xref: /freebsd/sys/dev/vt/hw/vga/vt_vga.c (revision 45dd2eaac379e5576f745380260470204c49beac)
1 /*-
2  * Copyright (c) 2005 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Copyright (c) 2009 The FreeBSD Foundation
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Ed Schouten
9  * under sponsorship from the FreeBSD Foundation.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_acpi.h"
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/module.h>
43 #include <sys/rman.h>
44 
45 #include <dev/vt/vt.h>
46 #include <dev/vt/colors/vt_termcolors.h>
47 #include <dev/vt/hw/vga/vt_vga_reg.h>
48 #include <dev/pci/pcivar.h>
49 
50 #include <machine/bus.h>
51 #if defined(__amd64__) || defined(__i386__)
52 #include <contrib/dev/acpica/include/acpi.h>
53 #include <machine/md_var.h>
54 #endif
55 
56 struct vga_softc {
57 	bus_space_tag_t		 vga_fb_tag;
58 	bus_space_handle_t	 vga_fb_handle;
59 	bus_space_tag_t		 vga_reg_tag;
60 	bus_space_handle_t	 vga_reg_handle;
61 	int			 vga_wmode;
62 	term_color_t		 vga_curfg, vga_curbg;
63 	boolean_t		 vga_enabled;
64 };
65 
66 /* Convenience macros. */
67 #define	MEM_READ1(sc, ofs) \
68 	bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs)
69 #define	MEM_WRITE1(sc, ofs, val) \
70 	bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
71 #define	MEM_WRITE2(sc, ofs, val) \
72 	bus_space_write_2(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
73 #define	REG_READ1(sc, reg) \
74 	bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg)
75 #define	REG_WRITE1(sc, reg, val) \
76 	bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val)
77 
78 #define	VT_VGA_WIDTH	640
79 #define	VT_VGA_HEIGHT	480
80 #define	VT_VGA_MEMSIZE	(VT_VGA_WIDTH * VT_VGA_HEIGHT / 8)
81 
82 /*
83  * VGA is designed to handle 8 pixels at a time (8 pixels in one byte of
84  * memory).
85  */
86 #define	VT_VGA_PIXELS_BLOCK	8
87 
88 /*
89  * We use an off-screen addresses to:
90  *     o  store the background color;
91  *     o  store pixels pattern.
92  * Those addresses are then loaded in the latches once.
93  */
94 #define	VT_VGA_BGCOLOR_OFFSET	VT_VGA_MEMSIZE
95 
96 static vd_probe_t	vga_probe;
97 static vd_init_t	vga_init;
98 static vd_blank_t	vga_blank;
99 static vd_bitblt_text_t	vga_bitblt_text;
100 static vd_invalidate_text_t	vga_invalidate_text;
101 static vd_bitblt_bmp_t	vga_bitblt_bitmap;
102 static vd_drawrect_t	vga_drawrect;
103 static vd_setpixel_t	vga_setpixel;
104 static vd_postswitch_t	vga_postswitch;
105 
106 static const struct vt_driver vt_vga_driver = {
107 	.vd_name	= "vga",
108 	.vd_probe	= vga_probe,
109 	.vd_init	= vga_init,
110 	.vd_blank	= vga_blank,
111 	.vd_bitblt_text	= vga_bitblt_text,
112 	.vd_invalidate_text = vga_invalidate_text,
113 	.vd_bitblt_bmp	= vga_bitblt_bitmap,
114 	.vd_drawrect	= vga_drawrect,
115 	.vd_setpixel	= vga_setpixel,
116 	.vd_postswitch	= vga_postswitch,
117 	.vd_priority	= VD_PRIORITY_GENERIC,
118 };
119 
120 /*
121  * Driver supports both text mode and graphics mode.  Make sure the
122  * buffer is always big enough to support both.
123  */
124 static struct vga_softc vga_conssoftc;
125 VT_DRIVER_DECLARE(vt_vga, vt_vga_driver);
126 
127 static inline void
128 vga_setwmode(struct vt_device *vd, int wmode)
129 {
130 	struct vga_softc *sc = vd->vd_softc;
131 
132 	if (sc->vga_wmode == wmode)
133 		return;
134 
135 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
136 	REG_WRITE1(sc, VGA_GC_DATA, wmode);
137 	sc->vga_wmode = wmode;
138 
139 	switch (wmode) {
140 	case 3:
141 		/* Re-enable all planes. */
142 		REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
143 		REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
144 		    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
145 		break;
146 	}
147 }
148 
149 static inline void
150 vga_setfg(struct vt_device *vd, term_color_t color)
151 {
152 	struct vga_softc *sc = vd->vd_softc;
153 
154 	vga_setwmode(vd, 3);
155 
156 	if (sc->vga_curfg == color)
157 		return;
158 
159 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
160 	REG_WRITE1(sc, VGA_GC_DATA, cons_to_vga_colors[color]);
161 	sc->vga_curfg = color;
162 }
163 
164 static inline void
165 vga_setbg(struct vt_device *vd, term_color_t color)
166 {
167 	struct vga_softc *sc = vd->vd_softc;
168 
169 	vga_setwmode(vd, 3);
170 
171 	if (sc->vga_curbg == color)
172 		return;
173 
174 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
175 	REG_WRITE1(sc, VGA_GC_DATA, cons_to_vga_colors[color]);
176 
177 	/*
178 	 * Write 8 pixels using the background color to an off-screen
179 	 * byte in the video memory.
180 	 */
181 	MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff);
182 
183 	/*
184 	 * Read those 8 pixels back to load the background color in the
185 	 * latches register.
186 	 */
187 	MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET);
188 
189 	sc->vga_curbg = color;
190 
191 	/*
192          * The Set/Reset register doesn't contain the fg color anymore,
193          * store an invalid color.
