xref: /freebsd/sys/dev/vt/hw/vga/vt_vga.c (revision c6db8143eda5c775467145ac73e8ebec47afdd8f)
1 /*-
2  * Copyright (c) 2005 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Copyright (c) 2009 The FreeBSD Foundation
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Ed Schouten
9  * under sponsorship from the FreeBSD Foundation.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/systm.h>
39 
40 #include <dev/vt/vt.h>
41 #include <dev/vt/hw/vga/vt_vga_reg.h>
42 
43 #include <machine/bus.h>
44 
45 #if defined(__amd64__) || defined(__i386__)
46 #include <vm/vm.h>
47 #include <vm/pmap.h>
48 #include <machine/pmap.h>
49 #include <machine/vmparam.h>
50 #endif /* __amd64__ || __i386__ */
51 
52 struct vga_softc {
53 	bus_space_tag_t		 vga_fb_tag;
54 	bus_space_handle_t	 vga_fb_handle;
55 	bus_space_tag_t		 vga_reg_tag;
56 	bus_space_handle_t	 vga_reg_handle;
57 	int			 vga_wmode;
58 	term_color_t		 vga_curfg, vga_curbg;
59 };
60 
61 /* Convenience macros. */
62 #define	MEM_READ1(sc, ofs) \
63 	bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs)
64 #define	MEM_WRITE1(sc, ofs, val) \
65 	bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
66 #define	REG_READ1(sc, reg) \
67 	bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg)
68 #define	REG_WRITE1(sc, reg, val) \
69 	bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val)
70 
71 #define	VT_VGA_WIDTH	640
72 #define	VT_VGA_HEIGHT	480
73 #define	VT_VGA_MEMSIZE	(VT_VGA_WIDTH * VT_VGA_HEIGHT / 8)
74 
75 /*
76  * VGA is designed to handle 8 pixels at a time (8 pixels in one byte of
77  * memory).
78  */
79 #define	VT_VGA_PIXELS_BLOCK	8
80 
81 /*
82  * We use an off-screen addresses to:
83  *     o  store the background color;
84  *     o  store pixels pattern.
85  * Those addresses are then loaded in the latches once.
86  */
87 #define	VT_VGA_BGCOLOR_OFFSET	VT_VGA_MEMSIZE
88 
89 static vd_probe_t	vga_probe;
90 static vd_init_t	vga_init;
91 static vd_blank_t	vga_blank;
92 static vd_bitblt_text_t	vga_bitblt_text;
93 static vd_bitblt_bmp_t	vga_bitblt_bitmap;
94 static vd_drawrect_t	vga_drawrect;
95 static vd_setpixel_t	vga_setpixel;
96 static vd_postswitch_t	vga_postswitch;
97 
98 static const struct vt_driver vt_vga_driver = {
99 	.vd_name	= "vga",
100 	.vd_probe	= vga_probe,
101 	.vd_init	= vga_init,
102 	.vd_blank	= vga_blank,
103 	.vd_bitblt_text	= vga_bitblt_text,
104 	.vd_bitblt_bmp	= vga_bitblt_bitmap,
105 	.vd_drawrect	= vga_drawrect,
106 	.vd_setpixel	= vga_setpixel,
107 	.vd_postswitch	= vga_postswitch,
108 	.vd_priority	= VD_PRIORITY_GENERIC,
109 };
110 
111 /*
112  * Driver supports both text mode and graphics mode.  Make sure the
113  * buffer is always big enough to support both.
114  */
115 static struct vga_softc vga_conssoftc;
116 VT_DRIVER_DECLARE(vt_vga, vt_vga_driver);
117 
118 static inline void
119 vga_setwmode(struct vt_device *vd, int wmode)
120 {
121 	struct vga_softc *sc = vd->vd_softc;
122 
123 	if (sc->vga_wmode == wmode)
124 		return;
125 
126 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
127 	REG_WRITE1(sc, VGA_GC_DATA, wmode);
128 	sc->vga_wmode = wmode;
129 
130 	switch (wmode) {
131 	case 3:
132 		/* Re-enable all plans. */
133 		REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
134 		REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
135 		    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
136 		break;
137 	}
138 }
139 
140 static inline void
141 vga_setfg(struct vt_device *vd, term_color_t color)
142 {
143 	struct vga_softc *sc = vd->vd_softc;
144 
145 	vga_setwmode(vd, 3);
146 
147 	if (sc->vga_curfg == color)
148 		return;
149 
150 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
151 	REG_WRITE1(sc, VGA_GC_DATA, color);
152 	sc->vga_curfg = color;
153 }
154 
155 static inline void
156 vga_setbg(struct vt_device *vd, term_color_t color)
157 {
158 	struct vga_softc *sc = vd->vd_softc;
159 
160 	vga_setwmode(vd, 3);
161 
162 	if (sc->vga_curbg == color)
163 		return;
164 
165 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
166 	REG_WRITE1(sc, VGA_GC_DATA, color);
167 
168 	/*
169 	 * Write 8 pixels using the background color to an off-screen
170 	 * byte in the video memory.
