xref: /freebsd/sys/dev/vr/if_vr.c (revision f126d349810fdb512c0b01e101342d430b947488)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1997, 1998
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /*
39  * VIA Rhine fast ethernet PCI NIC driver
40  *
41  * Supports various network adapters based on the VIA Rhine
42  * and Rhine II PCI controllers, including the D-Link DFE530TX.
43  * Datasheets are available at http://www.via.com.tw.
44  *
45  * Written by Bill Paul <wpaul@ctr.columbia.edu>
46  * Electrical Engineering Department
47  * Columbia University, New York City
48  */
49 
50 /*
51  * The VIA Rhine controllers are similar in some respects to the
52  * the DEC tulip chips, except less complicated. The controller
53  * uses an MII bus and an external physical layer interface. The
54  * receiver has a one entry perfect filter and a 64-bit hash table
55  * multicast filter. Transmit and receive descriptors are similar
56  * to the tulip.
57  *
58  * Some Rhine chips has a serious flaw in its transmit DMA mechanism:
59  * transmit buffers must be longword aligned. Unfortunately,
60  * FreeBSD doesn't guarantee that mbufs will be filled in starting
61  * at longword boundaries, so we have to do a buffer copy before
62  * transmission.
63  */
64 
65 #ifdef HAVE_KERNEL_OPTION_HEADERS
66 #include "opt_device_polling.h"
67 #endif
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/bus.h>
72 #include <sys/endian.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/module.h>
77 #include <sys/rman.h>
78 #include <sys/socket.h>
79 #include <sys/sockio.h>
80 #include <sys/sysctl.h>
81 #include <sys/taskqueue.h>
82 
83 #include <net/bpf.h>
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_types.h>
90 #include <net/if_vlan_var.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 
98 #include <machine/bus.h>
99 
100 #include <dev/vr/if_vrreg.h>
101 
102 /* "device miibus" required.  See GENERIC if you get errors here. */
103 #include "miibus_if.h"
104 
105 MODULE_DEPEND(vr, pci, 1, 1, 1);
106 MODULE_DEPEND(vr, ether, 1, 1, 1);
107 MODULE_DEPEND(vr, miibus, 1, 1, 1);
108 
109 /* Define to show Rx/Tx error status. */
110 #undef	VR_SHOW_ERRORS
111 #define	VR_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
112 
113 /*
114  * Various supported device vendors/types, their names & quirks.
115  */
116 #define VR_Q_NEEDALIGN		(1<<0)
117 #define VR_Q_CSUM		(1<<1)
118 #define VR_Q_CAM		(1<<2)
119 
120 static const struct vr_type {
121 	u_int16_t		vr_vid;
122 	u_int16_t		vr_did;
123 	int			vr_quirks;
124 	const char		*vr_name;
125 } vr_devs[] = {
126 	{ VIA_VENDORID, VIA_DEVICEID_RHINE,
127 	    VR_Q_NEEDALIGN,
128 	    "VIA VT3043 Rhine I 10/100BaseTX" },
129 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II,
130 	    VR_Q_NEEDALIGN,
131 	    "VIA VT86C100A Rhine II 10/100BaseTX" },
132 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_II_2,
133 	    0,
134 	    "VIA VT6102 Rhine II 10/100BaseTX" },
135 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III,
136 	    0,
137 	    "VIA VT6105 Rhine III 10/100BaseTX" },
138 	{ VIA_VENDORID, VIA_DEVICEID_RHINE_III_M,
139 	    VR_Q_CSUM,
140 	    "VIA VT6105M Rhine III 10/100BaseTX" },
141 	{ DELTA_VENDORID, DELTA_DEVICEID_RHINE_II,
142 	    VR_Q_NEEDALIGN,
143 	    "Delta Electronics Rhine II 10/100BaseTX" },
144 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_RHINE_II,
145 	    VR_Q_NEEDALIGN,
146 	    "Addtron Technology Rhine II 10/100BaseTX" },
147 	{ 0, 0, 0, NULL }
148 };
149 
150 static int vr_probe(device_t);
151 static int vr_attach(device_t);
152 static int vr_detach(device_t);
153 static int vr_shutdown(device_t);
154 static int vr_suspend(device_t);
155 static int vr_resume(device_t);
156 
157 static void vr_dmamap_cb(void *, bus_dma_segment_t *, int, int);
158 static int vr_dma_alloc(struct vr_softc *);
159 static void vr_dma_free(struct vr_softc *);
160 static __inline void vr_discard_rxbuf(struct vr_rxdesc *);
161 static int vr_newbuf(struct vr_softc *, int);
162 
163 #ifndef __NO_STRICT_ALIGNMENT
164 static __inline void vr_fixup_rx(struct mbuf *);
165 #endif
166 static int vr_rxeof(struct vr_softc *);
167 static void vr_txeof(struct vr_softc *);
168 static void vr_tick(void *);
169 static int vr_error(struct vr_softc *, uint16_t);
170 static void vr_tx_underrun(struct vr_softc *);
171 static int vr_intr(void *);
172 static void vr_int_task(void *, int);
173 static void vr_start(struct ifnet *);
174 static void vr_start_locked(struct ifnet *);
175 static int vr_encap(struct vr_softc *, struct mbuf **);
176 static int vr_ioctl(struct ifnet *, u_long, caddr_t);
177 static void vr_init(void *);
178 static void vr_init_locked(struct vr_softc *);
179 static void vr_tx_start(struct vr_softc *);
180 static void vr_rx_start(struct vr_softc *);
181 static int vr_tx_stop(struct vr_softc *);
182 static int vr_rx_stop(struct vr_softc *);
183 static void vr_stop(struct vr_softc *);
184 static void vr_watchdog(struct vr_softc *);
185 static int vr_ifmedia_upd(struct ifnet *);
186 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
187 
188 static int vr_miibus_readreg(device_t, int, int);
189 static int vr_miibus_writereg(device_t, int, int, int);
190 static void vr_miibus_statchg(device_t);
191 
192 static void vr_cam_mask(struct vr_softc *, uint32_t, int);
193 static int vr_cam_data(struct vr_softc *, int, int, uint8_t *);
194 static void vr_set_filter(struct vr_softc *);
195 static void vr_reset(const struct vr_softc *);
196 static int vr_tx_ring_init(struct vr_softc *);
197 static int vr_rx_ring_init(struct vr_softc *);
198 static void vr_setwol(struct vr_softc *);
199 static void vr_clrwol(struct vr_softc *);
200 static int vr_sysctl_stats(SYSCTL_HANDLER_ARGS);
201 
202 static const struct vr_tx_threshold_table {
203 	int tx_cfg;
204 	int bcr_cfg;
205 	int value;
206 } vr_tx_threshold_tables[] = {
207 	{ VR_TXTHRESH_64BYTES, VR_BCR1_TXTHRESH64BYTES,	64 },
208 	{ VR_TXTHRESH_128BYTES, VR_BCR1_TXTHRESH128BYTES, 128 },
209 	{ VR_TXTHRESH_256BYTES, VR_BCR1_TXTHRESH256BYTES, 256 },
210 	{ VR_TXTHRESH_512BYTES, VR_BCR1_TXTHRESH512BYTES, 512 },
211 	{ VR_TXTHRESH_1024BYTES, VR_BCR1_TXTHRESH1024BYTES, 1024 },
212 	{ VR_TXTHRESH_STORENFWD, VR_BCR1_TXTHRESHSTORENFWD, 2048 }
213 };
214 
215 static device_method_t vr_methods[] = {
216 	/* Device interface */
217 	DEVMETHOD(device_probe,		vr_probe),
218 	DEVMETHOD(device_attach,	vr_attach),
219 	DEVMETHOD(device_detach, 	vr_detach),
220 	DEVMETHOD(device_shutdown,	vr_shutdown),
221 	DEVMETHOD(device_suspend,	vr_suspend),
222 	DEVMETHOD(device_resume,	vr_resume),
223 
224 	/* MII interface */
225 	DEVMETHOD(miibus_readreg,	vr_miibus_readreg),
226 	DEVMETHOD(miibus_writereg,	vr_miibus_writereg),
227 	DEVMETHOD(miibus_statchg,	vr_miibus_statchg),
228 
229 	DEVMETHOD_END
230 };
231 
232 static driver_t vr_driver = {
233 	"vr",
234 	vr_methods,
235 	sizeof(struct vr_softc)
236 };
237 
238 DRIVER_MODULE(vr, pci, vr_driver, 0, 0);
239 DRIVER_MODULE(miibus, vr, miibus_driver, 0, 0);
240 
241 static int
242 vr_miibus_readreg(device_t dev, int phy, int reg)
243 {
244 	struct vr_softc		*sc;
245 	int			i;
246 
247 	sc = device_get_softc(dev);
248 
249 	/* Set the register address. */
250 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
251 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
252 
253 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
254 		DELAY(1);
255 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
256 			break;
257 	}
258 	if (i == VR_MII_TIMEOUT)
259 		device_printf(sc->vr_dev, "phy read timeout %d:%d\n", phy, reg);
260 
261 	return (CSR_READ_2(sc, VR_MIIDATA));
262 }
263 
264 static int
265 vr_miibus_writereg(device_t dev, int phy, int reg, int data)
266 {
267 	struct vr_softc		*sc;
268 	int			i;
269 
270 	sc = device_get_softc(dev);
271 
272 	/* Set the register address and data to write. */
273 	CSR_WRITE_1(sc, VR_MIIADDR, reg);
274 	CSR_WRITE_2(sc, VR_MIIDATA, data);
275 	VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
276 
277 	for (i = 0; i < VR_MII_TIMEOUT; i++) {
278 		DELAY(1);
279 		if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
280 			break;
281 	}
282 	if (i == VR_MII_TIMEOUT)
283 		device_printf(sc->vr_dev, "phy write timeout %d:%d\n", phy,
284 		    reg);
285 
286 	return (0);
287 }
288 
289 /*
290  * In order to fiddle with the
291  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
292  * first have to put the transmit and/or receive logic in the idle state.