194 	 */
195 	sc->vga_curfg = 0xff;
196 }
197 
198 /*
199  * Binary searchable table for Unicode to CP437 conversion.
200  */
201 
202 struct unicp437 {
203 	uint16_t	unicode_base;
204 	uint8_t		cp437_base;
205 	uint8_t		length;
206 };
207 
208 static const struct unicp437 cp437table[] = {
209 	{ 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 },
210 	{ 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 },
211 	{ 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 },
212 	{ 0x00a6, 0x7c, 0x00 },
213 	{ 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 },
214 	{ 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 },
215 	{ 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 },
216 	{ 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 },
217 	{ 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 },
218 	{ 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 },
219 	{ 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 },
220 	{ 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 },
221 	{ 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 },
222 	{ 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 },
223 	{ 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 },
224 	{ 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 },
225 	{ 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 },
226 	{ 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 },
227 	{ 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 },
228 	{ 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 },
229 	{ 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 },
230 	{ 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 },
231 	{ 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 },
232 	{ 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 },
233 	{ 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 },
234 	{ 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 },
235 	{ 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 },
236 	{ 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 },
237 	{ 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 },
238 	{ 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 },
239 	{ 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 },
240 	{ 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 },
241 	{ 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 },
242 	{ 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 },
243 	{ 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 },
244 	{ 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 },
245 	{ 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 },
246 	{ 0x2013, 0x2d, 0x00 },
247 	{ 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 },
248 	{ 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 },
249 	{ 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 },
250 	{ 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 },
251 	{ 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 },
252 	{ 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 },
253 	{ 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 },
254 	{ 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 },
255 	{ 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 },
256 	{ 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 },
257 	{ 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 },
258 	{ 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 },
259 	{ 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 },
260 	{ 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 },
261 	{ 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 },
262 	{ 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 },
263 	{ 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 },
264 	{ 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 },
265 	{ 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 },
266 	{ 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 },
267 	{ 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 },
268 	{ 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 },
269 	{ 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 },
270 	{ 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 },
271 	{ 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 },
272 	{ 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 },
273 	{ 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 },
274 	{ 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 },
275 	{ 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 },
276 	{ 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 },
277 	{ 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 },
278 	{ 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 },
279 	{ 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 },
280 	{ 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 },
281 	{ 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 },
282 	{ 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 },
283 	{ 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 },
284 	{ 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 },
285 	{ 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 },
286 	{ 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 },
287 	{ 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 },
288 	{ 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 },
289 	{ 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 },
290 	{ 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 },
291 	{ 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 },
292 	{ 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 },
293 	{ 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 },
294 	{ 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 },
295 	{ 0x266c, 0x0e, 0x00 }, { 0x2713, 0xfb, 0x00 },
296 	{ 0x27e8, 0x3c, 0x00 }, { 0x27e9, 0x3e, 0x00 },
297 };
298 
299 static uint8_t
300 vga_get_cp437(term_char_t c)
301 {
302 	int min, mid, max;
303 
304 	min = 0;
305 	max = nitems(cp437table) - 1;
306 
307 	if (c < cp437table[0].unicode_base ||
308 	    c > cp437table[max].unicode_base + cp437table[max].length)
309 		return '?';
310 
311 	while (max >= min) {
312 		mid = (min + max) / 2;
313 		if (c < cp437table[mid].unicode_base)
314 			max = mid - 1;
315 		else if (c > cp437table[mid].unicode_base +
316 		    cp437table[mid].length)
317 			min = mid + 1;
318 		else
319 			return (c - cp437table[mid].unicode_base +
320 			    cp437table[mid].cp437_base);
321 	}
322 
323 	return '?';
324 }
325 
326 static void
327 vga_blank(struct vt_device *vd, term_color_t color)
328 {
329 	struct vga_softc *sc = vd->vd_softc;
330 	u_int ofs;
331 
332 	vga_setfg(vd, color);
333 	for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++)
334 		MEM_WRITE1(sc, ofs, 0xff);
335 }
336 
337 static inline void
338 vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color,
339     uint8_t v)
340 {
341 	struct vga_softc *sc = vd->vd_softc;
342 
343 	/* Skip empty writes, in order to avoid palette changes. */
344 	if (v != 0x00) {
345 		vga_setfg(vd, color);
346 		/*
347 		 * When this MEM_READ1() gets disabled, all sorts of
348 		 * artifacts occur.  This is because this read loads the
349 		 * set of 8 pixels that are about to be changed.  There
350 		 * is one scenario where we can avoid the read, namely
351 		 * if all pixels are about to be overwritten anyway.
352 		 */
353 		if (v != 0xff) {
354 			MEM_READ1(sc, dst);
355 
356 			/* The bg color was trashed by the reads. */
357 			sc->vga_curbg = 0xff;
358 		}
359 		MEM_WRITE1(sc, dst, v);
360 	}
361 }
362 
363 static void
364 vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color)
365 {
366 
367 	if (vd->vd_flags & VDF_TEXTMODE)
368 		return;
369 
370 	vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color,
371 	    0x80 >> (x % 8));
372 }
373 
374 static void
375 vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill,
376     term_color_t color)
377 {
378 	int x, y;
379 
380 	if (vd->vd_flags & VDF_TEXTMODE)
381 		return;
382 
383 	for (y = y1; y <= y2; y++) {
384 		if (fill || (y == y1) || (y == y2)) {
385 			for (x = x1; x <= x2; x++)
386 				vga_setpixel(vd, x, y, color);
387 		} else {
388 			vga_setpixel(vd, x1, y, color);
389 			vga_setpixel(vd, x2, y, color);
390 		}
391 	}
392 }
393 
394 static void
395 vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes,
396     unsigned int src_x, unsigned int x_count, unsigned int dst_x,
397     uint8_t *pattern, uint8_t *mask)
398 {
399 	unsigned int n;
400 
401 	n = src_x / 8;
402 
403 	/*
404 	 * This mask has bits set, where a pixel (ether 0 or 1)
405 	 * comes from the source bitmap.