171 	 */
172 	MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff);
173 
174 	/*
175 	 * Read those 8 pixels back to load the background color in the
176 	 * latches register.
177 	 */
178 	MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET);
179 
180 	sc->vga_curbg = color;
181 
182 	/*
183          * The Set/Reset register doesn't contain the fg color anymore,
184          * store an invalid color.
185 	 */
186 	sc->vga_curfg = 0xff;
187 }
188 
189 /*
190  * Binary searchable table for Unicode to CP437 conversion.
191  */
192 
193 struct unicp437 {
194 	uint16_t	unicode_base;
195 	uint8_t		cp437_base;
196 	uint8_t		length;
197 };
198 
199 static const struct unicp437 cp437table[] = {
200 	{ 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 },
201 	{ 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 },
202 	{ 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 },
203 	{ 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 },
204 	{ 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 },
205 	{ 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 },
206 	{ 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 },
207 	{ 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 },
208 	{ 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 },
209 	{ 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 },
210 	{ 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 },
211 	{ 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 },
212 	{ 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 },
213 	{ 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 },
214 	{ 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 },
215 	{ 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 },
216 	{ 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 },
217 	{ 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 },
218 	{ 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 },
219 	{ 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 },
220 	{ 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 },
221 	{ 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 },
222 	{ 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 },
223 	{ 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 },
224 	{ 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 },
225 	{ 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 },
226 	{ 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 },
227 	{ 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 },
228 	{ 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 },
229 	{ 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 },
230 	{ 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 },
231 	{ 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 },
232 	{ 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 },
233 	{ 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 },
234 	{ 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 },
235 	{ 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 },
236 	{ 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 },
237 	{ 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 },
238 	{ 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 },
239 	{ 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 },
240 	{ 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 },
241 	{ 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 },
242 	{ 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 },
243 	{ 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 },
244 	{ 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 },
245 	{ 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 },
246 	{ 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 },
247 	{ 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 },
248 	{ 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 },
249 	{ 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 },
250 	{ 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 },
251 	{ 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 },
252 	{ 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 },
253 	{ 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 },
254 	{ 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 },
255 	{ 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 },
256 	{ 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 },
257 	{ 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 },
258 	{ 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 },
259 	{ 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 },
260 	{ 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 },
261 	{ 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 },
262 	{ 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 },
263 	{ 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 },
264 	{ 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 },
265 	{ 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 },
266 	{ 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 },
267 	{ 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 },
268 	{ 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 },
269 	{ 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 },
270 	{ 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 },
271 	{ 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 },
272 	{ 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 },
273 	{ 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 },
274 	{ 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 },
275 	{ 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 },
276 	{ 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 },
277 	{ 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 },
278 	{ 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 },
279 	{ 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 },
280 	{ 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 },
281 	{ 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 },
282 	{ 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 },
283 	{ 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 },
284 	{ 0x266c, 0x0e, 0x00 },
285 };
286 
287 static uint8_t
288 vga_get_cp437(term_char_t c)
289 {
290 	int min, mid, max;
291 
292 	min = 0;
293 	max = (sizeof(cp437table) / sizeof(struct unicp437)) - 1;
294 
295 	if (c < cp437table[0].unicode_base ||
296 	    c > cp437table[max].unicode_base + cp437table[max].length)
297 		return '?';
298 
299 	while (max >= min) {
300 		mid = (min + max) / 2;
301 		if (c < cp437table[mid].unicode_base)
302 			max = mid - 1;
303 		else if (c > cp437table[mid].unicode_base +
304 		    cp437table[mid].length)
305 			min = mid + 1;
306 		else
307 			return (c - cp437table[mid].unicode_base +
308 			    cp437table[mid].cp437_base);
309 	}
310 
311 	return '?';
312 }
313 
314 static void
315 vga_blank(struct vt_device *vd, term_color_t color)
316 {
317 	struct vga_softc *sc = vd->vd_softc;
318 	u_int ofs;
319 
320 	vga_setfg(vd, color);
321 	for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++)
322 		MEM_WRITE1(sc, ofs, 0xff);
323 }
324 
325 static inline void
326 vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color,
327     uint8_t v)
328 {
329 	struct vga_softc *sc = vd->vd_softc;
330 
331 	/* Skip empty writes, in order to avoid palette changes. */
332 	if (v != 0x00) {
333 		vga_setfg(vd, color);
334 		/*
335 		 * When this MEM_READ1() gets disabled, all sorts of
336 		 * artifacts occur.  This is because this read loads the
337 		 * set of 8 pixels that are about to be changed.  There
338 		 * is one scenario where we can avoid the read, namely
339 		 * if all pixels are about to be overwritten anyway.