293  */
294 static void
295 vr_miibus_statchg(device_t dev)
296 {
297 	struct vr_softc		*sc;
298 	struct mii_data		*mii;
299 	struct ifnet		*ifp;
300 	int			lfdx, mfdx;
301 	uint8_t			cr0, cr1, fc;
302 
303 	sc = device_get_softc(dev);
304 	mii = device_get_softc(sc->vr_miibus);
305 	ifp = sc->vr_ifp;
306 	if (mii == NULL || ifp == NULL ||
307 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
308 		return;
309 
310 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
311 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
312 	    (IFM_ACTIVE | IFM_AVALID)) {
313 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
314 		case IFM_10_T:
315 		case IFM_100_TX:
316 			sc->vr_flags |= VR_F_LINK;
317 			break;
318 		default:
319 			break;
320 		}
321 	}
322 
323 	if ((sc->vr_flags & VR_F_LINK) != 0) {
324 		cr0 = CSR_READ_1(sc, VR_CR0);
325 		cr1 = CSR_READ_1(sc, VR_CR1);
326 		mfdx = (cr1 & VR_CR1_FULLDUPLEX) != 0;
327 		lfdx = (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0;
328 		if (mfdx != lfdx) {
329 			if ((cr0 & (VR_CR0_TX_ON | VR_CR0_RX_ON)) != 0) {
330 				if (vr_tx_stop(sc) != 0 ||
331 				    vr_rx_stop(sc) != 0) {
332 					device_printf(sc->vr_dev,
333 					    "%s: Tx/Rx shutdown error -- "
334 					    "resetting\n", __func__);
335 					sc->vr_flags |= VR_F_RESTART;
336 					VR_UNLOCK(sc);
337 					return;
338 				}
339 			}
340 			if (lfdx)
341 				cr1 |= VR_CR1_FULLDUPLEX;
342 			else
343 				cr1 &= ~VR_CR1_FULLDUPLEX;
344 			CSR_WRITE_1(sc, VR_CR1, cr1);
345 		}
346 		fc = 0;
347 		/* Configure flow-control. */
348 		if (sc->vr_revid >= REV_ID_VT6105_A0) {
349 			fc = CSR_READ_1(sc, VR_FLOWCR1);
350 			fc &= ~(VR_FLOWCR1_TXPAUSE | VR_FLOWCR1_RXPAUSE);
351 			if ((IFM_OPTIONS(mii->mii_media_active) &
352 			    IFM_ETH_RXPAUSE) != 0)
353 				fc |= VR_FLOWCR1_RXPAUSE;
354 			if ((IFM_OPTIONS(mii->mii_media_active) &
355 			    IFM_ETH_TXPAUSE) != 0) {
356 				fc |= VR_FLOWCR1_TXPAUSE;
357 				sc->vr_flags |= VR_F_TXPAUSE;
358 			}
359 			CSR_WRITE_1(sc, VR_FLOWCR1, fc);
360 		} else if (sc->vr_revid >= REV_ID_VT6102_A) {
361 			/* No Tx puase capability available for Rhine II. */
362 			fc = CSR_READ_1(sc, VR_MISC_CR0);
363 			fc &= ~VR_MISCCR0_RXPAUSE;
364 			if ((IFM_OPTIONS(mii->mii_media_active) &
365 			    IFM_ETH_RXPAUSE) != 0)
366 				fc |= VR_MISCCR0_RXPAUSE;
367 			CSR_WRITE_1(sc, VR_MISC_CR0, fc);
368 		}
369 		vr_rx_start(sc);
370 		vr_tx_start(sc);
371 	} else {
372 		if (vr_tx_stop(sc) != 0 || vr_rx_stop(sc) != 0) {
373 			device_printf(sc->vr_dev,
374 			    "%s: Tx/Rx shutdown error -- resetting\n",
375 			    __func__);
376 			sc->vr_flags |= VR_F_RESTART;
377 		}
378 	}
379 }
380 
381 static void
382 vr_cam_mask(struct vr_softc *sc, uint32_t mask, int type)
383 {
384 
385 	if (type == VR_MCAST_CAM)
386 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
387 	else
388 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
389 	CSR_WRITE_4(sc, VR_CAMMASK, mask);
390 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
391 }
392 
393 static int
394 vr_cam_data(struct vr_softc *sc, int type, int idx, uint8_t *mac)
395 {
396 	int	i;
397 
398 	if (type == VR_MCAST_CAM) {
399 		if (idx < 0 || idx >= VR_CAM_MCAST_CNT || mac == NULL)
400 			return (EINVAL);
401 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_MCAST);
402 	} else
403 		CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_VLAN);
404 
405 	/* Set CAM entry address. */
406 	CSR_WRITE_1(sc, VR_CAMADDR, idx);
407 	/* Set CAM entry data. */
408 	if (type == VR_MCAST_CAM) {
409 		for (i = 0; i < ETHER_ADDR_LEN; i++)
410 			CSR_WRITE_1(sc, VR_MCAM0 + i, mac[i]);
411 	} else {
412 		CSR_WRITE_1(sc, VR_VCAM0, mac[0]);
413 		CSR_WRITE_1(sc, VR_VCAM1, mac[1]);
414 	}
415 	DELAY(10);
416 	/* Write CAM and wait for self-clear of VR_CAMCTL_WRITE bit. */
417 	CSR_WRITE_1(sc, VR_CAMCTL, VR_CAMCTL_ENA | VR_CAMCTL_WRITE);
418 	for (i = 0; i < VR_TIMEOUT; i++) {
419 		DELAY(1);
420 		if ((CSR_READ_1(sc, VR_CAMCTL) & VR_CAMCTL_WRITE) == 0)
421 			break;
422 	}
423 
424 	if (i == VR_TIMEOUT)
425 		device_printf(sc->vr_dev, "%s: setting CAM filter timeout!\n",
426 		    __func__);
427 	CSR_WRITE_1(sc, VR_CAMCTL, 0);
428 
429 	return (i == VR_TIMEOUT ? ETIMEDOUT : 0);
430 }
431 
432 struct vr_hash_maddr_cam_ctx {
433 	struct vr_softc *sc;
434 	uint32_t mask;
435 	int error;
436 };
437 
438 static u_int
439 vr_hash_maddr_cam(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
440 {
441 	struct vr_hash_maddr_cam_ctx *ctx = arg;
442 
443 	if (ctx->error != 0)
444 		return (0);
445 	ctx->error = vr_cam_data(ctx->sc, VR_MCAST_CAM, mcnt, LLADDR(sdl));
446 	if (ctx->error != 0) {
447 		ctx->mask = 0;
448 		return (0);
449 	}
450 	ctx->mask |= 1 << mcnt;
451 
452 	return (1);
453 }
454 
455 static u_int
456 vr_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
457 {
458 	uint32_t *hashes = arg;
459 	int h;
460 
461 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
462 	if (h < 32)
463 		hashes[0] |= (1 << h);
464 	else
465 		hashes[1] |= (1 << (h - 32));
466 
467 	return (1);
468 }
469 
470 /*
471  * Program the 64-bit multicast hash filter.
472  */
473 static void
474 vr_set_filter(struct vr_softc *sc)
475 {
476 	struct ifnet		*ifp;
477 	uint32_t		hashes[2] = { 0, 0 };
478 	uint8_t			rxfilt;
479 	int			error, mcnt;
480 
481 	VR_LOCK_ASSERT(sc);
482 
483 	ifp = sc->vr_ifp;
484 	rxfilt = CSR_READ_1(sc, VR_RXCFG);
485 	rxfilt &= ~(VR_RXCFG_RX_PROMISC | VR_RXCFG_RX_BROAD |
486 	    VR_RXCFG_RX_MULTI);
487 	if (ifp->if_flags & IFF_BROADCAST)
488 		rxfilt |= VR_RXCFG_RX_BROAD;
489 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
490 		rxfilt |= VR_RXCFG_RX_MULTI;
491 		if (ifp->if_flags & IFF_PROMISC)
492 			rxfilt |= VR_RXCFG_RX_PROMISC;
493 		CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
494 		CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
495 		CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
496 		return;
497 	}
498 
499 	/* Now program new ones. */
500 	error = 0;
501 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
502 		struct vr_hash_maddr_cam_ctx ctx;
503 
504 		/*
505 		 * For hardwares that have CAM capability, use
506 		 * 32 entries multicast perfect filter.
507 		 */
508 		ctx.sc = sc;
509 		ctx.mask = 0;
510 		ctx.error = 0;
511 		mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr_cam, &ctx);
512 		vr_cam_mask(sc, VR_MCAST_CAM, ctx.mask);
513 	}
514 
515 	if ((sc->vr_quirks & VR_Q_CAM) == 0 || error != 0) {
516 		/*
517 		 * If there are too many multicast addresses or
518 		 * setting multicast CAM filter failed, use hash
519 		 * table based filtering.
520 		 */
521 		mcnt = if_foreach_llmaddr(ifp, vr_hash_maddr, hashes);
522 	}
523 
524 	if (mcnt > 0)
525 		rxfilt |= VR_RXCFG_RX_MULTI;
526 
527 	CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
528 	CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
529 	CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
530 }
531 
532 static void
533 vr_reset(const struct vr_softc *sc)
534 {
535 	int		i;
536 
537 	/*VR_LOCK_ASSERT(sc);*/ /* XXX: Called during attach w/o lock. */
538 
539 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_RESET);
540 	if (sc->vr_revid < REV_ID_VT6102_A) {
541 		/* VT86C100A needs more delay after reset. */
542 		DELAY(100);
543 	}
544 	for (i = 0; i < VR_TIMEOUT; i++) {
545 		DELAY(10);
546 		if (!(CSR_READ_1(sc, VR_CR1) & VR_CR1_RESET))
547 			break;
548 	}
549 	if (i == VR_TIMEOUT) {
550 		if (sc->vr_revid < REV_ID_VT6102_A)
551 			device_printf(sc->vr_dev, "reset never completed!\n");
552 		else {
553 			/* Use newer force reset command. */
554 			device_printf(sc->vr_dev,
555 			    "Using force reset command.\n");
556 			VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
557 			/*
558 			 * Wait a little while for the chip to get its brains
559 			 * in order.
560 			 */
561 			DELAY(2000);
562 		}
563 	}
564 
565 }
566 
567 /*
568  * Probe for a VIA Rhine chip. Check the PCI vendor and device
569  * IDs against our list and return a match or NULL
570  */
571 static const struct vr_type *
572 vr_match(device_t dev)
573 {
574 	const struct vr_type	*t = vr_devs;
575 
576 	for (t = vr_devs; t->vr_name != NULL; t++)
577 		if ((pci_get_vendor(dev) == t->vr_vid) &&
578 		    (pci_get_device(dev) == t->vr_did))
579 			return (t);
580 	return (NULL);
581 }
582 
583 /*
584  * Probe for a VIA Rhine chip. Check the PCI vendor and device
585  * IDs against our list and return a device name if we find a match.
586  */
587 static int
588 vr_probe(device_t dev)
589 {
590 	const struct vr_type	*t;
591 
592 	t = vr_match(dev);
593 	if (t != NULL) {
594 		device_set_desc(dev, t->vr_name);
595 		return (BUS_PROBE_DEFAULT);
596 	}
597 	return (ENXIO);
598 }
599 
600 /*
601  * Attach the interface. Allocate softc structures, do ifmedia
602  * setup and ethernet/BPF attach.
603  */
604 static int
605 vr_attach(device_t dev)
606 {
607 	struct vr_softc		*sc;
608 	struct ifnet		*ifp;
609 	const struct vr_type	*t;
610 	uint8_t			eaddr[ETHER_ADDR_LEN];
611 	int			error, rid;
612 	int			i, phy, pmc;
613 
614 	sc = device_get_softc(dev);
615 	sc->vr_dev = dev;
616 	t = vr_match(dev);
617 	KASSERT(t != NULL, ("Lost if_vr device match"));
618 	sc->vr_quirks = t->vr_quirks;
619 	device_printf(dev, "Quirks: 0x%x\n", sc->vr_quirks);
620 
621 	mtx_init(&sc->vr_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
622 	    MTX_DEF);
623 	callout_init_mtx(&sc->vr_stat_callout, &sc->vr_mtx, 0);
624 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
625 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
626 	    OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
627 	    sc, 0, vr_sysctl_stats, "I", "Statistics");
628 
629 	error = 0;
630 
631 	/*
632 	 * Map control/status registers.
633 	 */
634 	pci_enable_busmaster(dev);
635 	sc->vr_revid = pci_get_revid(dev);
636 	device_printf(dev, "Revision: 0x%x\n", sc->vr_revid);
637 
638 	sc->vr_res_id = PCIR_BAR(0);
639 	sc->vr_res_type = SYS_RES_IOPORT;
640 	sc->vr_res = bus_alloc_resource_any(dev, sc->vr_res_type,
641 	    &sc->vr_res_id, RF_ACTIVE);
642 	if (sc->vr_res == NULL) {
643 		device_printf(dev, "couldn't map ports\n");
644 		error = ENXIO;
645 		goto fail;
646 	}
647 
648 	/* Allocate interrupt. */
649 	rid = 0;
650 	sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
651 	    RF_SHAREABLE | RF_ACTIVE);
652 
653 	if (sc->vr_irq == NULL) {
654 		device_printf(dev, "couldn't map interrupt\n");
655 		error = ENXIO;
656 		goto fail;
657 	}
658 
659 	/* Allocate ifnet structure. */
660 	ifp = sc->vr_ifp = if_alloc(IFT_ETHER);
661 	if (ifp == NULL) {
662 		device_printf(dev, "couldn't allocate ifnet structure\n");
663 		error = ENOSPC;
664 		goto fail;
665 	}
666 	ifp->if_softc = sc;
667 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
668 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
669 	ifp->if_ioctl = vr_ioctl;
670 	ifp->if_start = vr_start;
671 	ifp->if_init = vr_init;
672 	IFQ_SET_MAXLEN(&ifp->if_snd, VR_TX_RING_CNT - 1);
673 	ifp->if_snd.ifq_maxlen = VR_TX_RING_CNT - 1;
674 	IFQ_SET_READY(&ifp->if_snd);
675 
676 	NET_TASK_INIT(&sc->vr_inttask, 0, vr_int_task, sc);
677 
678 	/* Configure Tx FIFO threshold. */
679 	sc->vr_txthresh = VR_TXTHRESH_MIN;
680 	if (sc->vr_revid < REV_ID_VT6105_A0) {
681 		/*
682 		 * Use store and forward mode for Rhine I/II.
683 		 * Otherwise they produce a lot of Tx underruns and
684 		 * it would take a while to get working FIFO threshold
685 		 * value.
686 		 */
687 		sc->vr_txthresh = VR_TXTHRESH_MAX;
688 	}
689 	if ((sc->vr_quirks & VR_Q_CSUM) != 0) {
690 		ifp->if_hwassist = VR_CSUM_FEATURES;
691 		ifp->if_capabilities |= IFCAP_HWCSUM;
692 		/*
693 		 * To update checksum field the hardware may need to
694 		 * store entire frames into FIFO before transmitting.
695 		 */
696 		sc->vr_txthresh = VR_TXTHRESH_MAX;
697 	}
698 
699 	if (sc->vr_revid >= REV_ID_VT6102_A &&
700 	    pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
701 		ifp->if_capabilities |= IFCAP_WOL_UCAST | IFCAP_WOL_MAGIC;
702 
703 	/* Rhine supports oversized VLAN frame. */
704 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
705 	ifp->if_capenable = ifp->if_capabilities;
706 #ifdef DEVICE_POLLING
707 	ifp->if_capabilities |= IFCAP_POLLING;
708 #endif
709 
710 	/*
711 	 * Windows may put the chip in suspend mode when it
712 	 * shuts down. Be sure to kick it in the head to wake it
713 	 * up again.
714 	 */
715 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
716 		VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
717 
718 	/*
719 	 * Get station address. The way the Rhine chips work,
720 	 * you're not allowed to directly access the EEPROM once
721 	 * they've been programmed a special way. Consequently,
722 	 * we need to read the node address from the PAR0 and PAR1
723 	 * registers.