406 	 */
407 	if (mask != NULL) {
408 		*mask = (0xff
409 		    >> (8 - x_count))
410 		    << (8 - x_count - dst_x);
411 	}
412 
413 	if (n == (src_x + x_count - 1) / 8) {
414 		/* All the pixels we want are in the same byte. */
415 		*pattern = src[n];
416 		if (dst_x >= src_x)
417 			*pattern >>= (dst_x - src_x % 8);
418 		else
419 			*pattern <<= (src_x % 8 - dst_x);
420 	} else {
421 		/* The pixels we want are split into two bytes. */
422 		if (dst_x >= src_x % 8) {
423 			*pattern =
424 			    src[n] << (8 - dst_x - src_x % 8) |
425 			    src[n + 1] >> (dst_x - src_x % 8);
426 		} else {
427 			*pattern =
428 			    src[n] << (src_x % 8 - dst_x) |
429 			    src[n + 1] >> (8 - src_x % 8 - dst_x);
430 		}
431 	}
432 }
433 
434 static void
435 vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors,
436     const uint8_t *src, const uint8_t *src_mask, unsigned int src_width,
437     unsigned int src_x, unsigned int dst_x, unsigned int x_count,
438     unsigned int src_y, unsigned int dst_y, unsigned int y_count,
439     term_color_t fg, term_color_t bg, int overwrite)
440 {
441 	unsigned int i, bytes;
442 	uint8_t pattern, relevant_bits, mask;
443 
444 	bytes = (src_width + 7) / 8;
445 
446 	for (i = 0; i < y_count; ++i) {
447 		vga_compute_shifted_pattern(src + (src_y + i) * bytes,
448 		    bytes, src_x, x_count, dst_x, &pattern, &relevant_bits);
449 
450 		if (src_mask == NULL) {
451 			/*
452 			 * No src mask. Consider that all wanted bits
453 			 * from the source are "authoritative".
454 			 */
455 			mask = relevant_bits;
456 		} else {
457 			/*
458 			 * There's an src mask. We shift it the same way
459 			 * we shifted the source pattern.
460 			 */
461 			vga_compute_shifted_pattern(
462 			    src_mask + (src_y + i) * bytes,
463 			    bytes, src_x, x_count, dst_x,
464 			    &mask, NULL);
465 
466 			/* Now, only keep the wanted bits among them. */
467 			mask &= relevant_bits;
468 		}
469 
470 		/*
471 		 * Clear bits from the pattern which must be
472 		 * transparent, according to the source mask.
473 		 */
474 		pattern &= mask;
475 
476 		/* Set the bits in the 2-colors array. */
477 		if (overwrite)
478 			pattern_2colors[dst_y + i] &= ~mask;
479 		pattern_2colors[dst_y + i] |= pattern;
480 
481 		if (pattern_ncolors == NULL)
482 			continue;
483 
484 		/*
485 		 * Set the same bits in the n-colors array. This one
486 		 * supports transparency, when a given bit is cleared in
487 		 * all colors.
488 		 */
489 		if (overwrite) {
490 			/*
491 			 * Ensure that the pixels used by this bitmap are
492 			 * cleared in other colors.
493 			 */
494 			for (int j = 0; j < 16; ++j)
495 				pattern_ncolors[(dst_y + i) * 16 + j] &=
496 				    ~mask;
497 		}
498 		pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern;
499 		pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask);
500 	}
501 }
502 
503 static void
504 vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks,
505     term_color_t fg, term_color_t bg,
506     unsigned int x, unsigned int y, unsigned int height)
507 {
508 	unsigned int i, offset;
509 	struct vga_softc *sc;
510 
511 	/*
512 	 * The great advantage of Write Mode 3 is that we just need
513 	 * to load the foreground in the Set/Reset register, load the
514 	 * background color in the latches register (this is done
515 	 * through a write in offscreen memory followed by a read of
516 	 * that data), then write the pattern to video memory. This
517 	 * pattern indicates if the pixel should use the foreground
518 	 * color (bit set) or the background color (bit cleared).
519 	 */
520 
521 	vga_setbg(vd, bg);
522 	vga_setfg(vd, fg);
523 
524 	sc = vd->vd_softc;
525 	offset = (VT_VGA_WIDTH * y + x) / 8;
526 
527 	for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) {
528 		MEM_WRITE1(sc, offset, masks[i]);
529 	}
530 }
531 
532 static void
533 vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks,
534     unsigned int x, unsigned int y, unsigned int height)
535 {
536 	unsigned int i, j, plane, color, offset;
537 	struct vga_softc *sc;
538 	uint8_t mask, planes[height * 4];
539 
540 	sc = vd->vd_softc;
541 
542 	memset(planes, 0, sizeof(planes));
543 
544 	/*
545          * To write a group of pixels using 3 or more colors, we select
546          * Write Mode 0 and write one byte to each plane separately.
547 	 */
548 
549 	/*
550 	 * We first compute each byte: each plane contains one bit of the
551 	 * color code for each of the 8 pixels.
