vga_softc *sc = vd->vd_softc; 144 145 vga_setwmode(vd, 3); 146 147 if (sc->vga_curfg == color) 148 return; 149 150 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET); 151 REG_WRITE1(sc, VGA_GC_DATA, color); 152 sc->vga_curfg = color; 153 } 154 155 static inline void 156 vga_setbg(struct vt_device *vd, term_color_t color) 157 { 158 struct vga_softc *sc = vd->vd_softc; 159 160 vga_setwmode(vd, 3); 161 162 if (sc->vga_curbg == color) 163 return; 164 165 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET); 166 REG_WRITE1(sc, VGA_GC_DATA, color); 167 168 /* 169 * Write 8 pixels using the background color to an off-screen 170 * byte in the video memory. 171 */ 172 MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff); 173 174 /* 175 * Read those 8 pixels back to load the background color in the 176 * latches register. 177 */ 178 MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET); 179 180 sc->vga_curbg = color; 181 182 /* 183 * The Set/Reset register doesn't contain the fg color anymore, 184 * store an invalid color. 185 */ 186 sc->vga_curfg = 0xff; 187 } 188 189 /* 190 * Binary searchable table for Unicode to CP437 conversion. 191 */ 192 193 struct unicp437 { 194 uint16_t unicode_base; 195 uint8_t cp437_base; 196 uint8_t length; 197 }; 198 199 static const struct unicp437 cp437table[] = { 200 { 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 }, 201 { 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 }, 202 { 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 }, 203 { 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 }, 204 { 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 }, 205 { 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 }, 206 { 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 }, 207 { 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 }, 208 { 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 }, 209 { 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 }, 210 { 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 }, 211 { 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 }, 212 { 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 }, 213 { 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 }, 214 { 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 }, 215 { 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 }, 216 { 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 }, 217 { 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 }, 218 { 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 }, 219 { 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 }, 220 { 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 }, 221 { 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 }, 222 { 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 }, 223 { 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 }, 224 { 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 }, 225 { 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 }, 226 { 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 }, 227 { 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 }, 228 { 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 }, 229 { 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 }, 230 { 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 }, 231 { 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 }, 232 { 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 }, 233 { 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 }, 234 { 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 }, 235 { 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 }, 236 { 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 }, 237 { 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 }, 238 { 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 }, 239 { 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 }, 240 { 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 }, 241 { 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 }, 242 { 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 }, 243 { 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 }, 244 { 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 }, 245 { 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 }, 246 { 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 }, 247 { 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 }, 248 { 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 }, 249 { 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 }, 250 { 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 }, 251 { 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 }, 252 { 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 }, 253 { 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 }, 254 { 