724 	 * Reloading EEPROM also overwrites VR_CFGA, VR_CFGB,
725 	 * VR_CFGC and VR_CFGD such that memory mapped IO configured
726 	 * by driver is reset to default state.
727 	 */
728 	VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
729 	for (i = VR_TIMEOUT; i > 0; i--) {
730 		DELAY(1);
731 		if ((CSR_READ_1(sc, VR_EECSR) & VR_EECSR_LOAD) == 0)
732 			break;
733 	}
734 	if (i == 0)
735 		device_printf(dev, "Reloading EEPROM timeout!\n");
736 	for (i = 0; i < ETHER_ADDR_LEN; i++)
737 		eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
738 
739 	/* Reset the adapter. */
740 	vr_reset(sc);
741 	/* Ack intr & disable further interrupts. */
742 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
743 	CSR_WRITE_2(sc, VR_IMR, 0);
744 	if (sc->vr_revid >= REV_ID_VT6102_A)
745 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
746 
747 	if (sc->vr_revid < REV_ID_VT6102_A) {
748 		pci_write_config(dev, VR_PCI_MODE2,
749 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
750 		    VR_MODE2_MODE10T, 1);
751 	} else {
752 		/* Report error instead of retrying forever. */
753 		pci_write_config(dev, VR_PCI_MODE2,
754 		    pci_read_config(dev, VR_PCI_MODE2, 1) |
755 		    VR_MODE2_PCEROPT, 1);
756         	/* Detect MII coding error. */
757 		pci_write_config(dev, VR_PCI_MODE3,
758 		    pci_read_config(dev, VR_PCI_MODE3, 1) |
759 		    VR_MODE3_MIION, 1);
760 		if (sc->vr_revid >= REV_ID_VT6105_LOM &&
761 		    sc->vr_revid < REV_ID_VT6105M_A0)
762 			pci_write_config(dev, VR_PCI_MODE2,
763 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
764 			    VR_MODE2_MODE10T, 1);
765 		/* Enable Memory-Read-Multiple. */
766 		if (sc->vr_revid >= REV_ID_VT6107_A1 &&
767 		    sc->vr_revid < REV_ID_VT6105M_A0)
768 			pci_write_config(dev, VR_PCI_MODE2,
769 			    pci_read_config(dev, VR_PCI_MODE2, 1) |
770 			    VR_MODE2_MRDPL, 1);
771 	}
772 	/* Disable MII AUTOPOLL. */
773 	VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
774 
775 	if (vr_dma_alloc(sc) != 0) {
776 		error = ENXIO;
777 		goto fail;
778 	}
779 
780 	/* Do MII setup. */
781 	if (sc->vr_revid >= REV_ID_VT6105_A0)
782 		phy = 1;
783 	else
784 		phy = CSR_READ_1(sc, VR_PHYADDR) & VR_PHYADDR_MASK;
785 	error = mii_attach(dev, &sc->vr_miibus, ifp, vr_ifmedia_upd,
786 	    vr_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY,
787 	    sc->vr_revid >= REV_ID_VT6102_A ? MIIF_DOPAUSE : 0);
788 	if (error != 0) {
789 		device_printf(dev, "attaching PHYs failed\n");
790 		goto fail;
791 	}
792 
793 	/* Call MI attach routine. */
794 	ether_ifattach(ifp, eaddr);
795 	/*
796 	 * Tell the upper layer(s) we support long frames.
797 	 * Must appear after the call to ether_ifattach() because
798 	 * ether_ifattach() sets ifi_hdrlen to the default value.
799 	 */
800 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
801 
802 	/* Hook interrupt last to avoid having to lock softc. */
803 	error = bus_setup_intr(dev, sc->vr_irq, INTR_TYPE_NET | INTR_MPSAFE,
804 	    vr_intr, NULL, sc, &sc->vr_intrhand);
805 
806 	if (error) {
807 		device_printf(dev, "couldn't set up irq\n");
808 		ether_ifdetach(ifp);
809 		goto fail;
810 	}
811 
812 fail:
813 	if (error)
814 		vr_detach(dev);
815 
816 	return (error);
817 }
818 
819 /*
820  * Shutdown hardware and free up resources. This can be called any
821  * time after the mutex has been initialized. It is called in both
822  * the error case in attach and the normal detach case so it needs
823  * to be careful about only freeing resources that have actually been
824  * allocated.
825  */
826 static int
827 vr_detach(device_t dev)
828 {
829 	struct vr_softc		*sc = device_get_softc(dev);
830 	struct ifnet		*ifp = sc->vr_ifp;
831 
832 	KASSERT(mtx_initialized(&sc->vr_mtx), ("vr mutex not initialized"));
833 
834 #ifdef DEVICE_POLLING
835 	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
836 		ether_poll_deregister(ifp);
837 #endif
838 
839 	/* These should only be active if attach succeeded. */
840 	if (device_is_attached(dev)) {
841 		VR_LOCK(sc);
842 		sc->vr_flags |= VR_F_DETACHED;
843 		vr_stop(sc);
844 		VR_UNLOCK(sc);
845 		callout_drain(&sc->vr_stat_callout);
846 		taskqueue_drain(taskqueue_fast, &sc->vr_inttask);
847 		ether_ifdetach(ifp);
848 	}
849 	if (sc->vr_miibus)
850 		device_delete_child(dev, sc->vr_miibus);
851 	bus_generic_detach(dev);
852 
853 	if (sc->vr_intrhand)
854 		bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand);
855 	if (sc->vr_irq)
856 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq);
857 	if (sc->vr_res)
858 		bus_release_resource(dev, sc->vr_res_type, sc->vr_res_id,
859 		    sc->vr_res);
860 
861 	if (ifp)
862 		if_free(ifp);
863 
864 	vr_dma_free(sc);
865 
866 	mtx_destroy(&sc->vr_mtx);
867 
868 	return (0);
869 }
870 
871 struct vr_dmamap_arg {
872 	bus_addr_t	vr_busaddr;
873 };
874 
875 static void
876 vr_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
877 {
878 	struct vr_dmamap_arg	*ctx;
879 
880 	if (error != 0)
881 		return;
882 	ctx = arg;
883 	ctx->vr_busaddr = segs[0].ds_addr;
884 }
885 
886 static int
887 vr_dma_alloc(struct vr_softc *sc)
888 {
889 	struct vr_dmamap_arg	ctx;
890 	struct vr_txdesc	*txd;
891 	struct vr_rxdesc	*rxd;
892 	bus_size_t		tx_alignment;
893 	int			error, i;
894 
895 	/* Create parent DMA tag. */
896 	error = bus_dma_tag_create(
897 	    bus_get_dma_tag(sc->vr_dev),	/* parent */
898 	    1, 0,			/* alignment, boundary */
899 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
900 	    BUS_SPACE_MAXADDR,		/* highaddr */
901 	    NULL, NULL,			/* filter, filterarg */
902 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
903 	    0,				/* nsegments */
904 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
905 	    0,				/* flags */
906 	    NULL, NULL,			/* lockfunc, lockarg */
907 	    &sc->vr_cdata.vr_parent_tag);
908 	if (error != 0) {
909 		device_printf(sc->vr_dev, "failed to create parent DMA tag\n");
910 		goto fail;
911 	}
912 	/* Create tag for Tx ring. */
913 	error = bus_dma_tag_create(
914 	    sc->vr_cdata.vr_parent_tag,	/* parent */
915 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
916 	    BUS_SPACE_MAXADDR,		/* lowaddr */
917 	    BUS_SPACE_MAXADDR,		/* highaddr */
918 	    NULL, NULL,			/* filter, filterarg */
919 	    VR_TX_RING_SIZE,		/* maxsize */
920 	    1,				/* nsegments */
921 	    VR_TX_RING_SIZE,		/* maxsegsize */
922 	    0,				/* flags */
923 	    NULL, NULL,			/* lockfunc, lockarg */
924 	    &sc->vr_cdata.vr_tx_ring_tag);
925 	if (error != 0) {
926 		device_printf(sc->vr_dev, "failed to create Tx ring DMA tag\n");
927 		goto fail;
928 	}
929 
930 	/* Create tag for Rx ring. */
931 	error = bus_dma_tag_create(
932 	    sc->vr_cdata.vr_parent_tag,	/* parent */
933 	    VR_RING_ALIGN, 0,		/* alignment, boundary */
934 	    BUS_SPACE_MAXADDR,		/* lowaddr */
935 	    BUS_SPACE_MAXADDR,		/* highaddr */
936 	    NULL, NULL,			/* filter, filterarg */
937 	    VR_RX_RING_SIZE,		/* maxsize */
938 	    1,				/* nsegments */
939 	    VR_RX_RING_SIZE,		/* maxsegsize */
940 	    0,				/* flags */
941 	    NULL, NULL,			/* lockfunc, lockarg */
942 	    &sc->vr_cdata.vr_rx_ring_tag);
943 	if (error != 0) {
944 		device_printf(sc->vr_dev, "failed to create Rx ring DMA tag\n");
945 		goto fail;
946 	}
947 
948 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0)
949 		tx_alignment = sizeof(uint32_t);
950 	else
951 		tx_alignment = 1;
952 	/* Create tag for Tx buffers. */
953 	error = bus_dma_tag_create(
954 	    sc->vr_cdata.vr_parent_tag,	/* parent */
955 	    tx_alignment, 0,		/* alignment, boundary */
956 	    BUS_SPACE_MAXADDR,		/* lowaddr */
957 	    BUS_SPACE_MAXADDR,		/* highaddr */
958 	    NULL, NULL,			/* filter, filterarg */
959 	    MCLBYTES * VR_MAXFRAGS,	/* maxsize */
960 	    VR_MAXFRAGS,		/* nsegments */
961 	    MCLBYTES,			/* maxsegsize */
962 	    0,				/* flags */
963 	    NULL, NULL,			/* lockfunc, lockarg */
964 	    &sc->vr_cdata.vr_tx_tag);
965 	if (error != 0) {
966 		device_printf(sc->vr_dev, "failed to create Tx DMA tag\n");
967 		goto fail;
968 	}
969 
970 	/* Create tag for Rx buffers. */
971 	error = bus_dma_tag_create(
972 	    sc->vr_cdata.vr_parent_tag,	/* parent */
973 	    VR_RX_ALIGN, 0,		/* alignment, boundary */
974 	    BUS_SPACE_MAXADDR,		/* lowaddr */
975 	    BUS_SPACE_MAXADDR,		/* highaddr */
976 	    NULL, NULL,			/* filter, filterarg */
977 	    MCLBYTES,			/* maxsize */
978 	    1,				/* nsegments */
979 	    MCLBYTES,			/* maxsegsize */
980 	    0,				/* flags */
981 	    NULL, NULL,			/* lockfunc, lockarg */
982 	    &sc->vr_cdata.vr_rx_tag);
983 	if (error != 0) {
984 		device_printf(sc->vr_dev, "failed to create Rx DMA tag\n");
985 		goto fail;
986 	}
987 
988 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
989 	error = bus_dmamem_alloc(sc->vr_cdata.vr_tx_ring_tag,
990 	    (void **)&sc->vr_rdata.vr_tx_ring, BUS_DMA_WAITOK |
991 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_tx_ring_map);
992 	if (error != 0) {
993 		device_printf(sc->vr_dev,
994 		    "failed to allocate DMA'able memory for Tx ring\n");
995 		goto fail;
996 	}
997 
998 	ctx.vr_busaddr = 0;
999 	error = bus_dmamap_load(sc->vr_cdata.vr_tx_ring_tag,
1000 	    sc->vr_cdata.vr_tx_ring_map, sc->vr_rdata.vr_tx_ring,
1001 	    VR_TX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1002 	if (error != 0 || ctx.vr_busaddr == 0) {
1003 		device_printf(sc->vr_dev,
1004 		    "failed to load DMA'able memory for Tx ring\n");
1005 		goto fail;
1006 	}
1007 	sc->vr_rdata.vr_tx_ring_paddr = ctx.vr_busaddr;
1008 
1009 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1010 	error = bus_dmamem_alloc(sc->vr_cdata.vr_rx_ring_tag,
1011 	    (void **)&sc->vr_rdata.vr_rx_ring, BUS_DMA_WAITOK |
1012 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->vr_cdata.vr_rx_ring_map);
1013 	if (error != 0) {
1014 		device_printf(sc->vr_dev,
1015 		    "failed to allocate DMA'able memory for Rx ring\n");
1016 		goto fail;