552 	 *
553 	 * For example, if the 8 pixels are like this:
554 	 *     GBBBBBBY
555 	 * where:
556 	 *     G (gray)   = 0b0111
557 	 *     B (black)  = 0b0000
558 	 *     Y (yellow) = 0b0011
559 	 *
560 	 * The corresponding for bytes are:
561 	 *             GBBBBBBY
562 	 *    Plane 0: 10000001 = 0x81
563 	 *    Plane 1: 10000001 = 0x81
564 	 *    Plane 2: 10000000 = 0x80
565 	 *    Plane 3: 00000000 = 0x00
566 	 *             |  |   |
567 	 *             |  |   +-> 0b0011 (Y)
568 	 *             |  +-----> 0b0000 (B)
569 	 *             +--------> 0b0111 (G)
570 	 */
571 
572 	for (i = 0; i < height; ++i) {
573 		for (color = 0; color < 16; ++color) {
574 			mask = masks[i * 16 + color];
575 			if (mask == 0x00)
576 				continue;
577 
578 			for (j = 0; j < 8; ++j) {
579 				if (!((mask >> (7 - j)) & 0x1))
580 					continue;
581 
582 				/* The pixel "j" uses color "color". */
583 				for (plane = 0; plane < 4; ++plane)
584 					planes[i * 4 + plane] |=
585 					    ((cons_to_vga_colors[color] >>
586 					    plane) & 0x1) << (7 - j);
587 			}
588 		}
589 	}
590 
591 	/*
592 	 * The bytes are ready: we now switch to Write Mode 0 and write
593 	 * all bytes, one plane at a time.
594 	 */
595 	vga_setwmode(vd, 0);
596 
597 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
598 	for (plane = 0; plane < 4; ++plane) {
599 		/* Select plane. */
600 		REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plane);
601 
602 		/* Write all bytes for this plane, from Y to Y+height. */
603 		for (i = 0; i < height; ++i) {
604 			offset = (VT_VGA_WIDTH * (y + i) + x) / 8;
605 			MEM_WRITE1(sc, offset, planes[i * 4 + plane]);
606 		}
607 	}
608 }
609 
610 static void
611 vga_bitblt_one_text_pixels_block(struct vt_device *vd,
612     const struct vt_window *vw, unsigned int x, unsigned int y)
613 {
614 	const struct vt_buf *vb;
615 	const struct vt_font *vf;
616 	unsigned int i, col, row, src_x, x_count;
617 	unsigned int used_colors_list[16], used_colors;
618 	uint8_t pattern_2colors[vw->vw_font->vf_height];
619 	uint8_t pattern_ncolors[vw->vw_font->vf_height * 16];
620 	term_char_t c;
621 	term_color_t fg, bg;
622 	const uint8_t *src;
623 
624 	vb = &vw->vw_buf;
625 	vf = vw->vw_font;
626 
627 	/*
628 	 * The current pixels block.
629 	 *
630 	 * We fill it with portions of characters, because both "grids"
631 	 * may not match.
632 	 *
633 	 * i is the index in this pixels block.
634 	 */
635 
636 	i = x;
637 	used_colors = 0;
638 	memset(used_colors_list, 0, sizeof(used_colors_list));
639 	memset(pattern_2colors, 0, sizeof(pattern_2colors));
640 	memset(pattern_ncolors, 0, sizeof(pattern_ncolors));
641 
642 	if (i < vw->vw_draw_area.tr_begin.tp_col) {
643 		/*
644 		 * i is in the margin used to center the text area on
645 		 * the screen.
646 		 */
647 
648 		i = vw->vw_draw_area.tr_begin.tp_col;
649 	}
650 
651 	while (i < x + VT_VGA_PIXELS_BLOCK &&
652 	    i < vw->vw_draw_area.tr_end.tp_col) {
653 		/*
654 		 * Find which character is drawn on this pixel in the
655 		 * pixels block.
656 		 *
657 		 * While here, record what colors it uses.
658 		 */
659 
660 		col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width;
661 		row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height;
662 
663 		c = VTBUF_GET_FIELD(vb, row, col);
664 		src = vtfont_lookup(vf, c);
665 
666 		vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg);
667 		if ((used_colors_list[fg] & 0x1) != 0x1)
668 			used_colors++;
669 		if ((used_colors_list[bg] & 0x2) != 0x2)
670 			used_colors++;
671 		used_colors_list[fg] |= 0x1;
672 		used_colors_list[bg] |= 0x2;
673 
674 		/*
675 		 * Compute the portion of the character we want to draw,
676 		 * because the pixels block may start in the middle of a
677 		 * character.
678 		 *
679 		 * The first pixel to draw in the character is
680 		 *     the current position -
681 		 *     the start position of the character
682 		 *
683 		 * The last pixel to draw is either
684 		 *     - the last pixel of the character, or
685 		 *     - the pixel of the character matching the end of
686 		 *       the pixels block
687 		 * whichever comes first. This position is then
688 		 * changed to be relative to the start position of the
689 		 * character.
690 		 */
691 
692 		src_x = i -
693 		    (col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col);
694 		x_count = min(min(
695 		    (col + 1) * vf->vf_width +
696 		    vw->vw_draw_area.tr_begin.tp_col,
697 		    x + VT_VGA_PIXELS_BLOCK),
698 		    vw->vw_draw_area.tr_end.tp_col);
699 		x_count -= col * vf->vf_width +
700 		    vw->vw_draw_area.tr_begin.tp_col;
701 		x_count -= src_x;
702 
703 		/* Copy a portion of the character. */
704 		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
705 		    src, NULL, vf->vf_width,
706 		    src_x, i % VT_VGA_PIXELS_BLOCK, x_count,
707 		    0, 0, vf->vf_height, fg, bg, 0);
708 
709 		/* We move to the next portion. */
710 		i += x_count;
711 	}
712 
713 #ifndef SC_NO_CUTPASTE
714 	/*
715 	 * Copy the mouse pointer bitmap if it's over the current pixels
716 	 * block.