340 		 */
341 		if (v != 0xff) {
342 			MEM_READ1(sc, dst);
343 
344 			/* The bg color was trashed by the reads. */
345 			sc->vga_curbg = 0xff;
346 		}
347 		MEM_WRITE1(sc, dst, v);
348 	}
349 }
350 
351 static void
352 vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color)
353 {
354 
355 	if (vd->vd_flags & VDF_TEXTMODE)
356 		return;
357 
358 	vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color,
359 	    0x80 >> (x % 8));
360 }
361 
362 static void
363 vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill,
364     term_color_t color)
365 {
366 	int x, y;
367 
368 	if (vd->vd_flags & VDF_TEXTMODE)
369 		return;
370 
371 	for (y = y1; y <= y2; y++) {
372 		if (fill || (y == y1) || (y == y2)) {
373 			for (x = x1; x <= x2; x++)
374 				vga_setpixel(vd, x, y, color);
375 		} else {
376 			vga_setpixel(vd, x1, y, color);
377 			vga_setpixel(vd, x2, y, color);
378 		}
379 	}
380 }
381 
382 static void
383 vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes,
384     unsigned int src_x, unsigned int x_count, unsigned int dst_x,
385     uint8_t *pattern, uint8_t *mask)
386 {
387 	unsigned int n;
388 
389 	n = src_x / 8;
390 
391 	/*
392 	 * This mask has bits set, where a pixel (ether 0 or 1)
393 	 * comes from the source bitmap.
394 	 */
395 	if (mask != NULL) {
396 		*mask = (0xff
397 		    >> (8 - x_count))
398 		    << (8 - x_count - dst_x);
399 	}
400 
401 	if (n == (src_x + x_count - 1) / 8) {
402 		/* All the pixels we want are in the same byte. */
403 		*pattern = src[n];
404 		if (dst_x >= src_x)
405 			*pattern >>= (dst_x - src_x % 8);
406 		else
407 			*pattern <<= (src_x % 8 - dst_x);
408 	} else {
409 		/* The pixels we want are split into two bytes. */
410 		if (dst_x >= src_x % 8) {
411 			*pattern =
412 			    src[n] << (8 - dst_x - src_x % 8) |
413 			    src[n + 1] >> (dst_x - src_x % 8);
414 		} else {
415 			*pattern =
416 			    src[n] << (src_x % 8 - dst_x) |
417 			    src[n + 1] >> (8 - src_x % 8 - dst_x);
418 		}
419 	}
420 }
421 
422 static void
423 vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors,
424     const uint8_t *src, const uint8_t *src_mask, unsigned int src_width,
425     unsigned int src_x, unsigned int dst_x, unsigned int x_count,
426     unsigned int src_y, unsigned int dst_y, unsigned int y_count,
427     term_color_t fg, term_color_t bg, int overwrite)
428 {
429 	unsigned int i, bytes;
430 	uint8_t pattern, relevant_bits, mask;
431 
432 	bytes = (src_width + 7) / 8;
433 
434 	for (i = 0; i < y_count; ++i) {
435 		vga_compute_shifted_pattern(src + (src_y + i) * bytes,
436 		    bytes, src_x, x_count, dst_x, &pattern, &relevant_bits);
437 
438 		if (src_mask == NULL) {
439 			/*
440 			 * No src mask. Consider that all wanted bits
441 			 * from the source are "authoritative".
442 			 */
443 			mask = relevant_bits;
444 		} else {
445 			/*
446 			 * There's an src mask. We shift it the same way
447 			 * we shifted the source pattern.
448 			 */
449 			vga_compute_shifted_pattern(
450 			    src_mask + (src_y + i) * bytes,
451 			    bytes, src_x, x_count, dst_x,
452 			    &mask, NULL);
453 
454 			/* Now, only keep the wanted bits among them. */
455 			mask &= relevant_bits;
456 		}
457 
458 		/*
459 		 * Clear bits from the pattern which must be
460 		 * transparent, according to the source mask.
461 		 */
462 		pattern &= mask;
463 
464 		/* Set the bits in the 2-colors array. */
465 		if (overwrite)
466 			pattern_2colors[dst_y + i] &= ~mask;
467 		pattern_2colors[dst_y + i] |= pattern;
468 
469 		if (pattern_ncolors == NULL)
470 			continue;
471 
472 		/*
473 		 * Set the same bits in the n-colors array. This one
474 		 * supports transparency, when a given bit is cleared in
475 		 * all colors.
476 		 */
477 		if (overwrite) {
478 			/*
479 			 * Ensure that the pixels used by this bitmap are
480 			 * cleared in other colors.