1017 	}
1018 
1019 	ctx.vr_busaddr = 0;
1020 	error = bus_dmamap_load(sc->vr_cdata.vr_rx_ring_tag,
1021 	    sc->vr_cdata.vr_rx_ring_map, sc->vr_rdata.vr_rx_ring,
1022 	    VR_RX_RING_SIZE, vr_dmamap_cb, &ctx, 0);
1023 	if (error != 0 || ctx.vr_busaddr == 0) {
1024 		device_printf(sc->vr_dev,
1025 		    "failed to load DMA'able memory for Rx ring\n");
1026 		goto fail;
1027 	}
1028 	sc->vr_rdata.vr_rx_ring_paddr = ctx.vr_busaddr;
1029 
1030 	/* Create DMA maps for Tx buffers. */
1031 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1032 		txd = &sc->vr_cdata.vr_txdesc[i];
1033 		txd->tx_m = NULL;
1034 		txd->tx_dmamap = NULL;
1035 		error = bus_dmamap_create(sc->vr_cdata.vr_tx_tag, 0,
1036 		    &txd->tx_dmamap);
1037 		if (error != 0) {
1038 			device_printf(sc->vr_dev,
1039 			    "failed to create Tx dmamap\n");
1040 			goto fail;
1041 		}
1042 	}
1043 	/* Create DMA maps for Rx buffers. */
1044 	if ((error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1045 	    &sc->vr_cdata.vr_rx_sparemap)) != 0) {
1046 		device_printf(sc->vr_dev,
1047 		    "failed to create spare Rx dmamap\n");
1048 		goto fail;
1049 	}
1050 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1051 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1052 		rxd->rx_m = NULL;
1053 		rxd->rx_dmamap = NULL;
1054 		error = bus_dmamap_create(sc->vr_cdata.vr_rx_tag, 0,
1055 		    &rxd->rx_dmamap);
1056 		if (error != 0) {
1057 			device_printf(sc->vr_dev,
1058 			    "failed to create Rx dmamap\n");
1059 			goto fail;
1060 		}
1061 	}
1062 
1063 fail:
1064 	return (error);
1065 }
1066 
1067 static void
1068 vr_dma_free(struct vr_softc *sc)
1069 {
1070 	struct vr_txdesc	*txd;
1071 	struct vr_rxdesc	*rxd;
1072 	int			i;
1073 
1074 	/* Tx ring. */
1075 	if (sc->vr_cdata.vr_tx_ring_tag) {
1076 		if (sc->vr_rdata.vr_tx_ring_paddr)
1077 			bus_dmamap_unload(sc->vr_cdata.vr_tx_ring_tag,
1078 			    sc->vr_cdata.vr_tx_ring_map);
1079 		if (sc->vr_rdata.vr_tx_ring)
1080 			bus_dmamem_free(sc->vr_cdata.vr_tx_ring_tag,
1081 			    sc->vr_rdata.vr_tx_ring,
1082 			    sc->vr_cdata.vr_tx_ring_map);
1083 		sc->vr_rdata.vr_tx_ring = NULL;
1084 		sc->vr_rdata.vr_tx_ring_paddr = 0;
1085 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_ring_tag);
1086 		sc->vr_cdata.vr_tx_ring_tag = NULL;
1087 	}
1088 	/* Rx ring. */
1089 	if (sc->vr_cdata.vr_rx_ring_tag) {
1090 		if (sc->vr_rdata.vr_rx_ring_paddr)
1091 			bus_dmamap_unload(sc->vr_cdata.vr_rx_ring_tag,
1092 			    sc->vr_cdata.vr_rx_ring_map);
1093 		if (sc->vr_rdata.vr_rx_ring)
1094 			bus_dmamem_free(sc->vr_cdata.vr_rx_ring_tag,
1095 			    sc->vr_rdata.vr_rx_ring,
1096 			    sc->vr_cdata.vr_rx_ring_map);
1097 		sc->vr_rdata.vr_rx_ring = NULL;
1098 		sc->vr_rdata.vr_rx_ring_paddr = 0;
1099 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_ring_tag);
1100 		sc->vr_cdata.vr_rx_ring_tag = NULL;
1101 	}
1102 	/* Tx buffers. */
1103 	if (sc->vr_cdata.vr_tx_tag) {
1104 		for (i = 0; i < VR_TX_RING_CNT; i++) {
1105 			txd = &sc->vr_cdata.vr_txdesc[i];
1106 			if (txd->tx_dmamap) {
1107 				bus_dmamap_destroy(sc->vr_cdata.vr_tx_tag,
1108 				    txd->tx_dmamap);
1109 				txd->tx_dmamap = NULL;
1110 			}
1111 		}
1112 		bus_dma_tag_destroy(sc->vr_cdata.vr_tx_tag);
1113 		sc->vr_cdata.vr_tx_tag = NULL;
1114 	}
1115 	/* Rx buffers. */
1116 	if (sc->vr_cdata.vr_rx_tag) {
1117 		for (i = 0; i < VR_RX_RING_CNT; i++) {
1118 			rxd = &sc->vr_cdata.vr_rxdesc[i];
1119 			if (rxd->rx_dmamap) {
1120 				bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1121 				    rxd->rx_dmamap);
1122 				rxd->rx_dmamap = NULL;
1123 			}
1124 		}
1125 		if (sc->vr_cdata.vr_rx_sparemap) {
1126 			bus_dmamap_destroy(sc->vr_cdata.vr_rx_tag,
1127 			    sc->vr_cdata.vr_rx_sparemap);
1128 			sc->vr_cdata.vr_rx_sparemap = 0;
1129 		}
1130 		bus_dma_tag_destroy(sc->vr_cdata.vr_rx_tag);
1131 		sc->vr_cdata.vr_rx_tag = NULL;
1132 	}
1133 
1134 	if (sc->vr_cdata.vr_parent_tag) {
1135 		bus_dma_tag_destroy(sc->vr_cdata.vr_parent_tag);
1136 		sc->vr_cdata.vr_parent_tag = NULL;
1137 	}
1138 }
1139 
1140 /*
1141  * Initialize the transmit descriptors.
1142  */
1143 static int
1144 vr_tx_ring_init(struct vr_softc *sc)
1145 {
1146 	struct vr_ring_data	*rd;
1147 	struct vr_txdesc	*txd;
1148 	bus_addr_t		addr;
1149 	int			i;
1150 
1151 	sc->vr_cdata.vr_tx_prod = 0;
1152 	sc->vr_cdata.vr_tx_cons = 0;
1153 	sc->vr_cdata.vr_tx_cnt = 0;
1154 	sc->vr_cdata.vr_tx_pkts = 0;
1155 
1156 	rd = &sc->vr_rdata;
1157 	bzero(rd->vr_tx_ring, VR_TX_RING_SIZE);
1158 	for (i = 0; i < VR_TX_RING_CNT; i++) {
1159 		if (i == VR_TX_RING_CNT - 1)
1160 			addr = VR_TX_RING_ADDR(sc, 0);
1161 		else
1162 			addr = VR_TX_RING_ADDR(sc, i + 1);
1163 		rd->vr_tx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1164 		txd = &sc->vr_cdata.vr_txdesc[i];
1165 		txd->tx_m = NULL;
1166 	}
1167 
1168 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1169 	    sc->vr_cdata.vr_tx_ring_map,
1170 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1171 
1172 	return (0);
1173 }
1174 
1175 /*
1176  * Initialize the RX descriptors and allocate mbufs for them. Note that
1177  * we arrange the descriptors in a closed ring, so that the last descriptor
1178  * points back to the first.
1179  */
1180 static int
1181 vr_rx_ring_init(struct vr_softc *sc)
1182 {
1183 	struct vr_ring_data	*rd;
1184 	struct vr_rxdesc	*rxd;
1185 	bus_addr_t		addr;
1186 	int			i;
1187 
1188 	sc->vr_cdata.vr_rx_cons = 0;
1189 
1190 	rd = &sc->vr_rdata;
1191 	bzero(rd->vr_rx_ring, VR_RX_RING_SIZE);
1192 	for (i = 0; i < VR_RX_RING_CNT; i++) {
1193 		rxd = &sc->vr_cdata.vr_rxdesc[i];
1194 		rxd->rx_m = NULL;
1195 		rxd->desc = &rd->vr_rx_ring[i];
1196 		if (i == VR_RX_RING_CNT - 1)
1197 			addr = VR_RX_RING_ADDR(sc, 0);
1198 		else
1199 			addr = VR_RX_RING_ADDR(sc, i + 1);
1200 		rd->vr_rx_ring[i].vr_nextphys = htole32(VR_ADDR_LO(addr));
1201 		if (vr_newbuf(sc, i) != 0)
1202 			return (ENOBUFS);
1203 	}
1204 
1205 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1206 	    sc->vr_cdata.vr_rx_ring_map,
1207 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1208 
1209 	return (0);
1210 }
1211 
1212 static __inline void
1213 vr_discard_rxbuf(struct vr_rxdesc *rxd)
1214 {
1215 	struct vr_desc	*desc;
1216 
1217 	desc = rxd->desc;
1218 	desc->vr_ctl = htole32(VR_RXCTL | (MCLBYTES - sizeof(uint64_t)));
1219 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1220 }
1221 
1222 /*
1223  * Initialize an RX descriptor and attach an MBUF cluster.
1224  * Note: the length fields are only 11 bits wide, which means the
1225  * largest size we can specify is 2047. This is important because
1226  * MCLBYTES is 2048, so we have to subtract one otherwise we'll
1227  * overflow the field and make a mess.
1228  */
1229 static int
1230 vr_newbuf(struct vr_softc *sc, int idx)
1231 {
1232 	struct vr_desc		*desc;
1233 	struct vr_rxdesc	*rxd;
1234 	struct mbuf		*m;
1235 	bus_dma_segment_t	segs[1];
1236 	bus_dmamap_t		map;
1237 	int			nsegs;
1238 
1239 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1240 	if (m == NULL)
1241 		return (ENOBUFS);
1242 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1243 	m_adj(m, sizeof(uint64_t));
1244 
1245 	if (bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_rx_tag,
1246 	    sc->vr_cdata.vr_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1247 		m_freem(m);
1248 		return (ENOBUFS);
1249 	}
1250 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1251 
1252 	rxd = &sc->vr_cdata.vr_rxdesc[idx];
1253 	if (rxd->rx_m != NULL) {
1254 		bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1255 		    BUS_DMASYNC_POSTREAD);
1256 		bus_dmamap_unload(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap);
1257 	}
1258 	map = rxd->rx_dmamap;
1259 	rxd->rx_dmamap = sc->vr_cdata.vr_rx_sparemap;
1260 	sc->vr_cdata.vr_rx_sparemap = map;
1261 	bus_dmamap_sync(sc->vr_cdata.vr_rx_tag, rxd->rx_dmamap,
1262 	    BUS_DMASYNC_PREREAD);
1263 	rxd->rx_m = m;
1264 	desc = rxd->desc;
1265 	desc->vr_data = htole32(VR_ADDR_LO(segs[0].ds_addr));
1266 	desc->vr_ctl = htole32(VR_RXCTL | segs[0].ds_len);
1267 	desc->vr_status = htole32(VR_RXSTAT_OWN);
1268 
1269 	return (0);
1270 }
1271 
1272 #ifndef __NO_STRICT_ALIGNMENT
1273 static __inline void
1274 vr_fixup_rx(struct mbuf *m)
1275 {
1276         uint16_t		*src, *dst;
1277         int			i;
1278 
1279 	src = mtod(m, uint16_t *);
1280 	dst = src - 1;
1281 
1282 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1283 		*dst++ = *src++;
1284 
1285 	m->m_data -= ETHER_ALIGN;
1286 }
1287 #endif
1288 
1289 /*
1290  * A frame has been uploaded: pass the resulting mbuf chain up to
1291  * the higher level protocols.
1292  */
1293 static int
1294 vr_rxeof(struct vr_softc *sc)
1295 {
1296 	struct vr_rxdesc	*rxd;
1297 	struct mbuf		*m;
1298 	struct ifnet		*ifp;
1299 	struct vr_desc		*cur_rx;
1300 	int			cons, prog, total_len, rx_npkts;
1301 	uint32_t		rxstat, rxctl;
1302 
1303 	VR_LOCK_ASSERT(sc);
1304 	ifp = sc->vr_ifp;
1305 	cons = sc->vr_cdata.vr_rx_cons;
1306 	rx_npkts = 0;
1307 
1308 	bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1309 	    sc->vr_cdata.vr_rx_ring_map,
1310 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1311 
1312 	for (prog = 0; prog < VR_RX_RING_CNT; VR_INC(cons, VR_RX_RING_CNT)) {
1313 #ifdef DEVICE_POLLING
1314 		if (ifp->if_capenable & IFCAP_POLLING) {
1315 			if (sc->rxcycles <= 0)
1316 				break;
1317 			sc->rxcycles--;
1318 		}
1319 #endif
1320 		cur_rx = &sc->vr_rdata.vr_rx_ring[cons];
1321 		rxstat = le32toh(cur_rx->vr_status);
1322 		rxctl = le32toh(cur_rx->vr_ctl);
1323 		if ((rxstat & VR_RXSTAT_OWN) == VR_RXSTAT_OWN)
1324 			break;
1325 
1326 		prog++;
1327 		rxd = &sc->vr_cdata.vr_rxdesc[cons];
1328 		m = rxd->rx_m;
1329 
1330 		/*
1331 		 * If an error occurs, update stats, clear the
1332 		 * status word and leave the mbuf cluster in place:
1333 		 * it should simply get re-used next time this descriptor
1334 		 * comes up in the ring.