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 }, 255 { 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 }, 256 { 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 }, 257 { 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 }, 258 { 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 }, 259 { 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 }, 260 { 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 }, 261 { 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 }, 262 { 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 }, 263 { 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 }, 264 { 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 }, 265 { 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 }, 266 { 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 }, 267 { 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 }, 268 { 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 }, 269 { 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 }, 270 { 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 }, 271 { 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 }, 272 { 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 }, 273 { 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 }, 274 { 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 }, 275 { 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 }, 276 { 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 }, 277 { 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 }, 278 { 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 }, 279 { 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 }, 280 { 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 }, 281 { 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 }, 282 { 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 }, 283 { 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 }, 284 { 0x266c, 0x0e, 0x00 }, 285 }; 286 287 static uint8_t 288 vga_get_cp437(term_char_t c) 289 { 290 int min, mid, max; 291 292 min = 0; 293 max = (sizeof(cp437table) / sizeof(struct unicp437)) - 1; 294 295 if (c < cp437table[0].unicode_base || 296 c > cp437table[max].unicode_base + cp437table[max].length) 297 return '?'; 298 299 while (max >= min) { 300 mid = (min + max) / 2; 301 if (c < cp437table[mid].unicode_base) 302 max = mid - 1; 303 else if (c > cp437table[mid].unicode_base + 304 cp437table[mid].length) 305 min = mid + 1; 306 else 307 return (c - cp437table[mid].unicode_base + 308 cp437table[mid].cp437_base); 309 } 310 311 return '?'; 312 } 313 314 static void 315 vga_blank(struct vt_device *vd, term_color_t color) 316 { 317 struct vga_softc *sc = vd->vd_softc; 318 u_int ofs; 319 320 vga_setfg(vd, color); 321 for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) 322 MEM_WRITE1(sc, ofs, 0xff); 323 } 324 325 static inline void 326 vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color, 327 uint8_t v) 328 { 329 struct vga_softc *sc = vd->vd_softc; 330 331 /* Skip empty writes, in order to avoid palette changes. */ 332 if (v != 0x00) { 333 vga_setfg(vd, color); 334 /* 335 * When this MEM_READ1() gets disabled, all sorts of 336 * artifacts occur. This is because this read loads the 337 * set of 8 pixels that are about to be changed. There 338 * is one scenario where we can avoid the read, namely 339 * if all pixels are about to be overwritten anyway. 340 */ 341 if (v != 0xff) { 342 MEM_READ1(sc, dst); 343 344 /* The bg color was trashed by the reads. */ 345 sc->vga_curbg = 0xff; 346 } 347 MEM_WRITE1(sc, dst, v); 348 } 349 } 350 351 static void 352 vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color) 353 { 354 355 if (vd->vd_flags & VDF_TEXTMODE) 356 return; 357 358 vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color, 359 0x80 >> (x % 8)); 360 } 361 362 static void 363 vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill, 364 term_color_t color) 365 { 366 int x, y; 367 368 if (vd->vd_flags & VDF_TEXTMODE) 369 return; 370 371 for (y = y1; y <= y2; y++) { 372 if (fill || (y == y1) || (y == y2)) { 373 for (x = x1; x <= x2; x++) 374 vga_setpixel(vd, x, y, color); 375 } else { 376 vga_setpixel(vd, x1, y, color); 377 vga_setpixel(vd, x2, y, color); 378 } 379 } 380 } 381 382 static void 383 vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes, 384 unsigned int src_x, unsigned int x_count, unsigned int dst_x, 385 uint8_t *pattern, uint8_t *mask) 386 { 387 unsigned int n; 388 389 n = src_x / 8; 390 391 /* 392 * This mask has bits set, where a pixel (ether 0 or 1) 393 * comes from the source bitmap. 