717 	 *
718 	 * We use the saved cursor position (saved in vt_flush()), because
719 	 * the current position could be different than the one used
720 	 * to mark the area dirty.
721 	 */
722 	term_rect_t drawn_area;
723 
724 	drawn_area.tr_begin.tp_col = x;
725 	drawn_area.tr_begin.tp_row = y;
726 	drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK;
727 	drawn_area.tr_end.tp_row = y + vf->vf_height;
728 	if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) {
729 		struct vt_mouse_cursor *cursor;
730 		unsigned int mx, my;
731 		unsigned int dst_x, src_y, dst_y, y_count;
732 
733 		cursor = vd->vd_mcursor;
734 		mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col;
735 		my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row;
736 
737 		/* Compute the portion of the cursor we want to copy. */
738 		src_x = x > mx ? x - mx : 0;
739 		dst_x = mx > x ? mx - x : 0;
740 		x_count = min(min(min(
741 		    cursor->width - src_x,
742 		    x + VT_VGA_PIXELS_BLOCK - mx),
743 		    vw->vw_draw_area.tr_end.tp_col - mx),
744 		    VT_VGA_PIXELS_BLOCK);
745 
746 		/*
747 		 * The cursor isn't aligned on the Y-axis with
748 		 * characters, so we need to compute the vertical
749 		 * start/count.
750 		 */
751 		src_y = y > my ? y - my : 0;
752 		dst_y = my > y ? my - y : 0;
753 		y_count = min(
754 		    min(cursor->height - src_y, y + vf->vf_height - my),
755 		    vf->vf_height);
756 
757 		/* Copy the cursor portion. */
758 		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
759 		    cursor->map, cursor->mask, cursor->width,
760 		    src_x, dst_x, x_count, src_y, dst_y, y_count,
761 		    vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1);
762 
763 		if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1)
764 			used_colors++;
765 		if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2)
766 			used_colors++;
767 	}
768 #endif
769 
770 	/*
771 	 * The pixels block is completed, we can now draw it on the
772 	 * screen.
773 	 */
774 	if (used_colors == 2)
775 		vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg,
776 		    x, y, vf->vf_height);
777 	else
778 		vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors,
779 		    x, y, vf->vf_height);
780 }
781 
782 static void
783 vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw,
784     const term_rect_t *area)
785 {
786 	const struct vt_font *vf;
787 	unsigned int col, row;
788 	unsigned int x1, y1, x2, y2, x, y;
789 
790 	vf = vw->vw_font;
791 
792 	/*
793 	 * Compute the top-left pixel position aligned with the video
794 	 * adapter pixels block size.
795 	 *
796 	 * This is calculated from the top-left column of te dirty area:
797 	 *
798 	 *     1. Compute the top-left pixel of the character:
799 	 *        col * font width + x offset
800 	 *
801 	 *        NOTE: x offset is used to center the text area on the
802 	 *        screen. It's expressed in pixels, not in characters
803 	 *        col/row!
804 	 *
805 	 *     2. Find the pixel further on the left marking the start of
806 	 *        an aligned pixels block (eg. chunk of 8 pixels):
807 	 *        character's x / blocksize * blocksize
808 	 *
809 	 *        The division, being made on integers, achieves the
810 	 *        alignment.
811 	 *
812 	 * For the Y-axis, we need to compute the character's y
813 	 * coordinate, but we don't need to align it.
814 	 */
815 
816 	col = area->tr_begin.tp_col;
817 	row = area->tr_begin.tp_row;
818 	x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col)
819 	     / VT_VGA_PIXELS_BLOCK)
820 	    * VT_VGA_PIXELS_BLOCK;
821 	y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
822 
823 	/*
824 	 * Compute the bottom right pixel position, again, aligned with
825 	 * the pixels block size.
826 	 *
827 	 * The same rules apply, we just add 1 to base the computation
828 	 * on the "right border" of the dirty area.
829 	 */
830 
831 	col = area->tr_end.tp_col;
832 	row = area->tr_end.tp_row;
833 	x2 = (int)howmany(col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col,
834 	    VT_VGA_PIXELS_BLOCK)
835 	    * VT_VGA_PIXELS_BLOCK;
836 	y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
837 
838 	/* Clip the area to the screen size. */
839 	x2 = min(x2, vw->vw_draw_area.tr_end.tp_col);
840 	y2 = min(y2, vw->vw_draw_area.tr_end.tp_row);
841 
842 	/*
843 	 * Now, we take care of N pixels line at a time (the first for
844 	 * loop, N = font height), and for these lines, draw one pixels
845 	 * block at a time (the second for loop), not a character at a
846 	 * time.
847 	 *
848 	 * Therefore, on the X-axis, characters my be drawn partially if
849 	 * they are not aligned on 8-pixels boundary.
850 	 *
851 	 * However, the operation is repeated for the full height of the
852 	 * font before moving to the next character, because it allows
853 	 * to keep the color settings and write mode, before perhaps
854 	 * changing them with the next one.
855 	 */
856 
857 	for (y = y1; y < y2; y += vf->vf_height) {
858 		for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) {
859 			vga_bitblt_one_text_pixels_block(vd, vw, x, y);
860 		}
861 	}
862 }
863 
864 static void
865 vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw,
866     const term_rect_t *area)
867 {
868 	struct vga_softc *sc;
869 	const struct vt_buf *vb;
870 	unsigned int col, row;
871 	term_char_t c;
872 	term_color_t fg, bg;
873 	uint8_t ch, attr;
874 	size_t z;
875 
876 	sc = vd->vd_softc;
877 	vb = &vw->vw_buf;
878 
879 	for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
880 		for (col = area->tr_begin.tp_col;
881 		    col < area->tr_end.tp_col;
882 		    ++col) {
883 			/*
884 			 * Get next character and its associated fg/bg
885 			 * colors.