1335 		 * We don't support SG in Rx path yet, so discard
1336 		 * partial frame.
1337 		 */
1338 		if ((rxstat & VR_RXSTAT_RX_OK) == 0 ||
1339 		    (rxstat & (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) !=
1340 		    (VR_RXSTAT_FIRSTFRAG | VR_RXSTAT_LASTFRAG)) {
1341 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1342 			sc->vr_stat.rx_errors++;
1343 			if (rxstat & VR_RXSTAT_CRCERR)
1344 				sc->vr_stat.rx_crc_errors++;
1345 			if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
1346 				sc->vr_stat.rx_alignment++;
1347 			if (rxstat & VR_RXSTAT_FIFOOFLOW)
1348 				sc->vr_stat.rx_fifo_overflows++;
1349 			if (rxstat & VR_RXSTAT_GIANT)
1350 				sc->vr_stat.rx_giants++;
1351 			if (rxstat & VR_RXSTAT_RUNT)
1352 				sc->vr_stat.rx_runts++;
1353 			if (rxstat & VR_RXSTAT_BUFFERR)
1354 				sc->vr_stat.rx_no_buffers++;
1355 #ifdef	VR_SHOW_ERRORS
1356 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1357 			    __func__, rxstat & 0xff, VR_RXSTAT_ERR_BITS);
1358 #endif
1359 			vr_discard_rxbuf(rxd);
1360 			continue;
1361 		}
1362 
1363 		if (vr_newbuf(sc, cons) != 0) {
1364 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1365 			sc->vr_stat.rx_errors++;
1366 			sc->vr_stat.rx_no_mbufs++;
1367 			vr_discard_rxbuf(rxd);
1368 			continue;
1369 		}
1370 
1371 		/*
1372 		 * XXX The VIA Rhine chip includes the CRC with every
1373 		 * received frame, and there's no way to turn this
1374 		 * behavior off (at least, I can't find anything in
1375 		 * the manual that explains how to do it) so we have
1376 		 * to trim off the CRC manually.
1377 		 */
1378 		total_len = VR_RXBYTES(rxstat);
1379 		total_len -= ETHER_CRC_LEN;
1380 		m->m_pkthdr.len = m->m_len = total_len;
1381 #ifndef	__NO_STRICT_ALIGNMENT
1382 		/*
1383 		 * RX buffers must be 32-bit aligned.
1384 		 * Ignore the alignment problems on the non-strict alignment
1385 		 * platform. The performance hit incurred due to unaligned
1386 		 * accesses is much smaller than the hit produced by forcing
1387 		 * buffer copies all the time.
1388 		 */
1389 		vr_fixup_rx(m);
1390 #endif
1391 		m->m_pkthdr.rcvif = ifp;
1392 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1393 		sc->vr_stat.rx_ok++;
1394 		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1395 		    (rxstat & VR_RXSTAT_FRAG) == 0 &&
1396 		    (rxctl & VR_RXCTL_IP) != 0) {
1397 			/* Checksum is valid for non-fragmented IP packets. */
1398 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1399 			if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) {
1400 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1401 				if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP)) {
1402 					m->m_pkthdr.csum_flags |=
1403 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1404 					if ((rxctl & VR_RXCTL_TCPUDPOK) != 0)
1405 						m->m_pkthdr.csum_data = 0xffff;
1406 				}
1407 			}
1408 		}
1409 		VR_UNLOCK(sc);
1410 		(*ifp->if_input)(ifp, m);
1411 		VR_LOCK(sc);
1412 		rx_npkts++;
1413 	}
1414 
1415 	if (prog > 0) {
1416 		/*
1417 		 * Let controller know how many number of RX buffers
1418 		 * are posted but avoid expensive register access if
1419 		 * TX pause capability was not negotiated with link
1420 		 * partner.
1421 		 */
1422 		if ((sc->vr_flags & VR_F_TXPAUSE) != 0) {
1423 			if (prog >= VR_RX_RING_CNT)
1424 				prog = VR_RX_RING_CNT - 1;
1425 			CSR_WRITE_1(sc, VR_FLOWCR0, prog);
1426 		}
1427 		sc->vr_cdata.vr_rx_cons = cons;
1428 		bus_dmamap_sync(sc->vr_cdata.vr_rx_ring_tag,
1429 		    sc->vr_cdata.vr_rx_ring_map,
1430 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1431 	}
1432 	return (rx_npkts);
1433 }
1434 
1435 /*
1436  * A frame was downloaded to the chip. It's safe for us to clean up
1437  * the list buffers.
1438  */
1439 static void
1440 vr_txeof(struct vr_softc *sc)
1441 {
1442 	struct vr_txdesc	*txd;
1443 	struct vr_desc		*cur_tx;
1444 	struct ifnet		*ifp;
1445 	uint32_t		txctl, txstat;
1446 	int			cons, prod;
1447 
1448 	VR_LOCK_ASSERT(sc);
1449 
1450 	cons = sc->vr_cdata.vr_tx_cons;
1451 	prod = sc->vr_cdata.vr_tx_prod;
1452 	if (cons == prod)
1453 		return;
1454 
1455 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1456 	    sc->vr_cdata.vr_tx_ring_map,
1457 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1458 
1459 	ifp = sc->vr_ifp;
1460 	/*
1461 	 * Go through our tx list and free mbufs for those
1462 	 * frames that have been transmitted.
1463 	 */
1464 	for (; cons != prod; VR_INC(cons, VR_TX_RING_CNT)) {
1465 		cur_tx = &sc->vr_rdata.vr_tx_ring[cons];
1466 		txctl = le32toh(cur_tx->vr_ctl);
1467 		txstat = le32toh(cur_tx->vr_status);
1468 		if ((txstat & VR_TXSTAT_OWN) == VR_TXSTAT_OWN)
1469 			break;
1470 
1471 		sc->vr_cdata.vr_tx_cnt--;
1472 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1473 		/* Only the first descriptor in the chain is valid. */
1474 		if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
1475 			continue;
1476 
1477 		txd = &sc->vr_cdata.vr_txdesc[cons];
1478 		KASSERT(txd->tx_m != NULL, ("%s: accessing NULL mbuf!\n",
1479 		    __func__));
1480 
1481 		if ((txstat & VR_TXSTAT_ERRSUM) != 0) {
1482 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1483 			sc->vr_stat.tx_errors++;
1484 			if ((txstat & VR_TXSTAT_ABRT) != 0) {
1485 				/* Give up and restart Tx. */
1486 				sc->vr_stat.tx_abort++;
1487 				bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
1488 				    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1489 				bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
1490 				    txd->tx_dmamap);
1491 				m_freem(txd->tx_m);
1492 				txd->tx_m = NULL;
1493 				VR_INC(cons, VR_TX_RING_CNT);
1494 				sc->vr_cdata.vr_tx_cons = cons;
1495 				if (vr_tx_stop(sc) != 0) {
1496 					device_printf(sc->vr_dev,
1497 					    "%s: Tx shutdown error -- "
1498 					    "resetting\n", __func__);
1499 					sc->vr_flags |= VR_F_RESTART;
1500 					return;
1501 				}
1502 				vr_tx_start(sc);
1503 				break;
1504 			}
1505 			if ((sc->vr_revid < REV_ID_VT3071_A &&
1506 			    (txstat & VR_TXSTAT_UNDERRUN)) ||
1507 			    (txstat & (VR_TXSTAT_UDF | VR_TXSTAT_TBUFF))) {
1508 				sc->vr_stat.tx_underrun++;
1509 				/* Retry and restart Tx. */
1510 				sc->vr_cdata.vr_tx_cnt++;
1511 				sc->vr_cdata.vr_tx_cons = cons;
1512 				cur_tx->vr_status = htole32(VR_TXSTAT_OWN);
1513 				bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1514 				    sc->vr_cdata.vr_tx_ring_map,
1515 				    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1516 				vr_tx_underrun(sc);
1517 				return;
1518 			}
1519 			if ((txstat & VR_TXSTAT_DEFER) != 0) {
1520 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1521 				sc->vr_stat.tx_collisions++;
1522 			}
1523 			if ((txstat & VR_TXSTAT_LATECOLL) != 0) {
1524 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1525 				sc->vr_stat.tx_late_collisions++;
1526 			}
1527 		} else {
1528 			sc->vr_stat.tx_ok++;
1529 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1530 		}
1531 
1532 		bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1533 		    BUS_DMASYNC_POSTWRITE);
1534 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1535 		if (sc->vr_revid < REV_ID_VT3071_A) {
1536 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1537 			    (txstat & VR_TXSTAT_COLLCNT) >> 3);
1538 			sc->vr_stat.tx_collisions +=
1539 			    (txstat & VR_TXSTAT_COLLCNT) >> 3;
1540 		} else {
1541 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0x0f));
1542 			sc->vr_stat.tx_collisions += (txstat & 0x0f);
1543 		}
1544 		m_freem(txd->tx_m);
1545 		txd->tx_m = NULL;
1546 	}
1547 
1548 	sc->vr_cdata.vr_tx_cons = cons;
1549 	if (sc->vr_cdata.vr_tx_cnt == 0)
1550 		sc->vr_watchdog_timer = 0;
1551 }
1552 
1553 static void
1554 vr_tick(void *xsc)
1555 {
1556 	struct vr_softc		*sc;
1557 	struct mii_data		*mii;
1558 
1559 	sc = (struct vr_softc *)xsc;
1560 
1561 	VR_LOCK_ASSERT(sc);
1562 
1563 	if ((sc->vr_flags & VR_F_RESTART) != 0) {
1564 		device_printf(sc->vr_dev, "restarting\n");
1565 		sc->vr_stat.num_restart++;
1566 		sc->vr_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1567 		vr_init_locked(sc);
1568 		sc->vr_flags &= ~VR_F_RESTART;
1569 	}
1570 
1571 	mii = device_get_softc(sc->vr_miibus);
1572 	mii_tick(mii);
1573 	if ((sc->vr_flags & VR_F_LINK) == 0)
1574 		vr_miibus_statchg(sc->vr_dev);
1575 	vr_watchdog(sc);
1576 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
1577 }
1578 
1579 #ifdef DEVICE_POLLING
1580 static poll_handler_t vr_poll;
1581 static poll_handler_t vr_poll_locked;
1582 
1583 static int
1584 vr_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1585 {
1586 	struct vr_softc *sc;
1587 	int rx_npkts;
1588 
1589 	sc = ifp->if_softc;
1590 	rx_npkts = 0;
1591 
1592 	VR_LOCK(sc);
1593 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1594 		rx_npkts = vr_poll_locked(ifp, cmd, count);
1595 	VR_UNLOCK(sc);
1596 	return (rx_npkts);
1597 }
1598 
1599 static int
1600 vr_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1601 {
1602 	struct vr_softc *sc;
1603 	int rx_npkts;
1604 
1605 	sc = ifp->if_softc;
1606 
1607 	VR_LOCK_ASSERT(sc);
1608 
1609 	sc->rxcycles = count;
1610 	rx_npkts = vr_rxeof(sc);
1611 	vr_txeof(sc);
1612 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1613 		vr_start_locked(ifp);
1614 
1615 	if (cmd == POLL_AND_CHECK_STATUS) {
1616 		uint16_t status;
1617 
1618 		/* Also check status register. */
1619 		status = CSR_READ_2(sc, VR_ISR);
1620 		if (status)
1621 			CSR_WRITE_2(sc, VR_ISR, status);
1622 
1623 		if ((status & VR_INTRS) == 0)
1624 			return (rx_npkts);
1625 
1626 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1627 		    VR_ISR_STATSOFLOW)) != 0) {
1628 			if (vr_error(sc, status) != 0)
1629 				return (rx_npkts);
1630 		}
1631 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1632 #ifdef	VR_SHOW_ERRORS
1633 			device_printf(sc->vr_dev, "%s: receive error : 0x%b\n",
1634 			    __func__, status, VR_ISR_ERR_BITS);
1635 #endif
1636 			vr_rx_start(sc);
1637 		}
1638 	}
1639 	return (rx_npkts);
1640 }
1641 #endif /* DEVICE_POLLING */
1642 
1643 /* Back off the transmit threshold. */
1644 static void
1645 vr_tx_underrun(struct vr_softc *sc)
1646 {
1647 	int	thresh;
1648 
1649 	device_printf(sc->vr_dev, "Tx underrun -- ");
1650 	if (sc->vr_txthresh < VR_TXTHRESH_MAX) {
1651 		thresh = sc->vr_txthresh;
