xref: /freebsd/sys/dev/vr/if_vr.c (revision fe75646a0234a261c0013bf1840fdac4acaf0cec)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 /*
37  * VIA Rhine fast ethernet PCI NIC driver
38  *
39  * Supports various network adapters based on the VIA Rhine
40  * and Rhine II PCI controllers, including the D-Link DFE530TX.
41  * Datasheets are available at http://www.via.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The VIA Rhine controllers are similar in some respects to the
50  * the DEC tulip chips, except less complicated. The controller
51  * uses an MII bus and an external physical layer interface. The
52  * receiver has a one entry perfect filter and a 64-bit hash table
53  * multicast filter. Transmit and receive descriptors are similar
54  * to the tulip.
55  *
56  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
57  * transmit buffers must be longword aligned. Unfortunately,
58  * FreeBSD doesn't guarantee that mbufs will be filled in starting
59  * at longword boundaries, so we have to do a buffer copy before
60  * transmission.
61  */
62 
63 #ifdef HAVE_KERNEL_OPTION_HEADERS
64 #include "opt_device_polling.h"
65 #endif
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/bus.h>
70 #include <sys/endian.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/module.h>
75 #include <sys/rman.h>
76 #include <sys/socket.h>
77 #include <sys/sockio.h>
78 #include <sys/sysctl.h>
79 #include <sys/taskqueue.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_var.h>
84 #include <net/ethernet.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_types.h>
88 #include <net/if_vlan_var.h>
89 
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcivar.h>
95 
96 #include <machine/bus.h>
97 
98 #include <dev/vr/if_vrreg.h>
99 
100 /* "device miibus" required.  See GENERIC if you get errors here. */
101 #include "miibus_if.h"
102 
103 MODULE_DEPEND(vr, pci, 1, 1, 1);
104 MODULE_DEPEND(vr, ether, 1, 1, 1);
105 MODULE_DEPEND(vr, miibus, 1, 1, 1);
106 
107 /* Define to show Rx/Tx error status. */
108 #undef	VR_SHOW_ERRORS
109 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
110 
111 /*
112  * Various supported device vendors/types, their names & quirks.
113  */
114 #define VR_Q_NEEDALIGN		(1<<0)
115 #define VR_Q_CSUM		(1<<1)
116 #define VR_Q_CAM		(1<<2)
117 
118 static const struct vr_type {
119 	u_int16_t		vr_vid;
120 	u_int16_t		vr_did;
121 	int			vr_quirks;
122 	const char		*vr_name;
123 } vr_devs[] = {
124 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
125 	    VR_Q_NEEDALIGN,
126 	    "VIA VT3043 Rhine I 10/100BaseTX" },
127 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
128 	    VR_Q_NEEDALIGN,
129 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
130 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
131 	    0,
132 	    "VIA VT6102 Rhine II 10/100BaseTX" },
133 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
134 	    0,
135 	    "VIA VT6105 Rhine III 10/100BaseTX" },
136 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
137 	    VR_Q_CSUM,
138 	    "VIA VT6105M Rhine III 10/100BaseTX" },
139 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
140 	    VR_Q_NEEDALIGN,
141 	    "Delta Electronics Rhine II 10/100BaseTX" },
142 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
143 	    VR_Q_NEEDALIGN,
144 	    "Addtron Technology Rhine II 10/100BaseTX" },
145 	{ 0, 0, 0, NULL }
146 };
147 
148 static int vr_probe(device_t);
149 static int vr_attach(device_t);
150 static int vr_detach(device_t);
151 static int vr_shutdown(device_t);
152 static int vr_suspend(device_t);
153 static int vr_resume(device_t);
154 
155 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
156 static int vr_dma_alloc(struct vr_softc *);
157 static void vr_dma_free(struct vr_softc *);
158 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
159 static int vr_newbuf(struct vr_softc *, int);
160 
161 #ifndef __NO_STRICT_ALIGNMENT
162 static __inline void vr_fixup_rx(struct mbuf *);
163 #endif
164 static int vr_rxeof(struct vr_softc *);
165 static void vr_txeof(struct vr_softc *);
166 static void vr_tick(void *);
167 static int vr_error(struct vr_softc *, uint16_t);
168 static void vr_tx_underrun(struct vr_softc *);
169 static int vr_intr(void *);
170 static void vr_int_task(void *, int);
171 static void vr_start(if_t);
172 static void vr_start_locked(if_t);
173 static int vr_encap(struct vr_softc *, struct mbuf **);
174 static int vr_ioctl(if_t, u_long, caddr_t);
175 static void vr_init(void *);
176 static void vr_init_locked(struct vr_softc *);
177 static void vr_tx_start(struct vr_softc *);
178 static void vr_rx_start(struct vr_softc *);
179 static int vr_tx_stop(struct vr_softc *);
180 static int vr_rx_stop(struct vr_softc *);
181 static void vr_stop(struct vr_softc *);
182 static void vr_watchdog(struct vr_softc *);
183 static int vr_ifmedia_upd(if_t);
184 static void vr_ifmedia_sts(if_t, struct ifmediareq *);
185 
186 static int vr_miibus_readreg(device_t, int, int);
187 static int vr_miibus_writereg(device_t, int, int, int);
188 static void vr_miibus_statchg(device_t);
189 
190 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
191 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
192 static void vr_set_filter(struct vr_softc *);
193 static void vr_reset(const struct vr_softc *);
194 static int vr_tx_ring_init(struct vr_softc *);
195 static int vr_rx_ring_init(struct vr_softc *);
196 static void vr_setwol(struct vr_softc *);
197 static void vr_clrwol(struct vr_softc *);
198 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
199 
200 static const struct vr_tx_threshold_table {
201 	int tx_cfg;
202 	int bcr_cfg;
203 	int value;
204 } vr_tx_threshold_tables[] = {
205 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
206 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
207 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
208 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
209 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
210 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
211 };
212 
213 static device_method_t vr_methods[] = {
214 	/* Device interface */
215 	DEVMETHOD(device_probe,		vr_probe),
216 	DEVMETHOD(device_attach,	vr_attach),
217 	DEVMETHOD(device_detach, 	vr_detach),
218 	DEVMETHOD(device_shutdown,	vr_shutdown),
219 	DEVMETHOD(device_suspend,	vr_suspend),
220 	DEVMETHOD(device_resume,	vr_resume),
221 
222 	/* MII interface */
223 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
224 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
225 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
226 
227 	DEVMETHOD_END
228 };
229 
230 static driver_t vr_driver = {
231 	"vr",
232 	vr_methods,
233 	sizeof(struct vr_softc)
234 };
235 
236 DRIVER_MODULE(vr, pci, vr_driver, 0, 0);
237 DRIVER_MODULE(miibus, vr, miibus_driver, 0, 0);
238 
239 static int
240 vr_miibus_readreg(device_t dev, int phy, int reg)
241 {
242 	struct vr_softc		*sc;
243 	int			i;
244 
245 	sc = device_get_softc(dev);
246 
247 	/* Set the register address. */
248 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
249 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
250 
251 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
252 		DELAY(1);
253 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
254 			break;
255 	}
256 	if (i == VR_MII_TIMEOUT)
257 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
258 
259 	return (CSR_READ_2(sc, VR_MIIDATA));
260 }
261 
262 static int
263 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
264 {
265 	struct vr_softc		*sc;
266 	int			i;
267 
268 	sc = device_get_softc(dev);
269 
270 	/* Set the register address and data to write. */
271 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
272 	CSR_WRITE_2(sc, VR_MIIDATA, data);
273 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
274 
275 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
276 		DELAY(1);
277 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
278 			break;
279 	}
280 	if (i == VR_MII_TIMEOUT)
281 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
282 		    reg);
283 
284 	return (0);
285 }
286 
287 /*
288  * In order to fiddle with the
289  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
290  * first have to put the transmit and/or receive logic in the idle state.