886 			 */
887 			c = VTBUF_GET_FIELD(vb, row, col);
888 			vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col),
889 			    &fg, &bg);
890 
891 			z = row * PIXEL_WIDTH(VT_FB_MAX_WIDTH) + col;
892 			if (z >= PIXEL_HEIGHT(VT_FB_MAX_HEIGHT) *
893 			    PIXEL_WIDTH(VT_FB_MAX_WIDTH))
894 				continue;
895 			if (vd->vd_drawn && (vd->vd_drawn[z] == c) &&
896 			    vd->vd_drawnfg && (vd->vd_drawnfg[z] == fg) &&
897 			    vd->vd_drawnbg && (vd->vd_drawnbg[z] == bg))
898 				continue;
899 
900 			/*
901 			 * Convert character to CP437, which is the
902 			 * character set used by the VGA hardware by
903 			 * default.
904 			 */
905 			ch = vga_get_cp437(TCHAR_CHARACTER(c));
906 
907 			/* Convert colors to VGA attributes. */
908 			attr =
909 			    cons_to_vga_colors[bg] << 4 |
910 			    cons_to_vga_colors[fg];
911 
912 			MEM_WRITE2(sc, (row * 80 + col) * 2 + 0,
913 			    ch + ((uint16_t)(attr) << 8));
914 
915 			if (vd->vd_drawn)
916 				vd->vd_drawn[z] = c;
917 			if (vd->vd_drawnfg)
918 				vd->vd_drawnfg[z] = fg;
919 			if (vd->vd_drawnbg)
920 				vd->vd_drawnbg[z] = bg;
921 		}
922 	}
923 }
924 
925 static void
926 vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw,
927     const term_rect_t *area)
928 {
929 
930 	if (!(vd->vd_flags & VDF_TEXTMODE)) {
931 		vga_bitblt_text_gfxmode(vd, vw, area);
932 	} else {
933 		vga_bitblt_text_txtmode(vd, vw, area);
934 	}
935 }
936 
937 void
938 vga_invalidate_text(struct vt_device *vd, const term_rect_t *area)
939 {
940 	unsigned int col, row;
941 	size_t z;
942 
943 	for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
944 		for (col = area->tr_begin.tp_col;
945 		    col < area->tr_end.tp_col;
946 		    ++col) {
947 			z = row * PIXEL_WIDTH(VT_FB_MAX_WIDTH) + col;
948 			if (z >= PIXEL_HEIGHT(VT_FB_MAX_HEIGHT) *
949 			    PIXEL_WIDTH(VT_FB_MAX_WIDTH))
950 				continue;
951 			if (vd->vd_drawn)
952 				vd->vd_drawn[z] = 0;
953 			if (vd->vd_drawnfg)
954 				vd->vd_drawnfg[z] = 0;
955 			if (vd->vd_drawnbg)
956 				vd->vd_drawnbg[z] = 0;
957 		}
958 	}
959 }
960 
961 static void
962 vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw,
963     const uint8_t *pattern, const uint8_t *mask,
964     unsigned int width, unsigned int height,
965     unsigned int x, unsigned int y, term_color_t fg, term_color_t bg)
966 {
967 	unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count;
968 	uint8_t pattern_2colors;
969 
970 	/* Align coordinates with the 8-pxels grid. */
971 	x1 = rounddown(x, VT_VGA_PIXELS_BLOCK);
972 	y1 = y;
973 
974 	x2 = roundup(x + width, VT_VGA_PIXELS_BLOCK);
975 	y2 = y + height;
976 	x2 = min(x2, vd->vd_width - 1);
977 	y2 = min(y2, vd->vd_height - 1);
978 
979 	for (j = y1; j < y2; ++j) {
980 		src_x = 0;
981 		dst_x = x - x1;
982 		x_count = VT_VGA_PIXELS_BLOCK - dst_x;
983 
984 		for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) {
985 			pattern_2colors = 0;
986 
987 			vga_copy_bitmap_portion(
988 			    &pattern_2colors, NULL,
989 			    pattern, mask, width,
990 			    src_x, dst_x, x_count,
991 			    j - y1, 0, 1, fg, bg, 0);
992 
993 			vga_bitblt_pixels_block_2colors(vd,
994 			    &pattern_2colors, fg, bg,
995 			    i, j, 1);
996 
997 			src_x += x_count;
998 			dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK;
999 			x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK);
1000 		}
1001 	}
1002 }
1003 
1004 static void
1005 vga_initialize_graphics(struct vt_device *vd)
1006 {
1007 	struct vga_softc *sc = vd->vd_softc;
1008 
1009 	/* Clock select. */
1010 	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP |
1011 	    VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA);
1012 	/* Set sequencer clocking and memory mode. */
1013 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE);
1014 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89);
1015 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE);
1016 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM);
1017 
1018 	/* Set the graphics controller in graphics mode. */
1019 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS);
1020 	REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA);
1021 	/* Program the CRT controller. */
1022 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL);
1023 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f);			/* 760 */
1024 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END);
1025 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f);			/* 640 - 8 */
1026 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK);
1027 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x50);			/* 640 */
1028 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK);
1029 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2);
1030 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE);
1031 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x54);			/* 672 */
1032 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE);
1033 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0);
1034 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL);
1035 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b);			/* 523 */
1036 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW);
1037 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 |
1038 	    VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8);
1039 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE);
1040 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9);
1041 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START);
1042 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xea);			/* 480 + 10 */
1043 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
1044 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c);
1045 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END);
1046 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf);			/* 480 - 1*/
1047 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET);
1048 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x28);
1049 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK);
1050 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7);			/* 480 + 7 */
1051 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK);
1052 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x04);
1053 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1054 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW |
1055 	    VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS);
1056 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE);
1057 	REG_WRITE1(sc, VGA_CRTC_DATA, 0xff);			/* 480 + 31 */
1058 
1059 	REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0);
1060 
1061 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
1062 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
1063 	    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
1064 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT);
1065 	REG_WRITE1(sc, VGA_SEQ_DATA, 0);
1066 
1067 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
1068 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1069 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1070 	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1071 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE);
1072 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1073 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE);
1074 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1075 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT);
1076 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1077 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1078 	REG_WRITE1(sc, VGA_GC_DATA, 0);
1079 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE);
1080 	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1081 	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK);
1082 	REG_WRITE1(sc, VGA_GC_DATA, 0xff);
1083 }
1084 
1085 static int
1086 vga_initialize(struct vt_device *vd, int textmode)
1087 {
1088 	struct vga_softc *sc = vd->vd_softc;
1089 	uint8_t x;
1090 	int timeout;
1091 
1092 	/* Make sure the VGA adapter is not in monochrome emulation mode. */
1093 	x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R);
1094 	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA);
1095 
1096 	/* Unprotect CRTC registers 0-7. */
1097 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
1098 	x = REG_READ1(sc, VGA_CRTC_DATA);
1099 	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR);
1100 
1101 	/*
1102 	 * Wait for the vertical retrace.