1652 		sc->vr_txthresh++;
1653 		if (sc->vr_txthresh >= VR_TXTHRESH_MAX) {
1654 			sc->vr_txthresh = VR_TXTHRESH_MAX;
1655 			printf("using store and forward mode\n");
1656 		} else
1657 			printf("increasing Tx threshold(%d -> %d)\n",
1658 			    vr_tx_threshold_tables[thresh].value,
1659 			    vr_tx_threshold_tables[thresh + 1].value);
1660 	} else
1661 		printf("\n");
1662 	sc->vr_stat.tx_underrun++;
1663 	if (vr_tx_stop(sc) != 0) {
1664 		device_printf(sc->vr_dev, "%s: Tx shutdown error -- "
1665 		    "resetting\n", __func__);
1666 		sc->vr_flags |= VR_F_RESTART;
1667 		return;
1668 	}
1669 	vr_tx_start(sc);
1670 }
1671 
1672 static int
1673 vr_intr(void *arg)
1674 {
1675 	struct vr_softc		*sc;
1676 	uint16_t		status;
1677 
1678 	sc = (struct vr_softc *)arg;
1679 
1680 	status = CSR_READ_2(sc, VR_ISR);
1681 	if (status == 0 || status == 0xffff || (status & VR_INTRS) == 0)
1682 		return (FILTER_STRAY);
1683 
1684 	/* Disable interrupts. */
1685 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
1686 
1687 	taskqueue_enqueue(taskqueue_fast, &sc->vr_inttask);
1688 
1689 	return (FILTER_HANDLED);
1690 }
1691 
1692 static void
1693 vr_int_task(void *arg, int npending)
1694 {
1695 	struct vr_softc		*sc;
1696 	struct ifnet		*ifp;
1697 	uint16_t		status;
1698 
1699 	sc = (struct vr_softc *)arg;
1700 
1701 	VR_LOCK(sc);
1702 
1703 	if ((sc->vr_flags & VR_F_SUSPENDED) != 0)
1704 		goto done_locked;
1705 
1706 	status = CSR_READ_2(sc, VR_ISR);
1707 	ifp = sc->vr_ifp;
1708 #ifdef DEVICE_POLLING
1709 	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1710 		goto done_locked;
1711 #endif
1712 
1713 	/* Suppress unwanted interrupts. */
1714 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1715 	    (sc->vr_flags & VR_F_RESTART) != 0) {
1716 		CSR_WRITE_2(sc, VR_IMR, 0);
1717 		CSR_WRITE_2(sc, VR_ISR, status);
1718 		goto done_locked;
1719 	}
1720 
1721 	for (; (status & VR_INTRS) != 0;) {
1722 		CSR_WRITE_2(sc, VR_ISR, status);
1723 		if ((status & (VR_ISR_BUSERR | VR_ISR_LINKSTAT2 |
1724 		    VR_ISR_STATSOFLOW)) != 0) {
1725 			if (vr_error(sc, status) != 0) {
1726 				VR_UNLOCK(sc);
1727 				return;
1728 			}
1729 		}
1730 		vr_rxeof(sc);
1731 		if ((status & (VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW)) != 0) {
1732 #ifdef	VR_SHOW_ERRORS
1733 			device_printf(sc->vr_dev, "%s: receive error = 0x%b\n",
1734 			    __func__, status, VR_ISR_ERR_BITS);
1735 #endif
1736 			/* Restart Rx if RxDMA SM was stopped. */
1737 			vr_rx_start(sc);
1738 		}
1739 		vr_txeof(sc);
1740 
1741 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1742 			vr_start_locked(ifp);
1743 
1744 		status = CSR_READ_2(sc, VR_ISR);
1745 	}
1746 
1747 	/* Re-enable interrupts. */
1748 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
1749 
1750 done_locked:
1751 	VR_UNLOCK(sc);
1752 }
1753 
1754 static int
1755 vr_error(struct vr_softc *sc, uint16_t status)
1756 {
1757 	uint16_t pcis;
1758 
1759 	status &= VR_ISR_BUSERR | VR_ISR_LINKSTAT2 | VR_ISR_STATSOFLOW;
1760 	if ((status & VR_ISR_BUSERR) != 0) {
1761 		status &= ~VR_ISR_BUSERR;
1762 		sc->vr_stat.bus_errors++;
1763 		/* Disable further interrupts. */
1764 		CSR_WRITE_2(sc, VR_IMR, 0);
1765 		pcis = pci_read_config(sc->vr_dev, PCIR_STATUS, 2);
1766 		device_printf(sc->vr_dev, "PCI bus error(0x%04x) -- "
1767 		    "resetting\n", pcis);
1768 		pci_write_config(sc->vr_dev, PCIR_STATUS, pcis, 2);
1769 		sc->vr_flags |= VR_F_RESTART;
1770 		return (EAGAIN);
1771 	}
1772 	if ((status & VR_ISR_LINKSTAT2) != 0) {
1773 		/* Link state change, duplex changes etc. */
1774 		status &= ~VR_ISR_LINKSTAT2;
1775 	}
1776 	if ((status & VR_ISR_STATSOFLOW) != 0) {
1777 		status &= ~VR_ISR_STATSOFLOW;
1778 		if (sc->vr_revid >= REV_ID_VT6105M_A0) {
1779 			/* Update MIB counters. */
1780 		}
1781 	}
1782 
1783 	if (status != 0)
1784 		device_printf(sc->vr_dev,
1785 		    "unhandled interrupt, status = 0x%04x\n", status);
1786 	return (0);
1787 }
1788 
1789 /*
1790  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1791  * pointers to the fragment pointers.
1792  */
1793 static int
1794 vr_encap(struct vr_softc *sc, struct mbuf **m_head)
1795 {
1796 	struct vr_txdesc	*txd;
1797 	struct vr_desc		*desc;
1798 	struct mbuf		*m;
1799 	bus_dma_segment_t	txsegs[VR_MAXFRAGS];
1800 	uint32_t		csum_flags, txctl;
1801 	int			error, i, nsegs, prod, si;
1802 	int			padlen;
1803 
1804 	VR_LOCK_ASSERT(sc);
1805 
1806 	M_ASSERTPKTHDR((*m_head));
1807 
1808 	/*
1809 	 * Some VIA Rhine wants packet buffers to be longword
1810 	 * aligned, but very often our mbufs aren't. Rather than
1811 	 * waste time trying to decide when to copy and when not
1812 	 * to copy, just do it all the time.
1813 	 */
1814 	if ((sc->vr_quirks & VR_Q_NEEDALIGN) != 0) {
1815 		m = m_defrag(*m_head, M_NOWAIT);
1816 		if (m == NULL) {
1817 			m_freem(*m_head);
1818 			*m_head = NULL;
1819 			return (ENOBUFS);
1820 		}
1821 		*m_head = m;
1822 	}
1823 
1824 	/*
1825 	 * The Rhine chip doesn't auto-pad, so we have to make
1826 	 * sure to pad short frames out to the minimum frame length
1827 	 * ourselves.
1828 	 */
1829 	if ((*m_head)->m_pkthdr.len < VR_MIN_FRAMELEN) {
1830 		m = *m_head;
1831 		padlen = VR_MIN_FRAMELEN - m->m_pkthdr.len;
1832 		if (M_WRITABLE(m) == 0) {
1833 			/* Get a writable copy. */
1834 			m = m_dup(*m_head, M_NOWAIT);
1835 			m_freem(*m_head);
1836 			if (m == NULL) {
1837 				*m_head = NULL;
1838 				return (ENOBUFS);
1839 			}
1840 			*m_head = m;
1841 		}
1842 		if (m->m_next != NULL || M_TRAILINGSPACE(m) < padlen) {
1843 			m = m_defrag(m, M_NOWAIT);
1844 			if (m == NULL) {
1845 				m_freem(*m_head);
1846 				*m_head = NULL;
1847 				return (ENOBUFS);
1848 			}
1849 		}
1850 		/*
1851 		 * Manually pad short frames, and zero the pad space
1852 		 * to avoid leaking data.
1853 		 */
1854 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1855 		m->m_pkthdr.len += padlen;
1856 		m->m_len = m->m_pkthdr.len;
1857 		*m_head = m;
1858 	}
1859 
1860 	prod = sc->vr_cdata.vr_tx_prod;
1861 	txd = &sc->vr_cdata.vr_txdesc[prod];
1862 	error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1863 	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1864 	if (error == EFBIG) {
1865 		m = m_collapse(*m_head, M_NOWAIT, VR_MAXFRAGS);
1866 		if (m == NULL) {
1867 			m_freem(*m_head);
1868 			*m_head = NULL;
1869 			return (ENOBUFS);
1870 		}
1871 		*m_head = m;
1872 		error = bus_dmamap_load_mbuf_sg(sc->vr_cdata.vr_tx_tag,
1873 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1874 		if (error != 0) {
1875 			m_freem(*m_head);
1876 			*m_head = NULL;
1877 			return (error);
1878 		}
1879 	} else if (error != 0)
1880 		return (error);
1881 	if (nsegs == 0) {
1882 		m_freem(*m_head);
1883 		*m_head = NULL;
1884 		return (EIO);
1885 	}
1886 
1887 	/* Check number of available descriptors. */
1888 	if (sc->vr_cdata.vr_tx_cnt + nsegs >= (VR_TX_RING_CNT - 1)) {
1889 		bus_dmamap_unload(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap);
1890 		return (ENOBUFS);
1891 	}
1892 
1893 	txd->tx_m = *m_head;
1894 	bus_dmamap_sync(sc->vr_cdata.vr_tx_tag, txd->tx_dmamap,
1895 	    BUS_DMASYNC_PREWRITE);
1896 
1897 	/* Set checksum offload. */
1898 	csum_flags = 0;
1899 	if (((*m_head)->m_pkthdr.csum_flags & VR_CSUM_FEATURES) != 0) {
1900 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1901 			csum_flags |= VR_TXCTL_IPCSUM;
1902 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1903 			csum_flags |= VR_TXCTL_TCPCSUM;
1904 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1905 			csum_flags |= VR_TXCTL_UDPCSUM;
1906 	}
1907 
1908 	/*
1909 	 * Quite contrary to datasheet for VIA Rhine, VR_TXCTL_TLINK bit
1910 	 * is required for all descriptors regardless of single or
1911 	 * multiple buffers. Also VR_TXSTAT_OWN bit is valid only for
1912 	 * the first descriptor for a multi-fragmented frames. Without
1913 	 * that VIA Rhine chip generates Tx underrun interrupts and can't
1914 	 * send any frames.
1915 	 */
1916 	si = prod;
1917 	for (i = 0; i < nsegs; i++) {
1918 		desc = &sc->vr_rdata.vr_tx_ring[prod];
1919 		desc->vr_status = 0;
1920 		txctl = txsegs[i].ds_len | VR_TXCTL_TLINK | csum_flags;
1921 		if (i == 0)
1922 			txctl |= VR_TXCTL_FIRSTFRAG;
1923 		desc->vr_ctl = htole32(txctl);
1924 		desc->vr_data = htole32(VR_ADDR_LO(txsegs[i].ds_addr));
1925 		sc->vr_cdata.vr_tx_cnt++;
1926 		VR_INC(prod, VR_TX_RING_CNT);
1927 	}
1928 	/* Update producer index. */
1929 	sc->vr_cdata.vr_tx_prod = prod;
1930 
1931 	prod = (prod + VR_TX_RING_CNT - 1) % VR_TX_RING_CNT;
1932 	desc = &sc->vr_rdata.vr_tx_ring[prod];
1933 
1934 	/*
1935 	 * Set EOP on the last descriptor and reuqest Tx completion
1936 	 * interrupt for every VR_TX_INTR_THRESH-th frames.
1937 	 */
1938 	VR_INC(sc->vr_cdata.vr_tx_pkts, VR_TX_INTR_THRESH);
1939 	if (sc->vr_cdata.vr_tx_pkts == 0)
1940 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG | VR_TXCTL_FINT);
1941 	else
1942 		desc->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
1943 
1944 	/* Lastly turn the first descriptor ownership to hardware. */
1945 	desc = &sc->vr_rdata.vr_tx_ring[si];
1946 	desc->vr_status |= htole32(VR_TXSTAT_OWN);
1947 
1948 	/* Sync descriptors. */
1949 	bus_dmamap_sync(sc->vr_cdata.vr_tx_ring_tag,
1950 	    sc->vr_cdata.vr_tx_ring_map,
1951 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1952 
1953 	return (0);
1954 }
1955 
1956 static void
1957 vr_start(struct ifnet *ifp)
1958 {
1959 	struct vr_softc		*sc;
1960 
1961 	sc = ifp->if_softc;
1962 	VR_LOCK(sc);
1963 	vr_start_locked(ifp);
1964 	VR_UNLOCK(sc);
1965 }
1966 
1967 static void
1968 vr_start_locked(struct ifnet *ifp)
1969 {
1970 	struct vr_softc		*sc;
1971 	struct mbuf		*m_head;
1972 	int			enq;
1973 
1974 	sc = ifp->if_softc;
1975 
1976 	VR_LOCK_ASSERT(sc);
1977 
1978 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1979 	    IFF_DRV_RUNNING || (sc->vr_flags & VR_F_LINK) == 0)
1980 		return;
1981 
1982 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1983 	    sc->vr_cdata.vr_tx_cnt < VR_TX_RING_CNT - 2; ) {
1984 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1985 		if (m_head == NULL)
1986 			break;
1987 		/*
1988 		 * Pack the data into the transmit ring. If we
1989 		 * don't have room, set the OACTIVE flag and wait
1990 		 * for the NIC to drain the ring.