291  */
292 static void
293 vr_miibus_statchg(device_t dev)
294 {
295 	struct vr_softc		*sc;
296 	struct mii_data		*mii;
297 	if_t			ifp;
298 	int			lfdx, mfdx;
299 	uint8_t			cr0, cr1, fc;
300 
301 	sc = device_get_softc(dev);
302 	mii = device_get_softc(sc->vr_miibus);
303 	ifp = sc->vr_ifp;
304 	if (mii == NULL || ifp == NULL ||
305 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
306 		return;
307 
308 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
309 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
310 	    (IFM_ACTIVE | IFM_AVALID)) {
311 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
312 		case IFM_10_T:
313 		case IFM_100_TX:
314 			sc->vr_flags |= VR_F_LINK;
315 			break;
316 		default:
317 			break;
318 		}
319 	}
320 
321 	if ((sc->vr_flags & VR_F_LINK) != 0) {
322 		cr0 = CSR_READ_1(sc, VR_CR0);
323 		cr1 = CSR_READ_1(sc, VR_CR1);
324 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
325 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
326 		if (mfdx != lfdx) {
327 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
328 				if (vr_tx_stop(sc) != 0 ||
329 				    vr_rx_stop(sc) != 0) {
330 					device_printf(sc->vr_dev,
331 					    "%s: Tx/Rx shutdown error -- "
332 					    "resetting\n", __func__);
333 					sc->vr_flags |= VR_F_RESTART;
334 					VR_UNLOCK(sc);
335 					return;
336 				}
337 			}
338 			if (lfdx)
339 				cr1 |= VR_CR1_FULLDUPLEX;
340 			else
341 				cr1 &= ~VR_CR1_FULLDUPLEX;
342 			CSR_WRITE_1(sc, VR_CR1, cr1);
343 		}
344 		fc = 0;
345 		/* Configure flow-control. */
346 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
347 			fc = CSR_READ_1(sc, VR_FLOWCR1);
348 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
349 			if ((IFM_OPTIONS(mii->mii_media_active) &
350 			    IFM_ETH_RXPAUSE) != 0)
351 				fc |= VR_FLOWCR1_RXPAUSE;
352 			if ((IFM_OPTIONS(mii->mii_media_active) &
353 			    IFM_ETH_TXPAUSE) != 0) {
354 				fc |= VR_FLOWCR1_TXPAUSE;
355 				sc->vr_flags |= VR_F_TXPAUSE;
356 			}
357 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
358 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
359 			/* No Tx puase capability available for Rhine II. */
360 			fc = CSR_READ_1(sc, VR_MISC_CR0);
361 			fc &= ~VR_MISCCR0_RXPAUSE;
362 			if ((IFM_OPTIONS(mii->mii_media_active) &
363 			    IFM_ETH_RXPAUSE) != 0)
364 				fc |= VR_MISCCR0_RXPAUSE;
365 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
366 		}
367 		vr_rx_start(sc);
368 		vr_tx_start(sc);
369 	} else {
370 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
371 			device_printf(sc->vr_dev,
372 			    "%s: Tx/Rx shutdown error -- resetting\n",
373 			    __func__);
374 			sc->vr_flags |= VR_F_RESTART;
375 		}
376 	}
377 }
378 
379 static void
380 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
381 {
382 
383 	if (type == VR_MCAST_CAM)
384 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
385 	else
386 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
387 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
388 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
389 }
390 
391 static int
392 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
393 {
394 	int	i;
395 
396 	if (type == VR_MCAST_CAM) {
397 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
398 			return (EINVAL);
399 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
400 	} else
401 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
402 
403 	/* Set CAM entry address. */
404 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
405 	/* Set CAM entry data. */
406 	if (type == VR_MCAST_CAM) {
407 		for (i = 0; i < ETHER_ADDR_LEN; i++)
408 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
409 	} else {
410 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
411 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
412 	}
413 	DELAY(10);
414 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
415 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
416 	for (i = 0; i < VR_TIMEOUT; i++) {
417 		DELAY(1);
418 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
419 			break;
420 	}
421 
422 	if (i == VR_TIMEOUT)
423 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
424 		    __func__);
425 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
426 
427 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
428 }
429 
430 struct vr_hash_maddr_cam_ctx {
431 	struct vr_softc *sc;
432 	uint32_t mask;
433 	int error;
434 };
435 
436 static u_int
437 vr_hash_maddr_cam(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
438 {
439 	struct vr_hash_maddr_cam_ctx *ctx = arg;
440 
441 	if (ctx->error != 0)
442 		return (0);
443 	ctx->error = vr_cam_data(ctx->sc, VR_MCAST_CAM, mcnt, LLADDR(sdl));
444 	if (ctx->error != 0) {
445 		ctx->mask = 0;
446 		return (0);
447 	}
448 	ctx->mask |= 1 << mcnt;
449 
450 	return (1);
451 }
452 
453 static u_int
454 vr_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
455 {
456 	uint32_t *hashes = arg;
457 	int h;
458 
459 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
460 	if (h < 32)
461 		hashes[0] |= (1 << h);
462 	else
463 		hashes[1] |= (1 << (h - 32));
464 
465 	return (1);
466 }
467 
468 /*
469  * Program the 64-bit multicast hash filter.
470  */
471 static void
472 vr_set_filter(struct vr_softc *sc)
473 {
474 	if_t			ifp;
475 	uint32_t		hashes[2] = { 0, 0 };
476 	uint8_t			rxfilt;
477 	int			error, mcnt;
478 
479 	VR_LOCK_ASSERT(sc);
480 
481 	ifp = sc->vr_ifp;
482 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
483 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
484 	    VR_RXCFG_RX_MULTI);
485 	if (if_getflags(ifp) & IFF_BROADCAST)
486 		rxfilt |= VR_RXCFG_RX_BROAD;
487 	if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
488 		rxfilt |= VR_RXCFG_RX_MULTI;
489 		if (if_getflags(ifp) & IFF_PROMISC)
490 			rxfilt |= VR_RXCFG_RX_PROMISC;
491 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
492 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
493 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
494 		return;
495 	}
496 
497 	/* Now program new ones. */
498 	error = 0;
499 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
500 		struct vr_hash_maddr_cam_ctx ctx;
501 
502 		/*
503 		 * For hardwares that have CAM capability, use
504 		 * 32 entries multicast perfect filter.
505 		 */
506 		ctx.sc = sc;
507 		ctx.mask = 0;
508 		ctx.error = 0;
509 		mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr_cam, &ctx);
510 		vr_cam_mask(sc, VR_MCAST_CAM, ctx.mask);
511 	}
512 
513 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
514 		/*
515 		 * If there are too many multicast addresses or
516 		 * setting multicast CAM filter failed, use hash
517 		 * table based filtering.
518 		 */
519 		mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr, hashes);
520 	}
521 
522 	if (mcnt > 0)
523 		rxfilt |= VR_RXCFG_RX_MULTI;
524 
525 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
526 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
527 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
528 }
529 
530 static void
531 vr_reset(const struct vr_softc *sc)
532 {
533 	int		i;
534 
535 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
536 
537 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
538 	if (sc->vr_revid < REV_ID_VT6102_A) {
539 		/* VT86C100A needs more delay after reset. */
540 		DELAY(100);
541 	}
542 	for (i = 0; i < VR_TIMEOUT; i++) {
543 		DELAY(10);
544 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
545 			break;
546 	}
547 	if (i == VR_TIMEOUT) {
548 		if (sc->vr_revid < REV_ID_VT6102_A)
549 			device_printf(sc->vr_dev, "reset never completed!\n");
550 		else {
551 			/* Use newer force reset command. */
552 			device_printf(sc->vr_dev,
553 			    "Using force reset command.\n");
554 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
555 			/*
556 			 * Wait a little while for the chip to get its brains
557 			 * in order.
558 			 */
559 			DELAY(2000);
560 		}
561 	}
562 
563 }
564 
565 /*
566  * Probe for a VIA Rhine chip. Check the PCI vendor and device
567  * IDs against our list and return a match or NULL
568  */
569 static const struct vr_type *
570 vr_match(device_t dev)
571 {
572 	const struct vr_type	*t = vr_devs;
573 
574 	for (t = vr_devs; t->vr_name != NULL; t++)
575 		if ((pci_get_vendor(dev) == t->vr_vid) &&
576 		    (pci_get_device(dev) == t->vr_did))
577 			return (t);
578 	return (NULL);
579 }
580 
581 /*
582  * Probe for a VIA Rhine chip. Check the PCI vendor and device
583  * IDs against our list and return a device name if we find a match.
584  */
585 static int
586 vr_probe(device_t dev)
587 {
588 	const struct vr_type	*t;
589 
590 	t = vr_match(dev);
591 	if (t != NULL) {
592 		device_set_desc(dev, t->vr_name);
593 		return (BUS_PROBE_DEFAULT);
594 	}
595 	return (ENXIO);
596 }
597 
598 /*
599  * Attach the interface. Allocate softc structures, do ifmedia
600  * setup and ethernet/BPF attach.
601  */
602 static int
603 vr_attach(device_t dev)
604 {
605 	struct vr_softc		*sc;
606 	if_t			ifp;
607 	const struct vr_type	*t;
608 	uint8_t			eaddr[ETHER_ADDR_LEN];
609 	int			error, rid;
610 	int			i, phy, pmc;
611 
612 	sc = device_get_softc(dev);
613 	sc->vr_dev = dev;
614 	t = vr_match(dev);
615 	KASSERT(t != NULL, ("Lost if_vr device match"));
616 	sc->vr_quirks = t->vr_quirks;
617 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
618 
619 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
620 	    MTX_DEF);
621 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
622 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
623 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
624 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
625 	    sc, 0, vr_sysctl_stats, "I", "Statistics");
626 
627 	error = 0;
628 
629 	/*
630 	 * Map control/status registers.
631 	 */
632 	pci_enable_busmaster(dev);
633 	sc->vr_revid = pci_get_revid(dev);
634 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
635 
636 	sc->vr_res_id = PCIR_BAR(0);
637 	sc->vr_res_type = SYS_RES_IOPORT;
638 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
639 	    &sc->vr_res_id, RF_ACTIVE);
640 	if (sc->vr_res == NULL) {
641 		device_printf(dev, "couldn't map ports\n");
642 		error = ENXIO;
643 		goto fail;
644 	}
645 
646 	/* Allocate interrupt. */
647 	rid = 0;
648 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
649 	    RF_SHAREABLE | RF_ACTIVE);
650 
651 	if (sc->vr_irq == NULL) {
652 		device_printf(dev, "couldn't map interrupt\n");
653 		error = ENXIO;
654 		goto fail;
655 	}
656 
657 	/* Allocate ifnet structure. */
658 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
659 	if (ifp == NULL) {
660 		device_printf(dev, "couldn't allocate ifnet structure\n");
661 		error = ENOSPC;
662 		goto fail;
663 	}
664 	if_setsoftc(ifp, sc);
665 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
666 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
667 	if_setioctlfn(ifp, vr_ioctl);
668 	if_setstartfn(ifp, vr_start);
669 	if_setinitfn(ifp, vr_init);
670 	if_setsendqlen(ifp, VR_TX_RING_CNT - 1);
671 	if_setsendqready(ifp);
672 
673 	NET_TASK_INIT(&sc->vr_inttask, 0, vr_int_task, sc);
674 
675 	/* Configure Tx FIFO threshold. */
676 	sc->vr_txthresh = VR_TXTHRESH_MIN;
677 	if (sc->vr_revid < REV_ID_VT6105_A0) {
678 		/*
679 		 * Use store and forward mode for Rhine I/II.
680 		 * Otherwise they produce a lot of Tx underruns and
681 		 * it would take a while to get working FIFO threshold
682 		 * value.
683 		 */
684 		sc->vr_txthresh = VR_TXTHRESH_MAX;
685 	}
686 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
687 		if_sethwassist(ifp, VR_CSUM_FEATURES);
688 		if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
689 		/*
690 		 * To update checksum field the hardware may need to
691 		 * store entire frames into FIFO before transmitting.
692 		 */
693 		sc->vr_txthresh = VR_TXTHRESH_MAX;
694 	}
695 
696 	if (sc->vr_revid >= REV_ID_VT6102_A &&
697 	    pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
698 		if_setcapabilitiesbit(ifp, IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC, 0);
699 
700 	/* Rhine supports oversized VLAN frame. */
701 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
702 	if_setcapenable(ifp, if_getcapabilities(ifp));
703 #ifdef DEVICE_POLLING
704 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
705 #endif
706 
707 	/*
708 	 * Windows may put the chip in suspend mode when it
709 	 * shuts down. Be sure to kick it in the head to wake it
710 	 * up again.
711 	 */
712 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
713 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
714 
715 	/*
716 	 * Get station address. The way the Rhine chips work,
717 	 * you're not allowed to directly access the EEPROM once
718 	 * they've been programmed a special way. Consequently,
719 	 * we need to read the node address from the PAR0 and PAR1
720 	 * registers.