1103 	 * NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has
1104 	 * the side-effect of clearing the internal flip-flip of the attribute
1105 	 * controller's write register. This means that because this code is
1106 	 * here, we know for sure that the first write to the attribute
1107 	 * controller will be a write to the address register. Removing this
1108 	 * code therefore also removes that guarantee and appropriate measures
1109 	 * need to be taken.
1110 	 */
1111 	timeout = 10000;
1112 	do {
1113 		DELAY(10);
1114 		x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1);
1115 		x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE;
1116 	} while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE) && --timeout != 0);
1117 	if (timeout == 0) {
1118 		printf("Timeout initializing vt_vga\n");
1119 		return (ENXIO);
1120 	}
1121 
1122 	/* Now, disable the sync. signals. */
1123 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1124 	x = REG_READ1(sc, VGA_CRTC_DATA);
1125 	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR);
1126 
1127 	/* Asynchronous sequencer reset. */
1128 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1129 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR);
1130 
1131 	if (!textmode)
1132 		vga_initialize_graphics(vd);
1133 
1134 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN);
1135 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1136 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START);
1137 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO);
1138 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END);
1139 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1140 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH);
1141 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1142 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW);
1143 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1144 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH);
1145 	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1146 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW);
1147 	REG_WRITE1(sc, VGA_CRTC_DATA, 0x59);
1148 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC);
1149 	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL);
1150 
1151 	if (textmode) {
1152 		/* Set the attribute controller to blink disable. */
1153 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1154 		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1155 	} else {
1156 		/* Set the attribute controller in graphics mode. */
1157 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1158 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA);
1159 		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING);
1160 		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1161 	}
1162 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0));
1163 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1164 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1));
1165 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B);
1166 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2));
1167 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G);
1168 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3));
1169 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B);
1170 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4));
1171 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R);
1172 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5));
1173 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B);
1174 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6));
1175 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R);
1176 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7));
1177 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1178 
1179 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8));
1180 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1181 	    VGA_AC_PAL_SB);
1182 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9));
1183 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1184 	    VGA_AC_PAL_SB | VGA_AC_PAL_B);
1185 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10));
1186 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1187 	    VGA_AC_PAL_SB | VGA_AC_PAL_G);
1188 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11));
1189 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1190 	    VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B);
1191 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12));
1192 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1193 	    VGA_AC_PAL_SB | VGA_AC_PAL_R);
1194 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13));
1195 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1196 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B);
1197 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14));
1198 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1199 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G);
1200 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15));
1201 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1202 	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1203 
1204 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR);
1205 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1206 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE);
1207 	REG_WRITE1(sc, VGA_AC_WRITE, 0x0f);
1208 	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT);
1209 	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1210 
1211 	if (!textmode) {
1212 		u_int ofs;
1213 
1214 		/*
1215 		 * Done.  Clear the frame buffer.  All bit planes are
1216 		 * enabled, so a single-paged loop should clear all
1217 		 * planes.
1218 		 */
1219 		for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) {
1220 			MEM_WRITE1(sc, ofs, 0);
1221 		}
1222 	}
1223 
1224 	/* Re-enable the sequencer. */
1225 	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1226 	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR);
1227 	/* Re-enable the sync signals. */
1228 	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1229 	x = REG_READ1(sc, VGA_CRTC_DATA);
1230 	REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR);
1231 
1232 	if (!textmode) {
1233 		/* Switch to write mode 3, because we'll mainly do bitblt. */
1234 		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1235 		REG_WRITE1(sc, VGA_GC_DATA, 3);
1236 		sc->vga_wmode = 3;
1237 
1238 		/*
1239 		 * In Write Mode 3, Enable Set/Reset is ignored, but we
1240 		 * use Write Mode 0 to write a group of 8 pixels using
1241 		 * 3 or more colors. In this case, we want to disable
1242 		 * Set/Reset: set Enable Set/Reset to 0.
1243 		 */
1244 		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1245 		REG_WRITE1(sc, VGA_GC_DATA, 0x00);
1246 
1247 		/*
1248 		 * Clear the colors we think are loaded into Set/Reset or
1249 		 * the latches.