1991 		 */
1992 		if (vr_encap(sc, &m_head)) {
1993 			if (m_head == NULL)
1994 				break;
1995 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1996 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1997 			break;
1998 		}
1999 
2000 		enq++;
2001 		/*
2002 		 * If there's a BPF listener, bounce a copy of this frame
2003 		 * to him.
2004 		 */
2005 		ETHER_BPF_MTAP(ifp, m_head);
2006 	}
2007 
2008 	if (enq > 0) {
2009 		/* Tell the chip to start transmitting. */
2010 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2011 		/* Set a timeout in case the chip goes out to lunch. */
2012 		sc->vr_watchdog_timer = 5;
2013 	}
2014 }
2015 
2016 static void
2017 vr_init(void *xsc)
2018 {
2019 	struct vr_softc		*sc;
2020 
2021 	sc = (struct vr_softc *)xsc;
2022 	VR_LOCK(sc);
2023 	vr_init_locked(sc);
2024 	VR_UNLOCK(sc);
2025 }
2026 
2027 static void
2028 vr_init_locked(struct vr_softc *sc)
2029 {
2030 	struct ifnet		*ifp;
2031 	struct mii_data		*mii;
2032 	bus_addr_t		addr;
2033 	int			i;
2034 
2035 	VR_LOCK_ASSERT(sc);
2036 
2037 	ifp = sc->vr_ifp;
2038 	mii = device_get_softc(sc->vr_miibus);
2039 
2040 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2041 		return;
2042 
2043 	/* Cancel pending I/O and free all RX/TX buffers. */
2044 	vr_stop(sc);
2045 	vr_reset(sc);
2046 
2047 	/* Set our station address. */
2048 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2049 		CSR_WRITE_1(sc, VR_PAR0 + i, IF_LLADDR(sc->vr_ifp)[i]);
2050 
2051 	/* Set DMA size. */
2052 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
2053 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
2054 
2055 	/*
2056 	 * BCR0 and BCR1 can override the RXCFG and TXCFG registers,
2057 	 * so we must set both.
2058 	 */
2059 	VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
2060 	VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
2061 
2062 	VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
2063 	VR_SETBIT(sc, VR_BCR1, vr_tx_threshold_tables[sc->vr_txthresh].bcr_cfg);
2064 
2065 	VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
2066 	VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
2067 
2068 	VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
2069 	VR_SETBIT(sc, VR_TXCFG, vr_tx_threshold_tables[sc->vr_txthresh].tx_cfg);
2070 
2071 	/* Init circular RX list. */
2072 	if (vr_rx_ring_init(sc) != 0) {
2073 		device_printf(sc->vr_dev,
2074 		    "initialization failed: no memory for rx buffers\n");
2075 		vr_stop(sc);
2076 		return;
2077 	}
2078 
2079 	/* Init tx descriptors. */
2080 	vr_tx_ring_init(sc);
2081 
2082 	if ((sc->vr_quirks & VR_Q_CAM) != 0) {
2083 		uint8_t vcam[2] = { 0, 0 };
2084 
2085 		/* Disable VLAN hardware tag insertion/stripping. */
2086 		VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN | VR_TXCFG_RXTAGCTL);
2087 		/* Disable VLAN hardware filtering. */
2088 		VR_CLRBIT(sc, VR_BCR1, VR_BCR1_VLANFILT_ENB);
2089 		/* Disable all CAM entries. */
2090 		vr_cam_mask(sc, VR_MCAST_CAM, 0);
2091 		vr_cam_mask(sc, VR_VLAN_CAM, 0);
2092 		/* Enable the first VLAN CAM. */
2093 		vr_cam_data(sc, VR_VLAN_CAM, 0, vcam);
2094 		vr_cam_mask(sc, VR_VLAN_CAM, 1);
2095 	}
2096 
2097 	/*
2098 	 * Set up receive filter.
2099 	 */
2100 	vr_set_filter(sc);
2101 
2102 	/*
2103 	 * Load the address of the RX ring.
2104 	 */
2105 	addr = VR_RX_RING_ADDR(sc, 0);
2106 	CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2107 	/*
2108 	 * Load the address of the TX ring.
2109 	 */
2110 	addr = VR_TX_RING_ADDR(sc, 0);
2111 	CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2112 	/* Default : full-duplex, no Tx poll. */
2113 	CSR_WRITE_1(sc, VR_CR1, VR_CR1_FULLDUPLEX | VR_CR1_TX_NOPOLL);
2114 
2115 	/* Set flow-control parameters for Rhine III. */
2116 	if (sc->vr_revid >= REV_ID_VT6105_A0) {
2117 		/*
2118 		 * Configure Rx buffer count available for incoming
2119 		 * packet.
2120 		 * Even though data sheet says almost nothing about
2121 		 * this register, this register should be updated
2122 		 * whenever driver adds new RX buffers to controller.
2123 		 * Otherwise, XON frame is not sent to link partner
2124 		 * even if controller has enough RX buffers and you
2125 		 * would be isolated from network.
2126 		 * The controller is not smart enough to know number
2127 		 * of available RX buffers so driver have to let
2128 		 * controller know how many RX buffers are posted.
2129 		 * In other words, this register works like a residue
2130 		 * counter for RX buffers and should be initialized
2131 		 * to the number of total RX buffers  - 1 before
2132 		 * enabling RX MAC.  Note, this register is 8bits so
2133 		 * it effectively limits the maximum number of RX
2134 		 * buffer to be configured by controller is 255.
2135 		 */
2136 		CSR_WRITE_1(sc, VR_FLOWCR0, VR_RX_RING_CNT - 1);
2137 		/*
2138 		 * Tx pause low threshold : 8 free receive buffers
2139 		 * Tx pause XON high threshold : 24 free receive buffers
2140 		 */
2141 		CSR_WRITE_1(sc, VR_FLOWCR1,
2142 		    VR_FLOWCR1_TXLO8 | VR_FLOWCR1_TXHI24 | VR_FLOWCR1_XONXOFF);
2143 		/* Set Tx pause timer. */
2144 		CSR_WRITE_2(sc, VR_PAUSETIMER, 0xffff);
2145 	}
2146 
2147 	/* Enable receiver and transmitter. */
2148 	CSR_WRITE_1(sc, VR_CR0,
2149 	    VR_CR0_START | VR_CR0_TX_ON | VR_CR0_RX_ON | VR_CR0_RX_GO);
2150 
2151 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2152 #ifdef DEVICE_POLLING
2153 	/*
2154 	 * Disable interrupts if we are polling.
2155 	 */
2156 	if (ifp->if_capenable & IFCAP_POLLING)
2157 		CSR_WRITE_2(sc, VR_IMR, 0);
2158 	else
2159 #endif
2160 	/*
2161 	 * Enable interrupts and disable MII intrs.
2162 	 */
2163 	CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2164 	if (sc->vr_revid > REV_ID_VT6102_A)
2165 		CSR_WRITE_2(sc, VR_MII_IMR, 0);
2166 
2167 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2168 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2169 
2170 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2171 	mii_mediachg(mii);
2172 
2173 	callout_reset(&sc->vr_stat_callout, hz, vr_tick, sc);
2174 }
2175 
2176 /*
2177  * Set media options.
2178  */
2179 static int
2180 vr_ifmedia_upd(struct ifnet *ifp)
2181 {
2182 	struct vr_softc		*sc;
2183 	struct mii_data		*mii;
2184 	struct mii_softc	*miisc;
2185 	int			error;
2186 
2187 	sc = ifp->if_softc;
2188 	VR_LOCK(sc);
2189 	mii = device_get_softc(sc->vr_miibus);
2190 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2191 		PHY_RESET(miisc);
2192 	sc->vr_flags &= ~(VR_F_LINK | VR_F_TXPAUSE);
2193 	error = mii_mediachg(mii);
2194 	VR_UNLOCK(sc);
2195 
2196 	return (error);
2197 }
2198 
2199 /*
2200  * Report current media status.
2201  */
2202 static void
2203 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2204 {
2205 	struct vr_softc		*sc;
2206 	struct mii_data		*mii;
2207 
2208 	sc = ifp->if_softc;
2209 	mii = device_get_softc(sc->vr_miibus);
2210 	VR_LOCK(sc);
2211 	if ((ifp->if_flags & IFF_UP) == 0) {
2212 		VR_UNLOCK(sc);
2213 		return;
2214 	}
2215 	mii_pollstat(mii);
2216 	ifmr->ifm_active = mii->mii_media_active;
2217 	ifmr->ifm_status = mii->mii_media_status;
2218 	VR_UNLOCK(sc);
2219 }
2220 
2221 static int
2222 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2223 {
2224 	struct vr_softc		*sc;
2225 	struct ifreq		*ifr;
2226 	struct mii_data		*mii;
2227 	int			error, mask;
2228 
2229 	sc = ifp->if_softc;
2230 	ifr = (struct ifreq *)data;
2231 	error = 0;
2232 
2233 	switch (command) {
2234 	case SIOCSIFFLAGS:
2235 		VR_LOCK(sc);
2236 		if (ifp->if_flags & IFF_UP) {
2237 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2238 				if ((ifp->if_flags ^ sc->vr_if_flags) &
2239 				    (IFF_PROMISC | IFF_ALLMULTI))
2240 					vr_set_filter(sc);
2241 			} else {
2242 				if ((sc->vr_flags & VR_F_DETACHED) == 0)
2243 					vr_init_locked(sc);
2244 			}
2245 		} else {
2246 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2247 				vr_stop(sc);
2248 		}
2249 		sc->vr_if_flags = ifp->if_flags;
2250 		VR_UNLOCK(sc);
2251 		break;
2252 	case SIOCADDMULTI:
2253 	case SIOCDELMULTI:
2254 		VR_LOCK(sc);
2255 		vr_set_filter(sc);
2256 		VR_UNLOCK(sc);
2257 		break;
2258 	case SIOCGIFMEDIA:
2259 	case SIOCSIFMEDIA:
2260 		mii = device_get_softc(sc->vr_miibus);
2261 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2262 		break;
2263 	case SIOCSIFCAP:
2264 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2265 #ifdef DEVICE_POLLING
2266 		if (mask & IFCAP_POLLING) {
2267 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2268 				error = ether_poll_register(vr_poll, ifp);
2269 				if (error != 0)
2270 					break;
2271 				VR_LOCK(sc);
2272 				/* Disable interrupts. */
2273 				CSR_WRITE_2(sc, VR_IMR, 0x0000);
2274 				ifp->if_capenable |= IFCAP_POLLING;
2275 				VR_UNLOCK(sc);
2276 			} else {
2277 				error = ether_poll_deregister(ifp);
2278 				/* Enable interrupts. */
2279 				VR_LOCK(sc);
2280 				CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
2281 				ifp->if_capenable &= ~IFCAP_POLLING;
2282 				VR_UNLOCK(sc);
2283 			}
2284 		}
2285 #endif /* DEVICE_POLLING */
2286 		if ((mask & IFCAP_TXCSUM) != 0 &&
2287 		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2288 			ifp->if_capenable ^= IFCAP_TXCSUM;
2289 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2290 				ifp->if_hwassist |= VR_CSUM_FEATURES;
2291 			else
2292 				ifp->if_hwassist &= ~VR_CSUM_FEATURES;
2293 		}
2294 		if ((mask & IFCAP_RXCSUM) != 0 &&
2295 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2296 			ifp->if_capenable ^= IFCAP_RXCSUM;
2297 		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2298 		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2299 			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2300 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2301 		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2302 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2303 		break;
2304 	default:
2305 		error = ether_ioctl(ifp, command, data);
2306 		break;
2307 	}
2308 
2309 	return (error);
2310 }
2311 
2312 static void
2313 vr_watchdog(struct vr_softc *sc)
2314 {
2315 	struct ifnet		*ifp;
2316 
2317 	VR_LOCK_ASSERT(sc);
2318 
2319 	if (sc->vr_watchdog_timer == 0 || --sc->vr_watchdog_timer)
2320 		return;
2321 
2322 	ifp = sc->vr_ifp;
2323 	/*
2324 	 * Reclaim first as we don't request interrupt for every packets.