721 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
722 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
723 	 * by driver is reset to default state.
724 	 */
725 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
726 	for (i = VR_TIMEOUT; i > 0; i--) {
727 		DELAY(1);
728 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
729 			break;
730 	}
731 	if (i == 0)
732 		device_printf(dev, "Reloading EEPROM timeout!\n");
733 	for (i = 0; i < ETHER_ADDR_LEN; i++)
734 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
735 
736 	/* Reset the adapter. */
737 	vr_reset(sc);
738 	/* Ack intr & disable further interrupts. */
739 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
740 	CSR_WRITE_2(sc, VR_IMR, 0);
741 	if (sc->vr_revid >= REV_ID_VT6102_A)
742 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
743 
744 	if (sc->vr_revid < REV_ID_VT6102_A) {
745 		pci_write_config(dev, VR_PCI_MODE2,
746 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
747 		    VR_MODE2_MODE10T, 1);
748 	} else {
749 		/* Report error instead of retrying forever. */
750 		pci_write_config(dev, VR_PCI_MODE2,
751 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
752 		    VR_MODE2_PCEROPT, 1);
753         	/* Detect MII coding error. */
754 		pci_write_config(dev, VR_PCI_MODE3,
755 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
756 		    VR_MODE3_MIION, 1);
757 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
758 		    sc->vr_revid < REV_ID_VT6105M_A0)
759 			pci_write_config(dev, VR_PCI_MODE2,
760 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
761 			    VR_MODE2_MODE10T, 1);
762 		/* Enable Memory-Read-Multiple. */
763 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
764 		    sc->vr_revid < REV_ID_VT6105M_A0)
765 			pci_write_config(dev, VR_PCI_MODE2,
766 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
767 			    VR_MODE2_MRDPL, 1);
768 	}
769 	/* Disable MII AUTOPOLL. */
770 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
771 
772 	if (vr_dma_alloc(sc) != 0) {
773 		error = ENXIO;
774 		goto fail;
775 	}
776 
777 	/* Do MII setup. */
778 	if (sc->vr_revid >= REV_ID_VT6105_A0)
779 		phy = 1;
780 	else
781 		phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
782 	error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
783 	    vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY,
784 	    sc->vr_revid >= REV_ID_VT6102_A ? MIIF_DOPAUSE : 0);
785 	if (error != 0) {
786 		device_printf(dev, "attaching PHYs failed\n");
787 		goto fail;
788 	}
789 
790 	/* Call MI attach routine. */
791 	ether_ifattach(ifp, eaddr);
792 	/*
793 	 * Tell the upper layer(s) we support long frames.
794 	 * Must appear after the call to ether_ifattach() because
795 	 * ether_ifattach() sets ifi_hdrlen to the default value.
796 	 */
797 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
798 
799 	/* Hook interrupt last to avoid having to lock softc. */
800 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
801 	    vr_intr, NULL, sc, &sc->vr_intrhand);
802 
803 	if (error) {
804 		device_printf(dev, "couldn't set up irq\n");
805 		ether_ifdetach(ifp);
806 		goto fail;
807 	}
808 
809 fail:
810 	if (error)
811 		vr_detach(dev);
812 
813 	return (error);
814 }
815 
816 /*
817  * Shutdown hardware and free up resources. This can be called any
818  * time after the mutex has been initialized. It is called in both
819  * the error case in attach and the normal detach case so it needs
820  * to be careful about only freeing resources that have actually been
821  * allocated.
822  */
823 static int
824 vr_detach(device_t dev)
825 {
826 	struct vr_softc		*sc = device_get_softc(dev);
827 	if_t			ifp = sc->vr_ifp;
828 
829 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
830 
831 #ifdef DEVICE_POLLING
832 	if (ifp != NULL && if_getcapenable(ifp) & IFCAP_POLLING)
833 		ether_poll_deregister(ifp);
834 #endif
835 
836 	/* These should only be active if attach succeeded. */
837 	if (device_is_attached(dev)) {
838 		VR_LOCK(sc);
839 		sc->vr_flags |= VR_F_DETACHED;
840 		vr_stop(sc);
841 		VR_UNLOCK(sc);
842 		callout_drain(&sc->vr_stat_callout);
843 		taskqueue_drain(taskqueue_fast, &sc->vr_inttask);
844 		ether_ifdetach(ifp);
845 	}
846 	if (sc->vr_miibus)
847 		device_delete_child(dev, sc->vr_miibus);
848 	bus_generic_detach(dev);
849 
850 	if (sc->vr_intrhand)
851 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
852 	if (sc->vr_irq)
853 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
854 	if (sc->vr_res)
855 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
856 		    sc->vr_res);
857 
858 	if (ifp)
859 		if_free(ifp);
860 
861 	vr_dma_free(sc);
862 
863 	mtx_destroy(&sc->vr_mtx);
864 
865 	return (0);
866 }
867 
868 struct vr_dmamap_arg {
869 	bus_addr_t	vr_busaddr;
870 };
871 
872 static void
873 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
874 {
875 	struct vr_dmamap_arg	*ctx;
876 
877 	if (error != 0)
878 		return;
879 	ctx = arg;
880 	ctx->vr_busaddr = segs[0].ds_addr;
881 }
882 
883 static int
884 vr_dma_alloc(struct vr_softc *sc)
885 {
886 	struct vr_dmamap_arg	ctx;
887 	struct vr_txdesc	*txd;
888 	struct vr_rxdesc	*rxd;
889 	bus_size_t		tx_alignment;
890 	int			error, i;
891 
892 	/* Create parent DMA tag. */
893 	error = bus_dma_tag_create(
894 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
895 	    1, 0,			/* alignment, boundary */
896 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
897 	    BUS_SPACE_MAXADDR,		/* highaddr */
898 	    NULL, NULL,			/* filter, filterarg */
899 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
900 	    0,				/* nsegments */
901 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
902 	    0,				/* flags */
903 	    NULL, NULL,			/* lockfunc, lockarg */
904 	    &sc->vr_cdata.vr_parent_tag);
905 	if (error != 0) {
906 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
907 		goto fail;
908 	}
909 	/* Create tag for Tx ring. */
910 	error = bus_dma_tag_create(
911 	    sc->vr_cdata.vr_parent_tag,	/* parent */
912 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
913 	    BUS_SPACE_MAXADDR,		/* lowaddr */
914 	    BUS_SPACE_MAXADDR,		/* highaddr */
915 	    NULL, NULL,			/* filter, filterarg */
916 	    VR_TX_RING_SIZE,		/* maxsize */
917 	    1,				/* nsegments */
918 	    VR_TX_RING_SIZE,		/* maxsegsize */
919 	    0,				/* flags */
920 	    NULL, NULL,			/* lockfunc, lockarg */
921 	    &sc->vr_cdata.vr_tx_ring_tag);
922 	if (error != 0) {
923 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
924 		goto fail;
925 	}
926 
927 	/* Create tag for Rx ring. */
928 	error = bus_dma_tag_create(
929 	    sc->vr_cdata.vr_parent_tag,	/* parent */
930 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
931 	    BUS_SPACE_MAXADDR,		/* lowaddr */
932 	    BUS_SPACE_MAXADDR,		/* highaddr */
933 	    NULL, NULL,			/* filter, filterarg */
934 	    VR_RX_RING_SIZE,		/* maxsize */
935 	    1,				/* nsegments */
936 	    VR_RX_RING_SIZE,		/* maxsegsize */
937 	    0,				/* flags */
938 	    NULL, NULL,			/* lockfunc, lockarg */
939 	    &sc->vr_cdata.vr_rx_ring_tag);
940 	if (error != 0) {
941 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
942 		goto fail;
943 	}
944 
945 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
946 		tx_alignment = sizeof(uint32_t);
947 	else
948 		tx_alignment = 1;
949 	/* Create tag for Tx buffers. */
950 	error = bus_dma_tag_create(
951 	    sc->vr_cdata.vr_parent_tag,	/* parent */
952 	    tx_alignment, 0,		/* alignment, boundary */
953 	    BUS_SPACE_MAXADDR,		/* lowaddr */
954 	    BUS_SPACE_MAXADDR,		/* highaddr */
955 	    NULL, NULL,			/* filter, filterarg */
956 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
957 	    VR_MAXFRAGS,		/* nsegments */
958 	    MCLBYTES,			/* maxsegsize */
959 	    0,				/* flags */
960 	    NULL, NULL,			/* lockfunc, lockarg */
961 	    &sc->vr_cdata.vr_tx_tag);
962 	if (error != 0) {
963 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
964 		goto fail;
965 	}
966 
967 	/* Create tag for Rx buffers. */
968 	error = bus_dma_tag_create(
969 	    sc->vr_cdata.vr_parent_tag,	/* parent */
970 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
971 	    BUS_SPACE_MAXADDR,		/* lowaddr */
972 	    BUS_SPACE_MAXADDR,		/* highaddr */
973 	    NULL, NULL,			/* filter, filterarg */
974 	    MCLBYTES,			/* maxsize */
975 	    1,				/* nsegments */
976 	    MCLBYTES,			/* maxsegsize */
977 	    0,				/* flags */
978 	    NULL, NULL,			/* lockfunc, lockarg */
979 	    &sc->vr_cdata.vr_rx_tag);
980 	if (error != 0) {
981 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
982 		goto fail;
983 	}
984 
985 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
986 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
987 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
988 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
989 	if (error != 0) {
990 		device_printf(sc->vr_dev,
991 		    "failed to allocate DMA'able memory for Tx ring\n");
992 		goto fail;
993 	}
994 
995 	ctx.vr_busaddr = 0;
996 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
997 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
998 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
999 	if (error != 0 || ctx.vr_busaddr == 0) {
1000 		device_printf(sc->vr_dev,
1001 		    "failed to load DMA'able memory for Tx ring\n");
1002 		goto fail;
1003 	}
1004 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
1005 
1006 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1007 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
1008 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
1009 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
1010 	if (error != 0) {
1011 		device_printf(sc->vr_dev,
1012 		    "failed to allocate DMA'able memory for Rx ring\n");
1013 		goto fail;
1014 	}
1015 
1016 	ctx.vr_busaddr = 0;