394 */ 395 if (mask != NULL) { 396 *mask = (0xff 397 >> (8 - x_count)) 398 << (8 - x_count - dst_x); 399 } 400 401 if (n == (src_x + x_count - 1) / 8) { 402 /* All the pixels we want are in the same byte. */ 403 *pattern = src[n]; 404 if (dst_x >= src_x) 405 *pattern >>= (dst_x - src_x % 8); 406 else 407 *pattern <<= (src_x % 8 - dst_x); 408 } else { 409 /* The pixels we want are split into two bytes. */ 410 if (dst_x >= src_x % 8) { 411 *pattern = 412 src[n] << (8 - dst_x - src_x % 8) | 413 src[n + 1] >> (dst_x - src_x % 8); 414 } else { 415 *pattern = 416 src[n] << (src_x % 8 - dst_x) | 417 src[n + 1] >> (8 - src_x % 8 - dst_x); 418 } 419 } 420 } 421 422 static void 423 vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors, 424 const uint8_t *src, const uint8_t *src_mask, unsigned int src_width, 425 unsigned int src_x, unsigned int dst_x, unsigned int x_count, 426 unsigned int src_y, unsigned int dst_y, unsigned int y_count, 427 term_color_t fg, term_color_t bg, int overwrite) 428 { 429 unsigned int i, bytes; 430 uint8_t pattern, relevant_bits, mask; 431 432 bytes = (src_width + 7) / 8; 433 434 for (i = 0; i < y_count; ++i) { 435 vga_compute_shifted_pattern(src + (src_y + i) * bytes, 436 bytes, src_x, x_count, dst_x, &pattern, &relevant_bits); 437 438 if (src_mask == NULL) { 439 /* 440 * No src mask. Consider that all wanted bits 441 * from the source are "authoritative". 442 */ 443 mask = relevant_bits; 444 } else { 445 /* 446 * There's an src mask. We shift it the same way 447 * we shifted the source pattern. 448 */ 449 vga_compute_shifted_pattern( 450 src_mask + (src_y + i) * bytes, 451 bytes, src_x, x_count, dst_x, 452 &mask, NULL); 453 454 /* Now, only keep the wanted bits among them. */ 455 mask &= relevant_bits; 456 } 457 458 /* 459 * Clear bits from the pattern which must be 460 * transparent, according to the source mask. 461 */ 462 pattern &= mask; 463 464 /* Set the bits in the 2-colors array. */ 465 if (overwrite) 466 pattern_2colors[dst_y + i] &= ~mask; 467 pattern_2colors[dst_y + i] |= pattern; 468 469 if (pattern_ncolors == NULL) 470 continue; 471 472 /* 473 * Set the same bits in the n-colors array. This one 474 * supports transparency, when a given bit is cleared in 475 * all colors. 476 */ 477 if (overwrite) { 478 /* 479 * Ensure that the pixels used by this bitmap are 480 * cleared in other colors. 481 */ 482 for (int j = 0; j < 16; ++j) 483 pattern_ncolors[(dst_y + i) * 16 + j] &= 484 ~mask; 485 } 486 pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern; 487 pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask); 488 } 489 } 490 491 static void 492 vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks, 493 term_color_t fg, term_color_t bg, 494 unsigned int x, unsigned int y, unsigned int height) 495 { 496 unsigned int i, offset; 497 struct vga_softc *sc; 498 499 /* 500 * The great advantage of Write Mode 3 is that we just need 501 * to load the foreground in the Set/Reset register, load the 502 * background color in the latches register (this is done 503 * through a write in offscreen memory followed by a read of 504 * that data), then write the pattern to video memory. This 505 * pattern indicates if the pixel should use the foreground 506 * color (bit set) or the background color (bit cleared). 507 */ 508 509 vga_setbg(vd, bg); 510 vga_setfg(vd, fg); 511 512 sc = vd->vd_softc; 513 offset = (VT_VGA_WIDTH * y + x) / 8; 514 515 for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) { 516 MEM_WRITE1(sc, offset, masks[i]); 517 } 518 } 519 520 static void 521 vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks, 522 unsigned int x, unsigned int y, unsigned int height) 523 { 524 unsigned int i, j, plan, color, offset; 525 struct vga_softc *sc; 526 uint8_t mask, plans[height * 4]; 527 528 sc = vd->vd_softc; 529 530 memset(plans, 0, sizeof(plans)); 531 532 /* 533 * To write a group of pixels using 3 or more colors, we select 534 * Write Mode 0 and write one byte to each plan separately. 535 */ 536 537 /* 538 * We first compute each byte: each plan contains one bit of the 539 * color code for each of the 8 pixels. 540 * 541 * For example, if the 8 pixels are like this: 542 * GBBBBBBY 543 * where: 544 * G (gray) = 0b0111 545 * B (black) = 0b0000 546 * Y (yellow) = 0b0011 547 * 548 * The corresponding for bytes are: 549 * GBBBBBBY 550 * Plan 0: 10000001 = 0x81 551 * Plan 1: 10000001 = 0x81 552 * Plan 2: 10000000 = 0x80 553 * Plan 3: 00000000 = 0x00 554 * | | | 555 * | | +-> 0b0011 (Y) 556 * | +-----> 0b0000 (B) 557 * +--------> 0b0111 (G) 558 */ 559 560 for (i = 0; i < height; ++i) { 561 for (color = 0; color < 16; ++color) { 562 mask = masks[i * 16 + color]; 563 if (mask == 0x00) 564 continue; 565 566 for (j = 0; j < 8; ++j) { 567 if (!