2325 	 */
2326 	vr_txeof(sc);
2327 	if (sc->vr_cdata.vr_tx_cnt == 0)
2328 		return;
2329 
2330 	if ((sc->vr_flags & VR_F_LINK) == 0) {
2331 		if (bootverbose)
2332 			if_printf(sc->vr_ifp, "watchdog timeout "
2333 			   "(missed link)\n");
2334 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2335 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2336 		vr_init_locked(sc);
2337 		return;
2338 	}
2339 
2340 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2341 	if_printf(ifp, "watchdog timeout\n");
2342 
2343 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2344 	vr_init_locked(sc);
2345 
2346 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2347 		vr_start_locked(ifp);
2348 }
2349 
2350 static void
2351 vr_tx_start(struct vr_softc *sc)
2352 {
2353 	bus_addr_t	addr;
2354 	uint8_t		cmd;
2355 
2356 	cmd = CSR_READ_1(sc, VR_CR0);
2357 	if ((cmd & VR_CR0_TX_ON) == 0) {
2358 		addr = VR_TX_RING_ADDR(sc, sc->vr_cdata.vr_tx_cons);
2359 		CSR_WRITE_4(sc, VR_TXADDR, VR_ADDR_LO(addr));
2360 		cmd |= VR_CR0_TX_ON;
2361 		CSR_WRITE_1(sc, VR_CR0, cmd);
2362 	}
2363 	if (sc->vr_cdata.vr_tx_cnt != 0) {
2364 		sc->vr_watchdog_timer = 5;
2365 		VR_SETBIT(sc, VR_CR0, VR_CR0_TX_GO);
2366 	}
2367 }
2368 
2369 static void
2370 vr_rx_start(struct vr_softc *sc)
2371 {
2372 	bus_addr_t	addr;
2373 	uint8_t		cmd;
2374 
2375 	cmd = CSR_READ_1(sc, VR_CR0);
2376 	if ((cmd & VR_CR0_RX_ON) == 0) {
2377 		addr = VR_RX_RING_ADDR(sc, sc->vr_cdata.vr_rx_cons);
2378 		CSR_WRITE_4(sc, VR_RXADDR, VR_ADDR_LO(addr));
2379 		cmd |= VR_CR0_RX_ON;
2380 		CSR_WRITE_1(sc, VR_CR0, cmd);
2381 	}
2382 	CSR_WRITE_1(sc, VR_CR0, cmd | VR_CR0_RX_GO);
2383 }
2384 
2385 static int
2386 vr_tx_stop(struct vr_softc *sc)
2387 {
2388 	int		i;
2389 	uint8_t		cmd;
2390 
2391 	cmd = CSR_READ_1(sc, VR_CR0);
2392 	if ((cmd & VR_CR0_TX_ON) != 0) {
2393 		cmd &= ~VR_CR0_TX_ON;
2394 		CSR_WRITE_1(sc, VR_CR0, cmd);
2395 		for (i = VR_TIMEOUT; i > 0; i--) {
2396 			DELAY(5);
2397 			cmd = CSR_READ_1(sc, VR_CR0);
2398 			if ((cmd & VR_CR0_TX_ON) == 0)
2399 				break;
2400 		}
2401 		if (i == 0)
2402 			return (ETIMEDOUT);
2403 	}
2404 	return (0);
2405 }
2406 
2407 static int
2408 vr_rx_stop(struct vr_softc *sc)
2409 {
2410 	int		i;
2411 	uint8_t		cmd;
2412 
2413 	cmd = CSR_READ_1(sc, VR_CR0);
2414 	if ((cmd & VR_CR0_RX_ON) != 0) {
2415 		cmd &= ~VR_CR0_RX_ON;
2416 		CSR_WRITE_1(sc, VR_CR0, cmd);
2417 		for (i = VR_TIMEOUT; i > 0; i--) {
2418 			DELAY(5);
2419 			cmd = CSR_READ_1(sc, VR_CR0);
2420 			if ((cmd & VR_CR0_RX_ON) == 0)
2421 				break;
2422 		}
2423 		if (i == 0)
2424 			return (ETIMEDOUT);
2425 	}
2426 	return (0);
2427 }
2428 
2429 /*
2430  * Stop the adapter and free any mbufs allocated to the
2431  * RX and TX lists.
2432  */
2433 static void
2434 vr_stop(struct vr_softc *sc)
2435 {
2436 	struct vr_txdesc	*txd;
2437 	struct vr_rxdesc	*rxd;
2438 	struct ifnet		*ifp;
2439 	int			i;
2440 
2441 	VR_LOCK_ASSERT(sc);
2442 
2443 	ifp = sc->vr_ifp;
2444 	sc->vr_watchdog_timer = 0;
2445 
2446 	callout_stop(&sc->vr_stat_callout);
2447 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2448 
2449 	CSR_WRITE_1(sc, VR_CR0, VR_CR0_STOP);
2450 	if (vr_rx_stop(sc) != 0)
2451 		device_printf(sc->vr_dev, "%s: Rx shutdown error\n", __func__);
2452 	if (vr_tx_stop(sc) != 0)
2453 		device_printf(sc->vr_dev, "%s: Tx shutdown error\n", __func__);
2454 	/* Clear pending interrupts. */
2455 	CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
2456 	CSR_WRITE_2(sc, VR_IMR, 0x0000);
2457 	CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
2458 	CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
2459 
2460 	/*
2461 	 * Free RX and TX mbufs still in the queues.
2462 	 */
2463 	for (i = 0; i < VR_RX_RING_CNT; i++) {
2464 		rxd = &sc->vr_cdata.vr_rxdesc[i];
2465 		if (rxd->rx_m != NULL) {
2466 			bus_dmamap_sync(sc->vr_cdata.vr_rx_tag,
2467 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2468 			bus_dmamap_unload(sc->vr_cdata.vr_rx_tag,
2469 			    rxd->rx_dmamap);
2470 			m_freem(rxd->rx_m);
2471 			rxd->rx_m = NULL;
2472 		}
2473         }
2474 	for (i = 0; i < VR_TX_RING_CNT; i++) {
2475 		txd = &sc->vr_cdata.vr_txdesc[i];
2476 		if (txd->tx_m != NULL) {
2477 			bus_dmamap_sync(sc->vr_cdata.vr_tx_tag,
2478 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2479 			bus_dmamap_unload(sc->vr_cdata.vr_tx_tag,
2480 			    txd->tx_dmamap);
2481 			m_freem(txd->tx_m);
2482 			txd->tx_m = NULL;
2483 		}
2484         }
2485 }
2486 
2487 /*
2488  * Stop all chip I/O so that the kernel's probe routines don't
2489  * get confused by errant DMAs when rebooting.
2490  */
2491 static int
2492 vr_shutdown(device_t dev)
2493 {
2494 
2495 	return (vr_suspend(dev));
2496 }
2497 
2498 static int
2499 vr_suspend(device_t dev)
2500 {
2501 	struct vr_softc		*sc;
2502 
2503 	sc = device_get_softc(dev);
2504 
2505 	VR_LOCK(sc);
2506 	vr_stop(sc);
2507 	vr_setwol(sc);
2508 	sc->vr_flags |= VR_F_SUSPENDED;
2509 	VR_UNLOCK(sc);
2510 
2511 	return (0);
2512 }
2513 
2514 static int
2515 vr_resume(device_t dev)
2516 {
2517 	struct vr_softc		*sc;
2518 	struct ifnet		*ifp;
2519 
2520 	sc = device_get_softc(dev);
2521 
2522 	VR_LOCK(sc);
2523 	ifp = sc->vr_ifp;
2524 	vr_clrwol(sc);
2525 	vr_reset(sc);
2526 	if (ifp->if_flags & IFF_UP)
2527 		vr_init_locked(sc);
2528 
2529 	sc->vr_flags &= ~VR_F_SUSPENDED;
2530 	VR_UNLOCK(sc);
2531 
2532 	return (0);
2533 }
2534 
2535 static void
2536 vr_setwol(struct vr_softc *sc)
2537 {
2538 	struct ifnet		*ifp;
2539 	int			pmc;
2540 	uint16_t		pmstat;
2541 	uint8_t			v;
2542 
2543 	VR_LOCK_ASSERT(sc);
2544 
2545 	if (sc->vr_revid < REV_ID_VT6102_A ||
2546 	    pci_find_cap(sc->vr_dev, PCIY_PMG, &pmc) != 0)
2547 		return;
2548 
2549 	ifp = sc->vr_ifp;
2550 
2551 	/* Clear WOL configuration. */
2552 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2553 	CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2554 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2555 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2556 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2557 		/* Newer Rhine III supports two additional patterns. */
2558 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2559 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2560 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2561 	}
2562 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2563 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_UCAST);
2564 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2565 		CSR_WRITE_1(sc, VR_WOLCR_SET, VR_WOLCR_MAGIC);
2566 	/*
2567 	 * It seems that multicast wakeup frames require programming pattern
2568 	 * registers and valid CRC as well as pattern mask for each pattern.
2569 	 * While it's possible to setup such a pattern it would complicate
2570 	 * WOL configuration so ignore multicast wakeup frames.
2571 	 */
2572 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2573 		CSR_WRITE_1(sc, VR_WOLCFG_SET, VR_WOLCFG_SAB | VR_WOLCFG_SAM);
2574 		v = CSR_READ_1(sc, VR_STICKHW);
2575 		CSR_WRITE_1(sc, VR_STICKHW, v | VR_STICKHW_WOL_ENB);
2576 		CSR_WRITE_1(sc, VR_PWRCFG_SET, VR_PWRCFG_WOLEN);
2577 	}
2578 
2579 	/* Put hardware into sleep. */
2580 	v = CSR_READ_1(sc, VR_STICKHW);
2581 	v |= VR_STICKHW_DS0 | VR_STICKHW_DS1;
2582 	CSR_WRITE_1(sc, VR_STICKHW, v);
2583 
2584 	/* Request PME if WOL is requested. */
2585 	pmstat = pci_read_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, 2);
2586 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2587 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2588 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2589 	pci_write_config(sc->vr_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2590 }
2591 
2592 static void
2593 vr_clrwol(struct vr_softc *sc)
2594 {
2595 	uint8_t			v;
2596 
2597 	VR_LOCK_ASSERT(sc);
2598 
2599 	if (sc->vr_revid < REV_ID_VT6102_A)
2600 		return;
2601 
2602 	/* Take hardware out of sleep. */
2603 	v = CSR_READ_1(sc, VR_STICKHW);
2604 	v &= ~(VR_STICKHW_DS0 | VR_STICKHW_DS1 | VR_STICKHW_WOL_ENB);
2605 	CSR_WRITE_1(sc, VR_STICKHW, v);
2606 
2607 	/* Clear WOL configuration as WOL may interfere normal operation. */
2608 	CSR_WRITE_1(sc, VR_WOLCR_CLR, 0xFF);
2609 	CSR_WRITE_1(sc, VR_WOLCFG_CLR,
2610 	    VR_WOLCFG_SAB | VR_WOLCFG_SAM | VR_WOLCFG_PMEOVR);
2611 	CSR_WRITE_1(sc, VR_PWRCSR_CLR, 0xFF);
2612 	CSR_WRITE_1(sc, VR_PWRCFG_CLR, VR_PWRCFG_WOLEN);
2613 	if (sc->vr_revid > REV_ID_VT6105_B0) {
2614 		/* Newer Rhine III supports two additional patterns. */
2615 		CSR_WRITE_1(sc, VR_WOLCFG_CLR, VR_WOLCFG_PATTERN_PAGE);
2616 		CSR_WRITE_1(sc, VR_TESTREG_CLR, 3);
2617 		CSR_WRITE_1(sc, VR_PWRCSR1_CLR, 3);
2618 	}
2619 }
2620 
2621 static int
2622 vr_sysctl_stats(SYSCTL_HANDLER_ARGS)
2623 {
2624 	struct vr_softc		*sc;
2625 	struct vr_statistics	*stat;
2626 	int			error;
2627 	int			result;
2628 
2629 	result = -1;
2630 	error = sysctl_handle_int(oidp, &result, 0, req);
2631 
2632 	if (error != 0 || req->newptr == NULL)
2633 		return (error);
2634 
2635 	if (result == 1) {
2636 		sc = (struct vr_softc *)arg1;
2637 		stat = &sc->vr_stat;
2638 
2639 		printf("%s statistics:\n", device_get_nameunit(sc->vr_dev));
2640 		printf("Outbound good frames : %ju\n",
2641 		    (uintmax_t)stat->tx_ok);
2642 		printf("Inbound good frames : %ju\n",
2643 		    (uintmax_t)stat->rx_ok);
2644 		printf("Outbound errors : %u\n", stat->tx_errors);
2645 		printf("Inbound errors : %u\n", stat->rx_errors);
2646 		printf("Inbound no buffers : %u\n", stat->rx_no_buffers);
2647 		printf("Inbound no mbuf clusters: %d\n", stat->rx_no_mbufs);
2648 		printf("Inbound FIFO overflows : %d\n",
2649 		    stat->rx_fifo_overflows);
2650 		printf("Inbound CRC errors : %u\n", stat->rx_crc_errors);
2651 		printf("Inbound frame alignment errors : %u\n",
2652 		    stat->rx_alignment);
2653 		printf("Inbound giant frames : %u\n", stat->rx_giants);
2654 		printf("Inbound runt frames : %u\n", stat->rx_runts);
2655 		printf("Outbound aborted with excessive collisions : %u\n",
2656 		    stat->tx_abort);
2657 		printf("Outbound collisions : %u\n", stat->tx_collisions);
2658 		printf("Outbound late collisions : %u\n",
2659 		    stat->tx_late_collisions);
2660 		printf("Outbound underrun : %u\n", stat->tx_underrun);
2661 		printf("PCI bus errors : %u\n", stat->bus_errors);
2662 		printf("driver restarted due to Rx/Tx shutdown failure : %u\n",
2663 		    stat->num_restart);
2664 	}
2665 
2666 	return (error);
2667 }
2668