1017 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1018 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1019 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1020 	if (error != 0 || ctx.vr_busaddr == 0) {
1021 		device_printf(sc->vr_dev,
1022 		    "failed to load DMA'able memory for Rx ring\n");
1023 		goto fail;
1024 	}
1025 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1026 
1027 	/* Create DMA maps for Tx buffers. */
1028 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1029 		txd = &sc->vr_cdata.vr_txdesc[i];
1030 		txd->tx_m = NULL;
1031 		txd->tx_dmamap = NULL;
1032 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1033 		    &txd->tx_dmamap);
1034 		if (error != 0) {
1035 			device_printf(sc->vr_dev,
1036 			    "failed to create Tx dmamap\n");
1037 			goto fail;
1038 		}
1039 	}
1040 	/* Create DMA maps for Rx buffers. */
1041 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1042 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1043 		device_printf(sc->vr_dev,
1044 		    "failed to create spare Rx dmamap\n");
1045 		goto fail;
1046 	}
1047 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1048 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1049 		rxd->rx_m = NULL;
1050 		rxd->rx_dmamap = NULL;
1051 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1052 		    &rxd->rx_dmamap);
1053 		if (error != 0) {
1054 			device_printf(sc->vr_dev,
1055 			    "failed to create Rx dmamap\n");
1056 			goto fail;
1057 		}
1058 	}
1059 
1060 fail:
1061 	return (error);
1062 }
1063 
1064 static void
1065 vr_dma_free(struct vr_softc *sc)
1066 {
1067 	struct vr_txdesc	*txd;
1068 	struct vr_rxdesc	*rxd;
1069 	int			i;
1070 
1071 	/* Tx ring. */
1072 	if (sc->vr_cdata.vr_tx_ring_tag) {
1073 		if (sc->vr_rdata.vr_tx_ring_paddr)
1074 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1075 			    sc->vr_cdata.vr_tx_ring_map);
1076 		if (sc->vr_rdata.vr_tx_ring)
1077 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1078 			    sc->vr_rdata.vr_tx_ring,
1079 			    sc->vr_cdata.vr_tx_ring_map);
1080 		sc->vr_rdata.vr_tx_ring = NULL;
1081 		sc->vr_rdata.vr_tx_ring_paddr = 0;
1082 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1083 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1084 	}
1085 	/* Rx ring. */
1086 	if (sc->vr_cdata.vr_rx_ring_tag) {
1087 		if (sc->vr_rdata.vr_rx_ring_paddr)
1088 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1089 			    sc->vr_cdata.vr_rx_ring_map);
1090 		if (sc->vr_rdata.vr_rx_ring)
1091 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1092 			    sc->vr_rdata.vr_rx_ring,
1093 			    sc->vr_cdata.vr_rx_ring_map);
1094 		sc->vr_rdata.vr_rx_ring = NULL;
1095 		sc->vr_rdata.vr_rx_ring_paddr = 0;
1096 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1097 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1098 	}
1099 	/* Tx buffers. */
1100 	if (sc->vr_cdata.vr_tx_tag) {
1101 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1102 			txd = &sc->vr_cdata.vr_txdesc[i];
1103 			if (txd->tx_dmamap) {
1104 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1105 				    txd->tx_dmamap);
1106 				txd->tx_dmamap = NULL;
1107 			}
1108 		}
1109 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1110 		sc->vr_cdata.vr_tx_tag = NULL;
1111 	}
1112 	/* Rx buffers. */
1113 	if (sc->vr_cdata.vr_rx_tag) {
1114 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1115 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1116 			if (rxd->rx_dmamap) {
1117 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1118 				    rxd->rx_dmamap);
1119 				rxd->rx_dmamap = NULL;
1120 			}
1121 		}
1122 		if (sc->vr_cdata.vr_rx_sparemap) {
1123 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1124 			    sc->vr_cdata.vr_rx_sparemap);
1125 			sc->vr_cdata.vr_rx_sparemap = 0;
1126 		}
1127 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1128 		sc->vr_cdata.vr_rx_tag = NULL;
1129 	}
1130 
1131 	if (sc->vr_cdata.vr_parent_tag) {
1132 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1133 		sc->vr_cdata.vr_parent_tag = NULL;
1134 	}
1135 }
1136 
1137 /*
1138  * Initialize the transmit descriptors.
1139  */
1140 static int
1141 vr_tx_ring_init(struct vr_softc *sc)
1142 {
1143 	struct vr_ring_data	*rd;
1144 	struct vr_txdesc	*txd;
1145 	bus_addr_t		addr;
1146 	int			i;
1147 
1148 	sc->vr_cdata.vr_tx_prod = 0;
1149 	sc->vr_cdata.vr_tx_cons = 0;
1150 	sc->vr_cdata.vr_tx_cnt = 0;
1151 	sc->vr_cdata.vr_tx_pkts = 0;
1152 
1153 	rd = &sc->vr_rdata;
1154 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1155 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1156 		if (i == VR_TX_RING_CNT - 1)
1157 			addr = VR_TX_RING_ADDR(sc, 0);
1158 		else
1159 			addr = VR_TX_RING_ADDR(sc, i + 1);
1160 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1161 		txd = &sc->vr_cdata.vr_txdesc[i];
1162 		txd->tx_m = NULL;
1163 	}
1164 
1165 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1166 	    sc->vr_cdata.vr_tx_ring_map,
1167 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1168 
1169 	return (0);
1170 }
1171 
1172 /*
1173  * Initialize the RX descriptors and allocate mbufs for them. Note that
1174  * we arrange the descriptors in a closed ring, so that the last descriptor
1175  * points back to the first.
1176  */
1177 static int
1178 vr_rx_ring_init(struct vr_softc *sc)
1179 {
1180 	struct vr_ring_data	*rd;
1181 	struct vr_rxdesc	*rxd;
1182 	bus_addr_t		addr;
1183 	int			i;
1184 
1185 	sc->vr_cdata.vr_rx_cons = 0;
1186 
1187 	rd = &sc->vr_rdata;
1188 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1189 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1190 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1191 		rxd->rx_m = NULL;
1192 		rxd->desc = &rd->vr_rx_ring[i];
1193 		if (i == VR_RX_RING_CNT - 1)
1194 			addr = VR_RX_RING_ADDR(sc, 0);
1195 		else
1196 			addr = VR_RX_RING_ADDR(sc, i + 1);
1197 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1198 		if (vr_newbuf(sc, i) != 0)
1199 			return (ENOBUFS);
1200 	}
1201 
1202 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1203 	    sc->vr_cdata.vr_rx_ring_map,
1204 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1205 
1206 	return (0);
1207 }
1208 
1209 static __inline void
1210 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1211 {
1212 	struct vr_desc	*desc;
1213 
1214 	desc = rxd->desc;
1215 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1216 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1217 }
1218 
1219 /*
1220  * Initialize an RX descriptor and attach an MBUF cluster.
1221  * Note: the length fields are only 11 bits wide, which means the
1222  * largest size we can specify is 2047. This is important because
1223  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1224  * overflow the field and make a mess.
1225  */
1226 static int
1227 vr_newbuf(struct vr_softc *sc, int idx)
1228 {
1229 	struct vr_desc		*desc;
1230 	struct vr_rxdesc	*rxd;
1231 	struct mbuf		*m;
1232 	bus_dma_segment_t	segs[1];
1233 	bus_dmamap_t		map;
1234 	int			nsegs;
1235 
1236 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1237 	if (m == NULL)
1238 		return (ENOBUFS);
1239 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1240 	m_adj(m, sizeof(uint64_t));
1241 
1242 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1243 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1244 		m_freem(m);
1245 		return (ENOBUFS);
1246 	}
1247 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1248 
1249 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1250 	if (rxd->rx_m != NULL) {
1251 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1252 		    BUS_DMASYNC_POSTREAD);
1253 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1254 	}
1255 	map = rxd->rx_dmamap;
1256 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1257 	sc->vr_cdata.vr_rx_sparemap = map;
1258 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1259 	    BUS_DMASYNC_PREREAD);
1260 	rxd->rx_m = m;
1261 	desc = rxd->desc;
1262 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1263 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1264 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1265 
1266 	return (0);
1267 }
1268 
1269 #ifndef __NO_STRICT_ALIGNMENT
1270 static __inline void
1271 vr_fixup_rx(struct mbuf *m)
1272 {
1273         uint16_t		*src, *dst;
1274         int			i;
1275 
1276 	src = mtod(m, uint16_t *);
1277 	dst = src - 1;
1278 
1279 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1280 		*dst++ = *src++;
1281 
1282 	m->m_data -= ETHER_ALIGN;
1283 }
1284 #endif
1285 
1286 /*
1287  * A frame has been uploaded: pass the resulting mbuf chain up to
1288  * the higher level protocols.
1289  */
1290 static int
1291 vr_rxeof(struct vr_softc *sc)
1292 {
1293 	struct vr_rxdesc	*rxd;
1294 	struct mbuf		*m;
1295 	if_t			ifp;
1296 	struct vr_desc		*cur_rx;
1297 	int			cons, prog, total_len, rx_npkts;
1298 	uint32_t		rxstat, rxctl;
1299 
1300 	VR_LOCK_ASSERT(sc);
1301 	ifp = sc->vr_ifp;
1302 	cons = sc->vr_cdata.vr_rx_cons;
1303 	rx_npkts = 0;
1304 
1305 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1306 	    sc->vr_cdata.vr_rx_ring_map,
1307 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1308 
1309 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1310 #ifdef DEVICE_POLLING
1311 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
1312 			if (sc->rxcycles <= 0)
1313 				break;
1314 			sc->rxcycles--;
1315 		}
1316 #endif
1317 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1318 		rxstat = le32toh(cur_rx->vr_status);
1319 		rxctl = le32toh(cur_rx->vr_ctl);
1320 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1321 			break;
1322 
1323 		prog++;
1324 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1325 		m = rxd->rx_m;
1326 
1327 		/*
1328 		 * If an error occurs, update stats, clear the
1329 		 * status word and leave the mbuf cluster in place:
1330 		 * it should simply get re-used next time this descriptor
1331 		 * comes up in the ring.
1332 		 * We don't support SG in Rx path yet, so discard
1333 		 * partial frame.