((mask >> (7 - j)) & 0x1)) 568 continue; 569 570 /* The pixel "j" uses color "color". */ 571 for (plan = 0; plan < 4; ++plan) 572 plans[i * 4 + plan] |= 573 ((color >> plan) & 0x1) << (7 - j); 574 } 575 } 576 } 577 578 /* 579 * The bytes are ready: we now switch to Write Mode 0 and write 580 * all bytes, one plan at a time. 581 */ 582 vga_setwmode(vd, 0); 583 584 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK); 585 for (plan = 0; plan < 4; ++plan) { 586 /* Select plan. */ 587 REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plan); 588 589 /* Write all bytes for this plan, from Y to Y+height. */ 590 for (i = 0; i < height; ++i) { 591 offset = (VT_VGA_WIDTH * (y + i) + x) / 8; 592 MEM_WRITE1(sc, offset, plans[i * 4 + plan]); 593 } 594 } 595 } 596 597 static void 598 vga_bitblt_one_text_pixels_block(struct vt_device *vd, 599 const struct vt_window *vw, unsigned int x, unsigned int y) 600 { 601 const struct vt_buf *vb; 602 const struct vt_font *vf; 603 unsigned int i, col, row, src_x, x_count; 604 unsigned int used_colors_list[16], used_colors; 605 uint8_t pattern_2colors[vw->vw_font->vf_height]; 606 uint8_t pattern_ncolors[vw->vw_font->vf_height * 16]; 607 term_char_t c; 608 term_color_t fg, bg; 609 const uint8_t *src; 610 611 vb = &vw->vw_buf; 612 vf = vw->vw_font; 613 614 /* 615 * The current pixels block. 616 * 617 * We fill it with portions of characters, because both "grids" 618 * may not match. 619 * 620 * i is the index in this pixels block. 621 */ 622 623 i = x; 624 used_colors = 0; 625 memset(used_colors_list, 0, sizeof(used_colors_list)); 626 memset(pattern_2colors, 0, sizeof(pattern_2colors)); 627 memset(pattern_ncolors, 0, sizeof(pattern_ncolors)); 628 629 if (i < vw->vw_draw_area.tr_begin.tp_col) { 630 /* 631 * i is in the margin used to center the text area on 632 * the screen. 633 */ 634 635 i = vw->vw_draw_area.tr_begin.tp_col; 636 } 637 638 while (i < x + VT_VGA_PIXELS_BLOCK && 639 i < vw->vw_draw_area.tr_end.tp_col) { 640 /* 641 * Find which character is drawn on this pixel in the 642 * pixels block. 643 * 644 * While here, record what colors it uses. 645 */ 646 647 col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width; 648 row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height; 649 650 c = VTBUF_GET_FIELD(vb, row, col); 651 src = vtfont_lookup(vf, c); 652 653 vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg); 654 if ((used_colors_list[fg] & 0x1) != 0x1) 655 used_colors++; 656 if ((used_colors_list[bg] & 0x2) != 0x2) 657 used_colors++; 658 used_colors_list[fg] |= 0x1; 659 used_colors_list[bg] |= 0x2; 660 661 /* 662 * Compute the portion of the character we want to draw, 663 * because the pixels block may start in the middle of a 664 * character. 665 * 666 * The first pixel to draw in the character is 667 * the current position - 668 * the start position of the character 669 * 670 * The last pixel to draw is either 671 * - the last pixel of the character, or 672 * - the pixel of the character matching the end of 673 * the pixels block 674 * whichever comes first. This position is then 675 * changed to be relative to the start position of the 676 * character. 677 */ 678 679 src_x = i - 680 (col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col); 681 x_count = min(min( 682 (col + 1) * vf->vf_width + 683 vw->vw_draw_area.tr_begin.tp_col, 684 x + VT_VGA_PIXELS_BLOCK), 685 vw->vw_draw_area.tr_end.tp_col); 686 x_count -= col * vf->vf_width + 687 vw->vw_draw_area.tr_begin.tp_col; 688 x_count -= src_x; 689 690 /* Copy a portion of the character. */ 691 vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors, 692 src, NULL, vf->vf_width, 693 src_x, i % VT_VGA_PIXELS_BLOCK, x_count, 694 0, 0, vf->vf_height, fg, bg, 0); 695 696 /* We move to the next portion. */ 697 i += x_count; 698 } 699 700 #ifndef SC_NO_CUTPASTE 701 /* 702 * Copy the mouse pointer bitmap if it's over the current pixels 703 * block. 704 * 705 * We use the saved cursor position (saved in vt_flush()), because 706 * the current position could be different than the one used 707 * to mark the area dirty. 708 */ 709 term_rect_t drawn_area; 710 711 drawn_area.tr_begin.tp_col = x; 712 drawn_area.tr_begin.tp_row = y; 713 drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK; 714 drawn_area.tr_end.tp_row = y + vf->vf_height; 715 if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) { 716 struct vt_mouse_cursor *cursor; 717 unsigned int mx, my; 718 unsigned int dst_x, src_y, dst_y, y_count; 719 720 cursor = vd->vd_mcursor; 721 mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col; 722 my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row; 723 724 /* Compute the portion of the cursor we want to copy. */ 725 src_x = x > mx ? x - mx : 0; 726 dst_x = mx > x ? mx - x : 0; 727 x_count = min(min(min( 728 cursor->width - src_x, 729 x + VT_VGA_PIXELS_BLOCK - mx), 730 vw->vw_draw_area.tr_end.tp_col - mx), 731 VT_VGA_PIXELS_BLOCK); 732 733 /* 734 * The cursor isn't aligned on the Y-axis with 735 * characters, so we need to compute the vertical 736 * start/count. 