481 			 */
482 			for (int j = 0; j < 16; ++j)
483 				pattern_ncolors[(dst_y + i) * 16 + j] &=
484 				    ~mask;
485 		}
486 		pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern;
487 		pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask);
488 	}
489 }
490 
491 static void
492 vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks,
493     term_color_t fg, term_color_t bg,
494     unsigned int x, unsigned int y, unsigned int height)
495 {
496 	unsigned int i, offset;
497 	struct vga_softc *sc;
498 
499 	/*
500 	 * The great advantage of Write Mode 3 is that we just need
501 	 * to load the foreground in the Set/Reset register, load the
502 	 * background color in the latches register (this is done
503 	 * through a write in offscreen memory followed by a read of
504 	 * that data), then write the pattern to video memory. This
505 	 * pattern indicates if the pixel should use the foreground
506 	 * color (bit set) or the background color (bit cleared).
507 	 */
508 
509 	vga_setbg(vd, bg);
510 	vga_setfg(vd, fg);
511 
512 	sc = vd->vd_softc;
513 	offset = (VT_VGA_WIDTH * y + x) / 8;
514 
515 	for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) {
516 		MEM_WRITE1(sc, offset, masks[i]);
517 	}
518 }
519 
520 static void
521 vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks,
522     unsigned int x, unsigned int y, unsigned int height)
523 {
524 	unsigned int i, j, plan, color, offset;
525 	struct vga_softc *sc;
526 	uint8_t mask, plans[height * 4];
527 
528 	sc = vd->vd_softc;
529 
530 	memset(plans, 0, sizeof(plans));
531 
532 	/*
533          * To write a group of pixels using 3 or more colors, we select
534          * Write Mode 0 and write one byte to each plan separately.
535 	 */
536 
537 	/*
538 	 * We first compute each byte: each plan contains one bit of the
539 	 * color code for each of the 8 pixels.
540 	 *
541 	 * For example, if the 8 pixels are like this:
542 	 *     GBBBBBBY
543 	 * where:
544 	 *     G (gray)   = 0b0111
545 	 *     B (black)  = 0b0000
546 	 *     Y (yellow) = 0b0011
547 	 *
548 	 * The corresponding for bytes are:
549 	 *             GBBBBBBY
550 	 *     Plan 0: 10000001 = 0x81
551 	 *     Plan 1: 10000001 = 0x81
552 	 *     Plan 2: 10000000 = 0x80
553 	 *     Plan 3: 00000000 = 0x00
554 	 *             |  |   |
555 	 *             |  |   +-> 0b0011 (Y)
556 	 *             |  +-----> 0b0000 (B)
557 	 *             +--------> 0b0111 (G)
558 	 */
559 
560 	for (i = 0; i < height; ++i) {
561 		for (color = 0; color < 16; ++color) {
562 			mask = masks[i * 16 + color];
563 			if (mask == 0x00)
564 				continue;
565 
566 			for (j = 0; j < 8; ++j) {
567 				if (!((mask >> (7 - j)) & 0x1))
568 					continue;
569 
570 				/* The pixel "j" uses color "color". */
571 				for (plan = 0; plan < 4; ++plan)
572 					plans[i * 4 + plan] |=
573 					    ((color >> plan) & 0x1) << (7 - j);
574 			}
575 		}
576 	}
577 
578 	/*
579 	 * The bytes are ready: we now switch to Write Mode 0 and write
580 	 * all bytes, one plan at a time.
581 	 */
582 	vga_setwmode(vd, 0);
583 
584 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
585 	for (plan = 0; plan < 4; ++plan) {
586 		/* Select plan. */
587 		REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plan);
588 
589 		/* Write all bytes for this plan, from Y to Y+height. */
590 		for (i = 0; i < height; ++i) {
591 			offset = (VT_VGA_WIDTH * (y + i) + x) / 8;
592 			MEM_WRITE1(sc, offset, plans[i * 4 + plan]);
593 		}
594 	}
595 }
596 
597 static void
598 vga_bitblt_one_text_pixels_block(struct vt_device *vd,
599     const struct vt_window *vw, unsigned int x, unsigned int y)
600 {
601 	const struct vt_buf *vb;
602 	const struct vt_font *vf;
603 	unsigned int i, col, row, src_x, x_count;
604 	unsigned int used_colors_list[16], used_colors;
605 	uint8_t pattern_2colors[vw->vw_font->vf_height];
606 	uint8_t pattern_ncolors[vw->vw_font->vf_height * 16];
607 	term_char_t c;
608 	term_color_t fg, bg;
609 	const uint8_t *src;
610 
611 	vb = &vw->vw_buf;
612 	vf = vw->vw_font;
613 
614 	/*
615 	 * The current pixels block.
616 	 *
617 	 * We fill it with portions of characters, because both "grids"
618 	 * may not match.
619 	 *
620 	 * i is the index in this pixels block.