1334 		 */
1335 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1336 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1337 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1338 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1339 			sc->vr_stat.rx_errors++;
1340 			if (rxstat & VR_RXSTAT_CRCERR)
1341 				sc->vr_stat.rx_crc_errors++;
1342 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1343 				sc->vr_stat.rx_alignment++;
1344 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1345 				sc->vr_stat.rx_fifo_overflows++;
1346 			if (rxstat & VR_RXSTAT_GIANT)
1347 				sc->vr_stat.rx_giants++;
1348 			if (rxstat & VR_RXSTAT_RUNT)
1349 				sc->vr_stat.rx_runts++;
1350 			if (rxstat & VR_RXSTAT_BUFFERR)
1351 				sc->vr_stat.rx_no_buffers++;
1352 #ifdef	VR_SHOW_ERRORS
1353 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1354 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1355 #endif
1356 			vr_discard_rxbuf(rxd);
1357 			continue;
1358 		}
1359 
1360 		if (vr_newbuf(sc, cons) != 0) {
1361 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1362 			sc->vr_stat.rx_errors++;
1363 			sc->vr_stat.rx_no_mbufs++;
1364 			vr_discard_rxbuf(rxd);
1365 			continue;
1366 		}
1367 
1368 		/*
1369 		 * XXX The VIA Rhine chip includes the CRC with every
1370 		 * received frame, and there's no way to turn this
1371 		 * behavior off (at least, I can't find anything in
1372 		 * the manual that explains how to do it) so we have
1373 		 * to trim off the CRC manually.
1374 		 */
1375 		total_len = VR_RXBYTES(rxstat);
1376 		total_len -= ETHER_CRC_LEN;
1377 		m->m_pkthdr.len = m->m_len = total_len;
1378 #ifndef	__NO_STRICT_ALIGNMENT
1379 		/*
1380 		 * RX buffers must be 32-bit aligned.
1381 		 * Ignore the alignment problems on the non-strict alignment
1382 		 * platform. The performance hit incurred due to unaligned
1383 		 * accesses is much smaller than the hit produced by forcing
1384 		 * buffer copies all the time.
1385 		 */
1386 		vr_fixup_rx(m);
1387 #endif
1388 		m->m_pkthdr.rcvif = ifp;
1389 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1390 		sc->vr_stat.rx_ok++;
1391 		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
1392 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1393 		    (rxctl & VR_RXCTL_IP) != 0) {
1394 			/* Checksum is valid for non-fragmented IP packets. */
1395 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1396 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1397 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1398 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1399 					m->m_pkthdr.csum_flags |=
1400 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1401 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1402 						m->m_pkthdr.csum_data = 0xffff;
1403 				}
1404 			}
1405 		}
1406 		VR_UNLOCK(sc);
1407 		if_input(ifp, m);
1408 		VR_LOCK(sc);
1409 		rx_npkts++;
1410 	}
1411 
1412 	if (prog > 0) {
1413 		/*
1414 		 * Let controller know how many number of RX buffers
1415 		 * are posted but avoid expensive register access if
1416 		 * TX pause capability was not negotiated with link
1417 		 * partner.
1418 		 */
1419 		if ((sc->vr_flags & VR_F_TXPAUSE) != 0) {
1420 			if (prog >= VR_RX_RING_CNT)
1421 				prog = VR_RX_RING_CNT - 1;
1422 			CSR_WRITE_1(sc, VR_FLOWCR0, prog);
1423 		}
1424 		sc->vr_cdata.vr_rx_cons = cons;
1425 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1426 		    sc->vr_cdata.vr_rx_ring_map,
1427 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1428 	}
1429 	return (rx_npkts);
1430 }
1431 
1432 /*
1433  * A frame was downloaded to the chip. It's safe for us to clean up
1434  * the list buffers.
1435  */
1436 static void
1437 vr_txeof(struct vr_softc *sc)
1438 {
1439 	struct vr_txdesc	*txd;
1440 	struct vr_desc		*cur_tx;
1441 	if_t			ifp;
1442 	uint32_t		txctl, txstat;
1443 	int			cons, prod;
1444 
1445 	VR_LOCK_ASSERT(sc);
1446 
1447 	cons = sc->vr_cdata.vr_tx_cons;
1448 	prod = sc->vr_cdata.vr_tx_prod;
1449 	if (cons == prod)
1450 		return;
1451 
1452 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1453 	    sc->vr_cdata.vr_tx_ring_map,
1454 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1455 
1456 	ifp = sc->vr_ifp;
1457 	/*
1458 	 * Go through our tx list and free mbufs for those
1459 	 * frames that have been transmitted.
1460 	 */
1461 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1462 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1463 		txctl = le32toh(cur_tx->vr_ctl);
1464 		txstat = le32toh(cur_tx->vr_status);
1465 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1466 			break;
1467 
1468 		sc->vr_cdata.vr_tx_cnt--;
1469 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1470 		/* Only the first descriptor in the chain is valid. */
1471 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1472 			continue;
1473 
1474 		txd = &sc->vr_cdata.vr_txdesc[cons];
1475 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1476 		    __func__));
1477 
1478 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1479 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1480 			sc->vr_stat.tx_errors++;
1481 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1482 				/* Give up and restart Tx. */
1483 				sc->vr_stat.tx_abort++;
1484 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1485 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1486 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1487 				    txd->tx_dmamap);
1488 				m_freem(txd->tx_m);
1489 				txd->tx_m = NULL;
1490 				VR_INC(cons, VR_TX_RING_CNT);
1491 				sc->vr_cdata.vr_tx_cons = cons;
1492 				if (vr_tx_stop(sc) != 0) {
1493 					device_printf(sc->vr_dev,
1494 					    "%s: Tx shutdown error -- "
1495 					    "resetting\n", __func__);
1496 					sc->vr_flags |= VR_F_RESTART;
1497 					return;
1498 				}
1499 				vr_tx_start(sc);
1500 				break;
1501 			}
1502 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1503 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1504 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1505 				sc->vr_stat.tx_underrun++;
1506 				/* Retry and restart Tx. */
1507 				sc->vr_cdata.vr_tx_cnt++;
1508 				sc->vr_cdata.vr_tx_cons = cons;
1509 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1510 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1511 				    sc->vr_cdata.vr_tx_ring_map,
1512 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1513 				vr_tx_underrun(sc);
1514 				return;
1515 			}
1516 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1517 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1518 				sc->vr_stat.tx_collisions++;
1519 			}
1520 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1521 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1522 				sc->vr_stat.tx_late_collisions++;
1523 			}
1524 		} else {
1525 			sc->vr_stat.tx_ok++;
1526 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1527 		}
1528 
1529 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1530 		    BUS_DMASYNC_POSTWRITE);
1531 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1532 		if (sc->vr_revid < REV_ID_VT3071_A) {
1533 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1534 			    (txstat & VR_TXSTAT_COLLCNT) >> 3);
1535 			sc->vr_stat.tx_collisions +=
1536 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1537 		} else {
1538 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0x0f));
1539 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1540 		}
1541 		m_freem(txd->tx_m);
1542 		txd->tx_m = NULL;
1543 	}
1544 
1545 	sc->vr_cdata.vr_tx_cons = cons;
1546 	if (sc->vr_cdata.vr_tx_cnt == 0)
1547 		sc->vr_watchdog_timer = 0;
1548 }
1549 
1550 static void
1551 vr_tick(void *xsc)
1552 {
1553 	struct vr_softc		*sc;
1554 	struct mii_data		*mii;
1555 
1556 	sc = (struct vr_softc *)xsc;
1557 
1558 	VR_LOCK_ASSERT(sc);
1559 
1560 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1561 		device_printf(sc->vr_dev, "restarting\n");
1562 		sc->vr_stat.num_restart++;
1563 		if_setdrvflagbits(sc->vr_ifp, 0, IFF_DRV_RUNNING);
1564 		vr_init_locked(sc);
1565 		sc->vr_flags &= ~VR_F_RESTART;
1566 	}
1567 
1568 	mii = device_get_softc(sc->vr_miibus);
1569 	mii_tick(mii);
1570 	if ((sc->vr_flags & VR_F_LINK) == 0)
1571 		vr_miibus_statchg(sc->vr_dev);
1572 	vr_watchdog(sc);
1573 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1574 }
1575 
1576 #ifdef DEVICE_POLLING
1577 static poll_handler_t vr_poll;
1578 static poll_handler_t vr_poll_locked;
1579 
1580 static int
1581 vr_poll(if_t ifp, enum poll_cmd cmd, int count)
1582 {
1583 	struct vr_softc *sc;
1584 	int rx_npkts;
1585 
1586 	sc = if_getsoftc(ifp);
1587 	rx_npkts = 0;
1588 
1589 	VR_LOCK(sc);
1590 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1591 		rx_npkts = vr_poll_locked(ifp, cmd, count);
1592 	VR_UNLOCK(sc);
1593 	return (rx_npkts);
1594 }
1595 
1596 static int
1597 vr_poll_locked(if_t ifp, enum poll_cmd cmd, int count)
1598 {
1599 	struct vr_softc *sc;
1600 	int rx_npkts;
1601 
1602 	sc = if_getsoftc(ifp);
1603 
1604 	VR_LOCK_ASSERT(sc);
1605 
1606 	sc->rxcycles = count;
1607 	rx_npkts = vr_rxeof(sc);
1608 	vr_txeof(sc);
1609 	if (!if_sendq_empty(ifp))
1610 		vr_start_locked(ifp);
1611 
1612 	if (cmd == POLL_AND_CHECK_STATUS) {
1613 		uint16_t status;
1614 
1615 		/* Also check status register. */
1616 		status = CSR_READ_2(sc, VR_ISR);
1617 		if (status)
1618 			CSR_WRITE_2(sc, VR_ISR, status);
1619 
1620 		if ((status & VR_INTRS) == 0)
1621 			return (rx_npkts);
1622 
1623 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1624 		    VR_ISR_STATSOFLOW)) != 0) {
1625 			if (vr_error(sc, status) != 0)
1626 				return (rx_npkts);
1627 		}
1628 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1629 #ifdef	VR_SHOW_ERRORS
1630 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1631 			    __func__, status, VR_ISR_ERR_BITS);
1632 #endif
1633 			vr_rx_start(sc);
1634 		}
1635 	}
1636 	return (rx_npkts);
1637 }
1638 #endif /* DEVICE_POLLING */
1639 
1640 /* Back off the transmit threshold. */
1641 static void
1642 vr_tx_underrun(struct vr_softc *sc)
1643 {
1644 	int	thresh;
1645 
1646 	device_printf(sc->vr_dev, "Tx underrun -- ");