737 */ 738 src_y = y > my ? y - my : 0; 739 dst_y = my > y ? my - y : 0; 740 y_count = min( 741 min(cursor->height - src_y, y + vf->vf_height - my), 742 vf->vf_height); 743 744 /* Copy the cursor portion. */ 745 vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors, 746 cursor->map, cursor->mask, cursor->width, 747 src_x, dst_x, x_count, src_y, dst_y, y_count, 748 vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1); 749 750 if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1) 751 used_colors++; 752 if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2) 753 used_colors++; 754 } 755 #endif 756 757 /* 758 * The pixels block is completed, we can now draw it on the 759 * screen. 760 */ 761 if (used_colors == 2) 762 vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg, 763 x, y, vf->vf_height); 764 else 765 vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors, 766 x, y, vf->vf_height); 767 } 768 769 static void 770 vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw, 771 const term_rect_t *area) 772 { 773 const struct vt_font *vf; 774 unsigned int col, row; 775 unsigned int x1, y1, x2, y2, x, y; 776 777 vf = vw->vw_font; 778 779 /* 780 * Compute the top-left pixel position aligned with the video 781 * adapter pixels block size. 782 * 783 * This is calculated from the top-left column of te dirty area: 784 * 785 * 1. Compute the top-left pixel of the character: 786 * col * font width + x offset 787 * 788 * NOTE: x offset is used to center the text area on the 789 * screen. It's expressed in pixels, not in characters 790 * col/row! 791 * 792 * 2. Find the pixel further on the left marking the start of 793 * an aligned pixels block (eg. chunk of 8 pixels): 794 * character's x / blocksize * blocksize 795 * 796 * The division, being made on integers, achieves the 797 * alignment. 798 * 799 * For the Y-axis, we need to compute the character's y 800 * coordinate, but we don't need to align it. 801 */ 802 803 col = area->tr_begin.tp_col; 804 row = area->tr_begin.tp_row; 805 x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col) 806 / VT_VGA_PIXELS_BLOCK) 807 * VT_VGA_PIXELS_BLOCK; 808 y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row; 809 810 /* 811 * Compute the bottom right pixel position, again, aligned with 812 * the pixels block size. 813 * 814 * The same rules apply, we just add 1 to base the computation 815 * on the "right border" of the dirty area. 816 */ 817 818 col = area->tr_end.tp_col; 819 row = area->tr_end.tp_row; 820 x2 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col 821 + VT_VGA_PIXELS_BLOCK - 1) 822 / VT_VGA_PIXELS_BLOCK) 823 * VT_VGA_PIXELS_BLOCK; 824 y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row; 825 826 /* Clip the area to the screen size. */ 827 x2 = min(x2, vw->vw_draw_area.tr_end.tp_col); 828 y2 = min(y2, vw->vw_draw_area.tr_end.tp_row); 829 830 /* 831 * Now, we take care of N pixels line at a time (the first for 832 * loop, N = font height), and for these lines, draw one pixels 833 * block at a time (the second for loop), not a character at a 834 * time. 835 * 836 * Therefore, on the X-axis, characters my be drawn partially if 837 * they are not aligned on 8-pixels boundary. 838 * 839 * However, the operation is repeated for the full height of the 840 * font before moving to the next character, because it allows 841 * to keep the color settings and write mode, before perhaps 842 * changing them with the next one. 843 */ 844 845 for (y = y1; y < y2; y += vf->vf_height) { 846 for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) { 847 vga_bitblt_one_text_pixels_block(vd, vw, x, y); 848 } 849 } 850 } 851 852 static void 853 vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw, 854 const term_rect_t *area) 855 { 856 struct vga_softc *sc; 857 const struct vt_buf *vb; 858 unsigned int col, row; 859 term_char_t c; 860 term_color_t fg, bg; 861 uint8_t ch, attr; 862 863 sc = vd->vd_softc; 864 vb = &vw->vw_buf; 865 866 for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) { 867 for (col = area->tr_begin.tp_col; 868 col < area->tr_end.tp_col; 869 ++col) { 870 /* 871 * Get next character and its associated fg/bg 872 * colors. 873 */ 874 c = VTBUF_GET_FIELD(vb, row, col); 875 vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), 876 &fg, &bg); 877 878 /* 879 * Convert character to CP437, which is the 880 * character set used by the VGA hardware by 881 * default. 882 */ 883 ch = vga_get_cp437(TCHAR_CHARACTER(c)); 884 885 /* Convert colors to VGA attributes. */ 886 attr = bg << 4 | fg; 887 888 MEM_WRITE1(sc, 0x18000 + (row * 80 + col) * 2 + 0, 889 ch); 890 MEM_WRITE1(sc, 0x18000 + (row * 80 + col) * 2 + 1, 891 attr); 892 } 893 } 894 } 895 896 static void 897 vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw, 898 const term_rect_t *area) 899 { 900 901 if (!