621 	 */
622 
623 	i = x;
624 	used_colors = 0;
625 	memset(used_colors_list, 0, sizeof(used_colors_list));
626 	memset(pattern_2colors, 0, sizeof(pattern_2colors));
627 	memset(pattern_ncolors, 0, sizeof(pattern_ncolors));
628 
629 	if (i < vw->vw_draw_area.tr_begin.tp_col) {
630 		/*
631 		 * i is in the margin used to center the text area on
632 		 * the screen.
633 		 */
634 
635 		i = vw->vw_draw_area.tr_begin.tp_col;
636 	}
637 
638 	while (i < x + VT_VGA_PIXELS_BLOCK &&
639 	    i < vw->vw_draw_area.tr_end.tp_col) {
640 		/*
641 		 * Find which character is drawn on this pixel in the
642 		 * pixels block.
643 		 *
644 		 * While here, record what colors it uses.
645 		 */
646 
647 		col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width;
648 		row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height;
649 
650 		c = VTBUF_GET_FIELD(vb, row, col);
651 		src = vtfont_lookup(vf, c);
652 
653 		vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg);
654 		if ((used_colors_list[fg] & 0x1) != 0x1)
655 			used_colors++;
656 		if ((used_colors_list[bg] & 0x2) != 0x2)
657 			used_colors++;
658 		used_colors_list[fg] |= 0x1;
659 		used_colors_list[bg] |= 0x2;
660 
661 		/*
662 		 * Compute the portion of the character we want to draw,
663 		 * because the pixels block may start in the middle of a
664 		 * character.
665 		 *
666 		 * The first pixel to draw in the character is
667 		 *     the current position -
668 		 *     the start position of the character
669 		 *
670 		 * The last pixel to draw is either
671 		 *     - the last pixel of the character, or
672 		 *     - the pixel of the character matching the end of
673 		 *       the pixels block
674 		 * whichever comes first. This position is then
675 		 * changed to be relative to the start position of the
676 		 * character.
677 		 */
678 
679 		src_x = i -
680 		    (col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col);
681 		x_count = min(min(
682 		    (col + 1) * vf->vf_width +
683 		    vw->vw_draw_area.tr_begin.tp_col,
684 		    x + VT_VGA_PIXELS_BLOCK),
685 		    vw->vw_draw_area.tr_end.tp_col);
686 		x_count -= col * vf->vf_width +
687 		    vw->vw_draw_area.tr_begin.tp_col;
688 		x_count -= src_x;
689 
690 		/* Copy a portion of the character. */
691 		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
692 		    src, NULL, vf->vf_width,
693 		    src_x, i % VT_VGA_PIXELS_BLOCK, x_count,
694 		    0, 0, vf->vf_height, fg, bg, 0);
695 
696 		/* We move to the next portion. */
697 		i += x_count;
698 	}
699 
700 #ifndef SC_NO_CUTPASTE
701 	/*
702 	 * Copy the mouse pointer bitmap if it's over the current pixels
703 	 * block.
704 	 *
705 	 * We use the saved cursor position (saved in vt_flush()), because
706 	 * the current position could be different than the one used
707 	 * to mark the area dirty.
708 	 */
709 	term_rect_t drawn_area;
710 
711 	drawn_area.tr_begin.tp_col = x;
712 	drawn_area.tr_begin.tp_row = y;
713 	drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK;
714 	drawn_area.tr_end.tp_row = y + vf->vf_height;
715 	if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) {
716 		struct vt_mouse_cursor *cursor;
717 		unsigned int mx, my;
718 		unsigned int dst_x, src_y, dst_y, y_count;
719 
720 		cursor = vd->vd_mcursor;
721 		mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col;
722 		my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row;
723 
724 		/* Compute the portion of the cursor we want to copy. */
725 		src_x = x > mx ? x - mx : 0;
726 		dst_x = mx > x ? mx - x : 0;
727 		x_count = min(min(min(
728 		    cursor->width - src_x,
729 		    x + VT_VGA_PIXELS_BLOCK - mx),
730 		    vw->vw_draw_area.tr_end.tp_col - mx),
731 		    VT_VGA_PIXELS_BLOCK);
732 
733 		/*
734 		 * The cursor isn't aligned on the Y-axis with
735 		 * characters, so we need to compute the vertical
736 		 * start/count.
737 		 */
738 		src_y = y > my ? y - my : 0;
739 		dst_y = my > y ? my - y : 0;
740 		y_count = min(
741 		    min(cursor->height - src_y, y + vf->vf_height - my),
742 		    vf->vf_height);
743 
744 		/* Copy the cursor portion. */
745 		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
746 		    cursor->map, cursor->mask, cursor->width,
747 		    src_x, dst_x, x_count, src_y, dst_y, y_count,
748 		    vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1);
749 
750 		if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1)
751 			used_colors++;
752 		if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2)
753 			used_colors++;
754 	}
755 #endif
756 
757 	/*
758 	 * The pixels block is completed, we can now draw it on the
759 	 * screen.