1647 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1648 		thresh = sc->vr_txthresh;
1649 		sc->vr_txthresh++;
1650 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1651 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1652 			printf("using store and forward mode\n");
1653 		} else
1654 			printf("increasing Tx threshold(%d -> %d)\n",
1655 			    vr_tx_threshold_tables[thresh].value,
1656 			    vr_tx_threshold_tables[thresh + 1].value);
1657 	} else
1658 		printf("\n");
1659 	sc->vr_stat.tx_underrun++;
1660 	if (vr_tx_stop(sc) != 0) {
1661 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1662 		    "resetting\n", __func__);
1663 		sc->vr_flags |= VR_F_RESTART;
1664 		return;
1665 	}
1666 	vr_tx_start(sc);
1667 }
1668 
1669 static int
1670 vr_intr(void *arg)
1671 {
1672 	struct vr_softc		*sc;
1673 	uint16_t		status;
1674 
1675 	sc = (struct vr_softc *)arg;
1676 
1677 	status = CSR_READ_2(sc, VR_ISR);
1678 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1679 		return (FILTER_STRAY);
1680 
1681 	/* Disable interrupts. */
1682 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1683 
1684 	taskqueue_enqueue(taskqueue_fast, &sc->vr_inttask);
1685 
1686 	return (FILTER_HANDLED);
1687 }
1688 
1689 static void
1690 vr_int_task(void *arg, int npending)
1691 {
1692 	struct vr_softc		*sc;
1693 	if_t			ifp;
1694 	uint16_t		status;
1695 
1696 	sc = (struct vr_softc *)arg;
1697 
1698 	VR_LOCK(sc);
1699 
1700 	if ((sc->vr_flags & VR_F_SUSPENDED) != 0)
1701 		goto done_locked;
1702 
1703 	status = CSR_READ_2(sc, VR_ISR);
1704 	ifp = sc->vr_ifp;
1705 #ifdef DEVICE_POLLING
1706 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
1707 		goto done_locked;
1708 #endif
1709 
1710 	/* Suppress unwanted interrupts. */
1711 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
1712 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1713 		CSR_WRITE_2(sc, VR_IMR, 0);
1714 		CSR_WRITE_2(sc, VR_ISR, status);
1715 		goto done_locked;
1716 	}
1717 
1718 	for (; (status & VR_INTRS) != 0;) {
1719 		CSR_WRITE_2(sc, VR_ISR, status);
1720 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1721 		    VR_ISR_STATSOFLOW)) != 0) {
1722 			if (vr_error(sc, status) != 0) {
1723 				VR_UNLOCK(sc);
1724 				return;
1725 			}
1726 		}
1727 		vr_rxeof(sc);
1728 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1729 #ifdef	VR_SHOW_ERRORS
1730 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1731 			    __func__, status, VR_ISR_ERR_BITS);
1732 #endif
1733 			/* Restart Rx if RxDMA SM was stopped. */
1734 			vr_rx_start(sc);
1735 		}
1736 		vr_txeof(sc);
1737 
1738 		if (!if_sendq_empty(ifp))
1739 			vr_start_locked(ifp);
1740 
1741 		status = CSR_READ_2(sc, VR_ISR);
1742 	}
1743 
1744 	/* Re-enable interrupts. */
1745 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1746 
1747 done_locked:
1748 	VR_UNLOCK(sc);
1749 }
1750 
1751 static int
1752 vr_error(struct vr_softc *sc, uint16_t status)
1753 {
1754 	uint16_t pcis;
1755 
1756 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1757 	if ((status & VR_ISR_BUSERR) != 0) {
1758 		status &= ~VR_ISR_BUSERR;
1759 		sc->vr_stat.bus_errors++;
1760 		/* Disable further interrupts. */
1761 		CSR_WRITE_2(sc, VR_IMR, 0);
1762 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1763 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1764 		    "resetting\n", pcis);
1765 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1766 		sc->vr_flags |= VR_F_RESTART;
1767 		return (EAGAIN);
1768 	}
1769 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1770 		/* Link state change, duplex changes etc. */
1771 		status &= ~VR_ISR_LINKSTAT2;
1772 	}
1773 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1774 		status &= ~VR_ISR_STATSOFLOW;
1775 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1776 			/* Update MIB counters. */
1777 		}
1778 	}
1779 
1780 	if (status != 0)
1781 		device_printf(sc->vr_dev,
1782 		    "unhandled interrupt, status = 0x%04x\n", status);
1783 	return (0);
1784 }
1785 
1786 /*
1787  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1788  * pointers to the fragment pointers.
1789  */
1790 static int
1791 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1792 {
1793 	struct vr_txdesc	*txd;
1794 	struct vr_desc		*desc;
1795 	struct mbuf		*m;
1796 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1797 	uint32_t		csum_flags, txctl;
1798 	int			error, i, nsegs, prod, si;
1799 	int			padlen;
1800 
1801 	VR_LOCK_ASSERT(sc);
1802 
1803 	M_ASSERTPKTHDR((*m_head));
1804 
1805 	/*
1806 	 * Some VIA Rhine wants packet buffers to be longword
1807 	 * aligned, but very often our mbufs aren't. Rather than
1808 	 * waste time trying to decide when to copy and when not
1809 	 * to copy, just do it all the time.
1810 	 */
1811 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1812 		m = m_defrag(*m_head, M_NOWAIT);
1813 		if (m == NULL) {
1814 			m_freem(*m_head);
1815 			*m_head = NULL;
1816 			return (ENOBUFS);
1817 		}
1818 		*m_head = m;
1819 	}
1820 
1821 	/*
1822 	 * The Rhine chip doesn't auto-pad, so we have to make
1823 	 * sure to pad short frames out to the minimum frame length
1824 	 * ourselves.
1825 	 */
1826 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1827 		m = *m_head;
1828 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1829 		if (M_WRITABLE(m) == 0) {
1830 			/* Get a writable copy. */
1831 			m = m_dup(*m_head, M_NOWAIT);
1832 			m_freem(*m_head);
1833 			if (m == NULL) {
1834 				*m_head = NULL;
1835 				return (ENOBUFS);
1836 			}
1837 			*m_head = m;
1838 		}
1839 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1840 			m = m_defrag(m, M_NOWAIT);
1841 			if (m == NULL) {
1842 				m_freem(*m_head);
1843 				*m_head = NULL;
1844 				return (ENOBUFS);
1845 			}
1846 		}
1847 		/*
1848 		 * Manually pad short frames, and zero the pad space
1849 		 * to avoid leaking data.
1850 		 */
1851 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1852 		m->m_pkthdr.len += padlen;
1853 		m->m_len = m->m_pkthdr.len;
1854 		*m_head = m;
1855 	}
1856 
1857 	prod = sc->vr_cdata.vr_tx_prod;
1858 	txd = &sc->vr_cdata.vr_txdesc[prod];
1859 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1860 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1861 	if (error == EFBIG) {
1862 		m = m_collapse(*m_head, M_NOWAIT, VR_MAXFRAGS);
1863 		if (m == NULL) {
1864 			m_freem(*m_head);
1865 			*m_head = NULL;
1866 			return (ENOBUFS);
1867 		}
1868 		*m_head = m;
1869 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1870 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1871 		if (error != 0) {
1872 			m_freem(*m_head);
1873 			*m_head = NULL;
1874 			return (error);
1875 		}
1876 	} else if (error != 0)
1877 		return (error);
1878 	if (nsegs == 0) {
1879 		m_freem(*m_head);
1880 		*m_head = NULL;
1881 		return (EIO);
1882 	}
1883 
1884 	/* Check number of available descriptors. */
1885 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1886 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1887 		return (ENOBUFS);
1888 	}
1889 
1890 	txd->tx_m = *m_head;
1891 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1892 	    BUS_DMASYNC_PREWRITE);
1893 
1894 	/* Set checksum offload. */
1895 	csum_flags = 0;
1896 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1897 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1898 			csum_flags |= VR_TXCTL_IPCSUM;
1899 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1900 			csum_flags |= VR_TXCTL_TCPCSUM;
1901 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1902 			csum_flags |= VR_TXCTL_UDPCSUM;
1903 	}
1904 
1905 	/*
1906 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1907 	 * is required for all descriptors regardless of single or
1908 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1909 	 * the first descriptor for a multi-fragmented frames. Without
1910 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1911 	 * send any frames.
1912 	 */
1913 	si = prod;
1914 	for (i = 0; i < nsegs; i++) {
1915 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1916 		desc->vr_status = 0;
1917 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1918 		if (i == 0)
1919 			txctl |= VR_TXCTL_FIRSTFRAG;
1920 		desc->vr_ctl = htole32(txctl);
1921 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1922 		sc->vr_cdata.vr_tx_cnt++;
1923 		VR_INC(prod, VR_TX_RING_CNT);
1924 	}
1925 	/* Update producer index. */
1926 	sc->vr_cdata.vr_tx_prod = prod;
1927 
1928 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1929 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1930 
1931 	/*
1932 	 * Set EOP on the last descriptor and request Tx completion
1933 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1934 	 */
1935 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1936 	if (sc->vr_cdata.vr_tx_pkts == 0)
1937 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1938 	else
1939 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1940 
1941 	/* Lastly turn the first descriptor ownership to hardware. */
1942 	desc = &sc->vr_rdata.vr_tx_ring[si];
1943 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1944 
1945 	/* Sync descriptors. */
1946 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1947 	    sc->vr_cdata.vr_tx_ring_map,
1948 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1949 
1950 	return (0);
1951 }
1952 
1953 static void
1954 vr_start(if_t ifp)
1955 {
1956 	struct vr_softc		*sc;
1957 
1958 	sc = if_getsoftc(ifp);
1959 	VR_LOCK(sc);
1960 	vr_start_locked(ifp);
1961 	VR_UNLOCK(sc);
1962 }
1963 
1964 static void
1965 vr_start_locked(if_t ifp)
1966 {
1967 	struct vr_softc		*sc;
1968 	struct mbuf		*m_head;
1969 	int			enq;
1970 
1971 	sc = if_getsoftc(ifp);
1972 
1973 	VR_LOCK_ASSERT(sc);
1974 
1975 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1976 	    IFF_DRV_RUNNING || (sc->vr_flags & VR_F_LINK) == 0)
1977 		return;
1978 
1979 	for (enq = 0; !if_sendq_empty(ifp) &&
1980 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1981 		m_head = if_dequeue(ifp);
1982 		if (m_head == NULL)
1983 			break;
1984 		/*
1985 		 * Pack the data into the transmit ring. If we
1986 		 * don't have room, set the OACTIVE flag and wait
1987 		 * for the NIC to drain the ring.