(vd->vd_flags & VDF_TEXTMODE)) { 902 vga_bitblt_text_gfxmode(vd, vw, area); 903 } else { 904 vga_bitblt_text_txtmode(vd, vw, area); 905 } 906 } 907 908 static void 909 vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw, 910 const uint8_t *pattern, const uint8_t *mask, 911 unsigned int width, unsigned int height, 912 unsigned int x, unsigned int y, term_color_t fg, term_color_t bg) 913 { 914 unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count; 915 uint8_t pattern_2colors; 916 917 /* Align coordinates with the 8-pxels grid. */ 918 x1 = x / VT_VGA_PIXELS_BLOCK * VT_VGA_PIXELS_BLOCK; 919 y1 = y; 920 921 x2 = (x + width + VT_VGA_PIXELS_BLOCK - 1) / 922 VT_VGA_PIXELS_BLOCK * VT_VGA_PIXELS_BLOCK; 923 y2 = y + height; 924 x2 = min(x2, vd->vd_width - 1); 925 y2 = min(y2, vd->vd_height - 1); 926 927 for (j = y1; j < y2; ++j) { 928 src_x = 0; 929 dst_x = x - x1; 930 x_count = VT_VGA_PIXELS_BLOCK - dst_x; 931 932 for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) { 933 pattern_2colors = 0; 934 935 vga_copy_bitmap_portion( 936 &pattern_2colors, NULL, 937 pattern, mask, width, 938 src_x, dst_x, x_count, 939 j - y1, 0, 1, fg, bg, 0); 940 941 vga_bitblt_pixels_block_2colors(vd, 942 &pattern_2colors, fg, bg, 943 i, j, 1); 944 945 src_x += x_count; 946 dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK; 947 x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK); 948 } 949 } 950 } 951 952 static void 953 vga_initialize_graphics(struct vt_device *vd) 954 { 955 struct vga_softc *sc = vd->vd_softc; 956 957 /* Clock select. */ 958 REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP | 959 VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA); 960 /* Set sequencer clocking and memory mode. */ 961 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE); 962 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89); 963 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE); 964 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM); 965 966 /* Set the graphics controller in graphics mode. */ 967 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS); 968 REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA); 969 /* Program the CRT controller. */ 970 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL); 971 REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f); /* 760 */ 972 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END); 973 REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f); /* 640 - 8 */ 974 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK); 975 REG_WRITE1(sc, VGA_CRTC_DATA, 0x50); /* 640 */ 976 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK); 977 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2); 978 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE); 979 REG_WRITE1(sc, VGA_CRTC_DATA, 0x54); /* 672 */ 980 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE); 981 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0); 982 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL); 983 REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b); /* 523 */ 984 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW); 985 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 | 986 VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8); 987 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE); 988 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9); 989 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START); 990 REG_WRITE1(sc, VGA_CRTC_DATA, 0xea); /* 480 + 10 */ 991 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END); 992 REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c); 993 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END); 994 REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf); /* 480 - 1*/ 995 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET); 996 REG_WRITE1(sc, VGA_CRTC_DATA, 0x28); 997 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK); 998 REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7); /* 480 + 7 */ 999 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK); 1000 REG_WRITE1(sc, VGA_CRTC_DATA, 0x04); 1001 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL); 1002 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW | 1003 VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS); 1004 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE); 1005 REG_WRITE1(sc, VGA_CRTC_DATA, 0xff); /* 480 + 31 */ 1006 1007 REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0); 1008 1009 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK); 1010 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 | 1011 VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0); 1012 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT); 1013 REG_WRITE1(sc, VGA_SEQ_DATA, 0); 1014 1015 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET); 1016 REG_WRITE1(sc, VGA_GC_DATA, 0); 1017 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET); 1018 REG_WRITE1(sc, VGA_GC_DATA, 0x0f); 1019 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE); 1020 REG_WRITE1(sc, VGA_GC_DATA, 0); 1021 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE); 1022 REG_WRITE1(sc, VGA_GC_DATA, 0); 1023 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT); 1024 REG_WRITE1(sc, VGA_GC_DATA, 0); 1025 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE); 1026 REG_WRITE1(sc, VGA_GC_DATA, 0); 1027 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE); 1028 REG_WRITE1(sc, VGA_GC_DATA, 0x0f); 1029 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK); 1030 REG_WRITE1(sc, VGA_GC_DATA, 0xff); 1031 } 1032 1033 static void 1034 vga_initialize(struct vt_device *vd, int textmode) 1035 { 1036 struct vga_softc *sc = vd->vd_softc; 1037 uint8_t x; 1038 1039 /* Make sure the VGA adapter is not in monochrome emulation mode. */ 1040 x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R); 1041 REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA); 1042 1043 /* Unprotect CRTC registers 0-7. */ 1044 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END); 1045 x = REG_READ1(sc, VGA_CRTC_DATA); 1046 REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR); 1047 1048 /* 1049 * Wait for the vertical retrace. 1050 * NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has 1051 * the side-effect of clearing the internal flip-flip of the attribute 1052 * controller's write register. This means that because this code is 1053 * here, we know for sure that the first write to the attribute 1054 * controller will be a write to the address register. Removing this 1055 * code therefore also removes that guarantee and appropriate measures 1056 * need to be taken. 1057 */ 1058 do { 1059 x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1); 1060 x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE; 1061 } while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE)); 1062 1063 /* Now, disable the sync. signals. */ 1064 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL); 1065 x = REG_READ1(sc, VGA_CRTC_DATA); 1066 REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR); 1067 1068 /* Asynchronous sequencer reset. */ 1069 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET); 1070 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR); 1071 1072 if (!textmode) 1073 vga_initialize_graphics(vd); 1074 1075 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN); 1076 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1077 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START); 1078 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO); 1079 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END); 1080 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1081 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH); 1082 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1083 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW); 1084 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1085 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH); 1086 REG_WRITE1(sc, VGA_CRTC_DATA, 0); 1087 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW); 1088 REG_WRITE1(sc, VGA_CRTC_DATA, 0x59); 1089 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC); 1090 REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL); 1091 1092 if (textmode) { 1093 /* Set the attribute controller to blink disable. */ 1094 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL); 1095 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1096 } else { 1097 /* Set the attribute controller in graphics mode. */ 1098 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL); 1099 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA); 1100 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING); 1101 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1102 } 1103 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0)); 1104 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1105 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1)); 1106 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R); 1107 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2)); 1108 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G); 1109 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3)); 1110 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R); 1111 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4)); 1112 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B); 