760 	 */
761 	if (used_colors == 2)
762 		vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg,
763 		    x, y, vf->vf_height);
764 	else
765 		vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors,
766 		    x, y, vf->vf_height);
767 }
768 
769 static void
770 vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw,
771     const term_rect_t *area)
772 {
773 	const struct vt_font *vf;
774 	unsigned int col, row;
775 	unsigned int x1, y1, x2, y2, x, y;
776 
777 	vf = vw->vw_font;
778 
779 	/*
780 	 * Compute the top-left pixel position aligned with the video
781 	 * adapter pixels block size.
782 	 *
783 	 * This is calculated from the top-left column of te dirty area:
784 	 *
785 	 *     1. Compute the top-left pixel of the character:
786 	 *        col * font width + x offset
787 	 *
788 	 *        NOTE: x offset is used to center the text area on the
789 	 *        screen. It's expressed in pixels, not in characters
790 	 *        col/row!
791 	 *
792 	 *     2. Find the pixel further on the left marking the start of
793 	 *        an aligned pixels block (eg. chunk of 8 pixels):
794 	 *        character's x / blocksize * blocksize
795 	 *
796 	 *        The division, being made on integers, achieves the
797 	 *        alignment.
798 	 *
799 	 * For the Y-axis, we need to compute the character's y
800 	 * coordinate, but we don't need to align it.
801 	 */
802 
803 	col = area->tr_begin.tp_col;
804 	row = area->tr_begin.tp_row;
805 	x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col)
806 	     / VT_VGA_PIXELS_BLOCK)
807 	    * VT_VGA_PIXELS_BLOCK;
808 	y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
809 
810 	/*
811 	 * Compute the bottom right pixel position, again, aligned with
812 	 * the pixels block size.
813 	 *
814 	 * The same rules apply, we just add 1 to base the computation
815 	 * on the "right border" of the dirty area.
816 	 */
817 
818 	col = area->tr_end.tp_col;
819 	row = area->tr_end.tp_row;
820 	x2 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col
821 	      + VT_VGA_PIXELS_BLOCK - 1)
822 	     / VT_VGA_PIXELS_BLOCK)
823 	    * VT_VGA_PIXELS_BLOCK;
824 	y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
825 
826 	/* Clip the area to the screen size. */
827 	x2 = min(x2, vw->vw_draw_area.tr_end.tp_col);
828 	y2 = min(y2, vw->vw_draw_area.tr_end.tp_row);
829 
830 	/*
831 	 * Now, we take care of N pixels line at a time (the first for
832 	 * loop, N = font height), and for these lines, draw one pixels
833 	 * block at a time (the second for loop), not a character at a
834 	 * time.
835 	 *
836 	 * Therefore, on the X-axis, characters my be drawn partially if
837 	 * they are not aligned on 8-pixels boundary.
838 	 *
839 	 * However, the operation is repeated for the full height of the
840 	 * font before moving to the next character, because it allows
841 	 * to keep the color settings and write mode, before perhaps
842 	 * changing them with the next one.
843 	 */
844 
845 	for (y = y1; y < y2; y += vf->vf_height) {
846 		for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) {
847 			vga_bitblt_one_text_pixels_block(vd, vw, x, y);
848 		}
849 	}
850 }
851 
852 static void
853 vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw,
854     const term_rect_t *area)
855 {
856 	struct vga_softc *sc;
857 	const struct vt_buf *vb;
858 	unsigned int col, row;
859 	term_char_t c;
860 	term_color_t fg, bg;
861 	uint8_t ch, attr;
862 
863 	sc = vd->vd_softc;
864 	vb = &vw->vw_buf;
865 
866 	for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
867 		for (col = area->tr_begin.tp_col;
868 		    col < area->tr_end.tp_col;
869 		    ++col) {
870 			/*
871 			 * Get next character and its associated fg/bg
872 			 * colors.
873 			 */
874 			c = VTBUF_GET_FIELD(vb, row, col);
875 			vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col),
876 			    &fg, &bg);
877 
878 			/*
879 			 * Convert character to CP437, which is the
880 			 * character set used by the VGA hardware by
881 			 * default.