1988 		 */
1989 		if (vr_encap(sc, &m_head)) {
1990 			if (m_head == NULL)
1991 				break;
1992 			if_sendq_prepend(ifp, m_head);
1993 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1994 			break;
1995 		}
1996 
1997 		enq++;
1998 		/*
1999 		 * If there's a BPF listener, bounce a copy of this frame
2000 		 * to him.
2001 		 */
2002 		ETHER_BPF_MTAP(ifp, m_head);
2003 	}
2004 
2005 	if (enq > 0) {
2006 		/* Tell the chip to start transmitting. */
2007 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2008 		/* Set a timeout in case the chip goes out to lunch. */
2009 		sc->vr_watchdog_timer = 5;
2010 	}
2011 }
2012 
2013 static void
2014 vr_init(void *xsc)
2015 {
2016 	struct vr_softc		*sc;
2017 
2018 	sc = (struct vr_softc *)xsc;
2019 	VR_LOCK(sc);
2020 	vr_init_locked(sc);
2021 	VR_UNLOCK(sc);
2022 }
2023 
2024 static void
2025 vr_init_locked(struct vr_softc *sc)
2026 {
2027 	if_t			ifp;
2028 	struct mii_data		*mii;
2029 	bus_addr_t		addr;
2030 	int			i;
2031 
2032 	VR_LOCK_ASSERT(sc);
2033 
2034 	ifp = sc->vr_ifp;
2035 	mii = device_get_softc(sc->vr_miibus);
2036 
2037 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2038 		return;
2039 
2040 	/* Cancel pending I/O and free all RX/TX buffers. */
2041 	vr_stop(sc);
2042 	vr_reset(sc);
2043 
2044 	/* Set our station address. */
2045 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2046 		CSR_WRITE_1(sc, VR_PAR0 + i, if_getlladdr(sc->vr_ifp)[i]);
2047 
2048 	/* Set DMA size. */
2049 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2050 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2051 
2052 	/*
2053 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2054 	 * so we must set both.
2055 	 */
2056 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2057 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2058 
2059 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2060 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2061 
2062 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2063 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2064 
2065 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2066 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2067 
2068 	/* Init circular RX list. */
2069 	if (vr_rx_ring_init(sc) != 0) {
2070 		device_printf(sc->vr_dev,
2071 		    "initialization failed: no memory for rx buffers\n");
2072 		vr_stop(sc);
2073 		return;
2074 	}
2075 
2076 	/* Init tx descriptors. */
2077 	vr_tx_ring_init(sc);
2078 
2079 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2080 		uint8_t vcam[2] = { 0, 0 };
2081 
2082 		/* Disable VLAN hardware tag insertion/stripping. */
2083 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2084 		/* Disable VLAN hardware filtering. */
2085 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2086 		/* Disable all CAM entries. */
2087 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2088 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2089 		/* Enable the first VLAN CAM. */
2090 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2091 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2092 	}
2093 
2094 	/*
2095 	 * Set up receive filter.
2096 	 */
2097 	vr_set_filter(sc);
2098 
2099 	/*
2100 	 * Load the address of the RX ring.
2101 	 */
2102 	addr = VR_RX_RING_ADDR(sc, 0);
2103 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2104 	/*
2105 	 * Load the address of the TX ring.
2106 	 */
2107 	addr = VR_TX_RING_ADDR(sc, 0);
2108 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2109 	/* Default : full-duplex, no Tx poll. */
2110 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2111 
2112 	/* Set flow-control parameters for Rhine III. */
2113 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2114 		/*
2115 		 * Configure Rx buffer count available for incoming
2116 		 * packet.
2117 		 * Even though data sheet says almost nothing about
2118 		 * this register, this register should be updated
2119 		 * whenever driver adds new RX buffers to controller.
2120 		 * Otherwise, XON frame is not sent to link partner
2121 		 * even if controller has enough RX buffers and you
2122 		 * would be isolated from network.
2123 		 * The controller is not smart enough to know number
2124 		 * of available RX buffers so driver have to let
2125 		 * controller know how many RX buffers are posted.
2126 		 * In other words, this register works like a residue
2127 		 * counter for RX buffers and should be initialized
2128 		 * to the number of total RX buffers  - 1 before
2129 		 * enabling RX MAC.  Note, this register is 8bits so
2130 		 * it effectively limits the maximum number of RX
2131 		 * buffer to be configured by controller is 255.
2132 		 */
2133 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT - 1);
2134 		/*
2135 		 * Tx pause low threshold : 8 free receive buffers
2136 		 * Tx pause XON high threshold : 24 free receive buffers
2137 		 */
2138 		CSR_WRITE_1(sc, VR_FLOWCR1,
2139 		    VR_FLOWCR1_TXLO8 | VR_FLOWCR1_TXHI24 | VR_FLOWCR1_XONXOFF);
2140 		/* Set Tx pause timer. */
2141 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2142 	}
2143 
2144 	/* Enable receiver and transmitter. */
2145 	CSR_WRITE_1(sc, VR_CR0,
2146 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2147 
2148 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2149 #ifdef DEVICE_POLLING
2150 	/*
2151 	 * Disable interrupts if we are polling.
2152 	 */
2153 	if (if_getcapenable(ifp) & IFCAP_POLLING)
2154 		CSR_WRITE_2(sc, VR_IMR, 0);
2155 	else
2156 #endif
2157 	/*
2158 	 * Enable interrupts and disable MII intrs.
2159 	 */
2160 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2161 	if (sc->vr_revid > REV_ID_VT6102_A)
2162 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2163 
2164 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2165 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2166 
2167 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2168 	mii_mediachg(mii);
2169 
2170 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2171 }
2172 
2173 /*
2174  * Set media options.
2175  */
2176 static int
2177 vr_ifmedia_upd(if_t ifp)
2178 {
2179 	struct vr_softc		*sc;
2180 	struct mii_data		*mii;
2181 	struct mii_softc	*miisc;
2182 	int			error;
2183 
2184 	sc = if_getsoftc(ifp);
2185 	VR_LOCK(sc);
2186 	mii = device_get_softc(sc->vr_miibus);
2187 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2188 		PHY_RESET(miisc);
2189 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2190 	error = mii_mediachg(mii);
2191 	VR_UNLOCK(sc);
2192 
2193 	return (error);
2194 }
2195 
2196 /*
2197  * Report current media status.
2198  */
2199 static void
2200 vr_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2201 {
2202 	struct vr_softc		*sc;
2203 	struct mii_data		*mii;
2204 
2205 	sc = if_getsoftc(ifp);
2206 	mii = device_get_softc(sc->vr_miibus);
2207 	VR_LOCK(sc);
2208 	if ((if_getflags(ifp) & IFF_UP) == 0) {
2209 		VR_UNLOCK(sc);
2210 		return;
2211 	}
2212 	mii_pollstat(mii);
2213 	ifmr->ifm_active = mii->mii_media_active;
2214 	ifmr->ifm_status = mii->mii_media_status;
2215 	VR_UNLOCK(sc);
2216 }
2217 
2218 static int
2219 vr_ioctl(if_t ifp, u_long command, caddr_t data)
2220 {
2221 	struct vr_softc		*sc;
2222 	struct ifreq		*ifr;
2223 	struct mii_data		*mii;
2224 	int			error, mask;
2225 
2226 	sc = if_getsoftc(ifp);
2227 	ifr = (struct ifreq *)data;
2228 	error = 0;
2229 
2230 	switch (command) {
2231 	case SIOCSIFFLAGS:
2232 		VR_LOCK(sc);
2233 		if (if_getflags(ifp) & IFF_UP) {
2234 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2235 				if ((if_getflags(ifp) ^ sc->vr_if_flags) &
2236 				    (IFF_PROMISC | IFF_ALLMULTI))
2237 					vr_set_filter(sc);
2238 			} else {
2239 				if ((sc->vr_flags & VR_F_DETACHED) == 0)
2240 					vr_init_locked(sc);
2241 			}
2242 		} else {
2243 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2244 				vr_stop(sc);
2245 		}
2246 		sc->vr_if_flags = if_getflags(ifp);
2247 		VR_UNLOCK(sc);
2248 		break;
2249 	case SIOCADDMULTI:
2250 	case SIOCDELMULTI:
2251 		VR_LOCK(sc);
2252 		vr_set_filter(sc);
2253 		VR_UNLOCK(sc);
2254 		break;
2255 	case SIOCGIFMEDIA:
2256 	case SIOCSIFMEDIA:
2257 		mii = device_get_softc(sc->vr_miibus);
2258 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2259 		break;
2260 	case SIOCSIFCAP:
2261 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2262 #ifdef DEVICE_POLLING
2263 		if (mask & IFCAP_POLLING) {
2264 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2265 				error = ether_poll_register(vr_poll, ifp);
2266 				if (error != 0)
2267 					break;
2268 				VR_LOCK(sc);
2269 				/* Disable interrupts. */
2270 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2271 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2272 				VR_UNLOCK(sc);
2273 			} else {
2274 				error = ether_poll_deregister(ifp);
2275 				/* Enable interrupts. */
2276 				VR_LOCK(sc);
2277 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2278 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2279 				VR_UNLOCK(sc);
2280 			}
2281 		}
2282 #endif /* DEVICE_POLLING */
2283 		if ((mask & IFCAP_TXCSUM) != 0 &&
2284 		    (IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2285 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2286 			if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2287 				if_sethwassistbits(ifp, VR_CSUM_FEATURES, 0);
2288 			else
2289 				if_sethwassistbits(ifp, 0, VR_CSUM_FEATURES);
2290 		}
2291 		if ((mask & IFCAP_RXCSUM) != 0 &&
2292 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0)
2293 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2294 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2295 		    (if_getcapabilities(ifp) & IFCAP_WOL_UCAST) != 0)
2296 			if_togglecapenable(ifp, IFCAP_WOL_UCAST);
2297 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2298 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2299 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2300 		break;
2301 	default:
2302 		error = ether_ioctl(ifp, command, data);
2303 		break;
2304 	}
2305 
2306 	return (error);
2307 }
2308 
2309 static void
2310 vr_watchdog(struct vr_softc *sc)
2311 {
2312 	if_t			ifp;
2313 
2314 	VR_LOCK_ASSERT(sc);
2315 
2316 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2317 		return;
2318 
2319 	ifp = sc->vr_ifp;
2320 	/*
2321 	 * Reclaim first as we don't request interrupt for every packets.