1113 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5)); 1114 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B); 1115 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6)); 1116 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B); 1117 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7)); 1118 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B); 1119 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8)); 1120 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1121 VGA_AC_PAL_SB); 1122 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9)); 1123 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1124 VGA_AC_PAL_SB | VGA_AC_PAL_R); 1125 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10)); 1126 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1127 VGA_AC_PAL_SB | VGA_AC_PAL_G); 1128 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11)); 1129 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1130 VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G); 1131 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12)); 1132 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1133 VGA_AC_PAL_SB | VGA_AC_PAL_B); 1134 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13)); 1135 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1136 VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B); 1137 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14)); 1138 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1139 VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B); 1140 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15)); 1141 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG | 1142 VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B); 1143 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR); 1144 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1145 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE); 1146 REG_WRITE1(sc, VGA_AC_WRITE, 0x0f); 1147 REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT); 1148 REG_WRITE1(sc, VGA_AC_WRITE, 0); 1149 1150 if (!textmode) { 1151 u_int ofs; 1152 1153 /* 1154 * Done. Clear the frame buffer. All bit planes are 1155 * enabled, so a single-paged loop should clear all 1156 * planes. 1157 */ 1158 for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) { 1159 MEM_WRITE1(sc, ofs, 0); 1160 } 1161 } 1162 1163 /* Re-enable the sequencer. */ 1164 REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET); 1165 REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR); 1166 /* Re-enable the sync signals. */ 1167 REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL); 1168 x = REG_READ1(sc, VGA_CRTC_DATA); 1169 REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR); 1170 1171 if (!textmode) { 1172 /* Switch to write mode 3, because we'll mainly do bitblt. */ 1173 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE); 1174 REG_WRITE1(sc, VGA_GC_DATA, 3); 1175 sc->vga_wmode = 3; 1176 1177 /* 1178 * In Write Mode 3, Enable Set/Reset is ignored, but we 1179 * use Write Mode 0 to write a group of 8 pixels using 1180 * 3 or more colors. In this case, we want to disable 1181 * Set/Reset: set Enable Set/Reset to 0. 1182 */ 1183 REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET); 1184 REG_WRITE1(sc, VGA_GC_DATA, 0x00); 1185 1186 /* 1187 * Clear the colors we think are loaded into Set/Reset or 1188 * the latches. 1189 */ 1190 sc->vga_curfg = sc->vga_curbg = 0xff; 1191 } 1192 } 1193 1194 static int 1195 vga_probe(struct vt_device *vd) 1196 { 1197 1198 return (CN_INTERNAL); 1199 } 1200 1201 static int 1202 vga_init(struct vt_device *vd) 1203 { 1204 struct vga_softc *sc; 1205 int textmode; 1206 1207 if (vd->vd_softc == NULL) 1208 vd->vd_softc = (void *)&vga_conssoftc; 1209 sc = vd->vd_softc; 1210 textmode = 0; 1211 1212 #if defined(__amd64__) || defined(__i386__) 1213 sc->vga_fb_tag = X86_BUS_SPACE_MEM; 1214 sc->vga_fb_handle = KERNBASE + VGA_MEM_BASE; 1215 sc->vga_reg_tag = X86_BUS_SPACE_IO; 1216 sc->vga_reg_handle = VGA_REG_BASE; 1217 #else 1218 # error "Architecture not yet supported!" 1219 #endif 1220 1221 TUNABLE_INT_FETCH("hw.vga.textmode", &textmode); 1222 if (textmode) { 1223 vd->vd_flags |= VDF_TEXTMODE; 1224 vd->vd_width = 80; 1225 vd->vd_height = 25; 1226 } else { 1227 vd->vd_width = VT_VGA_WIDTH; 1228 vd->vd_height = VT_VGA_HEIGHT; 1229 } 1230 vga_initialize(vd, textmode); 1231 1232 return (CN_INTERNAL); 1233 } 1234 1235 static void 1236 vga_postswitch(struct vt_device *vd) 1237 { 1238 1239 /* Reinit VGA mode, to restore view after app which change mode. */ 1240 vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE)); 1241 /* Ask vt(9) to update chars on visible area. */ 1242 vd->vd_flags |= VDF_INVALID; 1243 } 1244