882 			 */
883 			ch = vga_get_cp437(TCHAR_CHARACTER(c));
884 
885 			/* Convert colors to VGA attributes. */
886 			attr = bg << 4 | fg;
887 
888 			MEM_WRITE1(sc, 0x18000 + (row * 80 + col) * 2 + 0,
889 			    ch);
890 			MEM_WRITE1(sc, 0x18000 + (row * 80 + col) * 2 + 1,
891 			    attr);
892 		}
893 	}
894 }
895 
896 static void
897 vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw,
898     const term_rect_t *area)
899 {
900 
901 	if (!(vd->vd_flags & VDF_TEXTMODE)) {
902 		vga_bitblt_text_gfxmode(vd, vw, area);
903 	} else {
904 		vga_bitblt_text_txtmode(vd, vw, area);
905 	}
906 }
907 
908 static void
909 vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw,
910     const uint8_t *pattern, const uint8_t *mask,
911     unsigned int width, unsigned int height,
912     unsigned int x, unsigned int y, term_color_t fg, term_color_t bg)
913 {
914 	unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count;
915 	uint8_t pattern_2colors;
916 
917 	/* Align coordinates with the 8-pxels grid. */
918 	x1 = x / VT_VGA_PIXELS_BLOCK * VT_VGA_PIXELS_BLOCK;
919 	y1 = y;
920 
921 	x2 = (x + width + VT_VGA_PIXELS_BLOCK - 1) /
922 	    VT_VGA_PIXELS_BLOCK * VT_VGA_PIXELS_BLOCK;
923 	y2 = y + height;
924 	x2 = min(x2, vd->vd_width - 1);
925 	y2 = min(y2, vd->vd_height - 1);
926 
927 	for (j = y1; j < y2; ++j) {
928 		src_x = 0;
929 		dst_x = x - x1;
930 		x_count = VT_VGA_PIXELS_BLOCK - dst_x;
931 
932 		for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) {
933 			pattern_2colors = 0;
934 
935 			vga_copy_bitmap_portion(
936 			    &pattern_2colors, NULL,
937 			    pattern, mask, width,
938 			    src_x, dst_x, x_count,
939 			    j - y1, 0, 1, fg, bg, 0);
940 
941 			vga_bitblt_pixels_block_2colors(vd,
942 			    &pattern_2colors, fg, bg,
943 			    i, j, 1);
944 
945 			src_x += x_count;
946 			dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK;
947 			x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK);
948 		}
949 	}
950 }
951 
952 static void
953 vga_initialize_graphics(struct vt_device *vd)
954 {
955 	struct vga_softc *sc = vd->vd_softc;
956 
957 	/* Clock select. */
958 	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP |
959 	    VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA);
960 	/* Set sequencer clocking and memory mode. */
961 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE);
962 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89);
963 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE);
964 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM);
965 
966 	/* Set the graphics controller in graphics mode. */
967 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS);
968 	REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA);
969 	/* Program the CRT controller. */
970 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL);
971 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f);			/* 760 */
972 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END);
973 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f);			/* 640 - 8 */
974 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK);
975 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x50);			/* 640 */
976 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK);
977 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2);
978 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE);
979 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x54);			/* 672 */
980 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE);
981 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0);
982 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL);
983 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b);			/* 523 */
984 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW);
985 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 |
986 	    VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8);
987 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE);
988 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9);
989 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START);
990 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xea);			/* 480 + 10 */
991 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
992 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c);
993 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END);
994 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf);			/* 480 - 1*/
995 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET);
996 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x28);
997 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK);
998 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7);			/* 480 + 7 */
999 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK);
1000 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x04);
1001 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1002 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW |
1003 	    VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS);
1004 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE);
1005 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xff);			/* 480 + 31 */
1006 
1007 	REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0);
1008 
1009 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
1010 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
1011 	    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
1012 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT);
1013 	REG_WRITE1(sc, VGA_SEQ_DATA, 0);
1014 
1015 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
1016 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1017 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1018 	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1019 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE);
1020 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1021 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE);
1022 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1023 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT);
1024 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1025 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1026 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1027 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE);
1028 	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1029 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK);
1030 	REG_WRITE1(sc, VGA_GC_DATA, 0xff);
1031 }
1032 
1033 static void
1034 vga_initialize(struct vt_device *vd, int textmode)
1035 {
1036 	struct vga_softc *sc = vd->vd_softc;
1037 	uint8_t x;
1038 
1039 	/* Make sure the VGA adapter is not in monochrome emulation mode. */
1040 	x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R);
1041 	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA);
1042 
1043 	/* Unprotect CRTC registers 0-7. */
1044 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
1045 	x = REG_READ1(sc, VGA_CRTC_DATA);
1046 	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR);
1047 
1048 	/*
1049 	 * Wait for the vertical retrace.
1050 	 * NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has
1051 	 * the side-effect of clearing the internal flip-flip of the attribute
1052 	 * controller's write register. This means that because this code is
1053 	 * here, we know for sure that the first write to the attribute
1054 	 * controller will be a write to the address register. Removing this
1055 	 * code therefore also removes that guarantee and appropriate measures
1056 	 * need to be taken.