2322 	 */
2323 	vr_txeof(sc);
2324 	if (sc->vr_cdata.vr_tx_cnt == 0)
2325 		return;
2326 
2327 	if ((sc->vr_flags & VR_F_LINK) == 0) {
2328 		if (bootverbose)
2329 			if_printf(sc->vr_ifp, "watchdog timeout "
2330 			   "(missed link)\n");
2331 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2332 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2333 		vr_init_locked(sc);
2334 		return;
2335 	}
2336 
2337 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2338 	if_printf(ifp, "watchdog timeout\n");
2339 
2340 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2341 	vr_init_locked(sc);
2342 
2343 	if (!if_sendq_empty(ifp))
2344 		vr_start_locked(ifp);
2345 }
2346 
2347 static void
2348 vr_tx_start(struct vr_softc *sc)
2349 {
2350 	bus_addr_t	addr;
2351 	uint8_t		cmd;
2352 
2353 	cmd = CSR_READ_1(sc, VR_CR0);
2354 	if ((cmd & VR_CR0_TX_ON) == 0) {
2355 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2356 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2357 		cmd |= VR_CR0_TX_ON;
2358 		CSR_WRITE_1(sc, VR_CR0, cmd);
2359 	}
2360 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2361 		sc->vr_watchdog_timer = 5;
2362 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2363 	}
2364 }
2365 
2366 static void
2367 vr_rx_start(struct vr_softc *sc)
2368 {
2369 	bus_addr_t	addr;
2370 	uint8_t		cmd;
2371 
2372 	cmd = CSR_READ_1(sc, VR_CR0);
2373 	if ((cmd & VR_CR0_RX_ON) == 0) {
2374 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2375 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2376 		cmd |= VR_CR0_RX_ON;
2377 		CSR_WRITE_1(sc, VR_CR0, cmd);
2378 	}
2379 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2380 }
2381 
2382 static int
2383 vr_tx_stop(struct vr_softc *sc)
2384 {
2385 	int		i;
2386 	uint8_t		cmd;
2387 
2388 	cmd = CSR_READ_1(sc, VR_CR0);
2389 	if ((cmd & VR_CR0_TX_ON) != 0) {
2390 		cmd &= ~VR_CR0_TX_ON;
2391 		CSR_WRITE_1(sc, VR_CR0, cmd);
2392 		for (i = VR_TIMEOUT; i > 0; i--) {
2393 			DELAY(5);
2394 			cmd = CSR_READ_1(sc, VR_CR0);
2395 			if ((cmd & VR_CR0_TX_ON) == 0)
2396 				break;
2397 		}
2398 		if (i == 0)
2399 			return (ETIMEDOUT);
2400 	}
2401 	return (0);
2402 }
2403 
2404 static int
2405 vr_rx_stop(struct vr_softc *sc)
2406 {
2407 	int		i;
2408 	uint8_t		cmd;
2409 
2410 	cmd = CSR_READ_1(sc, VR_CR0);
2411 	if ((cmd & VR_CR0_RX_ON) != 0) {
2412 		cmd &= ~VR_CR0_RX_ON;
2413 		CSR_WRITE_1(sc, VR_CR0, cmd);
2414 		for (i = VR_TIMEOUT; i > 0; i--) {
2415 			DELAY(5);
2416 			cmd = CSR_READ_1(sc, VR_CR0);
2417 			if ((cmd & VR_CR0_RX_ON) == 0)
2418 				break;
2419 		}
2420 		if (i == 0)
2421 			return (ETIMEDOUT);
2422 	}
2423 	return (0);
2424 }
2425 
2426 /*
2427  * Stop the adapter and free any mbufs allocated to the
2428  * RX and TX lists.
2429  */
2430 static void
2431 vr_stop(struct vr_softc *sc)
2432 {
2433 	struct vr_txdesc	*txd;
2434 	struct vr_rxdesc	*rxd;
2435 	if_t			ifp;
2436 	int			i;
2437 
2438 	VR_LOCK_ASSERT(sc);
2439 
2440 	ifp = sc->vr_ifp;
2441 	sc->vr_watchdog_timer = 0;
2442 
2443 	callout_stop(&sc->vr_stat_callout);
2444 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2445 
2446 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2447 	if (vr_rx_stop(sc) != 0)
2448 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2449 	if (vr_tx_stop(sc) != 0)
2450 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2451 	/* Clear pending interrupts. */
2452 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2453 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2454 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2455 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2456 
2457 	/*
2458 	 * Free RX and TX mbufs still in the queues.
2459 	 */
2460 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2461 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2462 		if (rxd->rx_m != NULL) {
2463 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2464 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2465 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2466 			    rxd->rx_dmamap);
2467 			m_freem(rxd->rx_m);
2468 			rxd->rx_m = NULL;
2469 		}
2470         }
2471 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2472 		txd = &sc->vr_cdata.vr_txdesc[i];
2473 		if (txd->tx_m != NULL) {
2474 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2475 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2476 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2477 			    txd->tx_dmamap);
2478 			m_freem(txd->tx_m);
2479 			txd->tx_m = NULL;
2480 		}
2481         }
2482 }
2483 
2484 /*
2485  * Stop all chip I/O so that the kernel's probe routines don't
2486  * get confused by errant DMAs when rebooting.
2487  */
2488 static int
2489 vr_shutdown(device_t dev)
2490 {
2491 
2492 	return (vr_suspend(dev));
2493 }
2494 
2495 static int
2496 vr_suspend(device_t dev)
2497 {
2498 	struct vr_softc		*sc;
2499 
2500 	sc = device_get_softc(dev);
2501 
2502 	VR_LOCK(sc);
2503 	vr_stop(sc);
2504 	vr_setwol(sc);
2505 	sc->vr_flags |= VR_F_SUSPENDED;
2506 	VR_UNLOCK(sc);
2507 
2508 	return (0);
2509 }
2510 
2511 static int
2512 vr_resume(device_t dev)
2513 {
2514 	struct vr_softc		*sc;
2515 	if_t			ifp;
2516 
2517 	sc = device_get_softc(dev);
2518 
2519 	VR_LOCK(sc);
2520 	ifp = sc->vr_ifp;
2521 	vr_clrwol(sc);
2522 	vr_reset(sc);
2523 	if (if_getflags(ifp) & IFF_UP)
2524 		vr_init_locked(sc);
2525 
2526 	sc->vr_flags &= ~VR_F_SUSPENDED;
2527 	VR_UNLOCK(sc);
2528 
2529 	return (0);
2530 }
2531 
2532 static void
2533 vr_setwol(struct vr_softc *sc)
2534 {
2535 	if_t			ifp;
2536 	int			pmc;
2537 	uint16_t		pmstat;
2538 	uint8_t			v;
2539 
2540 	VR_LOCK_ASSERT(sc);
2541 
2542 	if (sc->vr_revid < REV_ID_VT6102_A ||
2543 	    pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2544 		return;
2545 
2546 	ifp = sc->vr_ifp;
2547 
2548 	/* Clear WOL configuration. */
2549 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2550 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2551 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2552 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2553 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2554 		/* Newer Rhine III supports two additional patterns. */
2555 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2556 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2557 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2558 	}
2559 	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
2560 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2561 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2562 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2563 	/*
2564 	 * It seems that multicast wakeup frames require programming pattern
2565 	 * registers and valid CRC as well as pattern mask for each pattern.
2566 	 * While it's possible to setup such a pattern it would complicate
2567 	 * WOL configuration so ignore multicast wakeup frames.
2568 	 */
2569 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
2570 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2571 		v = CSR_READ_1(sc, VR_STICKHW);
2572 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2573 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2574 	}
2575 
2576 	/* Put hardware into sleep. */
2577 	v = CSR_READ_1(sc, VR_STICKHW);
2578 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2579 	CSR_WRITE_1(sc, VR_STICKHW, v);
2580 
2581 	/* Request PME if WOL is requested. */
2582 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2583 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2584 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2585 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2586 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2587 }
2588 
2589 static void
2590 vr_clrwol(struct vr_softc *sc)
2591 {
2592 	uint8_t			v;
2593 
2594 	VR_LOCK_ASSERT(sc);
2595 
2596 	if (sc->vr_revid < REV_ID_VT6102_A)
2597 		return;
2598 
2599 	/* Take hardware out of sleep. */
2600 	v = CSR_READ_1(sc, VR_STICKHW);
2601 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2602 	CSR_WRITE_1(sc, VR_STICKHW, v);
2603 
2604 	/* Clear WOL configuration as WOL may interfere normal operation. */
2605 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2606 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2607 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2608 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2609 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2610 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2611 		/* Newer Rhine III supports two additional patterns. */
2612 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2613 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2614 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2615 	}
2616 }
2617 
2618 static int
2619 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2620 {
2621 	struct vr_softc		*sc;
2622 	struct vr_statistics	*stat;
2623 	int			error;
2624 	int			result;
2625 
2626 	result = -1;
2627 	error = sysctl_handle_int(oidp, &result, 0, req);
2628 
2629 	if (error != 0 || req->newptr == NULL)
2630 		return (error);
2631 
2632 	if (result == 1) {
2633 		sc = (struct vr_softc *)arg1;
2634 		stat = &sc->vr_stat;
2635 
2636 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2637 		printf("Outbound good frames : %ju\n",
2638 		    (uintmax_t)stat->tx_ok);
2639 		printf("Inbound good frames : %ju\n",
2640 		    (uintmax_t)stat->rx_ok);
2641 		printf("Outbound errors : %u\n", stat->tx_errors);
2642 		printf("Inbound errors : %u\n", stat->rx_errors);
2643 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2644 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2645 		printf("Inbound FIFO overflows : %d\n",
2646 		    stat->rx_fifo_overflows);
2647 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2648 		printf("Inbound frame alignment errors : %u\n",
2649 		    stat->rx_alignment);
2650 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2651 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2652 		printf("Outbound aborted with excessive collisions : %u\n",
2653 		    stat->tx_abort);
2654 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2655 		printf("Outbound late collisions : %u\n",
2656 		    stat->tx_late_collisions);
2657 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2658 		printf("PCI bus errors : %u\n", stat->bus_errors);
2659 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2660 		    stat->num_restart);
2661 	}
2662 
2663 	return (error);
2664 }
2665