1250 		 */
1251 		sc->vga_curfg = sc->vga_curbg = 0xff;
1252 	}
1253 
1254 	return (0);
1255 }
1256 
1257 static bool
1258 vga_acpi_disabled(void)
1259 {
1260 #if defined(__amd64__) || defined(__i386__)
1261 	uint16_t flags;
1262 	int ignore;
1263 
1264 	/*
1265 	 * Ignore the flag on real hardware: there's a lot of buggy firmware
1266 	 * that will wrongly set it.
1267 	 */
1268 	ignore = (vm_guest == VM_GUEST_NO);
1269 	TUNABLE_INT_FETCH("hw.vga.acpi_ignore_no_vga", &ignore);
1270 	if (ignore || !acpi_get_fadt_bootflags(&flags))
1271  		return (false);
1272 	return ((flags & ACPI_FADT_NO_VGA) != 0);
1273 #else
1274 	return (false);
1275 #endif
1276 }
1277 
1278 static int
1279 vga_probe(struct vt_device *vd)
1280 {
1281 
1282 	return (vga_acpi_disabled() ? CN_DEAD : CN_INTERNAL);
1283 }
1284 
1285 static int
1286 vga_init(struct vt_device *vd)
1287 {
1288 	struct vga_softc *sc;
1289 	int textmode;
1290 
1291 	if (vd->vd_softc == NULL)
1292 		vd->vd_softc = (void *)&vga_conssoftc;
1293 	sc = vd->vd_softc;
1294 
1295 	if (vd->vd_flags & VDF_DOWNGRADE && vd->vd_video_dev != NULL)
1296 		vga_pci_repost(vd->vd_video_dev);
1297 
1298 #if defined(__amd64__) || defined(__i386__)
1299 	sc->vga_fb_tag = X86_BUS_SPACE_MEM;
1300 	sc->vga_reg_tag = X86_BUS_SPACE_IO;
1301 #else
1302 # error "Architecture not yet supported!"
1303 #endif
1304 
1305 	bus_space_map(sc->vga_reg_tag, VGA_REG_BASE, VGA_REG_SIZE, 0,
1306 	    &sc->vga_reg_handle);
1307 
1308 	/*
1309 	 * If "hw.vga.textmode" is not set and we're running on hypervisor,
1310 	 * we use text mode by default, this is because when we're on
1311 	 * hypervisor, vt(4) is usually much slower in graphics mode than
1312 	 * in text mode, especially when we're on Hyper-V.
1313 	 */
1314 	textmode = vm_guest != VM_GUEST_NO;
1315 	TUNABLE_INT_FETCH("hw.vga.textmode", &textmode);
1316 	if (textmode) {
1317 		vd->vd_flags |= VDF_TEXTMODE;
1318 		vd->vd_width = 80;
1319 		vd->vd_height = 25;
1320 		bus_space_map(sc->vga_fb_tag, VGA_TXT_BASE, VGA_TXT_SIZE, 0,
1321 		    &sc->vga_fb_handle);
1322 	} else {
1323 		vd->vd_width = VT_VGA_WIDTH;
1324 		vd->vd_height = VT_VGA_HEIGHT;
1325 		bus_space_map(sc->vga_fb_tag, VGA_MEM_BASE, VGA_MEM_SIZE, 0,
1326 		    &sc->vga_fb_handle);
1327 	}
1328 	if (vga_initialize(vd, textmode) != 0)
1329 		return (CN_DEAD);
1330 	sc->vga_enabled = true;
1331 
1332 	return (CN_INTERNAL);
1333 }
1334 
1335 static void
1336 vga_postswitch(struct vt_device *vd)
1337 {
1338 
1339 	/* Reinit VGA mode, to restore view after app which change mode. */
1340 	vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE));
1341 	/* Ask vt(9) to update chars on visible area. */
1342 	vd->vd_flags |= VDF_INVALID;
1343 }
1344 
1345 /* Dummy NewBus functions to reserve the resources used by the vt_vga driver */
1346 static void
1347 vtvga_identify(driver_t *driver, device_t parent)
1348 {
1349 
1350 	if (!vga_conssoftc.vga_enabled)
1351 		return;
1352 
1353 	if (BUS_ADD_CHILD(parent, 0, driver->name, 0) == NULL)
1354 		panic("Unable to attach vt_vga console");
1355 }
1356 
1357 static int
1358 vtvga_probe(device_t dev)
1359 {
1360 
1361 	device_set_desc(dev, "VT VGA driver");
1362 
1363 	return (BUS_PROBE_NOWILDCARD);
1364 }
1365 
1366 static int
1367 vtvga_attach(device_t dev)
1368 {
1369 	struct resource *pseudo_phys_res;
1370 	int res_id;
1371 
1372 	res_id = 0;
1373 	pseudo_phys_res = bus_alloc_resource(dev, SYS_RES_MEMORY,
1374 	    &res_id, VGA_MEM_BASE, VGA_MEM_BASE + VGA_MEM_SIZE - 1,
1375 	    VGA_MEM_SIZE, RF_ACTIVE);
1376 	if (pseudo_phys_res == NULL)
1377 		panic("Unable to reserve vt_vga memory");
1378 	return (0);
1379 }
1380 
1381 /*-------------------- Private Device Attachment Data  -----------------------*/
1382 static device_method_t vtvga_methods[] = {
1383 	/* Device interface */
1384 	DEVMETHOD(device_identify,	vtvga_identify),
1385 	DEVMETHOD(device_probe,         vtvga_probe),
1386 	DEVMETHOD(device_attach,        vtvga_attach),
1387 
1388 	DEVMETHOD_END
1389 };
1390 
1391 DEFINE_CLASS_0(vtvga, vtvga_driver, vtvga_methods, 0);
1392 devclass_t vtvga_devclass;
1393 
1394 DRIVER_MODULE(vtvga, nexus, vtvga_driver, vtvga_devclass, NULL, NULL);
1395