1057 	 */
1058 	do {
1059 		x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1);
1060 		x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE;
1061 	} while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE));
1062 
1063 	/* Now, disable the sync. signals. */
1064 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1065 	x = REG_READ1(sc, VGA_CRTC_DATA);
1066 	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR);
1067 
1068 	/* Asynchronous sequencer reset. */
1069 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1070 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR);
1071 
1072 	if (!textmode)
1073 		vga_initialize_graphics(vd);
1074 
1075 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN);
1076 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1077 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START);
1078 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO);
1079 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END);
1080 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1081 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH);
1082 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1083 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW);
1084 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1085 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH);
1086 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1087 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW);
1088 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x59);
1089 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC);
1090 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL);
1091 
1092 	if (textmode) {
1093 		/* Set the attribute controller to blink disable. */
1094 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1095 		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1096 	} else {
1097 		/* Set the attribute controller in graphics mode. */
1098 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1099 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA);
1100 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING);
1101 		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1102 	}
1103 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0));
1104 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1105 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1));
1106 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R);
1107 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2));
1108 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G);
1109 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3));
1110 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R);
1111 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4));
1112 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B);
1113 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5));
1114 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B);
1115 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6));
1116 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B);
1117 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7));
1118 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1119 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8));
1120 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1121 	    VGA_AC_PAL_SB);
1122 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9));
1123 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1124 	    VGA_AC_PAL_SB | VGA_AC_PAL_R);
1125 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10));
1126 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1127 	    VGA_AC_PAL_SB | VGA_AC_PAL_G);
1128 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11));
1129 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1130 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G);
1131 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12));
1132 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1133 	    VGA_AC_PAL_SB | VGA_AC_PAL_B);
1134 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13));
1135 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1136 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B);
1137 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14));
1138 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1139 	    VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B);
1140 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15));
1141 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1142 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1143 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR);
1144 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1145 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE);
1146 	REG_WRITE1(sc, VGA_AC_WRITE, 0x0f);
1147 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT);
1148 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1149 
1150 	if (!textmode) {
1151 		u_int ofs;
1152 
1153 		/*
1154 		 * Done.  Clear the frame buffer.  All bit planes are
1155 		 * enabled, so a single-paged loop should clear all
1156 		 * planes.
1157 		 */
1158 		for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) {
1159 			MEM_WRITE1(sc, ofs, 0);
1160 		}
1161 	}
1162 
1163 	/* Re-enable the sequencer. */
1164 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1165 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR);
1166 	/* Re-enable the sync signals. */
1167 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1168 	x = REG_READ1(sc, VGA_CRTC_DATA);
1169 	REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR);
1170 
1171 	if (!textmode) {
1172 		/* Switch to write mode 3, because we'll mainly do bitblt. */
1173 		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1174 		REG_WRITE1(sc, VGA_GC_DATA, 3);
1175 		sc->vga_wmode = 3;
1176 
1177 		/*
1178 		 * In Write Mode 3, Enable Set/Reset is ignored, but we
1179 		 * use Write Mode 0 to write a group of 8 pixels using
1180 		 * 3 or more colors. In this case, we want to disable
1181 		 * Set/Reset: set Enable Set/Reset to 0.
1182 		 */
1183 		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1184 		REG_WRITE1(sc, VGA_GC_DATA, 0x00);
1185 
1186 		/*
1187 		 * Clear the colors we think are loaded into Set/Reset or
1188 		 * the latches.
1189 		 */
1190 		sc->vga_curfg = sc->vga_curbg = 0xff;
1191 	}
1192 }
1193 
1194 static int
1195 vga_probe(struct vt_device *vd)
1196 {
1197 
1198 	return (CN_INTERNAL);
1199 }
1200 
1201 static int
1202 vga_init(struct vt_device *vd)
1203 {
1204 	struct vga_softc *sc;
1205 	int textmode;
1206 
1207 	if (vd->vd_softc == NULL)
1208 		vd->vd_softc = (void *)&vga_conssoftc;
1209 	sc = vd->vd_softc;
1210 	textmode = 0;
1211 
1212 #if defined(__amd64__) || defined(__i386__)
1213 	sc->vga_fb_tag = X86_BUS_SPACE_MEM;
1214 	sc->vga_fb_handle = KERNBASE + VGA_MEM_BASE;
1215 	sc->vga_reg_tag = X86_BUS_SPACE_IO;
1216 	sc->vga_reg_handle = VGA_REG_BASE;
1217 #else
1218 # error "Architecture not yet supported!"
1219 #endif
1220 
1221 	TUNABLE_INT_FETCH("hw.vga.textmode", &textmode);
1222 	if (textmode) {
1223 		vd->vd_flags |= VDF_TEXTMODE;
1224 		vd->vd_width = 80;
1225 		vd->vd_height = 25;
1226 	} else {
1227 		vd->vd_width = VT_VGA_WIDTH;
1228 		vd->vd_height = VT_VGA_HEIGHT;
1229 	}
1230 	vga_initialize(vd, textmode);
1231 
1232 	return (CN_INTERNAL);
1233 }
1234 
1235 static void
1236 vga_postswitch(struct vt_device *vd)
1237 {
1238 
1239 	/* Reinit VGA mode, to restore view after app which change mode. */
1240 	vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE));
1241 	/* Ask vt(9) to update chars on visible area. */
1242 	vd->vd_flags |= VDF_INVALID;
1243 }
1244